
Academic Editor: Md Baharul Islam

Received: 22 July 2025

Revised: 17 August 2025

Accepted: 18 August 2025

Published: 20 August 2025

Citation: Chang, X.; Wang, Y.; Zhang,

H.; Adamyk, B.; Yan, L. Optimized

Adaptive Multi-Scale Architecture for

Surface Defect Recognition. Algorithms

2025, 18, 529. https://doi.org/

10.3390/a18080529

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

algorithms

Article

Optimized Adaptive Multi-Scale Architecture for Surface
Defect Recognition
Xueli Chang 1,2, Yue Wang 1,2, Heping Zhang 1,2, Bogdan Adamyk 3,* and Lingyu Yan 1,2,*

1 School of Computer Science, Hubei University of Technology, Wuhan 430068, China;
chang99@hbut.edu.cn (X.C.); 20140106@hbut.edu.cn (Y.W.); zhanghping@hbut.edu.cn (H.Z.)

2 Key Laboratory of Green Intelligent Computing Network in Hubei Province, Wuhan 430068, China
3 Aston Business School, Aston University, Birmingham B4 7ET, UK
* Correspondence: b.adamyk@aston.ac.uk (B.A.); yanlingyu@hbut.edu.cn (L.Y.)

Abstract

Detection of defects on steel surface is crucial for industrial quality control. To address the
issues of structural complexity, high parameter volume, and poor real-time performance in
current detection models, this study proposes a lightweight model based on an improved
YOLOv11. The model first reconstructs the backbone network by introducing a Reversible
Connected Multi-Column Network (RevCol) to effectively preserve multi-level feature in-
formation. Second, the lightweight FasterNet is embedded into the C3k2 module, utilizing
Partial Convolution (PConv) to reduce computational overhead. Additionally, a Group
Convolution-driven EfficientDetect head is designed to maintain high-performance feature
extraction while minimizing consumption of computational resources. Finally, a novel
WISEPIoU loss function is developed by integrating WISE-IoU and POWERFUL-IoU to
accelerate the model convergence and optimize the accuracy of bounding box regression.
The experiments on the NEU-DET dataset demonstrate that the improved model achieves
a parameter reduction of 39.1% from the baseline and computational complexity of 49.2%
reduction in comparison with the baseline, with an mAP@0.5 of 0.758 and real-time per-
formance of 91 FPS. On the DeepPCB dataset, the model exhibits reduction of parameters
and computations by 39.1% and 49.2%, respectively, with mAP@0.5 = 0.985 and real-time
performance of 64 FPS. The study validates that the proposed lightweight framework effec-
tively balances accuracy and efficiency, and proves to be a practical solution for real-time
defect detection in resource-constrained environments.

Keywords: steel surface defect detection; lightweight model; revcol; generalization
performance

1. Introduction
As an indispensable foundational material in the fields such as construction and

industrial manufacturing, the quality characteristics of steel products directly affect the
performance and safety reliability of final products. In modern industrial production,
systematic detection of surface defects in steel materials enables the scientific evaluation
of material quality. Defects such as scratches and cracks on steel surfaces significantly
degrade their mechanical properties and service life. With the continuous improvement
of standards of quality for industrial products, the technology of surface defect detection
has become a critical component of quality control systems. Currently, methods of defect
detection of steel surface are primarily split into three categories: manual visual inspection,
traditional machine vision-based methods, and deep learning-based methods [1].
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Manual defect inspection relies on visual observation by inspectors, but this approach
has significant limitations, including high labor costs, low efficiency, and difficulty in real-
time monitoring [2]. In contrast, machine vision-based detection technologies reduce labor
costs while significantly improving detection accuracy and efficiency. However, it should
be noted that these methods still require manual feature extraction, which may constrain
system robustness and generalization capabilities [3], especially when handling large-scale
defect datasets.

As industrial requirements to detection accuracy continue to rise, traditional machine
vision-based methods struggle to meet practical needs, hindering the development of deep
learning-based intelligent detection technologies. Jonathan et al. first applied convolutional
neural networks (CNNs) to steel surface defect detection [4], demonstrating their superior
automatic feature extraction and classification capabilities, as well as the applicability
of deep learning in complex industrial scenarios. Current target detection algorithms
are mainly divided into two categories: one-stage algorithms (e.g., YOLO series [5–11],
SSD [12], DETR [13]), which offer higher detection speed but relatively lower accuracy,
and two-stage algorithms (e.g., R-CNN [14], Fast R-CNN [15], Faster R-CNN [16]), which
achieve higher accuracy through region proposal mechanisms but suffer from lower com-
putational efficiency. Notably, CNN-based methods (e.g., YOLO) underperform when
dealing with complex textures or strong background interference. Recent studies showed
that the Transformer-based methods, leveraging their global modeling advantages, exhibit
stronger feature learning capabilities. However, their massive computational demands
pose significant challenges for industrial applications. Therefore, developing lightweight
defect detection models that balance accuracy and computational efficiency has become a
key research focus.

