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Digital equalisation of fibre-based nonlinear impairments in optical transmission systems
remains commercially unavailable, mainly due to the high computational complexity of
existing algorithms. Machine learning has recently revolutionised the field, enabling low-
complexity schemes and introducing a range of approaches, from black-box methods to
model-driven schemes. While black-box schemes are effective, they lack interpretability,
require extensive training data and rely on heuristic designs. In contrast, model-driven
schemes, such as learned digital backpropagation (LDBP), integrate signal propagation
principles into the equaliser architecture, providing a framework that can be more easily
understood and optimised. Although LDBP has achieved significant performance improve-
ments and cost reductions, its sequential computations lead to high processing latency. For
high-speed applications, the architecture of Volterra series models is an attractive alterna-
tive due to their inherent parallelisation capabilities. In particular, the third-order inverse
Volterra series transfer function (IVSTF) model, while having known accuracy limitations
that hinder its applicability, features a fully parallel structure with untapped potential as
the basis of model-driven schemes.

This thesis presents a learned Volterra-based framework to mitigate nonlinear impair-
ments, providing an alternative to LDBP. For single-channel transmission, we present a
time-domain equaliser enabled by machine learning and based on simplifying the IVSTF.
The scheme achieves equivalent performance to LDBP with comparable computational ef-
fort. For wavelength-division multiplexed (WDM) systems, three multiple-input-multiple-
output (MIMO) equalisation architectures for mitigating interchannel impairments are in-
troduced. Their design and training were enabled by a purpose-built computational frame-
work. Efficient MIMO equalisation is achieved, which has not been demonstrated before
with the IVSTF architecture. The proposed models demonstrate robust improvements
over chromatic dispersion compensation. A comprehensive performance and cost analysis
identifies the model with the best trade-off, and the interpretability of our approach is
demonstrated through the examination of the learned parameters. Our analysis and results
can be used as guidelines for designing learned multi-channel equalisers for WDM systems.

Keywords:
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Series, Model-driven, Optical Fibre Networks
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The following metrics are used throughout this thesis to discuss and evaluate the perfor-

mance of optical transmission systems:

• BER: The ratio of erroneous bits to the total number of transmitted bits:

BER =
Number of bit errors

Number of received bits
. (1)

• Effective SNR: Obtained from the BER using the following relationship [119]:

SNR = 10 · log10

(
2 · (M − 1)

3

(
erfcinv

(
BER log2(M)

2
·
(
1− 1√

M

)))2
)
, (2)

where M is the modulation order and erfcinv is the inverse of the complementary

error function.

• Q-factor: Obtained from the BER as:

Q = 20log10

[√
2erfc−1(2BER)

]
. (3)
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CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

Long-haul optical transmission links are essential to the Internet, carrying most of its data

traffic. This traffic has been growing exponentially at a rate of around 60% [139], a trend

expected to continue in the foreseeable future. Over the past three decades, technolog-

ical advancements have enabled transmission networks to meet these increasing capacity

demands [139]. The introduction of single-mode fibre (SMF) facilitated low-loss transmis-

sion in the C band. Optical amplifiers were developed to counter signal loss, allowing

multiple wavelength channels (WDM) to be transmitted over a single fibre. The advent of

coherent transceivers improved further the spectral efficiency through advanced modulation

formats. Coherent receivers also enabled digital signal processing for the compensation of

performance-limiting fibre impairments, such as chromatic dispersion (CD) and polarisation

mode dispersion (PMD).

Transmission link capacity must continue to increase sufficiently to meet future demands.

The Shannon-Hartley formula, which provides a lower bound for the capacity C, provides

insights on which strategies can be used to increase it:

C ≤ S ·B · log2(1 + SNR). (1.1)

Here, B is the bandwidth, S is the number of spatial channels, and SNR is the signal-

to-noise ratio. One option for increasing capacity is installing additional fibres, increasing

the number of spatial channels S. Although this simple solution leads to capacity that

increases linearly with the number of additional fibres, it is not cost-effective. Since each

new fibre requires transceivers, amplifiers, and power, the system cost also rises linearly,

N. Castro Salgado, PhD Thesis, Aston University 2024 6



CHAPTER 1. INTRODUCTION

preventing any reduction in the cost per bit. This would also be the case in existing fibre

networks, where activating dark fibres also requires new transceivers and power. Another

approach is transmitting over wavelengths beyond the C and L bands, known as ultra-

wideband (UWB) transmission. Despite significant progress, several issues remain before

transmission beyond C+L becomes practical. Similarly to increasing fibre count, expanding

to new bands would also require new amplification systems and transceivers, impacting cost.

Additionally, the variations in fibre parameters with the transmission wavelength introduce

increased nonlinear impairments, which has led researchers to consider alternative fibre

types with lower loss and nonlinearity. Such development path would result in cost issues

similar to installing more fibres for C-band transmission.

A promising solution lies in mitigating the impairments caused by fibre nonlinearity

[5]. Fibre nonlinearity and amplified stimulated emission (ASE) limit the SNR, affecting

the achievable capacity as per Eq. (1.1). Assuming fibre nonlinearity to be Gaussian and

additive, the SNR in a transmission link can be expressed as [105]

SNR =
P

PN + PS−S + PS−N
. (1.2)

Here, P is the optical signal power, PN is the total ASE noise, PS−N is the total nonlinear

signal-to-noise interaction and PS−S is the signal-to-signal interaction.

Although modelling the nonlinear noise as Gaussian (and thus, non-deterministic) is a

useful approximation for characterising system performance, the fibre nonlinearity giving

rise to the PS−S noise term in Eq. (1.2) is deterministic and can be partially suppressed.

This suppression improves the SNR, producing a logarithmic increase in system capacity.

Nonlinearity equalisation (NLE) is a key method for mitigating fibre nonlinearity [29]. It can

be implemented using optical techniques such as optical phase conjugation (OPC) [74] or

digital approaches [75, 85]. Digital NLE is particularly attractive as it avoids modifications

to transmission infrastructure, which may reduce costs compared to other approaches. De-

spite extensive research, this approach has not found a clear path to commercialisation yet

[107]. Arguably, this is primarily due to the unfavourable trade-off between computational

complexity and performance that digital NLE currently entails.

A central approach for NLE is to emulate the inverse propagation of the received signal

in the digital domain. DBP, the most extensively studied equalisation technique, achieves
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this by employing the split-step Fourier (SSF) method. DBP has demonstrated versatility,

with single-channel implementations addressing intra-channel impairments [72, 108, 96, 98]

and full-band or MIMO implementations tackling inter-channel impairments [86, 93, 94].

Significant improvements have been achieved by adopting strategies to enhance accuracy,

such as filtering in the nonlinear steps [108, 117], and the optimisation of the nonlinear step

position [98]. These methods have reduced complexity, typically by reducing the required

computational steps.

Recently, machine learning (ML) has gained attention for its potential in improving

conventional NLE techniques. One notable development is learned digital backpropagation

(LDBP), resulting from considering the optimisation of the DBP algorithm as a neural net-

work [65]. While LDBP offers significant improvements in performance and cost reduction,

its architecture is comprised of sequential linear and nonlinear operations which scale with

the fibre link length, resulting in excessive processing latency and difficulty in leveraging

hardware parallelism.

The Volterra series framework [104] presents a promising alternative to the SSF method

on which DBP is based on, with inherent compatibility for parallel implementation. The

framework can be used to develop equalisers that are a “parallel” counterpart of DBP.

However, obtaining Volterra-based equalisers with comparable complexity to DBP requires

truncating the series terms, heavily limiting precision and effectiveness. For example, third-

order IVSTF equalisers, which gained attention for their fully-parallel, low-cost architecture,

have not demonstrated comparable performance to DBP in single-channel equalisation [88],

while their use for multichannel equalisation remains limited [137]. The slower progress in

developing low-complexity Volterra-based equalisers compared to DBP is largely attributed

to performance limitations resulting from the simplifications required for practical use.

This thesis revisits IVSTF-based equalisation with ML, addressing the accuracy limi-

tations affecting its performance in single-channel and WDM transmission scenarios. The

IVSTF is selected as the foundation of this work due to its inherent low-latency and low-

complexity structure, which can potentially lead to efficient equalisers. By combining ML

optimisation with the IVSTF, we aim to design explainable ML models [32] that outper-

form existing Volterra-based schemes. Our approach for achieving this is parameterising the

IVSTF model and optimising it using gradient-based supervised learning [58]. Extensive

numerical simulations are conducted to develop and evaluate the equalisers across various
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transmission scenarios.

We first focus on single-channel equalisation, where the IVSTF is adapted into an ML

model with improved accuracy in estimating SPM impairments. This effort results in a fully

time-domain equaliser, the learned simplified inverse Volterra series transfer function (L-

simIVSTF), which demonstrates a 3 dB SNR improvement over chromatic dispersion equal-

isation and matches the performance of LDBP [12]. This result highlights the adaptability

of learned IVSTF-based models. The work is then extended to multichannel equalisation for

WDM systems, leading to the development of learned MIMO equalisers that leverage the

low-complexity and low-latency benefits of the IVSTF architecture. This work is facilitated

by a novel computational framework for the design and training of the MIMO equalisers. We

present three different equalisers: a fully parallel frequency-domain scheme (L-IVSTF), a

field-enhanced (FE) version with improved adaptability (FE L-IVSTF), and a time-domain

implementation (L-simIVSTF). A key contribution is the filtering strategy employed in the

FE L-simIVSTF, integrating static and trainable linear stages to balance adaptability and

computational efficiency. The equalisers introduced demonstrate unprecedented versatility

for Volterra-based schemes, allowing multiple steps-per-span implementations and MIMO

sizes of up to 9 × 9. In assessing equalisation capability, we first optimise each scheme

to determine the best performance that can be achieved. The 9 × 9 L-simIVSTF and FE

L-IVSTF equalisers demonstrate an average-per-channel SNR improvement of ∼ 2.2 dB

over chromatic dispersion compensation, providing competitive performance compared to

other theoretical studies on learned equalisers [124]. Our work then focuses on efficiency,

examining the hyperparameter configurations that lead to the best performance-complexity

tradeoff. Through a thorough comparison, the FE L-IVSTF emerges as the most efficient

solution, providing a 1.7 dB average SNR improvement when implemented as a 9×9 model

at 1 step per span.

1.1 Thesis Outline

The thesis is organised as follows:

• Chapter 2 reviews key digital equalisation techniques for transmission systems. It

covers two model-based methods: DBP and Volterra Series. The advantages and

limitations of Volterra-based equalisers in terms of performance, complexity and flex-
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ibility are discussed. This chapter also provides an overview of ML-based equalisers,

differentiating between data-driven and model-driven approaches. Finally, the poten-

tial of model-driven approaches based on the Volterra series is explored.

• Chapter 3 provides an overview of machine learning fundamentals, introducing basic

concepts related to the design and training of artificial neural networks. The chapter

also contrasts the design aspects of data-driven and model-driven approaches.

• Chapter 4 outlines the methodology used to simulate optical transmission systems, in-

cluding the digital signal processing techniques necessary for developing IVSTF-based

single-channel and multichannel equalisers. The chapter also details the computa-

tional framework developed for implementing and training MIMO-learned equalisers.

• Chapter 5 presents a novel learned Volterra scheme for single-channel equalisation.

The performance of the scheme is evaluated in both single-channel and WDM trans-

mission scenarios, comparing it with LDBP in terms of performance and complexity.

• Chapter 6 presents novel learned MIMO equalisers for WDM systems, featuring three

learned IVSTF-based models employing varied linear filtering techniques. The chap-

ter details the optimisation of these equalisers and compares their performance and

complexity to identify the model with the best tradeoff.

• Chapter 7 gives concluding remarks on the work done in this thesis and offers future

research directions.
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Chapter 2

Literature Review

2.1 Nonlinear Impairments in Optical Transmission Systems

A key aspect of developing optical transmission systems has been overcoming fibre impair-

ments [139]. Low-loss fibres transformed communications by enabling optical transmission

over ultra-long distances, with the SSMF becoming the standard in modern optical net-

works. While fibre loss significantly degrades optical signals after a few tens of km, it

is effectively countered by current amplification technologies, enabling transmission over

thousands of kms. Some impairments introduced by SMFs become important in long-haul

transmission. CD significantly impacts transmission as the high dispersion coefficient of the

fibre results in a large accumulated dispersion. Fortunately, this CD can be corrected digi-

tally at the receiver by applying static filters [113]. In contrast, the nonlinear impairments

introduced are much more challenging to compensate for. The Kerr effect, which causes

the fibre’s refractive index to increase with the intensity of the optical field, gives rise to a

nonlinear phase shift known as SPM. For a field A(z) that has propagated over a length of

fibre L, this shift is given by

ϕNL =

∫ L

0

P (z)dz = γLeff |A(L)|2. (2.1)

Here, γ is the nonlinear parameter, L is the fibre length, Leff is the effective fibre length

[96], P (z) is the signal’s optical power, and z is the propagation distance. SPM primarily

induces a frequency chirp on optical pulses that depends on the pulse shape. Moreover,

this effect interacts with the dispersion of the fibre, leading to the broadening of the light
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pulses.

In WDM systems, where multiple wavelength channels are transmitted over the SSMF

fibre, the nonlinear phase shift experienced by each channel is influenced not only by the

power modulation of its own field but also of the co-propagating channels. The shift induced

by the other channels is known as XPM. Assuming the propagation of two channels with

fields A1 and A2, the total nonlinear phase shift affecting field A1 is

ϕNL = γLeff

(
|A1(z)|2 + 2|A2(z)|2

)
. (2.2)

The linear and nonlinear effects mentioned above do not affect light pulses independently,

but interact with each other along the optical fibre as described by the NLSE:

∂A(z, t)

∂z
= −α

2
A(z, t) + j

β2

2

∂2A(z, t)

∂T 2
− iγ|A(z, t)|2A(z, t). (2.3)

Here, A(z = 0, t) is the field at the transmitter, β2 is the group velocity dispersion parameter,

and α is the propagation loss coefficient. The interactions between chromatic dispersion and

nonlinearity described in this equation are intractable, making it difficult to compensate for

nonlinear effects effectively.

The nonlinear impairments discussed above degrade the SNR in optical transmission

systems by introducing amplitude and phase distortions to the field envelope. These dis-

tortions modify the signal’s original modulation, causing the received waveforms to deviate

from their expected values. Since the receiver interprets these deviations as noise, the noise

floor described by the denominator of Eq. (1.2) is raised, limiting the usable signal power.

Furthermore, as evidenced by Eqs. (2.1) and (2.2), the impact of SPM and XPM impair-

ments is power-dependent. Figure 2.1 shows the performance, in terms of spectral efficiency,

of a 20 × 100 km SSMF system with lumped amplification as a function of launch power.

When using simple linear equalisation, the performance in the low-power regime increases

linearly with the launch power, with the ASE noise as the main limiting factor. Conversely,

in the high-power regime, performance declines with the launch power due to the increase

in nonlinear fibre noise, which becomes the dominant limitation.
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Linear
Compensation

Nonlinear
Compensation

Shannon Limit

~50%

Figure 2.1: Spectral efficiency of a 20 × 100 km SSMF optical coherent system. Excessive launch
power leads to suboptimal performance due to nonlinear noise. Optimal nonlinearity compensation
yields approximately a 50% increase in capacity.

2.2 Digital Nonlinearity Equalisation for Optical Transmis-

sion Systems

Digital nonlinearity equalisation addresses fibre nonlinear impairments by applying algo-

rithms to a digitally reconstructed signal, correcting distortions introduced during propa-

gation [75]. Theoretical and experimental studies have extensively examined the potential

gains of this technique in transmission systems [5, 30]. A common theoretical method for es-

timating the potential capacity improvements is employing the Gaussian noise (GN) model

to consider the impact of nonlinear noise on capacity. The SNR in a transmission system

after full-band compensation can be approximated as [5]

SNR ≈ P

NspanPASE + 3ξηP 2PASE
. (2.4)

Here, Nspan denotes the number of fibre spans, ξ = Nspan(Nspan − 1)/2, η is a nonlinear

distortion coefficient, and PASE is the ASE noise introduced by each amplifier. Perfect

full-band compensation removes the signal-to-signal noise term in Eq. (1.2). This SNR

expression can then be employed to estimate the system capacity. Figure 2.1 illustrates

how spectral efficiency improves with nonlinearity equalisation, resulting in approximately a

50% capacity increase. These enhancements can potentially improve operational margins for

telecom operators, with theoretical models suggesting that compensating fibre nonlinearity
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could reduce the total fibre count required for large-scale networks [29].

However, achieving the gains predicted by theory is difficult in practice. In practical

transmission systems, where fibre capacity is exploited through WDM, the full compen-

sation of nonlinear impairments requires access to the full bandwidth of the multiplexed

signal. However, the bandwidth of digital receivers is limited by their analog-to-digital con-

verters (ADCs), which restricts equalisers to a small portion of the total signal spectrum,

diminishing the achievable gains. An additional practical constraint is the requirement

for low computational complexity. With increasing concerns about power consumption

in communications infrastructure, telecom providers favour low-complexity signal process-

ing for their commercial solutions [133]. However, the approximations of the fibre link’s

nonlinear response employed by conventional compensation techniques are only accurate

with a sufficient number of steps (in the case of DBP) or considered terms (in the case

of perturbation-based methods), which often translates to high computational complex-

ity. Restricting the computational cost of equalisers often prevents them from delivering

satisfactory performance [86].

Given these limitations, single-channel equalisation, an approach for single-channel re-

ceivers, has been the primary focus of research. While it is the most feasible option for

implementation in practical transceivers, its performance in multichannel transmission sce-

narios is limited by its inability to mitigate the dominant interchannel effects (yielding less

than 1.5 dB Q2-factor improvement [107]). MIMO schemes [93] have attracted attention, as

they do not require wideband receivers but rather integrated single-channel receivers capa-

ble of sharing information. This equalisation approach aligns with research indicating that

wavelength parallelism is necessary for increasing the capacity of optical networks [139].

The limited capacity of wavelength channels is driving efforts to integrate parallel coherent

transceivers onto a single chip, which may enable the future practical implementation of

MIMO nonlinearity equalisation.

In the following sections, we examine the main nonlinearity equalisation approaches

for transmission systems, highlighting the gaps in the existing literature that this thesis

addresses. We categorise these approaches into conventional and ML-based techniques.

In particular, the limitations of conventional methods are discussed, along with how ML

has been leveraged to overcome some of these challenges. Finally, we discuss how this thesis

builds on these advancements.
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Fibre link propagation Digital backpropagation
step size h 

L0 2L NL ...... Lh L+h0 2L NL

Figure 2.2: Visual representation of a physical forward propagation link and a virtual back-
propagation link implementing DBP with a step size h. The red curves represent the corresponding
signal power evolutions.

2.2.1 Conventional Techniques

We call conventional equalisation techniques those based on solving the NLSE using nu-

merical methods, obtaining an inverse model to cancel nonlinear impairments. This sec-

tion examines two conventional techniques: DBP and the Volterra Series. We provide an

overview of the algorithms within each technique and review their use for single-channel

and multichannel equalisation for transmission systems.

Digital Backpropagation

DBP simulates the reverse propagation of the signal through the optical fibre link. This is

achieved by defining a virtual link with inverse parameters that sufficiently approximates

the propagation effects of the forward link [72], as illustrated in Fig. 2.2. DBP employs the

SSF method to solve the inverse propagation equation, dividing it into linear and nonlinear

components and solving them separately. This approach assumes that the interaction of

linear and nonlinear effects over sufficiently short propagation distances is negligible. Con-

sequently, an effective algorithm implementation requires subdividing the transmission link

into short segments, which are addressed sequentially.

The NLSE (Eq. (2.3)) can be rewritten as

∂A

∂z
= (D̂ + N̂)A, (2.5)

N. Castro Salgado, PhD Thesis, Aston University 2024 15



CHAPTER 2. LITERATURE REVIEW

Dispersion

Nonlinearity

Figure 2.3: Illustration of the split-step Fourier method solution to the NLSE. A(z, t) is the
propagated field. After each nonlinear phase shift, a dispersive step of length h is applied.

where the D̂ and N̂ operators are given by

D̂ = − iβ2

2

∂2

∂T 2
(2.6)

and

N̂ =
α

2
+ iγ|A|2. (2.7)

Over a length of fibre h, the SSF solution can be expressed as two steps, as shown in Fig.

2.3. In the first step, only nonlinearity is considered and D̂ = 0. In the second step, only

dispersion is accounted for, and N̂ = 0. The field at z = h can be expressed as

A(z + h, T ) ≈ A(z, T )ehD̂ehN̂ . (2.8)

Reducing the step size h improves the approximation of the solution and translates into

better nonlinearity compensation. However, this comes at the cost of increased compu-

tational effort which is an obstacle to the practical implementation of the algorithm. The

SSF method resolves the linear components in the frequency domain (FD) and the nonlinear

ones in TD. This dual-domain approach has been widely adopted for the implementation of

DBP equalisers, since performing linear steps with fast Fourier transform (FFT) has been

considered the most computationally efficient approach. In this case, the computational

cost of DBP mainly stems from the FFT. However, linear steps can also be performed in

the time domain by approximating the dispersion transfer function using finite impulse re-

sponse (FIR) filters, which has the advantage of avoiding repeated Fourier transformations
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and facilitates real-time processing [85]. For instance, time-domain DBP implementations

suitable for application-specific integrated circuit (ASIC) have been proposed [39]. A step

of TD DBP can be formulated as

A(z + h, t) = (A(z, t) ∗ hCD) · eαh/2 · e−jhγ|A|2 , (2.9)

where hCD is an FIR filter addressing the dispersion of step h. Time-domain DBP algo-

rithms could potentially offer competitive computational cost [90] as convolution operations

can be more efficient than frequency-domain filtering if the filters are sufficiently short [38].

However, this depends on the transmission scenario, as the filter length is constrained by

the memory of the transmission channel, which sets a lower bound on the filter length. Ad-

ditionally, FIR filters introduce inaccuracies due to the truncation of the dispersion impulse

response, which quickly worsens as the filter length is shortened. Therefore, significant

efforts have been directed towards developing methods that use short filters while main-

taining accuracy. One such method is the joint optimisation of FIR filter pairs, which has

been shown to significantly reduce filter length [145]. Notably, time domain implementa-

tions have been useful for the parameterisation of DBP algorithms for ML optimisation, as

discussed in section 2.2.2.

The DBP algorithm has been adapted to various transmission scenarios, from single-

channel setups [72] to multi-wavelength systems [85, 89]. This is done by solving an adequate

propagation equation. In single-channel transmission, the propagation equation accounts

for fibre losses, CD and SPM. For dual-polarisation signals, solving coupled equations to

consider polarisation interactions yields a suitable equaliser[70]. In multichannel systems,

a full-band DBP equaliser [86] can be derived by solving a single NLSE that describes

the propagation of the entire multiplexed signal. Alternatively, by solving coupled NLSE

each channel can be backpropagated separately, leading to a MIMO DBP equaliser where

XPM interactions between co-propagated channels are explicitly accounted for [26]. These

approaches involve varied computational and implementation requirements.

Single-channel DBP has been extensively investigated and is currently the primary

algorithm for benchmarking nonlinearity equalisation performance. Its flexibility enables

its application in dispersion-unmanaged and dispersion-managed links [98]. However, its

computational cost has prevented it from becoming a commercial solution. Therefore,
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significant efforts have focused on reducing the hardware complexity of DBP. The main

approach to pursue this has been to reduce the number of required DBP steps. This has been

achieved by modifying the nonlinear steps to consider the impact of neighbouring symbols

[108][117]. Although this increases the cost of nonlinear steps, it leads to overall complexity

reduction. Another method, proposed for the processing of single-channel wideband signals,

involves backpropagating slices of the received signal spectrum via subband processing [73,

19].

Full-band DBP processes WDM channels as a unified field. While it effectively addresses

intra and interchannel impairments with essentially the same algorithm as single-channel

DBP, it is much more computationally demanding. In this approach, the separate treatment

of linear and nonlinear effects done by the SSF method requires a much shorter dispersive

length to be effective. This requirement is imposed by the interchannel impairments. If the

number of steps is too low, the algorithm performs worse than simple chromatic dispersion

equalisation. Additionally, digital oversampling rates higher than those needed for single

channel equalisation are required to process a wider bandwidth [86]. These requirements

increase with the bandwidth of the signal.

