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A B S T R A C T

Deformable image registration, the estimation of the spatial transformation between different images, is an
important task in medical imaging. Deep learning techniques have been shown to perform 3D image regis-
tration efficiently. However, current registration strategies often only focus on the deformation smoothness,
which leads to the ignorance of complicated motion patterns (e.g., separate or sliding motions), especially for
the intersection of organs. Thus, the performance when dealing with the discontinuous motions of multiple
nearby objects is limited, causing undesired predictive outcomes in clinical usage, such as misidentification
and mislocalization of lesions or other abnormalities. Consequently, we proposed a novel registration method
to address this issue: a new Motion Separable backbone is exploited to capture the separate motion, with a
theoretical analysis of the upper bound of the motions’ discontinuity provided. In addition, a novel Residual
Aligner module was used to disentangle and refine the predicted motions across the multiple neighboring
objects/organs. We evaluate our method, Residual Aligner-based Network (RAN), on abdominal Computed
Tomography (CT) scans and it has shown to achieve one of the most accurate unsupervised inter-subject
registration for the 9 organs, with the highest-ranked registration of the veins (Dice Similarity Coefficient
(%)/Average surface distance (mm): 62%/4.9mm for the vena cava and 34%/7.9mm for the portal and splenic
vein), with a smaller model structure and less computation compared to state-of-the-art methods. Furthermore,
when applied to lung CT, the RAN achieves comparable results to the best-ranked networks (94%/3.0mm),
also with fewer parameters and less computation.
1. Introduction

Alignment of multiple images, also known as image registration
(Sotiras et al., 2013), is a crucial task in medical image analysis appli-
ations. In medical imaging, it allows for comparison across multiple
cquisitions over time for longitudinal analysis (intra-subject registra-
ion), between different types of scanners for integration and correla-
ion of information from various modalities (multi-modal registration),
nd between different individuals for population-specific studies and
roup-level statistics (inter-subject registration).
Image registration can be defined as the estimation of the spatial

ransformation 𝜙 ∶ R𝑛 → R𝑛, represented by corresponding parameters
or linear spatial transform (such as rigid/affine transform) or a series
f motions (or displacements) for deformation denoted by 𝜙[𝒙] ∈ R𝑑 at
he coordinate 𝒙 ∈ Z𝑑 of a target image 𝑰 t ∈ R𝑛 from a source image
s ∈ R𝑛, where 𝑛 is the size of a 3D image defined as 𝑛 = 𝐻 ×𝑊 × 𝑇 ,
and 𝑑, 𝑇 ,𝐻,𝑊 denoting the image dimension, thickness, height, and
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width, respectively. Originally, image registration was solved as an
optimization problem by minimization of a dissimilarity metric  and
a regularization term :

𝜙̃ = argmin
𝜙

(

(𝜙(𝑰 s), 𝑰 t ) + 𝜆(𝜙, 𝑰 t )
)

(1)

where 𝜙̃ denotes the estimated spatial transform, 𝜆 denotes the weight
of the regularization. Several methods including Demons (Thirion,
1998) or Free Form Deformations (Rueckert et al., 1999) have been
proposed to solve Eq. (1), however, they are likely to get trapped in
the local optimum and their inference performance and efficiency are
limited due to iterative optimization of highly dimensional, non-convex
problem (Fischer and Modersitzki, 2008).

More recently, the registration is performed via (convolutional)
neural networks  using the feature maps 𝑭 s, 𝑭 t ∈ R𝑐×𝑛 extracted from
𝑰 s and 𝑰 t respectively, (and 𝑐 denotes the number of feature channels)
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by directly regressing the spatial transformation (Balakrishnan et al.,
018; Mok and Chung, 2020) with one-attempt registration (contrast
o iterative or progressive registration):

= (𝑭 s,𝑭 t ;𝐰) (2)

ith the training process based on minimizing the loss function
e.g. given in Eq. (1)) with the trainable weights 𝒘 (𝒘 are omitted
n the remaining part of the paper to simplify the notation), which
s called Direct Regression (DR) Registration (see Fig. 1). However,
he DR methods fail in dealing with large or complex motions such as
liding motion due to the limited capture range of the receptive field
f convolution layers.
To address the limited capture range problem, Attention-based

Attn) mechanism (Vaswani et al., 2017) can be used for feature
orrespondence or alignment in Li et al. (2021), Sun et al. (2021),
einrich (2019), Zheng et al. (2022, 2023) and Chen et al. (2022,

2021a) to obtain the global receptive field, with so-called attention
score matrices to quantify the correspondence between each pair of
pixels from two images. In this approach, each element of the feature
map 𝑭 t , represented as a key vector, is compared with the query vectors
from 𝑭 s in an attention score matrix 𝛷 ∈ R𝑛×𝑛. The alignment by
single-head cross attention can be formulated as:
{

𝛷 = sof tmax(q(𝑭 s)⊤k (𝑭 t ))

𝜙(𝑭 s) ∶= 𝑭 s𝛷
(3)

where q and k denote the linear transformation for query and key
feature vectors. The usage of multiple attention score matrices 𝛷̂ =
(𝛷1, 𝛷2,…𝛷𝑚) is called M-H attention. However, the calculation
of the attention score matrix with (𝑛2) complexity leads to large
emory consumption and computational inefficiency, which could be
rohibitive for 3D image registration.
Another solution is to progressively perform coarse-to-fine align-
ent via multi-scale feature maps or FP (Ranjan and Black, 2017; Sun
t al., 2018; de Vos et al., 2019; Xu et al., 2021; Chang et al., 2017;
v et al., 2019). In coarse-to-fine approach, the feature maps 𝑭 t

0 and
s
0 are first aligned using a low-resolution or coarse approximation
f the transformation 𝜙0(𝑭 s

0). Then the transformation is progressively
stimated by accumulating the residual transformation 𝜑𝑘 between the
arget feature map 𝑭 t

𝑘 and the warped source feature map based on
revious (𝑘 − 1)-level registration 𝜙𝑘−1(𝑭 s

𝑘) via a network 𝑘:
{

𝜙𝑘 = 𝜑𝑘 ◦ 𝜙𝑘−1

𝜑𝑘 = 𝑘(𝜙𝑘−1(𝑭 s
𝑘),𝑭

t
𝑘)

(4)

here ◦ denotes the composition of two spatial transformations, and
0 is initialized as the identity transform. This approach is motivated
y the fact that direct registration of original high-resolution images
an be computationally expensive and prone to local optima, especially
hen the images are misaligned by large amounts or contain large-
cale variations of motion. However, those spatial transforms from
ifferent scales are usually directly combined at each position with
qual weight (Zhao et al., 2019b; Xu et al., 2021; Ranjan and Black,
017; Chang et al., 2017). This leads to a lack of flexibility in the
alance between similarity measurements of the aligned images and
he anatomical rationality of the predicted motions, especially for the
lignment of texture-poor areas.
Additionally, the aforementioned non-rigid registration techniques

ssume that the deformation field across the image is continuous and
mooth. However, as shown in Fig. 2, the deformation field at the
oundary between organs could be discontinuous (Hua et al., 2017),
s organs can move relatively to each other in different ways, such
s the motion of nearby objects (Xiao et al., 2006) or organs (Papież
t al., 2014; Schmidt-Richberg et al., 2012; Vishnevskiy et al., 2016).
Especially, abdomen CT scans often include large, discontinuous defor-
mation, caused by differences in organ shapes, patient positions, and
respiratory motion (Hua et al., 2017; Papież et al., 2018). This makes
2

Fig. 1. The registration framework of our proposed Motion-Separable or Feature
Pyramid (MS/FP) based Residual Aligner Network (RAN) structure, Direct Regression
(DR), Attention-based (Attn) registration, and Cascaded (Cas) network. The MS or FP
backbone networks (the difference detailed in Fig. 3) extract the features and output
feature maps and the stacked RA modules (see more in Fig. 4) align and connect the
data streams from the input images.

it challenging to obtain accurate registration results with current deep
learning rigid or non-rigid registration methods, as these methods may
fail to capture complex deformation patterns. As a result, enforcing
continuity and smoothness throughout the image tends to induce er-
rors and artifacts at the discontinuous interface, as demonstrated in
Fig. 2(a).

To address this issue, previous approaches have attempted to in-
corporate additional information into the registration network. For
example, in Cao et al. (2021), the edge map of the images is extracted
using the Sobel operator and combined with the original images as
input to the registration network. However, the Sobel operator can be
easily approximated by a single convolution layer, leading to limited
improvement. Another approach proposed in Chen et al. (2021b) is a
segmentation-based discontinuous deformable registration method. It
directly feeds the predicted segmentation results and incorporates them
into the registration network to divide the deformation into specific
sub-regions. However, this method requires additional segmentation
annotation during the training phase and relies on an extra segmen-
tation network in the inference phases, which consequently restricts its
applicability to unsupervised registration. In Ng and Ebrahimi (2020),
a novel regularization term was introduced to enforce constraints on
the vertical projection changes between neighboring displacements
while preserving the sliding motion. To the best of our knowledge,
all the previous studies focus on the edge information provided by
extra input information or the constraint of discontinuity in the loss
function, but none of them has specifically investigated the limitation
of discontinuous deformable registration in terms of network structures
designed.

