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ABSTRACT 4 

As modular construction projects and prefabrication have become increasingly prevalent, safety 5 

in heavy crane operation during on-site assembly has become a pressing concern. A significant 6 

safety concern is monitoring the mental fatigue of crane operators. Previous research has 7 

proposed a federated transfer learning-enabled smart work packaging (FedSWP) to achieve 8 

personalized and privacy-preserving fatigue monitoring. However, when applying FedSWP for 9 

fatigue monitoring, network efficiency issues are magnified in data-insufficient and resource-10 

constrained smart work packages (SWPs). This paper introduces an adaptive and lightweight 11 

federated smart work package framework with triplet loss (FedSWP-TL), explicitly focusing 12 

on efficiently recognizing crane operators’ mental fatigue. By leveraging triplet networks and 13 

innovative techniques such as compressive aggregation and a lighter MobileVit network, the 14 

FedSWP-TL demonstrates enhanced generalization and mobility capabilities. Through 15 

evaluation of YAWDD, DROZY, and ConPPMF datasets, our approach outperforms efficiency 16 

while monitoring fatigue status under constrained resources. The results highlight the 17 

adaptability of FedSWP-TL to diverse groups of SWPs, showcasing its potential for practical 18 

implementation in data-insufficient environments. 19 
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Introduction 20 

As cranes are one of the most demanded and utilized pieces of equipment in construction 21 

projects worldwide, the safety of crane operation remains a critical concern due to the 22 

demanding nature and the potential hazards. Crane operators’ fatigue should be closely 23 

monitored, especially since their work requires constant concentration and alertness (Li et al., 24 

2019; Liu et al., 2021). Previous studies have developed various deep learning (DL) models for 25 

fatigue prediction (Imran et al., 2024). Meanwhile, privacy and data security have become 26 

paramount as fatigue detection on DL models mainly involves using private data like face (Li 27 

et al.; Sun et al., 2023), bio-signals (Wang et al., 2023; Guarda et al., 2022), and speech (Yan 28 

et al.; Shen et al., 2021). Many regions and countries are enacting strict laws, policies, and 29 

regulations on privacy and data security (Li et al., 2022), such as the European Union’s General 30 

Data Protection Regulation (GDPR), China’s Personal Information Protection Law, and the 31 

California Consumer Privacy Act. These regulations impede DL training with isolated data 32 

repositories in many fields, including construction. Thus, there is a pressing need for crane 33 

operators’ fatigue detection in a personalized and privacy-preserving way.  34 

Federated learning (FL) is a distributed machine learning that encourages using Internet of 35 

Things (IoT) devices for safety monitoring while preserving the privacy of sensitive 36 

information. For example, Li et al. (2021) introduced a federated transfer learning-enabled 37 

smart work package framework (FedSWP). This distributed vision-based approach leverages 38 

personal images of individuals’ faces to detect signs of mental fatigue while safeguarding their 39 

confidentiality. A SWP is the smallest distributed agent facilitating task planning, scheduling, 40 

and execution (Li et al., 2020) via advanced artificial intelligence (AI). It consists of a cluster 41 

of intelligent resources such as non-intrusive wearable bio-sensors, face cameras, limited 42 

bandwidth, constrained storage, AI models for fatigue detection, and a small private dataset. 43 

SWP can then transmit personal data to the cloud for training and offer safety alerts or health 44 



insights. The FedSWP framework employs transfer learning with a hybrid model to create 45 

personalized models. There is other FL methods applied to areas such as building energy 46 

consumption (Li et al. 2022), human-robot collaborative assembly tasks (Cai et al. 2024), and 47 

quality defect inspection (Wu et al. 2024) to protect privacy in construction. Existing methods 48 

have relatively underestimated the need for an adaptive and lighter framework for resource-49 

constrained devices and various construction projects, while the federated nature of learning 50 

has further amplified efficiency challenges with limited local data. Moreover, triplet loss for 51 

creating robust fatigue embedding representations, especially under federated frameworks, 52 

remains unexplored to the best of the researchers’ knowledge. Under a non-central learning 53 

paradigm, finding a more efficient fatigue detection solution seamlessly adaptive to diverse 54 

construction projects is crucial among data-insufficient and resource-constrained SWPs.  55 

Two key issues hinder the feasibility of mental fatigue monitoring with federated and 56 

personalized AI models. Firstly, resource-constrained hardware faces the challenge of 57 

balancing higher accuracy with smaller computation and communication. For example, hybrid 58 

deep neural networks with long short-term memory (LSTM) for temporal features can result in 59 

longer times and increased energy consumption, which may overwhelm the hardware of SWPs 60 

(Chou et al., 2025). Secondly, data-insufficient SWPs aggravate the gaps in adaptation to new 61 

groups. SWPs may encompass videos of various appearances in diverse backgrounds, different 62 

cameras, and heterogeneous computing chips, introducing biases during non-independent and 63 

identically distributed (non-IID) training (Xu et al., 2023). This ultimately leads to a 64 

degradation of accuracy in new SWPs or an overfitting issue after personalized training in small 65 

local datasets. While federated learning provides a privacy-enhancing solution for monitoring 66 

fatigue, it does not effectively adapt to different groups of SWPs because of capability and 67 

statistical heterogeneity. Given the limited resources and data scarcity of each remote SWP with 68 

varying characteristics (e.g., various sensors), finding an alternative solution with adaptive and 69 



mobile attributes is imperative in a model application for fatigue monitoring systems to crane 70 

operators.  71 

This study aims to introduce a federated smart work package framework with triplet loss 72 

(FedSWP-TL) to facilitate mobility and generality during on-site mental fatigue monitoring of 73 

crane operators. To this end, the research seeks to (1) utilize a triplet network for each SWP to 74 

learn high-order embedding representations for fatigue, (2) provide a mobile-friendly federated 75 

transfer learning framework with compressive communication and efficient computation, (3) 76 

validate the generality and mobility of FedSWP-TL in the context of fatigue monitoring on 77 

datasets of YawDD, DROZY, and newly established ConPPMF. The remainder of this study is 78 

structured as follows. Section 2 provides a comprehensive overview of past studies. Section 3 79 

introduces the newly proposed FedSWP-TL framework. Section 4 presents the experiment. 80 