This study focuses on the lightweight improvement of the YOLOv11 algorithm. Al-
though YOLOv11 demonstrates outstanding performance in detection speed, computa-
tional efficiency, model size, and accuracy, further optimization is needed for industrial
defect detection scenarios with stringent real-time requirements and limited computational
resources. We propose an improved lightweight steel surface defect detection model,
RF-EW-YOLOv11, with the following contributions:

(1) Reversible Connected Multi-Column Network (RevCol) for Backbone Reconstruc-
tion: A multi-column reversible connection design preserves low-level texture and
high-level semantic features, reducing feature loss and enhancing multi-scale defect
representation.

(2) FasterNet Lightweight Module Integration: Introduces partial convolution (PConv) in
the C3k2 module, reducing computational complexity to 1/16 of standard convolution
and minimizing redundant calculations and memory access overhead.

(3) Group Convolution-Driven EfficientDetect Head: Reconstructs the detection head
using group convolution, reducing parameters while maintaining feature extraction
performance through cross-channel interaction.

(4) WISEPIoU Hybrid Loss Function Optimization: Combines the dynamic penalty mech-
anism of WISE-IoU and the geometric constraints of POWERFUL-IoU to accelerate
convergence and improve bounding box regression accuracy, particularly for small
defects in complex backgrounds.

The remainder of this paper is organized as follows: Section 2 reviews related work
on defect detection algorithms. Section 3 describes the proposed RF-EW-YOLOv11 model.
Section 4 presents experiments validating the model’s effectiveness. Section 5 concludes
the paper.
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2. Related Work
2.1. Traditional Machine Vision-Based Steel Surface Defect Detection

Traditional machine vision techniques for steel surface defect detection rely on knowl-
edge from optics, physics, and computer science. The process involves image processing,
feature extraction, classification, and recognition [17]. In 2018, Xu et al. proposed RNAMlet,
a novel method of adaptive multi-scale geometric analysis (MGA) for steel surface defect
recognition [18]. By combining asymmetric and non-overlapping models (NAM), RNAM-
let optimized feature extraction and improved classification accuracy while maintaining
real-time performance. Liu et al. demonstrated that combining LBP feature extraction with
ELM classification achieved the best results for cold-rolled strip surface defects [19]. In
2020, Liu et al. introduced NSST-KLPP for aluminum strip defect recognition, combin-
ing non-subsampled shearlet transform (NSST) and kernel locality preserving projections
(KLPPs) [20]. Sun et al. proposed an unsupervised aluminum plate defect detection method
(PPFMNBD) using multi-light illumination, addressing the scarcity of defect samples in
industrial settings [21].

However, these methods still face limitations: reliance on manually designed fea-
tures, sensitivity to environmental factors (e.g., lighting), and poor adaptability to diverse
industrial requirements.

2.2. Deep Learning-Based Steel Surface Defect Detection

Deep learning has significantly enhanced defect detection accuracy and automation.
Target detection algorithms are divided into one-stage and two-stage approaches. Cha
et al. applied Faster R-CNN for structural damage detection [22]. Zhao et al. improved
Faster R-CNN with deformable networks for random steel defects [23]. Yang et al. de-
veloped a lightweight CNN-based system using MobileNetV2 and CBAM attention [24].
Akhyar et al. proposed FDD based on Cascade R-CNN with deformable convolutions,
achieving high accuracy but slow inference speeds [25].

2.3. YOLOv11

The iteration of YOLOv11 is based on algorithms such as YOLOv8, while introducing
more innovative features to make its design more focused on balancing efficiency and
practicality, aiming to solve various challenges encountered in various industries with
higher accuracy and efficiency.

In terms of network architecture, YOLOv11 continues the overall framework of
YOLOv8, but has made significant improvements in key modules. One of its core in-
novations is the introduction of a configurable C3k2 module to replace the original C2f
module, significantly improving the gradient flow and computational efficiency of the
network. The C3k2 module has a unique dynamic switchable characteristic, and its specific
behavior can be determined by setting the parameter value of C3k to True or False. When
C3k = True, the module will use the C3k structure to replace the traditional Bottleneck
structure, which allows the network to perform more in-depth and complex feature ex-
traction. When C3k = False, the module degenerates into a standard C2f structure. This
switchable design strategy enables YOLOv11 to dynamically adjust the network’s feature
extraction capability according to different application scenarios and computing resource
requirements, achieving the optimal balance between computational efficiency and feature
expression capability.

In the feature fusion section, YOLOv11 introduces the C2PSA module in the Neck
layer, which combines the standard C2f module with Pointwise Spatial Attention (PSA)
blocks. This mechanism adaptively learns the importance weights of each spatial position in
the feature map, allowing the network to more effectively focus on important regions in the
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image, thereby enabling more accurate detection of targets of different sizes and positions.
Experiments have shown that this design enables YOLOv11 to have more robust detection
performance for multi-scale targets in complex scenes while maintaining computational
efficiency.

Finally, in the design of the detection head, YOLOv11 adopts the same decoupling
head design as YOLOv8, that is, its Head layer also contains two independent branches,
separating the classification and regression tasks. However, YOLOv11 has made more
refined optimizations by replacing the two 3 × 3 convolutions in the classification detection
head with two Depthwise Separable Convolution (DWConv) convolutions. This improve-
ment decomposes the calculation of spatial correlation and channel correlation, effectively
reducing redundant calculations while maintaining the performance of the model, im-
proving the efficiency of the model, and enabling efficient deployment on resource limited
mobile devices.