Unlike full-field DBP, MIMO DBP is applied after demultiplexing the channels and

processes them jointly. The implementations proposed initially require a high number of

steps to adequately represent the interaction of the walkoff delay between channels with fibre

nonlinearity [91]. As with full-field DBP, this leads to much higher step counts than single-

channel DBP. To reduce the number of steps, frequency-domain filtering in the nonlinear

stages can be used to improve the estimation of dispersed nonlinearity [93, 18].

The optimisation of single-channel and multichannel DBP with ML techniques is covered

in section 2.2.2.

Volterra Series

The Volterra series is a mathematical framework that effectively models nonlinear interac-

tions in systems with “memory” effects [115], where past inputs influence the current output.

The method decomposes the nonlinear response of a system into a series of terms. It offers a

more detailed alternative to the Taylor series for analysing complex systems and has demon-

strated its applicability across many engineering fields. One of its main applications is the

modelling and equalisation of nonlinear distortion. Volterra equaliser implementations can
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Σ
(a) (b)

Figure 2.4: Compensators based on the Volterra inverse for a nonlinear system: (a) analytical
compensator, (b) adaptive compensator.

be categorised as analytical or adaptive [134]. These two approaches are illustrated in

Fig. 2.4.

When implemented as an adaptive filter, parameters are not analytically calculated but

instead dynamically adjusted to minimise a defined error criterion, such as the mean squared

error (MSE). Adaptive Volterra filters are flexible and can be implemented in the time or

frequency domain. The output y of a P -th order discrete-time Volterra filter with memory

M can be expressed as a function of an input x as [130]:

y(k) = wdc +

P∑
r=1

M−1∑
k1=0

· · ·
M−1∑

kr=kr−1

wr(k1, k2, . . . , kr)× x(k − k1) · · ·x(k − kr). (2.10)

Here, wr are the r-th order Volterra kernels. While adaptive Volterra filters are a promising

solution for compensating transceiver nonlinearity in short-reach systems [6, 130], their use

in equalising Kerr nonlinearity in long-haul systems is limited [102]. The number of coeffi-

cients in the Volterra filter grows as O(MP ), which leads to an extremely high complexity if

P or M are large. Even for low-order equalisers, the large channel memory in transmission

scenarios requires a filter with a large M , resulting in a prohibitively high complexity [23].

In contrast, analytical Volterra equaliser implementations are promising for transmis-

sion systems. A central analytical tool for developing analytical equalisers, based on the

frequency-domain formulation of the Volterra series, is the Volterra series transfer func-

tion (VSTF), which describes the relationship between the output and input of a system

as [115]

Y (ω) =

∞∑
n=1

∫
· · ·
∫

Hn(ω1, . . . , ωn−1, ω − ω1 − · · · − ωn−1)X(ω1) · · ·X(ωn−1)

×X(ω − ω1 − · · · − ωn−1)dω1 · · · dωn−1,

(2.11)
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Σ

Figure 2.5: Single-channel, single-polarisation compensator based on the third-order IVSTF. K1(ω)
and K3(ω) are the first and third order inverse kernels, respectively. Nonlinear distortion is modelled
as an additive term.

where Hn(ω1, ω2, · · · , ωn) is the n-th order frequency domain Volterra kernel, and Y (ω)

and X(ω) are the Fourier transforms of the output and input, respectively. The VSTF is

employed for modelling nonlinear signal propagation in optical fibres, providing an alterna-

tive to the split-step Fourier method. A VSTF for single-mode optical fibres is presented

in [104], where analytical expressions for each kernel up to the 5-th order are found. This

method parallels the regular perturbation (RP) approach [136], in which the solution to

the NLSE is formulated as a power series of the nonlinear coefficient γ. The RP method

provides closed-form approximations of the output field equivalent to those obtained using

the VSTF [136].

The VSTF fibre model attracts attention for its potential in equalising distortions in

optical fibre links. However, its application faces challenges due to the computational cost

of calculating the complex integrals in Eq. (2.11) [104]. To address this, researchers often

rely on truncations to the third-order term of the Volterra series, expressing the solution to

the NLSE as:

A(ω, z) ≈ H1(ω, z)A(ω)

+

∫ ∫
H3(ω1, ω2, ω − ω1 + ω2, z)A(ω1)A

∗(ω2)×A(ω − ω1 + ω2)dω1dω2,
(2.12)

where A(ω) is the Fourier transform of the electrical field at the fibre input (z = 0). A

compensator for the distortions described by the VSTF model can be derived by obtaining

its p-th order inverse, which nullifies the VSTF kernels up to the p-th order when put in

cascade with it [115]. This process produces inverse kernels K1(ω) and K3(ω1, ω2, ω−ω1 +
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ω2), which for an N -span link are

K1(ω) = ejβ2NLspω
2/2 (2.13)

and

K3(ω) =
jγ

4π2
K1(ω)×

1− e−(α+jβ2∆Ω)Lsp

α+ jβ2∆Ω

N∑
k=1

ejkβ2Lsp∆Ω. (2.14)

Here, Lsp is the length of a fibre span, N is the total number of spans, and ∆Ω = (ω1 −

ω)(ω1 − ω2). These inverse kernels are applied to the Fourier transform of a received field

A(z, t) using Eq. (2.12). A schematic of a third-order compensator implemented with these

kernels is shown in Fig. 2.5. Ignoring the distortion inside of fibre spans leads to a simplified

third-order kernel in which loss is decoupled from dispersion:

K3(ω) ≈
jγ

4π2
× 1− e−αLsp

α
K1(ω)

N∑
k=1

ejkβ2Lsp∆Ω. (2.15)

The summation in (2.15) shows that the K3 kernel can be divided into separate stages for

each span, which may be computed in parallel. Equalisers based on these kernels often use

discrete frequency domain processing, defining the kernels in the discrete frequency domain

and applying them to the signal’s discrete Fourier transform (DFT). The necessary DFTs

are computed efficiently using FFT algorithms. Further simplifications may be achieved by

ignoring inter-frequency-mixing between the frequency-shifted fields in the “triplet” from

Eq. (2.12), allowing its separate time-domain computation. The inverse kernels are then

realised in a structure known as the IVSTF, implemented with sequential time-frequency

domain steps, as shown in Fig. 2.6 [88]. In the figure, HCD is the CD transfer function

corresponding to a single fibre span applied in the frequency domain. The operation jc|·|2(·)

is applied in the time domain, where c represents a coefficient including both fibre loss and

nonlinearity. This approach enables a fully parallel architecture and reduces complexity

compared to the original VSTF fibre model but delivers lower performance than DBP when

employing the same number of computational steps per span, achieving 1 dB improvement

over chromatic dispersion equalisation (CDE) compared to DBP’s 1.7 dB [88]. Furthermore,

the accuracy of the IVSTF is only acceptable in the “quasi-linear” power regime, showing

unsatisfactory performance in the “highly nonlinear” regime. This accuracy limitation is
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Figure 2.6: Single-polarisation IVSTF scheme for an N -span fibre link, as proposed in [88]. HCD

is the CD transfer function corresponding to a single span of fibre, c is a constant proportional to
the fibre nonlinear parameter and the effective length of the fibre span.

explained by how the nonlinear phase shift is modelled: it is a truncation of a polynomial

expansion of the nonlinear phase shift obtained from the SSF method. Schemes based on

truncations to the fifth order could improve performance. However, they are much more

complex than third-order models, and their demonstrated improvement is limited to single-

channel transmission scenarios [2].

Another third-order scheme, known as the Volterra series nonlinear equaliser

(VSNE) [55] employs the discrete Fourier transform to apply the nonlinear kernel to the

signal as follows:

AEQ(ωn) ≈
NFFT∑
i=1

NFFT∑
j=1

K3(ωi, ωj , ωn − ωi + ωj)A(ωi)A
∗(ωj)×A(ωn − ωi + ωj), (2.16)

where AEQ(ω) is the DFT of the equalised field, NFFT is the FFT size, and i and j are

auxiliary indices. Compared to the IVSTF, this method performs the integration in (2.12)

over the entire nonlinear kernel, capturing dispersion-nonlinearity interactions more accu-

rately. Consequently, the VSNE scheme has demonstrated superior performance to compa-

rable DBP implementations while requiring less computational effort. Further developments

have investigated complexity reduction strategies by simplifying the frequency-domain ker-

nels [54] and using fully time-domain implementations [56]. However, practical adoption

is limited due to higher implementation complexity than the IVSTF. For example, the

summation over the frequency components of the third order kernel in Eq. (2.16) requires

more intricate block processing than the simple CD filtering and element-wise nonlinear

calculations depicted in Fig. 2.6.
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Initial investigations into Volterra equalisers focused on single-channel transmission.

While the extension of third-order Volterra-based models for dual-polarisation systems was

straightforward [88], extending these models for multichannel transmission has seen limited

progress. Although the Volterra series has been successfully applied to analyse XPM and

four-wave mixing (FWM) inter-channel impairments [110], their use for the equalisation of

these impairments has remained under-explored. While various multichannel DBP imple-

mentations have been developed [92, 93, 94], this versatility has not yet been demonstrated

for the Volterra approach. The main advancement for multichannel transmission systems

has been a full-field scheme for super-channel systems based on the third-order IVSTF

[137] (employing the same structure from Fig. 2.6), which has shown lower complexity

than its DBP counterpart while delivering a similar performance. Yet, no MIMO Volterra

alternatives have been developed. Nevertheless, IVSTF-based MIMO schemes have been

investigated in coherent space division multiplexing (SDM) systems [138], indicating the

potential for similar methods in WDM scenarios.

2.2.2 ML-based Techniques

The past decade has seen remarkable advances in ML, with the performance of ML models

in areas such as computer vision [62] and natural language processing, prompting interest in

applications to optical communications. In this field, the equalisation of signal impairments

is one of the main tasks where the potential of ML is being investigated [97]. The task

of removing deterministic distortion from a signal is compatible with the capabilities of a

range of ML models. For instance, the temporal dependencies in transmission data make

the problem well-suited to mature ML approaches such as time-series forecasting methods

[82]. Supervised learning strategies are particularly useful in this context since training

data (transmitted and received symbols) may be available to provide an error signal for ML

optimisation, in line with the established data-aided approach to DSP [80]. Furthermore,

ML-based equalisation aligns with current research efforts to make networks more dynamic

and adaptive [1]. ML models generally do not require the knowledge of transmission param-

eters, unlike conventional equalisation schemes, potentially simplifying their configuration.

Finally, they could potentially provide better performance-complexity trade-offs than con-

ventional approaches. Compression techniques such as pruning [10], quantisation [50] and

clustering [59] may enable low-complexity implementations [46], making deployment feasible
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Figure 2.7: Block diagram of a coherent receiver architecture, illustrating the integration of model-
driven and data-driven equalisation techniques within the signal processing chain. Model-driven
equalisation replaces the static equalisation stage, whereas data-driven equalisation is usually placed
at the end of the DSP chain.

in resource-constrained environments such as optical transceivers [40].

However, the potential adoption of ML-based nonlinear equalisers depends on success-

fully integrating with the existing DSP. In digital coherent receivers, nonlinearity equalisa-

tion is typically implemented as a discrete stage within the DSP chain [114]. The entire DSP

architecture is traditionally grounded in the physics of optical fibre links [60] and comprises

various subsystems, as depicted in Fig. 2.7. Deterministic fibre impairments are addressed

within the static channel equalisation subsystem through linear and nonlinear compensation

techniques. A typical method for incorporating ML-based equalisation involves omitting the

conventional equalisation block and appending an artificial neural network NN to the chain

[68]. However, this approach diverges from the established physics-based design paradigm

that underpins the DSP stack. Additionally, ML-based equalisers must demonstrate the

ability to meet the latency and reliability demands of optical transmission systems. These

considerations have steered recent developments towards interpretable ML-based DSP solu-

tions, which, instead of discarding existing DSP stages, implement them as neural network

layers to optimise their parameters [64, 100].

Two main approaches can be distinguished in the academic literature on ML-based

nonlinearity equalisation: data-driven andmodel-driven. Data-driven schemes use black
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box architectures and rely on large amounts of training data, without explicitly modelling

the physical properties of the fibre. Examples are standalone equalisation stages based

on NNs [123, 42]. Model-driven schemes, on the other hand, incorporate the physical

principles governing signal propagation in their architecture. Examples of this approach are

inverse models for equalisation based on DBP and perturbation theory, which are adapted

to be trained using gradient-based techniques [65, 100]. While this distinction is not yet a

standard convention in the field, it provides a useful framework for the work in this thesis. It

is important to note that these categories are not rigid since it is possible to infuse domain

knowledge into NN design to varying degrees. For instance, the method in [144] applies

feature engineering employing perturbation theory to feed triplets to a conventional neural

network, blurring the line between data-driven and model-driven designs.

Each approach has distinct requirements for algorithm integration and learning paradigms,

leading to varying training procedures and integration into DSP architectures. For instance,

the stage’s placement in the DSP pipeline varies between these approaches, as they gener-

ally have different sampling rate requirements. This is illustrated in Fig. 2.7. Data-driven

schemes operate at baud rate and thus are typically located at the end of the DSP pipeline

[99]. In contrast, model-driven approaches usually require higher processing rates and are

therefore placed earlier in the chain. The preprocessing overhead and data formatting

requirements also vary between these approaches. Data-driven models typically require

pre-processing steps such as windowing to prepare data for model input [123]. In contrast,

model-driven approaches are transparent to the data flow of conventional DSP, maintaining

the input dimensionality in the output batches [35]. Another distinction lies in the learn-

ing paradigm underpinning each approach. Data-driven approaches can be implemented as

regression or classification learning tasks [44], while model-driven schemes are limited to

regression-based learning. The following sections discuss these approaches, outlining their

advantages and limitations. We begin with a review of the research on data-driven schemes,

followed by an examination of the model-driven approach, which was used to develop the

models presented in this thesis.

Data-driven Equalisation Schemes

Various data-driven techniques have been investigated for mitigating nonlinear impairments

in optical transmission systems, including decision trees [118], support vector machines, and
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Figure 2.8: Neural network equaliser proposed in [123]. Delay blocks are used at the input to
account for the channel memory effect. The number of neurons of the hidden layers are hyperpa-
rameters to optimise. The output layer has one neuron for each component of the symbol to be
predicted.

NNs [97]. Among these, NNs have received the most attention due to their extraordinary

efficacy in domains like computer vision [83]. Their applicability is supported by the Uni-

versal Approximation Theorem [63], which states that NNs can approximate any function,

suggesting their suitability for addressing fibre-based impairments.

Initial investigations of NN-based nonlinearity equalisation in coherent optical systems

employed NNs in single-channel scenarios [123]. This approach attracted interest due to its

straightforward architecture, shown in Fig. 2.8. While NNs are not inherently suited to

processing temporal data sequences, learning inter-symbol dynamics is achieved by feeding

sample sequences to the model using sliding-window preprocessing. The depicted scheme

is used for regression, with the last layer having a separate activation for the real and

imaginary parts of the symbol. These models have shown competitive performance under

constrained complexity [42]. However, a significant limitation is their susceptibility to

over-fitting [45], requiring careful design [31]. The application of more advanced neural

networks has also been proposed, leveraging their respective strengths in data processing.

Convolutional neural networks (CNNs), recognised for their pattern extraction capabilities,

and recurrent neural networks (RNNs), designed to capture temporal dependencies, have

been explored. Long short-term memory (LSTM) networks, a specialised type of RNN

with improved ability to handle large data sequences, have proven particularly effective

for managing the large channel memory typical of coherent transmission systems[22]. The

architecture of a single channel, dual-polarisation RNN equaliser is shown in Fig. 2.9 (a).

The input features are the polarization components of the channel. This scheme is also
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(a) (b)

Figure 2.9: (a) Single channel [23] and (b) multichannel [24] RNN equalisers. Both models are
comprised by an input layer, a bi-directional RNN layer, and a fully connected layer. The number
of units of the fully connected layers corresponds to the real and imaginary parts of the symbols
predicted for each channel.

regression-based, with output units for each symbol component of each polarization.

Comparative studies have assessed these models, including hybrid approaches combining

convolutional, recurrent and dense layers [43, 120]. Among these models, recurrent-layer

architectures have shown superior performance. In numerical simulations, LSTM-based

equalisers have achieved a 1.3 Q-factor improvement in a 9×110 km system, surpassing the

performance of 3 StpS DBP [46]. In contrast, experimental validation on a link of the same

length demonstrated a more modest increase of 0.7 dB. Despite these clear advancements,

practical use of RNN models faces significant challenges. The computational complexity

required for inference is substantial, posing a barrier to their practical implementation.

Additionally, the recurrent connections between cells cannot be parallelised, hindering their

integration into hardware. The complexity issue has been addressed through compression

techniques such as dropout regularisation and network pruning, reducing inference costs

[112] [47] [49] and even making RNN equalisers less computationally demanding than single-

channel DBP implemented at 1 StpS. However, parallelisation limitations have prompted

researchers to return to feed-forward architectures for practical implementations. In this

direction, Knowledge distillation (KD) has been recently proposed as a means of transferring

knowledge from RNNs to simpler non-recurrent models [129].

Despite promising results in single-channel scenarios, performance of single-channel NN
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equalisers in WDM transmission systems remains limited due to their inability to learn inter-

channel impairments, prompting the investigation of multichannel equalisation approaches.

Early work employed NNs in MIMO implementations, processing multiple orthogonal fre-

quency division multiplexing (OFDM) channels to address FWM [51]. Given the strong

performance of RNNs in single channel environments, they have also been investigated for

MIMO equalisation in WDM systems. Figure 2.9 (b) shows the architecture of a 3-channel

RNN equaliser proposed in [24], which retains the general architecture from the single-

channel equaliser. The difference is in the input features, which now accommodate the

polarization components of each channel. This equaliser, without the need for compres-

sion techniques, exhibit lower per-channel complexity compared to its single-channel RNN

counterpart. However, its effectiveness is limited as they do not scale well beyond a limited

number of processed channels [24]. Furthermore, it has the same parallelisation limitations

as single-channel RNN equalisers. Consequently, recent efforts have investigated addressing

inter-channel impairments without using MIMO equalisation. A single-channel equaliser

based on multi-task learning has shown potential in compensating for XPM impairments

[128]. However, the reported improvements remain limited.

Finally, the adoption of data-driven approaches raises practical concerns. In both de-

sign and deployment, neural networks are often treated as black boxes, requiring minimal

understanding of the internal mechanisms behind their predictions. The inability to ex-

plain model outputs is problematic for network operators [11], concerned with network

management and troubleshooting. Additionally, the relationship between the topology of

data-driven models and their performance on a given task is poorly understood, forcing

practitioners to rely on experience and heuristics when selecting architectures. As an ex-

ample, the design of the RNN equaliser in [24] employed a grid search to choose the optimal

number of hidden units, without the possibility of validating these decisions against physical

explanations. Yet another challenge is the prevalent risk of overestimating the benefits of

NN-based equalisation, since ensuring that the model has learned only the intended im-

pairments is difficult. Although studies provide detailed recommendations to avoid training

pitfalls [44], adherence to these guidelines cannot guarantee that the models will not overfit

to the data or behave unpredictably, particularly under the varying operating conditions

that could be encountered in deployment. This unpredictability might be unacceptable in

telecommunication systems, which demand an extremely low error tolerance.
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Model-driven Equalisation Schemes

In contrast with data-driven schemes, the model-driven approach [143] integrates physics

models with machine learning optimisation techniques to produce more efficient and inter-

pretable schemes. This is usually done by designing the topology of a model considering

underlying physics laws, such as approximate solutions to propagation equations. This

approach to equaliser design offers several advantages. It provides clear hyper-parameter

choices, potentially including the type and number of layers, neurons and activation func-

tions. Additionally, it may reduce the need for training data, as some of the knowledge the

model would otherwise need to learn is embedded in the model itself. These advantages have

made the model-driven design approach attractive for applications in the physical layer of

communication systems [61]. Decades of research in this domain have yielded extensive do-

main knowledge, offering well-established models as a basis for the schemes. In the context

of equalisation in optical transmission systems, the available models of well-characterised

fibre impairments, as well as DSP techniques for coherent transceivers, are assets for model-

driven design. Another factor favouring this approach is the limited availability of training

datasets in this area. Data privacy and proprietary information concerns restrict access to

real-world transmission data, leading to the exploration of alternatives to conventional data-

hungry ML approaches. Requiring less training data could make model-driven methods a

more attractive solution for vendors.

A potential drawback, however, is that model-driven schemes are often initialised with

parameters corresponding to the physics-informed topology, which in turn depends on

knowledge of the transmission link. This initialisation approach is intended to ensure the

optimal convergence of the algorithm. In contrast, black-box models are fully agnostic to

system parameters, which can make them more suitable for dynamic environments. Nev-

ertheless, alternative initialisation methods that do not require knowledge of the link have

been proposed, such as sampling values from a probability distribution, although these

appear prone to sub-optimal convergence.

Learned Digital Backpropagation

LDBP has become the central model-driven ML approach for nonlinearity equalisation in

transmission systems. This technique, introduced in [66], was inspired by the observation
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Figure 2.10: Comparison between the functional forms of DBP and NN as noted in [9]: h represents
the linear steps in DBP (implemented in the time domain with FIR filters) and W the weights in
NNs. Both models feature pointwise nonlinear activations σ.

that the DBP algorithm shares a similar functional form with neural networks, as illustrated

in Fig. 2.10. LDBP leverages ML optimisation to improve the efficiency of DBP equali-

sation. In a process known as “deep unfolding” [4], the iterations of DBP are unfolded

into a layer-wise structure, with key parameters from the algorithm stages set as trainable,

which are then optimised using ML techniques. While conventional DBP implementations

apply identical, non-adaptable filters across the backpropagation steps [72], resulting in the

accumulation of the numerical errors and the introduction of wave-mixing distortions [35],

LDBP mitigates these issues by jointly optimising the combined response of the filters of

the algorithm. An LDBP model with M steps (or layers) can be formulated as [58]

f(x) = σ(A(M) . . .σ(A(1)x)). (2.17)

Here, A are matrices associated with the linear steps of the SSF method, and σ = xejγz|x|
2

is an element-wise operator. Different versions of LDBP can be obtained depending on

which variant of the SSF is parameterised (for example, asymmetric or symmetric), how

DBP’s linear and nonlinear stages are implemented —either in time or frequency domain

—and which parameters are set as trainable. The introduction of trainable parameters is

known as parameterisation and can significantly influence performance, as demonstrated

in [36], where several LDBP models employing varying parameterisations were compared.

The linear steps can be fully implemented in either the time or frequency domain. When

employing frequency-domain linear steps, linear stages are either left unoptimised [36] or the

dispersion parameter β2 in the required transfer functions becomes the primary trainable
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parameter [69]. In contrast, time-domain implementation allows for a larger number of

optimisable parameters, as the taps of time-domain filters can be individually optimised.

For the nonlinear steps, the commonly optimised parameter is the nonlinear parameter γ in

the function σ. Alternatively, employing an “enhanced” approach [117] involves filtering the

power waveform with trainable FIR filters, providing additional trainable parameters in the

nonlinear steps. Among these various configurations, employing time-domain filters in both

the linear and nonlinear steps and allowing all filter taps to be trainable has demonstrated

the best performance [36].

LDBP was initially developed for single-channel equalisation, with numerical studies as-

sessing its performance on single-channel and WDM transmission scenarios [66, 58]. These

studies demonstrated improved performance and reduced computational complexity com-

pared to conventional DBP. In transmission systems with practical baud-rates, the perfor-

mance gains over DBP at the same number of steps were as high as 2.1 dB in effective

SNR [58]. In terms of complexity, it was shown that the LDBP scheme could cost as lit-

tle as 3.5 times the complexity of linear equalisation due to low filter length requirements

[58]. Experimental validations of the scheme soon followed, with researchers investigating

the integration of the scheme into practical systems. In single-channel experiments, LDBP

showed substantial gain with respect to DBP at the same number of steps, and achieved a

1.9 dB improvement over CD compensation at six times less complexity than conventional

DBP [9]. However, in WDM transmission, the scheme offered limited improvements (a

maximum of 1 dB Q-factor gain over CDE for a 5-channel system) [34]. Another multi-

channel experiment showed only 0.3 dB SNR improvement over CDE, despite requiring a

significantly larger number of steps per span (StpS) than numerical studies suggested [125].