Results for generality and mobility are evaluated in section 5, while section 6 highlights the 81 

contributions of the research and discusses its limitations and potential application. Finally, the 82 

conclusion is summarized in Section 7. 83 

Related Works 84 

This section reviews signal types for mental fatigue monitoring, explores detection methods, 85 

and briefly overviews secure federated communication for efficiency and deep metric learning 86 

for adaptability. Research gaps are summarized at the end. 87 

Mental Fatigue Signals 88 

Mental fatigue refers to the depletion of mental alertness, demonstrated by the incapacity of 89 

reaction time, coordination, judgment, or concentration (Li et al., 2019). Various signals for 90 

objective and practical assessment include physiological indicators, operational behaviors, and 91 

visual characteristics. Physiological indicators include but are not limited to heart rate 92 

variability (HRV), respiration rate (RR), electrocardiograms (ECG), electromyograms (EMG), 93 



electrooculograms (EOG), and electroencephalograms (EEG). EEG is widely acknowledged as 94 

a dependable and crucial assessment tool due to its exceptional temporal resolution. For 95 

instance, Mehmood et al. (2023) proposed a wearable EEG-based device to quantitatively 96 

assess workers’ mental fatigue levels. Additionally, Wang et al. (2023) utilized innovative 97 

cushions to extract the HRV and RR features to model the mental fatigue status of the 98 

participants. These physiological indicators are valuable but require non-intrusive sensors and 99 

robust data collection for real-time monitoring (Imran, 2024).  100 

Besides, fatigue could be inferred from operational behaviors. Elevated risk of errors and slower 101 

reaction times are common indicators of mental fatigue, leading to decreased operational 102 

performance (Xu et al., 2023). Even though analyzing operational behavior can occasionally 103 

provide insights into fatigue states (Liu et al., 2021), the real-time collection and evaluation of 104 

operational behaviors remain challenging due to the diversity of workers’ roles and tasks.  105 

In addition to physiological and operational signals, fatigue monitoring can rely on visual 106 

characteristics as indirect physical measures. These non-invasive approaches offer a more 107 

practical means of real-time monitoring and can be easily integrated into daily activities. For 108 

instance, head nodding, eye tracking, pupil size changes, and jaw state can be monitored using 109 

cameras or facial recognition technology (Liu et al.; Dziuda et al., 2021; Li et al.; Lu et al.; Sun 110 

et al., 2023). Although not as accurate as biometric EEG methods, these indirect measures 111 

deliver insightful fatigue information. Those visual characteristics can be combined with 112 

physiological or operational signals to enhance the overall fatigue assessment.  113 

Methods for Fatigue Detection 114 

Traditionally, the assessment of mental fatigue has relied on self-reporting measures such as 115 

Chalder Fatigue Scale (Chalder et al.,1993), Fatigue Assessment Scale (FAS, Michielsen et 116 

al.,2003), NASA-TLX (Hart, 2006), and Karolinska Sleepiness Scale (KSS, Kaida et al., 2006). 117 



While these approaches are straightforward, they lack precision due to potential biases in 118 

subjective reporting. Moreover, they are unsuitable for continuous monitoring as workers must 119 

periodically complete fatigue-related questionnaires. 120 

With the advancement of DL, indirect measures have embraced impartial and non-intrusive 121 

technology for analyzing mental fatigue signals. The cognitive fatigue status can be aptly 122 

determined with greater precision as the computer autonomously learns key features such as 123 

facial expressions, head movements, eye states, physiological patterns, and working 124 

performance (Lu et al., 2023; Yang et al., 2024).  125 

DL has achieved remarkable success in visual classification tasks, particularly with 126 

convolutional neural networks (CNN), such as facial feature fusion convolutional neural 127 

network for driver fatigue detection (Sun et al., 2023) and CNN-Attention Structure using EEG 128 

data (Xu et al., 2021). However, capturing temporal features for fatigue detection is necessary, 129 

as it involves a continuous process rather than a one-time event. LSTM or gated recurrent unit 130 

(GRU) architectures are incorporated (Lu et al., 2023). In the federated transfer learning 131 

framework, FedSWP uses a hybrid model architecture with a face detector (MTCNN) and 132 

spatial and temporal feature extractors (MobileNet, LSTM). Although MTCNN and MobileNet 133 

are efficient, the computational demand increases for the complexity of integration and 134 

additional temporal LSTM, particularly in resource-constrained environments. Vision 135 

transformers (ViTs, Dosovitskiy et al., 2021) are a more sophisticated option for learning 136 

sequential visual representations. Even though these architectures are known for their high 137 

accuracy, they are cumbrous (e.g., ViT-B/16 having 7.5 million parameters) and difficult to 138 

optimize when working with real-world data (Mehta& Rastegari, 2021; Guo et al., 2022). 139 

Lightweight studies are newly developed to learn spatial and temporal features on mobile 140 

platforms, such as MobileFormer and MobileViT. MobileViT focuses on minimizing parameter 141 



count, while MobileFormer optimizes for FLOPs. However, little research has been conducted 142 

on mobile models capturing spatial and temporal features for fatigue monitoring. 143 

Secure Federated Communication  144 

Despite methods categorized by model architecture, typical intelligent monitoring methods can 145 

be divided by learning paradigm, i.e., centralized, federated, and decentralized. A federated 146 

learning solution for privacy-preserving fatigue monitoring guarantees participant privacy by 147 

sharing only gradients across devices, while sensitive training data remains on the local device 148 

without any raw features or labels being communicated between parties (Li et al., 2021). Three 149 

main defense approaches to prevent reconstruction attacks during parameter sharing are 150 

cryptography-based, infrastructure-based, and perturbation methods. Cryptography-based 151 

methods, such as secure multi-party computation and homomorphic encryption (Moriai, 2019), 152 

pose a computational challenge and may hinder participant communication. Infrastructure-153 

based methods, such as trusted execution environments (TEE) (Subramanian et al., 2017), 154 

require specific hardware and may not be practical in all scenarios. Perturbation techniques 155 

involve random perturbation, message shuffling, compression, and sparsification (Yang et al., 156 