3. Methodology
We propose a lightweight improved YOLOv11 detection algorithm, which achieves

comprehensive performance enhancement through structural optimization and module
innovation. Firstly, the backbone network of YOLOv11 is reconstructed using the reversible
connection multi-column network (RevCol) idea to extract more features at a lower cost.
Secondly, the lightweight and fast network FasterNet is embedded into the C3k2 module
of the model, further reducing the model’s parameter count, volume, and computational
load, without sacrificing accuracy. Additionally, an efficient detection head (EfficientDetect)
is proposed, which uses group convolution to perform lightweight modifications on the
original three detection heads of YOLOv11, reducing consumption of computational re-
sources, while maintaining high-performance feature extraction capabilities of the detection
heads. Finally, the WISEPIoU loss function, combining WISE-IoU and POWERFUL-IoU,
is proposed to address the limitations of the original single loss function of YOLOv11.
This loss function enables faster model convergence and improves detection accuracy. The
improved model is referred to as RF-EW-YOLOv11, and its network model is shown in
Figure 1, where C3k2-Faster is FasterNet Integrated Cross-Stage Partial Block with kernel
size 2; SPPF is the Spatial Pyramid Pooling Fast module for multi-scale feature aggregation;
C2PSA is the Cross Stage Partial block with Position Self-Attention for enhanced feature
representation.

3.1. RevCol-Reconstructed Backbone

The current YOLOv11 backbone employs a top-down architecture, which tends to
compress or discard features during layer propagation, retaining only the most relevant and
necessary information from the input. This approach often leads to the loss of embedded
image information during feature extraction, thereby degrading model performance. To
address this issue and enable the model to preserve more comprehensive raw information,
we proposes a reconstructed backbone network based on the Reversible Connected Multi-
Column Network (RevCol) [26].

RevCol adopts a multi-input design, breaking through the traditional paradigm of
network information feedforward transmission. Each column starts from low-level informa-
tion and extracts semantic features through compressed image channels. Due to unknown
downstream tasks, some useful features may be prematurely discarded during the feature
extraction stage of the training process. To alleviate this issue, RevCol introduced reversible
connections between columns, allowing the network to reversibly revisit column inputs.
This design ensures lossless data transfer between columns without the need for additional
memory storage. In addition, supervision is applied at the end of each column to constrain
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feature extraction, thereby decoupling low-level texture details from high-level semantic
information and enhancing the model’s adaptability to multi-scale targets. The specific
architecture is shown in Figure 2.
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Figure 1. Structure diagram of RF-EW-YOLOv11.

The key advantage of this method lies in its ability to retain essential low-level infor-
mation while maintaining high accuracy during training, which is critical for achieving
superior detection performance in subsequent tasks.

As shown in Figure 2, the reversible connected multi-column network (RevCol) first
segments the input image into several non-overlapping regions, and then processes them
in several different hierarchical modules. The starting position of each column is the lowest
level spatial information. As the data in each column propagates (Level 1 throughout
Level 4), the semantic information of the features in the input image is gradually extracted.
At the same time, reversible connections are introduced between each column to maintain
information on different decoupling dimensions. The last column integrates the propagated
information in the network structure and is responsible for generating feature maps. In
Figure 2, starting from Level 2, the output of the previous column will serve as the input for
the next column, and feature alignment at different scales will be achieved through “Fusion
blocks”. In other words, each layer of the input in the next column contains high-level
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semantic information from the previous column and low-level spatial information from
this column. This is how the model can fully learn decoupled features during forward
propagation. The reversible connection lines between each column effectively preserve the
information of each column, while ensuring the information is not lost during transmission.
This process can be represented by the following formulas.

Xt = OPt(Xt−1, Xt−m+1) + θXt−m (1)

Xt−m = θ−1[Xt − OP(Xt−1, Xt−m+1)] (2)

Input

STEM

Level1 Level1

Level2 Level2

Level3 Level3

Level4 Level4

Level1

Level2

Level3

Level4

More Columns

More Columns

More Columns

More Columns

Figure 2. Reversible multi-column network structure (RevCol).

Among them, Xt represents the t-th layer features; Xt−1 is the input of lower level
information in the column; Xt−m is the input of information from the same layer as the
previous column; Xt−m+1 is the input of advanced semantic information from the previous
column; OP is a non-linear operation; and θ is a reversible operation.

This section is based on the RevCol concept and reconstructs the BackBone of YOLOv11
by replacing the ConvNextBlock structure in the Level module of the RevCol network with
C3k2. The microstructure of RevCol before improvement is shown in Figure 3a, where each
level layer is feature extracted through downsampling and ConvNextBlock structure. The
improved Level module is shown in Figure 3b, and the four different levels of channels set
by the improved model are 16, 32, 64, and 128. The depths of the blocks at different levels
are 1, 2, 2, and 1. In order to avoid the complexity of the backbone network, which may
increase the complexity and number of parameters of the model, this paper set the number
of columns in RevCol to 2. The reconstructed backbone network is shown in Figure 4.