These limited improvements prompted the exploration of LDBP for multichannel equal-

isation. The success of the LDBP approach in reducing the complexity of single-channel

equalisation further motivated its consideration for this case, where the computational bur-

dens of conventional DBP are significantly higher. Initially, time-domain MIMO LDBP

equalisers were proposed for wideband single-channel signals and WDM systems, featuring

fully trainable steps implemented using convolutional layers [124, 67]. Later, learned MIMO

LDBP equalisers relying on frequency-domain filtering were also developed for WDM trans-

mission [69], using the architecture in [94] as a starting point. The latter approach focused

on making model training more practical, achieving significant training cost reductions by
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reducing the number of trainable parameters and explicitly deriving the required gradients.

Leveraging filtering in the nonlinear steps enabled single-step per span implementations that

delivered significant performance gains. Compared to conventional schemes, these MIMO

LDBP models demonstrated a better tradeoff between the number of processed channels

and computational cost. While in DBP processing, providing effective equalisation to a

large number of channels required more computational steps, the number of steps needed

by LDBP to demonstrate improvement were much lower. Initial numerical demonstrations

showed favourable results. In an 11-channel WDM transmission, a 5-channel LDBP model

provided 1.2 dB improvement in Q2-factor [124]. Additionally, the scheme achieved a 0.75

dB greater gain than conventional MIMO DBP when both models maintained equal com-

plexity. However, the gains reported in experimental validations have been moderate. For

instance, the experiment in [69] showed an improvement similar to two-step per span MIMO

DBP, while requiring a complexity similar to single-channel DBP at two step-per-span.

In addition to the limited improvements demonstrated in experiments, LDBP has sev-

eral other limitations. It has been shown that DBP architectures may introduce spectral

artefacts that induce out-of-band distortions and reduce performance [25]. Furthermore,

analysis of the optimized parameters of a learned DBP algorithm has revealed that, for the

scheme to operate effectively, it must not only invert the fibre channel but also mitigate

distortions that are self-generated or exacerbated by the DBP process itself [34]. Figure 2.11

depicts the magnitude spectra of the learned filters along a learned DBP scheme, reflecting

the findings reported in [34]. Filters from later stages display M-shaped magnitude spectra

with high-pass characteristics, in contrast with the pass-band response of ideal CD filters

Figure 2.11: Illustration of the findings in [34], depicting the evolution of the spectra of linear
operators of a learned DBP algorithm. The figure shows steps 1, 6 and 10 of an LDBP algorithm
of 10 stages. An artistic representation of the amplitude spectrum of the each algorithm step is
shown. The amplitude spectra are “M” shaped, suggesting that the filters not only compensate for
dispersion, but also correct for limitations of the architecture by mitigating distortions caused by
uncorrected phase rotations, which accumulate throughout the sequential structure.
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used in conventional DBP. Assuming a received signal with field Ez, this behaviour can be

explained by the presence of a residual distortion term |Ez|2Ez, which has a ∩-shaped spec-

trum. As it accumulates along the structure due to imperfect phase rotations, the M-shaped

filters try to supress it. This distortion term spans a much larger bandwidth than Ez, lead-

ing to out-of-band distortion. A non-sequential architecture could avoid the accumulation

of self-induced distortion and offer improved equalisation effectiveness. Additionally, inte-

grating CD compensation into a nonlinear equalizer with a sequential architecture may be

suboptimal. CD equalisation is a critical operation that must be performed reliably, and

performing it with filters optimised through a data-aided approach that prioritises nonlinear

equalisation may compromise its effectiveness. Finally, the extensive sequence of filtering

steps or “layers” introduces significant latency. While LDBP reduces latency compared

to DBP by lowering the number and complexity of steps, proposed implementations still

require at least one step per fibre span 1, limiting further latency reductions [9].

An Alternative to LDBP

The success of LDBP has demonstrated the potential of model-driven approaches, paving

the way for developing other schemes where supervised learning addresses the shortcomings

of conventional equalisers. In this thesis, we explore using the same gradient-based approach

applied in LDBP to Volterra-based algorithms. While LDBP was motivated by structural

similarities between DBP and deep neural networks, we propose that the successful op-

timisation of conventional algorithms does not require them to have the same functional

form as a deep neural network. The Volterra architecture we have selected is the IVSTF

(or first-order RP) model [88, 136]. While this algorithm does not resemble a deep neural

network, its architecture resembles the interconnection of single-layer perceptrons, as

shown in Fig. 2.12. Each branch of the IVSTF consists of a short sequence of operations—

linear-nonlinear-linear, while the single-layer perceptron comprises a linear layer followed

by a nonlinear activation. These similarities raise the possibility of modifying the IVSTF

to achieve the adaptability that characterises neural networks.

Despite the similarities between the IVSTF and single-layer perceptrons, key differences

exist, which could hinder the successful use of the IVSTF as a trainable scheme. While the

1To date, learned DBP implementations operating with fewer than 1 step per span, such as DBP
methods based on the “logarithmic-perturbation” method [20], have not been introduced.
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Figure 2.12: Comparison between the functional forms of IVSTF branches and a single layer
perceptron. In the IVSTF diagram, (H)k represents a CD transfer function H addressing k fibre
spans, while σ represents a nonlinear activation function.

perceptron’s layer is fully connected, represented by a two-dimensional weight matrix W ,

the IVSTF’s linear step uses simpler a one-dimensional filter, potentially limiting adapt-

ability. Furthermore, unlike the perceptron, IVSTF branches implement their linear steps

in the frequency domain, deviating from the architecture of highly adaptive NN models.

While the model’s frequency domain linear steps enable low computational complexity and

optimised data block processing, they offer fewer viable trainable parameters compared to

time domain methods [69]. However, the branches —and by extension, the entire IVSTF—

employ easily differentiable operations, and consequently can be trained in the same way as

the perceptron. To address the reduced dimensionality of the linear steps, time-domain par-

allel implementations could be pursued to enhance learning, potentially leading to learning

capabilities similar to time-domain LDBP models.

Optimising the IVSTF using ML methods could extend its applicability to multichan-

nel scenarios. Historically, accuracy limitations stemming from the third-order truncation

to the Volterra series have restricted its use, leaving DBP as the primary physics-based

option for MIMO operation. Gradient-based optimisation may address the inaccuracy of

the truncated nonlinear phase shift approximation, enabling precise estimation of inter-

channel impairments. To extend single-channel IVSTF to MIMO approaches, the approach

to modelling interchannel interactions employed in MIMO LDBP algorithms could be fol-

lowed. Specifically, the nonlinear stages of MIMO DBP, given by the coupled NLSE SSF

solution and which efficiently accounts for adjacent channel interactions in learned models

[124, 69], could inform the adaptation of the IVSTF. Furthermore, the parallelism inher-

ent to the IVSTF may be particularly beneficial in multichannel contexts. In a MIMO

IVSTF realisation, the nonlinear distortions experienced by each channel and induced by
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Figure 2.13: Cascaded and parallel architectures of 2-channel MIMO models implemented with 1
step per span: (a) MIMO DBP (b) MIMO IVSTF. H represents the CD transfer function of a fibre
segment, while σ represents the appropriate activation function for each model.

each fibre segment would become parallel signal paths. This is shown in Figure 2.13, which

contrasts a MIMO DBP architecture with a potential MIMO IVSTF design. Unlike MIMO

DBP, where channel paths increase in depth with link length, signal paths in the IVSTF

always keep the same short length regardless of transmission distance. This characteristic

of MIMO IVSTF-based schemes could make multichannel equalisation more feasible for

practical deployment.

The following section summarises the research questions addressed in this thesis.

2.3 Research Questions

• How can domain knowledge from optical communications further contribute to the

development of ML-based equalisers?

In the field of optical communications, the extensive understanding available on the

physics of signal impairments is used to devise strategies to improve signal quality.

Inverse models derived from the VSTF have shown potential for equalisation, but are

hindered by imprecision resulting from truncating the Volterra series. Combining this

modelling with ML optimisation could potentially result in more efficient equalisation

schemes.

• How can ML enable the design of model-driven single-channel equalisers based on

parallel structures?

Most current approaches combining ML with domain knowledge rely on the SSF
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method, which uses a sequence of linear and nonlinear steps. While these schemes offer

low complexity, the sequential filtering of the signal can lead to limited effectiveness

due to error propagation and increased latency. We investigate parallel architectures,

which offer shorter signal paths than SSF-based solutions, potentially mitigating these

issues and improving suitability for hardware implementation.

• How can machine learning support the operation of IVSTF-based multichannel equalis-

ers?

The precision limitations of the third-order IVSTF in approximating signal propaga-

tion has hindered its application in multichannel equalisation. We investigate how

ML can address these limitations and enable the operation of IVSTF-based MIMO

equalisers. Several architectures based on the IVSTF framework have been proposed

and examined.

• Can effective guidelines be devised for the design of model-driven multichannel equalis-

ers?

Our research demonstrates that multiple model-driven architectures can be employed

for multichannel equalisation. The various proposed time and frequency domain im-

plementations have specific design parameters that must be carefully set to obtain the

best performance and lowest complexity possible. Therefore, in addition to developing

architectures suitable for various transmission scenarios, we aim to devise an effective

parameter configuration procedure for these models.
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Chapter 3

Fundamentals of Machine Learning

This section introduces the principles underlying the optimisation techniques applied in this

thesis. We introduce fundamental concepts related to the design of artificial neural networks

(ANNs). We give an overview of their architecture, basic components, and training process.

We explain these concepts with the multi-layer perceptron (MLP), a type of feed-forward

ANN. However, the concepts also apply to more advanced neural networks as well as the

model-driven approaches proposed in this thesis.

3.0.1 Artificial Neural Networks

ANNs are computational models developed for pattern recognition tasks. The term “neural

network” originated from studies on how biological neurons process information. Funda-

mentally, a neural network is a series of functional transformations. A basic neural net-

work first takes input variables x1, x2, . . . xN and uses them to compute activations aq for

q = 1, . . . ,H , given by

aq =

N∑
p=1

ω(1)
qp xp + ω

(1)
q0 , (3.1)

where ω
(1)
qp are the weights and ω

(1)
q0 the biases of the first layer. These activations are

transformed by the activation function σ(·) to produce the outputs of the hidden units

zq = σ(aq). The layer is called a hidden layer since its units become the inputs for the
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Input layer

Output layer

Hidden layer

Figure 3.1: Diagram of an artificial neural network with one hidden layer. Circles represent units,
and the lines between them represent the model’s weights. The coloured circles indicate bias units.

second layer, where activations ar are computed as

ar =

H∑
q=1

ω(2)
rq zq + ω

(2)
r0 . (3.2)

Here, r = 1, . . . , R is the number of output units of the second layer. The process is repeated

until the output layer is reached. If the network has only one hidden layer, the second layer

becomes the output layer. A network with more than one hidden layer is called a deep neural

network (DNN). Since using more layers enhances the model’s generalisation capability [53],

DNNs have become ubiquitous in modern applications. The choice of activation functions

is crucial and depends on the type of data to be processed and the predictive task the

network will be used for. For regression problems, the activation functions for computing

the outputs are the identity, resulting in yr = ar. The structure described above constitutes

a fully connected network. However, implementing a sparse network in which some weights

are equal to zero is also possible, eliminating connections between a layer’s inputs and

outputs.

Activation Functions

In ANNs, the activation functions are continuous functions that introduce nonlinearity to

the model, enabling it to approximate nonlinear behaviour. Without these, a multi-layer

perceptron would be equivalent to a single linear layer and could only approximate linear
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(a) (b)

Figure 3.2: Commonly used activation functions: (a) sigmoid, which maps inputs to values between
0 and 1 with a smooth transition, (b) rectified linear unit (ReLU), which outputs zero for negative
inputs and grows linearly for positive inputs.

functions. A popular choice for the nonlinear activations of ANNs is the sigmoid function:

σ(x) =
1

(1 + exp(−x))
. (3.3)

Other functions are also ubiquitous, such as the ReLU [52] and the hyperbolic tangent

(tanh). The shape of the sigmoid and ReLU functions is shown in Figure 3.2.

In ML models following the model-driven paradigm explored in this thesis, custom

activation functions derived from a physics model may be employed [41]. An example is

LDBP, where the activation function f(x) = xejγc|x|
2
is taken from the nonlinear step of the

SSF method [9]. Similarly, trainable models based on the Volterra series involve nonlinear

steps that apply point-wise functions f(x) = jγc|x|2x, which is a first-order polynomial

approximation of the exponential function from DBP. These functions are complex-valued,

and their behaviour may be analysed with a representation in the complex plane. Figure

3.3 shows the magnitude and phase of these nonlinear functions.

3.0.2 Neural Network Training

The optimisation of the parameters of a neural network often relies on a set of data samples,

referred to as training data. ANNs are widely used in supervised learning tasks, where the

training data consists of input vectors xn with n = 1, ..., N with corresponding target

vectors tn. Determining the neural network’s parameters, a process known as training, is

an optimisation problem involving minimising an error or loss function. The process is
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(a) (b)

(c) (d)

Figure 3.3: Magnitude and phase of the complex-valued activations employed in the nonlinear steps
of (a, b) DBP: f(x) = xejc|x|

2

and (c, d) Inverse Volterra series transfer function: f(x) = xjc|x|2.

iterative, comprised of steps in which the gradient of the loss function with respect to each

of the networks parameter is calculated, and then employed to update the weights of the

model. The loss function compares the output of the neural network {y(xn,w)} with target

vectors {tn}. The appropriate loss function depends on the activation function of the output

units, chosen according to the predictive task the NN is employed for. For regression tasks,

the output units are linear and the most commonly used error function is least-squares.

For classification, the cross-entropy error function is employed, and the outputs are logistic

sigmoid for the binary case and softmax for the multiclass case. The prevalence of mean

squared error functions and cross-entropy error functions is largely due to the simplicity in

calculating their gradients, supporting training convergence.

The mean squared error loss function is given by

E(w) =
1

2

N∑
c=1

∥y(xn,w)− tn∥2. (3.4)

The weight vector w of the neural network defines a parameter space over which the error
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function is defined. Minimising the error function is analogous to finding the lowest point

on an error surface E(w), or equivalently, finding the parameters w where ∇E(w) = 0. In

practice the error function is non-convex, often leading the optimisation process to find a

local minima rather than a global solution. Nevertheless, convergence to a local minimum

can still result in successful training outcomes for the neural network.

Solving the equation ∇E(w) = 0 requires iterative numerical methods. The most com-

mon approach is to give an initial value to the weight vector w(0) and then update it

iteratively. Many algorithms for computing the weight update utilise gradient information,

requiring the evaluation of E(w) at each new weight vector. The most basic approach up-

dates the weights by taking a step in the direction opposite to the gradient. A widely used

algorithm is stochastic gradient descent (SGD), which updates the weight vector w on a

per-sample basis [8]:

w(τ+1) = w(τ) − η∇E(w(τ)), (3.5)

where η is the learning rate and τ is the step. In this approach, data can either be

processed sequentially or randomly. The learning rate determines how large will the up-

date to the networks parameters be. Careful tuning of the learning rate is essential, as a

small value may slow down training, while a large value risks causing training divergence.

Adjusting how input data is fed to the neural network gives rise to different variants of

gradient descent. A common approach is dividing it into sets called mini-batches. A suit-

able algorithm for this case, called mini-batch gradient descent, updates the weights

on a per-batch basis. In mini-batch training, a pass through the entire dataset is called

an epoch, a hyperparameter employed to define training duration. The batch size is an

optimisable parameter. A large batch size improves the accuracy of the parameter updates,

as a larger batch of training data provides more information per training step. In contrast,

a small batch size reduces the information intake per step, which can cause the steps to

deviate more from the path to the minimum of the cost function. In practice, the batch

size is limited by the available computer memory resources.

Mini-batch gradient descent is sensitive to the asymmetry of the cost function with

respect to weight updates. Variants such as the Adam optimiser address this issue by incor-

porating momentum terms based on previous updates [76]. The Adam optimiser is widely
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Figure 3.4: Representation of the backpropagation method. The arrows indicate how errors e are
propagated backwards through the network.

used for its efficiency, often requiring fewer iterations to converge than other algorithms. All

models in this thesis were trained using Adam. We expect this algorithm to be particularly

advantageous in model-driven schemes, where parameter updates involve diverse types (e.g.

real and complex values) and magnitudes.

The gradient ∇E can be efficiently computed using the backpropagation technique,

which propagates information backwards through the model to evaluate the required deriva-

tives. The method is not limited to the multilayer perceptron and can be applied to other

architectures [8]. Backpropagation involves two main stages: A forward pass and a back-

ward pass. In the forward pass, an input vector is propagated forward through the network,

and the activations of all hidden and output units are computed. In the backward pass, the

chain rule for partial derivatives is applied to calculate the derivative of the loss function

with respect to each weight. To formally describe this process, we define the summed input

to a unit p as ap =
∑

q ωpqzq, where zq is the activation of unit q. The activation for unit p

is then given by zp = σ(ap). Using the chain rule, the derivative of the error function with

respect to a weight ωpq for a given input pattern n is expressed as

∂En

∂ωpq
=

∂En

∂ap

∂ap
∂ωpq

. (3.6)

For convenience, the error associated with a unit p is defined as ep = ∂En
∂ap

. For the output

units, the errors can be obtained simply as er = yr − tr, where yr is the output calculated

during the forward pass and tr is the target value for unit r. For the hidden units, the back-

propagation formula [8] allows us to compute the errors by “propagating” errors backwards

from deeper layers in the network as follows:

eq = σ′(aq)
∑
r

ωrqer. (3.7)
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Figure 3.5: Illustration of data fitting outcomes: (a) underfitting, (b) good (balanced) fit, (c)
overfitting.

This formula is applied recursively for all hidden units. Figure 3.4 represents the propagation

of errors through the units of a network that has three layers.

Generalisation

The effectiveness in training a neural network is determined by its ability to perform a

specific task on unseen data. The performance achieved on the training set alone does

not reliably indicate how well will the model generalise. This is due to the problem of

overfitting, where the model learns patterns specific to the training data, leading to poor

generalisation. Stopping training prematurely to avoid this issue, or using a model inca-

pable of capturing the relevant patterns the task requires, can lead to underfitting. To

obtain intuition on these phenomena, it is instructive to consider simple polynomial models.

Figure 3.5 illustrates various polynomial fits of different orders on data that follows a cubic

distribution and is affected by Gaussian noise. In this case, it is desirable to learn the cubic

distribution, not the noise. Employing a high-order polynomial results in overfitting, where

both the desired data pattern and the noise are captured. Conversely, employing linear

regression leads to underfitting.

To find the model that generalise best, a common approach is to train multiple models

which are then compared on a validation set. Since overfitting to the validation data could

occur under certain conditions, a test set is employed to evaluate the final performance.

To prevent a model from overfitting to the training data, the main strategies are increasing

the amount of training data and the use of regularisation techniques. Early stopping

is a common method used to terminate a model’s training once its accuracy has stopped
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improving. In its most basic implementation, the number of consecutive iterations without

improvement is monitored during training. Training is halted if this number exceeds a

threshold called the “patience” parameter, which varies depending on the model being

optimised.

Hyperparameter Tuning

Defining the architecture of neural networks is a crucial step for their effective implemen-

tation. This architecture is defined by “hyperparameters”, including the number of layers,

the number of units per layer, and the type of activation functions used. The choice of

hyperparameters is considered one of the bottlenecks in designing NN models since it is a

resource-intensive process. There is an absence of analytical rules to find optimal hyperpa-

rameters, which must be found through iterative search strategies. Several techniques have

been proposed whose efficiency depends on the model’s architecture. Grid search involves

sweeping the value of each hyperparameter over a predefined range, giving all hyperparam-

eter values the same importance. In contrast, random search samples hyperparameter

values from an assumed probabilistic distribution. This method can outperform grid search

in cases where the model’s performance is mostly determined by a small number of hy-

perparameters [7]. The bayesian optimisation approach has recently become popular due

to its efficiency, outperforming random search [135]. It uses a probabilistic model of the

relationship between hyperparameters and the ML model’s optimisation objective, selecting

a set of promising hyperparameters at each iteration.

For model-driven schemes [61], the choice of architectural hyperparameters (such as

the activation functions and the number of layers) is usually clear. However, precise tuning

hyperparameters related to the training process can be achieved with simple techniques such

as a grid or a random search. Bayesian optimisation could also be used. However, from a

software standpoint, this requires custom implementations of BO that can handle custom

layers, which are required for implementing model-driven schemes. In this thesis, initial

tuning of some training-related hyperparameters for the proposed models was conducted

using simple grid searches. These early experiments provided the required expertise to tune

the hyperparameters manually in subsequent efforts.
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Initialisation

The initialisation of deep learning models is crucial for their training. For NNs, an adequate

initialisation helps avoid gradient issues that can hinder learning. Poor initialisation may

lead to vanishing gradients, where gradients are too small to affect the learning direction, or

exploding gradients, where excessively large gradient values cause the model optimisation

to diverge. A common practice is to give weights initial values taken from a probability dis-

tribution. Initialisation is also important in model-driven ML schemes, where initialisation

strategies have been shown to ensure fast optimisation convergence [58].

Unlike data-driven models, initialisation in model-driven schemes is often informed by

domain knowledge. Initial parameters that lead to optimal convergence can be estimated

using the underlying physics of the model. Examples include the initialisation of the linear

steps of LDBP with CD FIR filters [124] and of the nonlinear steps with coefficients derived

from perturbation analysis [87]. Relying on transmission parameters for initialisation is

potentially disadvantageous, as links may operate under varying conditions throughout

their lifetime. Mismatches between the transmission system and the model architecture

are expected to be common. Nonetheless, model-driven approaches capable of handling

imprecise initialisation may be developed. It has been shown that single-channel LDBP can

converge when initialised with random values [58], although with suboptimal performance.

Other equalisation architectures may mitigate the impact of parameter mismatch and lead

to improved convergence.

3.0.3 Convolutional Neural Networks

The multilayer perceptrons presented before are best suited for unstructured data. In cer-

tain applications, predictions from a model should remain unchanged after certain transfor-

mations of the input variables. Although neural networks can learn this “invariance” given

sufficient training data, another approach is incorporating these invariance properties into

the NN architecture. This is the approach underlying CNNs, a type of feed-forward network

originating from the “neocognitron” introduced in [48]. Their architecture was influenced by

developments in neurophysiology, and consists of a sequence of layers that extract features

from data using optimisable filters. Authors in [83] demonstrated the gradient-based train-

ing of CNNs for digit recognition, which revolutionised the field of computer vision. The
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Figure 3.6: Illustration of the operation of a conv1D layer.

fundamental building block of CNNs is the convolutional layer. Due to their versatility and

pattern extraction capabilities, convolutional layers are ubiquitous in deep learning mod-

els. Two-dimensional convolutional layer (conv2D) layers are suitable for computer vision

applications, while one-dimensional convolutional layer (conv1D) layers have demonstrated

utility in processing sequential data [77]. Convolutional layers are widely used in the imple-

mentation of NN-based equalisers. They may be used in fully convolutional architectures

[84] or in combination with recurrent and dense layers.

The operation of a conv1D layer can be described as follows:

yfi = σ

 L∑
n=1

K∑
j=1

xi+j−1,n · kfj,n + bf

 . (3.8)

Here, yfi is the i-th output of the convolutional layer, resulting from applying the filter f

to the i-th input element, x is an input vector of length L, kfj,n is the filter kernel, bf is

the bias vector and σ represents a nonlinear activation. The padding, stride, and dilation

parameters further configure the layer. In the above equation, padding equals 0, and stride

and dilation are equal to 1.

The operation of a conv1D is illustrated in Fig. 3.6. The layer “slides” a linear filter

along the length of the input sequence. Note that the convolutional layer does not perform

the convolution operation as defined in digital signal processing but instead does cross-

correlation, which is more general. The convolution operation can be obtained by simply

“flipping” the filters before passing them to the layer. Additionally, the circular convolution
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can be obtained by extending the input sequence. This versatility of the layers enables them

to implement any time-domain filtering operation for digital signal processing in commu-

nication systems. This has advanced model-driven approaches in machine learning-based

equalisation, where conv1D layers are employed to implement trainable models with the

architecture of model-based techniques (DBP, Volterra, perturbation), even enabling the

implementation of all DSP stages as trainable layers [36]. This thesis extensively uses

convolutional layers to implement Learned Volterra equalisers.
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Chapter 4

Methodology

Developing the models presented in this thesis required building optical transmission sim-

ulators and digital signal processing implementations. This chapter details the optical

transmission system models and the applied signal processing techniques.

