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1 INTRODUCTION 
Radiomics is an emerging field that combines medical imaging techniques with data science to extract a vast 
array of quantitative features from images for clinical or research applications. These features, often 
imperceptible to the human eye, hold the potential to enhance healthcare and improve patient outcomes [1] 
through the identification of novel imaging markers that enable precise diagnosis, prognosis, and treatment 
planning for a variety of childhood diseases. Integration of radiomics with other data types, such as genomics [1], 
offers opportunities for further multi-modal insights, while longitudinal studies can establish radiomics’ role in 
monitoring disease progression or treatment response.  

Interpretability, accountability, and reliability are essential within a healthcare setting. In contrast to "black-box" 
AI approaches, radiomics typically integrate interpretable algorithms, ensuring that predictions and insights can 
be understood, validated, and trusted by clinicians, offering auditable workflows that are clear and reproducible.  

While traditional radiological reporting is invaluable, it may not fully exploit all the complex information embedded 
within modern imaging data. Radiomics can provide additional value to conventional radiological reporting, 
enhancing our ability to characterise pathology quantitatively and equipping clinicians with meaningful insights to 
reliably inform decision making. 

2 KEY CONCEPTS 
Radiomics is the practice of transforming medical imaging into a set of well-defined quantitative features 
characterising a region of interest, such as pathology, providing insights through data-driven analysis (as well-
detailed in [2]), following a workflow such as that shown in Figure 1. This process can be summarised as follows: 

1) Image Acquisition: Modern medical imaging modalities, such as computed tomography (CT), magnetic 
resonance imaging (MRI), and positron emission tomography, provide detailed anatomical and functional 
information to clinicians, and are commonly acquired clinically for diagnosis and treatment planning. 

2) Segmentation: Quantitative analysis via radiomics requires the annotation of a Region of Interest (ROI), 
which delineates the boundary of the area in an image being investigated, serving as the volume from 
which radiomic features are extracted. Conventionally, ROIs were manually annotated, but are now 
increasingly annotated using semi-automated, or even fully-automated tools. Some investigations employ 
multiple ROIs, each highlighting different subregions of anatomy or disease that could exhibit distinct 
radiomic profiles. 

3) Feature Extraction: Quantitative features are calculated from the segmented ROI(s), encompassing 
characteristics of pathology such as morphology, intensity, and texture. Each of these types of features 
exhibit varying levels of complexity and stability, with many capturing subtle imaging patterns, 
imperceptible to the human eye, which may correlate with underlying pathology. 

4) Data Analysis: Advanced statistical methods and machine learning models analyse the extracted 
features. This stage identifies patterns, develops predictive models, and correlates imaging features with 
clinical outcomes or molecular data. Complementary sets of features can be extracted from multiple 
imaging modalities to further improve predictions. 



 
Figure 1: Steps required in a radiomic workflow, whereby images are first acquired and segmented, then different types of features are 
extracted, and finally passed to different algorithms or machine learning models for data analysis. An optional stage, feature selection, is 
included, typically used when extracting large numbers of features within relatively small cohorts. With the provided example image using a 
single region of interest, a diagnostic tool could pick up on the bright and cystic regions, rounded shape, and sharp tissue boundaries (via 
intensity, morphological and textural features respectively) to provide quick, quantitative identification of this brain tumour as a Pilocytic 
Astrocytoma. 

3 APPLICATIONS 
Models utilising radiomic features have been applied across a wide range of paediatric disease cohorts to identify 
diagnostically and prognostically significant biomarkers with potential clinical applicability.  

3.1 ACUTE DISEASE 
Research into various acute paediatric conditions have employed radiomics to enhance diagnostic precision and 
support timely intervention. For example, using non-enhanced CT imaging only, radiomic analysis enabled the 
identification of early imaging biomarkers to distinguish necrotizing pneumonia in children [6], facilitating prompt 
and appropriate treatment decisions typically resulting in better patient outcomes. 

3.2 CHRONIC DISEASES 
Radiomics offers a novel approach to quantifying disease progression in chronic conditions. Accurate radiomic 
models tracking subtle structural changes over time, could limit the need for supplementary sets of invasive 
tests, maintaining quality of care for patients whilst reducing patient impact and streamlining disease monitoring. 
For example, in cystic fibrosis (CF), where lung imaging is part of standard care, CT radiomic features alone have 
demonstrated good propensity to predict clinical markers of CF severity and exacerbation risk in adults [7].  



