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Abstract 

 

The quality of the key components of manufacturing equipment, such as dies and moulds in the 

manufacturing industry, is highly relative to the quality of final products. Since dies/moulds 

work in harsh situations, subsurface defects happen and will gradually develop into fatal surface 

cracks. Therefore, regular maintenance and remanufacturing are necessary for dies/moulds. 

Inspection is a key process in implementing maintenance and remanufacturing that can detect 

and prevent the components from fatal damage. As an important non-destructive testing (NDT) 

inspection method, ultrasonic testing (UT) can detect subsurface cracks. Currently, most 

industrial UTs are still carried out manually. In this study, an automated robotic UT on 

dies/moulds is studied to improve the efficiency and effectiveness of inspection in 

remanufacturing/maintenance.  

In contact industrial UT, the probe must contact the object surface and be normal to the surface 

to guarantee the amplitude of the received ultrasonic waves, optimising the inspection result. 

The moving speed on locations, such as edges, should also be considered to maintain smooth 

scanning. Therefore, the results of UT heavily depend on the expertise level of operators.  

In this study, the objective is to implement UT with a UT probe attached to the end-effector of 

a robotic arm. The object is placed at the assigned location on a desk surface. The robotic arm 

will approach the assigned waypoint to scan the complex surface of the object without computer 

vision. A reinforcement learning (RL) model is introduced to control the orientation and 

moving speed of the UT probe during UT scanning. Considering the safety reason and precision 

of operation, a collaborative robotic arm, UR5e, is used to carry out UT. Only a 6 DOF 

force/torque sensor measures contact force/torque between the end-effector and the surface. 

The measured forces are used as interactions between the robot and the environment to give 

feedback to the RL model so that it can make action decisions to adjust the orientation and the 

moving speed of the UT probe. At each waypoint, the end effector's orientation adjustment and 

the moving speed will be planned in real-time by the “brain”, i.e., an A2C RL model. As the 

“muscle”, a model-based compliance controller will be used to maintain the contact force 

between the end-effector of the robotic arm and the object surface constant to keep the probe 

contacting the object surface. A control software platform based on the robot operation system 

(ROS) is established to implement the whole methodology in simulation and the real world. It 

can be shown that the proposed method has been implemented and adapted to different objects. 

The probability of detection for the proposed method can reach 80%, and the trajectory's 

traceability is more accurate than manual UT. The limitation of the results is that it only 

considered the object at the assigned location, the object localisation and path planning to the 

object can be studied in future research.  

 

Keywords: robotic arm; ultrasonic testing; NDT; trajectory control; simulation; 

reinforcement learning; re-manufacturing; industrial equipment; die and mould; 

subsurface crack  
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1. Introduction 

1.1 Background: remanufacturing and maintenance in manufacturing 

industry 

The industrial Revolution happened in the 19th century in the United Kingdom (UK). With the 

development of propulsion machines, the manufacturing industry, e.g., the textile and iron 

industries, achieved another level of production capacity due to the machine. The gross 

domestic product (GDP) per capita in Europe grew over two times after the Industrial 

Revolution, from $2,513(1820) to $7,741(1900) 2. This data shows that after the revolution, the 

average production capacity of every person in Europe, where the Industrial Revolution took 

place, grew rapidly. Take the United Kingdom as an example, the share of UK manufacturing 

in the world increased 2 times during 1750-1900 period 3, which shows the contribution of the 

industrial revolution. From 19th century to 20th century, the manufacturing industry has 

reshaped the lives of people in the UK, and also the city development of the UK. For example, 

the metal trade in Birmingham motivated James Watt, who invented the steam engine, to move 

here to develop the steam machine with Boulton and Murdoch 4. The Industrial Revolution also 

impacted the life and culture of the people who lived here 5. For example, more and more people 

were gathering around the city area to get a better life. Birmingham, as a classic industrial city, 

as shown in Figure 1, the population in 1900 is almost 7 times of that in 1820 because of the 

Industrial Revolution.  

 

Figure 1 The population of Birmingham city area from 1650 to 2011 4. 

The city of Birmingham is chosen as an industry city due to many factors, such as, good 

geographic features to carry out the logistics in the industry. Natural resource like coal and iron 
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are around the city, and also the canal and transportation networks benefits the development of 

industry. And as more people lived in the city area, more and more industries gathered around 

the city 6. Not only textile industry, but also iron making, jewellery making, ship cable and 

anchor making, etc, which are the main industry of the city. The city of Birmingham played an 

important role in the new iron and engineering trade during the industrial revolution era. With 

the modern machinery took more and more parts in the manufacturing, the working condition 

of the workers were becoming better than before, for example, the working hours are getting 

much shorter than the hours before revolution 7. The working conditions of working humans 

will still be the focus of the manufacturing industry in the future as it turns into Industry 5.0 era 

1. Therefore, while the Industrial Revolution improves people’s living conditions, the working 

people also improved the level of the manufacturing industry. 

As in the 2020s, manufacturing is no longer the largest pillar of the UK’s GDP, the focus of 

manufacturing of UK has also gradually shifted (see Figure 2). The shift can be concluded as 

the technological change, but also the social, economic and political change 8. However, there 

is no doubt that manufacturing industry is still the key industry in the global economy. As 

business service and finance sector has more added-value but currently the number of 

employees in finance sector is only half of that in manufacturing sector 9. As more people will 

choose to work in finance or business industry potentially, the manufacturing industry itself 

needs swift to adapt the new era (even though manufacturing adds value to the society). Quality, 

but no more quantity, is nowadays the main focus of manufacturing industry. High-end 

manufacturing, and high-value-added manufacturing-related industry, sustainable, human-

centred manufacturing have been in development and will be the future trend in the UK 10.  

 

Figure 2 The shareholders of UK corporates gross value-added (1970-2010) 8. 
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Ever since the first Industrial Revolution, there have been three new industrial revolution types, 

bringing human beings to the Industrial Revolution 4.0 (shown in Figure 3). In revolution 2.0, 

the modern production line was first introduced by company Ford; the railway and telegraph 

transferred people and their ideas more quickly than before. Industrial robots and more 

advanced computing and sensing abilities were introduced in the revolution 3.0. The more 

advanced network and big data analysis capacity have been developed in modern industry 4.0. 