2023). Compression has been shown to compress gradients over 300 times without sacrificing 157 

accuracy (Zhu et al., 2020).  158 

FedSWP (Li et al., 2021) utilizes homomorphic encryption to merge model parameters, further 159 

amplifying the bandwidth requirements since communication among SWPs can be expensive. 160 

When multiple SWPs need to interact with the server concurrently, they may be queued to 161 

receive their updates. Even though transfer learning is applied to minimize communication, the 162 

size of the encrypted messages can be substantially larger than their plaintext counterparts, 163 

exacerbating the communication overhead and potentially leading to network congestion. 164 

Therefore, resource-constrained SWPs require a more efficient communication strategy.   165 



A decentralized learning solution for privacy preservation, like decentralized adaptive work 166 

package (DAWP) learning for construction occupational health and safety (COHS) monitoring 167 

(Li et al. 2024), ensures participant privacy through local datasets and decentralized model 168 

updates, free from the limited bandwidth of the centralized aggregator in FL solutions. DAWP 169 

leverages blockchain technology to consolidate model parameters, but the bandwidth 170 

requirements still necessitate costly communication between SWPs and blockchain nodes.  171 

Deep Metric Learning 172 

Traditional DL approaches in FedSWP and other mentioned methods for fatigue detection 173 

primarily focus on discriminative classification, which is prone to over-fitting, especially when 174 

adapting to heterogeneous small datasets. Deep metric learning approaches seek to gain insights 175 

into the underlying data patterns by constructing a non-linear embedding space. In this space, 176 

the classification of data points into specific classes is determined by evaluating the distances 177 

between them. To facilitate this process, prior knowledge has been incorporated into a 178 

projection function, which converts the unprocessed input data into a suitable representation 179 

for comparison of similarities (Li et al., 2023). Popular deep metric learning networks include 180 

pairwise, matching, prototypical, relation, and graph-based networks, employing a feed-181 

forward mechanism to compare similarity. 182 

Pairwise networks are a specific kind of deep metric learning model that is created to process 183 

pairs of examples and learn a shared feature space that can be used to distinguish between two 184 

classes. For instance, Siamese networks rely on two identical neural networks to learn 185 

embeddings from a pair of samples and then calculate a weighted metric to determine their 186 

similarity. The Siamese network (Zhu et al., 2022) leverages weight parameter sharing to map 187 

features to a shared feature space, enabling effective comparison and analysis of samples from 188 

different sources. Triplet Network (Ma et al., 2022) extends Siamese networks to three with 189 



shared parameters to output the comparison probability. By utilizing a distance-based measure 190 

and corresponding loss function, those networks can cluster similar samples together and keep 191 

dissimilar samples separated. This enables downstream tasks to be performed more accurately 192 

and generally, enhancing the network’s overall performance.  193 

Euclidean distance, cosine distance, contrastive loss, and triplet loss commonly measure 194 

similarities among pairs or triplet samples. The contrastive loss encourages two inputs 195 

belonging to the same class to be closer to each other, while two images with different labels 196 

are kept far apart (Ma et al., 2022). The triplet loss is designed to learn a similarity metric or 197 

embedding space where similar samples are closer and dissimilar samples are farther apart. 198 

There is limited research on deep metric learning approaches to extract fatigue features, 199 

promoting resilient and adaptive monitoring in data-insufficient settings. 200 

Research Gaps 201 

Although a non-central learning paradigm for fatigue monitoring is significant, a mobile-202 

friendly framework has not been fully explored. Moreover, little research has been conducted 203 

on triplet loss in fatigue monitoring, especially under the adaptation to new groups of operators. 204 

Thus, the main research question is how to improve the efficiency of federated solutions in 205 

data-insufficient and resource-constrained settings.  206 

Methods 207 

The primary objective of this study is to determine the capability of triplet loss to differentiate 208 

non-fatigued and fatigued states for unseen operators in heterogeneous nodes. The secondary 209 

objective is to design a mobile-friendly federated transfer learning framework with compressive 210 

communication and efficient computation. To facilitate generality and mobility, this section 211 

presents a federated smart work package framework with triplet loss that incorporates 212 

compressive aggregation and MobileVit triplet network architecture.  213 



This section delineates the methodologies employed in crafting the FedSWP-TL, encompassing 214 

federated transfer learning within the FedSWP-TL network, the incorporation of the triplet 215 

network, MobileVit, and selective gradient aggregation techniques throughout the off-site 216 

training phase, as well as the similarity analysis during on-site application for fatigue 217 

monitoring. 218 

The FedSWP-TL Network  219 

The FedSWP-TL network is presented in Fig. 1. It comprises a DL node and multiple SWP 220 

nodes, each functioning as a computing node with a local dataset. The DL node generally works 221 

alongside SWP nodes for monitoring, controlling, and managing. It selects the appropriate 222 

SWPs, aggregates model parameters, and serves as the command interface. The SWP operates 223 

as an independent contractor, with a team of workers and monitoring videos specific to their 224 

tasks. The SWP node trains a personalized model with its private dataset and the global model.  225 

 The federated transfer learning interaction in the FedSWP-TL network: (1) SWP0 with a public 226 

dataset 𝐷0 initially shares global weight Θmeta. (2) Then the global weight Θmeta is updated 227 

from SWPs with D = {𝐷𝑘}𝑘
K. This collaborative effort among K SWP continues until the DL 228 

node has successfully fine-tuned the model to an acceptable level. (3) A new SWP could join 229 

the FedSWP-TL network, interacting with the meta-model.  230 

Off-site Training Process  231 

The FedSWP-TL off-site training process (Fig. 2) follows the general FedSWP process. It trains 232 

a global model on a public dataset and then transfers the initial model to local SWP nodes. Each 233 

SWP node then trains a local model on its database, and SWPs send local models’ parameters 234 

to update the global model. Ultimately, personalized models are independently obtained. 235 

However, the FedSWP-TL is more advanced with triplet loss, compressive aggregation, and 236 

MobileVit architecture.  237 



As shown in Algorithm 1, before the training process, triplets {𝑇 = (𝑥, 𝑥+, 𝑥−)| 𝑖 ∈ N} are 238 

created as input on line 1. Remarkably, the global weight Θmeta is more portable than that of a 239 

hybrid model with LSTM on line 4. Θmeta in the triplet network is updated via a compressive 240 

aggregation schema instead of an encrypted federated averaging algorithm on lines 6-9 and 17-241 

