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Abstract
This study proposes an optimized hybrid visual servoing approach to overcome the imperfections of classical two-dimen-
sional, three-dimensional and hybrid visual servoing methods. These imperfections are mostly convergence issues, non-
optimized trajectories, expensive calculations and singularities. The proposed method provides more efficient optimized
trajectories with shorter camera path for the robot than image-based and classical hybrid visual servoing methods.
Moreover, it is less likely to lose the object from the camera field of view, and it is more robust to camera calibration
than the classical position-based and hybrid visual servoing methods. The drawbacks in two-dimensional visual servoing
are mostly related to the camera retreat and rotational motions. To tackle these drawbacks, rotations and translations
in Z-axis have been separately controlled from three-dimensional estimation of the visual features. The pseudo-inverse
of the proposed interaction matrix is approximated by a neuro-fuzzy neural network called local linear model tree.
Using local linear model tree, the controller avoids the singularities and ill-conditioning of the proposed interaction
matrix and makes it robust to image noises and camera parameters. The proposed method has been compared with
classical image-based, position-based and hybrid visual servoing methods, both in simulation and in the real world using a
7-degree-of-freedom arm robot.

Keywords
Hybrid visual servoing, neuro-fuzzy neural network, optimized trajectory, local linear model tree, non-linear models

Date received: 30 November 2020; accepted: 4 June 2021

Introduction

In order to modify the behaviour of robots in dealing
with unstructured environments, vision sensors are
commonly used to provide contact-less information
about the environment.1 Real-time information from
the camera image provides feedback to control the
motion of a robot. This approach is called visual servo-
ing (VS) which is an effective method for handling
uncertainties in an unknown environment.

VS contributes to modify the system to compensate
deficiencies of a mechanism and to relax the mechanical
inaccuracy and stiffness of the robot.2 This ability
comes from the fact that the feature errors are regulated
directly in the task space.3 Despite this fact, how to use
the image information to control the motion of a robot
always been a major challenge in robotics. VS adds
complexities in image space, joint space and the inter-
section between these two (task space) which should be
considered.4 VS control approaches are broadly classi-
fied into three categories: image-based visual servoing
(IBVS), position-based visual servoing (PBVS) and
hybrid visual servoing (HVS).

IBVS method computes the feedback directly from
extracted features in the image space. This method is
more robust to the camera calibration and kinematic
errors of the robot.5 Furthermore, the image features
are less likely to be lost from the image screen.6

However, there exist drawbacks for IBVS; first, some
controller’s commands are not physically executable as
there is no direct control for Cartesian velocities of the
robot’s end-effector (EE).7 Second, an interaction
matrix (image-Jacobian) is required to map velocities
from image space to velocities in the workspace of the
robot. Therefore, the poor conditioning of the Jacobian
matrix could cause convergence problems such as
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singularities and local minima.8 Consequently, PBVS
was proposed to address the imperfections of IBVS.9

In PBVS, feedback is computed using reconstructed
Euclidean information to estimate the three-dimensional
(3D) Cartesian pose of the target with respect to the
camera pose. In PBVS method, interaction matrix prob-
lems (i.e. local minima and singularity) are avoided due
to the direct calculation of the camera velocities from
the task space errors; therefore, feasible trajectories for
the robot could be generated.10 However, any error in
calibration of the camera could lead to an error in 3D
estimation of the target, and subsequently, the entire
tracking task. In addition, it is more possible to lose the
features in the image screen, as the control feedback is
generated from 3D estimation of the environment.2

HVS was proposed to benefit from the advantages
of IBVS and PBVS while avoiding the drawbacks of
these two.11 In HVS methods like switching, 2 1/2D
and homography-based VS, the task function uses
image space information combined with the Cartesian
space.12 However, hybrid methods come with some
performance deficiencies that will be discussed in detail
in section ‘Related works’.

Related works

Switching method is a type of HVS in which the controller
switches between IBVS and PBVS with respect to (w.r.t.)
their efficacy.13 However, the controller suffers from dis-
continuities while switching occurs, especially when the
object is close to the image borders.14 Such discontinuities
could be solved using sequencing methods;15 nevertheless,
the convergence time will increase.2 Moreover, two fail-
ures in IBVS named camera retreat8 and the Chaumette
Conundrum could not be determined easily as image-
Jacobian is not ill-conditioned in those configurations.7

Therefore, switching between two methods (i.e. IBVS and
PBVS) could not solve these kinds of complexities.8 Even
inducing rotational motions about the camera optic axis
could not solve the Chaumette Conundrum, as rotational
contributions cancel out one another.