More artificial intelligence techniques, such as cyber-physical systems and the Internet of 

Things (IoT), were developed during this era. The forthcoming Industry 5.0 era, as a return to 

authentic, more human-centred technologies, will be used to make manufacturing more human-

centric and turn the system-centric, technology or knowledge-centric industry into a more 

human-machine-friendly system, where the machine can better fulfil the creativity of human 

engineers. 

People cannot only sell hamburgers and cut hair for each other; the infrastructure of society and 

the cost of food and living must come from elsewhere. Manufacturing is the foundation of 

human lives, and it produces more jobs. Manufacturing transforms people’s ideas, designs, raw 

materials, components, or parts into finished products through various techniques and processes. 

Basic manufacturing processes such as machining, forming, welding, casting, or assembling 

can be carried out in a factory or workshop. The goal of manufacturing is to create products 

that meet the needs and expectations of customers. As the manufacturing technique developed 

through the revolutions, the manufacturing processes are designed to be efficient, cost-effective, 

and of high quality. The manufacturing industry is continuously evolving, with new 

technologies, methods and materials being developed and implemented to improve the 

efficiency, productivity, and quality. As such, the manufacturing sector plays a significant role 

in the global economy, providing jobs and generating revenue for businesses and people.  

However, with the development of modern manufacturing, more resources have been used in 

manufacturing to satisfy human’s rising living demands 11 (as shown in Figure 4). The unit of 

y-axis of the figure is the normalised tonnes to the production in the year of 1900. And 

 

Figure 3 The four waves of industrial revolution and future trend 1. 
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according to the report, over 20% of the iron (Fe) production is used in the industrial machinery. 

Chromium (Cr) has over 50% of its production on metal goods and industrial machinery. 

Aluminium (Al) has the biggest growth since 1900, the biggest fraction of its use is in 

transportation and buildings. Since more material is used in manufacturing industry, the 

situation that the metal resource is running out of stock is catching more people’s attention, that 

the right choice should be made in manufacturing industry 12. Moreover, manufacturing also 

produces greenhouse gas emissions, which harms the environment. While the “net-zero” and 

“carbon-neutral” approach has become the main-stream intention for most countries in the 

recent decade 13, the usage of metal resources needs more effective control. The approaches to 

these targets are complicated. Since the manufacturers need to fulfil the people’s needs and 

make values, the manufacturing industry is like a large flywheel, which has been started, and it 

is difficult to stop it. Moreover, manufacturing industry has the responsibility to fulfil the 

requirements of people. Even in the future Industry 5.0 era, human needs will still be the centre 

of manufacturing 1. When people have requirements that have not been satisfied, the factories 

must make products. While people work for some targets, it is difficult to realise real “net-zero”, 

for example, people invented bicycles to move quickly, even riding a bicycle is claimed to be 

“green”, even if the manufacturing processes produce no pollutions, the bicycle itself costs 

metal resources.  

Academic researchers have contributed their wisdom in the direction of “net-zero” and “carbon-

neutral” by implementing more advanced technologies, such as IoT and machine learning, 

which have been used to achieve maximum energy efficiency in manufacturing. Moreover, the 

technologies can liberate human engineers from repetitive tasks and focus on more critical and 

lucrative tasks. Besides involving more advanced technologies in the industry, more activities 

should be done by people, for example, consuming fewer resources, planting more trees to 

consume CO2. Despite the establishment of concepts like “net-zero” and impactful international 

summit conferences and global agreements, the emission of CO2 never stopped or decelerated 

(see Figure 5). The predicted CO2 in the atmosphere will reach 445ppm in 2034, which means 

CO2 will be 445 parts per million air molecules. It may not be a significant increase on the 

number, but it has a bigger chance of limiting global warming to 2°C, which is very dangerous 

to the environment. Therefore, it is urgent for people to implement more effective and rigorous 

policies to really improve the state of the environment, especially in the manufacturing industry.  
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Figure 4 Global use of raw material through the 20th century 11. 

 

Figure 5 CO2 emission into atmosphere since 1960 with all key conferences on environment. 

(link: https://www.nationalobserver.com/2019/12/12/analysis/global-climate-summit-cop-or-cop-out ).  

Manufacturing industry is not only the foundation of human life, but also the foundation of 

innovation. Within manufacturing sector, there are normally two basic ways to face the 

environmental challenges: the first way is to find new methods to tackle emission (for example, 

post-process for emission from factory) and apply new, more environmental-friendly materials 

in future. The second way is to consume fewer resources in the current situation. The finding 

of new materials and new methods to extract metal is the task of material or methodology 

scientists, meanwhile, more methods have been introduced to reduce current material used in 

industry. By design, the products can be made with less metal, on the other hand, extending the 

life of products can be another feasible method. For example, operators used to dispose the 

broken manufacturing components, e.g., bearings, but now people tend to consider if this is 

right, if we can extend the use of it, if we can reuse or recycle it. The manufacturing industry is 

switching from linear economy to circular economy (CE) 14. Strategies, such as repairing, 

recondition, remanufacturing and recycling (4R) have been implemented in the industry (shown 

https://www.nationalobserver.com/2019/12/12/analysis/global-climate-summit-cop-or-cop-out
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in Figure 6).  

With these strategies, more and more campaigns have been raised to face the resource challenge 

15, for example, ‘Make Your Metals Matter’ campaign by British metal recycling association, 

to ask the normal people to recycle more metal resource in their daily lives, such as food and 

drink cans, foil trays and aerosol cans. It was estimated that 95% less energy will be consumed 

and 95% less greenhouse gas will be produced if the cans are produced by recycling method. 

For researchers, there are also many projects regarding 4R in industry, such as, RECREATE 

(REsearch network for forward looking activities and assessment of research and innovation 

prospects in the fields of Climate, Resource, Efficiency and raw mATErial, 2014-2018) 

focusing on policy making and design guiding of recycling actions 16, PREMANUS (Product 

REMANUfacturing Service System, 2011-2015) focusing on remanufacturing of the used 

products 17, RemanPath (Remanufacturing Path Finder, 2018-2020) focusing on guiding 

medium and small-sized company to take part in remanufacturing, including automotive, sports 

goods, and manufacturing industry 18. As there are only 2% companies in Europe are 

implementing remanufacturing, and there is a 90-billion-euro market after 2050, the 

remanufacturing has a very good potential market. In our EU project, RECLAIM 

(REmanfaCturing and refurbishment of LArge Industrial equipMent) 19, the focus is on the 

industrial equipment which is used for manufacturing other products, for example die forging 

machine in die forging production. 