In this paper, we investigate the limitation in network design in
the context of discontinuous deformable registration. To address these,
we propose the RAN based on a novel MS backbone structure (Fig. 3)
and a new RA module (Fig. 4), aiming at efficient, motion-separable,

coarse-to-fine image registration. Our contributions are as follows:
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Fig. 2. Illustration of the motion inseparable problem in the coarse-to-fine alignment
f two neighboring organs, with differing motions of two exemplar points (× and

▵). (a) Failed capture of point ▵ is due to the low-resolution feature pyramid. (b)
Our proposed solution utilizes optimized upsampling layers + dilated convolutions
in the MS structure to improve the discontinuity preservation in different organs’
motions (analyzed in Section 2 and detailed in Fig. 3), while maintaining the same
receptive field. Additionally, a M-H mask regressed from the feature map is multiplied
to disentangle the motions of different organs (detailed in Fig. 4).

• Discontinuous deformable registration: To the best of our
knowledge, this is the first study to explore network structure
design specifically for estimating the discontinuous displacement
or motion field in an unsupervised manner;

• Theoretical analysis: The accessible displacement magnitude
and the displacement discontinuity are respectively quantified
and named as accessible motion capture range and motion sep-
arability pattern respectively in Sections 2.2 and 2.3, so that we
provide a theoretical analysis of the upper boundary of the motion
separability (Theorem 1, and Eq. (10) given in Box I), guiding
the design and the parameter setting in the proposed network
structure;

• MS backbone structure: Following Theorem 1 and Eq. (10), a
new MS structure, as illustrated in Fig. 2(b), employs optimal
dilated convolutions on high-resolution feature maps to benefit
the network on predicting different motion patterns, while pre-
serving the accessible motion range. Notably, this structure is
computationally efficient (Section 2.4);

• Motion disentanglement and refinement module: Further-
more, our proposed RA module utilizes confidence and M-H
mechanism based on the semantic and contextual information
3

t

Fig. 3. The design and theoretical analysis of Fully Convolution Networks (FCN)
backbone for feature extraction. (a) Motion-Separable Structures designed with a
varying number of motion-separable layers 𝑞, where the feature maps from the encoder
part are upsampled and concatenated to the decoder part, (b) with different hyper-
parameter setting, showing that a higher 𝑞, (c) with almost the same 𝑎𝑘, achieves a
higher area under the curve of the motion separability bottleneck 𝛥∞(𝑝), referring to
Eqs. (5) and (10) (unit: pix/vox).

to disentangle the predicted displacement in different organs or
regions (Section 3);

• Accurate and Efficient registration results: The above-
proposed components constitute the novel RAN that performs ef-
ficient, coarse-to-fine, motion-separable unsupervised registration
achieving state-of-the-art accuracy on publicly available lung and
abdomen CT data in Section 4.

.1. Related works

Besides the conventional iterative algorithm-based methods, the
revious deep learning methods, as shown in Fig. 1, are classified into
our groups, DR registration, Cascaded network (Cas) registration, Attn
egistration, and FP-based registration.

.1.1. Direct regression registration methods
Voxelmorph (VM) (Balakrishnan et al., 2019) is the first deep learn-

ng method using a convolution neural network, U-net (Ronneberger
t al., 2015), to directly regress the spatial transform for deformable
mage registration. However, the capture range of large motions by
he DR-based learning methods is usually limited by the receptive field
n the convolution networks between two images which thus requires
ownsampling layers to enlarge the receptive field or a pre-alignment.

.1.2. Multi-stage cascaded network registration
DIRnet (de Vos et al., 2019) was thus proposed with multi-stage Cas-

aded (Cas) networks for coarse-to-fine registration with each network

rained for the specific resolution and searching range of registration,
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s

Fig. 4. The architecture of the 𝑘th Residual Aligner (RA) module. The Regressor section regresses the residual M-H DDF 𝜑̂𝑘 and each pixel’s attribute 𝜗𝑘,while the Accumulator
refines the DDF 𝜙𝑘 via interpolation and fusion of the M-H DDF predictions weighted by the confidence and disentangled by the M-H masks (calculated by Eq. (12)).
Table 1
Comparison between our RAN models and other models in terms of both accuracy and efficiency shows our models achieves the best performance in abdomen CT and one of the
best accuracy in lung CT (both inter- and intra-subject registration), which also prove the improvement achieved by MS structure. Our models are highlighted .

Model Reg. Abdomen (9 organs) Chest (lung) Efficiency

type DSC↑ HD↓ ASD↓ detJ↓ DSC↑ HD↓ ASD↓ detJ↓ TRE↓ #Par↓ FLOPs↓ TPI↓
(%) (mm) (mm) (e3) (%) (mm) (mm) (e3) (mm) (e6) (e9) (s)

Initial – 30.9 49.5 16.04 – 61.9 41.6 15.86 – 10.41 – – –

Demons1 Iter 46.3 42.6 7.95 0.91 87.5 41.6 4.45 0.68 – – – 67
Demons2 Iter 49.6 41.8 7.20 0.74 90.4 32.2 3.34 0.77 – – – 98

VM1 ∙DR 44.7 43.8 9.24 2.23 84.0 32.9 6.38 5.94 3.57 0.36 34.2 0.23
VM2 ∙DR 51.9 45.0 8.40 4.03 88.8 32.0 5.02 15.58 2.89 1.42 69.6 0.25
CA/P ∙Attn 47.6 43.8 8.77 3.85 84.7 28.9 5.75 2.67 3.18 0.58 114.5 0.41
SA/VM ∙Attn 49.7 45.9 8.63 5.22 91.4 26.8 4.82 7.42 – 1.92 109.8 0.57
Cn+Un ∙Cas 53.6 44.6 7.84 4.13 91.1 29.7 3.84 4.23 2.07 2.11 94.7 0.36
RCn1 ∙Cas 55.6 44.9 7.79 2.91 89.8 33.1 4.68 5.68 2.54 0.36 219.2 0.44
RCn2 ∙Cas 59.5 44.1 6.95 1.36 93.7 29.1 3.04 1.66 1.72 1.42 308.7 0.45
DPRn ∙FP 53.9 57.1 8.18 4.28 88.4 29.9 4.48 3.46 2.48 0.62 82.1 0.46
RAn3 ∙MS 54.2 43.8 7.74 3.48 93.5 26.3 3.01 4.05 1.69 0.72 132.1 0.48
RAn+4 ∙MS 61.7 40.8 6.51 1.55 91.6 29.2 3.84 3.17 1.88 0.75 272.6 0.56
Table 2
Ablation study on RA module by inter-subject image registration of abdomen CT and lung CT using the baseline DPRn (Kang et al., 2022), with the varying motion-separable
types of feature maps (𝑞 = 0, 3, 4), the M-H setting, and confidence weights (CW).
Model Setting Abdomen (9 organs) Chest (lung) Efficiency

CW M-H 𝑞 DSC↑ HD↓ ASD↓ detJ↓ DSC↑ HD↓ ASD↓ detJ↓ #Par↓ FLOPs↓ TPI↓
(%) (mm) (mm) (e3) (%) (mm) (mm) (e3) (e6) (e9) (s)

DPRn × × 0 53.4 57.1 8.18 4.28 88.4 29.9 4.48 3.46 0.62 83.2 0.46
RAn ✓ × 0 53.9 46.0 8.03 2.65 90.7 30.3 3.74 9.61 0.68 96.7 0.41
RAn ✓ × 4 56.4 44.8 7.48 2.66 92.1 28.1 3.42 6.87 0.71 201.6 0.56
RAn0 ✓ ✓ 0 53.3 44.0 7.98 2.64 92.5 28.9 3.34 3.74 0.71 116.7 0.47
RAn3 ✓ ✓ 3 54.2 43.8 7.74 3.48 93.5 26.3 3.01 4.05 0.72 132.1 0.48
RAn4 ✓ ✓ 4 56.1 44.2 7.66 2.46 91.5 26.9 3.55 4.06 0.71 222.3 0.54
RAn+4 ✓ ✓ 4 61.7 40.8 6.51 1.55 91.6 29.2 3.84 3.17 0.75 272.6 0.56
Table 3
Our unsupervised RAn+4 model achieves comparable accuracy to the external
egmentation-based supervised model (Chen et al., 2021b).
Model Abdomen (9 organs)

(supervised [S] / DSC↑ HD↓ ASD↓ detJ↓
unsupervised [U]) (%) (mm) (mm) (e3)

Initial 30.9 49.5 16.04 –

Chen et al. (2021b) [S] 56.7 39.8 7.10 0.68
RAn+4 [U] 61.7 40.8 6.51 1.55

using B-spline for interpolation on the sparse prediction, but require
extra time cost on training. Several end-to-end training cascaded net-
works (Zhao et al., 2019b; Hu et al., 2018; Shen et al., 2019; Zhao
4

Table 4
Comparison between different regularization terms in loss function using our RAn+4
model. The default setting is highlighted .

RAn+4 w/ Abdomen (9 organs)

loss setting DSC↑ HD↓ ASD↓ detJ↓
(%) (mm) (mm) (e3)

Eq. (16) w/ 𝜏 = 0 56.7 42.4 7.07 1.22
Eq. (16) w/ 𝜏 = 25 59.8 43.2 6.90 2.28
Eq. (15) w/ 𝜏 = 0 57.8 44.6 7.17 0.94
Eq. (15) w/ 𝜏 = 25 61.7 40.8 6.51 1.55

et al., 2019a) were also proposed for coarse-to-fine image registration
by recursively warping images. However, the sub-network of each stage
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Fig. 5. Qualitative example in abdomen CT shows our networks achieve plausible registration, with the improvement at the areas between different organs, such as the liver,
nferior vena cava, spleen, and left/right kidney. As illustrated in |𝜙|, the discontinuous motions between different organs are preserved in the predictions by our networks. The
hite ‘‘⊸’’ in the zoom-in picture of |𝜙| shows the motion vectors (source ↦ target) projected in the frontal/transverse planes.
s fed with the directly warped images, which lacks feature preserva-
ion between different stages, and thus leads to extra calculation and
arameters consuming on extracting the repeated features.

