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Abstract
There is growing interest in recycling and re-use of electric vehicle batteries owing to their growing market share and
use of high-value materials such as cobalt and nickel. To inform the subsequent applications at battery end of life, it is
necessary to quantify their state of health. This study proposes an estimation scheme for the state of health of high-
power lithium-ion batteries based on extraction of parameters from impedance data of 13 Nissan Leaf 2011 battery
modules modelled by a modified Randles equivalent circuit model. Using the extracted parameters as predictors for the
state of health, a baseline single hidden layer neural network was evaluated by root mean square and peak state of health
prediction errors and refined using a Gaussian process optimisation procedure. The optimised neural network predicted
state of health with a root mean square error of (1.7296 0.147)%, which is shown to be competitive with some of the
most performant existing neural network–based state of health estimation schemes, and is expected to outperform the
baseline model with ;50 training samples. The use of equivalent circuit model parameters enables more in-depth analy-
sis of the battery degradation state than many similar neural network–based schemes while maintaining similar accuracy
despite a reduced dataset, while there is demonstrated potential for measurement times to be reduced to as little as
30 s with frequency targeting of the impedance measurements.

Keywords
Neural networks, electric vehicles, state of health, lithium-ion batteries, screening, gateway testing

Date received: 6 May 2020; accepted: 30 July 2020

Introduction

Recent years have seen a rapid increase in the number
of electric vehicles (EVs) in circulation.1 Owing to the
use of high-value materials, such as cobalt and nickel,
there is a strong economic, environmental and political
case to implement solutions for recycling and re-use end
of life EV batteries based on lithium-ion technology.1–3

Such batteries have, for the most part, exhausted their
useful life for re-use in EVs, however have demonstra-
bly useful applications in repurposed static energy stor-
age systems and represent a large body of energy
storage capacity.1,4 It is necessary, however, to properly
assess the battery condition and degradation to inform
the appropriate re-use applications or, if necessary, sub-
sequent recycling.3 The re-use of batteries for a second
life application presents a further requirement to prop-
erly match batteries of similar condition in a given
energy storage system to prevent unbalanced

degradation by over (dis-)charging,4,5 which can reduce
its remaining useful life (RUL).

A quantity of particular interest for characterisation
of batteries is the battery state of health (SoH), typically
defined from measurements of the battery capacity for
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lithium-ion batteries (LIBs). Typically cells with greater
than 80% of their rated capacity are considered for re-
use in EV applications,4–6 while below this threshold,
cells with as little as 65% of their original capacity are
suitable for second-life applications. Currently, cell
capacity is determined by discharge testing which takes
several hours, making it a time consuming, and hence
costly process.7 Electrochemical impedance spectroscopy
(EIS) is a promising technique that provides insight into
the battery condition through exposing the changes in
parameters pertaining to the battery internal resistance
and electrochemical properties, and has presented con-
siderable improvements in measurement times. These
qualities justify its extensive prior applications in investi-
gation of battery condition8–11 and SoH.12,13 It has been
demonstrated through equivalent circuit (EC) modelling
of the impedance response of cells that the charge trans-
fer resistance extracted from EIS measurements is a use-
ful indicator of SoH13; however, a principal limitation is
that individually such parameters do not always vary sig-
nificantly or linearly with the battery age,14 and therefore
it is suggested that these approaches are inadequate for
SoH estimation in this case.

Recent years have seen exploration of numerous
machine learning schemes to estimate SoH.12,15–18

Neural networks (NNs) in particular are an attractive
solution to SoH estimation in that they can model com-
plex, non-linear systems with cross-interactions between
system variables without a detailed underlying theoreti-
cal framework of the system being considered.12 This is
useful for LIBs where the precise internal composition
and design is often commercially sensitive and hence
not accessible. Nonetheless, to the authors’ best knowl-
edge, very few prior works have developed an NN-
based SoH estimation scheme using such extracted
parameters directly from EIS as predictors for the SoH.

In this study, an NN-based approach for estimation
of the SoH from impedance measurements of Nissan
Leaf 2011 battery modules is presented. This study
aims to replicate the successes of prior, high-accuracy
NN-based approaches, while addressing their primary
limitations, namely, model complexity, large required
training dataset size and lack of physical parameters
extracted that pertain to the battery condition. Hence,
the expected contributions of this work are as follows:

� High-accuracy estimation of SoH with a reduced
training dataset of 106 samples, with an average
estimation error below 3%.

� Consideration of parallel battery arrangements in
contrast to focus on single cell SoH estimation in
similar studies.

� The proposal of an optimised equivalent circuit
model (ECM) parameter-based NN model using
hyperparameter optimisation, which is not expli-
citly considered in most works.

� Greater insight into the battery degradation due to
use of an ECM approach than available with schemes
monitoring evolution of battery current/voltage.

Background and related works

The problem of state measurement of LIBs has been
widely studied, most notably for estimation of the bat-
tery state of charge (SoC), while literature pertaining to
SoH estimation remains less prevalent. Focuses of
recent works in the area of SoH estimation have
included incremental capacity (IC)/differential voltage
(DV) measurement,19 Coulomb counting,20 (dual)
extended Kalman filters21,22 or empirical health degra-
dation models such as those developed by Perez et al.23

However, the bulk of literature pertaining to SoH esti-
mation focuses on prognostics and health management
of existing battery systems,24 with less emphasis
placed on end of life characterisation of batteries.
Furthermore, a majority of SoH estimation works
focus on single cells. This presents a problem in the EV
application, where cells are often built up in parallel to
form battery modules. In Chang et al.,25 the problem
of capacity estimation of parallel battery arrangements
based on discharge current curves was studied, with the
benefit of being validated across multiple cell chemis-
tries. However, although this approach effectively
reduced measurement times by the requirement for
only a single discharge cycle, this does not eliminate the
requirement to perform a discharge test entirely.

EIS

EIS represents an advanced characterisation tool for
investigation of the ageing state of batteries. Studies of
LIBs using EIS are various, with applications including
quality control,26 investigation of battery ageing
mechanisms11,27–29 and estimation of battery SoC and
SoH.13,30 The principle of operation of EIS is to sample
the impedance of a cell at a range of discrete frequen-
cies by applying a probing periodic voltage (potentio-
static) or current (galvanostatic) signal,26 measuring
the voltage or current response of the cell across a
working electrode and calculating the impedance Z
based on the current Î and voltage phasors V̂ as

Z=
V̂

Î
=

Vmax

Imaxe�ju
= Zj jeju ð1Þ

given the maximum current and voltage Imax, Vmax and
the phase of the current with respect to the voltage u.
EIS data are presented by Nyquist plot, for which an
example idealised spectrum is shown in Figure 1. Two
main approaches have been employed to extract infor-
mation regarding the battery state by modelling the
impedance response. The former uses detailed mathe-
matical models, such as those by Xie et al.31 and Liu
and Zhu32 which provide an in-depth overview of the
internal condition of LIBs but require prior knowledge
of the internal battery chemistry and geometry at a level
which is difficult to obtain for commercial cells.