18. The loss is not only classification loss but the sum of classification loss and triplet loss on 242 

line 15. The enhanced version of FedSWP with Triplet loss is lightweight and adaptable to 243 

monitor fatigue without compromising data privacy and model personalization. 244 

 245 

 246 

The adaptive SWP: The key difference between our approach and traditional ones is to learn 247 

individual fatigue embeddings via a triplet loss. The triplet loss is to train encoders to highlight 248 

the most discriminative representation of fatigue. Fatigued and regular faces may look similar 249 

(like the same person) but pose contrasting fatigue properties. The global encoder can prioritize 250 

the fatigue expressions over appearances, and the personalized SWP could capture the 251 

individual differences in fatigue response patterns. A new SWP in different construction 252 

projects and sites could use the global encoder and personalize its model with a limited training 253 

dataset due to common fatigue responses in humans.  254 

Let (xj, yj) be the j-th sample in a training set Dk. During the neural network training, training 255 

samples are selected and formed into triplets  {𝑇𝑖  = (𝑥, 𝑥+, 𝑥−)| 𝑖 ∈ N}   with an anchor sample 256 

𝑥, a positive sample 𝑥+(similar to the anchor) and a negative sample 𝑥−(dissimilar to the anchor) 257 

where the relative label satisfies 𝑦 = 𝑦+ ≠ 𝑦− .The predicted label 𝑓(𝑥) = 𝑓(𝑥| Θ𝑘) . The 258 

model parameters are a combination of global and personalized parameters,  Θ𝑘259 

∶= {Θmeta, 𝛉𝐿−1, 𝛉𝐿} , where Θmeta  represents the global weight, 𝛉𝐿−1, 𝛉𝐿  are personalized 260 



weights on the last dense layers. The model parameter vector Θ𝑘 ∈  ℝd  (e.g., weight and bias) 261 

can be obtained by minimizing the loss function (Eq. 1): 262 

                       ℒ = ℒ𝑇  (𝑇𝑖) + ℒ(𝑓(𝑥), 𝑦)                                                              (1) 263 

The loss function for the model is a combination of two losses: The triplet loss ℒ𝑇  (𝑇𝑖) for the 264 

embedding purpose and binary cross entropy loss ℒ(𝑓(𝑥), 𝑦)  for the prediction purpose. 265 

ℒ𝑇  (𝑇𝑖) is a function (Eq. 2) used in machine learning, particularly in face recognition, image 266 

retrieval, and similarity learning tasks. ℒ(𝑓(𝑥), 𝑦) is carried out to enhance the alignment 267 

between the predicted labels and the ground truth in the classification process. 268 

ℒ𝑇  (𝑇𝑖) = Max[d(𝑥, 𝑥+) − d(𝑥, 𝑥−) + m, 0]                              (2) 269 

where d(∙) represents a distance metric (e.g., Euclidean distance or cosine similarity), the 270 

margin 𝑚  is a hyperparameter that defines the minimum desired separation between the 271 

positive and negative samples.  272 

The lightweight SWP: The lightweight attribute is ameliorated by deploying a mobile model 273 

architecture and compressive aggregation to minimize computation and communication. Due 274 

to its proven superiority (Mehta & Rastegari, 2022; Li et al., 2024), this study utilizes MobileVit 275 

as the backbone to help with resource-constrained training. MobileViT combines the strengths 276 

of CNNs and ViTs to build a lightweight network, while low FLOPs in MobileFormer do not 277 

necessarily result in low latency (Vasu et al., 2023). MobileVit consists of two convolution 278 

layers, six MobileNetv2 (MV2) blocks, and three MobileViT blocks (See Table 1). A global 279 

pooling layer then completes the model to indicate the feature embeddings of each input video. 280 

Notably, a fully connected layer in the original setting is replaced with two personalized dense 281 

layers, where SWPs will hold independently. The MobileViT block will capture both local and 282 

global information by utilizing a conventional convolutional layer followed by a point-wise 283 



convolutional layer. MV2 blocks are mainly deployed for down-sampling, ↓2 means that down-284 

sampling to the half. 285 

As shown in lines 17-18 in Algorithm 1, the lightweight attribute is also augmented by 286 

minimizing the communication costs during the update of global weights. The gradients 287 

computed by each SWP were communicated to a DL node for merging and updating. This can 288 

be a bottleneck during training, especially in SWP scenarios with limited network bandwidth 289 

and constrained Input/Output(I/O) resources. FedSWP-TL addresses this issue by compressing 290 

the gradients before transmission. It utilizes sparsification and quantization to reduce the size 291 

of the gradient tensors. Sparsification involves identifying and transmitting only a subset of the 292 

gradients with significant magnitudes, while quantization reduces the precision of the gradient 293 

values (Yang et al., 2023). In addition to less communication, the transmitted gradient is harder 294 

for attackers to leverage to reconstruct the raw image or infer sensitive information.   295 

On-site Monitoring Process 296 

When transitioning the FedSWP-TL framework from experimental presentation to actual 297 

application, each SWP possesses an individualized trained model, with continuous facial 298 

recordings being categorized using classification prediction and nearest-neighbor analysis. The 299 

identification of fatigue is further interpreted by calculating similarities between the present 300 

embedding and the average embeddings for fatigue and non-fatigue. 301 

During on-site monitoring, two kinds of SWPs are observed: existing SWPs with integrated 302 

trained models and new SWPs that initially retrieve the global model from the DL node and 303 

then fine-tune personalized layers. The network demand for newly joined SWPs is initially high 304 

due to the global model deployment, but it could diminish as the personalized updates become 305 

internalized.  306 



Experiments 307 

Models of FedSWP-TL consist of a global model in SWP0 and personalized models in the other 308 

SWPs, tested across private datasets. The global model is initially trained on the public dataset, 309 

then is fine-tuned and tested on private datasets, while the personalized models are fine-tuned 310 

and tested on private datasets. The origin FedSWP serves as a benchmark method to showcase 311 

the enhanced adaptive and lightweight characteristics. 312 

Datasets 313 

Multiple datasets naturally represent realistic and heterogeneous local datasets in different 314 