.1.3. Feature pyramidal image registration
To efficiently employed the features, FP was employed for unsuper-

ised registration in Dual-PRNet (DPRn) (Kang et al., 2022). Multiple
patial transforms are predicted in the multi-scale feature domain, to
radually refine the registration based on a sequence of feature maps
xtracted from a compacted structure (Kang et al., 2022). Furthermore,
Edge-Aware Pyramidal Network (Cao et al., 2021) was designed for
unsupervised registration with an extra edge image of the original
5

input to enhance the texture structure features. A new bilevel, self-
tune framework (Liu et al., 2021) was also proposed for training a
pyramidal-based registration network with contextual regularization.
However, motion predictions in texture-free or repeatedly textured
regions rely on the use of convolutional layers to infer information from
neighboring information-rich regions, based on regularization terms.
The inductive bias of spatial equivalence results in fixed weights for
the filtering kernel, which requires extra information to differentiate
between different regions. In contrast, previous methods (Cao et al.,
2021; Liu et al., 2021; Kang et al., 2022) do not quantify the confi-
dence level of different regions, making it difficult for the network to
adaptively refine the prediction results to balance the similarity of the
registered images with the plausibility of the predicted motion.
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Fig. 6. Qualitative example in chest CT shows our networks achieve plausible registration, with the improvement at the edge area of the lung. The white ‘‘⊸’’ in the zoom-in
icture of |𝜙| shows the motion vectors (source ↦ target) projected in the frontal/transverse planes.
.1.4. Attention-based image registration
The attention mechanism (Vaswani et al., 2017) addresses the lim-

ted receptive field of CNNs and has been widely utilized in transformer
etworks. Optimal correspondence matching was studied in Li et al.
2021) for a stereo matching task, where a self-attention-based trans-
ormer is proposed to relax the limitation of a fixed disparity range.
ocal feature matching can also benefit from self- and cross-attention,
ecause transformer networks are proven to obtain feature descriptors
hat are conditioned on both images (Sun et al., 2021). The attention-
ased mechanism was applied to deformable registration (Zhang et al.,
2021; Song et al., 2021; Zheng et al., 2022; Chen et al., 2021a,
2022) previously, however, is computationally expensive for 3D image
registration with (𝑛2) computation complexity of 𝑛 patches.
6

p p
Based on an overview of the existing literature, there is a trade-off
between computational efficiency, capturing large deformations, and
preserving discontinuities between different organs’ motions. However,
current existing network designs tend to prioritize the first two aspects
and often neglect the importance of discontinuity preservation. Con-
sequently, our objective is to develop an efficient network structure
that addresses both discontinuity preservation and the capture of large
deformations, with a particular emphasis on discontinuity preservation.

2. Network design for motion-separable structure

In this section, we first introduce the framework of coarse-to-fine
registration in Section 2.1. Then the capacity of the coarse-to-fine
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Fig. 7. Our RANs achieve the best registration in the veins in abdominal CT scans. The box plots of DSC, ASD, and HD illustrate our networks achieve the best registration in
infer vena cava and portal & splenic vein, (sample numbers 42&56 for abdomen&chest). RANs equipped with higher 𝑞 perform better on the smaller organs (c.f. RAn3 with RAn+4 ).
omparisons on more models are illustrated in Appendix C.
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egistration networks are investigated and quantified respectively for
apturing large deformation (accessible motion capture range) and
reserving discontinuity (separability of the predicted motions) in Sec-
ions 2.2 and 2.3. Accessible Motion Range is defined in Section 2.2 to
easure how effectively the network can handle and represent signifi-
ant motion between different organs. Motion Separability, on the other
and, is defined in Section 2.3 to quantify the capacity of a registration
etwork to maintain the distinct motion patterns of different organs and
void blending or mixing of their motions. A bottleneck is identified
n preserving discontinuity between different motions within a certain
ange region when using current coarse-to-fine registration.
To enhance the ability of the coarse-to-fine registration network

o preserve large discontinuities and simultaneously capture large de-
ormations, we propose a new approach based on our theoretical
indings. As detailed in Section 2.4, our proposed coarse-to-fine image
egistration network employs a MS structure to extract feature maps.
dditionally, it uses stacked progressive registration modules, or RA,
o identify correspondences and estimate the DDF. These modules are
urther described in Section 3. The process is visualized in Fig. 1.

2.1. Coarse-to-fine registration framework

As shown in Fig. 1 and described by Eq. (4), the framework of
coarse-to-fine registration consists of two parts, the feature extractor,
and the feature aligner. A pair of Fully Convolution Networks (FCNs),
with shared weights for efficient training, is used here as the feature
extractor to extract two sets of feature maps, {𝑭 s

𝑘}
𝐾
𝑘=1 and {𝑭 t

𝑘}
𝐾
𝑘=1.

The feature aligner, including 𝑘 and 𝑘, takes the two feature maps
from FCNs, retrieves one (key) on another (query) and then feeds back
the aligned feature maps respectively to reinforce the next feature
7

extraction.
2.2. Capture range in coarse-to-fine registration

To quantify the network’s capacity for the large deformation cap-
turing, the accessible motion capture range is defined as:

Definition 1 (Accessible Motion Range). The radius of capture range
of the 𝑘th-level registration by 𝑘 in Eq. (4) is defined as the smallest
pper bound of its accessible DDF:

𝑘 ∶= min
𝒙

{sup (‖𝜑𝑘[𝒙]‖∞)} (5)

here ‖ ⋅ ‖∞ denotes the L-∞ norm of a vector, sup(⋅) denotes the
upremum or the maximum value of a given function with varying
nputs and trainable weights of networks, 𝒙 denotes one coordinate
ntry of the images or DDFs.

The accessible motion range can be approximated based on the
odule’s receptive field: 𝑎𝑘 ≈ 𝑠𝑘−1

2 , where 𝑠𝑘 denotes the original-
resolution size of the effective receptive field on the input feature maps,
controlled by a series of dilation rates as suggested in Zhou et al. (2020)
nd the resolution:

𝑘 = 𝑝𝑘
⏟⏟⏟

(i)

(1 + 2‖𝒓𝑘‖1)
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

(ii)

(6)

where 𝒓𝑘 denotes the vector of dilation rates of convolution layers in the
𝑘th-level registration, 𝑝𝑘 is the minimal registration region size. This size
corresponds to the pool size of the 𝑘th feature map, which is determined
by mapping one pixel on the original image when downsampling layers
are used for spatial dimension reduction, or it corresponds to the patch
size when patch-based tokenization is employed. It is required that with
𝑝𝑘 ≤ 𝑝𝑘−1,∀𝑘 > 0. Additionally, the convolutions are all assumed with
kernel size less than or equal to 3 to minimize the computation cost.
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Fig. 8. Illustration of M-H Mask softmax(𝜃𝑘) at different level number 𝑘 for RAn+4 , shows the selected regions varying from macroscopic to detail, with tissue region separated
rom cavity region (head-4, 3rd-level) and their edges identified (head-1&3, 4th-level).
𝛥

s a result, the part (i) and (ii) in Eq. (6) are respectively dependent
n pool size and dilation.
In the case of global registration on the whole image, the hyper-

arameters 𝑝1, 𝒓1 are set to enable 𝑎1 to reach the whole image:

𝑝1(1 + 2‖𝒓𝑘‖1) ≥ 2max(𝑇 ,𝐻,𝑊 ) + 1 (7)

and thus accessible motion range covers the whole image.

2.3. Motion separability

In the FP approach, the typical convolution without dilation and the
FP is employed: 𝑟𝑘 = [1 1 ⋯],∀𝑘 ∈ [0, 𝐾]∩Z, 𝑝𝑘 = 2𝐾−𝑘, which fixes the
Eq. (6)(ii) and relies on downsampling to enlarge receptive field with
only (𝑛) complexity to reach the whole image. However, as shown in
Fig. 2(a), the DDF predicted on low-resolution feature map could form a
bottleneck of Degree of Freedom (DoF) of the estimated DDF. Only one
predicted displacement is occupied by point ×, and thus point ▵ is not
retrieved until finer resolution. However, the finer stage registration
focus on a smaller field of view, leading to the loss of tracking on
point ▵. Here, points × and ▵ could be at the discontinuous edges of
different objects or even just two tiny separate objects. To quantify the
DoF limitation in the discontinuity of the estimated DDF, we define the
separability of the predicted motion:

Definition 2 (Separability Bottleneck of Predicted Motion). The motion
separability bottleneck is defined as the minimum value of the upper
8

bound of the Chebyshev difference of a network’s predicted DDF 𝜙
between two locations 𝒙, 𝒚 ∈ Z𝑑 with the specific Chebyshev distance
𝑝 ∈ Z𝑑 :

∞(𝑝) ∶= min
𝒙,𝒚

{sup(‖𝜙[𝒙] − 𝜙[𝒚]‖∞) ∶ ‖𝒙 − 𝒚‖∞ = 𝑝} (8)

where 𝑝 denotes the L-∞ distance between the two pixels.

The reason for the problem shown in Fig. 2(a) is coarse-to-fine
registration based on the FP suffering from the limited range of motion
separability with respect to the capture range and the pool size.