Algorithms 2025, 18, 529 7 of 19

Down-
Sample
Block

ConvNeXt
Blocks

Fusion 
Block

C3k2
Upsample

Conv

BatchNorm
2d

Conv2d

Low 
Resolution 
Features

High 
Resolution 
Features

(a)  (b)  (c) 

Figure 3. Level structure. (a) The original Level structure; (b) The optimized Level structure;
(c) Fusion module structure.

Input

STEM

C3k2-Faster C3k2-Faster

Fusion Block

C3k2-Faster

C3k2-Faster

CBS(k=2,s=2)

C3k2-Faster

C3k2-Faster

Fusion Block

C3k2-Faster

C3k2-Faster

CBS(k=2,s=2)

C3k2-Faster

C3k2-Faster

Fusion Block

C3k2-Faster C3k2-Faster

Fusion BlockCBS(k=2,s=2)

160×160

640×640

160×160 160×160

80×80 80×80

40×40 40×40

20×20 20×20

Figure 4. Reconstructed backbone network.

3.2. FasterNet Integration

Depthwise Separable Convolution (DWConv), as a variant of Ordinary Convolution
(Conv), is widely used in key modules of Convolutional Neural Networks. Although
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DWConv can effectively reduce frequent memory access of operators, it cannot directly
replace Ordinary Convolution due to its inherent problems of insufficient feature interaction
between channels and weakened spatial information extraction ability, resulting in a serious
loss of accuracy. To balance efficiency and accuracy, Partial Convolution (PConv) convolves
only a subset of the input channels, reducing redundant calculations while preserving key
features. Therefore, the lightweight fast network FasterNet [27], whose design is based on
the idea of partial convolution, will be embedded into the C3k2 module of YOLOv11 to
improve algorithm performance by reducing redundant calculations and frequent memory
access, and named C3k2-Faster.

FasterNet introduces an innovative Partial Convolution (PConv) strategy that pri-
marily performs regular convolutions on certain channels of the input feature map while
keeping the remaining channels unchanged. Then, it uses 1 × 1 convolution or pointwise
convolution to further extract information. The detailed process of this strategy is shown in
Figure 5b. This method not only reduces computational complexity, but also considers in-
formation extraction from all channels, opening up new directions for lightweight network
design.

…

* =

…
* =

*

Input/Output
Filter
Convolution
Identity

(a) (b)

Figure 5. Structural comparison between convolution and partial convolution. (a) Convolution and
(b) Pconv.

In the case of a partial ratio of r = 1/4, PConv only uses 1/4 of the input channels for
convolution, while the remaining 3/4 channels remain unchanged, and the subsequent
1 × 1 convolution has a very low computational overhead. The computational overhead of
partial convolution is only 1/16 of that of ordinary convolution.

3.3. EfficientDetect Head

The detection head of YOLOv11 is similar to that of YOLOv8, both using a dual branch
structure for object classification and bounding box regression. YOLOv11 introduces depth-
wise separable convolution (DWConv) on the classification branch, which significantly
reduces computational resource consumption while maintaining high classification perfor-
mance. However, due to the superposition effect of the number of channels and convolution
kernel parameters, this process still generates a large number of parameters, which limits
the computational efficiency of the model. Therefore, in order to further optimize the
structural design of the detection head, reduce redundant parameters, and improve model
performance, this section designs an efficient EfficientDetect detection head module, as
shown in the upper right corner of Figure 1.
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EfficientDetect Head enhances multi-scale object detection capability by dynamically
adjusting the weight allocation of different levels in the feature pyramid, and also uses
spatial attention pooling operation to enable the model to focus on key areas of the image.
EfficientDetect uses two group convolutions to form a shared convolutional layer module.
The design of this module aims to reduce the number of parameters and computational
complexity through the characteristics of grouped convolution, while achieving efficient
interaction of cross-channel information. Specifically, W, H, and C correspond to the width,
height, and number of channels of the feature map, and the first grouped convolution has
the same number of input and output channels, a convolution kernel size of 3 × 3, and a
grouping size of g = c/16, where c is the number of input channels used to reduce parameter
and computational complexity while preserving feature expression ability and k is the size
of the convolution kernel. The configuration of the second grouped convolution is the same
as that of the first one to ensure consistency in feature extraction. The shared convolution
module achieves cross-channel information fusion and interaction by concatenating the
output features of grouped convolutions, thereby integrating the originally independent
classification and regression branches into a unified feature processing flow. This design
not only significantly reduces the parameter and computational complexity of the model,
but also enables the extraction of key information from input features. Finally, the output
features of the shared convolution module are split into two independent branches for
object category prediction and bounding box regression. The grouped convolution structure
is shown in Figure 6, where arrow means genetation.

c/g

W
H

×

×

k k

k k

c/g

c/g

W’

W’

H’
c/g

H’

Figure 6. Grouping convolution.