3.3 NEONATAL 
In neonatology, radiomics has shown promise in prompt diagnosis of neonatal respiratory distress syndrome, 
utilising ultrasound imaging rather than typical radiological modalities [8]. Textural radiomic features combined 
with machine learning models enabled statistically significant improvements in diagnostic efficacy over junior 
physicians and with comparable performance to experts, demonstrating how radiomics can provide accurate 
diagnostic insights even when utilising non-standard imaging in small cohorts. 

3.4 NEURO-ONCOLOGY 
Radiomics approaches have been shown to be able to classify different types of paediatric brain tumours using 
MRI acquired at diagnosis [3], and perform molecular subgrouping of medulloblastomas [4]. While these 
techniques are not yet a part of routine clinical decision-making, their potential to provide an early, non-invasive 
prediction of a tumour’s molecular features could be valuable for informing initial patient and family counselling 
whilst awaiting definitive pathology results, or to assist neurosurgeons in deciding how aggressively to resect a 
tumour [9]. Radiomic feature analysis has also shown the ability to quantify and predict individual treatment 
responses [5], demonstrating the potential to radically improve patient outcomes through personalised care.  

3.5 NEURODEVELOPMENTAL DISORDERS 
Medical imaging has demonstrated the potential to identify and characterise psychiatric or neurodevelopmental 
disorders using radiomics, such as attention-deficit/hyperactivity disorder (ADHD) [10, 11]. In these studies, 
radiomics demonstrated improved performance over clinical factors and volumetric measures, with the ability to 
also classify ADHD subtypes and treatment response. Following careful validation, these findings may 
complement current diagnostic practices, providing clinicians with objective metrics alongside self-reporting 
tools.  

4 CHALLENGES 
Radiomics in paediatrics faces several challenges. Variability in imaging protocols and equipment, alongside 
imaging artefacts which are more common in children, such as motion artefact, can adversely impact feature 
reproducibility. Furthermore, vigilant monitoring of any imaging hardware and software improvement over time is 
critical to ensure any subtle changes in imaging parameters are not adversely impacting model accuracy.  Image 
standardisation, harmonisation, and pre-processing is therefore an essential element of reproducible radiomic 
workflows, with continuous assessment required to identify and mitigate data drift.  

Furthermore, paediatric disease cohorts tend to be smaller than adult counterparts, limiting data available for 
radiomic pipelines. [12] To ensure the statistical robustness and validity of findings, the large sets of radiomic 
features extracted from images require equally substantial numbers of patients in the cohort, making rigorous 
analytical techniques and collaborative, multi-centre studies essential to ensure robust, generalisable paediatric 
models.  

The interpretation of radiomic data is further complicated within paediatrics, due to the influence of 
developmental changes on what is considered ‘normal’ at different ages. This variability underscores the 
importance of designing algorithms and identifying disease cohorts that account for age-specific variation, 
particularly given the relative scarcity of healthy control imaging in children compared to adults. 

Manual annotation of pathology can also be time-consuming, and automated tools, often developed for adults, 
may not account for paediatric anatomical differences, requiring further research to develop robust automated 
segmentation solutions.  

To become embedded in standard clinical practice, radiomics must produce explainable, auditable outputs that 
clinicians can interpret confidently. Furthermore, models need to be assessed to ensure the demonstrated 



efficacy in research translates in a clinical environment when deployed alongside clinicians who are ultimately 
responsible for decision making. Biological validation of individual features is equally important, linking imaging 
findings to underlying pathology to enhance their credibility and relevance.  

5 CONCLUSION 
Radiomics offers a data-driven approach to paediatric imaging, transforming routine scans into a rich source of 
quantitative insights that complement traditional radiological practices. Its broad applicability across a range of 
conditions, from acute to chronic disease, cancer, and even neurodevelopmental disorders, highlights its 
potential to enhance diagnosis and improve prognostic accuracy. 

Despite its promise, challenges such as imaging variability, segmentation limitations, and small cohort sizes 
persist. Advances in standardisation, robust feature selection, and explainable workflows are addressing these 
barriers, ensuring that radiomics outputs are interpretable and actionable in clinical settings. Validation through 
biological and clinical studies will continue to further strengthen its reliability and credibility. 

With its wide applicability and focus on clinical translatability, radiomics is well-positioned to become a valuable 
tool in paediatric medicine, equipping clinicians with transparent, actionable insights to support decision-making, 
improving outcomes and advancing personalised healthcare for children.
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