Corke and Hutchinson8 proposed a VS method that
decouples the translation and rotation about Z-axis,
from the image-Jacobian, in order to address the
Chaumette Conundrum and the camera retreat.
However, expensive computation of the pseudo-inverse
is still challenging. Moreover, compensating the rota-
tion errors about X-axis and Y-axis in the image-plane
still produces unnecessary motion for the robot’s joints
which are not preferable.13

In 2 1/2D VS methods, the unnecessary motions are
minimized by decomposing translations from the rota-
tions.16 But, these methods are computationally expensive
too and require homography construction which is sensi-
tive to image noise.8 Another drawback of 2 1/2D VS
method is its demand to have co-planar features for esti-
mating the homography matrix. Otherwise, at least eight
features are required for this estimation, while in other

methods, four features are enough.17 In addition, 2 1/2D
VS decomposes homography to extract rotational para-
meters which come with non-unique solutions.18

Recently, learning-based approaches (e.g. recurrent
neural network (RNN), convolution neural network
(CNN), reinforcement learning (RL) and extreme learn-
ing machine (ELM)) are widely used to tackle vision
tracking problems which are difficult or computation-
ally expensive to solve by classical control methods,
such as singularity avoidance, local minima or complex
computation of pseudo-inverse.19–21 Supervised learn-
ing approaches contribute to estimating the data output
from previous experiences; therefore, the data set must
be labelled in advance. However, unsupervised learning
approaches find unknown patterns in a set of data.22

Despite supervised learning approaches, it is not possi-
ble for regression applications to train the network
without knowing the corresponding output values.23

RNN has been used in Zhang and Li24 to estimate the
interaction matrix, but it requires a number of itera-
tions to reduce the convergence speed. Hence, the net-
work could not guarantee global optimization.
Miljković et al.21 proposed a controller that switches
between neural RL and IBVS to solve the pseudo-
inverse of the interaction matrix. However, huge chat-
tering occurs in the computed camera velocities.
Regression-based neural networks (NNs) have been
considerably used to approximate the non-linear image-
Jacobian.25–28 They suffer from local minima which are
complex to avoid.29 It is worth mentioning that using
NN in approximating the hybrid interaction matrices is
not widely investigated in the literature.

To tackle the above-mentioned problems, we pro-
posed an optimized VS method called hybrid decoupled
visual servoing (HDVS). The contributions of our pro-
posed method in comparison with other classical VS
methods have been illustrated in Figure 1. In the pro-
posed method, all three rotations and translation in the
Z-axis have been decoupled from the image-Jacobian.
These four components’ errors will be regulated from
the 3D reconstruction of the visual features.
Consequently, the controller has independent control
over translation in Z-axis and rotations. Thereafter,
local linear model tree (LoLiMoT) NN has been used
to approximate the pseudo-inverse of the proposed
interaction matrix. Using LoLiMoT avoids singulari-
ties that could be happened in the interaction matrix,
and reduces the computational complexities effectively.
Accordingly, the controller becomes robust to the cam-
era calibration errors and the image noises. LoLiMoT
is a fast, effective neuro-fuzzy NN that learns a huge
number of non-linear models.30 LoLiMoT method
guarantees global optimization solution which implies
the generalization ability of the method.30 Regression
approaches are blind in detection of global minima,
but LoLiMoT is axis orthogonal and operates by
errors; thus, it will not stick in local minima.31 The
locality of this method provides online learning in one
region without forgetting the other operating regions.32
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Not to mention that the number of required trial-and-
error steps will be reduced in LoLiMoT approach. The
proposed method is producing a more optimized trajec-
tory, both in the image space and the joint space than
other hybrid methods, in terms of control effort and
the convergence time. In comparison with IBVS,
HDVS generates more controllable trajectories for the
robot during tracking the objects. Furthermore, it is
less likely to lose the object from the camera field of
view, in contrast to PBVS and HVS methods. The pro-
posed HDVS method is robust to camera calibration
and image noises. In the ensuing, the method will be
discussed in detail and its efficacy will be validated in
both simulation and the real world.

Contributions of this study

Figure 1 depicts a framework for the proposed HDVS
method, and it highlights the contributions of HDVS in
comparison with other classical VS methods. The con-
tribution of this study is summarized as follows:

� HDVS generates more optimized Cartesian trajec-
tories (better controllability) for the robot than
IBVS and HVS. All three rotations and translation
in the Z-axis have been decoupled from the image-
Jacobian. The errors of these four components have
been regulated from 3D reconstruction of the visual
features. Since the remained components (transla-
tion in X-axis and Y-axis) are controlled directly in
the image-plane, then a more optimized trajectory
in the image-plane would be created than PBVS.
Therefore, the object is less likely to be lost from
the camera field of view. This contribution has been
explained explicitly in section ‘Methodology’.

� HDVS benefits from damped-least square (DLS)
inverse instead of pseudo-inverse to generate the
joint velocities. Therefore, HDVS reduces the effect
of robot’s singularities and it assists to smooth the
discontinuities created from decoupling process
and adaptive gains. This contribution has been
explained explicitly in section ‘Methodology’.

� A set of LoLiMoT NNs has been trained in the
presence of image noise to approximate the
interaction matrix. Consequently, singularities of
the interaction matrix would be avoided and com-
putational complexities will be reduced effectively.
Nevertheless, using LoLiMoT NN makes the con-
troller robust to the camera calibration errors and
image noises. This contribution has been explained
explicitly in section ‘Methodology’.

The remainder of this study is as follows: in section
‘Methodology’, a brief review of different VS control-
lers will be presented. Then, our proposed method will
be explained. In section ‘Simulation and experimental
setup’, the simulation and experimental setup has been
presented. Thereafter, in section ‘Results and discus-
sion’, a comparison of different methods has been
investigated followed by results. In section ‘Results and
discussion’, our approach has been tested on the real
robot while tracking a dynamic object. Eventually, in
section ‘Conclusion’, a brief summary alongside the
conclusion and the future ideas has been stated.