The latter, EC modelling, presents a simple, yet
effective picture of the battery condition by considering
the structure of the battery impedance response,
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defined by the internal electrical and kinetic processes
occurring within the cell and associating these with one
or more elements in an EC describing the system. A
simple ECM for LIBs is the Randles cell (Figure 2),
comprising a resistor Re, the equivalent series resis-
tance, accounting for the pure ohmic resistance of the
electrodes, electrolyte, connecting wires and current
collector foils, a resistor Rct and capacitor Cdl to model
the effects of electrical double-layers and charge trans-
fer reactions near the electrodes and a generalised ele-
ment ‘W’ known as the Warburg impedance. The
definition of the Warburg impedance arises from a
Fick’s law model of the mass transport of charged spe-
cies within the electrodes and hence models the diffu-
sion dominated low-frequency response of the cell.33,34

The Warburg impedance under the assumption of
semi-infinite diffusion is defined as

ZW =
RW

jvtWð Þ1=2
ð2Þ

where RW is the Warburg resistance and tW is the
Warburg time constant, defined as l2=D, with effective
diffusion thickness l and solid diffusion coefficient in
the electrode material D.13 In real cells, the thickness of
the diffusion layer is often limited, motivating the so-
called finite length Warburg (FLW) impedance

ZFLW =ZW tanh jvtWð Þ1=2
� �

ð3Þ

For SoH estimation with EIS, a principal issue is the
limitation that results depend not only on the cell age-
ing state, but also on the cell’s SoC, temperature and
even the nature of the electrical connection between the
cell and measurement equipment,6,30,36 making repro-
duction of results difficult. Quantification or removal
of these dependencies has been the focus of numerous
works, including investigations of cells at 0% SoC,33

while a combined study of the variation of the impe-
dance characteristics of LIBs with temperature, SoC
and ageing with EIS was first carried out by Waag
et al.9 This is more comprehensively addressed by
Wang et al.,13 leveraging this to develop an estimation
function for the SoH of a lithium iron phosphate
(LFP) cell based on a linear regression of the charge
transfer resistance (Rct) extracted by EC modelling.
Such methods are advantageous in their simplicity and
low computational complexity, however are limited by
findings of other authors, such as Leng et al.,14 who
determined that Rct changed minimally and non-
linearly over ;1000 cycles for an NMC622 cell. This
would suggest the variation of such parameters with
battery degradation is complex, potentially non-linear
and variant between differing cell chemistries and
cycling histories, while it has been stressed17 that esti-
mating the SoH based solely on these parameters does
not capture all of the relevant effects of degradation,
leading to limited prediction accuracy. Eliminating
other factors, such as the temperature dependence,
requires either careful control of temperature in ambi-
ent chambers, as with13,34 or correcting for with the use
of data libraries26 or by converting results to a standard
reference state.13 The latter techniques ultimately
require a less sophisticated measurement setup,
although require the support of large data libraries to
produce self-consistent results. Such requirements pres-
ent a principal motivation for the choice of a machine
learning approach to leverage such data libraries to
learn and account for these dependencies.

Machine learning for SoH estimation

Data-driven approaches such as machine learning have
been widely studied for the development of prognostic,
health management and health estimation models for a
range of systems. For example, data-driven approaches
have been applied with success in the related area of
bearing fault diagnosis and prognostics,37,38 where it is
often impractical to develop precise health degradation
models to predict their RUL. Similarly for studies of
LIBs, a number of data-driven estimation models for

Figure 1. Idealised EIS Nyquist plot for a lithium-ion cell. The
different loss mechanisms, high to low frequency (left to right)
are inductive, resistive, capacitive and diffusional (Warburg
impedance).

Figure 2. The Randles cell equivalent circuit model (modified
with an inductor to match Figure 1), comprising a pair of
resistors Re, Rct, accounting for the resistance of the electrolyte
and current collector foils, capacitor Cdl for charge transfer
effects and electrical double-layers, and a Warburg impedance
ZW element representing diffusion.35
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the battery SoC,15,39,40 SoH12,15–18,41 and RUL have
been developed.12,42,43 Many of these studies focus on
online estimation of SoH by capacity, with the prevail-
ing approach involving following the evolution of the
current, terminal voltage and partial capacity curves of
the battery with time as applied by previous
works.17,18,43 These approaches have the potential to
provide rapid SoH estimation; for example,17 applied
an artificial neural network (ANN)-based classifier on
features extracted from fixed time windows of as little
as 60 s. In the case of Bonfitto et al.,17 this is achieved
with low computational complexity; however, a limita-
tion is that it is based on classification into discrete
SoH bands of 5% and hence is limited in precision. On
the other hand, Shen et al.18 used deep convolutional
neural networks (DCNNs) with transfer and ensemble
learning with demonstrably high accuracy and preci-
sion, but with greatly increased computational
complexity.

Other models based on recurrent neural networks
(RNNs) focus on time series forecasting of the battery
state. Such an approach is applied in Eddahech et al.12

monitors the degradation of capacity and internal resis-
tance with time to develop a high-accuracy SoH degra-
dation model. More recently, similar approaches have
been explored based on the RNN principle by monitor-
ing the cell current and terminal voltage, including
application of the gated recurrent unit (GRU) RNN by
Jiao et al.39 and long short-term memory (LSTM) in
Mamo and Wang40 for the related problem of SoC esti-
mation, as well as a modified LSTM in Li et al.43 for
estimation of SoH. Generally, the RNN-based
approaches are capable of predicting the battery states
with outstanding accuracy and can be extended in the
case of SoH to predict the evolution of the battery con-
dition for estimation of RUL as in Eddahech et al.12

and Li et al.43 However, being suited for state monitor-
ing, a key limitation is the sensitivity of model predic-
tions to the previous battery state, which makes these
approaches unsuitable for characterisation of most end
of life batteries.