As shown in Figure 6, 4R is implemented in industry as follows: as the products or parts get 

broken, the instant repairing will be taken place to make them applicable to be used or sold 

again. If that is not possible, the key components will be reconditioned to assembly again. 

During recondition, the goal is to bring the product back to a working condition, often with a 

focus on addressing specific issues rather than a comprehensive overhaul. A further strategy 

than that is remanufacturing, which takes whatever steps to make the state of the components 

as good as new. The product will be re-assembled to realise its function. If all these strategies 

are not possible, the raw material must be recycled, e.g., shredded into pieces or melted into 

liquid, to gather all the material to re-produce the product again. The 4R can be all implemented, 

but the manufacturer can also choose either one to be implemented according to the actual 

manufacturing situation by considering the feasibility and economic factors. 
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Figure 6 “4R” strategies used in industry 15 . 

For each strategy, there are pros and cons, for example, repairing needs the least labour, 

however, it only fixes the superficial defects of the products or equipment. Moreover, the 

remaining useful life (RUL) of the repaired product cannot be compared to new products. 

Reconditioning needs more labour; it fixes the components or sub-components of the products. 

But it never meets the “good-as-new” state, but better than repairing level. Remanufacturing 

disassembles the products (also called ‘cores’), it needs more labour to disassemble the product, 

to implement repairing or reconditioning on the components and sub-components, but it can 

restore the product to the good-as-new status. Recycling is an environmentally friendly 

operation, ant it creates jobs in collection, processing and manufacturing. These operations need 

no expertise, but the product must be disposed according to the raw material, then the raw 

material is extracted from the products, the whole manufacturing processes need to be carried 

out again, therefore, the economic profit is relatively low. Nowadays, more and more industries 

start to realise the importance of remanufacturing and commence to use it, for example, the 

digital device, such as mobile phones. There are many remanufactured products on digital 

device market. 

But while more research is on the 4R of the resource of mass products, less researchers focus 

on the equipment used in the manufacturing industry. To manufacture more products, many 

types of industrial equipment are used to improve production efficiency, such as important 

machinery components in a production line, like dies and moulds. Dies and moulds are both 

used to cut the raw material or form the shape. The use of dies and moulds has a long history 

and can be used for manufacturing metal, plastic products. Ever since the stone age, the metal 

production has started. In the 1400s, the production of metal became a big development due to 

the invention of the rolling mill by Leonardo DaVinci. During the industrial revolution, the 

technique of metal production developed, and the products of metal manufacturing became 

finer. Dies are used to cutting extra materials out in drop forging processes (see Figure 7). The 

metal is pre-heated and positioned on the lower die, after the drop of the upper die, the metal 

billet can be formed into the shape of the dies. Dies can be currently used to produce finer 
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products with new materials, i.e., aluminium and titanium, in the automotive and aerospace 

industry 20. Plastic and composite components can also be manufactured by dies. In die casting, 

the terminologies of dies and moulds are used interchangeably.  

The difference between die casting and injection moulding is the product material, while it is 

high pressure injected molten metal in die casting and plastic in injection moulding. Mould-

making can find its trace over thousands of years. The injection moulding has developed rapidly 

ever since the Industrial Revolution to produce plastic parts 21 (shown in Figure 8). The first 

injection moulding machine was invented in the 19th century; the method was introduced to 

manufacture more accurate products, such as glass frames. With the development of moulding 

techniques, mould can be used to manufacture high-valued medical and electronics products. 

The dies and moulds are used to produce all kinds of products, for example, bottles, shoe soles, 

and precise high-quality products, such as, LEGO, etc (shown in Figure 9). Even though 

additive manufacturing (AM) on metal and non-metal materials developed fast these years, dies 

and moulds are not replaceable due to their rapid manufacturing speed and relatively low cost. 

 

Figure 7 A classic model of die forging processes (link: https://www.forgings.bz/drop-forging/ ).  

 

Figure 8 A classic model of injection moulding processes 21 .  

https://www.forgings.bz/drop-forging/
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Figure 9 Left: The picture of moulds for LEGO manufacturing; Right: mould for shoe sole manufacturing  

(link: https://www.newelementary.com/2018/08/lego-minifigure-moulds-how-are-they-made.html; 

https://www.metallisation.com/applications/metalspraymouldsintheshoeindustry/ ). 

There are some reasons why a component in manufacturing machine, such as, dies and moulds, 

should be regularly maintenance and remanufactured. At first, the product is durable and has 

high added-value; if the restoration or repairing methods are effective; products have the 

potential to be leased as a service; the technology can last longer than the life cycle of the 

products 22. Cost saving is the biggest benefits of maintenance/remanufacturing on dies/moulds, 

it was reported the remanufactured part only costs 30-50 % of the cost manufacturing new ones 

23 24. Regular maintenance or remanufacturing can prevent unexpected breakdown, save 

downtime. The cost of making new dies or moulds can be saved for the manufacturer. 

Additional reasons include when the manufacturing of dies/moulds has stopped, or the dies and 

moulds are high-value and limited manufactured, the maintenance, remanufacturing on the dies 

and moulds will be necessary. Some dies and moulds may have intricate designs or specialized 

features that are not easily replicated. Remanufacturing allows manufacturers to preserve the 

knowledge embedded in the original tooling, ensuring continuity in production processes. 

Moreover, the maintenance/remanufacturing of dies/moulds extends the lifespan, improves the 

quality of manufacturing. It also saves the material used for new parts, which has a positive 

environmental impact by saving overall material resource usage. It was reported that repairing 

and reusing worn dies can save material use by up to 50%. The material scrap rate during 

manufacturing can be also improved 20. Remanufacturing also provides a potential opportunity 

to customize or modify dies and moulds to accommodate changes in product design or 

manufacturing requirements. This flexibility supports the adaptability of tooling to different 

production scenarios. Considering the reasons above, the maintenance and remanufacturing of 

dies and moulds is reasonable. According to report, over 80% moulds used in automotive 

industry undergoes repairing or remanufacturing 25. 

The state of these types of industrial equipment is important to the quality of products. To 

maintain the working condition of these equipment, regular maintenance should be carried out. 