4.1 Modelling of the Optical Transmission System

The simulated transmitter and optical channel are represented in Fig. 4.1. Pseudorandom

symbol indices were generated using NumPy’s np.random.randint function. This function

uses a global instance of np.random.RandomState, which is based on the Mersenne Twister

algorithm with a period of 219937 − 1 [95]. The indices were mapped to a constellation

of QAM symbols using Gray mapping, shown in Fig. 4.2 for a 16-QAM constellation.

In our simulations we have considered two different QAM orders: 16-QAM (Chapter 5)

and 64-QAM (Chapters 5 and 6). However, this thesis examines transmission with 64-

QAM modulation in more detail since this format imposes higher SNR requirements. All

simulations consider a symbol rate of 32 Gbaud.

MUX
matched 
filtering

x Nsp

modulation
bit seq. 
generation

channel n ...

...

Figure 4.1: Block diagram of the Tx architecture and optical link employed in our simulations.
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Figure 4.2: Gray mapping for the 16-QAM modulation format.

In the wavelength division multiplexing scenario, we consider a multi-wavelength signal

of 2K + 1 modulated channels with the frequency spacing ∆ω, centred at a wavelength of

1550 nm. K was a design parameter: We considered 5-channel transmission in our initial

efforts, as reflected in our initial conference contribution on multichannel equalisation [13],

and later 11-channel transmission to explore more realistic scenarios. The channel spacing

is set to 40 GHz, placing the system in the dense WDM category. Standard WDM systems

typically use 50 GHz spacing, which reduces the impact of XPM impairments and improves

system performance. The narrower 40 GHz spacing is used deliberately to accentuate the

inter-channel impairments and enable evaluation of equalisation gains in more tightly spaced

scenarios such as super-channel systems.

Transceiver nonlinearity is a major limiting factor in optical coherent systems [131]. The

transmitter laser induces phase noise, and modulators exhibit nonlinear responses which

becomes important when transmitting using high order modulation formats and very high

baud rates, like it is done in metro and data-centre networks. In this thesis we consider

transmission links, where baud-rates and the order of modulation formats are not as

high, and fibre nonlinearity is the primary source of impairments. Therefore, we consider

transceiver impairments to be negligible, assuming an ideal conversion from the digital

domain to the optical domain, and components such as lasers, modulators and analog-to-

digital converter (ADC)s are omitted from the model.

The transmission links consist of interconnected SSMF fibre spans of equal length, ter-

minated with erbium-doped fibre amplifiers (EDFA) amplifiers. The EDFAs are modelled
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as amplifiers that apply a gain of αLsp dB to the signal and introduce ASE noise. The ASE

noise is modelled as additive white Gaussian noise (AWGN), with a spectral density given

by [33]

GEDFA
ASE = (eαLsp − 1)hνsnsp. (4.1)

Here, h is Planck’s constant, νs is the operating frequency, and nsp is the amplifier spon-

taneous emission factor. We employ fibre span lengths Lsp of 100 km, while the overall

link lengths we consider are 600 km and 1000 km. In our simulator, signal propagation is

modelled using the SSF method to solve the NLSE for single polarisation transmission:

∂A(z, t)

∂z
= −α

2
A(z, t) + j

β2

2

∂2A(z, t)

∂t2
− jγ|A(z, t)|2A(z, t). (4.2)

When considering WDM transmission, A(z = 0, t) ≜
∑K

k=−K Ak(t)e
jk∆ωt, where Ak(t) is

the complex field envelope of each wavelength channel. At the end of the link the received

signal A(L, t) is de-multiplexed and each sub-channel is detected coherently. Although this

setup excludes PMD— a significant impairment in current optical networks [140]—we do

not anticipate this omission to compromise the study’s conclusions on the potential gains

from the equalisation of Kerr-based impairments. This is because PMD is a linear impair-

ment weaker than chromatic dispersion, which can be mitigated by adaptive algorithms to

an extent in modern coherent receivers [71]. Extending our schemes for polarisation mul-

tiplexed systems is left for future work. The symmetric variant of the SSF method [37],

which localises the nonlinear phase shift at the centre of the span, has been employed for

its accuracy. Therefore, each step in the method consists of three substeps: an initial linear

step covering a length h/2, a nonlinear step addressing the nonlinear phase shift of h, and

a second linear step identical to the first. A small step size — or, equivalently, a large

number of steps — ensures that linear and nonlinear effects can be treated separately with

sufficient precision. We implemented an adaptive step approach that adjusts the number

of steps based on changes in the nonlinear phase. The required number of steps depends

on the signal bandwidth: An increase in the number of WDM channels increases the step

requirement.

An ideal optical front-end is assumed at the receiver, with perfect conversion from the
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Figure 4.3: Block diagram of the single-channel receiver DSP architecture.
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Figure 4.4: Block diagram of the MIMO receiver DSP architecture.

optical to the digital domain. Front-end components, including the optical hybrid and

photodetectors, are not modelled since they are assumed to perform without signal loss or

nonlinear distortion. Each channel is shifted to the baseband. Then, a sinc filter is applied

to each channel. The signals are then downsampled to two samples per symbol, which is

sufficient for DBP and Volterra-based single-channel and MIMO equalisers.

The computations involved in the simulation of the optical link have been implemented

in the Tensorflow 2 framework to leverage graphics processing unit (GPU) acceleration. The

initial version of our simulator (employed for the results in [12]) independently generated,

transmitted and received short data batches, similar to the implementation in [57], allowing

native block processing and facilitating training routines at the receiver. This approach

provided sufficient accuracy for single-channel scenarios with relatively low channel mem-

ory. However, to accurately account for the impact of propagation on the broader signal

bandwidths in multichannel transmission, a simulator capable of processing large sequences

was developed, along with the necessary overlap-based block processing at the receiver.

4.2 Digital Signal Processing

We have adopted the simplified DSP architecture shown in Fig. 4.3. The receiver DSP

is comprised by NLE, matched filtering, downsampling and phase offset correction. A

standalone CD compensation stage is omitted when using Volterra-based NLEs since CD
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equalisation is already integrated in them. Moreover, adaptive equalisation is not required,

as our simulated system does not account for transceiver impairments or volatility of the

transmitted channels. The architecture in Fig. 4.4 is employed when applying MIMO

equalisation. In this case, a subset 2M + 1 (M ≤ K) of the received sub-channels is

processed, while the remaining sub-channels are discarded. Let r be the equalised signal

of a given channel. After equalisation, downsampling is performed by retaining only one

sample of each symbol interval, along with normalisation to account for the channel power

and the effect of downsampling:

s̃[m] =
r[m ·OSd]√
Pch,lin ·

√
OSd

. (4.3)

Here, m represents the indices of the samples in the processed block, and OSd is the digital

oversampling rate. Subsequently, phase offset correction is applied according to [58]:

ŝ = s̃e−jϕ̂, (4.4)

where ϕ̂ = −arctan
(
Re(q)
Im(q)

)
, q = s∗ · s̃ and s∗ denotes the conjugate of the transmitted

symbol vector s. This phase correction is genie-aided, since it assumes the prior knowledge

of s. Symbol demodulation is performed using a hard-decision nearest-neighbor algorithm.

Finally, decimal integers are converted to binary representations for bit error counting.

During the training of NLE algorithms, BER calculation is omitted and the output signal

is employed to compute a loss from which parameter updates can be calculated. To enable

the training of the NLE schemes, which requires the backpropagation of gradients through

the DSP chain, all of the DSP operations after the NLE and before the BER calculation

are implemented as layers in the Tensorflow framework.

In the following sections we describe the linear filtering techniques employed in the

implementation of our equalisation schemes.

4.2.1 Linear Filtering

While a dedicated CD compensation stage is not a part of our DSP architecture, CD filtering

is extensively used in the models developed in this thesis. The dispersive effects introduced

by standard single mode fibre can be described by a discrete linear time invariant (LTI)
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model and characterised in the frequency domain by the following transfer function

HCD(ω) = e−jM(ωT )2 , (4.5)

where M = Dλ2L
2cT 2 and D is the dispersion parameter, λ is the transmission wavelength, L is

the fibre length, c is the speed of light and T is the sample period. This transfer function

constitutes an all-pass filter which effects can be compensated with the transfer function

H−1
CD(ω) = (HCD(ω))

−1
= ejM(ωT )2 . (4.6)

Performing this filtering involves an element-wise multiplication between the frequency rep-

resentation of the signal and the transfer function. Since the signals in our study are finite

temporal sequences of N equally-spaced samples, the appropriate method for obtaining

their frequency-domain representation is the DFT, which converts a sequence {x(n)} of

length L ≤ N into a sequence {X(k)} of length N . The kth element of the signal’s DFT is

given by [106]

X(k) =

N−1∑
n=0

x(n) · e−j2π k
N n. (4.7)

FFT algorithms can efficiently compute the DFT. These algorithms are extensively used in

this thesis to efficiently “switch” the processing between time and frequency domains.

In WDM systems, wavelength channels co-propagating over an optical fibre travel at varying

velocities, resulting in delays between them. The walk-off of channel i relative to the central

wavelength after propagation over a fibre length L can be defined as [67]

Di(ω) ≜ e−jβ2Lω∆ωi , (4.8)

where β2 = −D · λ2/(2πc0) and ∆ωi is the frequency offset from the central frequency

for channel i. In MIMO processing, the precise correction of this delay is essential to

achieve interchannel impairment compensation [67, 124]. The walk-off delay can be easily

compensated in the frequency domain, and included in the inverse linear transfer functions
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employed in nonlinear equalisers [69]. For channel i and a length of fibre L,

H−1
i (ω) = (HCDDi(ω))

−1
= ejβ2L(ω2+2ω∆ωi)/2. (4.9)

To enable efficient processing, transceivers in optical transmission systems process data

sequences in blocks. When implementing chromatic dispersion compensation in the fre-

quency domain within block-based DSP —an essential operation within Volterra and DBP

equalisers— a key challenge arises: intersymbol interference occuring at the block edges

needs to be addressed. Furthermore, since frequency domain filtering is carried out us-

ing FFT operations, the equivalent cyclic convolution applied to each block introduces

time aliasing [21]. Overlap-based methods are commonly used to address these issues.

We have implemented the overlap-and-save [142] method in our DSP pipeline to support

our single-channel and MIMO-based equalisation solutions. A detailed investigation of the

overlap-and-save requirements for MIMO based equalisation is provided in chapter 6. In our

MIMO DSP, the overlap-and-save method is applied independently to each channel. The

data sequence for each channel is first extended by adding zeros to the beginning and end,

allowing it to be divided into blocks of equal length Ndata = NFFT−NOverlap. Subsequently,

overlapping is performed by “saving” NOverlap samples from the block i− 1 and appending

them to the block i. The overlapped blocks, which now have each a length NFFT, are then

processed by the receiver DSP. Time aliasing occurs at the block edges during CD filter-

ing. However, if NOverlap is sufficiently large, only the overlap samples are affected. After

processing, the correctly filtered samples are obtained by removing the overlap samples and

the added zeros.

We next examine the effect of block-wise processing on the performance of frequency

domain walkoff-delay correction, employed in some of our MIMO schemes. We consider the

compensation of chromatic dispersion and walk-off delay for a 600 km SSMF link, performed

using Eq. (4.9). To emulate different block sizes, transfer functions are defined for various

lengths of the frequency vector ω. We consider β2 = −2.1683 × 10−26 ps2/km. Figure 4.5

(a) illustrates the phase response of the transfer functions for channels centred at varying

frequencies ∆ωi. We observe that each phase response has a quadratic shape, as expected

from the exponent of the transfer function in Eq. (4.9). The phase responses rotate counter-

clockwise about the origin as a function of the centre frequency. Figure 4.5 (b) shows the
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(a) (b)

Figure 4.5: Phase response of (a) the transfer functions for compensating CD and walkoff delay
of channels centered at various wavelengths (b) transfer function for a channel centered at 40 GHz
when varying the block length.

phase response of the transfer function for a channel centred at ∆ω1 = 2π ·(40GHz) (orange

curve in Fig. (a)). A minimum block length of 1024 samples is required for accurate walk-off

delay compensation, as transfer functions of shorter lengths fail to reproduce the desired

phase response accurately. Finally, we note that in single-channel overlap equalisation,

adequately configuring the overlap length is crucial to avoid performance penalties, as it

must be large enough to prevent inter-block interference [79]. While needing to exceed the

overlap, the block length is optimised primarily to reduce complexity and is commonly set

to twice the overlap length. In contrast, these results indicate that in multichannel block

processing, the walk-off term imposes an additional constraint on the minimum block length

beyond the usual overlap considerations.

Time-domain Filtering

CD filtering can also be performed in the time domain using FIR filters. To achieve this,

time-domain filters must be designed to approximate the CD frequency-domain transfer

functions, for which various methods are available [113, 121]. This approach leverages the

property that circular convolution in the time domain is equivalent to multiplying two

N -point DFTs in the frequency domain. For discrete signals x1(n) and x2(n),

DFT [x1(n)⊛ x2(n)] = X1(k)X2(k), (4.10)

where X1(k) and X2(k) are the respective N -point DFTs and ⊛ is the circular convolution
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operator. The circular convolution is defined as

x1(n)⊛ x2(n) =

N−1∑
n=0

x1(n)x2((m− n))N for m = 0, 1, . . . , N − 1, (4.11)

where the index ((m− n))N indicates an N -point circular shift.

FIR CD filters are extensively used in the nonlinear equalisers presented in this thesis.

While the optimal FIR filter taps employed in the equalisers are ultimately found through

a gradient-based optimisation process, their initial values are computed using numerical de-

sign methods, which aim to produce a frequency-domain response that closely approximates

the ideal CD transfer function within the compensation band. An early design method for

FIR CD filters, known as direct sampling, was proposed in [113]. In this method, an in-

verse discrete Fourier transform (IDFT) is applied to Eq. (4.6) to derive the CD impulse

response, which is then is truncated. The coefficients of the odd-length filter are given by

ak =

√
jcT 2

Dλ2L
exp

(
−j

πcT 2

Dλ2L
k2
)
−
⌊
N

2

⌋
≤ k ≤

⌊
N

2

⌋
, (4.12)

with N = 2 ⌊2π|M |⌋ + 1. A lower bound for the length of CD filters can be obtained by

calculating the group delay difference induced by CD over the signal bandwidth B and

distance L. In samples,

TCD = 2π |β2|LB/T. (4.13)

The direct sampling method does not approximate well the impulse response of chromatic

dispersion when the accumulated dispersion is low (less than 320 km of SSMF). This is due

to the aliasing resulting from an imprecise approximation of the CD transfer function time

window[141]. More advanced CD filter design methods based on least-squares optimisation

have been proposed [28, 121]. This approach minimises the energy of the complex error,

defined in the frequency domain between the ideal CD transfer function (Eq. (4.6)) and

the DFT of the desired FIR filter. In this thesis, we have used the LSCO method [121],

proposed for the compensation of band-limited signals. Aside from making the in-band gain

response as close as possible to ideal dispersion compensation, this technique constrains the

out-of-band gain of the filter that results from reducing the number of filter taps. The

method involves two stages: First, the filter taps are calculated. Second, find a threshold
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that reduces the in-band error considering the coefficient quantisation errors induced by the

out-of-band gain. The optimal FIR filter coefficients are given by

h̃ = Q−1v, (4.14)

where Q is an M ×N matrix with elements given by

Qm,n =


2π(λ+1)+(λ+1)Ω1−(λ+1)Ω2

2π+Ω1−Ω2
if m = n

λ
j(m−n)(2π+Ω1−Ω2)

[
ej(m−n)Ω1 − ej(m−n)Ω2

]
+ 1

j(m−n)(Ω1−Ω2)

[
ej(m−n)Ω1 − ej(m−n)Ω2

]
if m ̸= n

(4.15)

and v is a vector given by

vm =
e
−j

(
m2

4M + 3π
4

)
2(Ω2 − Ω1)

√
π

M

{
erfz

[
e−j π

4 (2MΩ1 +m)

2
√
M

]
− erfz

[
e−j π

4 (2MΩ2 +m)

2
√
M

]}
. (4.16)

Here, Ω1 and Ω2 are the boundary frequencies of the signal band, erfz is the error function

of complex arguments and λ is a Lagrangian parameter. Figure 4.6 shows the response of

LSCO filters of varying lengths, designed for a 32Gbaud signal at 2 SpS, transmitted over

a fibre of length L = 100 km with a dispersion parameter D = 17ps/(nm · km). We observe

that the length of the filter significantly influences its bandwidth and the phase response.

The 59-tap filter shows a mostly flat gain profile, while shorter filters show greater oscillatory

behaviour within the band. Gain peaks outside the band are observed, with oscillations

that also intensify with shorter filter lengths. Equation (4.13) gives TCD ≈ 31, almost

half the length required by the LSCO filter to show a flat gain profile. While this method

provides filters which response is far from ideal when their length approaches the memory

length given by Eq. (4.13), it may be acceptable for initialisation of short CD filters in

nonlinear equalisers. While employing filters with gain ripples in a sequence would result

in coherent build up of errors, this can be mitigated through gradient-based optimisation,

which optimises the joint response of the filters [58].

Fully time-domain implementations have also been proposed for eliminating repeated

Fourier transformations between linear and nonlinear stages in DBP-based multichannel
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Figure 4.6: Magnitude response of LSCO filters of various lengths for a 32 Gbaud signal at 2 SpS
and an SSMF fibre length of 100 km.

equalisation [67, 124]. This requires fully implementing the linear steps (i.e. Eq. 4.9) in the

time domain. However, the walk-off delays Di(ω) are generally fractional, and implementing

fractional delays in the time domain is challenging. This issue can be addressed by treating

delay as a resampling process that maintains a constant sampling rate. This approach

has resulted in a variety of design methods for fractional delay filters suitable for various

precision requirements [81]. In the design of fractional delay filters, our objective is to

approximate the frequency response of Di(ω), which has unity magnitude and constant

group delay

|Di(ω)| =
∣∣e−jβ2Lω∆ωi

∣∣ = 1 for all ω (4.17)

and

− d

dω
arg[Hd(ω)] = β2L∆ωi = τ. (4.18)

For a band-limited baseband signal, the ideal solution can be obtained using the discrete-

time inverse Fourier transform [103]

h(n) =
1

2π

∫ π

−π

Di(ω)e
jωndω = sinc(n− τ) for all n. (4.19)

This solution is infinite in duration and non-causal and, therefore, cannot be implemented

in our schemes. An approximation can be obtained using an N -th order FIR filter (of

length L = N + 1), whose coefficients can be determined using a least squared error design

approach. The L2 optimal FIR of order N is derived by truncating the ideal solution to L
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terms. The least squares solution can be enhanced to reduce the Gibbs phenomenon, which

introduces ripples in the magnitude response, by applying a bell-shaped window function.

This approach mitigates peak magnitude errors by smoothly tapering the signal, thereby

minimizing discontinuities at the boundaries. Commonly used window functions include the

Hamming, Hanning, and Blackman windows, each designed to suppress spectral leakage and

reduce oscillations near discontinuities. In that case the overall impulse response becomes:

h(n) =

{
W (n− τ)sinc(n− τ) for 0 ≤ n ≤ N

0 otherwise.
(4.20)

In our work we made use of a Hamming window, given by

W (n) = 0.54− 0.46cos

(
2πn

N

)
. (4.21)

The window’s shape and its frequency response are depicted in Fig. 4.7. We selected

the windowed sinc method for its straightforward implementation, though it offers limited

control over the magnitude response through parameter adjustments. In contrast, authors

in [67] employed Lagrange interpolators, which provide a maximally flat delay response,

making them suitable for applications requiring precise magnitude control. However, our

chosen method is not recommended for filter lengths shorter than ten taps when stringent

magnitude error control is necessary [81]. In our case, we assume that any magnitude

deviations are not critical, as they can be compensated for by accompanying trainable

filters.

(a) (b)

Figure 4.7: (a) Shape and (b) frequency response of the Hamming window used in the design of
fractional delay filters.
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In our algorithms, we may address substantial delays. For instance, consider the edge

channel of a group of 9 subchannels with 40 GHz spacing, where ∆ω4 = 2π · (160GHz).

Assuming β2 = −2.1683 × 10−26 ps2/km, Ls = 100 km and T = 15.625 ps, the group delay

calculated using Eq. (4.18) is τ = −2.1798 ns, equating to approximately −139.50 samples.

To manage such delays, we implement fractional delays using a combination of unit delays

and a short fractional delay filter. This design offers flexibility in applying fractional delay

filtering within schemes that involve sequential linear steps. For example, the approach in

[67] addresses only integer delays in the linear steps of the LDBP algorithm, deferring frac-

tional delay compensation to a separate layer at the end. In contrast, our algorithms handle

fractional delays at each linear step. By integrating fractional delay filtering throughout the

process, we achieve more precise delay compensation, enhancing the overall performance of

our system.

The choice between time-domain and frequency-domain linear filtering depends on im-

plementation requirements such as computational cost and latency. Frequency-domain fil-

tering leverages the highly efficient FFT algorithm but incurs the drawback of discarding

samples due to overlap-based block processing methods. On the other hand, time-domain

filtering avoids the overhead of transforming signals to and from the frequency domain and

eliminates the need for overlap-based processing. However, it can become computationally

expensive when dealing with filters that have long impulse responses. A comparison of these

methods for CD equalization is provided in [141], demonstrating that frequency-domain fil-

tering is more efficient for handling large amounts of accumulated dispersion. However,

a subsequent study [38] showed that time-domain chromatic dispersion compensation can

be a power-efficient alternative for systems with moderate amounts of accumulated dis-

persion (up to approximately 150 km of SSMF). This scenario is common in nonlinearity

equalization schemes, where the algorithm’s linear steps compensate for the dispersion of

shorter fiber sections. Examples include time-domain DBP [39] and time-domain Volterra

series equalizers [56]. Given that efficient linear filtering implementations are feasible using

both approaches, we have explored both time-domain and frequency-domain techniques for

implementing the schemes presented in this thesis.
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Matched Filtering

The spectral efficiency (SE) of modulated signal transmission is directly influenced by the

pulse shape used. For AWGN channels, the Nyquist criterion specifies the conditions for

pulse shapes that maximise spectral efficiency and minimise intersymbol interference. The

sinc function is the optimal shape that satisfies the Nyquist criterion.

Although an analogous optimal pulse shape has not been derived for the nonlinear fibre

channel, Nyquist pulse shaping remains an essential component in optical fibre networks

as it effectively improves the SNR. Since the sinc impulse response is infinite in duration

and impractical to implement, matched filtering is commonly achieved using root-raised

cosine (RRC) filters characterised by a roll-off factor β. These filters are applied at both

the transmitter and receiver, with an impulse response given by

f(t) =



1
T

(
1 + β

(
4
π − 1

))
for t = 0

β

T
√
2

(
(1 + 2

π )sin(
π
4β ) + (1− 2

π )cos(
π
4β )
)

for t = ± T
4β

1
T

sin(π t
T (1−β))+4β t

T cos(π t
T (1+β))

π t
T (1−(4β t

T )2)
otherwise,

(4.22)

where T is the sample period and t is the tap index.

4.2.2 Data Preprocessing for Model Training

(a) (b)

Figure 4.8: Depiction of (a) overlap and save multichannel pre-processing and (b) the dimensions
of the resulting array.

In this section, we outline the preprocessing steps applied before model training and

how they transform the data dimensions. While the focus is on multichannel processing,

these steps are equally applicable to single-channel scenarios. Initially, the received data,
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Figure 4.9: Effective SNR against the BER for different QAM orders.

sampled at 2 samples per symbol has dimensions (Nch,tx, Nsamp), where Nch,tx is the number

of transmitted channels and Nsamp is the length of the oversampled received sequence.

First, the channels which are not be processed are discarded, resulting in an array of shape

(Nch, Nsamp). Then, overlap-and save preprocessing is done for each channel, transforming

the data array dimensions as shown in Fig. 4.8. Finally, a tf.data.Dataset object is

created by pairing training data with the corresponding reference symbols. The training

dataset is shuffled and divided into mini-batches of size Nbatch.

Custom training loops were implemented based on the guidelines in [132], allowing pre-

cise control over the data flow and data formatting inside the training and evaluation steps.