For non-RNN-based approaches, typical root
mean square (RMS) prediction errors for NNs range
between 1% and 5%, while some approaches such as
those by Kim et al.41 and Liu et al.44 are shown to
achieve even greater capacity prediction performance.
The high prediction accuracy is achieved based on
application of highly complex NN models, with the
caveat that as the number of neurons used to model
the system increases, there is a larger requirement for
training data to prevent over-fitting of the network to
the training dataset, while the model becomes more
computationally demanding due to the increased num-
ber of model parameters.17

Most critically, it has been noted6 that a principal
limitation of many of these NN studies is the lack of
detailed information regarding the battery ageing state,
such as that exposed by the extraction of ECM para-
meters from EIS. Few approaches have been explored

with an NN-based scheme to estimate cell SoH directly
using ECM parameters, with prior studies proposing
an extreme learning machine (ELM) monitoring the
evolution of ECM parameters as SoH predictors with
cell cycling15 or a single hidden layer feed-forward
NN16 based on ECM parameters extracted with hybrid
pulse-power characterisation (HPPC). The accuracies
for these approaches lie with RMS prediction errors
between 2.4% and 5%, ultimately suggesting there is
scope for further study and improvement in this area.
Beyond the ECM approach to battery modelling, more
generalised approaches such as fuzzy c-regression have
been introduced for parameter estimation of non-linear
systems by Jabeur Telmoudi et al.45 and later extended
to modelling batteries in Telmoudi et al.46 in which a
fuzzy c-regression model with Euclidean particle swarm
optimisation is employed to build a model of an NiMH
battery under cycling, which is used to estimate SoH
with high accuracy. However, although such methods
are capable of modelling the battery behaviour with
potentially higher accuracy than an ECM-based
approach, it is unclear how these parameters are related
to physical degradation phenomena occurring within
the cell.

Data library

A library of impedance spectra and corresponding dis-
charge capacities was used for the present study, mea-
sured from a series of 13 battery modules from an end
of life Nissan Leaf 2011 battery pack to obtain a realis-
tic representation of the end of life battery condition.
Each module is arranged in a 2P-2S configuration with
three terminals – red, white and black – with each paral-
lel arrangement of two cells accessible by measurement
across the red and white and black and white terminals,
respectively. For each parallel arrangement of cells,
occupying a combined capacity range of 50–55.5Ah
(77%–85% SoH) impedance data were collected at
room temperature (25 8C), sampling the module impe-
dance over a logarithmically spaced frequency range of
1 kHz–15mHz at six points per decade (30 total). This
was performed at a range of SoCs from 20% to 100%
SoC in intervals of 20% SoC, generating a total of 128
impedance spectra (Figure 3).

Methodology

The present work aims to develop an NN model of the
SoH of end of first life EV batteries by estimation of
the discharge capacity. This is proposed based on their
impedance characteristic measured by impedance spec-
troscopy, from which physical parameters pertaining to
the battery condition may be extracted by fitting to an
ECM. In this case, the SoH was considered to be the
ratio of the battery discharge capacity to the original
rated battery capacity, as this forms the basis of typical
screening criteria for end of life batteries. Using these
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parameters, a simple baseline model with low computa-
tional complexity is first proposed to estimate SoH
before the arguments and methodology for refining the
model to increase accuracy are presented.

Parameter extraction

As previously mentioned, NNs are excellent at learning
the behaviour of non-linear systems, cross-interaction
between system variables and existing patterns in the
data used to train the network. While this is the case, it
often requires large amount of data to learn general
patterns in the data to generalise well to new problems.
Since the goal of this study is to work with a dataset
smaller than considered in other studies, it is necessary
to extract features from the dataset that have a well-
defined relation to the desired output (SoH). An ECM-
based method for parameter extraction fits this problem
well due to the well-documented relationship between
the equivalent series and charge transfer resistances (Re,
Rct) of the cell, as well as the Warburg resistance RW.
In this case, using the Randles circuit in Figure 2 as a
baseline, a modified Randles circuit (Figure 4) is pro-
posed to fit the data, with an inductor to model the
inductance L of the connecting measurement leads that
dominates the impedance response at high frequencies,
while the capacitor modelling double-layer effects were
replaced with a constant phase element owing to the
potentially non-ideal capacitive behaviour of electrical
double-layers at the cell electrode–electrolyte interface.
The constant phase element impedance is defined as30,35

ZCPE=
1

( jv)nQ
ð4Þ

where the capacitance Cdl is replaced with a generic
quantity Qdl known as a phasance (units O�1 sn), with
exponent 0ł nł 1 describing deviations from ideal
capacitive behaviour, with n=0, n=1 corresponding
to a pure resistor and capacitor, respectively. The impe-
dance of the circuit can thus be described as

Z=Re + jvL+
RW tanh

ffiffiffiffiffiffiffiffiffiffiffi
jvtW

p
ð Þffiffiffiffiffiffiffiffiffiffiffi

jvtW
p +

Rct

RctQdl jvð Þndl +1

ð5Þ

where Re, Rct, Qdl, ndl, RW, tW and L constitute the free
ECM fitting parameters. Fitting was performed using
the Levenberg–Marquardt non-linear least squares fit-
ting algorithm using the LMFit Python library.47 For
the fitting algorithm, initial estimates for Re and Rct

were extracted directly from the impedance data as the
value of RefZg assumed at the �ImfZg=0 intersec-
tion and diameter of the double-layer capacitance loop,
respectively. The remaining parameters were estimated
using a manual search informed by parameter ranges
extracted from Wang et al.13 (see Table 1).

The SoH ground truth values were then taken to be
the ratio of the measured discharge capacity qd of each
battery arrangement to its rated (nominal) capacity qn
as

SoH=
qd
qn

ð6Þ

where qn for a battery module as quoted by the manu-
facturer was 65Ah.

Baseline model

To estimate the SoH of the cells using the extracted
parameters, a feed-forward NN approach is proposed

Table 1. Initial values of equivalent circuit model parameters
for the circuit shown in Figure 3 for fitting of impedance data for
all cell arrangements considered.

Fitting parameter Initial value Unit

Re – O
Rct – O
Qdl 75 O�1 sndl

ndl 0.8
RW 63 1024 O
tW 5 s
L 63 1028 H

Re and Rct were directly estimated from the Nyquist representation of

the impedance data.

Figure 3. Experimental impedance data obtained at 25 �C,
frequency range 1 kHz–15mHz over the red and white
terminals of module 1 of 13, capacity 54.9 A h and variation with
battery state of charge (SoC).