According to reports, the poor maintenance reduces the industry’s overall capacity by 5% to 

20% 26. Currently, the inspections on dies and moulds are mainly visual inspection and 

https://www.newelementary.com/2018/08/lego-minifigure-moulds-how-are-they-made.html
https://www.metallisation.com/applications/metalspraymouldsintheshoeindustry/
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dimensional evaluation 27, 28, which can be implemented before and after the maintenance 

according to the handbook. But it is not sufficient and may cause some problems when invisible 

defects are ignored.  

There have been serious cases caused by defective dies and moulds. For example, Mylan’s 

EpiPen manufacturer, Meridian Medical Technologies company recalled their products 29. the 

root reason for this recall is a defective mould, which cannot be checked during normal 

maintenance but has a subsurface defect causing the products size problem, resulting the pens 

cannot inject proper amount of epinephrine.  

In another case, Toyota recalled over 6 million vehicles due to a malfunction in the power 

window switch. The cause is a defective mould with subsurface defects 30. Tesla had a massive 

call back in 2018 regarding the bolts in the power train, which was caused by a series of 

complex factors, but the defective mould manufacturing it is an important reason 31. The 

problem was solved after Tesla changed the material of the bolts and changed design. Another 

case is also about automotive parts, a manufacturer of automotive parts was experiencing sink 

marks on the surface of injection-moulded parts 32, specifically on the interior parts of a vehicle. 

The sink marks were affecting the aesthetics of the parts and causing customer complaints. The 

investigation found that the sink marks were caused by subsurface voids in the mould. The 

voids were formed due to improper venting and cooling of the mould, which led to uneven 

cooling and contraction of the part. This resulted in subsurface stresses that caused the sink 

marks on the surface of the part. In 2019, Ford motor also recalled 1.5 million vehicles due to 

defective dies in the manufacturing of a cable bushing of the transmission, this caused the 

transmission went into wrong gears and caused accidents 33. Customer goods manufacturers 

also suffer from failure cases caused by defective moulds. In this case, the company recalled 

their product because the handle was easily separated from the product due to a moulding 

problem during manufacturing 34. A mould manufacturing company Kyodo used UT to inspect 

their products 35. In the aerospace industry, Pratt&Whitney had an accident in 2016, in which a 

defective plastic part caused by defective dies during the manufacturing 36.    

Therefore, the maintenance of industrial equipment is crucial for the manufacturers, even if the 

defects in the equipment are invisible. During maintenance, 4R operation can be implemented 

as a solution to the defective components. For the key industrial equipment that is not damaged 

to the disposal level, remanufacturing is very suitable since it helps to recover the state of the 

cores as “good-as-new”. Then, the RUL of the remanufactured component can be reliable and 

further extended. Maintenance methods have evolved since humans started to use tools. 

Breakdown maintenance is the most traditional method, which means the maintenance only 

takes place when equipment breaks down. Scheduled (time-based) maintenance is a better 
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solution than a fixed time schedule, which is not dynamic and does not consider the condition 

of each equipment. Preventive maintenance, on the other hand, predicts and schedules the future 

maintenance according to the actual condition of the object 37. Condition-based maintenance 

(CBM) is a more dynamic method which takes online monitoring information to make 

maintenance decisions 38. More advanced method, such as, predictive maintenance (PdM) has 

been developed. In PdM, the condition is monitored by sensors, and the future RUL is estimated 

using an artificial intelligence algorithm, and the maintenance plan will be implemented 

according to the plan.  

The maintenance of dies and moulds nowadays is commonly implemented by operators; only 

manual cleaning and visual inspection are carried out during current maintenance. Many die 

and mould manufacturing companies, such as Buderus, and Uddeholm, mentioned that the 

products all experienced UT before delivery. ASTM A578, EN 10228-3 are the standards of 

UT on steel plates as raw material of dies and moulds. The tooling steel block was tested under 

the harsh condition as dies and moulds with UT to detect discontinuity 39. Cracks and subsurface 

cracks can be found on the injection moulds made of metal materials, such as, steel 40. Acoustic 

emission (AE) has been used to detect internal defects in the injection moulds 41. The reason 

why using NDT methods, such as AE and UT, is that the dies and moulds suffer from internal 

defects that are invisible from visual inspection. Moreover, when implementing visual 

inspection, the dies and moulds are under normal room temperature, the defects can be easily 

neglected by the operators. While NDT methods can detect the defects under the surface of the 

cores. Subsurface defects can influence the performance of dies and moulds which will lead to 

failures in products 42. With the development of online monitoring, some researchers are using 

tool condition monitoring (TCM), such as vibration signals, to assess the states of the tools 43. 

Some automatic inspection machines have been designed for the customised moulds, the 

machines will have the moulds installed on them and move like the actual working scenarios 

44, which can only inspect the working status of the moulds but cannot detect potential defects. 

A patent was designed by Boeing company to inspect the mould surface using phased array 

technique 45. A more detailed review of inspection methods applied to industrial equipment will 

be introduced in the next section.  

With the development of manufacturing techniques, more moulds and dies are made using AM 

techniques. AM technique has many advantages in making complex parts like dies/moulds. At 

first, the manufacturing processes are much simpler in AM than in conventional manufacturing 

(CM). Therefore, the time consumed in manufacturing is shorter. Since the preparation of 

dies/moulds is very complicated, including prototyping, try-out, design confirmation and final 

manufacturing. The time-saving in prototyping and manufacturing can save time consumption 

and overall costs. It is reported that manufacturing of dies/moulds using AM can save over 80% 
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energy 46. However, due to the complex parameters of the operation, defects can happen during 

processes. If the adhesion between layers is not good, delamination will happen. If the cooling 

is not even, the tool will warp during manufacturing. Metal, plastic, ceramic and photopolymer 

materials can all be used to manufacture dies/moulds. Metallic dies/moulds are the most 

commonly used, plastic dies/moulds can be used to produce medical devices, toys 47. Ceramic 

dies/moulds are brittle, and it is challenging to produce a large-size ceramic tool. Some of the 

latest research also used plastic, such as polylactic acid (PLA), polyethylene (PE), 

polypropylene (PP), to partly or fully make tools on metallic parts, which usually suffer from 

internal defects 48. The AM methods can not only used to produce whole dies/moulds, but also 

to repair or remanufacture them 49. For internal defects like this, ultrasonic testing and other 

types of NDT for internal defects are used in the inspection on the tooling. 