This was required due to the model’s integration within an overlap-based multichannel DSP

pipeline. As required by the overlap and save algorithm, samples were discarded before er-

ror calculation. In the validation step, errors were computed both as an average across all

processed channels and for each channel to facilitate performance monitoring. To monitor

training progress, we have monitored an SNR calculated from the mean squared error as

SNRMSE = −10log(MSE). We use this metric in the training and validation steps performed

at each epoch to provide a coarse indication of training progress. It has the advantage that

can be computed quickly, which is highly desirable during the training stage. Conversely,

during the test phase, we performed hard-decision symbol demodulation and computed the

BER.

The performance results of this thesis are presented in terms of an effective SNR obtained

from the BER (Eq. (2)). Figure 4.9 shows the relationship between the calculated effective

SNR and the BER for different square QAM orders.

N. Castro Salgado, PhD Thesis, Aston University 2024 62



CHAPTER 4. METHODOLOGY

4.2.3 MIMO Processing for Equalisation

channel 1

(a) (b)

channel k

channel 1 channel k

...
...

linear 
layer ch 1

linear 
layer ch k

activation

|  |2 |  |2

activation

XPM layer 
chs. 1 to k

SPM
layer ch k

XPM layer 
chs. k to 1

SPM
layer ch 1

Figure 4.10: Block diagram of the WDM (a) linear and (b) nonlinear layers, showing channel 1
and channel k. In (a), the linear layers for each channel may be defined in the frequency or time
domain. In (b), the SPM and XPM layers are implemented in the time domain.

The MIMO equalisers developed in this thesis are implemented using custom layers, de-

fined by subclassing the tf.keras.layers.Layer class. In each custom layer, parameters

are defined in the init () method, while forward passes are performed in the call()

method. MIMO implementations employ a hierarchical architecture that includes single-

channel layers and multichannel layers, offering flexibility in handling varying numbers

of processing inputs: Multichannel operation can be reduced to single-channel operation

through parameter configuration. Since IVSTF-based equalisers consist of linear and non-

linear stages, linear and nonlinear multichannel layers are defined as building blocks that

can be concatenated to form various models. Employing single channel layers within multi-

channel layer supports weight tracking and retrieval. Multichannel linear layers are designed

so that they may use time or frequency-domain single-channel layers, whereas multichannel

nonlinear layers are to use time-domain single-channel layers exclusively. Diagrams illus-

trating the call() methods of the wdm linear layer and wdm nonlinear layer classes are

shown in Figure 4.10, highlighting the internal differences between multichannel linear and

nonlinear layers. Linear layers feature no interconnections between channel paths, while

nonlinear layers require such interconnections to account for XPM contributions. By en-

closing interconnections and complexity within multichannel layers, they can be employed

as single-channel layers, permitting their reusability for constructing equalisation schemes
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with varying structures. For example, although these layers were designed for Volterra-

based equalisers, they can be used for implementing MIMO DBP. The structure of the

MIMO equaliser, wdm linear layer and wdm nonlinear layer classes is detailed below.

The pseudocode for the equalisation algorithms referenced in the call() method of

the MIMO equaliser class, and which are introduced in 6, is presented in Appendix C.

Additionally, the Python implementation of single-channel layers is provided in Appendix

D.

Class: wdm linear layer

Method: init ()
for channel in channels:
Initialise linear layer with CD filters

Method: call()
for channel in channels:
Apply corresponding linear layer

Class: wdm nonlinear layer

Method: init ()
for channel in channels:
Initialise SPM layer

for each channel pair:
Initialise XPM layer

Method: call()
for channel in channels:
Compute power signal
Apply SPM layer to power signal
Apply XPM layers to each channel’s
power signal
Compute total nonlinear phase shift

Figure 4.11: Structure of the wdm linear layer (left) and wdm nonlinear layer (right) classes
used to implement MIMO equalizers. Linear layers process each channel independently, while non-
linear layers employ inter-channel connections to account for cross-phase modulation effects.

Class: MIMO equaliser

Method: init ()
for each computation step:
Calculate CD, SPM, and XPM FIR coefficients
Create wdm linear layer layer(s)
Create wdm nonlinear layer layer

Method: call()
Apply FFT to signal (if applicable)
Apply the equalisation algorithm
Apply iFFT to signal (if applicable)

Figure 4.12: Structure of the MIMO equaliser class, which defines a multistep algorithm composed
of linear and nonlinear layers. Each step computes the required FIR filter coefficients and instantiates
the required layers. The call() method applies the equalisation algorithm in the time or frequency
domain.
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4.3 Summary

This chapter outlined the simulation and signal processing methods used for numerically

assessing equalisation in single channel and multichannel scenarios. This was followed by

a discussion of the various filtering techniques employed in model-driven equalisation, in-

cluding time and frequency domain filtering techniques. Lastly, we introduced the frame-

work developed for MIMO equalisation that supports the training of model-based MIMO

schemes. The framework follows a layered approach for implementing MIMO equalisers,

which is scalable and may be employed to investigate varying equalisation architectures.
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Chapter 5

Learned Volterra Equaliser for

Single Channel Transmission

The work presented in this chapter has been adapted from the following publication:

[12] N. Castro and S. Sygletos. A novel learned Volterra-based scheme for time-domain

nonlinear equalization. In Conference on Lasers and Electro-Optics, page SF3M.1, San

Jose, California, 2022. Optica Publishing Group. ISBN 978-1-957171-05-0.

5.1 Introduction

The integration of ML into optical communications has prompted a re-examination of con-

ventional equalisation methods to enhance their performance and reduce complexity. A key

example of this is the LDBP scheme, which transforms the time-domain DBP algorithm into

an optimizable computation graph. This approach leverages the adaptability of trainable

time-domain filters, enabling effective joint optimization that improves performance while

reducing complexity, particularly by allowing for shorter filter lengths within the system.

The IVSTF equalizer [88], a model-based alternative to DBP, is particularly attractive for

hardware implementation due to its ability to compute, in parallel, the nonlinear distor-

tion induced by each fiber span. This parallel computation allows for potential low-latency

and high-throughput operation in low-complexity hardware [111]. However, several factors

limit the IVSTF’s performance. Since it is based on a truncated Volterra series, its ability

to accurately model nonlinear effects is restricted. This manifests in the highly nonlinear

power regime, where the performance of the algorithm is notably poor. Furthermore, while
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in SSF-based algorithms increasing the number of steps leads to enhanced accuracy, em-

ploying sub-span steps in IVSTF leads to very limited accuracy improvements [27]. The

simplifications necessary for straightforward implementation further limit performance. The

structure treats nonlinearity and dispersion separately within the nonlinear contribution of

each fibre segment, which enables sequential filtering stages. Consequently, regardless of

the number of step used, the model fails to account for the interaction between nonlinearity

and dispersion within each fiber span, leading to suboptimal performance.

In this chapter we investigate ML optimisation to address these limitations. We explore

how to achieve effective joint optimisation of the filtering steps of the model. We propose a

novel time domain scheme, the L-simIVSTF, which addresses the computational redun-

dancy of the IVSTF by employing efficient FIR-based filtering. Our study demonstrates

the effective gradient-based optimisation of the IVSTF-based architecture, enabling it to

provide the same performance improvement as LDBP.

5.2 An IVSTF-based Machine Learning Model

We consider the development of a trainable model based on the IVSTF as an alternative

to both LDBP and generic neural networks. The objective is to obtain a model-driven

ML scheme whose architecture aligns with the IVSTF, with hyperparameters derived di-

rectly from the physical properties of the link. Suitable parameters in the model are to

be optimised using supervised learning, an approach shown to be applicable to function

classes beyond neural networks [58]. We first examine the LDBP model. The development

of LDBP involved parameterising the SSF method to transform it into a model that can

be trained as a NN. Conventional SSF-based DBP implementations employ identical filters

A∆z at each linear step [72, 117]. A step i of the asymmetric SSF method is expressed as

ui = σ∆z(A∆zui−1) for i = 1, 2, . . . ,M, (5.1)

where M is the total number of steps. In contrast, LDBP allows the filters at each step to

be distinct, similar to the weights matrices in a NN:

f(x) = σℓ(A
(ℓ) . . .σ1(A

(1)x)), (5.2)
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... ...

Σ

Figure 5.1: IVSTF model, where H(k) is a transfer function corresponding to the dispersion of k
spans of fibre, and K(k) is a nonlinear operator estimating the nonlinear phase shift of the k-th fibre
segment.

where ℓ = M is the number of steps of the model. To limit the number of parameters, the

matrices A(ℓ) are restricted to symmetric FIR filters. The set of all trainable parameters

of LDBP is represented as {A(1) . . . ,A(ℓ)}. We adopt a similar approach to parameterise

the IVSTF. While the IVSTF does not closely resemble deep NNs, it is similarly comprised

by sequences of linear and nonlinear steps, where trainable parameters may be introduced.

The IVSTF or first-order RP model can be expressed as a sum of two terms [27]:

U(L, t) ≈ Uln(L, t) + Unl(L, t). (5.3)

The term Uln is a linear branch where the accumulated chromatic dispersion of the link is

addressed:

Uln(L, t) = D(N) [U(0, t)] . (5.4)

Here, D(s) is a linear operator addressing the dispersion of s fibre spans and it is given by

D(s)[·] = F−1
[
H(s)(ω)F [·]

]
. (5.5)

Here ω is the angular frequency, and F and F−1 represent the DFT and inverse DFT, re-

spectively. Considering a 1 StpS implementation, H(s)(ω) is a CD transfer function covering
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s steps of length Lsp,

H(s)(ω) = exp(jβ2sLspω
2/2). (5.6)

The term Unl is the summation of nonlinear “branches” corresponding to the contributions

from each segment k of fibre:

Unl(L, t) =

N−1∑
k=0

D(N−k)
[
K(k)

[
D(k) [U(0, t)]

]]
, (5.7)

where the operator K is defined as

K(k)[U(t)] = jγLeff |U(t)|2U(t). (5.8)

Each nonlinear branch in Eq. (5.7) consists of three filtering operations: the first is a

linear step compensating for the dispersion from the beginning of the link to the kth fi-

bre segment, k = 1...N . The second is a nonlinear transformation mitigating the non-

linear phase shift corresponding to the k-th segment. Finally, a linear step addresses the

dispersion from the end of the k-th segment to the end of the link. We note that the

above expressions are a simplified version of the RP model which does not account for

the lump losses in the backpropagation link. We refer the interested reader to Appendix

A for a more accurate and detailed derivation of this implementation. We first inspect

the available filters in the structure. The innermost linear operator in Eq. (5.7) employs

a group of filters {H(0)(ω), H(1)(ω), . . . ,H(N−1)(ω)}, while the outermost linear operator

uses {H(1)(ω), H(2)(ω), . . . ,H(N)(ω)}. Including the H(N)(ω) filter required for Uln, the

structure utilises 2N filters in total, with each H(k)(ω) filter appearing twice. One possible

approach to parameterise the IVSTF involves assigning independent filters to each linear

operator and defining optimisable parameters within each filter. However, for frequency

domain transfer functions such as H(s), the suitable options for trainable parameters might

be limited. In LDBP implementations using frequency domain linear steps, no trainable

parameters are introduced [36], or the dispersion parameter has been designated as the sole

trainable parameter [69]. The effectiveness of this approach is limited, resulting in models

that provide subpar performance [36].
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... ...

Σ

Figure 5.2: TD IVSTF model, where h(k) is a CD FIR filter addressing the dispersion of k spans
of fibre. This model, a direct conversion of the IVSTF to the time domain, is highly inefficient.

A different parameterisation strategy was applied in [27], where the imprecision of the

RP model was evaluated by examining the nonlinear phase rotation it induces. It was

observed that when the nonlinearity of the optical signal is high, the nonlinear branches

induce a gain increase that reduces the model’s accuracy. The problem was then addressed

by introducing trainable complex-valued vectors C = {C0, C1, C2, . . . , CN} at the end of

each branch, transforming the linear and nonlinear terms of Eqs. (5.4) and (5.7) into:

Unl(0, t) =

N−1∑
k=0

D(N−k)
[
K(k)

[
D(k) [U(L, t)]

]]
× Ck. (5.9)

These vectors enabled the adjustment of the gain and rotation of each branch. However,

this only moderately improved equalisation performance. Yet another parameterisation ap-

proach is to perform linear steps in the time domain with FIR filters, enabling the FIR

coefficients to be set as trainable parameters. Using this method to introduce trainable

parameters in LDBP has shown superior performance gains from gradient-based optimisa-

tion compared to frequency-domain approaches [36]. Therefore, it may offer a promising

direction for developing a learned IVSTF equaliser. Our next objective is to derive a time

domain implementation of the IVSTF.

A time domain model equivalent to the IVSTF, which we refer to as the TD IVSTF,

can be obtained by performing CD filtering in the time domain through convolutions with

FIR filters. In this case, Eqs. (5.4) and (5.7) can be redefined as:

Uln(L, t) = h(N) ∗ U(0, t), (5.10)
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Figure 5.3: SimIVSTF structure that removes redundant filtering operations. The nonlinear

activation at each step k is defined as σk(x) ≜ jγLeff |x|2x, and h
(k)
a , h

(k)
b are CD FIR filters

associated with span k.

Unl(L, t) =

N−1∑
k=0

h(N−k) ∗
(
K(k)

[
h(k) ∗ U(0, t)

])
. (5.11)

The corresponding scheme is shown in Fig. 5.2. The required filters h(k) address the

dispersion of k fibre sections, and can be designed using the methods described in chapter 4.

This implementation comes with significant drawbacks. The redundancy in CD equalisation

across parallel arms results in inefficient scaling of computational complexity, as the FIR

filters must address the dispersion of multiple fibre spans. Furthermore, there is a minimum

length required for each filter to avoid performance penalty resulting from aliasing and

account for pulse broadening. The length of these filters must be larger than the channel

memory dictated by Eq. (4.13). For example, a filter h(10) addressing the dispersion of 10

fibre spans of 100 km requires at least 307 taps, assuming a bandwidth B = (1+0.1)·32GHz

and sample duration T = 1/(2 · 32GHz). Such filter lengths make convolutions prohibitely

expensive. Moreover, the TD IVSTF implementation would require 2 of each h(k) filter,

increasing overall cost and latency. Lastly, it is worth noting that optimising the TD IVSTF

could be pursued by training the filter coefficients in a gradient-based optimisation process.

While this path might lead to a highly adaptable learned scheme, the required convolutions

would make its training highly inefficient. Therefore, further development of this scheme

into a machine learning model has not been pursued.

The limitations of the TD IVSTF can be addressed with the simplified IVSTF scheme

of Fig. 5.3. This approach employs interconnection of the nonlinear branches within an
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IVSTF structure to enable the efficient reuse of short-length FIR filters to perform the

CD compensation steps. Consequently, each nonlinear branch processes only the CD of

its corresponding fibre section, eliminating redundant operations. Furthermore, since the

FIR filters address the dispersion of a single step, all filters throughout the structure have

the same low length requirement, enabling more efficient convolutions. The scheme can

interpreted as the interconnection of two separate arrays of cascaded filters, denoted by ha

and hb. A step of the simIVSTF algorithm is recursively described as follows:

p(s) = p(s−1) ∗ h(s)
a (5.12)

and

y(s) = y(s−1) ∗ h(s)
b + σk

(
p(s)
)
, (5.13)

where the nonlinear activation for each step k is defined as σk(x) ≜ jγLeff |x|2x. In these

equations, h
(k)
a , h

(k)
b represent the filters for the k-th step. The input field A(0, t) is fed into

both the a and b filtering arrays, with p(0) = y(0) = A(0, t), where A(z, t) is the propagating

field. The equalised signal at the output of the equaliser is A(L, t) = y(N).

5.3 Simulation Setup and Results

Signal equalisation was characterised numerically by considering two transmission scenar-

ios: single-channel and WDM transmission. In the single channel case, we considered the

transmission of a 16-QAM RRC pulse-stream modulated at 32 GBaud along a 10 × 100

km fibre system amplified by EDFAs of 5 dB noise figure. In the WDM case, we con-

sider 11 single-polarisation wavelength channels carrying 64-QAM symbols over a shorter

6 × 100 km link with 4.5 dB noise figure EDFAs. A shorter distance was chosen for the

WDM case to ensure acceptable performance in the transmission of higher order symbols.

The spacing between wavelength channels was 40GHz. The symbol rate was the same for

both scenarios. Single-mode fibre was used, with each span characterized by a dispersion

parameter D = 17ps/(nm · km), nonlinear factor γ = 1.3 (W · km)−1, and loss coefficient

α = 0.2 dB/km. To represent the effects of signal distortion during propagation with suffi-

cient accuracy, an up-sampling factor of 6 samples-per-symbol (SpS) was employed in the

single-channel case, while 32 SpS was required in the WDM case to accurately represent
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the interchannel interactions affecting the multiplexed signal.

At the receiver, after low-pass filtering the signal is down-sampled to 2 SpS before

directing it to the nonlinear equaliser (NLE). Subsequently, matched filtering, downsampling

to 1 SpS and genie-aided phase offset correction were applied, as shown in Fig. 4.3. The

entire DSP chain was implemented in TensorFlow designating only the FIR filters taps of

the NLE as trainable parameters.

The update of the CD FIR coefficients in the LsimIVSTF is based on the gradient of

the MSE loss:

LMSE =
1

K

K∑
c=1

|s(c)out,n − ŝ
(c)
out,n|2. (5.14)

We employed the Adam optimiser with a 0.001 learning rate. For the training we considered

15k gradient descent iterations conducted over a training set of 192 × 106 symbols. The

final performance was characterised in terms of an effective SNR (Eq. (2)) on a test set

comprising 64× 106 symbols.

The CD FIR filters are restricted to be symmetric and of odd length. The symmetry

in the filters was imposed during training by applying the same trainable coefficients in

both sides of the filter. Pruning was applied on the trainable filters to reduce their size: at

predefined epochs, a filter from each array was randomly selected, and its two outermost

taps were discarded [57]. Target lengths were established at the start of the training routine,

which were used to define a schedule specifying the required number of pruning steps. This

schedule determined the training iterations at which pruning occurred, ensuring pruning

steps were evenly distributed throughout the training process. At each epoch, each filter

was pruned once. During each pruning step, the selected filter was pruned by applying a

mask: The filter was multiplied by an FIR filter of identical length to the FIR CD filter,

which zeros in the positions corresponding to the taps to be discarded.

In this study we compare our model with LDBP, the established model-driven approach.

The LDBP scheme we employed is based on the asymmetric SSFM [58], where each compu-

tational step consists of a linear step followed by a nonlinear step. Although the symmetric

SSF, involving two linear steps and one nonlinear step, offers better computational effi-

ciency, the asymmetric method was selected to ensure that the model has the same amount

of steps as the L-simIVSTF, enabling a direct comparison. The scheme underwent the same
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Figure 5.4: Comparison of equalisation performance in terms of effective SNR against filter length
for the algorithms under consideration. ML optimisation enables a reduction in the length of the
employed FIR filters, matching the minimum length required by LDBP.

initialisation, training and pruning procedures as the L-simIVSTF.

We first optimised the filter lengths of the L-simIVSTF using the previously described

pruning technique. This optimisation process enabled us to assess how the model’s train-

ing affects its minimum required length, and compare it with the filter length reductions

achieved with LDBP. For comparison, we also optimised the filter length of the untrained

time-domain equalisers, simIVSTF and DBP, by sweeping their filter lengths. Figure 5.4

shows the effective SNR performance at optimal launch power as a function of the filter

length. For the untrained models, the performance follows a similar trend: it is poor for

lengths close to the channel memory, and improves with the filter length until it eventu-

ally plateaus. The results indicate that more than 111 taps are required for both models

to achieve optimal performance, yielding 17 dB for TD simIVSTF and 17.7 for TD DBP.

For the learned schemes LsimIVSTF and LDBP, the performance also varies similarly but

improves more rapidly compared to the unlearned schemes. Furthermore, the minimum

required length for optimal performance is drastically reduced to 41 taps, where both mod-

els deliver a 19.8 dB performance. Notably, this minimum length is close to the minimum

bound of 31 taps determined by the induced group delay.

We next examine the equalisation performance of L-simIVSTF in the single channel

scenario. Figure 5.5 presents the effective SNR performance as a function of the channel

launch power. All the equalisation schemes considered are implemented in the time domain

with a single step per span, using the optimal filter lengths determined previously. TD

IVSTF and TD DBP perform similarly, achieving a 0.6 dB improvement over CDE. The
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Figure 5.5: Comparison of equalisation performance in terms of effective SNR against channel
launch power for the algorithms under consideration. L-simIVSTF shows an equivalent performance
to LDBP.

non-optimised simIVSTF performs slightly worse due to truncation errors accumulating

through the interconnected branches of the model. In contrast, the L-simIVSTF provides

a 3 dB improvement over CDE, matching the performance of LDBP. Finally, we examine

single channel equalisation in the WDM environment. Figure 5.6 shows effective SNR

performance against launch power. As expected, the gains provided by L-simIVSTF are

significantly reduced, offering only a 0.5 dB improvement over CDE.

5.4 Complexity Estimations

The computational cost of the proposed equaliser is evaluated in terms of real multiplications

per transmitted symbol (RM/sym). This metric, commonly used for DSP algorithms,

accounts only for multiplication operations while omitting additions [127]. This omission

is justified, as the cost of multiplications is typically much higher than that of additions:

multiplying two n-digit integers typically has a cost of O(n2), while adding them has a cost

of Θ(n) [42]. The complexity of TD-DBP is included as a reference.

Next, we calculate the complexity of simIVSTF. The cost of a linear step is determined

by the convolution of the complex signal with a complex-valued filter of length S, requiring

4pS RM/sym, where p is the sampling rate. The nonlinear activations add 4p RM/sym due

to the squared modules and multiplication by a complex constant. Therefore we have

CsimIVSTF = pNs(8S + 4). (5.15)
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Figure 5.6: Performance of the L-simIVSTF model as a function of launch power in a single-
polarisation, 6× 100 km 11-channel WDM transmission scenario. The performance gain relative to
CDE is limited to 0.5 dB.

The complexity of single-channel TD-DBP can be estimated by [124]

CTD−DBP = pNs(4S + 4). (5.16)

The complexity expressions for simIVSTF and TD-DBP are quite similar, primarily because

the summations simIVSTF relies on have not been taken into account. As a result, the only

difference in the expressions stems from simIVSTF using two cascades of Ns filters, while

DBP employs only one. A more precise complexity estimation would need to consider the

Ns summations in the structure. We observe that the complexity of simIVSTF is roughly

twice the complexity of TD DBP.

We now compare the complexity of the proposed scheme to that of TD-CDE. The

cost of TD-CDE using a complex-valued FIR filter of length SCDE is 4pSCDE RM/sym.

The minimum required length for a CD filter addressing the accumulated dispersion of

the link can be estimated by considering the memory introduced by CD using Eq. (4.13).

For a 10 × 100 km link, and assuming a bandwidth B = (1 + 0.1) · 32GHz and sample

duration T = 1/(2 · 32GHz), the minimum required length is 307 taps, resulting in a

complexity of 2456 RM/sym. For the same link, the L-simIVSTF requires 41-tap filters

to avoid performance penalties as shown in Fig. 5.4. With this length, Eq. (5.15) gives

CsimIVSTF = 6640 RM/sym, approximately 2.7 times the complexity of TD-CDE. Under

the same assumptions, Eq. (5.16) gives a cost for LDBP of CLDBP = 3360 RM/sym, or
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approximately 1.4 times the complexity of TD-CDE. This indicates that DBP achieves a

more favourable performance-complexity trade-off relative to the proposed scheme.

5.5 Conclusions

We introduced a time-domain single-channel equaliser, L-simIVSTF, based on the simplifi-

cation of the IVSTF architecture and enabled by machine learning. The performance of the

scheme was assessed through numerical simulations, where the L-simIVSTF scheme demon-

strated a 3 dB effective SNR improvement over CDE, matching the performance of LDBP.

While the L-simIVSTF scheme proved more computationally intensive than its LDBP coun-

terpart, it demonstrated the feasibility of gradient-based optimisation of Volterra-based

equalisers.