Methodology

The main goal of VS tasks is to regulate the error vec-
tor created by the visual features. In what follows, a
brief background of well-known VS approaches is

Figure 1. Problem domains in classical visual servoing and contributions of the proposed HDVS method.
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presented, followed by a detailed explanation of the
proposed HDVS method.

IBVS

In IBVS, the controller feedback is directly attained by
the features in the image space. An interaction matrix
(image-Jacobian Li) is required to link the pixel velocity
to the camera velocity

This matrix for the ith feature is given by33

Li =

f

Z
0 � u

Z
� uv

f

f 2 + u2

f
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� v
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in which f is the camera’s focal length and s=(u, v) is
the coordinates of a point in the image-plane. Let ei be
the error between the current and the desired position
of each feature in the image-plane, and let
vcam=(vc,wc) be the camera velocity vector.
vc =(vx, vy, vz) is the linear velocity vector and
wc =(wx,wy,wz) is the angular velocity vector of the
camera. When the interaction matrix at the desired
pose is not singular (i.e. si(t)� sid(t)= ei(t)=0),
the exponential decoupled decrease of the error
could be obtained. As a result, the required camera
velocity vector will be calculated from the following
control law33

vc
vc

� �
=� kiL

+
i ei ð2Þ

where ki is a positive proportional controller gain, and
L+
i is the pseudo-inverse of Li.

PBVS

In PBVS, the feedback is obtained from the pose recon-
struction of the environment. The pose estimation will
be calculated with the help of Euclidean methods and
camera parameters, from the camera image.

The Euclidean coordinate of the features in the cam-
era frame is �mi½ xi yi zi �T and the Euclidean coordi-
nate of the features in the desired camera frame is
�m�
i ½ x�i y�i z�i �

T. The controller in this method is
defined as17

vc
vc

� �
=� lpL

�1
p ep ð3Þ

where lp is a positive controller gain and ep is the posi-
tion error between the 3D estimated position of the
camera and the desired 3D position of that in the task
space. Moreover, Lp(t) is a 63 6 matrix obtained from
the following equation17

Lp =
R 0
0 Lv

� �
ð4Þ

where Lv(h(t), u(t)) is a 33 3 matrix defined as

Lv = I3 �
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where h(t) 2 R3 and u(t) 2 R are the rotation axis and
rotation angle, decomposed from the rotation matrix.
½h�3 is the skew-symmetric matrix associated with the
vector h.

Homography-based visual servoing

The homography-based visual servo control
approaches mostly decompose the 6-degree-of-freedom
(6-DOF) motion of the camera in two separate control-
lers in order to achieve the convergence goal: one for
the translational components and the other one for the
rotational components. Let mxi and m�

xi be the normal-
ized Euclidean coordinate vectors and define as follows

mi = mxi myi 1½ �T ¼D
xi
zi

yi
zi

1
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ð6Þ
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The error signal will be selected by the estimated
position from the Euclidean information and directly
from the image information4

ev = mxi �m�
xi myi �m�

yi ln
zi
z�i

� �� �T
ð8Þ

ev = hu ð9Þ

_ev =Lvvc +Lvvvc and _ev =Lvvc could be defined
as corresponding transitional and rotational errors. In
which Lv(t) was presented in equation (5) and
Lv(t),Lvv(t) are 33 3 matrices that are obtained from

Lv =� ai

z�i
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0 1 �myi
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2
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2
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where a is the product of the camera scaling factor.
The translation and the rotation controllers could be
defined as
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vc =� kL�1
v ev =� kev ð12Þ

vc =� L�1
v kev � kLvvevð Þ ð13Þ

HDVS

In the proposed method (HDVS), the translational
velocity in Z-axis and three rotational velocities (the
components that cause IBVS singularity and physically
unimplemented motions for the robot) have been
decoupled from the image-Jacobian matrix. The error
of these four parameters will be calculated from 3D
estimation of the target, while the translational veloci-
ties of the X and Y components will be calculated in
two-dimensional (2D). The control law in the classical
IBVS method is as follows

_s=Livcam ð14Þ

However, after decoupling the interaction matrix in
HDVS, the control law will change to

_s=Lxyvxy +Lrvr ð15Þ

where vxy = ½vx vy�T and vr= ½vz wx wy wz�T are the
decoupled velocity vectors of the camera. Besides, Lxy

and Lr are defined as follows
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Therefore

vxy =L+
xy _s� Lrvrf g ð18Þ

Since _s=� ke

vxy =L+
xy �k ek kð Þe� Lrvrf g ð19Þ

In order to decrease the convergence time, adaptive
representation of the controller gain has been formu-
lated as follows34

k ek kð Þ= k 0ð Þ � k ‘ð Þð Þe
�k 0ð Þ

k 0ð Þ�k ‘ð Þ ek k
+ k ‘ð Þ ð20Þ

where k0 = k(0) is the positive amount of gain for small
amounts of k e k, k‘ = kkek!‘, k( k e k ) is for high
amounts of k e k, and k

0
0 represents the slope of k at

k e k =0. At each iteration, Lrvr will be calculated and

its amount will be placed in equation (19) to compute
the other velocity components. The same process will
be performed to compute vr in PBVS