SWPs, enabling a thorough exploration of FedSWP-TL performance across diverse sensors and 315 

heterogeneous adaptions. Each dataset used in the study captures a different scenario related to 316 

fatigue monitoring. YawDD provides instances of yawning under controlled conditions, 317 

DROZY offers diverse and challenging simulated scenarios, and ConPPMF presents real-world 318 

data from construction environments. Table 2 summarizes the various settings of the three 319 

databases, with the Age column reflecting the age range of the majority of the subjects. 320 

YawDD, short for “Yawing Detection Dataset, ”  comprises two datasets featuring videos 321 

captured at a resolution of 640 × 480 pixels with 24-bit actual color (RGB) from car operations 322 

in 2014. It is identical to alerting fatigue of the crane operator and supports at least three papers 323 

(Li et al., 2021, 2022; Liu et al.,2021). These videos depict a range of facial expressions, 324 

including regular, talking/singing, and yawning states at 30 frames per second (FPS). The first 325 

dataset, obtained from the front mirror perspective, comprises 270 videos featuring 90 subjects 326 

(47 males and 43 females). The second dataset, captured from the dashboard viewpoint, 327 

involves 29 subjects (16 males and 13 females).   328 

DROZY, as the abbreviation of “The ULg Multimodality Drowsiness Database” (Massoz et al., 329 

2016), stands out as the most widely utilized dataset for monitoring mental fatigue. It is also 330 



valuable for monitoring the mental fatigue of crane operators. The dataset is meticulously 331 

gathered through a comprehensive approach involving the administration of the psychomotor 332 

vigilance test (PVT), the application of polysomnography (PSG) electrodes, and the assessment 333 

of sleepiness levels using the KSS in a controlled laboratory setting over two days. The study 334 

cohort included 14 healthy participants, consisting of 3 males and 11 females, with an average 335 

age of 22.7 years (±2.3 SD). The dataset encompasses multiple modalities, featuring EEG data 336 

from 5 channels (Fz, Pz, Cz, C3, and C4), other physiological signals such as EOG, ECG, and 337 

EMG, and camera videos and reaction time evaluations. 338 

ConPPMF, as the abbreviation of “Construction Datasets for privacy-preserving fatigue 339 

monitoring,” stands out as the most related dataset for monitoring mental fatigue. The dataset 340 

is gathered through a non-invasive approach involving RGB cameras positioned in front of 341 

faces and smartwatches worn on wrists to capture visual and physiological data. Three 342 

construction workers, an average of 42.7 years old, were recorded during daily operations. 343 

Fatigue status is binary labeled based on self-reporting and job performance after recording. 344 

Fig. 3 shows some frame samples of monitoring videos in the dataset. 345 

To thoroughly evaluate the performance of FedSWP-TL, 97 subjects were selected from these 346 

diverse datasets to form the experimental groups. The videos were reorganized into seven 347 

distinct datasets according to the subjects to facilitate intricate situations: a public dataset and 348 

six private datasets. A public dataset 𝐷0 includes videos from 66 subjects randomly selected 349 

from YawDD datasets to train initial global weight while six private sets D = {𝐷𝑘}𝑘
K=6serve as 350 

local datasets of SWPs. These include four datasets from separate YawDD subjects, one from 351 

DROZY subjects, and one from ConPPMF subjects, distributed in different SWP nodes (named 352 

SWP1, SWP2 and SWP3, P4, DROZY, and ConPPMF).  353 



Evaluation 354 

To evaluate the FedSWP-TL framework’s generalization ability, the performance of 355 

personalized models in P4, YawDD, and DROZY nodes are individually tested on local testing 356 

samples to simulate real-world adaption to heterogeneous groups of SWPs. The framework’s 357 

adaptability was assessed by observing those model performances across three distinct 358 

databases. Model performance was measured using Recall and F1-score as metrics. Recall, 359 

emphasizing the sensitivity of fatigue detection, is crucial for safety monitoring as it focuses on 360 

accurately identifying fatigued workers to prevent potential accidents. The wrong judgment 361 

increases the workload of managers checking, but the missing detection would lead to 362 

undesirable accidents in construction. F1-score, a combination of recall and precision, provides 363 

a balanced view of detection sensitivity and accuracy in safety monitoring applications. 364 

In addition to generalization, the study also examined the mobility ability of the FedSWP-TL 365 

framework. This study analyzes the balance between performance and resource requirements 366 

to assess the framework’s ability to maintain promising performance with minimal overhead. 367 

Resource evaluation included considerations such as network parameter count, convergence 368 

speed, and computing times. The network parameter count reflects the model’s memory 369 

utilization and portability, with fewer parameters indicating a more efficient and portable model. 370 

Convergence speed, representing the time required for model training, influences the speed of 371 

model development and deployment. Performance evaluation encompassed key statistical 372 

indicators such as accuracy (ACC), the area under the receiver operating characteristic curve 373 

(AUC), F1-score, and recall, providing a comprehensive assessment of the FedSWP-TL 374 

framework’s effectiveness in mental fatigue monitoring. Additional metrics beyond ACC and 375 

AUC were included to offer a more nuanced evaluation of the framework’s performance in 376 

real-world scenarios.  377 



Label harmonization 378 

This paper simplifies the fatigue state into binary classification, making the model easier to 379 

train and interpret, especially for initial development stages, requiring fewer computational 380 

resources in resource-constrained environments and leading to more robust models in diverse 381 

conditions. The existing labels across different datasets are inconsistent and do not align with 382 

the triplet’s transformation. To accurately represent the transitional states between alertness and 383 

fatigue, these datasets are relabeled into two fatigue levels: regular (labeled as 0) and fatigue 384 

(labeled as 1). For instance, in the YawDD dataset, behaviors such as stillness, moving head, 385 

normal talking, laughing, and singing, which are least associated with fatigue, are relabeled as 386 

0. Original yawning markers with values 1, 2, 3, 4, and 5, indicating varying fatigue levels, are 387 

relabeled as 1. The DROZY dataset is labeled by KSS. The labels in ConPPMF videos are 388 

binary and checked every 10 frames. The label unification aims to create a consistent 389 

framework for the global model to learn from multiple sources,  standardizing the data and 390 

thereby improving its generalizability across different scenarios. However, this process can lead 391 

to a loss of detail, as the manifestations and judgment criteria for fatigue vary between datasets. 392 