3.4. WISEPIoU Loss Function

Boundary box regression is one of the core steps in object detection tasks, and its opti-
mization effect directly affects the accuracy of object localization. YOLOv11 continues the
design of YOLOv8, still using DFL Loss (Distribution Focal Loss) and CIoU Loss (Complete
Intersection over Union Loss) as regression loss functions in the branches responsible for
bounding box regression and confidence prediction. Among them, DFL Loss improves
regression accuracy by optimizing the discretization representation of bounding box dis-
tribution. CIoU Loss, on the basis of traditional IoU loss, further introduces constraints
on center point distance and aspect ratio to more comprehensively measure the matching
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degree between predicted boxes and real boxes. The CIoU loss function is represented by
the following formulas:

LCIoU = LIoU +
d2

c2 + α × ν, 0 ≤ LCIoU ≤ 2 (3)

α =
ν

1 − IoU + ν
; v =

4
π2 (arctan

Wgt

hgt
− arctan

W
h
)

2
(4)

Formula (3) for the CIoU loss function consists of three parts, which are used to
measure the consistency of the overlap area, center point distance, and aspect ratio between
the predicted box and the true box. Among them, d represents the Euclidean distance
between the center point of the predicted box and the center point of the real box, and c
represents the diagonal length of the minimum bounding rectangle between the predicted
box and the real box. It is a weight coefficient used to evaluate the shape consistency
between the predicted box and the real box.

This study replaced CIoU with WISEIOU, which is a combination of WISE IoU and
POWERFUL IoU. The loss functions of WISE IoU and POWERFUL IoU are shown in
Formulas (5) and (6), respectively.

LWIoU = LIoU × RWIoU , RWIoU = exp(
d2

c2 ) (5)

LPIoU = LIoU + RPIoU ; RPIoU = 1 − exp(−(

dw1
wgt

+ dw2
wgt

+ dh1
hgt

+ dh2
hgt

4
)

2

) (6)

From the above formula, it can be seen that the WISE IoU loss function is a loss function
multiplied by a penalty factor RPIoU that can promptly correct deviations from the original
loss function; POWERFUL IoU is a loss function plus a penalty factor RPIoU , where dw1,
dw2, dh1, and dh2 represent the edge distance between the predicted box and the target box,
and wgt and hgt are the width and height of the target box, respectively. Therefore, based
on the characteristics of the two IoU loss functions, the WISPEOU loss function formula is
shown in Formula (7).

LWisePIoU = LIoU × RWPIoU + RPIoU (7)

4. Experiments and Analysis
4.1. Datasets and Experimental Setup

This study used the NEU-DET [28] and deepPCB [29] datasets to validate the effec-
tiveness of ES-BiCF-YOLOv8 in defect detection direction. The NEU-DET dataset contains
six types of defects on steel surfaces, namely cracks (CRs), inclusions (INs), patches (PAs),
pitting surfaces (PSs), rolled oxide scales (RSs), and scratches (SCs). The dataset consists
of 1800 images and is divided into training, validation, and testing sets in an 8:1:1 ratio.
The deepPCB dataset contains six types of defects on the surface of PCB boards, namely
open circuit, short circuit, mouse bite, missing hole, burr, and spurious copper, totaling
1500 images. These images are divided into training, validation, and testing sets in a ratio
of 7:1:2.

We used the deep learning framework pytorch for model training and validation, with
CUDA version 11.2 and an experimental environment based on Ubuntu 16.04.7 operating
system. The experimental parameter settings are shown in Table 1, with no dropout and no
early stopping occurred.
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Table 1. Experimental parameters.

Condition Parameters Parameter Setting

Images 640 × 640
Optimiser SGD
Batchsize 16
Epoch 300
Initial learning rate 0.01
Momentum factor 0.937
Weighting of decay 0.0005
Threshold values for IoU 0.5

4.2. Evaluation Metrics

In order to better evaluate the performance of defect detection algorithms, this paper
constructed evaluation indicators for defect target detection system. We used average
detection accuracy, model parameter count, GFLOPs, and FPS (frames per second) as
performance evaluation metrics for the model.

MAP (Mean Accuracy): mAP reflects the average detection accuracy of the model
across all categories, with higher values indicating better model performance. The formula
is as follows.

mAP =
1
n

n

∑
i=1

APi (8)

Among them, n is the total number of categories in the dataset, i is the number of
detections, and AP (Average Precision) refers to the area under the Precision Recall Curve,
which is the average accuracy of a single category. The mAP value is obtained by taking
the average of the AP values of all categories.

(1) Parameter quantity (Params): Parameter quantity is used to evaluate the complexity
of the model, and a smaller parameter quantity indicates that the model is lighter.

(2) Calculation volume (GFLOPs): The calculation volume measures the computational ef-
ficiency of the model, and the smaller the GFLOPs value, the higher the computational
efficiency of the model.

(3) FPS (number of images processed per second): FPS represents the model’s ability
to process images per unit of time, with higher values indicating a better real-time
performance of the model. The calculation method is shown in Formula (9), where
Frameum represents the total number of detected images and ElapsedTime represents
the total time spent on detection.

FPS =
Framenum

ElapsedTime
(9)

(4) Precision measures the accuracy of positive predictions and reflects the model’s ability
to control false detections. It is calculated as follows:

Precision (%) =
TP

TP + FP
× 100% (10)

where TP (True Positive) denotes the number of correctly detected objects, and FP (False
Positive) represents the number of incorrectly detected objects.

Recall evaluates the completeness of object detection and reflects the model’s capability
to avoid missed detections. It is defined as follows:

Recall(%) =
TP

TP + FN
× 100% (11)
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These indicators together constitute a comprehensive evaluation of the performance
of proposed method, which helps us to fully understand the performance of the model in
defect recognition tasks.