_sp =LPxyvxy +LPrvr ð21Þ

where LPxy is the first two columns of LP in equation
(4), and LPr is the other four columns of LP. Therefore

vr =L+
Pr �k ek kð Þep � LPxyvxy
� 	

ð22Þ

By solving equations (19) and (22) simultaneously,
the camera velocity vector will be determined. The
transformation matrix jec is defined to map the veloci-
ties expressed in robot EE frame to the camera frame35

jec =
Re

c sk tec

 �

Re
c

0 Re
c

� �
ð23Þ

where tec is the translation vector between EE and the
camera frame, and Re

c is the rotation matrix between
these frames, and sk() is a skew-symmetric matrix. In
the eye-in-hand configuration, jec will remain constant.
However, it should be calculated in each iteration for
eye-to-hand configuration. Finally, after calculating the
EE velocities, using kinematics of the robot, joint velo-
cities will be computed

_q= Jyljecv
c
cam ð24Þ

In this research, DLS inverse has been used instead
of pseudo-inverse. Using DLS, the effect of robot’s sin-
gularities will be reduced and it will smooth the discon-
tinuities created from decoupling process and using the
adaptive gains.36 It is worth mentioning that using regu-
larization techniques could also help to reduce the effect
of singularity configurations, but they will increase the
convergence time.37 DLS is formulated as follows36

Jy
l

= JT JJT + l2I

 ��1 ð25Þ

where l represents the damping factor which is a posi-
tive scalar.

In Figure 2, the control schema of the proposed
visual servoing controller is shown. Using a vision sen-
sor mounted on the robot’s wrist, features will be
detected and will be used as feedback of the controller.
The red blocks represent image-based parts of the con-
trol loop, the blue blocks are position-based parts, and
the grey blocks are the task space parts.

As it is depicted in the control block diagram (Figure
2), the camera velocities have been decoupled; two of
them (translation in X and Y) have been considered in
2D (using pure features created from the image screen,
as feedback). The remaining components have been
considered in 3D (computed by partial 3D reconstruc-
tion of the environment attained by the extracted

342 Proc IMechE Part I: J Systems and Control Engineering 236(2)



features). Thereafter, the computed velocities will be
commanded to the robot. Using the robot’s Jacobian,
the controller will exchange the desired camera veloci-
ties with the desired joint velocities. The computed joint
velocities will be used as input of the robot velocity con-
troller. As it was stated earlier, DLS inverse has been
used instead of pseudo-inverse. Controlling the rota-
tions and translation separately in the Z-axis is acquired
from the 3D estimation of the visual features.

Estimation of camera velocities using NN

A trained NN is employed to provide an accurate esti-
mation of the camera velocities from the feature errors
(the interaction matrix role). The approximated equa-
tions by the NN are the combination of the right-hand
side of equation (19) (including pseudo-inverse of Lxy

to calculate translational velocities in X- and Y-axis
from 2D image errors) and the right-hand side of the
equation (22) (including pseudo-inverse of LPr to calcu-
late the translational velocity in Z-axis and three rota-
tional velocities from estimated 3D errors of the image
features). To this end, 76,000 sets of unique feature
errors with their relevant camera velocities (calculated
from the achieved equations (19) and (22)) all over the
image screen (480 3 640 pixel) for the test and training
data have been gathered. These results were taken by
moving the camera with hand and tried to include fea-
ture’s positions all around the image screen as best as
possible. In Figure 2, the positions of the current fea-
tures have been shown in the camera screen with green.
Therefore, feature errors in the image screen were
deployed as input of the NN and the calculated camera
velocities were defined as the outputs. LoLiMoT NN
was used for this purpose. In comparison to other
neuro-fuzzy NNs, LoLiMoT is more efficient in learn-
ing non-linear systems with fewer neurons.38

The LoLiMoT algorithm operates by the errors and
it is axis orthogonal. Therefore, the network divides the

space in a properly optimized way w.r.t. the errors.
Other types of NNs, which work by the use of gradient
descents, operate blind and cannot guarantee the global
optimization.39 The structure of the LoLiMoT network
is depicted in Figure 3. A linear local model alongside a
membership function is assigned to each neuron. For
the allocated linear model, the validated area would be
determined with an assigned membership function. The
linear model is formulated as follows40

ŷi =vi0 +vi1x1 + � � � +vipxp ð26Þ

In equation (26), vij is the associated parameters to
ith neuron. The final output is calculated as follows

ŷ=
XM
i=1

ŷifi xð Þ,
XM
i=1

fi xð Þ=1 ð27Þ

Figure 2. The control schema of the proposed visual servoing (HDVS) integrated with NN.

Figure 3. The structure of LoLiMoT NN with m neuron and P
input.
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where fi(x) stands for the membership function which
is assumed as a normalized Gaussian function in equa-
tion (27). The corresponding member function is
derived by the following equation

fi xð Þ= mi xð ÞPM
j=1

fj xð Þ

mi xð Þ= e

u1�ci1ð Þ2
�2s2

i1 3 � � � 3 e

up�cipð Þ2
�2s2

ip

ð28Þ

In equation (28), cij and sij are the centre of the area
and the standard deviation, respectively. The NN has
been trained for each output separately (six camera
velocities). As illustrated in Figure 2, pseudo-inverse of
the decoupled image-Jacobian and pose estimation are
replaced with six NNs to predict the camera velocity
vector at each iteration. The feature error vector will be
computed by subtraction of current and desired fea-
tures. Control input has been defined by eight compo-
nents of the error vector; consequently, the output
would be the camera velocity vector with six compo-
nents. This camera velocity vector will be transformed
to the EE frame of the robot using equation (23).
Eventually, joint velocities computed using the robot’s
Jacobian, and they were commanded to the motors of

each joint. The control loop will be continued until fea-
ture errors converge to zero.