However, in an 11-channel WDM transmission, the effective SNR improvement was

limited to 0.5 dB. While this improvement is comparable to what can be obtained with other

single-channel approaches in this scenario (single-channel LDBP showed less than 0.7 dB in

a 5-channel WDM system [58]), it remains insufficient for practical scenarios. Therefore, the

following chapter explores Volterra-based multichannel equalisation schemes, where greater

performance gains are expected.
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Chapter 6

Learned Volterra Equalisers for

WDM Systems

The work presented in this chapter has been adapted from the following publications:

[13] N. Castro and S. Sygletos. Learned Volterra equalization for WDM systems. In 2023

Asia Communications and Photonics Conference/2023 International Photonics and Opto-

electronics Meetings (ACP/POEM), pages 1–4, 2023.

[16] N. Castro, S. Boscolo, A. D. Ellis, and S. Sygletos. Design of time-domain learned

Volterra equalisers for WDM systems. In 2024 International Conference on Optical Network

Design and Modeling (ONDM), pages 1–3, 2024. doi:10.23919/ONDM61578.2024.10582691.

[14] N. Castro, S. Boscolo, A. D. Ellis, and S. Sygletos. Design aspects of frequency-domain

learned MIMO Volterra equalisers. In CLEO 2024, page JTu2A.87. Optica Publishing

Group, 2024.

[15] N. Castro, S. Boscolo, A. D. Ellis, and S. Sygletos. Field-enhanced filtering in MIMO

learned Volterra nonlinear equalisation of multi-wavelength systems. In ECOC 2024; 50th

European Conference on Optical Communication, pages 902–905, 2024.

[17] N. Castro, S. Boscolo, A. D. Ellis, and S. Sygletos. Learned Volterra models for nonlin-

earity equalization in wavelength-division multiplexed systems. Opt. Express, 33(8):16717–

16737, Apr 2025. doi:10.1364/OE.554077.

6.1 Introduction

Over the past two decades, most studies on NLE have focused on developing schemes

to address single-channel impairments [72, 108, 96, 98, 88, 122, 54, 56]. Although these

approaches have achieved significant reductions in computational complexity, their effec-
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tiveness in WDM scenarios has been limited. This limitation has shifted the focus of NLE

design toward multi-channel operation. For multichannel equalisation, channel-by-channel

processing based on a set of coupled1 NLSEs with enhanced2 nonlinear stages leads to

MIMO NLE schemes as shown in [93, 94]. Compared to “full field” approaches [86], MIMO

NLE schemes have a lower computational burden, made possible by allowing for larger step

sizes and reduced sampling requirements. Nevertheless, exact knowledge of the transmis-

sion link parameters is still required for the effective operation of these schemes, and such

a configuration process would be daunting for network operators.

Recently, ML has revolutionised the NLE field by introducing a variety of trainable algo-

rithms. Model-driven approaches integrate the physical principles of signal propagation into

the NLE operation, providing a framework that is easily understood and optimised. Early

efforts in this field were based on perturbation models of the NLSE [126, 109], employing

conventional machine learning techniques for training. Later, C. Häger et al. pointed out

the functional similarity between the split-step Fourier method and DNNs in [58] and de-

veloped a learned version of a time-domain DBP algorithm that significantly enhanced the

effectiveness of conventional DBP by incorporating DNN optimization capabilities. Follow-

ing this, several other variants of the LDBP algorithm were created for both single [87] and

multichannel operations [67, 69]. Despite the significant performance improvements and

cost reductions, LDBP approaches depend on sequential computations of linear and non-

linear operations, which can result in excessive processing latency, as hardware parallelism

is not easily leveraged to enhance efficiency and speed.

This chapter introduces learned multichannel equalisers based on the IVSTF model. It

provides a unified overview of the developed architectures, including a theoretical deriva-

tion of the Volterra multichannel approach and a discussion of the physical assumptions

underlying their design. The single-channel approach in Chapter 5 is extended to a MIMO

configuration [13]. Additionally, time and frequency linear filtering techniques are lever-

aged to develop other architectures that maintain adaptability while reducing complexity

[16, 14]. Gradient-based optimisation is employed to jointly optimise linear and nonlinear

steps, enabling efficient multichannel equalisation. Computational efficiency is achieved

1Each equation in the set describes the propagation of a wavelength channel and accounts for
the influence of adjacent channels [92].

2This term refers to the use of filtering strategies in nonlinear steps to better model the interaction
between dispersion and nonlinearity [116].
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through strategies such as FIR filtering of the power waveform for each channel. Design

aspects crucial to improving performance and reducing training and inference costs, such

as optimal initialisation and minimal required filter lengths, are examined. The chapter

concludes with a performance and complexity analysis, addressing practical implementa-

tion aspects of each scheme. Our results and analysis may serve as guidelines for designing

learned multichannel equalisers applicable in practical WDM systems.

6.2 Volterra Model

The volterra series (VS) provides a general mathematical framework to describe the non-

linear behaviour of systems with memory. In the context of optical communications, they

have been successfully applied to approximate the solution of the NLSE [104]. The primary

difference from the SSF method is that VS separates the impact of fibre non-linearity and

treats it in an additive manner, a critical feature for their low latency implementation when

used as a backward propagation model in NLE applications. Although the VS framework

for solving the NLSE has been developed in both the time [56] and frequency domains

[3], only the frequency-domain approaches afford closed-form analytical expressions for the

Volterra kernels.

Outlining the main steps involved in the derivation of our proposed IVSTF-based models

for WDM signal transmission, we consider a multi-wavelength signal of 2K + 1 modulated

channels of frequency spacing ∆ω being transmitted along an optical fibre link. The signal

propagation is described by the NLSE:

∂A(z, t)

∂z
= −α

2
A(z, t) + j

β2

2

∂2A(z, t)

∂t2
− jγ|A(z, t)|2A(z, t), (6.1)

where A(z = 0, t) ≜
∑K

k=−K Ak(t)e
jk∆ωt, Ak(t) the complex field envelope of each wave-

length channel, α is the propagation loss coefficient, β2 is the group-velocity dispersion

parameter, and γ is the non-linear parameter. At the end of the link the received signal is

de-multiplexed and each sub-channel is detected coherently. We assume that the non-linear

equalization is applied to a subset 2M + 1 (M ≤ K) of the received sub-channels. The

derivation of the proposed Volterra-based algorithm starts from the set of inverse coupled

NLSE’s given in Eq. (6.2), which describe the backward evolution of the baseband WDM
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sub-channels being considered,

∂Um(z, t)

∂z
= (D̂−1

m + N̂−1
m )Um(z, t), (6.2)

where Um(z, t) is the complex envelope of sub-channel m, m = −M, . . . , 0, . . . ,M , and

D̂−1
m = −j β2

2

(
∂2

∂t2
+ 2jm∆ω ∂

∂t + (jm∆ω)2
)
and N̂−1

m = α
2 + jγ

(
|Um|2 + 2

∑
p ̸=m |Up|2

)
are

the linear operators and nonlinear operators, respectively. Typically, Eq. (6.2) is solved

using the SSF method by discretising the z-axis in a number of segments [zn−1, zn] of step

size hn = zn − zn−1 with n = 1...N and treating independently the linear and nonlinear

propagation effects in each one of them. For the nth step we can write:

Um (zn, t) = exp
[
hn(N̂

−1
m + D̂−1

m )
]
Um(zn−1, t) ≈ exp(hnN̂

−1
m ) exp(hnD̂

−1
m )Um(zn−1, t)︸ ︷︷ ︸
Ud

m(zn,t)

. (6.3)

The order in which the linear and nonlinear operators appear in Eq. (6.3) may interchange.

Applying the linear step first leads to the following analytic solution for the linear step in

the frequency domain:

Ud
m(zn, t) = F−1{F [Um(zn−1, t)]Hm(hn, ω)}, (6.4)

where F denotes the Fourier transform operation, and Hm(hn, ω) = exp(j β2

2 (ω+m∆ω)2hn)

is the multi-channel linear transfer function, in which the term mβ2∆ω is responsible for the

walk-off effect among the different channels. The nonlinear step can then be analytically

described in the time domain, thereby leading to the following form for Eq. (6.3):

Um(zn, t) = Ud
m(zn, t) exp(αhn/2) exp

[
jϕnl

m(zn, t)
]
, (6.5)

where ϕnl
m(zn, t) = γheffn

(
|Ud

m(zn, t)|2 + 2
∑

p ̸=m |Ud
p (zn, t)|2

)
is the total nonlinear phase

shift attributed to the SPM and XPM effects, and heffn = (exp(αhn) − 1)/α is an effective

step size accounting for the influence of the effective gain on the signal envelope [96].

Equation (6.5) describes a MIMO equalization structure for fibre transmission links,

where the linear and non-linear stages are alternated. While this approach can achieve high
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Figure 6.1: Diagram of the n-th step of a MIMO equalisation architecture based on the first-order
polynomial expansion of the exponential function from the nonlinear step of the SSFM.

computational accuracy, it suffers from increased latency and computational complexity.

Re-configuring the equalizer’s architecture from a sequential to a completely parallel form

instead can help overcome these challenges. This is the approach that we adopt here. There-

fore, performing a 1st-order polynomial expansion of the nonlinear exponential function in

Eq. (6.5) leads to [136]

Um(zn, t) = Ud
m(zn, t) exp(αhn/2) + jϕnl

m(zn, t)U
d
m(zn, t) exp(αhn/2), (6.6)

where the first term addresses the impact of linear dispersion, while the second term ac-

counts for the Kerr-induced nonlinear effects. Equation (6.6) provides a transfer function

for the back-propagated signal over a single step, treating fibre nonlinearity as an additive

perturbation, see Fig. 6.1. The concept can be extended to an entire transmission link by

assuming that the nonlinear perturbation generated in each section does not contribute to

the nonlinear processes of the subsequent sections. This is illustrated in Fig. 6.2 (a), for

the case of three consecutive computational steps, part of a longer virtual back-propagation

link. The blue line represents the signal propagation through the linear path, triggering

the nonlinear process of each section. The corresponding perturbation terms that are gen-

erated, represented by red lines, follow the same linear path and add up only at the end of

the link without affecting the nonlinearity generation processes of their subsequent sections.

Using this key assumption, we can resolve Eq. (6.6) in a recursive manner and derive the

following closed-form solution for the back-propagated signal field of the m channel after N

sections:
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(b)

(a)

Figure 6.2: (a) Diagram for three consecutive computational steps of the MIMO equaliser, il-
lustrating the propagation assumptions leading to a parallel architecture: The blue lines represent
signal propagation through the linear path, which triggers the nonlinear processes of each fibre sec-
tion. The red lines represent the propagation of the perturbation terms. (b) Equivalent parallel
architecture.

Um(zN , t) = U ld
m(zN , t) exp(αhN/2)+

j

N∑
n=1

ϕ̂nl
m(zn, t) exp(αhn/2)U

ld
m(zn, t) ∗ F−1

[
N∏

k=n+1

Hm(hk, ω) exp (αhk/2)

]
, (6.7)

where U ld
m(zn, t) describes the linear part of the signal envelope at the end of the nth section.

This signal field has experienced the combined impact of dispersion and reverse loss of the

previous n− 1 sections, as well as the dispersion of the current step:

U ld
m (zn, t) = Um(z0, t) ∗ F−1

[
n∏

k=1

Hm(hk, ω)

]
exp

(
1

2

n−1∑
k=1

αhk

)
, (6.8)

and determines the SPM and XPM-induced non-linear phase shift in the n-th step, i.e.

ϕnl
m(zn, t) ≃ ϕ̂nl

m(zn, t) = γheffn

(
|U ld

m(zn, t)|2 + 2
∑

p ̸=m |U ld
p (zn, t)|2

)
.
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The final step in our mathematical derivation is to extend the single-span structure of

Eq. (6.7), to an equaliser capable of dealing with multi-span systems. Inspecting Eq. (6.7)

we can see that the first term represents the linear part of the BP process, responsible for

equalising CD and loss effects, while the second term aggregates the nonlinear contributions

of the BP steps, thereby counteracting the accumulated nonlinear effects from the forward

direction. It is important to note that the nonlinear perturbation from each section n is

convolved with the dispersion-induced time response of all the subsequent sections to the

end of the link. For a multi-span system, the virtual BP link must include loss elements

L(q), q = 1, . . . , Q between consecutive spans q to preserve power symmetry. Based on these

considerations, the derivation of the overall transfer function of the multi-span equaliser

is straightforward by applying the same assumption as in the single-span case, i.e., the

nonlinear distortions generated in each span accumulate linearly over the subsequent spans

without influencing the following span’s nonlinear processes. Therefore, we can write:

U (Q)
m (zN , t) = U ld(Q)

m (zN , t) · exp
(α
2
h
(Q)
N

)
+ j

Q∑
q=1

N∑
n=1

ϕ̂nl(q)
m (zn, t) · exp

(α
2
h(q)n

)
· U ld(q)

m (zn, t)

∗ F−1

 N∏
k=n+1

H(q)
m (hk, ω) exp

(α
2
h
(q)
k

)
·

Q∏
s=q+1

√L(s) ·
N∏
j=1

H(s)
m (hj , ω) exp

(α
2
h
(s)
j

) ,

(6.9)

where the linearly propagating field U
ld(q)
m (zn, t) in the q-th fiber span is given by

U ld(q)
m (zn, t) = Um(0, t) ∗ F−1

[
q−1∏
s=1

(√
L(s) ·

N∏
k=1

H(s)
m (hk, ω) exp

(α
2
h
(s)
k

))]

∗ F−1

[√
L(q)

n−1∏
i=1

(
H(q)

m (hi, ω) exp
(α
2
h
(q)
i

))
H(q)

m (hn, ω)

]
. (6.10)

The calculation of the nonlinear phase shift of channel m at the n-th computational step

described earlier accounts for the interaction between fibre loss and Kerr nonlinearity, but

it neglects the influence of CD on the nonlinear dynamics of the step. Although this can
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be effectively incorporated through an additional filtering operation on the power waveform

of the channel, the exact formulation of the filter transfer function constitutes a challenge.

Factorising the walk-off effect across the different MIMO channels led to an analytical

expression for the frequency response of the XPM contribution [93]. For the SPM contri-

bution, predefined window shapes were utilised in the “weighted DBP” scheme presented

in [108], while brute force numerical optimisation of the filter transfer function was applied

in the “enhanced DBP” scheme of [117]. In both cases, yet the filter response was identical

across successive computational stages, causing the NLE architecture to accumulate trun-

cation errors. Independent optimisation of the filter parameters at each stage through a

gradient-based BP algorithm addressed the build-up of these errors, significantly improving

the performance and allowing for larger computational step sizes [124, 58]. Building on

these advancements, we enhanced the accuracy of our IVSTF-based models by applying

signal power filtering in the nonlinear steps with filters trained as part of the whole opti-

misation process of the NLE algorithm. Therefore, the nonlinear phase shift for channel m

at the q-th fibre span can be expressed as

ϕ̂nl(q)
m (zn, t) =

γheffn

 l∑
c=−l

µ(q,n)
m,c |U ld(q)

m (zn, t+ cTs)|2 + 2
∑
p ̸=m

k∑
c=−k

ν(q,n)m,p,c|U ld(q)
p (zn, t+ cTs)|2

 , (6.11)

where µ
(q,n)
m,c and ν

(q,n)
m,p,c are the coefficients of SPM and XPM FIR filters corresponding to

the m-th’s channel, and SSPM = 2l+1 and SXPM = 2k+1 are the respective filter lengths.

6.2.1 Architectural Variants

Equations (6.9)–(6.11) provide the mathematical foundation for the different IVSTF archi-

tectures presented in this paper, which are schematically illustrated in Figs. 6.3 and 6.4.

The first variant is the L-IVSTF model shown in Fig. 6.3(b). Its key feature is that all linear

field operations required to equalise CD effects are performed statically in the FD, while the

nonlinear stages are trainable and executed in the TD. This design necessitates the use of

at least one FFT/inverse FFT (IFFT) pair in each branch of the architecture, for which the
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Figure 6.3: (a) Interconnection of channel processing units in the proposed MIMO schemes. (b)
Processing units for channel n in the L-IVSTF model, depicting the 1st and k-th steps. Time-domain
filtering is shown in shaded regions, with green areas representing the nonlinear steps and blue areas
indicating linear steps.

block size NFFT is a critical design parameter. Without loss of generality, we assume a fixed

computational step h across the BP link and full equalisation of the signal power across

consecutive spans. As a result, H
(s)
m (hn, ω) = Hm(h, ω), and the frequency transfer function

of the upper branch becomes Kln
m(ω) = Hm(h, ω)QN . Accordingly, the input and output

transfer functions of the parallel branch associated with the n-th step of the q-th span can

be derived from Eqs. (6.9) and (6.11) as K(q,n)
in,m(ω) = e−(N−n+1)ah

2 Hm(h, ω)(q−1)N+n and

K(q,n)
out,m(ω) = e(N−n)ah

2 Hm(h, ω)(Q−q+1)N−n. Finally, using Eqs. (6.8) and (6.11), we can

define the following TD transfer functions for the architecture:

σ(q,n)
m,spm(t) = jγheffn U ld(q)

m (zn, t)
l∑

c=−l

µ(q,n)
m,c |U ld(q)

m (zn, t+ cTs)|2, (6.12)

σ(q,n)
m,xpm(t) = 2jγheffn U ld(q)

m (zn, t)
∑
p ̸=m

k∑
c=−k

ν(q,n)m,p,c|U ld(q)
p (zn, t+ cTs)|2. (6.13)
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Figure 6.4: Processing units for channel n in the (a) FE L-IVSTF and (b) L-simIVSTF models,
depicting the 1st and k-th steps. Time-domain filtering is shown in shaded regions, with green areas
representing the nonlinear steps and blue areas indicating linear steps.

The L-IVSTF model in Fig. 6.3(b) relies on optimising only the FIR filters of the nonlinear

stages. Thus, adaptability and performance are hindered by the absence of trainable linear

steps. To overcome this limitation, we propose the FE L-IVSTF model shown in Fig. 6.4(a).

In this scheme, short CD FIR filters, characterised by the coefficient vectors h⃗
(q,n)
m,i and h⃗

(q,n)
m,o ,

are added at the input and output of each nonlinear step, enabling a joint fine-tuning of

the linear response for all branches. Unavoidably, the FE learned inverse Volterra series

transfer function (L-IVSTF) scheme introduces additional hyper-parameters, namely, the

ratio between the dispersion managed statically and adaptively, and the required length

of the FIR filters. Adequate values for these parameters can be found through simple

parameter sweeps, as will be shown in Sec. 6.4.

The hybrid architecture of the L-IVSTF and FE L-IVSTF models relies on multiple
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FFT/IFFT operations that add hardware complexity and computational cost. As discussed

in Chapter 5, direct replacement of the FFT+filter+IFFT sections with time-domain FIR

filters would not only require excessively long FIR filters but also cause inefficient scaling of

the architecture’s computational complexity since each branch would need to address the

chromatic dispersion of the entire link. The simplified interconnection structure introduced

in the previous chapter as the simIVSTF model [12] avoids the equalisation redundancy

through efficient FIR filter re-use that allows each branch to deal only with the chromatic

dispersion of its own computational step. An extension of this scheme to multi-channel

operation, namely, a MIMO L-simIVSTF, is depicted in Fig. 6.4(b). The scheme comprises

two independent FIR filter arrays, i.e., h⃗
(q,n)
Am in the linear and h⃗

(q,n)
Bm in the nonlinear path

of each computational step h. All filter coefficients are trainable, enabling the optimisation

of the joint response of the filter arrays. However, these FIR filters do not address walk-off

effects. For this purpose, a fractional delay filter f⃗m is employed in conjunction with a

circular shifter z−dm . Under the assumption of a fixed computational step, both elements

depend solely on the channel index m. The nonlinear stages of this architecture are given

by Eq. (6.11).

Compensating exactly the group delay difference between the channels is critical for

an accurate estimation of the inter-channel nonlinearity. With the L-IVSTF and FE L-

IVSTF models, this can be done by adjusting the exponent in the frequency domain transfer

function of the linear steps. Conversely, the task is more challenging with the L-simIVSTF

model since the group delay may not coincide with the time grid of the digital sampling,

thereby requiring further fractional adjustment. The group delay after propagation over

a step, in terms of number of samples, is given by τm = 2π∆fmβ2h/Ts, where Ts is the

sampling period, and ∆fm the channel location relative to the central frequency. Depending

on the channel position, this delay can be positive or negative and may have integer and

fractional parts. For example, for a channel located at ∆f1 = 40GHz and assuming a

group velocity dispersion parameter β2 = −2.1683× 10−26 ps2/km, fibre length h = 100 km

and a sample duration Ts = 15.625 ps, we obtain a delay τ1 = −34.876 samples. Its

integer part ⌊τm⌋ can be corrected by a circular shifting operation, while the fractional

part {τm} can be compensated with a short delay FIR filter. This filter is designed using

the window method described in [78], where the filter taps are defined by the coefficient

vector f⃗m ≜ f⃗({τm}) =
[
αW (t− {τm})sinc(α(t− {τm}))

]T−1

t=0
, with t ∈ Z representing the
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integer sample index [81]. For this implementation, we used a Hamming window defined as

W (t) = 0.54 − 0.46 cos(2πt/(T − 1)). The window length T ∈ Z was chosen to minimise

computational impact while being sufficiently large to avoid performance degradation. The

bandwidth parameter α was set to 95%, ensuring reduced out-of-band gain. It is worth

noting that addressing the fractional delay at each linear step may become impractical if

the computational cost of the required filtering operations is excessively high. However,

compensating for the integer delay using a series of unit delays while addressing only the

sub-sample delay allows for relatively short filters, thereby reducing the computational cost

of the fractional filtering operations. Furthermore, while designing very short fractional

delay filters for processing high-baud-rate signals may introduce undesired in-band gain,

these effects are expected to be mitigated by the accompanying trainable CD FIR filters.

6.3 Simulation Setup and Training Procedure

To assess the performance of our equalisers, we considered the transmission of 11 single-

polarization wavelength channels over a link consisting of 6 × 100-km spans of standard

single-mode fibre, with dispersion parameter D = −2πcβ2/λ
2 = 17ps/(nm · km), nonlinear

factor γ = 1.3 (W · km)−1, and loss parameter α = 0.2 dB/km. EDFAs with a noise figure

of 4.5 dB compensated for the span losses. Each channel carried a stream of root-raised

cosine pulses of 0.1 roll-off, modulated by 64 quadrature-amplitude modulation symbols at

a rate of 32Gbaud. The channel spacing was ∆ω/(2π) = 40GHz. Data transmission was

simulated using the SSF method in batches of R = 218 symbols, with an up-sampling factor

of 32.

At the receiver, the channels of interest were de-multiplexed and down-sampled to 2

samples per symbol before being processed by the MIMO NLE. Following the NLE stage,

each channel was match-filtered and further down-sampled to 1 sample per symbol. For

the operation of the L-IVSTF and FE L-IVSTF models, we applied overlap-and-save block

processing [101]. This was crucial for efficient handling of the linear filtering operations

in the FD by segmenting the input signal into overlapping blocks, applying the FFT to

each block, and then combining the results. The overlap length Ne and FFT size NFFT

were optimised to ensure performance and avoid penalties across all MIMO dimensions (see

Sec. 6.4). The receiver’s DSP blocks were implemented as a differentiable computation

N. Castro Salgado, PhD Thesis, Aston University 2024 89



CHAPTER 6. LEARNED VOLTERRA EQUALISERS FOR WDM SYSTEMS

graph in TensorFlow 2 to take advantage of the framework’s extensive capabilities, such as

automatic differentiation, GPU acceleration and flexible model tuning. During the training

phase, the outputs of the MIMO NLE were linked to a single MSE function for computing

the gradients of the model’s trainable parameters,

LMSE =
1

MR

M∑
m=1

R∑
r=1

|s(r)out,m − ŝ
(r)
out,m|2, (6.14)

where ŝ
(r)
out,m and s

(r)
out,m are the reference and recovered symbols, respectively. During the

testing phase, the recovered symbols from each channel were used to compute the bit error

rate, which was then mapped to an effective signal-to-noise ratio (SNR) [119]. For a given

launch power, the datasets included 219 symbols for training and 218 symbols each for

validation and testing.