Theorem 1 (Regional Dependency). The upper boundary of motion differ-
ence is related to 𝑎𝑘 and 𝑝𝑘:

∀ 𝒙, 𝒚 ∈ Z𝑑 , ‖𝒙 − 𝒚‖∞ ≥ 𝑝𝑘′′ + 2
∑𝑘

𝑘′=𝑘′′+1 𝑎𝑘′ ,

sup(‖𝜙𝑘[𝒙] − 𝜙𝑘[𝒚]‖∞) ≥ 2
∑𝑘

𝑘′=𝑘′′ 𝑎𝑘′ ;

∃ 𝒙, 𝒚 ∈ Z𝑑 , ‖𝒙 − 𝒚‖∞ < 𝑝𝑘′′−1 + 2
∑𝑘

𝑘′=𝑘′′ 𝑎𝑘′ ,

sup(‖𝜙𝑘[𝒙] − 𝜙𝑘[𝒚]‖∞) = 2
∑𝑘

𝑘′=𝑘′′ 𝑎𝑘′ ;

(9)

where 𝑘′′, 𝑘, denote two recursive numbers satisfying 0 ≤ 𝑘′′ < 𝑘, and 𝒙, 𝒚
denote two coordinate entries of images/DDFs.

Following Theorem 1, 𝛥∞(𝑝) is calculated as in Eq. (10) to describe
the limitation on the multi-objects’ motion difference. We substitute the
Eq. (6) into Eq. (10) and thus can easily derive the relation between
motion separability bottleneck 𝛥∞ and the pool sizes (𝑝1,… , 𝑝𝐾 ) as well
as the dilation rates (𝒓1,… , 𝒓𝐾 ). The proof of Theorem 1 is given in

Appendix A.1.
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Fig. 9. Our RAn+4 and RAn3 respectively achieve the best accurate registration in abdominal 9-organ CT and one of the best accuracy in lung CT, with better efficiencies (the
model sizes are represented by the circle size).
𝛥∞(𝑝) =

⎧

⎪

⎨

⎪

⎩

2
∑𝐾

𝑘=1 𝑎𝑘, 𝑝 ≥ 𝑝1 + 2
∑𝐾

𝑘=2 𝑎𝑘
2
∑𝐾

𝑘′=𝑘 𝑎𝑘′ , 𝑝𝑘 + 2
∑𝐾

𝑘′=𝑘+1 𝑎𝑘′ ≤ 𝑝<𝑝𝑘−1 + 2
∑𝐾

𝑘′=𝑘 𝑎𝑘′ , 1 < 𝑘 ≤ 𝐾
0, 𝑝 < 𝑝𝐾

(10)
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.4. Motion-separable structure

According to Theorem 1, the smaller pool size releases a higher
ange of motion difference. Thus, we design a new backbone structure,
alled MS FCNs, to achieve a high DoF of DDF but still with the same
apture range using dilation convolution on upsampled feature maps as
hown in Fig. 3(a). Different from the previously used FP-based FCNs,
he shortcut feature maps from the encoder part are upsampled and
oncatenated to a specific high-resolution feature map as the input to
he decoder part with 𝑝𝑘 = 2𝐾−𝑞 ,∀𝑘 ≤ 𝑞 and 𝑝𝑘 = 2𝐾−𝑘,∀𝑞 < 𝑘 ≤ 𝐾,
here 𝑞 denotes the layer number with MS pattern in the decoder part.
he 𝑞 could be adjusted considering the balance between the DoF of
he predicted DDF and computational cost. The complexity required is
(𝑛 log(𝑛)) using fully MS-layer structure 𝑞 = 𝐾 and is still (𝑛) using

fully FP 𝑞 = 0. To keep the same receptive field of MS structure as FP
structure, the dilation rate is set to ‖𝒓𝑘(𝑞 > 0)‖1 ≥ 2𝑞−𝑘‖𝒓𝑘(𝑞 = 0)‖1,∀𝑘 ≤
𝑞 as suggested by Eqs. (5) and (6). As shown in Fig. 2(b), with the same
eceptive field, the MS structure releases the higher resolution before
lignment and thus avoids loss of the DoF of DDF. The capture ranges
nd the motion separability of DDF for varying settings are illustrated
n Fig. 3(b)(c)(d) based on the calculation of Eqs. (5) and (10), where
the new design achieves a larger area under 𝛥∞(𝑝) with almost the same
𝑎𝑘.

The detailed architecture of the encoder and the decoder part in
our proposed networks used for the following experiments are shown
in Tables B.5 and B.6.
9

i

3. Residual aligner module

The RA module as shown in Fig. 4 aims to establish spatial transform
𝜙 between two images via recursively warping feature map of one
towards the others, based on Eq. (4). Extra attributes map 𝜃 is esti-
ated by Regressor network , restoring the auxiliary information, to
isentangle and fuse the alignment of pixels from the different anatomic
egions via the Accumulator network  , and thus improve the accuracy
f the discontinuous motions:

(𝜙𝑘, 𝜃𝑘) = 𝑘(𝜑̂𝑘, 𝜗𝑘, 𝜙𝑘−1, 𝜃𝑘−1)

(𝜑̂𝑘, 𝜗𝑘) = 𝑘(𝜙𝑘−1(𝑭 s
𝑘),𝑭

t
𝑘)

(11)

for the RA modules cascade number 𝑘 = 1,… , 𝐾, where 𝜑̂𝑘 denotes
the M-H residual DDF. The 𝑘th RA module first takes the input feature
maps from source images and target images 𝑭 s

𝑘, 𝑭
t
𝑘 ∈ R𝑐𝑘×𝑛𝑘 and use

the Regressor 𝑘 to regress a 𝑚-head residual DDF 𝜑̂𝑘 ∈ R𝑑𝑚×𝑛𝑘 and the
incremental attributes 𝜗𝑘 ∈ R𝑚×𝑛𝑘 (Section 3.1). Then the Accumulator
etwork  computes the confidence and M-H masks, describing the
rediction’s reliability and the semantic properties of each pixel, and
use the 𝑚-head DDF weighted based on the attribute maps 𝜃𝑘 ∈ R𝑚×𝑛𝑘

s in Section 3.2. The warping function performed by the resampler is

mplemented following the work (Jaderberg et al., 2015).
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Fig. 10. (a) Empirical Probability Density Function (PDF) of the pairs of correct predicted motions by RAn0, RAn3 and RAn4, smoothed by Gaussian filter (𝜎 = 1 pix), with respect
to varying Chebyshev distance (‖𝒙 − 𝒚‖∞ ,∀𝒙, 𝒚 ∈ {𝒙|𝑳t [𝒙] = 𝜙(𝑳s)[𝒙]}) and varying Chebyshev distance between their motions (‖𝜙[𝒙] − 𝜙[𝒚]‖∞), and (b) the difference between each
pair of PDF, validating that higher number of MS pattern layers enable the network to achieve better motion separability with similar model scale, where 𝑳s&t ∈ {spleen,… , pancreas}𝑛

denote the labels on source&target images of abdomen CT.
3.1. Regressor

The function of the Regressor 𝑘 in RAN is to regress the M-H
residual transform 𝜑̂𝑘 between the target feature map 𝑭 t

𝑘 and the source
feature map warped by the previous alignment 𝜙𝑘−1(𝑭 s

𝑘), with the
incremental attribute map 𝜗𝑘 to restore the auxiliary information for
the inter-scale refinement in the coarse-to-fine registration. As shown
in Fig. 4, Regressor concatenates the input feature maps and feeds
them into the subsequent series of dilated convolution and activation
layers. Referring to Section 2.4, the dilation rate vector 𝒓𝑘 is set to
nlarge the capture range of alignment and raise the feature resolution
s introduced in Section 2. Then two shallow convolution networks are
respectively used to predict the M-H DDF and the incremental attributes
raised from this level’s alignment.

3.2. Accumulator

The task of Accumulator 𝑘 is to refine the DDF with the previous
coarse DDF by disentangling, interpolating, and fusing those spatial
10
transform representations from varying scales and different heads in
terms of the contextual information, such as the alignment reliability
of the neighboring pixels and their semantic attributes. The calculation
of Accumulator shown in Fig. 4 can be written as:
{

𝜙𝑘 = 4([𝜑′
𝑘,
∑

{𝑚}(𝜑̂𝑘), 𝜙′
𝑘−1, 𝜙𝑘−1])

𝜃𝑘 = 3([𝜗𝑘, 𝜃𝑘−1])
(12)

where 𝜙𝑘−1 and 𝜑𝑘 are the weighted DDF and residual DDF:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜙′
𝑘−1 = 2(𝜙𝑘−1 ⊗ sof tmax(𝜃𝑘)

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
)⊙ 1(𝜃𝑘−1)

⏟⏞⏟⏞⏟

𝜑′
𝑘 = 2(𝜑̂𝑘 ⊙

M−H mask
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
sof tmax(𝜃𝑘))⊙

conf idence
⏞⏞⏞
1(𝜗𝑘)

(13)

∑

{𝑚} ∶ R𝑑×𝑚×𝑛𝑘 → R𝑑×𝑛𝑘 denotes the head-dimension sum, ⊗ ∶ R𝑑×𝑛𝑘 ×
R𝑚×𝑛𝑘 → R𝑑×𝑚×𝑛𝑘 denotes the tensor product, ⊙ ∶ R𝑑×𝑚×𝑛𝑘 × R1×𝑛𝑘 →

R𝑑×𝑚×𝑛𝑘 denotes the element-wise product for the last two dimensions.
1 2 3 4
Here  , , , are fitted by convolution networks with activation



Medical Image Analysis 91 (2024) 103038J.-Q. Zheng et al.

l
i

3

p

3

s
t
f
d

f
b
t
u
f

4

Fig. B.11. Results on spleen.

ayers, respectively for the mapping of confidence weight projection,
nterpolation, attribute fusion, and the DDF fusion.