When the industrial equipment is broken down, the option of the end-of-life recovery/disposal 

strategy is very crucial to the manufacturer, the consumer and the environment. Even though 

only a small part (17%) of manufacturers realised this problem 50. If more broken parts are 

disposed of, the cost of the manufacturer will rise, and the indirect price paid by the consumer 

will increase. Moreover, more resources are wasted due to the disposal of new parts production, 

and pollution and greenhouse gas emissions during these processes will also increase the 

pressure on environmental protection. As an important option of the circular economy, 

remanufacturing is a trending option for manufacturers 19. Since remanufacturing saves the 

processes of producing new parts and recycling old raw material, according to prior literature 

51, 52, remanufacturing saves 80% of resources, 80% of costs and reduces 85% of the air 

emissions compared to producing new products. From the economic aspect, it was reported that 

the remanufactured automotive products could be sold for 40% less than the new products and 

the profit is 20% 53. Remanufacturing, as an industry, also helps to create jobs such as 

disassembly, testing operators. Remanufacturing, as a newly emerging technique, also helps 

sustainability development in the developing countries due to the modern techniques used in 

remanufacturing, such as, IoT, has minimised the technique gap between developing countries 

and developed countries. Since developing countries consume over two-thirds of industrial 

goods, the contribution of remanufacturing is very valuable 54. The evidence above shows that 

remanufacturing can be beneficial for all three pillars of sustainability: environmentally 

friendly, economic, and societal beneficial 55, therefore, it is a sustainable choice for the end-

of-life parts for the manufacturers, which can lead to a positive impact to the environment.  

As remanufacturing is often provided to customers to restore the state of equipment and reduce 

total cost, it can be considered as a maintenance option. Since the state data can be acquired 

during maintenance, it can be a good information source for the planning of adaptive 

remanufacturing. Via adaptive remanufacturing, the manufacturer can not only gain economic 
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and ecologic benefits but also the valuable data of their capital 56. The data will help to maintain 

the performance of the equipment, as a key role in the maintenance. The remanufacturing plus 

maintenance mode can be a new mode of business. The remanufacturing can assess the 

equipment, implement the maintenance at the ideal time point with optimal cost, and restore 

the state of the equipment to “good-as-new” to extend the remaining useful life. Therefore, 

remanufacturing is an optimal method that can be implemented during maintenance.  

The remanufacturing of dies/moulds is special comparing to cores from mass production. The 

quantity is the first difference, since dies/moulds are usually very expensive, the number of 

cores like this is usually small comparing to mass products. Since the dies/moulds are in unique 

shapes, the remanufacturing processes are usually customised. The geometry features of the 

cores are special and unknown in some cases. Remanufacturing strategies are different from 

the cores from mass production, repairing with advanced techniques is usually used on the 

remanufacturing of dies/moulds 25. The advanced technologies in AM and subtractive 

manufacturing are often hybrid to remanufacture the cores, which is named hybrid 

manufacturing (HM). The direct AM repairing is rarely mentioned in literature, since the wear 

region needs machine before the application of AM. The methods have been used in 

remanufacturing include welding 24, tungsten inert gas (TIG) welding (also named as Gas 

Tungsten Arc Welding, GTAW), Plasma arc welding (PAW), to laser-beam welding, electro 

spark, cold spray, to main-stream AM methods, such as directed energy deposition (DED) 

recently (shown in Figure 10). These advanced methods improve the efficiency of 

remanufacturing, since the methods get rid of the lead times for producing replacement parts or 

tooling components. This can be crucial in minimizing downtime for manufacturing processes 

that rely on specific dies and moulds. Advances in additive manufacturing materials, including 

high-performance polymers and metal alloys, provide more options for creating durable and 

wear-resistant components for dies and moulds. 

For TIG welding, it is a complicated process to complete the welding in repairing the 

dies/moulds 24. Not only the information of tool material should be known, the location to be 

repaired, the material of filler welds and if the pre-heating is needed are all necessary. The 

whole welding processes should be written down in details to make sure the repairing is 

complete and secured. As welding can hardly restore the microstates of the cores, it can hardly 

category into remanufacturing methods. 

Moreover, in TIG/Plasma welding repairing, much residual stress is left inside the cores. Laser-

beam welding, on the other hand, has both the advantages on welding and a more focused heat 

affected zone (HAZ). The more concentrated energy density makes laser welding capable for 

more precise remanufacturing. The researchers also started to turn into other methods, such as 
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cold spray and electro spark. 

Electro spark is an efficient method to restore dies/moulds. It is a method of applying a high-

performance coating on specific area of dies/moulds. A high current pulse, instead of heat, is 

input to the substrate of the core to weld a consumable electrode material to the surface of the 

metallic core 57. The material of the overlay can be alloy which is not suitable for the previous 

methods since they will crack during the solidification period. However, during the period of 

operation, the temperature of the small area can be 5,000- 25,000 K. Different from electro 

spark, cold spray applied the coating using a cold method, i.e., supersonic particle deposition. 

The powder of deposited metal is located on the surface of core, when the powder hit the surface 

on a supersonic speed, the particles deform, and the structure of the surface will re-form 58. 

With the method, the thermal stress on the cores can be minimised so there will be no melting 

material during the process 25.  

DED methods, i.e., powder bed fusion (PBF) or wire feed method, have a better heat-

concentration area, a higher deposition rate 23. Laser power, scan speed and powder feed rate 

are the parameters that have been discussed for DED in remanufacturing in prior literature. 

DED can be used most complex geometric components while other methods require flat surface. 

Moreover, it can handle in making sharper and smaller deposition and lead to a better 

metallurgical property after the processes. As most of prior literature only mentioned repairing 

on dies/moulds, remanufacturing has lifted the requirements of techniques to another level. The 

best accuracy of DED in remanufacturing of die can be 0.5mm 59. All the methods mentioned 

above are listed in Table 1 for comparison.  

 

Figure 10 Examples of the techniques used in remanufacturing of dies/moulds: (a) GTAW; (b) laser 

welding; (c) electro spark; (d) cold spray; (e) DED 23.  
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Table 1 Comparison among remanufacturing methods on dies/moulds. 

Methods Cost 
Metallurgical 

property 
Speed 

TIG/Plasma ★★★✩✩ ★★★✩✩ ★★★★✩ 

Laser welding ★★✩✩✩ ★★★★✩ ★★★★✩ 

Electro spark ★★★✩✩ ★★★✩✩ ★★★★✩ 

Cold spray ★★★✩✩ ★★★✩✩ ★★★★✩ 

DED ★★★★✩ ★★★★★ ★★★★★ 

Although DED can output good properties in repairing, there are still difficulties in the 

remanufacturing processes, for example, the material compatibility, thermal stress during 

operation. An optimal remanufacturing may not use only one technique to solve the problem. 