4.3. Effectiveness of Loss Function Optimization

In order to understand the impact of loss function on network performance, we
conducted comparative experiments. Several mainstream bounding box regression loss
functions were selected for analysis, including CIoU, PIoU, SIoU, WIoU, Shape IoU, and
Wise PIoU. The performance comparison of different loss functions is shown in Table 2.

Table 2. Performance comparison of different loss functions on NEU-DET dataset.

Loss Function mAP@0.5 Params (M) GFLOPs FPS

CIoU 0.741 1.57 3.2 91
PIoU 0.734 1.57 3.2 91
SIoU 0.725 1.57 3.2 91
WIoU 0.726 1.57 3.2 91

Shape-IoU 0.749 1.57 3.2 91
Wise-PIoU 0.758 1.57 3.2 91

The experimental results show that Wise PIoU outperforms all other loss functions in
terms of accuracy and recall, demonstrating significant advantages. Wise PIoU has a fast
convergence and dynamic focusing mechanism. Through an adaptive weight allocation
strategy, it effectively suppresses the harmful gradient of low-quality anchor points, while
enhancing the learning ability of medium quality anchor points, thereby improving the
detection accuracy of the model.

4.4. Ablation Experiment and Result Analysis

For the convenience of displaying experimental results, we named the experimental
models as shown in Table 3.

Table 3. Description of the experimental models.

Model Name RevCol Backbone FasterNet
Network

EfficientDetect
Detection Head WISEPIOU

R-YOLOv11
√

RF-YOLOv11
√ √

RC-E-YOLOv11
√ √ √

RC-EW-YOLOv11
√ √ √ √

(1) The YOLOv11 model introduced into the RevCol backbone network is referred to as
R-YOLOv11;

(2) The YOLOv11 model incorporating RevCol backbone network and FasterNet network
is referred to as RF-YOLOv11;

(3) The YOLOv11 model incorporating RevCol backbone network, FasterNet network,
and EfficientDetect detection head is referred to as RC-E-YOLOv11;

(4) The YOLOv11 model incorporating RevCol backbone network, FasterNet network,
EfficientDetect detection head, and WISPEOU loss function is referred to as RC-EW-
YOLOv11.

4.4.1. Ablation Study on NEU-DET

This section first designed an ablation experiment on the NEU-DET dataset of steel
surface defects, and the experimental results are shown in Table 4. The experimental
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results show that the improved RF-EW-YOLOv11 model exhibits good performance on
the evaluation metrics set in this paper. Although its detection accuracy slightly decreased
compared to the benchmark model YOLOv11, it exhibits significant advantages in terms
of parameter count, computational complexity, and FPS. Specifically, compared with the
original model, the mAP value of the model decreased by 1.4%, the number of parameters
decreased by 1.01 M, the GFLOPs decreased by 3.1, and the FPS value was basically the
same as the original model.

Table 4. Ablation experiments on the NEU-DET dataset.

Solution mAP@0.5 Params (M) GFLOPs FPS

YOLOv11 n
(baseline) 0.769 2.58 6.3 93

R-YOLOv11 0.766 2.09 4.9 88
RF-YOLOv11 0.760 1.84 4.3 90

RF-E-
YOLOv11 0.746 1.57 3.2 87

RF-EW-
YOLOv11 0.758 1.57 3.2 91

The R-YOLOv11 model reconstructed by RevCol did not show significant changes
in detection accuracy, but its parameter and computational complexity decreased by
0.49 M and 1.4 GFLOPs, respectively, and FPS decreased by 5. This indicates that RevCol
can obtain more effective information with fewer parameter calculations, ensuring the
excellent feature extraction ability of the model. Embedding FasterNet network in C3k2 of
R-YOLOv8 model can further reduce the computational cost of the model while ensuring
the ability to extract feature information. From Table 4, it can be seen that the RF-YOLOv11
model embedded in the FasterNet network has a mAP value that is basically the same
as the original model, with a decrease of 0.74 M in parameters and 2 GFLOPs in com-
putation. This result validates the advantage of FasterNet network in saving computing
resources, while also taking into account the feature extraction of all channels, ensuring
that detection accuracy is not affected. Compared with the R-YOLOv11 model, the FPS
value has increased by 4, indicating that the FasterNet network can accelerate the detection
speed of the model to a certain extent. The addition of this module has made the model
perform very well. Due to the large proportion of computation and parameter count in the
original model detection head, the introduction of EfficientDetect detection head reduces
the computational complexity of the model’s parameter count. From the table, it can be
seen that the RF-E-YOLOv11 with the introduction of EfficientDetect detection head has a
2.9% decrease in mAP value compared to the original model, and a 1.01 M and 3.1 GFLOPs
decrease in parameter and computational complexity, respectively. Although the detection
accuracy of the model is affected, the parameter and computational complexity of the
model have been greatly improved, which is in line with the purpose of lightweight im-
provement. In addition, by introducing the loss function WISPEOU, the detection accuracy
of the RF-EW-YOLOv11 model slightly decreased compared to the original model, but this
improvement partially compensated for the accuracy loss caused by the introduction of the
EfficientDetect detection head. Overall, the improved model still maintains good detec-
tion performance, and the reduction in FPS is not severe, still meeting the requirements
of real-time detection and achieving the expected goal of lightweight design. Figure 7
shows the detection performance of different models on the NEU-DET dataset. The color
corresponds to different types of defects, from left to right are cracking, inclusion, patches,
pitted sturface. The type of detect is together with corresponding box.