.2.1. Confidence weight for motion refinement
Simple composition of DDF s from different levels (de Vos et al.,

2019; Xu et al., 2021) could accumulate errors at the points which
failed in the previous alignment. Thus, the confidence values are re-
spectively quantified by 1(𝜗𝑘),1(𝜃𝑘−1) in Eq. (13) for M-H residual
DDF 𝜑̂𝑘 and previous level DDF 𝜙𝑘−1 to adaptively weight the following
filtering, performed by 2 and 4, for smoothing or interpolation
with neighboring prediction value. Here the confidence is implicitly
regressed from 𝜗𝑘 and 𝜃𝑘−1 (contrary to the confidence of occlusion
probability in Li et al. (2021)) with general representation aiming to
rovide higher accuracy.

.2.2. Motion disentanglement via multi-head masks
Inspired by the M-H attention (Vaswani et al., 2017), the corre-

ponding M-H masks are regressed by sof tmax(𝜃𝑘) to implicitly disen-
angle the prediction of multiple objects with different motion patterns
rom the M-H residual DDFs, and thus decouple the filtering on the
ifferent objects as shown in Eq. (13). This process could be regarded
as the combination of DDFs selected by the M-H masks, with preserving
discontinuities in the DDF and the trend of motions (Heinrich et al.,
2013).

More explanation detail of confidence-weighted and M-H disentan-
11

gled filtering can be found in Appendices A.2 and A.3. a
Fig. B.12. Results on right kidney.

4. Experiments

4.1. Datasets

We evaluated the RAN on unsupervised deformable registration on
two publicly available datasets with segmentation annotations on 9
small organs in abdomen CT and lung CT:

4.1.1. Unpaired abdomen CT
The dataset is provided by Hering et al. (2021). The ground truth

segmentations of spleen, right kidney, left kidney, esophagus, liver,
aorta, inferior vena cava, portal, splenic vein, pancreas of all scans
are provided. The deformable registration of abdominal CT imaging
is considered challenging due to the large relative motion variations
across disjunct tissues and the great variability in organ volume, rang-
ing from 10 milliliters (esophagus) to 1.6 liters (liver). All scans were
captured during portal venous contrast phase with variable volume
sizes (512 × 512 × 53 − 512 × 512 × 368) and field of views (approx.
280×280×225 mm3 to 500×500×760 mm3). The in-plane resolution varies
rom 0.54×0.54 mm2 to 0.98×0.98 mm2, while the slice thickness ranged
etween 1.5 mm−7.0 mm. Each volume was resized to 2 × 2× 2 mm3 in
he pre-processing. From totally 30 subjects, 23 and 7 are respectively
sed for training and testing, for 506 and 42 different pairing cases,
ollowing the default setting in Fu et al. (2020).

.1.2. Unpaired/paired chest (lung) CT
The dataset is provided by Hering et al. (2020, 2021). The CT scans

re all acquired at the same time point of the breathing cycle and here
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Fig. B.13. Results on left kidney.

e perform inter-subject (exhale) and intra-subject (exhale↔inhale)
egistration. The ground truth lung segmentation of all scans are pro-
ided. Each volume was resized to 1.75 × 1.75 × 1.75 mm3 in the
re-processing. From the total of 20 subjects, 12 and 8 are respectively
sed for training and testing in intra-subject registration, and thus 132
nd 56 different pairing cases in inter-subject registration, following
he default setting in Fu et al. (2020).

.2. Training details

We normalize the input image within 0–1 range and augment the
raining data by randomly cropping input images during training.

.2.1. Synthetic training
All the models are first pre-trained for 50k iteration on synthetic

DF 𝜙̃ combining rigid spatial transformation with rotation angle 𝛽 ∼
 (−𝜋∕4, 𝜋∕4) at an arbitrary axis and deformation synthesized by thin
plate spline as well as Gaussian deformation by 20 random seeds
located uniformly randomized within the image domain. , with the loss
function set as:

syn =
∑

𝒙
‖𝜙[𝒙] − 𝜙̃[𝒙]‖22 + 𝜆

∑

𝒙
‖∇𝜙[𝒙]‖22 (14)

where 𝜆 denotes the weight of regularization, 𝒙, 𝒚 ∈ Z𝑑 denotes the
12

entries coordinates for images or DDF.
Fig. B.14. Results on left kidney.

4.2.2. Real-data training
Then all the inter-subject registration models are trained on real

data for 100k iterations with the same loss function which will be
shown later. The final trained models are selected as the used model,
since the loss value for those models all converged before 100k itera-
tions.

Inter-subject Registration The loss function used for inter-subject
registration is as following:

inter = (𝑰 t , 𝜙(𝑰 s))
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
dissimilarity term

+ 𝜆
∑

𝒙
‖∇𝜙[𝒙]

edge−aware
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

e−𝜏‖∇𝑰
t [𝒙]‖22

‖

2
2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
regularization term

(15)

here local normalized cross correlation and mean squared error are
sed in abdomen and lung CT respectively for  following Balakr-
shnan et al. (2019). The smoothing regularization term includes an
dditional edge-aware factor, which is adopted from a stereo matching
ethod (Heise et al., 2013), and 𝜏 is the temperature scaling value to
djust the intensity of smoothing regularization at the edges, which
s the same L2-norm smoothing term as in Balakrishnan et al. (2018)
hen 𝜏 = 0.
In addition to the edge-aware smoothness regularization term, we

lso tried the sliding-preserving discontinuous regularization term pro-
osed in (Ng and Ebrahimi, 2020):

inter−sp = inter +
𝜆1
2

∑

𝑥,𝑦
log(1 + ‖𝜙[𝑥] ∧ 𝜙[𝑦]‖22) 4(𝑥, 𝑦)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

(16)
sliding−preserving term
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Fig. B.15. Results on liver.

here ∧ denotes the cross product, and  denotes the 𝐶4 Wendland
ernel (Wendland, 1995), and this loss setting is the equivalent to that
in Ng and Ebrahimi (2020) when 𝜏 = 0.

Intra-subject Registration (Lung) The loss function for training
of intra-subject registration models includes one more landmark error
term than Eq. (15):

intra =inter + 𝛽 1
|𝑿|

∑

(𝒙,𝒚)∈𝑿
‖(𝒙 − 𝒚) − 𝜙[𝒚]‖22

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
landmark error

(17)

here 𝑿 denotes the set of the corresponding landmarks’ coordinates
rom the pairs of lung CT scans. We believe it is more appropriate
o refer to this regularization term as ‘‘sliding-preserving’’ instead of
‘discontinuity-preserving’’ as claimed in Ng and Ebrahimi (2020).

.3. Implementation and evaluation

.3.1. Implementation
The code for image registration tasks were developed based on the

ramework of Balakrishnan et al. (2018) in Python using Tensorflow
and Keras. It has been run on Nvidia Tesla P100-SXM2 GPU with
16 GB memory, and Intel(R) Xeon(R) Gold 6126 CPU @ 2.60 GHz. The
backbone FP network we used is U-net (Ronneberger et al., 2015) based
on residual structure (He et al., 2016) with four downsampling blocks
and four upsampling blocks. Since the most motion difference ranges
between 0–15 as shown in Fig. 10, two models RAn3 and RAn+4 are thus
elected as our representative models with 𝑞 = 3, 4 as suggested by the
ffect shown in Fig. 3(d). The details of those structures are described
13

n Appendix B. o
Fig. B.16. Results on aorta.

4.3.2. Comparison
We compared RANs with the relevant state-of-the-art network struc-

tures in Table 1. Original Demons (Thirion, 1998) (Demons1) and
the improved Demons based on fast symmetric forces (Vercauteren
et al., 2009) (Demons2) implemented by Vercauteren et al. (2008)
are utilized as the representative traditional iterative (Iter) registration
methods. The Voxelmorph (Balakrishnan et al., 2019) (VM1/VM2:
light-/heavy-weight model) is adopted as the representative method
of DR. The composite network combing CNN (Cn: Global-net) and
U-net (Un: Local-net) following to Hu et al. (2018), as well as 5-
Recursive Cascaded network (RCn) (Zhao et al., 2019a) (RCn1/RCn2:
light-/heavy-weight model) are also adopted into the framework as the
relevant baselines representing multi-stage cascaded (Cas) networks.
DPRn (Kang et al., 2022) is selected as the baseline for FP networks.
Additionally, we also replace RA-module (in Fig. 1) with cross attention
(Attn) (Vaswani et al., 2017) to compare the performance at module-
level. We also incoporate the self-attention mechanism on VM2 (Bal-
akrishnan et al., 2019) following Chen et al. (2021a) to compare the
improvement from attention mechanism with MS structure.

Another supervised deformable registration method based on exter-
nal segmentation is compared in Table 3.

To provide a more comprehensive evaluation, we have also included
varying settings of loss function Eq. (15), and Eq. (16) with extra
regularization term from Ng and Ebrahimi (2020) in our experimental
ettings, which is shown in Table 4.

.3.3. Evaluation metrics
Following de Vos et al. (2019), we calculate the DSC, HD, and ASD

n the annotated masks for the inter-subject registration evaluation
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Fig. B.17. Results on inferior vena cava.

f nine organs in abdomen CT and one organ (lung) in chest CT,
ith the negative number of Jacobian determinant in tissues’ region
detJ) for rationality evaluation on prediction. Target Registration Error
TRE/mm) is used for evaluation of intra-subject registration for paired
ung CTs (exhale and inhale). In addition, the average values of Time
ost Per Image (TPI), Parameter Number (#Par), and Float Operations
FLOPs) are used to evaluate the models’ efficiency.

.4. Results

The comparison between RANs (RAn3, RAn+4 ) with other methods
n abdomen and lung CT using all 10 organs is shown in Table 1, which
s visualized in Fig. 9. Table 2 demonstrate the quantitative results
or the ablation studies. Figs. 5 and 6 respectively illustrate several
xamples comparing our methods with others. The separate evaluation
f the 9 + 1 organs (abdomen+lung) for five models, as shown in Fig. 7
Additional registration results for specific organs performed by each
odel are shown in Appendix C.