This inconsistency can result in the global model exhibiting different levels of accuracy and 393 

generalization when applied to different datasets, which is then eliminated during personalized 394 

fine-tuning for annotated datasets. The accuracy and generalization are enhanced when 395 

analyzing results for non-annotated datasets. 396 

Implementation 397 

Frame selection: The videos in these datasets contain a range of frames. Rather than analyzing 398 

every frame, this technique selects several fixed, continuous frames that clearly exhibit fatigue 399 

or non-fatigue status. This approach reduces computational costs while preserving essential 400 

information.  401 



Data splitting: The private frames are divided into 80% training (fine-tuning) samples and 20% 402 

testing samples through random sampling, ensuring that both sets maintain an identical 403 

distribution of fatigue and non-fatigue samples.  404 

Triplet formation: The training samples are then organized into triplets {𝑇𝑖  = (𝑥, 𝑥+, 𝑥−)| 𝑖 ∈405 

N}. There are two types of triplet samples such as one in the form of fatigue-triplets (fatigue-406 

labeled frames, fatigue-labeled frames, non-fatigue-labeled frames) and the other in the form 407 

of non-fatigue-triplets (non-fatigue-labeled frames, non-fatigue-labeled frames, fatigue-labeled 408 

frames).  409 

Procedure: The training phase involves using the public dataset to train a robust initial global 410 

model capable of detecting fatigue at SWP0 and fine-tuning the global model and personalized 411 

models on private datasets among the FedSWP-TL framework. Although artifacts may persist 412 

in the input from external sources, rare data-cleaning methods are employed to remove 413 

undesired fluctuations, such as sensors on subject faces from DROZY, glasses, or mustache 414 

from YAWDD. These artifacts can be mitigated through triplet loss, which helps the model 415 

differentiate between fatigue-relevant and irrelevant features. Table 3 displays the statistical 416 

details of the processed data.  417 

Hyper-parameters: The SWP models are executed in PyTorch (2.2.1+cu121) using two 418 

NVIDIA 4090 24GB GPUs among three 8-core 16G machines. As shown in Table 4, the 419 

network optimization uses the Adam optimizer at the initial learning rate of 0.001. The learning 420 

rate is decayed by a factor of 0.1 after every five epochs. The batch size is set to 256, and the 421 

maximum number of epochs is set to 25. 422 



Results 423 

The study sought to compare the effectiveness of our upgraded FedSWP with the Triplet loss 424 

approach against the original FedSWP learning method in fatigue monitoring.  425 

Generalization Ability Evaluation 426 

As demonstrated in Fig. 4, the FedSWP-TL models outperform the baseline on recall 427 

performance across all new SWPs (P4, DROZY, and ConPPMF) while maintaining a 428 

comparable F1 score. The results show FedSWP-TL’s enhanced adaptability to new SWP nodes, 429 

encompassing unseen subjects from the global training. Table 5 shows data statistics of private 430 

sets in three SWPs.  431 

Both FedSWP-TL and FedSWP methods demonstrated good transferability to the P4 node as 432 

F1 scores and recalls were greater than 0.85. Even though the DROZY’s mean F1 score of 433 

FedSWP-TL was smaller than that of FedSWP, the recall was apparently better than that of 434 

FedSWP with a larger value and smaller dispersion. Similarly, the performance in ConPPMF 435 

outperforms FedSWP with a comparable F1 score, larger recall, and smaller deviation. The 436 

results on DROZY and ConPPMF emphasize the improved adaptability of FedSWP-TL.  437 

Mobility Ability Evaluation 438 

Fig. 5 illustrates a promising reduction in FedSWP-TL overhead compared to traditional 439 

FedSWP. FedSWP-TL has 2.32M parameters and converges at around 35 epochs, whereas 440 

FedSWP requires 24.6M parameters at a slower convergence speed. Both offline and online 441 

training times of FedSWP-TL were approximately two times faster than the baseline. The 442 

results with significantly fewer parameters, faster convergence, and reduced training time 443 

underscore that FedSWP-TL is a mobile-friendly federated transfer learning framework. 444 

Fig. 6 indicates that the advanced FedSWP-TL approach with a smaller overhead achieved 445 

performance comparable to that of the FedSWP method. The performance is estimated in 446 



accuracy, F1 score, AUC, and recall, while overhead is analyzed by the number of parameters 447 

and training time. As shown in dashed lines, FedSWP-TL highlighted an approximately 10 448 

times smaller number of parameters and 2 times less training time than FedSWP, highlighting 449 

the reduced consumption of the FedSWP-TL framework. When models are trained, the dataset 450 

YawDD, FedSWP-TL showed slightly lower accuracy, F1 score, and AUC but better recall 451 

than FedSWP. This trend was also observed in the dataset DROZY, where there was lower 452 

accuracy and F1 score but better recall. The drop in the F1 score (5% in DROZY and 10% in 453 

YawDD) results from lower precision on larger samples and higher recall on small but 454 

important samples. Furthermore, FedSWP-TL exhibited higher sensitivity to fatigue detection 455 

with a higher recall (+3% roundly) while maintaining comparable accuracy and AUC score. 456 

Additionally, the consistent observation of a similar F1 score and better recall of P4 models 457 

(Fig. 4) also supports that FedSWP-TL is a competent counterpart to FedSWP. The competent 458 

performance under reduced overhead validates the higher efficiency of the FedSWP-TL.   459 

Fairness across SWP nodes  460 

The evaluation of FedSWP-TL considers fairness as an essential criterion. This criterion 461 

determines whether FedSWP-TL learning exhibits notable variations on each SWP node for 462 

fatigue monitoring tasks. The homogeneity across nodes is shown in Table 6 and Fig. 7, where 463 

SWPs present similar prediction performance and similar training convergence using triplet 464 

loss in the FL framework.  465 

The similar accuracy of AUC and recall in Table 6 highlights the acceptable heterogeneity of 466 