Moreover, supplementary noise had been added to
the NN input data set during training to improve its
robustness to the image noises. The added Gaussian
noise has a standard deviation of one and a mean of
zero (white noise), generated by a pseudo-random
number generator. Using NN, the complexity of 3D
estimation of the target position and the pseudo-inverse
of the decoupled image-Jacobian have been relaxed, as
described in section ‘Methodology’.

For each output, one LoLiMoT network has been
used. Therefore, six NNs have been trained, which
comes after six camera velocities. Each network has a
different number of LoLiMoT models. The number of
models achieved during learning process. The learning
process stops when the test and train samples acquire a
pre-defined accuracy. This accuracy will be checked by
the root mean square of errors (RMSEs) in both test
and train samples (RMSE of 0.01m/s for translational
velocities and RMSE of 0.01 rad/s for rotational veloci-
ties). Such a behaviour will effectively decrease the
number of trial and errors.

The number of allocated LoLiMoT models (mem-
bership functions alongside linear local model) and
RMSE of the trained NN for the test and the train
samples have been depicted in Figures 4 and 5. Each

(a) (b)

(c)

Figure 4. RMSE of test and train samples of LoLiMoT neural network for translational camera velocity outputs: (a) RMSE of Vx, (b)
RMSE of Vy and (c) RMSE of Vz.
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LoLiMoT model consists of a linear local model along-
side a Gaussian membership function.

As Figure 4(a) suggested, having 10 models is opti-
mal in order to have the RMSE of 0.01 in test and train
samples. Having more than 10 models is redundant and
could lead the network to over-fitting. The number of
LoLiMoT models is 9 for the prediction of velocity con-
troller in Y direction (Figure 4(b)). These numbers are 6
for velocity in Z (Figure 4(c)).

In Figure 5(a), it can be seen that 8 LoLiMoT mod-
els are required for rotational velocity about X-axis, 10
models for rotational velocity about Y-axis (Figure
5(b)) and 9 LoLiMoT models for rotational velocity
about Z-axis (Figure 5(c)). The trained set of these six
networks will be used to predict the camera velocity
required to perform the visual servoing task. The
updated set of feature errors will be utilized for the net-
works at each iteration.

Simulation and experimental setup

In order to evaluate the efficacy of the method and to
compare it with other techniques, the proposed method
has been modelled in simulation using ROS/Gazebo. In
Figure 6, a snapshot of the simulation environment in

Gazebo is shown. Two Franka manipulators have been
added to the simulation platform. One with a camera
mounted on its wrist, for the VS purpose, and another
one carrying a tag marker on a sheet attached to the
EE.

The experimental setup is identical to the one used
in the simulation. In this research, four corners of an
AprilTag are used as points of interest. The Intel
RealSense depth camera D435i has been used for eye-
in-hand configuration as the vision sensor. For the VS

(a) (b)

(c)

Figure 5. RMSE of test and train samples of LoLiMoT neural network for rotational camera velocity outputs: (a) RMSE of vx, (b)
RMSE of vy and (c) RMSE of vz.

Figure 6. The simulation environment modelled in Gazebo.
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operation, a system with the following processor had
been used: AMD Ryzen 7 3700X 8-core processor 16
(thread) with 3.6GHz base clock and 36MB total
cache. The experimental setup used in this research is
depicted in Figure 7. In section ‘Results and discus-
sion’, the behaviour of different control schemes in
both simulation and experiments will be compared.

Results and discussion

In order to evaluate the effectiveness of the HDVS
method, various scenarios have been studied and com-
pared with HVS, IBVS and PBVS approaches. To have
a logical comparison, same adaptive gains have been
used for every method (k0 =4, k‘ =0:4, k

0
0 =30).

The l gain in DLS inverse is set to 0.1 for the entire
tests. The robot initial position and the AprilTag posi-
tion are both same in each case study. Not to mention
that the controller behaviour could be enhanced by tun-
ing the adaptive gains which is not the interest of this
article. In what follows, the proposed HDVS method
and other classical methods (IBVS, PBVS and HVS)
have been compared.

Case study 1: comparing the performance of PBVS
with HDVS

A case study has been defined to follow a pre-defined
position of the target with an uncalibrated camera. The
intrinsic calibration of the camera has been degraded
by 20%. The performance of HDVS and PBVS in regu-
lating the errors is illustrated in Figure 8. In Figure
8(a), it is shown that the position-based controller has
been failed to track the features. It is depicted in Figure
8(a) that the controller could not follow the desired fea-
tures from iteration 350. This failure comes from the
fact that there is an error in the 3D estimation of the
target generated by an uncalibrated camera.

The reason that PBVS is not robust to the camera
calibration is that the errors in camera parameters pro-
pagated to the errors in 3D estimation of the target.
However, HDVS is robust in terms of camera para-
meters. Figure 8(b) suggested that HDVS tracked the
desired features successfully. This is because in HDVS
camera, velocities are generated directly from the
trained LoLiMoT NN. Collecting data for the NN has
been done with accurate camera calibration. Therefore,
it is not important how inaccurate is the camera cali-
bration in online mode (i.e. robot during VS), the con-
troller will work well and is highly robust to camera
calibration errors.