Algorithms 2025, 18, 529 14 of 19

Original 
Image

GT

RF-EW-
YOLOV11

YOLOv11

 

Figure 7. Detection performance on the NEU-DET dataset.

4.4.2. Ablation Study on DeepPCB

Due to the limited sample size and single scene of NEU-DET, as well as the diverse
and fuzzy boundaries of defects, it may lead to a lack of diversity and generalization of
defects. In order to verify the generalization ability of the model, this study also conducted
ablation experiments on the deepPCB dataset. The experimental results are shown in
Table 5. The results indicate that RF-EW-YOLOv11 significantly improves the efficiency and
inference speed of the model while maintaining high detection accuracy, demonstrating
excellent comprehensive performance. Compared with the baseline model YOLOv11,
RF-EW-YOLOv11 maintained the same accuracy on mAP (0.985), but the parameter count
significantly decreased from 2.58 M to 1.57 M, the computational complexity decreased
from 6.3 GFLOPs to 3.2 GFLOPs, and the inference speed increased from 62.9 FPS to 64 FPS.
This result indicates that RF-EW-YOLOv11 not only successfully compressed the volume
and computational complexity of the model, but also further improved the computational
efficiency and detection speed of the model. In summary, the model RF-EW-YOLOv11
proposed performs well on the deepPCB dataset, demonstrating its excellent generalization
ability. Figure 8 shows the detection performance of different models on the deepPCB
dataset.

Table 5. Ablation experiments on the DeepPCB dataset.

Solution mAP@0.5 Params (M) GFLOPs FPS

YOLOv11 n (baseline) 0.985 2.58 6.3 62.9
R-YOLOv11 0.976 2.09 4.9 56.1

RF-YOLOv11 0.982 1.84 4.3 63.6
RF-E-YOLOv11 0.970 1.57 3.2 61.2

RF-EW-YOLOv11 0.985 1.57 3.2 64
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Figure 8. Detection performance on the deepPCB dataset.

4.5. Comparative Experimental Analysis and Result Analysis
4.5.1. Comparative Experiments on NEU-DET Dataset

In order to further verify the feasibility and superiority of the proposed model RF-EW-
YOLOv11, this section selected YOLO series algorithms as well as Faster RCNN, SSD, and
other algorithms for comparative experiments on the NEU-DET dataset. The experimental
results are shown in Table 6.

Table 6. Comparative experiments on the NEU-DET dataset.

Solution Precision (%) Recall (%) mAP@0.5 Params (M) GFLOPs FPS

YOLOv5 66.9 58.4 0.746 2.50 7.1 90
YOLOv6 67.4 65.3 0.728 4.23 11.8 113
YOLOv7 66.5 61.2 0.709 6.02 13.1 46
YOLOv8 67.2 64.8 0.734 3.01 8.1 81
YOLOv9 69.4 67.1 0.717 25.5 103.7 67

YOLOv10 70.7 69.5 0.745 2.69 8.4 85
YOLOv11 72.3 70.6 0.769 2.58 6.3 93
YOLOv12 73.8 71.7 0.770 2.57 6.5 50

Faster RCNN [30] 69.6 64.8 0.722 28.33 137.09 -
SSD [31] 65.4 68.9 0.610 41.10 145.3 41

RF-EW-YOLOv11 75.1 70.6 0.758 1.57 3.2 91

From the analysis of the data in Table 6, it can be concluded that the model RF-EW-
YOLOv11 achieves optimal parameter count and GFLOPs, with values of 1.57 and 3.2,
respectively. In terms of the parameter count of the model, the RF-EW-YOLOv11 model is
1.57 M, which achieves the best performance compared to all other models, demonstrating
its outstanding performance in lightweight design and is very suitable for deployment
on resource limited devices. Meanwhile, RF-EW-YOLOv11 only requires 3.2 GFLOPs,
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indicating its significant advantage in computational efficiency and the ability to achieve
high detection accuracy at lower computational costs. In terms of model detection speed
(FPS), RF-EW-YOLOv11 has an FPS of 91, second only to YOLOv6 (113) and YOLOv11
(93), and better than YOLOv12 (50), with good real-time detection performance. Overall,
RF-EW-YOLOv11 has demonstrated significant advantages in balancing high precision and
lightweight, efficient computing efficiency, and excellent inference speed. It is particularly
suitable for resource limited and real-time demanding application scenarios, and has a
wide range of application potential.

4.5.2. Comparative Experiments on deepPCB Dataset

In order to further verify the universal performance of RF-EW-YOLOv11, this section
selected YOLO series algorithms, and the new PCB board defect detection model EffNet
PCB for experiments on the deepPCB dataset. The experimental results of the EffNet PCB
model are from reference [32]. The comparative experimental results on the deepPCB
dataset are shown in Table 7.

Table 7. Comparative experiments on deepPCB.