Figure 4. Diagram of the modified Randles circuit used as an
equivalent circuit model (ECM) to describe the impedance
response of the cells used in this study. The ECM parameters
associated with each element are listed, respectively.
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as a baseline method as shown in Figure 5.
Development and training of the NN model was per-
formed in Python using the publicly available machine
learning libraries Keras and TensorFlow 248 on an
NVIDIA GTX 1060 6-GB GPU using the Adam49

optimiser. The model weights were initialised with a
Glorot uniform scheme, with the sigmoid hidden layer
activation function, an optimiser learning rate of 0.01
and no output layer activation function. To test the
accuracy of the NN model, the dataset was partitioned
according to a K-fold cross-validation scheme. K-fold
cross-validation is a commonly used technique to
achieve more reliable indicators of NN performance
with smaller datasets50,51 and involves shuffling the
dataset prior to splitting into K equal partitions, or
folds. Typically K� 1 folds are used to train the NN
model while the remaining fold is held out as a previ-
ously unseen testing dataset. The model is then evalu-
ated K times by chosen metrics based on its
performance on the test fold. After each repetition, the
training and test folds are cyclically permuted such that
every fold is held out as a test fold at least once. A
value of K=6 was chosen for this study as a balance
between validation accuracy and training performance
and was evaluated by RMS, mean absolute (MA) and
peak prediction errors defined as

RMSE=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

P

XP
p=0

Yp � yp
� �2

vuut ð7Þ

MAE=
1

P

XP
p=0

Yp � yp
�� �� ð8Þ

for each SoH value p with prediction yp and ground
truth value Yp over all predictions P. To improve the

training performance owing to the disparate numeric
scales of the input parameters, each input variable X in
the dataset was normalised using the following scheme

Xnorm =
X� �Xtrain

sX, train
ð9Þ

while the SoH ground truth values were normalised as

SoHnorm =
SoH� SoHtrain,min

SoHtrain,max � SoHtrain,min
ð10Þ

where �Xtrain, sX, train, SoHtrain,min, SoHtrain,max are the
mean, standard deviation, minimum and maximum val-
ues of their respective variables, calculated from the
training folds only, and are applied to both the training
and test folds independently. Finally, during training,
an early stopping callback was used that halts the train-
ing process when no average improvement in validation
error on the test set is found over the last 30 passes over
the full training dataset (training epochs).

NN optimisation

It is well documented that to achieve the best NN pre-
diction performance for a given problem, it is necessary
to consider the choice of so-called network ‘hyperpara-
meters’. For a given model, the hyperparameters
include the number of neurons present in each hidden
layer, the number of hidden layers and the ‘learning
rate’ of the optimiser used to control the magnitude of
updates to the network weights and biases. Over-fitting
to the training data is a critical problem when dealing
with small datasets, so it is necessary to find a balance
between developing a model that is sufficiently complex
to find generalised patterns in the data, such that it
generalises well to an unseen dataset, and limiting over-
fitting by preventing the network from adapting to pat-
terns specific to the training data, such as noise, thus
hampering its generalising power. To achieve this, the
full dataset was first split into six folds as previously
with a single fold held out for testing, the remaining
folds forming an ‘inner’ dataset. A Gaussian process
(GP) optimisation algorithm introduced by Pedregosa
et al.52 was used to minimise a cost function, which in
this case is the associated RMS prediction error from a
fivefold cross-validation process on the five ‘inner’
folds. This cost function was evaluated with respect to
the chosen hyperparameter combination in a search
space detailed in Table 2. Many of the hyperparameters
are self-explanatory; however, in this case, a categorical
hyperparameter was included describing the NN shape.
The shape controls the number of neurons in each hid-
den layer based on the number of neurons in the first
hidden layer. For the ‘funnel’ structure, the number of
neurons in the kth hidden layer Nk is

Nk =N0 �
(N0 �Nout)

K
k ð11Þ

Figure 5. Diagram of the baseline feed-forward neural
network architecture using extracted equivalent circuit model
parameters as predictors for the battery state of health.
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rounded to the nearest integer (half to even) where N0

is the number of neurons in the first hidden layer, Nout

is the number of output neurons and K is the number of
hidden layers. For the ‘brick’ structure

Nk =N0 ð12Þ

The hidden layer dropout hyperparameter represents
the fraction of neuron outputs from each layer that are
set to zero during the training process to prevent over-
fitting.

For the GP estimator for the cost function, the
Matérn covariance function was used, defined as

k(xi, xj)=
21�n

G nð Þ
ffiffiffiffiffi
2n

p d xi, xj
� �
r

� 	n

Kn

ffiffiffiffiffi
2n

p d xi, xj
� �
r

� 	

ð13Þ

with G as the gamma function, Kn( . . . ) as the modified
Bessel function of the second kind, d(xi, xj) as the
Euclidean distance between two given points xi and xj,
and r as the kernel length scale. n is taken to be 5=2.
During each optimisation run, the cost function was
first evaluated a total of 250 times with hyperpara-
meters randomly sampled according to the sampling
scheme in Table 2 to generate a surrogate posterior
function estimating the cost function with respect to
the hyperparameter search space.

This surrogate function was used to guide 250 addi-
tional evaluations of the cost function by evaluating at
the point with the minimum negative expected

improvement, probability of improvement and lower
confidence bound acquisition functions. In this way,
convergence to the model with the lowest prediction
error is achieved much more rapidly than the simpler
random search or grid search of hyperparameters. Once
the optimal cost function was found, a new model was
generated with the resulting hyperparameters and eval-
uated on the held-out sixth test fold. This process was
repeated six times for all six original folds. Finally, the
combination of hyperparameters that achieved the low-
est RMS prediction error on its test set was chosen to
generate the final NN model used to estimate SoH for
this study. Once the optimised model has been gener-
ated, the overall SoH estimation procedure based on
the resulting SoH model is shown in Figure 6.

Results and discussion

To evaluate the effectiveness of this SoH estimation
scheme, the results of the parameter extraction method,
hyperparameter optimisation and comparison with the
baseline model are presented here. The proposed SoH
estimation scheme is compared with a range of alterna-
tive machine learning schemes, including commonly
used techniques as well as approaches specific to simi-
lar studies addressed in the related works. Finally, the
performance of the scheme is assessed in the context of
reducing measurement times by considering the model
performance on a reduced frequency range dataset.

Table 2. The hyperparameter search space used to optimise the neural network performance.

Hyperparameter Range Sampling

Hidden activation function tanh, sigmoid, ReLU, ELU Uniform
First hidden layer neurons 3–50 Uniform
Hidden layers 1–5 Uniform
Optimiser learning rate 0.01–0.5 Log-uniform
Network shape Funnel, brick Uniform
L2 regularisation 0–0.01 Uniform
Hidden layer dropout 0–0.3 Uniform

ELU: exponential linear unit; ReLU: rectified linear unit.