Case study 2: comparing the performance of IBVS
with HDVS

IBVS failures are mostly associated with the rotations
about Z-axis (Chaumette Conundrum7) and camera
retreat.8 Furthermore, camera ambiguities might hap-
pen between translations and rotations in the image-
plane; this implies that different camera velocities could
produce same motion of points in the image and some
camera motions lead to no change in the image.11 A
case study has been defined in such that the desired fea-
tures rotated 90� about the Z-axis. The performance of

Figure 7. Experimental setup for visual servoing task.

(a) (b)

Figure 8. Simulation result of tracking desired features with an uncalibrated camera for (a) PBVS and (b) HDVS.
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HDVS and IBVS in converging feature errors to zero is
depicted in Figure 9.

As shown in Figure 9, the controller will end up with
an unpleasant behaviour in IBVS. Figure 9(a) shows
that the errors could not converge to zero as the con-
troller produces a large velocity in Z which makes the
robot going to its joint limits. The main reason associ-
ates with this limitation is that reducing the rotation
error about Z-axis in the image screen could be
achieved by moving the camera away from the target
(the so-called camera retreat phenomenon). Such a
wrong decision in 2D could produce a large motion in
the Z-axis in 3D. An extreme version of this behaviour
is when there is a pure p rad rotation between features
and their desired positions in the image. In such a case,
the features will be driven towards the origin by mis-
take and cause image singularity.7 In this configura-
tion, the features cannot reach to the desired ones even
if the controller runs for ever.8 The proposed method
will provide the most straightforward way of compen-
sating errors of Z and rotations in task space. This
claim comes from the fact that the error of these four
parameters (translation in Z-axis and three rotations) is
directly compensated from 3D estimation of the target
position w.r.t. the camera position. Moreover, using
LoLiMoT NN, the controller becomes robust in terms
of camera calibration which will make the 3D estima-
tion accurate.

In Figure 9(b), it is illustrated that using the pro-
posed controller, the errors easily converge (in 509
iterations) without causing image singularity.
Moreover, HDVS avoids camera ambiguity while the
controller distinguishes the camera rotations from
translations. Camera ambiguity could be explained
from the structure of the image-Jacobian matrix in
equation (1). When camera focal length is large or
when the pixel coordinates are small, columns 1 and 4
become very similar. Same ambiguity could be hap-
pened for columns 2 and 5 (large focal length domi-
nates u squared). Therefore, transnational velocities in
the X-axis and Y-axis could not be easily detected from

rotational velocities about Y-axis and X-axis, respec-
tively. These components are decoupled from the
image-Jacobian in HDVS, and the controller avoided
these kinds of ambiguities.

Case study 3: comparing the performance of HVS
with HDVS

One of the advantages of HDVS in comparison with
traditional HVS methods is a significant reduction in
computation costs. Computing and modelling process
(equations (12) and (13)) in traditional HVS for each
iteration is time-consuming and complex. However, in
HDVS, neuro-fuzzy NNs are used for estimating the
required velocities. Since the NNs are trained offline
and used online as a predictor of required velocities,
the convergence time will be reduced considerably.
Moreover, HVS methods need homography construc-
tion and decomposition. Homography construction is
sensitive to image noises, and there exists sign ambigu-
ity in homography decomposition (non-unique solu-
tions). However, HDVS is robust to image noises and
globally optimized solutions will be achieved from the
LoLiMoT network. In this context, a case study has
been introduced in the next section to compare the per-
formance of HDVS with HVS, IBVS and PBVS.

Case study 4: comparing the performance of four VS
methods altogether

In Figure 10, the robot’s EE Cartesian trajectory in task
space has been depicted for all four methods for a same
pre-defined position of the Tag marker. In Figure 10,
the start point is the initial position of the EE and the
endpoint is the position of the EE when visual errors
are regulated to zero.

Figure 10 suggested that shorter camera path is
obtained for HDVS (blue path) than HVS (purple
path) and IBVS (red path). To clarify, the distance tra-
velled by the camera (robot’s EE) is 0.801m in HDVS;
however, this amount is 0.942m in IBVS and 0.917m

(a) (b)

Figure 9. Simulation results for (a) IBVS and (b) HDVS control approaches.
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in HVS. It should be mentioned that the most opti-
mized Cartesian trajectory of the robot’s EE has been
obtained by the PBVS method. The camera travelled
distance is 0.722m in this approach. As shown in
Figure 10, IBVS (red path) showed the most unpleasant
behaviour in the Cartesian trajectory of the EE, since
the controller performs blind in the task space.
Therefore, the robot in IBVS is more probable to move
to joint limits and collide with the obstacles, especially
when large rotations are required. PBVS (yellow path)
performs well in the task space of the robot; however,
it is sensitive to camera calibrations. Moreover, 3D
estimation of the target must be calculated and be
updated online at each computationally expensive
iteration. In HDVS, the Z component is also separated
from the image-Jacobian which avoids unnecessary
motions in 3D. In addition, HDVS computations are
faster than HVS. Therefore, HDVS is more suitable for
online object tracking. Figure 11 illustrates feature
errors of different approaches in VS for a similar
assigned position of the Tag marker.