But comparing to how to implement DED remanufacturing, the more important is where to 

implement the DED. The location of DED remanufacturing also has a heavy impact on the way 

to implement remanufacturing and the result of remanufacturing 23 60. Especially when the 

defects locate in the sub-surface of the core, for example, the subsurface porosities and voids 

appear at sharp transition areas, the preparation work of different damage zones is different. 

Without precise data of the internal defects, the strategy of remanufacturing may be chosen 

wrong. The material and tools used in remanufacturing may be wrong and the cost will increase, 

the downtime will be more than expected. Building strategies are important for the quality of 

repairing, the features include building sequences, size of removal, build speed, etc. For 

example, different preparation strategies for repairing different zones for the internal cracks 

were investigated in prior literature 61. It showed that the trapezoidal removal in the removal-

filling strategy had the better overall quality. 

Above all, the manufacturing and remanufacturing industrial tools like dies/moulds are 

complicated. Moreover, either conventional methods or advanced techniques applied on 

dies/moulds may cause subsurface defects, which are difficult to detect. It is important to detect 

sub-surface defects as a potential risk. Early-stage detection of subsurface defects and 

preventing them from developing into fatal surface cracks are very important in the 

manufacturing industry as a predictive maintenance tool. 
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1.2 Inspection in remanufacturing and maintenance 

Even though remanufacturing is a trending circular business mode, it is challenging to 

implement it. There are some key processes in remanufacturing: disassembly, cleaning, 

inspection, operation (repairing, recycling), re-assembly and testing (as shown in Figure 11), 

the sequence of the processes varies depending on the cores, for example, cleaning may happen 

before or after disassembly, inspection can take any place in the sequence. There are research 

challenges within each process in the whole sequence. For simpler dies/moulds assembles, an 

overall inspection can be implemented at first to assess the remanufacturability. This process 

can be called pre-inspection. For the more complicated dies/moulds assembles, cleaning and 

disassembly should be implemented before inspection. As an option, regular inspection during 

maintenance can be used to detect defects for the remanufacturing 62. In normal sequences, the 

equipment or sub-components will be disassembled into single components. If the component 

is reusable, or it is worthy remanufacturing, cleaning and inspection will be implemented to 

evaluate the status of the component. Then, the re-processing will be carried out according to 

the actual defects that the component has; for example, the hybrid manufacturing method 

(additive + subtractive manufacturing) can be implemented if there are subsurface cracks 63. 

The equipment will be re-assembled and tested after the re-processing is finished. If the 

component is not reusable, the possibility of recycling will be evaluated. It will be recycled if 

it has the recyclability, the raw material will be recycled and rebuilt into new components, and 

merge into the machinery again. The raw material will be disposed of if it is impossible to 

 

Figure 11 The main processes of remanufacturing. 
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recycle the parts. 

When and how to implement remanufacturing have always been a trending research topic in 

academics 64 65. This problem is similar to the topic of maintenance planning. Prognostic and 

health management (PHM) technique is the necessary technique that can predict the failure time 

and schedule the maintenance and remanufacturing. PHM can help make plans, reduce loss 

with a reliable evaluation of the equipment. In most of the planning research, it is assumed that 

the inspection is perfect, and all the cores can be graded into remanufacturability levels. 

According to prior literature64, the grading of cores is crucial in remanufacturing regarding the 

efficiency and cost considerations, so it proved that inspection important for remanufacturing 

processes. The priority of remanufacturing is various regarding the type of cores, some 

researchers prioritised the good quality cores 66. Some found that the grading is more valuable 

when the cores are in poor quality, however the overall planning of remanufacturing also 

depends on the cost of the grading 67. Grading was also found not only reduces the 

remanufacturing cost but also improve the efficiency of the whole system by reducing the 

ordering frequency68.  

The inspection in maintenance can be used to predict RUL of parts, but in prior literature, less 

focus was on using the RUL to make remanufacturing 25 . As shown in Figure 12, the 

relationship between inspection, remanufacturing and maintenance is as follows: the inspection 

during maintenance can evaluate the state of the equipment and help make schedules for future 

maintenance. Along the run time of the equipment, the reliability will decrease. Choose the 

proper maintenance time to implement remanufacturing at a proper “remanufacturability” level 

will give the manufacturer a better cost level, a better remanufacturability and a better overall 

value of the equipment. Moreover, the maintenance operations will also extend the lifetime of 

the equipment. 

To evaluate if the equipment is worth remanufacturing, when and how to implement 

remanufacturing, inspection is the key process before implementing specific remanufacturing 

 

Figure 12 The relationship between inspection, maintenance and remanufacturing 65 . 
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operations 65. Moreover, if HM is applied in remanufacturing, inspection should be also 

implemented to make sure the remanufacturing quality. Missing the potential defects during 

inspection will lead to damages. To monitor the status of the components, on-line and off-line 

methods can be used. The on-line methods monitor the status of the equipment continuously, 

such as, vibration measurement, acoustic emission and current monitoring. However, these 

methods can only monitor the status indirectly, the real status of the equipment can be only 

predicted by collecting data and experience functions. The off-line methods, on the other hand, 

can evaluate the equipment directly with the contact method. The drawback of off-line methods 

is that the equipment has to be stopped when inspection. When implementing inspection for 

remanufacturing and maintenance, the off-line methods are more appropriate, since the 

equipment has to stop during maintenance, moreover, the off-line methods have more accurate 

results of inspection. Non-destructive testing (NDT) methods are the most used method in off-

line inspection. In the beginning of 19th century, the safety of boilers is crucial. The explosion 

of a boiler in 1854 caused 20 people died and over 50 people injured, which is the trigger of 

boiler inspection law in 1864 69. This is the start of NDT inspection.  

There are many NDT methods of inspection in industry maintenance and remanufacturing, such 

as, ultrasonic testing, x-ray, eddy current, etc. In this study, only active inspection methods are 

considered. Ultrasonic testing (UT) uses ultrasonic waves to propagate through the tested object. 