.4.1. Registration network comparison
The comparison between RANs with other unsupervised registration
ethods on abdomen and lung CT using all 10 organs is shown in
able 1, and the results illustrate our network achieved one of the
est performances in this task with fewer parameters and lower com-
utational cost, which is also visualized in Fig. 9. Table 3 reveals
hat our RAN even attains accuracy comparable to that of the external
egmentation-based supervised method.
Figs. 5 and 6 highlight the superior performance of our RAN, espe-

ially in the area containing multi-organs and at the edges of organs.
14
t is worth noting that the discontinuities between different organs are
reserved in the predictions 𝜙 by our RANs as shown in Fig. 5. They
erify the effectiveness of our method to solve the motion separability
imitation problem as previously analyzed in Section 2.3
Considering different registration types, DR networks (e.g., VM1,

M2) necessitate more parameters to achieve satisfactory results. In
ontrast, multi-stage Cascaded networks either demand greater com-
utation (e.g., RCn1, RCn2) or more parameters (e.g., Cn+Un). The
P-based network (DPRn) strikes a balance between these require-
ents, and our MS-based RANs further refine this balance, as illustrated
n Fig. 9.
A distinct evaluation of the 9 + 1 organs (abdomen+lung) for five
odels, showcased in Fig. 7, reveals that our RAN offers the highest
ccuracy in registering smaller organs (like veins) and ranks among
he best in registering other organs. Moreover, when compared to the
dditional segmentation-based supervised method in Table 3, our RAN
aintains comparable accuracy on abdominal CT scans.

.4.2. Ablation study
To validate the effect of each component on the performance, we

lso tried several combinations on the confidence weight (CW), M-H
nd MS pattern number (𝑞) on experiments of abdomen and lung CT
s shown in Table 2. For a fair comparison, the channel numbers are
uned to keep the trainable parameter numbers similar to each others,
xcept RAn+4 with larger model size for higher accuracy. Figs. 5–7 show
ur RAn+4 with 𝑞 = 4 is better than RAn3 on smaller tissues’ prediction
ut worse on larger one’s (lung).

.4.3. Separability of the predicted motions
Besides the improvement from higher-𝑞 MS structure implicitly

alidated by the better results, more visual validation of MS design is
llustrated in Fig. 10(a) including the probability density distributions
of the pairs of correct motion prediction with varying voxel distance
and motion difference for varying 𝑞. Based on the difference between
them in Fig. 10(b), It shows RANs with higher 𝑞 obtain more correct
alignment hits at the left-top area, and thus the better motion separa-
bility, matching the expectation illustrated in Fig. 3(d) and validating
the improvement by the design principle described in Section 2.4.

4.4.4. Multi-head mask
The M-H Mask maps at different registration levels for one example

are illustrated in Fig. 8, showcasing the softmax(𝜃𝑘) maps at various
level numbers 𝑘 for RAn+4 . These maps illustrate the selected regions
indicated by the masks, ranging from large-scale to small-scale and cap-
turing both global and local features. With reference to the target image
and labels, it can be observed that the head-3 mask at the 3rd-level
effectively separates tissue regions from cavity regions. Furthermore,
the head-1 and head-2 masks at the 4th-level further identify the
tissue edges. These results demonstrate that the M-H mask successfully
identifies different tissue regions, disentangles the motion by these
regions, and fulfills the requirement of coarse-to-fine registration.

5. Discussion and conclusion

The limitations of the coarse-to-fine deformable image registration
were studied. We found that the separability of motions is limited,
and we provided a quantitative analysis of the upper bound of the
separability as shown in Theorem 1 and Eq. (10). To address this
limitation, a novel RAN design was introduced, which leverages a
new MS structure to increase the motion separability and new RA
modules to disentangle and refine the predicted DDF across different
organs/regions.

The results presented in Fig. 7 show that the RANs achieved the best
registration accuracy for small organs, e.g. veins, in abdominal CT scans
and comparable registrations with other state-of-the-art networks for
other organs in abdominal and lung CT scans, with fewer parameters
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Table B.5
Network of the encoder. (ker: kernel size, dila: dilation rate).
Layer(s) ker dila channels scale in out

conv,norm,act 3 1 1/8 1 𝑰 s,t r1
conv,norm,act 3 1 8/8 1 r1 f1
conv,norm 3 3 8/8 1 f1 f1
act – – 8/8 1 f1+r1 s1

downsample – – – – s1 s1

conv,norm,act 3 1 8/16 2 s1 r2
conv,norm,act 3 1 16/16 2 r2 f2
conv,norm 3 3 16/16 2 f2 f2
act – – 16/16 2 f2+r2 s2

downsample – – – – s2 s2

conv,norm,act 3 1 16/16 4 s2 r3
conv,norm,act 3 1 16/16 4 r3 f3
conv,norm 3 3 16/16 4 f3 f3
act – – 16/16 4 f3+r3 s3

downsample – – – – s3 s3

conv,norm,act 3 1 16/32 8 s3 r4
conv,norm,act 3 1 32/32 8 r4 f4
conv,norm 3 3 32/32 8 f4 f4
act – – 32/32 8 f4+r4 s4

downsample – – – – s4 s4

and less computation. The impact of each component was validated
in Table 2, including the MS structure with varying 𝑞, the motion
isentanglement based on the M-H mask, and the DDF refinement based
n confidence weights.
Compared with other different registration structure types in Fig. 9,

he MS structure achieves the best trade-off between the registration
ccuracy, the computation scale, and the model size.
Additionally, the proposed RANs based on MS structure demon-

trated improved separability of predicted discontinuous motion, as
hown in Figs. 5 and 10 further indicated that the larger MS pattern
umber, 𝑞, leads to the better motion separability. These findings
upport the previously illustrated design principle on MS mechanism
n Fig. 2 and the theoretical analysis of motion separability in Fig. 3.
These results demonstrate the efficiency and the potential of RANs

erforming relevant tasks including multi-object registration, which
ould also be further applied to other relevant tasks.
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ppendix A. Math

The denotations of symbols are the same as above.
15
Fig. B.18. Results on portal splenic vein.

A.1. Proof of Theorem 1 (Regional Dependency)

The pooling mapping  from the original full-resolution image’s
coordinate 𝒙 to the 𝑘th feature map with pool size 𝑝𝑘 is denoted as:

(𝒙; 𝑝𝑘) ∶= ⌊𝒙∕𝑝𝑘⌋, (A.1)

which thus satisfy:

∃ (𝒙, 𝒚) ∈ {(𝒙, 𝒚)|‖𝒙 − 𝒚‖∞ < 𝑝𝑘}, (𝒙; 𝑝𝑘) = (𝒚; 𝑝𝑘) (A.2)

As stated in the manuscript, coarse-to-fine registration implies ∀𝑘 ∈
[1, 𝐾) ∩ Z, 𝑝𝑘 ≥ 𝑝𝑘+1, 𝑠𝑘 ≥ 𝑠𝑘+1, and thus:

∀ (𝒙, 𝒚) ∈ {(𝒙, 𝒚)|‖𝒙 − 𝒚‖∞ ≥ 𝑝𝑘′}, (𝒙; 𝑝𝑘) ≠ (𝒚; 𝑝𝑘) (A.3)

where 𝑘 ≥ 𝑘′. Because the DDF predicted by 𝑘th RA module has the
same resolution as feature map:
{

𝜙𝑘[𝒙] ≡ 𝜙𝑘[𝒚] if (𝒙; 𝑝𝑘) = (𝒚; 𝑝𝑘)

𝜙𝑘[𝒙] ≢ 𝜙𝑘[𝒚] if (𝒙; 𝑝𝑘) ≠ (𝒚; 𝑝𝑘)
(A.4)

so that:

∃ (𝒙, 𝒚) ∈ {(𝒙, 𝒚)|‖𝒙 − 𝒚‖∞ < 𝑝𝑘},

𝜙𝑘[𝒙] ≡ 𝜙𝑘[𝒚];

∀ (𝒙, 𝒚, 𝑘) ∈ {(𝒙, 𝒚, 𝑘)|‖𝒙 − 𝒚‖∞ ≥ 𝑝𝑘′ , 𝑘 ≥ 𝑘′},
(A.5)
𝜙𝑘[𝒙] ≢ 𝜙𝑘[𝒚].

https://zenodo.org/record/3835682
https://github.com/ucl-candi/datasets_deepreg_demo/archive/abdct.zip
https://github.com/ucl-candi/datasets_deepreg_demo/archive/abdct.zip
https://github.com/ucl-candi/datasets_deepreg_demo/archive/abdct.zip
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Table B.6
Network structures of the decoder for Residual Aligner Networks (RAn0,RAn3,RAn4,RAn+4 ) with varying channels (𝑐0 = 32,32,36,48; 𝑐1 = 64,48,44,48, 𝑐2 = 48,48,44,48, 𝑐3 =
2,32,28,32, 𝑐4 = 24,32,28,32), pooling scales and layer inputs.
Layer(s) ker dila chns RAn0 RAn3 RAn4 RAn+4 out

scale in scale in scale in scale in

upsample × ✓ ✓ ✓

conv,norm,act 3 1 𝑐0/32 16 s4 2 s4,s3 1 s4,s3,s2 1 s4,s3,s2 r5
conv,norm,act 3 1 32/32 16 r5 2 r5 1 r5 1 r5 f5
conv,norm 3 3 32/32 16 f5 2 f5 1 f5 1 f5 f5
act – – 32/32 16 f5+r5 2 f5+r5 1 f5+r5 1 f5+r5 𝑭 s∕t