The Volterra models were trained using the Adam optimiser, where the initial training

rate and batch size were tuned separately for the time-domain (TD; L-simIVSTF) and the

frequency-domain (FD; L-IVSTF, FE L-IVSTF) models. The training of the FD models

was generally more stable, thereby enabling a relatively large initial learning rate of 0.01,

whilst training the TD model required an order of magnitude smaller training rate (0.001)

to avoid divergence. The respective batch sizes were 25 and 40. MIMO schemes of varying

sizes were trained separately for each launch power. Training was done over up to 1500

epochs, after which no further improvements were observed.

The trainable parameters included the real-valued coefficients µ
(q,n)
m,c , ν

(q,n)
m,p,c of the SPM

and XPM FIR filters, respectively, for all the models, and the complex-valued coefficients

(⃗h
(q,n)
Am , h⃗

(q,n)
Bm ) and (⃗h

(q,n)
m,i , h⃗

(q,n)
m,o ) of the CD FIR filters for the L-simIVSTF and FE L-

IVSTF models, respectively. The filters were carefully initialised to ensure the desired

model’s convergence. Specifically, the CD filters were initialised following the method in

[121], while the initialisation of SPM and XPM filters was a subject of study. The model’s

hyper-parameters, including the lengths of all FIR filters, the amount of dispersion to be

compensated by the CD FIR filters in the FE L-IVSTF model, and the FFT block length

NFFT and number of steps per span N in the FD models, were optimised to maximise

performance and reduce complexity, as described in the following section.
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(a) (b)

(d)(c)

Figure 6.5: Filter length optimisation for the L-simIVSTF model. SNR performance of TD
simIVSTF models with varying (a) CD filter lengths and (b) fractional delay filter lengths. Us-
ing 43-tap CD filters and 8-tap fractional delay filters ensures optimal performance. Response of
fractional delay filters with varying lengths, approximating the fractional delay at a linear step
(∼ 0.876 samples), showing (c) magnitude response in dB and (d) delay in samples.

6.4 Results and Discussion

We conducted extensive numerical simulations to optimise the hyper-parameters and com-

pare the performance of the different Volterra models. Hyper-parameter optimisation was

performed for each MIMO size by training the models on known transmitted data at the

identified optimal launch power. We maintained consistent filter lengths across all channels

and steps to simplify the optimisation process.

For the L-simIVSTF, which was implemented with N = 1 [16], we optimised the length

of the CD FIR filters SCD in both the linear and nonlinear paths of the architecture, as

well as the length of the fractional delay filters Sfd = T . Figure 6.5(a) shows the results

of the CD FIR filter optimization, indicating that the model’s performance improves with

increasing filter length for lengths up to approximately 41 taps, beyond which it levels off.

A minimum bound for SCD can be estimated by calculating the group delay difference

induced by CD, which is expressed in number of samples as TCD = 2π |β2|LB/Ts [58].

Assuming the bandwidth B = (1+ 0.1) · 32GHz, the sampling interval Ts = 1/(2 · 32GHz),
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and the fibre length covered by a single step L = 100 km, TCD ≈ 31 samples. This value

aligns with the filter length at which performance begins to saturate, consistently with the

behaviour observed for LDBP in Fig. 6 of [58]. While the optimal SCD value found exceeds

this bound, joint filter optimisation allowed the model to approach it closely. To avoid any

performance penalties, SCD = 43 taps was used for the results presented hereafter. Con-

trarily, as evidenced by Fig. 6.5(b), a length of just 4 taps is sufficient for the fractional

delay filters to achieve optimum performance. Notably, the performance trends for both

filter types are consistent across all MIMO sizes. Panels (b) and (c) of Fig. 6.5 provide

further insights into the design of the fractional delay filters by showing the filter’s mag-

nitude and group delay, respectively, for different values of Sfd. The frequency response of

an ideal delay system is given by Hd(ω) = exp (−jωτd), where τd is the delay in number of

samples, corresponding to an all-pass filter with unit magnitude, |Hd(ω)| = 1, and a con-

stant group delay of − d
dω arg[Hd(ω)] = τd. However, the FIR filter approximation deviates

from this ideal response, with the extent of deviation depending on the type and size of the

windowing function used. In our case, selecting a Hamming window effectively reduces the

transfer function ripples associated with the Gibbs phenomenon. The flattest pass-band

performance is achieved for filter lengths of more than 12 taps. While at shorter Sfd the

transfer function deviates more from the optimal response, Fig. 6.5(b) highlights that as

long as Sfd exceeds 4 taps, the induced discrepancies are effectively counterbalanced by the

adaptive CD FIR filters. A length of Sfd = 8 taps was selected in the remainder of this

paper. For the SPM and XPM filters in the L-simIVSTF, we assumed zero-valued initial

conditions for all taps but the central ones, µ
(q,n)
m,0 and ν

(q,n)
m,p,0 which were set to initialisation

factors ξSPM and ξXPM, respectively. We studied the role of these factors in the convergence

of the model. The validation curves from the training process of a 5× 5, one-step-per-span

implementation are depicted in panels (a) and (b) of Fig. 6.6. These curves represent the

evolution of the MSE over the number of training epochs for the validation dataset. We can

observe from Fig. 6.6 (a) that the initialisation factor for the SPM filters has minimal influ-

ence on the convergence speed. By contrast, suitable initialisation of the XPM filters leads

to a significantly faster convergence (Fig. 6.6 (b)). This is because XPM is the dominant

effect responsible for transmission performance degradation. Repeating the same exercise

for two-, three-, and four-steps-per-span configurations showed similar results. Optimising

the initial conditions for the SPM and XPM filters facilitated the convergence of the model,
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(a) (b)

Figure 6.6: Optimisation of the initialisation factors for the SPM and XPM filters for a 5 × 5
L-simIVSTF model. The figures show the MSE evolution over the number of training epochs for
varying (a) ξSPM and (b) ξXPM values.

thereby enabling the implementation of 5× 5, 7× 7 and 9× 9 MIMO configurations at only

one step per span. Furthermore, these results indicate that setting factors ξSPM, ξXPM to

zero is the best initialisation strategy. This initialisation approach has also been adopted

for L-IVSTF and FE L-IVSTF models and employed in all subsequent results.

Next, we assessed the impact of the SPM and XPM filter lengths, SSPM and SXPM, on

the equalisation capability of the L-IVSTF and L-simIVSTF models. The L-IVSTF scheme

was implemented using N = 4, which is required to achieve comparable performance to

the L-simIVSTF one [14]. The results are summarised in Fig. 6.7, indicating that whilst

the performance of the L-IVSTF model is nearly insensitive to SSPM, short SPM filters can

enhance the performance of the L-simIVSTF model to a certain extent (panel (a)). This is

attributed to the joint training of the SPM and CD filters in the L-simIVSTF model, which

enables a more accurate approximation of the intra-channel impairments and improves the

model’s convergence. A saturation trend is observed, however, with filter lengths beyond

7 taps not yielding further performance gains. Therefore, we chose SSPM = 7 taps as the

optimal length. Regarding the XPM filters (panel (b)), the performance improves with

increasing filter size consistently across both the L-IVSTF and L-simIVSTF models, while

the saturation point shifts to a higher value as the MIMO size increases. A 41-tap XPM

filter is sufficient for optimal performance; hence, it was used for all other results. It

is worth noting that the need for XPM filters longer than the SPM ones is due to the

channel walk-off effect, which extends the memory of the nonlinear interactions between

co-propagating symbol streams across different wavelengths. Nevertheless, the same length
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(a) (b)

Figure 6.7: SPM and XPM filter length optimisation for the L-IVSTF and L-simIVSTF models.
SNR performance when varying (a) SPM filter lengths using 41-tap XPM filters, and (d) varying
XPM filter lengths using 7-tap SPM filters. SPM filtering benefits only the L-IVSTF model, while
XPM filtering improves both L-IVSTF and L-simIVSTF models.

may not be necessary for all XPM filters within the structure, but can vary depending on

the specific channel pairs considered in the MIMO LDBP model [124]. Therefore, while

employing a uniform filter length—as done in this work—simplifies the design of the MIMO

NLE architecture, tailoring the filter length to specific channel interactions could provide

additional benefits by reducing the model’s computational complexity.

We analysed the relationship between steps per span, performance, and convergence

for the L-simIVSTF. Figure 6.8 (a) compares the convergence of a 5 × 5 model with and

without optimised initialisation factors, ξSPM and ξXPM, across various steps per span con-

figurations. For the unoptimised cases, the factors were set to 1. The results indicate that

the algorithm converges to acceptable performance regardless of whether the factors are op-

timised. However, consistent with the results in Fig. 6.6, factor optimisation significantly

affects convergence speed, irrespective of the step-per-span implementation. While increas-

ing the number of steps per span also influences convergence speed, its effect depends on

the initialisation strategy. With unity factors, increasing the steps has minimal effect, with

all models requiring ∼ 1500 epochs to converge. In contrast, when ξSPM = ξXPM = 0, con-

vergence accelerates to ∼ 250 epochs when using a 2 StpS configuration. Nevertheless, this

improvement does not justify the additional complexity of increasing the steps. Therefore,

a 1 StpS L-simIVSTF configuration is sufficient when appropriately initialised and trained

long enough to ensure optimal performance.

Subsequently, we proceeded with the design of the linear stages for the L-IVSTF model,

which are responsible for compensating CD effects. This equalisation is performed in a
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Figure 6.8: Impact of initialisation factors and number of steps per span on the convergence of the
5× 5 L-simIVSTF model. The plot depicts the MSE evolution over the number of training epochs
for unity-valued and optimised factors.

block-wise manner in the frequency domain and involves FFT/IFFT operations. To mitigate

ISI at the edges of each block caused by the equivalent cyclic convolutions of the FFT/IFFT

processes, we adopted the overlap-and-save method [101]. The overlap length is determined

by the impulse response of the dispersed channel [142] and characterises the computational

efficiency of the algorithm.

While there are estimates for the overlap length for single-channel operation [79], their

extension to our MIMO L-IVSTF configuration would require accounting for the walk-

off effects relative to the central wavelength of the equalisation band. This adjustment

offsets the group delay of the associated filters by a term proportional to the channel index

m, thereby resulting in an overlap length dictated by the walk-off between the outermost

channels. Figure 6.9(a) illustrates the optimisation of the overlap and FFT-block lengths for

the 7×7 MIMO implementation, indicating that a minimum Ne of 2048 samples is necessary

to avoid inter-block interference [79]. If the overlap length is too short, the MIMO model

may inadequately compensate for the channels at the edges. The block length NFFT, set as

a power of two to use the radix-2 FFT algorithm, is twice Ne, and further increase of its

value showed negligible impact on performance. The overlap and block length pairs that

we selected are (1024, 2048) for the 5 × 5 implementation, and (2048, 4096) for the 7 × 7

and 9× 9 realisations.

Figure 6.9(b) shows the dependence of the model’s performance on the number of steps

per span for the different MIMO sizes (dashed curves). We can see that increasing N up to
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(a) (b)

Figure 6.9: L-IVSTF model’s performance in terms of (a) per-channel effective SNR for a 7 ×
7 implementation with different overlap and block lengths in samples. An overlap size of 2048
samples is required to equalise all channels. (b) Average effective SNR for different step-per-span
implementations. The FE L-IVSTF provides a higher performance than L-IVSTF, using fewer steps
per span.

a certain extent consistently enhances performance, with the larger MIMO sizes benefiting

more from such an increase. This trend results from the use of trainable filters in the

nonlinear equalisation steps of the algorithm, as opposed to a standard (non-learned) IVSTF

structure, which does not show such a performance gain [88]. The chosen N = 4 corresponds

to a close-to-saturated value beyond which significant performance improvement is no longer

attained.

Finally, we optimized the FE L-IVSTF architecture. While the lengths of the SPM

and XPM FIR filters in the nonlinear stages were kept unchanged, we thoroughly studied

the dimensioning of the trainable FIR CD filters, which depends on the amount of residual

dispersion to be compensated for. Figure 6.10 shows the average effective SNR performance

for the 7 × 7 MIMO implementation at 1 and 2 steps per span as a function of the filter

size for different amounts of residual dispersion. For small residual dispersion, such as

17 ps/nm or less, a 7-tap filter is sufficient to provide optimum performance. Using shorter

SCD results in a performance penalty, which becomes more pronounced with increasing

residual dispersion. Therefore, SCD = 7 taps was chosen as the optimum. We can also

see in Fig. 6.10 that operating the algorithm at N = 2 brings about higher equalisation

performance compared to the N = 1 operation, as it should be expected. The comparison

with L-IVSTF model provided in Fig. 6.9(b) shows that the FE L-IVSTF model operated

at N = 1 matches the performance of its non-FE counterpart at N = 4 for the 3 × 3 and

5 × 5 MIMO implementations. At the same time, operating the FE L-IVSTF model at
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Figure 6.10: Average effective SNR performance of the 7× 7 FE L-IVSTF model at 1 and 2 steps
per span (dashed and solid curves, respectively) versus FIR filter length for different combinations of
adaptive dispersion. Close-to-optimal performance is achieved by addressing an 8.5 ps/nm dispersion
with a 7-tap trainable CD filter.

N = 2 surpasses the performance of any L-IVSTF realisations. Therefore, we chose N = 2

as the optimal number of steps per span.

The hyper-parameter tuning described above allowed us to inspect the behaviour of

each algorithm and identify their optimum settings. Figs. 6.11 and 6.12 illustrate one of

the major results of this thesis, i.e., a head-to-head comparison of the NLE performances

of the different optimised models. Fig. 6.11 shows the average effective SNR as a func-

tion of the per-channel launch power. Also shown is the performance curve for linear

CD equalisation (green). We can see that the SNR improvement over CD equalisation

enabled by our schemes ranges between ∼ 1.2 dB (5 × 5 L-IVSTF) and ∼ 2.2 dB (9 × 9 L-

simIVSTF and FE L-IVSTF) at the respective optimum launch powers. To our knowledge,

the L-simIVSTF model offers the largest performance improvement over CD equalisation

achieved by single-step-per-span MIMO models in theoretical studies. In contrast, a LDBP

counterpart demonstrated only a 1.3 dB Q2-factor improvement by applying a 5×5 scheme

to an 11-WDM channel 40 × 80 km transmission[124]. The L-simIVSTF and FE L-IVSTF

models outperform the L-IVSTF scheme and feature equal performance at the optimum

launch power across all MIMO sizes, while the L-simIVSTF model is more tolerant than

the FE L-IVSTF scheme to powers beyond the optimum one.
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Figure 6.11: Average SNR against channel launch power for L-IVSTF, FE L-IVSTF and L-
simIVSTF MIMO models implemented with 4, 2 and 1 steps per span, respectively. L-simIVSTF
demonstrates the best performance across MIMO sizes.

Figure 6.12: SNR at each channel position for L-IVSTF, FE L-IVSTF and LsimIVSTF, using
4, 2 and 1 steps per span, respectively. Channels near the centre benefit the most in all cases.
Larger MIMO sizes increase the number of near-optimal channels, and improve uniformity across
the bandwidth.

The SNR performance for each individual channel at the optimum launch power is

depicted in Fig. 6.12. It is important to note that only a subset of the 11 wavelength

channels in our data transmission band, defined by the MIMO order, is equalised by the

IVSTF algorithms. Consequently, the central channel gets the most benefit, while the

channels at the band edges are only partially equalised. Furthermore, the L-simIVSTF

model has higher adaptability than the FD models, allowing it to better account for the

effects of inter-channel nonlinearity and enabling a more effective performance enhancement

for the central channels during the optimisation process. Consequently, the central channels

improve earlier during training. As the loss function minimises the average loss across all
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Figure 6.13: Convergence performance of the various MIMO models. The L-simIVSTF model
takes significantly longer to converge than the L-IVSTF and FE L-IVSTF ones.

channels without prioritising specific ones, the early improvements in central channels cause

a local minimum during optimisation, resulting in lower performance levels for the edge

channels.

Figure 6.13 gives insight into the convergence behaviour of the different algorithms

by showing the average effective SNR, derived from the MSE, of the validation data set,

as a function of the number of training epochs. It is seen that both FD models achieve

convergence within 300 epochs regardless of their MIMO size. Conversely, the L-simIVSTF

model exhibits a slower convergence rate, attributable to its considerably larger number of

trainable parameters. Moreover, unlike the FD models, its convergence rate decreases as

the MIMO size increases because an increase in the number of processed channels causes a

sharp increase in trainable parameter count.

6.4.1 Generalisation

We investigated the generalisation capabilities of our schemes. We begin by examining

the constellations of the equalised signals. Figure 6.14 shows the constellation diagrams of

the centre channel signals equalised using CDE and FE L-IVSTF and L-simIVSTF models

of size 9 × 9. The constellations in Figs.(b) and (c) do not exhibit signs of overfitting,

and show visibly reduced nonlinear distortion, consistent with the improvements in average

effective SNR shown in Figures 6.11 and 6.12. In contrast, black-box NN models are prone

to overfitting, which typically appears in the constellation diagrams as a jail window-like

pattern. No such patterns were observed in the outputs of any of our schemes. The resilience
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(a) (b) (c)

Figure 6.14: Constellation diagrams of the centre channel signals equalised with (a) CDE and (b)
FE L-IVSTF, and (c) L-simIVSTF 9 × 9 models. There are no signs of the jail window pattern
typical of black-box models.

of the L-IVSTF schemes to overfitting may be attributed to their relatively small parameter

space compared to the amount of training data. Moreover, they are initialized with weights

derived from the link parameters, placing them close to the optimal solution.

We also assessed the model’s ability to generalise across varying operating conditions,

examining whether the weights learned at one launch power could be applied to a different

launch power. The results, shown in Figure 6.15, correspond to the 5×5 2 StpS L-simIVSTF

model presented in [13], applied to a 5-channel WDM Tx scenario considering a 1000 km

link. The light blue curve shows the performance of models trained individually for each

launch power. In this case, optimal performance occurs at 1 dBm. The remaining curves

represent models trained on a specific launch power but applied to data from launch powers

on which they were not trained. Two trends are observed. Models generalise well beyond

the training launch power for launch powers below -1 dBm, where system operation is linear.

Conversely, for -1 dBm and above, the performance of models applied to scenarios they were

not trained on is suboptimal. We conclude that the weights learned in the nonlinear regime

are launch-power dependent. Therefore, separate models must be trained for each launch

power to ensure optimal performance.

To better understand the effectiveness of the learned Volterra models, we analysed their

learned parameters. Unlike in conventional deep neural networks, where the role of each

layer is often unclear, each step of our algorithms has a clearly defined function: the linear

steps apply dispersion and time delay, while the nonlinear steps introduce instantaneous

phase shifts. While well-understood, the algorithm performs poorly when the nominal val-
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Figure 6.15: Generalisation performance of 2 steps-per-span 5 × 5 L-simIVSTF models across
launch powers. Each model is trained on data corresponding to a specific launch power. The
performance curve for models evaluated on data matching their training launch power is shown
for reference. Models applied to data from different launch powers show degraded performance in
at least some cases. Furthermore, models trained on high launch power exhibit particularly poor
generalisation.

ues from analytical solutions [88, 136] are employed and joint optimisation is not performed.

This is due to the coarse approximation of the fibre link response these parameters give. Ma-

chine learning optimisation has proven essential for enabling the model to accurately identify

the parameters that enable inter-channel equalisation. What remains unclear is how the

initial filter coefficients are adjusted to achieve an acceptable performance. Examining the

learned parameters could offer insights into how the model compensates for imprecisions in

the equalisation structure. Since the architecture is a network of linear filters and nonlinear

operations, parameters can be analysed with the assistance of digital filter design theory.

Specifically, we analyse the frequency response of learned filters. Previous studies for LDBP

support this approach. For example, [58] analysed the response of the CD filters and ob-

served that the optimisation process, rather than prioritise the response of any individual

filters, optimises their combined response. We perform this analysis on the L-simIVSTF,

where all linear and nonlinear steps are trainable. In this model, each channel processing

unit m has two distinct linear CD filters sequences, which can be analysed separately. The

horizontal or “trunk” filter sequence corresponds to the first-order kernel from the IVSTF

and primarily compensates for the chromatic dispersion in the link. However, the filters in

this sequence differ in function from the corresponding branch in the IVSTF scheme since

they also account for the effect of dispersion on nonlinear phase shifts. Conversely, the filters

in the “branch” sequence represent the location where the lumped nonlinear shifts occur in
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(a) (b)

Figure 6.16: Individual and combined responses of the filter sequences corresponding to the (a)
trunk and (b) nonlinear branches of the central channel of a 5 × 5 LsimIVSTF model.

the fibre link. While simIVSTF —through nonlinear branch interconnections— relaxes the

precision requirements of individual filters, it also imposes its own precision requirements:

The filter in branch i requires an adequate response from the filters of preceding branches

1, 2, ..i− 1 to provide an accurate estimation of the nonlinear phase shift of branch i.

We analyse the learned solutions of a fully time-domain model: a 5 × 5 L-simIVSTF

operated at 1 step per span. First, we inspect the CD filters in the linear steps. Figures

6.16 (a) and (b) present the individual and combined amplitude responses of the CD filters

for the trunk and branch paths of the centre channel. The combined response is obtained

by convolving the impulse responses of individual filters. For both paths, the learned CD

filters significantly deviate from the ideal chromatic dispersion filter response, consistent

with findings in [125]. These filters exhibit considerable out-of-band gain. Nevertheless,

the combined responses for both signal paths approximate the ideal CD filter. The out-of-

band ripples cancel each other, resulting in a near-constant amplitude across the frequency

range of the equalised signal (32 GHz). Next, we consider the filters in the nonlinear steps.

Figure 6.17 (a) shows the real-valued taps of the SPM filters for the centre channel across the

model’s steps. The SPM filters exhibit a triangular window shape, similar to those reported

in [124], which applies a linearly decaying weighting to the power of adjacent samples.

Figure 6.17 (b) illustrates the XPM filter taps across the model’s steps. Due to the large

number of XPM filters in the structure, we present only those relating the centre channel

(index 0) and an edge channel (index i = −1) for brevity. The responses of these filters

are asymmetric, with their shapes varying based on the channel pair. Filters processing the
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(a) (b)

Figure 6.17: For a 1 StpS 5 × 5 L-simIVSTF model: Coefficient values of (a) the SPM filters
corresponding to the centre channel and (b) the XPM filters processing contributions to the centre
channel from first channel to the left.

nonlinear shift induced by adjacent channels on the centre channel show a clear inflexion

point at the centre tap, with peaks shifted left or right depending on the position of the

influencing channel. Finally, the coefficient amplitudes of the SPM and XPM filters decrease

depending on how deep a layer is located in the model. This indicates that the model

prioritises the contributions from the initial layers, progressively reducing the weight of

filters in deeper layers.

6.4.2 Complexity Analysis

To fully appraise the various Volterra-based NLE schemes, in this section we perform a

complexity analysis using the most expensive computations, namely, the required number

of real multiplications per transmitted symbol (RM/sym), while neglecting the less costly

addition operations [42].

Starting with the FD operations involved in the L-IVSTF model, the signal is converted

to the FD at the beginning of the process and only reverted to the TD before each nonlin-

ear stage to economise on the FFT/iFFT transformations within the structure, and final

conversion to the TD is done at the structure’s output (Fig. 6.3 (b). Therefore, the number

of FFT/iFFT pairs needed is Ns +1, where Ns = NQ is the total number of steps. With a

radix-2 implementation, each pair has a cost of CFFT = 4NFFT log2(NFFT) RMs for a block

of NFFT samples. The number of Hm transfer functions in the m-th channel unit is 2Ns+1,

each incurring a cost of 4NFFT RMs from their element-wise complex multiplication with

the transformed signal. The overlap-and-save block processing required for the operation of
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the model increases the computational complexity due to the overlapping samples, where

the minimum required overlap length Ne increases with the number of processed channels

M , as observed in Sec. 6.4. Hence, the total computational cost of the linear FD filtering

is given by

CFD =
p(Ns + 1)CFFT + (4pNFFT)(2Ns + 1)

NFFT −Ne + 1
[RM/sym], (6.15)

where p is the digital sampling rate. Concerning the TD operations in the nonlinear stages

of the L-IVSTF architecture, the nonlinear activation functions cost 4p RM/sym due to

squared signal modules and multiplications by complex constants. The filtering of signal

powers inside the channel units entails 1 SPM and M − 1 XPM operations per span. The

SPM filters yield a cost of pSSPM RM/sym while the XPM filters result in a cost of pSXPM

RM/sym. Therefore, the total cost of the TD operations is

CTD = pNs(SSPM + (M − 1)SXPM + 4) [RM/sym], (6.16)

yielding a total complexity of CL−IVSTF = CTD+CFD. For the FE L-IVSTF model, the cost

of the FD operations per step does not change, but the per-step cost of the TD operations is

higher due to the incorporation of the short CD FIR filters. The convolution of a complex-

valued signal with a complex-valued filter of length SCD costs 4pSCD RM/sym [124]. Two

of these convolutions are required per channel and per step. Therefore, the complexity of

the FE L-IVSTF model, CFEL−IVSTF, exceeds CL−IVSTF by 8pMNsSCD RM/sym.