Solution Precision (%) Recall (%) mAP@0.5 Params (M) GFLOPs FPS

YOLOv5 97.4 97.5 0.983 2.50 7.1 93
YOLOv6 97.6 96.8 0.979 4.23 11.8 102
YOLOv7 96.3 93.9 0.950 6.02 13.1 48
YOLOv8 97.6 97.4 0.984 3.01 8.1 85
YOLOv9 96.2 95.7 0.963 25.5 103.7 61.7

YOLOv10 97.0 95.3 0.980 2.69 8.4 83
YOLOv11 98.1 96.6 0.985 2.58 6.3 62.9
YOLOv12 98.4 97.1 0.987 2.57 6.5 58

EffNet-PCB [32] 98.2 96.9 0.990 6.40 22.2 -
RF-EW-YOLOv11 98.3 96.7 0.985 1.57 3.2 64

From the results in Table 7, it can be seen that RF-EW-YOLOv11 achieves detection
accuracy comparable to mainstream models with a lower parameter count (1.57 M) and
computational complexity (3.2 GFLOPs) (mAP value of 0.985), especially in terms of model
lightweighting, with a parameter count of only 6.2% of YOLOv9, but maintains higher
accuracy. In terms of detection accuracy, the mAP value of RF-EW-YOLOv11 is only slightly
lower than YOLOv12 (0.987) and the dedicated PCB detection method EffNet PCB (0.990),
indicating its strong robustness in defect detection tasks. In terms of model lightweighting,
RF-EW-YOLOv11 performs particularly well, with only 1.57 M parameters, far lower than
YOLOv7 (6.02), YOLOv9 (25.5), and EffNet PCB (6.40) methods, and even more streamlined
than YOLOv5 (2.50). In terms of computational complexity, the GFLOPs of model RF-
EW-YOLOv11 are only 3.2, indicating its high deployment value in industrial scenarios
with limited computing resources. However, RF-EW-YOLOv11 still has certain limitations,
with a detection speed FPS of only 64, far lower than models such as YOLOv5, YOLOv6,
and YOLOv8, indicating that its architecture design still has room for optimization in
the real-time detection performance of PCB board defects. Overall, RF-EW-YOLOv11 has
achieved a good balance between lightweight and detection accuracy, and is also suitable
for industrial PCB quality inspection scenarios with limited computing resources. Its
generalization performance is good, but its inference speed has not yet reached its optimal
level. In the future, its real-time detection performance on PCB board defects can be further
improved through network pruning, quantization, or more efficient attention mechanisms.
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5. Conclusions
This paper proposes an RF-EW-YOLOv11 algorithm based on lightweight improve-

ment to meet the application requirements of the YOLOv11 model in the field of industrial
defect detection. The aim is to ensure the detection speed of the model and reduce the
number of parameters and computation, while maintaining high detection accuracy. We
propose a new detection model RF-EW-YOLOv11 based on the YOLOv11 detection model.
Firstly, the backbone network of the original model is reconstructed using a reversible
multi-column network (RevCol). By utilizing RevCol’s multi-column design and reversible
connections, low-level spatial information and high-level semantic information are effec-
tively preserved, thereby reducing model complexity while ensuring high-level feature
extraction capability. At the same time, embedding a FasterNet network in the C3k2 module
of the YOLOv11 network reduces the model’s parameter and computational complexity,
improves the model’s inference speed, and obtains more useful feature information at a
lower cost. In addition, considering that the detection head still generates a large number
of redundant parameters during computation, we introduced the EfficientDetect detection
head based on Group Conv to further reduce the model’s parameter and computational
complexity. Finally, replacing the loss function of YOLOv11 itself with WISPEIoU enables
the model to converge faster and improve its detection accuracy. The experimental results
show that the improved RF-EW-YOLOv11 exhibits excellent performance on both NEU-
DET and DeepPCB datasets: on the NEU-DET dataset, RF-EW-YOLOv11 has an mAP of
0.758, a parameter size of only 1.57 M, a computational complexity of 3.2 GFLOPs, and an
FPS of 91. Compared with the benchmark model YOLOv11, it reduces the parameter size
and computational complexity by 1.01 and 3.1, respectively, while ensuring excellent real-
time detection performance. In addition, the generalization ability of RF-EW-YOLOv11 was
further validated on the deepPCB dataset, and good results were achieved on the selected
evaluation metrics in this paper. Through ablation experiments and comparative exper-
iments, we validated the effectiveness of RevCol backbone network, FasterNet network,
EfficientDetect detection head, and loss function improvement in model lightweighting
and performance enhancement. Compared with the YOLO series and other mainstream
object detection models such as Faster RCNN and SSD, RF-EW-YOLOv11 has significant
advantages in terms of parameter count, computational complexity, and inference speed. It
is particularly suitable for industrial defect detection scenarios with limited resources and
high real-time requirements, providing an efficient and practical solution for the field of
industrial defect detection.

Although the proposed adaptive multi-scale architecture captures defect features
at different scales by dynamically adjusting the receptive field, this process introduces
additional computational overhead, resulting in a slower inference speed than lightweight
models. Future research could focus on model lightweighting and acceleration technology.
Firstly, consider pruning redundant channels or branches in multi-scale architectures, such
as removing specific scale features that contribute less to small defect detection. Secondly,
consider using dynamic sparse attention to only calculate local attention related to the
defect area, reducing computational complexity.
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