0

upsample ✓ × × ×

conv,norm,act 3 1 𝑐1/32 8 𝑭 s∕t
0 |s4 2 𝑭 s∕t

0 |s4 1 𝑭 s∕t
0 |s4 1 𝑭 s∕t

0 |s4 r6
conv,norm,act 3 1 32/32 8 r6 2 r6 1 r6 1 r6 f6
conv,norm 3 3 32/32 8 f6 2 f6 1 f6 1 f6 f6
act – – 32/32 8 f6+r6 2 f6+r6 1 f6+r6 1 f6+r6 𝑭 s∕t

1

upsample ✓ × × ×

conv,norm,act 3 1 𝑐2/16 4 𝑭 s∕t
1 |s3 2 𝑭 s∕t

1 |s3 1 𝑭 s∕t
1 |s3 1 𝑭 s∕t

1 |s3 r7
conv,norm,act 3 1 16/16 4 r7 2 r7 1 r7 1 r7 f7
conv,norm 3 3 16/16 4 f7 2 f7 1 f7 1 f7 f7
act – – 16/16 4 f7+r7 2 f7+r7 1 f7+r7 1 f7+r7 𝑭 s∕t

2

upsample ✓ × × ×

conv,norm,act 3 1 𝑐3/16 2 𝑭 s∕t
2 |s2 2 𝑭 s∕t

2 |s2 1 𝑭 s∕t
2 |s2 1 𝑭 s∕t

2 |s2 r8
conv,norm,act 3 1 16/16 2 r8 2 r8 1 r8 1 r8 f8
conv,norm 3 3 16/16 2 f8 2 f8 1 f8 1 f8 f8
act – – 16/16 2 f8+r8 2 f8+r8 1 f8+r8 1 f8+r8 𝑭 s∕t

3

upsample ✓ ✓ × ×

conv,norm,act 3 1 𝑐4/8 1 𝑭 s∕t
3 |s1 1 𝑭 s∕t

3 |s1 1 𝑭 s∕t
3 |s1 1 𝑭 s∕t

3 |s1 r9
conv,norm,act 3 1 8/8 1 r9 1 r9 1 r9 1 r9 f9
conv,norm 3 3 8/8 1 f9 1 f9 1 f9 1 f9 f9
act – – 8/8 1 f9+r9 1 f9+r9 1 f9+r9 1 f9+r9 s9
conv 1 1 8/𝑑 1 s9 1 s9 1 s9 1 s9 𝑭 s∕t

4

According to Eq. (4), 𝜑 = 𝜙𝑘◦𝜙−1
𝑘−1, the 𝑘th predicted DDF 𝜙𝑘 can

e decomposited as:

𝑘[𝒙] = 𝜑𝑘◦𝜙𝑘−1[𝑥]

= 𝜑𝑘 + 𝜙𝑘−1[𝑥 − 𝜑𝑘[𝑥]]

= 𝜙𝑘◦𝜙−1
𝑘−1[𝒙] + 𝜙𝑘−1[𝒙 − 𝜙𝑘◦𝜙−1

𝑘−1[𝒙]]
(A.6)

where 𝜙𝑘◦𝜙−1
𝑘−1 is regressed by 𝑘 and 𝑘 in RA module as described in

the manuscript. The difference between two displacements 𝜙𝑘[𝑥] and
𝜙𝑘[𝑦] can be written as:

𝛥𝜙𝑘(𝒙, 𝒚)

∶= 𝜙𝑘[𝒙] − 𝜙𝑘[𝒚]

= 𝜙𝑘◦𝜙−1
𝑘−1◦𝜙𝑘−1[𝒙] − 𝜙𝑘◦𝜙−1

𝑘−1◦𝜙𝑘−1[𝒚]

= (𝜙𝑘◦𝜙−1
𝑘−1[𝒙] + 𝜙𝑘−1[𝒙 − 𝜙𝑘◦𝜙−1

𝑘−1[𝒙]])

− (𝜙𝑘◦𝜙−1
𝑘−1[𝒚] + 𝜙𝑘−1[𝒚 − 𝜙𝑘◦𝜙−1

𝑘−1[𝒚]])

= 𝜙𝑘◦𝜙
−1
𝑘−1[𝒙] − 𝜙𝑘◦𝜙

−1
𝑘−1[𝒚]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
i

+ 𝜙𝑘−1[𝒙 − 𝜙𝑘◦𝜙
−1
𝑘−1[𝒙]] − 𝜙𝑘−1[𝒚 − 𝜙𝑘◦𝜙

−1
𝑘−1[𝒚]]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
ii

(A.7)

where the range of Eq. (A.7)(i) is limited by the 𝑘th RA module and
Eq. (A.7)(ii) can be substituted with 𝜙𝑘−1[𝒙′] − 𝜙𝑘−1[𝒚′] by 𝒙′ ∶=
𝒙 − 𝜙𝑘◦𝜙−1

𝑘−1[𝒙], 𝒚
′ ∶= 𝒚 − 𝜙𝑘◦𝜙−1

𝑘−1[𝒚], where the iterative equation of
Eq. (A.7) can be thus written as:

⎧

⎪

⎨

⎪

⎩

𝛥𝜙𝑘(𝒙𝑘, 𝒚𝑘) − (𝒙𝑘 − 𝒚𝑘) = 𝛥𝜙𝑘−1(𝒙𝑘−1, 𝒚𝑘−1) − (𝒙𝑘−1 − 𝒚𝑘−1)

𝒙𝑘 − 𝜙𝑘◦𝜙−1
𝑘−1[𝒙

𝑘] = 𝒙𝑘−1

𝒚𝑘 − 𝜙𝑘◦𝜙−1
𝑘−1[𝒚

𝑘] = 𝒚𝑘−1
(A.8)

starting from 𝛥𝜙0(𝒙0, 𝒚0) ∶= 0 ∀𝒙0, 𝒚0 ∈ Z𝑑 . The analytic equation is
derived as:
{

𝛥𝜙𝑘(𝒙𝑘, 𝒚𝑘) = 𝛥𝜙𝑘′′−1(𝒙𝑘
′′−1, 𝒚𝑘′′−1) +

∑𝑘
𝑘′=𝑘′′ 𝛥𝜑𝑘′ (𝒙𝑘

′ , 𝒚𝑘′ )
𝑘 𝑘 𝑘′′−1 𝑘′′−1 ∑𝑘 𝑘′ 𝑘′

(A.9)
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𝒙 − 𝒚 = (𝒙 − 𝒚 ) + 𝑘′=𝑘′′ 𝛥𝜑𝑘′ (𝒙 , 𝒚 )
where 𝛥𝜑𝑘 is defined as:

𝛥𝜑𝑘(𝒙, 𝒚) ∶= 𝜑𝑘[𝒙] − 𝜑𝑘[𝒚]

= 𝜙𝑘◦𝜙−1
𝑘−1[𝒙] − 𝜙𝑘◦𝜙−1

𝑘−1[𝒚]
(A.10)

Substitute Eq. (A.5) into Eq. (A.9), we can conclude that

∃ (𝒙𝑘, 𝒚𝑘) ∈

{(𝒙, 𝒚)|‖𝒙 − 𝒚‖∞ < 𝑝𝑘′′−1 +
∑𝑘

𝑘′=𝑘′′ 𝛥𝜑𝑘′ (𝒙𝑘
′ , 𝒚𝑘′ )},

𝛥𝜙𝑘(𝒙𝑘, 𝒚𝑘) =
∑𝑘

𝑘′=𝑘′′ 𝛥𝜑𝑘′ (𝒙𝑘
′ , 𝒚𝑘′ );

∀ (𝒙𝑘, 𝒚𝑘, 𝑘) ∈
{(𝒙, 𝒚, 𝑘)|‖𝒙 − 𝒚‖∞ ≥ 𝑝𝑘′′ +

∑𝑘
𝑘′=𝑘′′+1 𝛥𝜑𝑘′ (𝒙𝑘

′ , 𝒚𝑘′ ), 𝑘 ≥ 𝑘′′},
𝛥𝜙𝑘(𝒙𝑘, 𝒚𝑘) ≥

∑𝑘
𝑘′=𝑘′′ 𝛥𝜑𝑘′ (𝒙𝑘

′ , 𝒚𝑘′ );

with satisfying sup(𝛥𝜙𝑘(𝒙𝑘, 𝒚𝑘)) = sup(‖𝜙𝑘[𝒙] − 𝜙𝑘[𝒚]‖∞),
sup(𝛥𝜑𝑘(𝒙𝑘, 𝒚𝑘)) = 2𝑎𝑘, which thus prove Theorem 1 (Regional De-
pendency).

A.2. Confidence-weighted interpolation

The areas lacking texture or structural features usually result in a de-
viation in prediction and thus require correction from the interpolation
or smoothing based on the neighboring predicted values. To strengthen
the different displacement at each pixel/voxel with individual weights,
the confidence values are respectively quantified by 1 for 𝜑̂𝑘 and 𝜙𝑘−1.

For an example of a simple Gaussian-based smoothing on the (𝑘 −
1)th-level DDF 𝜙𝑘−1 adaptively weighted by a confidence map 𝑪 :

smooth(𝜙𝑘−1,𝑪) =

smoothed DDF
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝑪 ⊙ (𝜙𝑘−1 ∗ 𝐆) +

original DDF
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
(1 − 𝑪)⊙ 𝜙𝑘−1

= 𝜙𝑘−1 − 𝑪 ⊙ (𝜙𝑘−1 ∗ 𝐋)
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

=𝜙′𝑘−1

(A.11)

where 𝐆 denotes a Gaussian filter kernel for smoothing, 𝐋 ∶= 1−𝐆 de-
notes the Laplacian filter kernel. Here the Laplacian convolution (𝜙𝑘−1 ∗

2 1
𝐋) is regressed by  (𝜙𝑘−1), and the confidence weight 𝑪 ∶=  (𝜗𝑘)
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Table B.7
Network structure of Residual Aligner (RA) modules for RANs (RAn0, RAn3, RAn4, RAn+4 ) with varying pooling scales and dilation rates.