The RMSE is 0.021 in IBVS, 0.036 in PBVS, 0.032
in HVS and 0.024 in HDVS. In Figure 11(b), the IBVS
represents the most optimized path in the camera
frame, followed by HDVS. The RMSE in IBVS is less
than other three methods. In Figure 11(b), the maxi-
mum feature error along the entire path is 0.089 which
implies that there is a very low risk to lose the object
from the camera screen. PBVS has the most unpleasant
RMSE in camera screen than other methods (Figure
11(a)) as it performs blind in image screen. It is more
probable in PBVS to lose the object from the camera
fields of view since it has the highest feature error
(0.24) compared to other counterparts. From Figure
11(c) and (d), it is clear that the HDVS method is faster
(converged within 350 iterations) than HVS (converged
within 510 iterations). Moreover, the convergence is
more pleasant (fewer overshoots with same adaptive
gains) and the RMSE is smaller in HDVS.

From Figures 10 and 11, it could be concluded that
the proposed hybrid method has not necessarily the
best behaviour in tracking the features in image space
and Cartesian space (robot space), but it has an opti-
mized behaviour in both. It comes from the fact that
two components of camera velocities computed directly
from the image space (translation in X and Y), while
others computed from 3D reconstruction of the envi-
ronment. Moreover, in HDVS, the object is less likely
to be lost from the camera field of view than HVS and
PBVS. This conclusion has been derived by comparing
the maximum feature error in Figure 11(d), which is
less than that amount in Figure 11(a) and (c). The big-
ger the error, the more it is probable to lose the feature
from the camera field of view.

In Tables 1 and 2, a quantitative comparison of
effective parameters in VS methods has been presented.
Given that the quantitative amounts are obtained by
the mean of 40 experiments with 10 different paths,
repeated for all different methods in the same
condition.

Looking at Table 1, the mean RMSE amount of
HDVS is less than PBVS and HVS. As a result, HDVS
performed better in image space than PBVS and classi-
cal HVS. Table 2 shows that the mean RMSE amounts
of position and orientation in PBVS were less than their
counterparts in the other three methods. Therefore,
PBVS had the most optimized performance in Cartesian
space. As it was expected, the performance of HDVS
was better than IBVS and HVS in Cartesian space.

Another conclusion from Table 1 is that the feature
error range in PBVS and classical HVS is bigger than
HDVS. Therefore, the target is less probable to be lost
from the camera screen in HDVS than the other two
methods. Not to mention that HDVS performs faster
compared to classical HVS, and fewer iterations are
required to perform the same task. From Table 1, it
can be seen that not only the IBVS has the smallest fea-
ture error range, but also has the smallest RMSE in
comparison to other approaches. Assuredly, IBVS out-
performed in image-plane if no singularity or local
minima happen. However, the controller performs
blind in Cartesian space (the highest RMSE for posi-
tion and orientation in Table 2) and undesirable large
camera motions often happen. All in all, in Cartesian
space, HDVS suggests more optimized performance
than IBVS and HVS (w.r.t. mean RMSE amounts pre-
sented in Table 2). In addition, HDVS performs more
optimized than PBVS and HVS in image space (w.r.t.
mean RMSE amounts presented in Table 1).

In Figure 12, the CPU and the RAM usage while
different techniques are running has been shown. The
comparison between the graphs in Figure 12 clearly
illustrates our claim that HDVS is less computationally
heavy compared to the other three methods. The CPU
usage in HDVS is around 90%; however, this amount
is above 105% for other techniques.

A qualitative comparison of the aforementioned
results for all different methods is presented in Table 3.

Figure 10. Comparison of EE trajectory for different methods
in the real world.
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Table 3 illustrates that the proposed HDVS method
offers an optimized trajectory both in Cartesian and
image space. Furthermore, the controller is highly
robust in terms of camera calibration (PBVS problem),
image singularities (IBVS problem) and image noises

(HVS problem). Not to mention that the proposed
method has significantly relaxed the calculation, and
the convergence speed is better than the classical HVS
method. Figure 13 compares the success rate of four
VS methods for 10 different random paths in

(a) (b)

(c) (d)

Figure 11. Comparison of feature errors for different methods in the real world: (a) PBVS, (b) IBVS, (c) HVS and (d) HDVS.

Table 1. Comparison of visual servoing methods’ performance in image-plane.

Method RMSE Feature error range Iteration

IBVS 0.0222 [20.36, 0.310] 453
PBVS 0.0383 [20.445, 0.507] 487
HVS 0.0273 [20.448, 0.486] 624
HDVS 0.0249 [20.419, 0.407] 505

RMSE: root mean square of error; IBVS: image-based visual servoing; PBVS: position-based visual servoing; HVS: hybrid visual servoing; HDVS: hybrid

decoupled visual servoing.

Table 2. Comparison of visual servoing methods’ performance in Cartesian space.

Method RMSE of position (m) RMSE of orientation (�) Camera (EE) travelled distance (m)

IBVS 0.036 9.43 0.942
PBVS 0.022 6.54 0.722
HVS 0.034 8.41 0.917
HDVS 0.027 7.11 0.801

RMSE: root mean square of error; EE: end-effector; IBVS: image-based visual servoing; PBVS: position-based visual servoing; HVS: hybrid visual

servoing; HDVS: hybrid decoupled visual servoing.
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simulation and their counterparts in the real world.
From Figure 13, it can be concluded that HDVS out-
performed with its success rate in both simulation (with
10 out of 10 successful trials) and real world (with 9
out of 10 successful trials) compared to other VS
methods.