Figure 6. Block diagram of the overall SoH estimation procedure using the proposed neural network model.
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ECM fit

Figure 7 shows an impedance spectrum from the data-
set considered in this study over the red and white term-
inals of module 1 of 13 with capacity 54.9Ah, obtained
at 60% SoC, 25 �C over the frequency range 1 kHz–
15mHz. This has been fitted to the modified Randles
circuit in Figure 4 with the resulting fitted parameters
presented in Table 3. Here, the form of the ECM used
is justified by the presence of a capacitive loop present
in the medium frequency range, which was attributed
to be due to the double-layer capacitance and charge
transfer reactions at the electrodes. A deviation from
ideal capacitive behaviour is observed in the depression
of the loop and slight shift of high-frequency phase
away from 90�35 and hence justifies the substitution of
the double-layer capacitance in the Randles circuit for
a constant phase element describing this deviation from
ideality.30,35 The presence of a tail on the spectrum at
high frequencies reaching into the positive imaginary
range is indicative of inductive behaviour. Finally, at
low frequencies, the characteristic Warburg region is
observed. The ECM used is shown to fit well to the
capacitive region of the spectrum; however, deviations
from the expected Warburg behaviour are observed at
low frequencies. The fit could be improved by inclusion
of further ECM elements; however, this complicates the
fitting process by introducing greater uncertainty of the
values of the fitting parameters due to the low informa-
tion content of the impedance spectrum.27

Hyperparameter optimisation

As previously discussed, it is necessary to consider the
hyperparameters of a given NN model to achieve the
best accuracy. Figure 8 shows the results of the hyper-
parameter search, with the partial dependence of the
RMS prediction error with respect to each hyperpara-
meter shown on the diagonal, and contour plots of the
partial dependence surface over each pair of

hyperparameter values, which show higher and lower
prediction errors in the darkened (blue) and pale (yel-
low) regions, respectively. The partial dependence plots
between two hyperparameters were computed by evalu-
ating the surrogate function 250 times at 40 points in
hyperparameter space with all other hyperparameters
chosen randomly. The average result of this process is
computed, such that the dependency plots represent the
average behaviour of the cost function as any given
two hyperparameters are varied. The black points for a
given combination of hyperparameters correspond to a
full evaluation of the cost function, with the found
optimal model represented by the pale (red) point.

As shown, there is very little dependence of the net-
work performance on average with each hyperpara-
meter individually, with most of the dependency
information encoded in the cross-interactions of differ-
ent hyperparameters. When considered with other
hyperparameters, there is a bias towards low, but non-
zero learning rates as expected, with the optimum
around 0.1 as a balance between convergence speed and
stability, while the cost function is shown to slightly
decrease for models with high numbers of hidden layers
and models with the ‘brick’ structure as the amount of
L2 regularisation penalty is increased. On a superficial
level, there is a bias towards models with fewer hidden
layers when considered with most hyperparameters,
suggesting models of high complexity are ineffective at
accurately predicting SoH with the size of dataset con-
sidered. However, a large number of cost function eva-
luations guided by the surrogate function were focused
on models with around 17 hidden layer neurons, 3–5
hidden layers with the exponential linear unit (ELU)
activation function. Furthermore, the location of the
optimum of the cost function in hyperparameter search
space was found to significantly diverge from that used
for the baseline model, highlighting the deficiency of
the simpler baseline model for this problem.

The resulting optimised NN structure is shown in
Figure 9 with corresponding hyperparameters in Table
4. In this case, the model achieved an RMS fivefold
cross-validation error of 1.630% on the ‘inner’ valida-
tion dataset, and 1.733% on the single held-out test
fold. It is demonstrated that the model structure is sig-
nificantly enlarged, with quadruple the number of hid-
den layers in spite of the small dataset size used, which

Figure 7. Nyquist plot of fit to equivalent circuit model shown
in Figure 4 with experimental impedance data obtained at 60%
SoC, 25 �C, frequency range 1 kHz–15mHz over the red and
white terminals of module 1 of 13, capacity 54.9 A h.

Table 3. Fitted values of equivalent circuit model (ECM)
parameters corresponding to the ECM fit presented in Figure 7.

Fit parameter Value Unit

Re 9.693 10246 6.853 1026 O
Rct 1.773 10246 8.813 1026 O
Qdl 35.36 8.33 O�1 sndl

ndl 0.8526 0.0480 –
RW 1.083 10236 2.613 1024 O
tW 92.56 41.4 s
L 5.843 10286 1.353 1029 H
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is divergent from the approaches applied by Densmore
and Hanif15 and Yang et al.16 based on ECM para-
meters. For the optimised NN model, the convergence
during training to a minimum mean squared prediction
error was recorded over the number of training epochs
for the training and validation dataset partitions, and is
presented in Figure 10. The model shows rapid conver-
gence in the first 50 epochs, with little reduction in vali-
dation error over ;350 epochs before early stopping at
;380 epochs. The training and validation errors in this
case are well matched and show little to no divergence
over continued training, while the inverse is widely
recognised as an indicator of model over-fitting.51

Figure 8. Result of hyperparameter optimisation showing partial dependence of RMS prediction error with each hyperparameter.
Each point represents the average over a sixfold cross-validation trial of the neural network generated with the corresponding
hyperparameters.

Table 4. The optimised neural network hyperparameters
corresponding to the network structure in Figure 9.

Hyperparameter Value

Hidden activation function ELU
First hidden layer neurons 18
Hidden layers 4
Optimiser learning rate 0.01
Network shape Brick
L2 regularisation 0.00089
Hidden layer dropout 0.136

ELU: exponential linear unit.
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Using the sixfold cross-validation scheme, the RMS,
MA and peak prediction errors for the baseline model

were generated as a benchmark to compare with the
performance of the optimised model. This comparison
is summarised in Table 5. The results show that the
hyperparameter optimisation provides a clear benefit
over the baseline model, with significant improvements
to RMS (0.403%) and MA (0.548%) error, while the
lower standard deviation on these errors suggests that
the optimised model generalises more consistently to
unseen data. Little to no difference in peak error over
the six trials was recorded, suggesting that while the
optimised NN predictions are on average more accu-
rate, there is little reduction in potential outlier predic-
tions generated by the optimised network. This
comparison is illustrated in Figure 11, showing graphi-
cally the distribution of predictions between the two
models. A further comparison between the baseline
model and the optimised model is presented in the var-
iation of network accuracy with the number of training
samples used in Figure 12. Each point represents the
sixfold cross-validated RMS prediction error of each
model averaged over 10 runs in total. From the graph,
it is clear that the optimised model begins to

Figure 9. Optimised neural network structure generated from the hyperparameter optimisation scheme.