SWPs even when the F1 score is diverged. Moreover, the FedSWP-TL learning fosters fairness 467 

in personalization performance across diverse nodes, even on the worst-performing nodes, 468 

which is a crucial advantage. Fig. 7 demonstrates that the training of all SWPs in FedSWP-TL 469 

performs consistently in terms of convergence. SWP2 demonstrates fast convergence and 470 

excellent personalization, achieving a converged AUC of about 0.9 after epoch 15, while other 471 



SWPs have similar convergence speeds (within three epochs). This reveals that FedSWP-TL 472 

learning promotes fairness, showing equal distribution of learning progress and performance 473 

outcomes across all SWP nodes. Overall, FedSWP-TL learning improves the reliability and 474 

resilience of the models across the entire network, contributing to a more equitable and 475 

inclusive learning collaboration.  476 

Discussion 477 

Main Contributions  478 

The utilization of non-central learning for crane operators’ fatigue monitoring (Li et al. 2021), 479 

building energy consumption (Li et al. 2022), human-robot collaborative assembly tasks (Cai 480 

et al. 2024), quality defect inspection (Wu et al. 2024) and construction occupational health and 481 

safety monitoring (Li et al. 2024) has been proven beneficial in providing robust privacy 482 

protection on construction, as demonstrated in previous studies. This paper further enhances 483 

generalization and mobility abilities. The FedSWP-TL introduces two innovative facets herein. 484 

First, it employs high-order embedding representations derived from triplet loss, enhancing the 485 

discriminative performance of fatigue features across various SWPs with limited datasets. 486 

Secondly, the framework incorporates a selective gradient compression and a lightweight 487 

architecture design, optimizing its suitability for resource-constrained work package-based 488 

monitoring while maintaining high personalization performance. By integrating the MobileVit 489 

block and employing gradient compression techniques, the model achieves superior 490 

performance with reduced computational costs and communication overhead. 491 

Practical Applications 492 

The FedSWP-TL models have demonstrated superior recall performance across all new SWPs 493 

while maintaining comparable F1 scores (Fig. 4). This finding confirms that the use of triplet 494 

loss facilitates the learning of more effective fatigue representation. The distributions of both 495 

methods exhibit less concentricity compared to those on P4, indicating that DROZY and 496 



ConPPMF, unlike P4, are notably distinct from the training group. FedSWP-TL models exhibit 497 

improved adaptability to more heterogeneous DROZY and ConPPMF, showcasing better 498 

performance (higher recall and F1-score) and more concentration (generally smaller deviation 499 

except one in ConPPFM’s F1-score). Meanwhile, the baseline models miss more than 25% 500 

fatigue samples (with recall values around 0.75) in DROZY and ConPPMF, in contrast to their 501 

satisfactory performance in P4 (0.88). The FedSWP results suggest potential unreliability in 502 

monitoring distinct SWPs that observe new subjects using diverse sensors. Additionally, it 503 

indicates that triplet loss, unlike classification loss, prioritizes fatigue-specific features over 504 

general attributes like resolution, background, and identity. Moreover, the fewer parameter 505 

counts and faster online training time depicted in Fig. 5 reflect that FedSWP-TL enables swift 506 

deployment and adaptability. Consequently, the FedSWP-TL enhances the feasibility of 507 

efficient mental fatigue monitoring across varying fatigue patterns and dissimilar SWPs.  508 

Fatigue is typically a continuous state with varying degrees of severity in practical applications. 509 

The scorecard method used in financial credit classifications can be adapted for fatigue 510 

monitoring to provide a straightforward and interpretable way to convert fatigue probabilities 511 

into risk scores. By incorporating the scorecard approach (Eq. 3), the FedSWP-TL moves 512 

beyond binary classification to create a more nuanced evaluation for monitoring fatigue states.  513 

                         score = base score + scaling factor ∗ log(𝑝+/𝑝−)                               (3) 514 

Adjust the base score and scaling factor accordingly to the desired scale for fatigue monitoring, 515 

which warrants further research in future studies. For instance, if the base score for a non-516 

fatigue state is 650, and the fatigue probability is twice that of the normal probability, the fatigue 517 

risk score increases by 50, which is Eq. 4.   518 

                       the risk score = 650 + 50 ∗ log(𝑝𝑓𝑎𝑡𝑖𝑔𝑢𝑒/𝑝𝑛𝑜𝑟𝑚𝑎𝑙)                             (4) 519 



Personalization Performance 520 

The performance of P4’s personalized model (recall/F1-score: 0.95/0.85 as shown in Fig. 4) 521 

surpassed that of the global YawDD model (0.95/0.77 as depicted in Fig. 5). This outcome can 522 

be attributed to the personalized training conducted on a private set within P4. Interestingly, the 523 

recall of DROZY’s personalized model (0.84 in Fig. 4) was similar to that of the global DROZY 524 

model (0.85 in Fig. 5) despite the personalized model being transferred from the global YawDD 525 

model. These findings further support the effectiveness of personalization in the FedSWP-TL 526 

framework. 527 

Future Work 528 

(1) While our proposed method showed promising results, it only utilized a single visual data 529 

modality. Future research could explore the integration of multiple modalities, such as audio 530 

and physiological data, to further improve the accuracy of fatigue detection. Additionally, the 531 

methods of modal fusion could be investigated to determine the most effective way to combine 532 

the information from different modalities. This could involve using DL architectures designed 533 

explicitly for multi-modal data or developing novel fusion techniques.  534 

(2) Due to limited computing servers for the experiment, FedSWP-TL learning was only trained 535 

and tested on a small number of SWP nodes. The researchers noted that further experimentation 536 

on a larger scale is necessary to determine the full potential of FedSWP-TL. 537 

(3) Fatigue is a complicated physiological state; however, this study did not categorize mental 538 

fatigue into distinct levels such as mild, moderate, and severe. The application of triplet loss 539 

with positive and negative samples poses a challenge for multi-level fatigue recognition, as it 540 

necessitates a nuanced redefinition of distances between varying levels of fatigue. As the 541 