Finally, we consider the L-simIVSTF scheme. In each channel unit there are 2Ns linear

steps, each requiring convolving the signal with a CD FIR filter of length SCD RM/sym.

Fractional delay filtering adds a convolution between a complex-valued signal and a real-

valued filter, which costs 2pSfd RM/sym. Circular shifting of the signal is also performed

within the step, but its cost is neglected in this analysis. The cost contribution of the

nonlinear stages is the same as that of the L-IVSTF model. Therefore, the total complexity

of the model is

CL−simIVSTF = pNs(8SCD + 4Sfd + SSPM + (M − 1)SXPM + 4) [RM/sym]. (6.17)
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For comparison, we also consider the complexity of single-channel DBP [98]:

CDBP-1ch = 4pNs

(
NFFT(log2 NFFT + 1)

(NFFT −Ne + 1)
+ 1

)
[RM/sym]. (6.18)

Based on the calculations above and the results of Sec. 6.4, we now examine each archi-

tecture’s opportunities to achieve favourable performance-complexity trade-offs. First, we

consider the per-step complexity of the FD schemes. We can see from Eq. (6.15) that op-

timising the FFT-block size NFFT has little impact on reducing the overall step cost. This

is because the optimised placement of FFTs in the schemes makes linear filtering relatively

inexpensive. Conversely, XPM filtering is the most expensive computation of each step due

to the large XPM filters required (Eq. (6.16)), with the number of operations scaling as

M − 1. Therefore, as mentioned in Sec. 6.4, a promising strategy to reduce complexity

would be optimising the XPM filter length for each individual channel. An inspection of

Eqs. (6.15) and (6.16) reveals that the number of steps per span is the dominant factor in

the overall complexity. Consequently, since the FE L-IVSTF model requires fewer steps per

span than the L-IVSTF one to achieve optimal performance, as seen in Fig. 6.9(b), it is

computationally more efficient. The results of Fig. 6.9(b) also highlight that better trade-

offs can be attained for the FE L-IVSTF model with small performance compromises. For

example, for the 9 × 9 MIMO implementation, accepting a 2% performance reduction en-

ables halving the complexity by using N = 1, which still would yield ∼ 1.7 dB improvement

over CD equalization (Fig. 6.11).

In the L-simIVSTF scheme, all filtering operations employ convolutions. Their impact

on complexity varies depending on the filter type: the CD filters are expensive due to their

complex-valued taps, while the SPM, XPM and fractional delay filters are less costly as they

use real-valued taps. The required number of each type of filter also differs, where more

XPM than CD, fractional or SPM filters are needed for the MIMO sizes being considered.

Figure 6.18 illustrates the relative impact of the SPM, XPM and CD filters on the total

complexity by showing how CL−simIVSTF varies as a function of the length of each filter type

with the other filter lengths fixed at their optimal values given in Sec. 6.4, for the 7 × 7

MIMO implementation. The fractional delay filters are excluded from this analysis due to

their minimal contribution. We can see that changing SSPM has negligible impact on com-
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plexity (red line). While the XPM filters have a larger impact on complexity as evidenced

by the steeper slope of the corresponding line (purple), it is the CD filters that affect com-

plexity the most (blue line). Yet, at their optimal lengths, CD and XPM filters contribute

almost equally to the overall complexity, as shown by the convergence of the corresponding

lines. This scenario would change for larger MIMO sizes, where XPM filters dominate the

computational cost. As with the FD models, computational efficiency improvements could

be achieved by optimising SXPM on a per-channel basis.

A head-to-head comparison of the complexity of the optimised schemes shown in Fig.

6.11 is presented in Fig. 6.19, constituting another key contribution of this thesis.

Figure 6.18: Complexity as a function of the length of various filter types in the L-simIVSTF model.
Each curve is taken by varying the length of a filter type while keeping the length of other filter
types fixed to their optimal values. The CD and XPM filters have a similar impact on complexity.

Figure 6.19: Complexity of best-performing models. The FE L-IVSTF 1 StpS model exhibits the
lowest cost.
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While the L-IVSTF model features the lowest per-step complexity, its need to operate

at N = 4 results in the highest total complexity across all MIMO sizes. The FE L-IVSTF

scheme at N = 2 follows up in complexity for the larger MIMO sizes, with a drastic

complexity reduction resulting from requiring a halved number of steps per span for optimal

performance. Furthermore, as discussed above, 1 step-per-span operation is viable for this

model since it results in a small performance penalty. This halves the cost, thereby leading to

the lowest complexity across all the MIMO sizes. The L-simIVSTF model has a comparable

cost to the 2 step-per-span FE L-IVSTF scheme. Despite being able to operate at N = 1, it

has the highest per-step cost due to the large CD filters required. We can therefore conclude

that the FE L-IVSTF model operated at N = 1 affords the best performance-complexity

trade-off: while it delivers ∼ 20% less maximum improvement over CD equalisation than its

2 step-per-span counterpart or the L-simIVSTF model (Fig. 6.11), it requires only around

half their cost.

6.5 Conclusions

We have presented a unified overview of different MIMO Volterra-based NLE schemes for

WDM transmission systems enabled by ML. We have provided the mathematical founda-

tions of the NLE models, described the optimisation of their hyper-parameters, assessed

numerically their equalisation performance and quantified their computational complexity.

The L-simIVSTF model, a simplified TD architecture relying on efficient FIR filter re-use in

the linear stages and enhanced filtering in the nonlinear stages, achieves robust performance

at only 1 step per span. This is due to its large flexibility, which stems from the adapt-

ability of both linear and nonlinear stages. The FE L-IVSTF model, an FD structure with

adaptive nonlinear stages enhanced by filtering both the power and optical signal wave-

forms, can attain the same performance at a similar computational cost when operating at

2 steps per span. Both models have been shown to afford an average SNR gain of ∼ 2.2 dB

over CD equalisation for a 9 × 9 MIMO implementation. Operation of the FE L-IVSTF

model at 1 step per span requires approximately half the cost of the L-simIVSTF scheme

or its 2-step-per-span version at the expense of ∼ 20% less SNR improvement over CD

equalisation. Therefore, the FE L-IVSTF model appears to be the one that offers the best

performance-complexity trade-off. Future work will look at further improvements of the FE
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L-IVSTF architecture by optimising each MIMO channel path’s configuration separately.

The analysis and results presented in this chapter provide useful guidelines for the practical

design of adaptive and low-latency multi-channel equalisers.

N. Castro Salgado, PhD Thesis, Aston University 2024 108



CHAPTER 7. CONCLUSION

Chapter 7

Conclusion

7.1 Summary of Contributions

Contributions to Single-channel Equalisation

• Developed a learned time-domain model, L-simIVSTF, which showed a 3 dB SNR

improvement over CDE in a 10×100 km scenario. We demonstrated that the gradient-

based optimisation of the Volterra-based equalisation structure can overcome its ac-

curacy limitations, matching the performance of its 1 StpS LDBP counterpart.

Contributions to Multi-channel Equalisation

• Developed a modular framework for implementing and training model-driven MIMO

equalisers, which allows researchers to assemble multichannel equalisation schemes

efficiently. The framework supports the investigation of model-driven equalisation

architectures and the further development of MIMO-based DSP. Plans are in place to

release the codebase as open source.

• Introduced L-IVSTF, the first MIMO-WDM approach based on extending and op-

timising the IVSTF using gradient-based techniques, enabling equalisation of inter-

channel impairments in WDM transmission systems.

• Extended the single-channel time-domain L-simIVSTF for MIMO operation. This

model offers the highest performance improvement among our MIMO equalisers: 2.3

dB improvement over CDE in an 11-channel 6 × 100 km transmission scenario.
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• Proposed the field-enhanced L-IVSTF (FE L-IVSTF), which outperforms L-

IVSTF while halving the computational steps required for effective nonlinearity mit-

igation. The novel filtering strategy employed in the FE L-simIVSTF, integrating

static and trainable linear stages to balance adaptability and computational efficiency,

could be applied to other nonlinear equalisation schemes. A comprehensive compar-

ison of all proposed equalisation schemes identifies the FE L-IVSTF as the most

efficient option in terms of performance and computational cost.

7.2 Limitations and Future Work

During this project, several opportunities for further research were identified:

• Experimental Validation

The equalisation approaches presented in Chapters 5 and 6 have not yet been vali-

dated experimentally. Several technical challenges need to be addressed. Experimen-

tally validating our single-channel scheme requires integrating our training pipeline

with the DSP required to process experimental data. In addition, our multichannel

schemes require simultaneous detection of transmitted channels. Alternatively, se-

quential channel detection may be performed, which requires solving synchronisation

issues.

• Investigating Alternative Structures

The equalisers we have developed are based on the simplification and enhancement

of the IVSTF model [88]. Although the IVSTF topology leads to straightforward

implementations and interpretable solutions, it restricts the possible topologies that

can be obtained for efficient and trainable model-driven schemes. Exploring more

general architectures with a potential for parameterisation, such as the VSNE [56],

could yield other efficient and flexible structures with low computational costs.

• Addressing Time-varying Impairments

Our study has not accounted for time-varying impairments in optical transmission

systems, such as ADC nonlinearity or laser phase noise. Addressing these effects

in our receiver architecture would require integrating the ML training pipeline with

the adaptive DSP required for their mitigation. A potential approach that could be
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followed is outlined in [36], where the adaptive DSP stages needed to compensate for

these impairments are also deep-unfolded and integrated into the equalisation model.

• Further Complexity Reductions

Finally, there are further opportunities to reduce the computational cost of the pro-

posed models, as key findings from other models suggest. It has been shown that the

complexity of learned DBP does not scale linearly with the number of steps since the

length of the filters employed at each step can be reduced to the limit imposed by

channel memory, unlike with conventional DBP [58]. Similar outcomes may be ob-

served in our algorithms. The relationship between steps per span and complexity for

time-domain Volterra models is yet to be adequately explored, and with it the possi-

bility of low-complexity multi-span implementations. Another option is to investigate

variable processing rates within our equalisers. The proponents of IVSTF employed

lower processing rates for the nonlinear paths, where reducing the processing rate by

half cuts the computational cost by the same factor, with only a minor sacrifice in

performance [88]. The effect of such rate reduction strategies in our equalisers is yet

to be evaluated.

• Improved Complexity Estimations

Our evaluation of the computational cost of the algorithms proposed in this thesis is

limited. We have employed the required number of real multiplications as a proxy for

power dissipation, which is the ultimate measurement of computational cost. There-

fore, cost may be underestimated. Moreover, other important implementation aspects,

such as circuit design and the required ADC resolution, are yet to be studied.
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Appendix A

Derivation of the Volterra
Equaliser

In this chapter, we derive the inverse multichannel transfer function. We first consider a
single backpropagation step of a field E0 over a single span of fibre h1 as shown in Figure
A.1.

A linear step is defined as

E
(l)
1 = F−1 {F{E0}H1(ω)} (A.1)

Here, the transfer function H1(ω) characterises the dispersion of the fibre length h1. By
approximating the exponential of the nonlinear step of the SSF solution as a first order

polynomial , the output field E1 can be expressed in terms of E
(l)
1 as [136]

E1 ≈ E
(l)
1 eαh1/2 + jγE

(l)
1 eαh1/2|E(l)

1 |2h1,eff (A.2)

Here, h1,eff = eαh1/α.

We now consider two backpropagation steps over the same fibre length. We define the
second linear step as

E
(l)
2 = F−1 {F{E1}H2(ω)} (A.3)

E0 E1

h1

Figure A.1: Diagram of an inverse link of a single step h1.
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The output field E2 is approximated by

E2 ≈ E
(l)
2 eαh2/2 + jγE

(l)
2 eαh2/2

∣∣∣E(l)
2

∣∣∣2 h2,eff (A.4)

Expanding the linear step E
(l)
2 results in the following sum of terms:

E
(l)
2 = E

(l)
2,A + E

(l)
2,B (A.5)

where

E
(l)
2,A = F−1

{
F (E0)H1(ω)H2(ω)e

αh1/2
}

(A.6)

and

E
(l)
2,B = F−1

{
F

{
jγE

(l)
1

∣∣∣E(l)
1

∣∣∣2 eαh1/2heff

}
H2(ω)

}
(A.7)

Substituting A.6 and A.7 in A.4, the output field E2 is finally expressed as

E2 ≈ F−1
{
F (E0)H1(ω)H2(ω)e

α(h1+h2)/2
}

+ F−1

{
F

{
jγE

(l)
1

∣∣∣E(l)
1

∣∣∣2 eαh1/2heff

}
H2(ω)e

αh2/2

}
+ jγE

(l)
2,Ae

αh2/2
∣∣∣E(l)

2,A

∣∣∣2 heff

(A.8)

We now generalise to M steps over a single span of fibre. We first define E
(l)
M as a

recursive step in terms of the field at the output of step M − 1:

E
(l)
M = EM−1F

−1 {HM (ω)} (A.9)

Also, for convenience, we define a linear step E
(ll)
k encompassing k steps:

E
(ll)
k = E0F

−1
{
H1(ω)H2(ω) . . . Hk(ω)e

α/2(h1+h2+...+hk−1)
}

(A.10)

The output field after M steps EM is

EM = E0F
−1

{
M∏
k=1

Hk(ω)e
αhk/2

}

+ jγ

M∑
k=1

E
(ll)
k eαhk/2

∣∣∣E(ll)
k

∣∣∣2 hk,effF
−1

{
M∏
k=k

Hn(ω)e
αhk/2

} (A.11)
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... ......EA

E01

EM1 EM2 EMN

E02 E0N

Figure A.2: Diagram of an inverse link of M spans, where each span is subdivided in N steps.

We now generalise for N steps and M spans, considering an input field EA, as shown
in Figure A.2. We assume identical lump losses

√
L at the beginning of each span of fibre.

The output field EMN is given by

EMN = EA

(√
L
)N

F−1

{
M∏
k=1

N∏
m=1

H(k,m)(ω)eαh
(m)
k /2

}

+ jγ

M∑
k=1

N∑
q=1

(√
L
)N−q

E
(ll)
kq eαh

(q)
k /2

∣∣∣E(ll)
kq

∣∣∣2 gqk
+ F−1

{
M∏

n=k

H(n,q)(ω)eαh
(q)
k /2

M∏
k=1

N∏
m=q+1

H(k,m)(ω)eαh
(m)
k /2

} (A.12)

where H(k,m)(ω) is the transfer function for span k and step m, and

E
(ll)
kq = EA

(√
L
)q

F−1

{
M∏
k=1

q−1∏
m=1

H(k,m)(ω)eαh
(m)
k /2

k−1∏
n=1

H(n,q)(ω)eαh
(q)
n /2H(k,q)(ω)

}
(A.13)
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Appendix B

Diagrams of MIMO Volterra
Architectures

This appendix presents additional diagrams of the MIMO Volterra architectures, providing
alternatives to those in Figure 6.3, 6.4. These diagrams were previously included in our
conference contributions [13, 14].

Figure B.1: Diagram of 2× 2 MIMO schemes: (a) IVSTF, (b) simIVSTF.
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Appendix C

Implementation of Volterra-based
Equalisers

This appendix presents the pseudocode for the proposed equalisers. The complete source
code will be made available following the acceptance of the associated journal paper. In what
follows, we assume multichannel realisations, with layers following the architecture proposed
in Chapter 4. However, the algorithms are applicable to single-channel equalisation as well,
provided the linear and nonlinear layers are adequately defined. The IVSTF equaliser in
Figure 6.3 (b) is implemented as follows:

Algorithm: IVSTF

Require: signal
signal fd = to fd(signal)
sig out = total cd layer(signal fd)
for each step m = 1 : Lsp ∗NStpS do

e = first linear layers[m](signal fd)
p = to fd (nonlinear layers[m](from fd(e)))
sig out += last linear layers[m](p)

return sig out

Figure C.1: Pseudocode of the IVSTF algorithm [88].

Here, to fd() and from fd() are helper functions to apply FFT/iFFTs on the signal. The
layer total cd layer() filters each channel i with the transfer function in Eq. 4.9 with the
dispersion corresponding to a length NLsp. The remaining multichannel layers are retrieved
from lists. The lists first linear layers() and first linear layers() contain previously initialised
frequency domain layers, while nonlinear layers() contains the time-domain nonlinear layers.
The NLC flag gives the option to enable or disable nonlinearity equalisation. The equalisers
FE IVSTF and simIVSTF, depicted in Figure 6.4 (a) and (b), are implemented as follows:

In the simIVSTF algorithm, two separate for loops are employed: One of them computes
the outputs of the nonlinear branches, while the other one removes the CD of each span
and adds the nonlinear branch outputs. Two copies of the signal are created: y and y2,
one for use in each for loop. We allow the possibility for the number of branches to be
lower than the number of steps. This feature could be useful to reduce the complexity of
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Algorithm: FE IVSTF

Require: signal
signal fd = to fd(signal)
sig out = total cd layer(signal fd)
for each step m = 1 : Lsp ∗NStpS do

e = first linear layers[m](signal fd)
f = first td linear layers[m](from fd(e))
p = nonlinear layers[m](f)
g = to fd(last td linear layers[m](p))
sig out += last linear layers[m](g)

return from fd(sig out)

Algorithm: simIVSTF

Require: signal
y2 = y = signal
branch = {}
for each step m = 1 : Nbranches do

y = branch linear layer[m](y)
branch[m] = nonlinear layers[m](y)

for each step n = 1 : Lsp ∗NStpS

y2 = trunk linear layer[n](y2) +
branch[n]

return y2

Figure C.2: Pseudocode of the FE IVSTF and simIVSTF algorithms. FE IVSTF applies short
FIR CD filters using convolutional layers before and after the nonlinear layer. The simIVSTF uses
only convolutional layers, with separate loops for applying the filters associated with the linear and
nonlinear branches.

the algorithm: the nonlinear contributions of the last fibre spans are expected to be less
important and could be omitted.
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Appendix D

Code Implementations

This appendix presents code implementations for several key operations employed in our
MIMO equalisers. The custom layers employed in learned equalisers are implemented using
the Tensorflow 2 framework as detailed in Sec. 4.2.3. The single channel layers depicted in
Fig. 4.10 (a) apply delay compensation and CD filtering, as the following code shows:

1 class sc_linear_layer_td(tf.keras.layers.Layer):

2 """

3 This custom layer implements the linear step applied to a single channel in a

MIMO equaliser.↪→

4 The layer applies circular shifting, a fractional delay filter, and a CD

filter.↪→

5 """

6

7 def __init__(self, cd_filter, freq, model_params, tx_params, layertype,

step_number = 0, ch = 0):↪→

8 super(sc_linear_layer_td, self).__init__()

9

10 beta2 = tx_params["beta2"]

11 d_len = model_params["dlen"]

12 fsampd = tx_params["fsamp_d"]

13

14 # Compute the integer and fractional delay components in samples

15 self.int_delay_samples, delay_remainder_samples =

wo_delay_calculation(beta2, freq, fsampd, d_len)↪→

16

17 # Create a symmetric FIR CD filter

18 h_real_right_half = tf_real_symmetric_filter(tf.math.real(cd_filter))

19 h_imag_right_half = tf_real_symmetric_filter(tf.math.imag(cd_filter))

20

21 cd_filter_cmplx = tf.stack([tf.cast(h_real_right_half, tf.float32),

tf.cast(h_imag_right_half, tf.float32)],↪→

22 axis=1)

23

24 self.cd_filter = tf.Variable(initial_value=cd_filter_cmplx,

dtype=tf.float32, trainable=model_params["trainable_ln_steps"],↪→

25 name='sc_{a}_layer_step_{b}_ch_{c}'.format(a

= layertype, b=step_number, c = ch))↪→

26

27 # Create a fractional delay windowed sinc filter
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28 fd_filter = fd_sinc_filter(model_params["fd_filter_length"],

model_params["fd_bandwidth"], delay_remainder_samples)↪→

29

30 self.interp_filter = tf.Variable(initial_value=fd_filter,

dtype=tf.float32,

trainable=model_params["trainable_frac_delay_filter"])

↪→

↪→

31

32 def call(self, signal):

33

34 signal = tf.roll(signal, int(self.int_delay_samples), 1) # addresses the

integer delay↪→

35

36 if int(self.delay_samples) != 0:

37 signal = cconv(signal, self.interp_filter) # addresses the

fractional delay if present↪→

38

39 sig_out = cconv(signal, self.cd_filter) # addresses the chromatic

dispersion↪→

40

41 return sig_out

By comparison, single-channel SPM and XPM layers (shown inside the multichannel
nonlinear layer of Fig. 4.10 (b)) apply a single filter:

1 class sc_nonlinear_layer(tf.keras.layers.Layer):

2 """

3 A custom layer to apply a real-valued filter to a single-channel.

4 """

5 def __init__(self, nl_filter, trainable=True, step_number= 0, ch = 0,

second_ch = 0):↪→

6 super(sc_nonlinear_layer, self).__init__()

7

8 #Define the filter as a trainable variable

9 self.nl_filter = tf.Variable(initial_value=nl_filter, dtype=tf.float32,

trainable=trainable,

name='sc_nl_layer_{a}_ch_{b}_to_ch_{c}'.format(a=step_number, b = ch,

c = second_ch))

↪→

↪→

↪→

10

11 def __call__(self, sig_pwr):

12

13 filtered_pwr = cconv(sig_pwr, self.nl_filter)

14

15 return filtered_pwr

We have explored how to efficiently implement MIMO schemes in Tensorflow. To avoid
the nested for loops to traverse over channel pairs, we attempted to vectorise the calculation
of XPM contributions. The signal power combinations required for each XPM contribution
in the equaliser derived in Sec. 6.2 can be calculated as follows:

Nch∑
q ̸=m

|Uq|2 = M ·P (D.1)
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We define the mask as M = 1 − I, where 1 is the all-ones matrix and I is the identity
matrix. We note that the coefficients of this mask can be interpreted as the weight of each
channel contribution. In future implementations, the weights of this mask may be learned
along with the filter coefficients during the gradient-based optimisation process. The code
is provided below.

1 def xpm_vectorized(sig_c):

2 """

3 Computes, in a vectorised manner, power combinations for the XPM phase

shift.↪→

4 Parameters:

5 sig_c: Signal tensor of shape (Nch, Nsamp)

6 Returns:

7 tf.Tensor: Tensor containing the total XPM phase shift for each channel

8 """

9 ones_array = np.ones((Nch, Nch)) # Array of shape (Nch, Nch) filled with

ones↪→

10 id_array = np.identity(Nch) # Identity matrix for self-contributions

11 mask = ones_array - id_array # Mask tensor of shape (Nch, Nch) with diagonal

set to zero↪→

12

13 sig_power = tf.square(tf.abs(sig_c)) # Signal powers

14

15 pwr_combinations = mask @ sig_power # XPM signal power combinations

16

17 return pwr_combinations
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Appendix E

Response of Analytical XPM
Filters

Analytical transfer functions for the filtering of XPM contributions can be obtained for
MIMO DBP. The resulting nonlinear phase shift is given by [93]

ϕNL
m = F−1

[∑
F
(
|Eq(t, z)|2

)
Wm,q(ω, h)

]
(E.1)

Wm,q(ω, h) =

{
γheff for q = m

2γ e(α+idm,qω)h−1
α+idm,qω

for q ̸= m (E.2)

Here, h is the step size. Figure E.1 shows the amplitude response of the transfer functions
Wm,q for different channel spacings and step sizes. The filters exhibit a low-pass response,
symmetric around the center frequency. The shape of the response depends on the step size:
smaller step sizes produce a Gaussian-like shape, while larger step sizes result in sharper
cutoffs. Moreover, the filter magnitude increases with channel spacing, indicating that the
filter amplifies contributions from more distant channels. Similar analytical filters could be
derived for the multichannel IVSTF model in future efforts.

(a) (b)

Figure E.1: Magnitude response of the Wm,q filters introduced in [93]
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