Figure 10. Convergence of the neural network model by
reduction of RMS state of health prediction error with number
of training epochs. Training and validation errors are well
matched suggesting no over-fitting of the training data.

Table 5. Sixfold cross-validated RMS, mean absolute (MA) and peak prediction errors of state of health estimation for the baseline
and optimised neural network model.

Trial (baseline) 1 2 3 4 5 6 Average

RMS error (SoH %) 2.132 1.813 2.820 2.575 1.706 2.111 2.1936 0.176
MA error (SoH %) 1.683 1.403 2.230 2.080 1.402 1.693 1.7486 0.140
Peak error (SoH %) 5.011 4.218 6.783 5.149 3.197 4.938 4.8836 0.483
RMS error (SoH %) 1.671 1.831 1.920 1.758 1.364 2.195 1.7906 0.112
MA error (SoH %) 1.147 1.341 1.172 1.143 1.016 1.385 1.2006 0.056
Peak error (SoH %) 4.104 5.286 6.141 4.098 3.680 6.007 4.8866 0.435

RMS: root mean square; SoH: state of health.
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outperform the baseline for training datasets of greater
than around 50 samples, with the cross-over point at
43 samples. Overall, this demonstrates the greater gen-
eralising power of the optimised model over the
baseline.

It is noted that the additional model complexity
introduced presents a considerable downside over the
baseline model, leading to an increase in training and
evaluation times. On the hardware used in this study,
the training and evaluation times for the baseline NN
were 0.9256 0.07 s and 0.0236 0.003 s, respectively.
For the optimised model, this increases to 6.56 0.7 s
and 0.06176 0.0007 s, respectively. In this case, there is
mainly a negative impact on training times, with mini-
mal absolute change in evaluation times. Even in the
optimised case, the model training times are signifi-
cantly reduced compared to a convolutional NN-based
approach with ensemble learning (143.396 s)18 of
greater complexity; it should also be noted that the
quoted time was obtained on considerably more power-
ful hardware than used in this study. On this basis, the
increased level of complexity is therefore deemed accep-
table in the scope of this work to improve prediction
accuracy.

Optimised network evaluation

The distribution of predictions is an important factor
for accurate SoH estimation. It is necessary for both
sorting cells given a screening criterion, such as cells
being above or below 80% of their original capacity,
and for matching of cells of similar SoH that cells are
sorted with high accuracy. This necessitates low SoH
prediction error and low tendency towards over and
under-estimation. Figure 13 presents the model

predictions from a trial where the model performed
well, achieving an RMS prediction error of 1.570%,
and a less well-performing trial with 2.205%. The well-
performing trial demonstrates that there is good agree-
ment between the NN predictions and the respective
ground truth values, with few outliers and a relatively
uniform distribution of predictions in spite of the spar-
sity of the dataset towards lower SoH values. Results
for the less well-performing model suggest that the
model generalised well to much of the dataset, however
in this case produced a number of outliers. The overall
optimised NN performance corresponds to an average
RMS prediction error of 1.790% (SoH) over sixfold
cross-validation trials as shown in Table 5. In both
cases, there is a tendency towards slight over-estimation
of SoH towards lower ‘true’ SoH values; however, for

(a) (b)

Figure 11. Distribution of predicted versus ground truth state of health values shown as a scatter plot for a single baseline and
optimised model cross-validation trial, with RMS errors of 2.314% and 1.679%, respectively: (a) scatter plot for baseline model trial;
(b) scatter plot for optimised model trial. The SoH values (range: 77%–85%) are normalised to the range 0–1 for clarity..

Figure 12. Variation of sixfold cross-validated RMS state of
health prediction error for the baseline and hyperparameter
optimised model with the number of training samples used.
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the most part, the high and low SoH cells are clearly
distinguished from each other.

Table 6 summarises the RMS, MA and peak errors
of two alternative popular machine learning approaches
for small datasets: GP and random forest (RF) ‘extra
trees’ regression, using the implementations provided
by Pedregosa et al.52 to estimate SoH using the
extracted ECM parameters in comparison with this
work. Additionally shown are prediction errors for
related SoH estimation schemes presented by previous
works.12,13,15,16,18

For linear regression, the errors were obtained by
application of linear regression of the charge transfer
resistance for this work’s dataset as proposed by Wang
et al.13 in this case for data at 60% SoC. For the ELM
approach in Densmore and Hanif,15 the number of
training samples is calculated based on the samples
available in the open source NASA Ames dataset used.
For the ANN approach in Yang et al.,16 the values for
RMS error and MA error are calculated from the pub-
lished test dataset SoH prediction errors, while the
number of samples is obtained based on the author

(a) (b)

(c) (d)

Figure 13. Distribution of predicted versus ground truth state of health values shown as a scatter plot and histogram for high-
(RMS error: 1.570%) and low-performing (RMS error: 2.205%) model trials: (a) scatter plot for high-performing trial; (b) scatter plot
for low-performing trial; (c) distribution of errors for high-performing trial; and (d) distribution of errors for low-performing trial.
The SoH values (range: 77%–85%) are normalised to the range 0–1 for clarity..

Table 6. Comparison of RMS, mean absolute and peak prediction errors between this work, machine learning approaches covered
by existing studies and the commonly used techniques – Gaussian process (GP) and random forest (RF) regression.

Method RMS err. (SoH %) MA err. (SoH %) Peak err. (SoH %) # training samples

Linear regression (Rct, 60% SoC)13 6.780 5.911 14.3 26
ANN16 4.05 3.48 7.2 ~40
GP regression52 2.681 2.353 7.431 106
ELM15 2.4 – – ~520
RF (ET) regression52 2.092 1.779 7.123 106
This work (unmodified Randles) 2.0916 0.360 1.4476 0.345 6.641 106
This work 1.7906 0.112 1.2006 0.056 6.141 106
DCNN-ETL18 1.503 – 9.505 340 ( + 25,338 initial training)
RNN12 0.462 – – 500

RMS: root mean square; SoH: state of health; MA: mean absolute; ELM: extreme learning machine; ANN: artificial neural network; DCNN-ETL: deep

convolutional neural networks with ensemble learning and transfer learning; RNN: recurrent neural network.
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quoted value of five cells used for training. The peak
error is the maximum quoted error by each of these
studies; for this work, it is the maximum error recorded
over sixfold cross-validation as shown in Table 5, and
provides an indication of the maximum error expected
from the SoH estimation method in comparison with
related works. As a further comparison, the cross-
validation results from the optimised model using the
original Randles circuit model introduced in Figure 2
are presented. This ECM describes the impedance data
less accurately, increasing the uncertainty in the
extracted parameters; this demonstrates how the model
predictions are influenced by a suboptimal choice of
ECM with additional error on the extracted
parameters.