Case study 5: Evaluating the performance of HDVS
in tracking a moving object in the real world

In order to validate the results obtained from the simu-
lation, a series of experiments conducted in the real
world using a Franka robot arm. Both intrinsic and
extrinsic calibrations of the camera have been accom-
plished using visual servoing platform (ViSP)
libraries.41 The adaptive gain parameters used in equa-
tion (20), where k0 =4, k‘ =0:4 and k

0
0 =30 (same as

simulation). In this case study, the robot with the cam-
era mounted on its wrist will follow the features of a
moving target. The EE trajectory is defined in which it
covers all possible rotations and translations. A pure
rotation of 90� has been defined to show the robustness
of the proposed method versus IBVS failures.
Moreover, in order to point out the robustness of our
proposed method against camera parameters, a supple-
mentary error has been added to the intrinsic para-
meters of the camera. The controller failed to perform

the task in IBVS and PBVS as a result of this change.
The performance of HDVS during tracking the visual
features is depicted in Figure 14.

Target is not static in this case study; therefore, there
exist overshoots in the plots. The VS task was per-
formed in 3100 iterations with RMSE of 0.074 along
the entire path. In Figure 14(b), there is a peak in rota-
tional velocity about Z-axis (iteration 100) which is cre-
ated as a result of a pre-defined (90�) rotation. This
large rotational velocity reveals that HDVS has a high
capability in estimating the position of visual features
in 3D. However, the error in the rotation could be
interpreted wrongly as a translation error in Z-axis due
to the camera retreat phenomenon in IBVS. Figure 15
compares the feature motions in image-plane for two
HVS and HDVS methods.

In Figure 15, green points denote the desired posi-
tion of their corresponding features. Figure 15 sug-
gested that the HDVS method (Figure 15(a)) aimed to
keep the features closer to their desired positions than
the HVS method (Figure 15(b)). This capability comes
from the fact that the controller computes the transla-
tional velocities in the X-axis and Y-axis directly from
the image-Jacobian while having explicit control over
the rotations and translation in Z-axis. The motion of
features implies that it is more likely to lose the points
in the camera field of view by HVS than HDVS. Total
image coordinates RMSE amount of 0.074 for HDVS
and 0.1124 for HVS validates this claim.

Figure 16(a) and (b) shows the 3D trajectory of the
robot’s EE generated by the HDVS and classical HVS
controllers, respectively. HDVS controller offers a bet-
ter performance in the task space than HVS. Total
Cartesian position RMSE amount of 0.028m for
HDVS and 0.040m for HVS, alongside total orienta-
tion RMSE of 6.388� for HDVS and 7.021� for HVS,
declares this claim. Furthermore, the number of itera-
tions to complete the task in HDVS is less than this
amount in HVS. In this experiment, the number of
iterations was 3078 in HDVS; however, this number
was 3200 in the classical HVS method.

Conclusion

In this article, a HDVS method has been proposed.
This method has been developed to overcome the

Figure 12. Comparison of CPU and RAM usage while each
method is running in the real world: (a) PBVS, (b) IBVS, (c) HVS
and (d) HDVS.

Table 3. A qualitative comparison of visual servoing schemes.

IBVS PBVS HVS HDVS

Optimized Cartesian trajectory Low High Med High
Optimized feature trajectory High Low Med Med
No image singularities No Yes Yes Yes
Robust to camera calibration High Low Med High
Error convergence speed High Low Low Med
No computationally complex Med Med Med High
Robust to image noises High Med Low High

IBVS: image-based visual servoing; PBVS: position-based visual servoing; HVS: hybrid visual servoing; HDVS: hybrid decoupled visual servoing; Med:

medium.
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drawbacks of classical IBVS and PBVS methods and to
improve the classical HVS method. In HDVS, all three
rotations and translation in the Z-axis have been
decoupled from the image-Jacobian. These four com-
ponents’ errors will be regulated to zero by the 3D
reconstruction of the visual features. Thereafter, a
neuro-fuzzy LoLiMoT NN was used to approximate
the pseudo-inverse of the proposed interaction
matrix. Moreover, the convergence time was reduced
with the help of adaptive gains rather than a constant
gain. DLS method was applied in order to reduce the
effect of robot singularities and to smooth the
discontinuities.

The method not only has an optimized solution for
the robot’s EE, but it also considers the optimized tra-
jectories of features in the image space. Furthermore,
HDVS has improved the performance of classical HVS
in both image-plane and task space. The method is
robust in terms of camera parameters and image noises,
and it avoids singularities of the image-Jacobian effec-
tively. In addition, it is less likely to lose the object from
the camera fields of view than PBVS and HVS meth-
ods. Results obtained from 10 different random paths
in simulation and their counterparts in the real world
suggested 100% and 90% success rate in executing the
VS tasks in simulation and the real world, respectively.

Figure 13. The success rate of four VS methods over 10 trials in the simulation and the real world.

(a) (b)

Figure 14. Analysing the performance of HDVS during tracking a dynamic object in the real world using a robot arm: (a) feature
errors in HDVS and (b) camera velocity in HDVS.
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Thus, future work will be devoted to extend the
LoLiMoT model domain to link feature errors directly
to the joint velocities. Moreover, deep NNs could be
used to function as feature extractions to overcome the
complexities of feature selection.
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