Layer(s) ker chns RAn0 RAn3 RAn4 RAn+4 in out

scale dila scale dila scale dila scale dila

conv,act,conv,act 3 64/18/18 16 1 2 8 1 16 1 16 𝑭 s
0|𝑭

t
0 m0

conv,act,conv 3 18/27/𝑚𝑑 16 1 2 1 1 1 1 1 m0 𝜑̂0
conv,act,conv 3 18/18/𝑚 16 1 2 1 1 1 1 1 m0 𝜗0
conv,norm,act 3 18/1 16 1 2 1 1 1 1 1 𝜗0 𝜗′0
conv 1 𝑚/𝑚 16 0 2 0 1 0 1 0 𝜗0 𝜃0
reshape,conv 3 𝑚𝑑/𝑚/9 16 1 2 1 1 1 1 1 𝜎(𝜃0)⊙ 𝜑̂0 df0
conv,reshape 3 9/1/𝑑 16 1 2 1 1 1 1 1 𝜗′0⊙df0 𝜙0

upsample ✓ × × × 𝜙0 , 𝜃0 𝜙0 , 𝜃0
conv,act,conv,act 3 64/18/18 8 1 2 4 1 8 1 8 𝜙0(𝑭 s

1)|𝑭
t
1 m1

conv,act,conv 3 18/27/𝑚𝑑 8 1 2 1 1 1 1 1 m1 𝜑̂1
conv,act,conv 3 18/18/𝑚 8 1 2 1 1 1 1 1 m1 𝜗1
conv,norm,act 3 18/1 8 1 2 1 1 1 1 1 𝜗1 , 𝜃0 𝜗′1 , 𝜃

′
0

conv 1 2𝑚/𝑚 8 0 2 0 1 0 1 0 𝜗1|𝜃0 𝜃1
reshape,conv 3 𝑚𝑑/𝑚/9 8 1 2 1 1 1 1 1 𝜎(𝜃1)⊙ 𝜑̂1 df1
reshape,conv 3 𝑚𝑑/𝑚/9 8 1 2 1 1 1 1 1 𝜎(𝜃1)⊗𝜙0 dp1
conv,reshape 3 18/1/𝑑 8 1 2 1 1 1 1 1 𝜗′1⊙df1|𝜃

′
0⊙dp1 𝜙1

upsample ✓ × × × 𝜙1 , 𝜃1 𝜙1 , 𝜃1
conv,act,conv,act 3 32/18/18 4 1 2 2 1 4 1 4 𝜙1(𝑭 s

2)|𝑭
t
2 m2

conv,act,conv 3 18/27/𝑚𝑑 4 1 2 1 1 1 1 1 m2 𝜑̂2
conv,act,conv 3 18/18/𝑚 4 1 2 1 1 1 1 1 m2 𝜗2
conv,norm,act 3 18/1 4 1 2 1 1 1 1 1 𝜗2 , 𝜃1 𝜗′2 , 𝜃

′
1

conv 1 2𝑚/𝑚 4 0 2 0 1 0 1 0 𝜗2|𝜃1 𝜃2
reshape,conv 3 𝑚𝑑/𝑚/9 4 1 2 1 1 1 1 1 𝜎(𝜃2)⊙ 𝜑̂2 df2
reshape,conv 3 𝑚𝑑/𝑚/9 4 1 2 1 1 1 1 1 𝜎(𝜃2)⊗𝜙1 dp2
conv,reshape 3 18/1/𝑑 4 1 2 1 1 1 1 1 𝜗′2⊙df2|𝜃

′
1⊙dp2 𝜙2

upsample ✓ × × × 𝜙2 , 𝜃2 𝜙2 , 𝜃2
conv,act,conv,act 3 32/18/18 2 1 2 1 1 2 1 2 𝜙2(𝑭 s

3)|𝑭
t
3 m3

conv,act,conv 3 18/27/𝑚𝑑 2 1 2 1 1 1 1 1 m3 𝜑̂3
conv,act,conv 3 18/18/𝑚 2 1 2 1 1 1 1 1 m3 𝜗3
conv,norm,act 3 18/1 2 1 2 1 1 1 1 1 𝜗3 , 𝜃2 𝜗′3 , 𝜃

′
2

conv 1 2𝑚/𝑚 2 0 2 0 1 0 1 0 𝜗3|𝜃2 𝜃3
reshape,conv 3 𝑚𝑑/𝑚/9 2 1 2 1 1 1 1 1 𝜎(𝜃3)⊙ 𝜑̂3 df3
reshape,conv 3 𝑚𝑑/𝑚/9 2 1 2 1 1 1 1 1 𝜎(𝜃3)⊗𝜙2 dp3
conv,reshape 3 18/1/𝑑 2 1 2 1 1 1 1 1 𝜗′3⊙df3|𝜃

′
2⊙dp3 𝜙3

upsample ✓ ✓ × × 𝜙3 , 𝜃3 𝜙3 , 𝜃3
conv,act,conv,act 3 16/18/18 1 1 1 1 1 1 1 1 𝜙3(𝑭 s

4)|𝑭
t
4 m4

conv,act,conv 3 18/27/𝑚𝑑 1 1 1 1 1 1 1 1 m4 𝜑4
conv,act,conv 3 18/18/𝑚 1 1 1 1 1 1 1 1 m4 𝜗4
conv,norm,act 3 18/1 1 1 1 1 1 1 1 1 𝜗4 , 𝜃3 𝜗′4 , 𝜃

′
3

conv 1 2𝑚/𝑚 1 0 1 0 1 0 1 0 𝜗4|𝜃3 𝜃4
reshape,conv 3 𝑚𝑑/𝑚/9 1 1 1 1 1 1 1 1 𝜎(𝜃4)⊙ 𝜑4 df4
reshape,conv 3 𝑚𝑑/𝑚/9 1 1 1 1 1 1 1 1 𝜎(𝜃4)⊗𝜙3 dp4
conv,reshape 3 18/1/𝑑 1 1 1 1 1 1 1 1 𝜗′4⊙df4|𝜃

′
3⊙dp4 𝜙
i

A

t
R

A

t
/
T
L
2
t
c
b
w
p

is implicitly regressed from 𝜗𝑘 with general representation for the
im of higher accuracy. Thus the calculation of smooth(𝜙𝑘−1,1(𝜃𝑘−1))
nd smooth(𝜑̂𝑘,1(𝜗𝑘)) could be regressed by 4([𝜑′

𝑘, 𝜑̂𝑘, 𝜙′
𝑘−1, 𝜙𝑘−1]) in

q. (12),

.3. Multi-head disentanglement

To disentangle the predicted DDF with preserving discontinuities
nd the trend of motions, the M-H masks 𝑴 ∶= sof tmax(𝜃𝑘) is inserted
nto Eq. (A.11) for decoupling and smoothing the prediction on the
different regions of DDF 𝜙𝑘:

smooth(𝜙𝑘−1,𝑪 ,𝑴) = 𝜙𝑘−1 −
∑

{𝑚}
𝑪 ⊙ ((𝑴 ⊗𝜙𝑘−1) ∗ 𝐋)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=𝜙′𝑘−1

(A.12)

and M-H residual DDF 𝜑̂𝑘:

smooth(𝜑̂𝑘,𝑪 ,𝑴) =
∑

{𝑚}
𝜑𝑘 − 𝑪 ⊙ ((𝑴 ⊙ 𝜑̂𝑘) ∗ 𝐋)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=𝜑′

𝑘

(A.13)

where ∑

{𝑚} denotes the head-dimension sum. The calculation of
Eqs. (A.12) and (A.13) could be regressed by:

𝑘 = 4([𝜑′
𝑘,
∑

(𝜑̂𝑘), 𝜙′
𝑘−1, 𝜙𝑘−1]) (A.14)
17

{𝑚} m
n Eq. (12) to predict the output DDF of the 𝑘th RA module 𝜙𝑘.

ppendix B. Network architecture

The MS network structure details of the encoder, the decoder, and
he RA modules are respectively illustrated in Tables B.5–B.7, including
An0, RAn3, RAn4 and RAn+4 .

ppendix C. Additional results

We compared RAN with the relevant state-of-the-art network struc-
ures. The Voxelmorph (Balakrishnan et al., 2019) (VM1/VM2: light-
heavy-weight model) is adopted as the representative method of DR.
he composite network combining CNN (Cn: Global-net) and U-net (Un:
ocal-net) following to Hu et al. (2018), as well as 5-RCn (Zhao et al.,
019a) (RCn1/RCn2: light-/heavy-weight model) are also adopted into
he framework as the relevant baselines representing multi-stage Cas-
aded (Cas) networks. DPRn (Kang et al., 2022) is selected as the
aseline for FP networks. Additionally, we also replace RA module
ith cross attention (Attn) (Vaswani et al., 2017) to compare the
erformance at the module level.
To clearly show the performance detail of the previous relevant
odels compared with our RANs as well as the ablation studies on
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Fig. B.19. Results on pancreas.

he nine organs: spleen (Fig. B.11), right kidney (Fig. B.12), left kidney
Fig. B.13), esophagus (Fig. B.14), liver (Fig. B.15), aorta (Fig. B.16),
inferior vena cava (Fig. B.17), portal splenic vein (Fig. B.18), and
pancreas (Fig. B.19).
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