The results of cross-validation trials as shown in
Table 6 suggest that a linear regression of the charge
transfer resistance is insufficient in this case to accu-
rately predict the battery SoH. The optimised NN
model proposed in this work is shown to surpass the
performance of well-established regression schemes for
the dataset used, while also presenting a reasonable
improvement of ;2.26% over a similar ECM para-
meter approach16 for estimating battery SoH, even
when considering the smaller dataset used. In this case,
the similar performance of the model in this work to
that of Yang et al.16 demonstrates that an ECM
approach based on EIS can be directly applied with an
ANN model to estimate SoH reliably in spite of the
uncertainty introduced by the SoC dependence and the
fitting process for the values of extracted ECM para-
meters. This is corroborated by results for the opti-
mised model presented in this work using the
unmodified Randles ECM. Here, there is an increase in
0.301% in the model RMS error compared with the
optimised model using the modified Randles circuit,
which is most likely caused by the additional fitting
error introduced, leading to a less informative set of
SoH predictors. However, even in this case, the model
still outperforms the original baseline model, RF (ET)
and GP regression, even when these approaches are
trained with the modified Randles circuit parameters,
suggesting the model is able to reduce the influence of
fitting error on the overall SoH prediction. Based on
the variation of model performance with availability of
training data established (Figure 12), it is likely that
with a larger dataset of ;200 samples, the technique
proposed reaches parity with the most performant NN
approaches such as those by Shen et al.18

A principal limitation of this work is that the tem-
perature dependence of impedance data has not been
considered in this study, and therefore a larger training
dataset would be required including temperature as a
parameter to make the model robust to temperature
changes, or measurements would need to be carried out
in a climate-controlled environment. The former could
be achieved either by including the temperature directly
as a learnable parameter, as with SoC, or normalised
to a standard state as proposed by Wang et al.13 to

address this limitation. There is also scope to further
reduce the uncertainty inherent in application of non-
linear least squares fitting of the raw impedance data
imparted to the ECM parameter values obtained. This
uncertainty can potentially be reduced by application
of a parameter search algorithm, such as those applied
by Wang et al.13 and Tröltzsch et al.27 Currently, this
approach also requires an appropriate choice of ECM
based on knowledge of the cell impedance response.

Reduction of measurement times

The primary area of improvement afforded by an
ECM parameter–based SoH estimation scheme is addi-
tional insight into the battery condition than made
available by most SoH monitoring schemes.6 Another
area for potential improvement is improving measure-
ment times associated with collection of impedance
data to a level to achieve parity with previous related
works such as Bonfitto et al.,17 which operate on 60-s
cell I–V profiles to predict SoH. To achieve this, it is
possible to target specific frequencies corresponding to
regions of interest in an impedance spectrum, such as
the double-layer capacitive loop. This particular region
of the spectrum in this case lies in the frequency range
1–200Hz. Such schemes have previously been applied
in time critical scenarios such as quality control of fresh
batteries,26 and represent a powerful tool for reduction
of measurement times. As a guideline, given a mini-
mum of six probing cycles at each frequency point26 at
six points per decade, it is estimated that measurement
times could be reduced to as little as 30 s. To demon-
strate this is feasible, fits to the same ECM were per-
formed on the existing dataset using the reduced
frequency range as presented in Figure 14, and the opti-
mised model retrained on the extracted parameters.

The results of further cross-validation trials as sum-
marised in Table 7 suggest that there is potential to
greatly improve measurement times with only a small

Figure 14. Fit to equivalent circuit model in Figure 4 with
experimental impedance data obtained at 60% SoC, 25 �C over
the red and white terminals of module 1 of 13, capacity 54.9 A h,
limited to the frequency range 1–200Hz.
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detriment (0.16%) to RMS prediction error. One area
of improvement, however, is that the peak prediction
error is significantly increased. It is possible that such
errors could be reduced by employing ensemble learn-
ing techniques as with Shen et al.,18 where the predic-
tions of multiple models were combined to the benefit
of accuracy. However, this was considered out of scope
for the current work due the constraints of the project
to maintain a level of model simplicity, as this further
increases the required time to train and evaluate the
model.

Conclusion

An NN model has been developed to estimate the SoH
of 2P arrangements of high-power Lithium Manganese
cells based on parameters extracted from impedance
spectroscopy data by non-linear least squares fitting to
a modified Randles ECM, using a library of impedance
and capacity data extracted from 13 Nissan Leaf 2011
battery modules. Starting with a single hidden layer
baseline model, an optimised NN was generated by a
GP hyperparameter optimisation scheme, which was
demonstrated to exceed the performance of the baseline
model for training datasets of ;50 samples. The model
cross-validated RMS, MA and peak SoH prediction
errors of (1.7906 0.112)%, (1.2006 0.056)%, and
6.141%, respectively, were demonstrated to be competi-
tive with alternative SoH estimation schemes and
exceeds the performance of existing approaches based
on extraction of ECM parameters. While the SoC
dependence was successfully accounted for by the NN
model proposed, a principal limitation of this work is
that the temperature dependence of the battery impe-
dance data has not been considered, which ultimately
must either be controlled or accounted for by inclusion
of temperature as an additional predictor for the SoH
or normalisation to a standard state as proposed in pre-
vious works. To reduce the measurement times associ-
ated with the collection of impedance data, the model
performance was assessed based on ECM parameters
extracted from a reduced frequency range of 1–200Hz
associated with the capacitive impedance response of
the cell. Re-evaluation of the NN model under this con-
dition suggests that there is potential for measurement
times to be reduced to as little as 30 s with limited

(0.16%) increase in the RMS prediction error, but an
increase in the peak prediction error to 8.227%.
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Appendix 1

Extracted ECM parameters

Table 8. Table of ECM parameters extracted from impedance measurements of modules 1–13 in the data library used in this study
at 60% SoC, 25 �C with corresponding SoH.53