FedSWP-TL framework emphasizes high-order fatigue embedding representations, future 542 

research could investigate the utilization of decoders for downstream tasks that accommodate 543 

different fatigue manifestations and judgment criteria. 544 



(4)  Given annotating constraints such as limited number, time, and the efficiency of 545 

professionals, obtaining precise and objective annotations is usually unfeasible. Semi-546 

supervised learning methods leveraging abundant under-labeled samples would be further 547 

elaborated for fatigue monitoring.  548 

Conclusion 549 

This paper introduces a lightweight and adaptive federated smart work package with triplet loss 550 

(FedSWP-TL) framework to address the need for efficient fatigue monitoring of crane operators. 551 

The FedSWP-TL approach was conducted on YawDD, simulated DROZY, and a real-552 

construction dataset ConPPMF. The experimental results reveal that the superiority of 553 

FedSWP-TL in adaptivity to more diverse groups of data-insufficient SWPs (with new subjects 554 

using diverse sensors). They also demonstrate improved efficiency in monitoring metal fatigue 555 

status with fewer overhead while maintaining high accuracy, showcasing its potential for 556 

resource-constrained implementation. The study contributes innovative techniques for fatigue 557 

monitoring, including triplet loss-based representations, selective gradient compression, and a 558 

lightweight model design, enhancing efficiency and adaptability in monitoring mental fatigue. 559 

Given data-insufficient and resource-constrained SWPs at construction sites, it also contributes 560 

to a more flexible and interpretable mental fatigue monitoring system using classification 561 

prediction and similarity analysis. Future research directions include exploring the integration 562 

of multiple modalities, conducting experiments on a larger scale, and differentiating varying 563 

mental fatigue levels in downstream tasks and leveraging abundant under-labeled samples for 564 

fatigue monitoring. 565 

Data Availability Statement 566 
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 686 
Fig.1. The FedSWP-TL network  687 

 688 
Fig.2. Training process of FedSWP-TL 689 



     

     
Fig.3. Sample frames of SWP monitoring videos  690 

691 
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Fig.4. Generalization ability evaluation 693 



 694 
Fig.5. Resource overhead  695 
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Fig.6. Performance vs resource overhead in SWP0 698 
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Fig.7. Loss curves in SWP0, SWP1, SWP2, and SWP3 701 
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Table 1. The architecture of the SWP model in FedSWP-TL 716 

Input Operator Share C, n, s 

256×256×3 conv2d shareable 16,1,2 

128×128×16 MV2 shareable 32,1,2 

128×128×32 MV2, ↓2 shareable 48,1,4 

64×64×48 MV2 shareable 48,2,4 

64×64×48 MV2, ↓2 shareable 64,1,8 

32×32×64 MobileViT block shareable 64,1,8 

32×32×64 MV2, ↓2 shareable 80,1,16 

16x16x80 MobileViT block shareable 80,1,16 

16x16x96 MV2, ↓2 shareable 96,1,32 

8×8×96 MobileViT block shareable 96,1,32 

8×8×96 conv2d 1x1 shareable 384,1,32 

8×8×384 avgpool 8x8 shareable 384 

384 Dense personalized 64 

64 Dense personalized 2 
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Table 2. Summary of datasets  719 

Datasets Subjects Age Gender Colors  Sensors 

YawDD 90 20-30 
47 males, 

43 females 

Caucasian, African, 

Middle-eastern, 

Asian 

RGB cameras for 

faces from the front 

mirror 

DROZY 14 20-25 
3 males, 

11 females  
European 

NIR cameras and an 

Embla Titanium 

system 

ConPPMF 3 40-50 3 males Asian  

RGB cameras for 

faces and 

smartwatches 

 720 

 721 

Table 3. Processed data statistics on YawDD 722 

SWP 

Nodes 

Total 

workers 

Total 

Frames  

Frames 

train 

Frames 

test 

Fatigue 

% test 

Triplets 

train 

Fatigue  

% train 

SWP 0 66 49,182 6,067 1,617 26.5% 14,776 37.2% 

SWP 1 5 3,124 410 102 33.4% 960 34.1% 

SWP 2 5 4,350 573 143 30.1% 1,304 27.6% 

SWP 3 5 3,513 462 115 31.3% 1,045 26.2% 
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Table 4. The hyper-parameter in FedSWP-TL 726 

 727 

 728 

Table 5. Data statistics of new SWP Nodes 729 

SWP Nodes Total workers 
Original 

Resolution 

Total 

Frames 

Frames 

test 

Fatigue %  

test 

P4 8 (480 × 640 × 3) 5,190 5,203 23.9% 

DROZY 14 (424 × 512× 3) 66,879 10,025 12.7% 

ConPPMF 2 (1280 × 720 × 3) 122,663 886 21.8% 

 730 
 731 
Table 6. SWPs’ model results on YawDD 732 

 Accuracy F1-score AUC Recall 

SWP1 0.895 ±0.004 0.785 ±0.00 0.901 ±0.00 0.855 ±0.00 

SWP2 0.904 ±0.003 0.814 ±0.00 0.907 ±0.00 0.894 ±0.00 

SWP3 0.913 ±0.005 0.786 ±0.00 0.896 ±0.00 0.863 ±0.00 

SWP0’ 0.817 ±0.001 0.767 ±0.00 0.892 ±0.00 0.878 ±0.00  
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Hyper-

parameter 
Explanation/Usage Scope 

Optimal 

values 

Learning 

rate 

Governing the step size taken at each 

iteration while the model moves closer to 

the minimum of its loss function.  

{1e-5,1e-3,5e-

3,1e-2,5e-2}  
0.01 

Batch size 

Determining the number of samples 

processed in a single iteration during 

training 
{2𝑘 k=1,2…12}  512 

Epoch 

Representing the number of times the 

model processes the entire training 

dataset during training 

{5, 10, 20, 25, 

50}  
25 

Dropout 

Reducing the interdependence of 

neurons and enhancing the model’s 

ability to generalize and prevent 

overfitting. 

{10%, 20%, 

30%…60%}  
  50% 

Activation 

function 

Introducing non-linear transformations 

within the model, enabling it to capture 

complex data patterns and relationships  

{sigmoid, Relu, 

elu}  
Relu 

Optimizer 
Adjusting the model’s parameters during 

training to minimize the loss function 

{Adam, 

RMSprop, 

Nadam, sgd, 

adagrad} 

Adam 

Number of 

SWPs 
Number of SWPs in the training network {2,4,6} 4 
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