It is also called ultrasound, since the frequency is above 20 kHz, which is the upper limit of 

human hearing ability. The transducer can generate the wave, emit it into the object. And it can 

receive the reflection of the wave, from wherever there is an internal defect. The ultrasonic 

waves are motivated via a piezoelectric actuator, which transfer the alternating current (AC) to 

ultrasonic vibration. The transducer can both generate and receive the waves. The UT methods 

can be divided into 2 categories, contact and non-contact. For non-contact method, 

electromagnetic acoustic transducer (EMAT) can generate ultrasonic waves that overcome the 

inefficiency in the air. Other transducer uses laser to generate ultrasonic waves on the surface 

of the object. Non-contact is not considered in this study since it is more expensive than contact 

methods, thus the results are less reliable. 

X-ray computed tomography (XCT) is another method to detect internal defects, as it is similar 

to the medical x-ray, the industrial X-ray needs a chamber to block the beam since the radiation 

is harmful to the health of human operator 70. The cost of equipment is relatively higher than 

that of UT. Moreover, the application of this inspection also has limitations on the size of the 

objects. Gamma rays can be used for thicker and larger items. 

Eddy current (EC) testing is another inspection method similar to UT. The difference is that EC 

generates the wave by using eddy current phenomenon directly on the surface of the object. 
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Therefore, EC is only feasible for the inspection on metallic or conductive products, which can 

response to the eddy current.  

Infrared thermography (ITG) is a new inspection method similar to EC, it can be used for 

internal defects, however, the object should be an excitation source, e.g., a heating lamp. Active 

ITG can function on normal object, but the external excitation is needed. Another limitation is 

that the detection depth is hollow. Computer vision is another widely used inspection method, 

however only suitable for surface defects and shape defects.  

These are the main-stream inspection methods used in NDT in industry. Since other methods 

all have obvious drawbacks, thus UT is the most common NDT method used in industry, it is 

chosen to be the method used in this study. It will be used to detect the internal defects in the 

object for future remanufacturing. 

Take internal crack as an example, the location, size of the crack and the development of the 

crack are important factors to evaluate when implementing remanufacturing. They will help 

confirm when and which method to implement the remanufacturing, for example, use “hybrid 

manufacturing” method which includes subtractive and additive manufacturing to restore the 

state of the core 71. And how much the work there will be evaluated to make an optimised plan 

for the maintenance and remanufacturing. Some will question even if the subsurface defects are 

found, we can wait till the subsurface defects develop to the surface and repair with the same 

technique, the effort should be the same- the amount of substrate needs to be removed are the 

same in subsurface defects and surface defects 72 (seen in Figure 13). However, it only appears 

to be the same, the subsurface cracks may develop to extra bigger size according to the working 

load and the effort remanufacturing it will be different. Remanufacturing a subsurface defect is 

more beneficial than saving effort, it may save the whole manufacturing system from fatal 

before the disaster happens, which is more valuable. 

 

Figure 13 (a): internal defects developed during operation; (b): milling cutter removing surface material; 

(c): detection of the internal defects; (d): subtractive manufacturing to repair the defects; (e): finish the 

part with additive manufacturing 72 . 

Key industrial equipment, such as dies and moulds, works in harsh working conditions, 
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shortening their useful life. Dies and moulds are the equipment that helps to shape products in 

mass manufacturing according to the design. The use of dies and moulds makes the 

manufacturing more time-efficient and cost-efficient. They can be used to manufacture 

products with the material of metal, rubber, glass fibre, polystyrene foams and even food. The 

dies and moulds can also be used to manufacture complicated products; for example, a simple 

electronic appliance needs hundreds of dies and moulds. Due to the complexity of the tools, the 

dies in stamping, for example, can go in the range of 1 to 62 million USD 73, the mould used 

for the manufacturing of components for automotive interior costs up to 0.5 million USD and 

6-9 months to try out. With the development of manufacturing techniques, the emerging 

technologies have been used in the manufacturing of dies and moulds, for example, advanced 

CNC (computer numerical control), surface coating, additive manufacturing 74. The materials 

used in dies and moulds are with outstanding strength, for example, 42 HRC- one type of hot 

work tool steel, D3- one type in the series of cold work tool steels 62. According to reports, the 

value of the market of dies and moulds has reached 26.21 Billion US dollars in 2020 75. Facing 

the huge value of market, the end-of-life operation of dies and moulds is a big challenge and 

opportunity. Die and moulding making industry covers a wide range of activities: (a) the 

manufacturing of new dies and moulds; (b) maintenance, support and remanufacturing of dies 

and moulds; (c) technical assistance and prototype manufacturing for customers. So, within the 

maintenance and remanufacturing area, machining tools, such as dies and moulds, is a research 

topic worth studying.  

The most common processing using moulds is injection moulding in manufacturing, e.g., 

footwear manufacturing, LEGO blocks manufacturing (shown in Figure 9). Rubber, composite 

and metallic products can be manufactured using injection moulding. In injection moulding, 

the moulds experience high temperature and high pressure. The thermal change will extend and 

shrink the surface material of the mould, produce tensile stress between surface layer of material 

and the subsurface layers Subsurface cracks will emerge due to the tensile stress 76. Dies are the 

parts used in forging or casting to help shaping the products, e.g., in the manufacturing of doors 

of dishwasher, body of vehicles. For the dies in die forging and die casting, the material of die 

experiences not only tensile stress, but also high temperature. The high temperature accelerates 

the production of oxide of metal, the oxide of metal produces a channel that absorb oxygen 

from the outer surface, therefore subsurface crack is produced. Thermal shock and tensile stress 

between dies and the products are the additional reasons for the subsurface cracks 77 78. With 

all the factors described as above, the subsurface cracks will develop to the surface (shown in 

Figure 15). Subsequently, the crack will develop into a surface fatal, the quality of product will 

be heavily influenced by the defective dies and moulds. The tool wear, e.g., the die and mould 

wear, can not only result in inefficient product quality or economic loss, but also lead to 7 to 
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20% of total downtime in the whole manufacturing industry. In a survey, a company loses 

average 300 labour hours and 172 million USD annually due to unexpected tool wear 79, which 

has a big gap to improve 73.  

The more accurate the final product is, the higher the requirements for the maintenance of the 

dies and moulds are. They are not only contributing to the quality, precision, performance of 

the products, but also the level of the stability of productivity 80. The surface quality of the dies 

and moulds has a big influence on the final products. Therefore, wear resistance, corrosion 

resistance, and mould releasability are important to dies and moulds.  