Battery arrangement Re (O) Rct (O) Qdl (O�1 sndl ) ndl

Module 1 RW 9.693 10246 6.853 1026 1.773 10246 8.813 1026 35.36 8.33 0.8526 0.0480
Module 1 BW 1.083 10236 1.423 1025 1.863 10246 1.893 1025 28.56 14.99 0.9116 0.1054
Module 2 RW 1.003 10236 1.113 1025 2.063 10246 1.463 1025 34.26 11.64 0.8426 0.0693
Module 2 BW 1.073 10236 1.253 1025 1.713 10246 1.663 1025 28.86 14.79 0.9236 0.1021
Module 3 RW 9.623 10246 9.843 1026 2.113 10246 1.263 1025 35.06 9.43 0.8226 0.0557
Module 3 BW 1.053 10236 1.213 1025 1.793 10246 1.583 1025 30.26 13.54 0.8996 0.0903
Module 4 RW 9.923 10246 1.093 1025 2.063 10246 1.423 1025 32.66 10.79 0.8456 0.0672
Module 4 BW 1.083 10236 1.473 1025 1.883 10246 1.963 1025 32.46 17.12 0.8986 0.1076
Module 5 RW 9.753 10246 1.113 1025 2.123 10246 1.423 1025 34.36 10.25 0.8216 0.0619
Module 5 BW 1.083 10236 1.563 1025 1.963 10246 2.063 1025 32.96 17.24 0.8776 0.1066
Module 6 RW 1.003 10236 1.103 1025 2.023 10246 1.463 1025 31.36 11.27 0.8726 0.0728
Module 6 BW 1.103 10236 1.853 1025 2.013 10246 2.413 1025 30.36 17.80 0.8806 0.1197
Module 7 RW 9.863 10246 1.013 1025 2.083 10246 1.333 1025 32.36 10.01 0.8506 0.0629
Module 7 BW 1.103 10236 1.853 1025 2.093 10246 2.453 1025 32.66 18.73 0.8706 0.1178
Module 8 RW 9.333 10246 7.743 1026 2.093 10246 9.843 1026 35.26 7.28 0.8176 0.0430
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Table 8. Continued

Battery arrangement Re (O) Rct (O) Qdl (O�1 sndl ) ndl

Module 8 BW 1.093 10236 1.563 1025 1.793 10246 2.023 1025 31.76 17.73 0.8956 0.1136
Module 9 RW 1.023 10236 1.713 1025 2.333 10246 2.223 1025 37.96 15.93 0.7976 0.0881
Module 9 BW 1.083 10236 1.713 1025 2.123 10246 2.283 1025 33.56 17.84 0.8576 0.1086
Module 10 RW 1.033 10236 1.513 1025 2.253 10246 1.983 1025 31.86 13.47 0.8406 0.0864
Module 10 BW 1.113 10236 2.093 1025 2.173 10246 2.743 1025 30.76 18.71 0.8676 0.1252
Module 11 RW 9.843 10246 9.093 1026 1.943 10246 1.203 1025 34.76 10.50 0.8586 0.0615
Module 11 BW 1.083 10236 1.243 1025 1.653 10246 1.663 1025 35.46 18.56 0.9146 0.1063
Module 12 RW 9.643 10246 8.163 1026 1.863 10246 1.053 1025 34.56 9.13 0.8476 0.0539
Module 12 BW 1.033 10236 1.003 1025 1.633 10246 1.313 1025 34.06 13.72 0.8976 0.0814
Module 13 RW 9.623 10246 7.623 1026 1.923 10246 1.013 1025 35.56 9.09 0.8526 0.0519
Module 13 BW 1.033 10236 9.673 1026 1.543 10246 1.263 1025 38.66 15.71 0.8876 0.0827

Battery arrangement RW (O) TW (s) L (H) SoH

Module 1 RW 1.083 10236 2.613 1024 92.56 41.4 5.843 10286 1.353 1029 0.845
Module 1 BW 1.093 10236 7.313 1024 102.96 129.4 8.933 10286 3.413 1029 0.854
Module 2 RW 1.123 10236 4.963 1024 101.16 83.9 2.143 10286 2.113 1029 0.837
Module 2 BW 1.093 10236 6.433 1024 100.86 111.0 7.153 10286 2.913 1029 0.842
Module 3 RW 1.143 10236 3.913 1024 99.76 64.0 6.893 10286 1.923 1029 0.842
Module 3 BW 1.093 10236 5.763 1024 100.66 99.5 9.233 10286 2.683 1029 0.846
Module 4 RW 1.143 10236 4.823 1024 101.16 80.0 3.403 10286 1.963 1029 0.837
Module 4 BW 1.103 10236 7.583 1024 103.86 134.1 1.083 10276 3.473 1029 0.840
Module 5 RW 1.133 10236 4.343 1024 100.46 71.8 7.483 10286 2.113 1029 0.838
Module 5 BW 1.093 10236 7.613 1024 103.76 134.8 8.813 10286 3.493 1029 0.835
Module 6 RW 1.133 10236 5.353 1024 101.96 90.2 6.953 10286 2.503 1029 0.838
Module 6 BW 1.063 10236 8.573 1024 103.66 155.6 1.203 10276 4.073 1029 0.838
Module 7 RW 1.123 10236 4.533 1024 99.86 75.5 4.243 10286 1.953 1029 0.838
Module 7 BW 1.083 10236 8.963 1024 104.76 161.9 1.033 10276 4.163 1029 0.832
Module 8 RW 1.133 10236 2.883 1024 97.36 46.0 7.583 10286 1.473 1029 0.829
Module 8 BW 1.083 10236 7.283 1024 102.66 129.7 1.323 10276 3.683 1029 0.828
Module 9 RW 1.103 10236 6.843 1024 102.96 119.0 3.913 10286 3.253 1029 0.834
Module 9 BW 1.103 10236 8.413 1024 104.86 149.4 4.203 10286 3.423 1029 0.832
Module 10 RW 1.123 10236 6.963 1024 104.26 120.9 3.163 10286 3.173 1029 0.835
Module 10 BW 1.073 10236 9.663 1024 104.76 176.8 1.193 10276 4.743 1029 0.835
Module 11 RW 1.143 10236 4.193 1024 99.66 68.5 5.493 10286 1.773 1029 0.828
Module 11 BW 1.093 10236 6.593 1024 102.26 115.4 8.973 10286 3.103 1029 0.828
Module 12 RW 1.193 10236 3.573 1024 102.06 57.3 6.723 10286 1.643 1029 0.772
Module 12 BW 1.153 10236 4.933 1024 102.36 82.4 9.713 10286 2.363 1029 0.778
Module 13 RW 1.193 10236 3.683 1024 102.46 59.5 3.363 10286 1.413 1029 0.769
Module 13 BW 1.173 10236 4.793 1024 103.46 79.2 9.673 10286 2.253 1029 0.769

ECM: equivalent circuit model; SoC: state of charge; SoH: state of health.

The battery arrangements RW and BW correspond to measurements across the red and white and black and white terminals on the Nissan Leaf

2011 module, respectively.
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