For the dies, since the tools are under harsh tensile, wear is the most common problem. Die 

wear leads to surface problems, such as scoring or burnishing damage, and size quality 

problems. Mould releasability is a parameter for mould, which can be measured by setting a 

tensile tester between the mould tool and the moulded part 81. The wear on mould will increase 

the adhesive on the tool surface, which increases the releasability force. The precision 

requirements on moulded and died products are normally a few μm. If subsurface cracks 

develop into surface cracks, the roughness of the surface will change, and the friction of the 

surface will change, which will affect the quality of the final products. Not only surface 

roughness but also dimensional accuracy, tensile and compression strength, cost and lead-time 

can be influenced by the quality of dies and moulds. For example, the die wear can lead to a 

decrease in the edge quality of the final products 82. Therefore, regular maintenance should be 

carried out for the dies and moulds, and remanufacturing as an end-of-life option is reasonable 

for expensive tools.  

As the additive manufacturing technique developed, more researchers are using additive 

manufacturing methods to implement remanufacturing on dies and moulds. Hybrid 

manufacturing (subtractive and additive manufacturing) is used to not only manufacture the 

dies and moulds, but also to fix the broken surface of dies and moulds 83 84 (as shown in Figure 

13). Removal operations, such as milling, were used to remove the bumper part and corroded 

surface, and then laser cladding was used to build the shape layer by layer. The subtractive 

manufacturing process not only removed the extra material but also prepared the finished 

surface for additive manufacturing. Some other researchers took the thermal stress and material 

deformation during laser AM process as a disadvantage and chose other methods, such as cold 

spray and electron beam welding (EBW) 85. The whole remanufacturing processes are similar; 

milling removes extra material, and then cold spray finishes the repairing process. 

To implement these techniques on remanufactured cores is complicated, high precision is 

required during these processes 59. It is even more important to get information on the targeted 

defects, such as internal cracks. The size, shape and location of the subsurface cracks are key 
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parameters to carry out the remanufacturing processes 86, i.e., evaluating the possibility of 

remanufacturing, removing surface material and implementing additive manufacturing. NDT 

inspection, such as UT, can help achieve the related information without breaking the object. 

By identifying the defects' size, shape and location, it is helpful to confirm the possibility of 

remanufacturing, the cost of remanufacturing and the methods used in remanufacturing. The 

possibility of remanufacturing, or named remanufacturability 87 (as shown in Figure 12) is the 

evaluation made by an expert or decision-making system to decide whether the remanufacturing 

should be worth carrying out or not.  

The size, shape and location of internal defects affects the fatigue strength model of the core 88. 

There have also been experience functions based on the size, shape and location of internal 

defects to calculate the remaining useful life length of the component. Compared to other 

factors, the location of the internal defects is reported to be more important 89. The location of 

the defects affects the fatigue strength, it is also important to remove material from the right 

place rather than removing more material. Moreover, with accurate information on the size and 

location of the defects, the remanufacturing operations can be implemented only on the “region 

of interest” but not destroy the other part of the object. The remanufacturing operation can be 

planned precisely, for example, when to implement remanufacturing and how much material 

should be removed from the specific area of the defect.  

The overall remanufacturing processes on dies and moulds are shown in Figure 14. During 

 

Figure 14 Flowchart of remanufacturing processes on dies and moulds. 
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periodic maintenance or break-down maintenance, an inspection should be carried out to 

confirm the state of the components. The evaluation will be made during the inspection to 

decide whether the die/mould should go back to service. If a defect is detected, the defect should 

be identified and evaluate to decide if the defect can be repaired in the economic and technical 

perspective. If the defect can be accepted, the parts can go back to service. If the tool cannot be 

remanufactured, it will be disposal. If the defect cannot be accepted and needs to be 

repaired/remanufactured, the core will go to remanufacturing processes. The remanufacturing 

processes include conventional method, such as welding, and also modern method, such as 

hybrid manufacturing. The difference between the remanufacturing of dies/moulds and other 

components is that the surface requirements of dies/moulds are higher than normal parts. 

Therefore, extra surface finishing processes, such as heat treatment, are necessary before the 

remanufactured part goes back to service. Re-assembly and testing before service are needed 

as well. After the remanufactured dies/moulds go back to service, the circular economy of the 

tools closes its loop. 

It can be seen inspection is the start of the loop, however, it has been also reported that the 

inspection of industrial dies and moulds is normally difficult. The information of the cores, i.e., 

the original information and current states may be unknown 90 91, the material, shape, surface 

of the cores may vary. Even when the cores is known, the operation of inspection is not easy, 

since the size of dies and moulds used in industrial is normally too large for the scanning 

electron microscopy (SEM) 82. And the detection of subsurface cracks normally depends on 

SEM. Moreover, these inspections normally need the dies and moulds to be disassembled from 

the machine, which costs not only human labour, but also precious downtime. The research on 

the relation between die and mould wear and the degradation of the quality of final products 

should be studied, and the efficient, online NDT method should be developed to detect the early 

stage of die wear. This is not only to save cost, but also to save the waste of resource from the 

final products and the manufacturing of dies and moulds. 

1.3 Motivation of this study 

Since dies/moulds are important in manufacturing, and remanufacturing benefits the 

environment and economy, this study focuses on a rarely studied research topic: the inspection 

of manufacturing equipment, such as dies and moulds, in remanufacturing. Ultrasonic testing 

(UT) in industrial settings is normally operated manually. This study proposes an automated 

robotic UT method to improve efficiency and maintain effectiveness.  

UT can detect internal defects, including subsurface cracks. The dies and moulds are expensive; 

immersion UT in water is not selected since it may corrode the object. The shapes of dies and 

moulds are complex, and the size of the phased array is too large for this type of inspection. 
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Considering other UT methods, they are too expensive compared to our budget. Therefore, a 

traditional ultrasonic transducer for contact testing is used in this study. The trajectory of the 

conventional transducer can be planned to cover the object's surface fully. With the amplitude 

acquired from the conventional UT, the location of defects can be detected. 

The orientation of the UT probe is requested to be normal to the object's surface. However, the 

manufacturing equipment generally has complex shapes (shown in Figure 9 and Figure 15), 

which increases the difficulty of implementing UT with a robotic arm. Even though dies and 

moulds are made of strong materials, such as tool steel, H13, P20, and D2, aluminium alloy, 

AISI4140, 7075 and 6061. The runout of the dies/moulds material during their use in 

manufacturing can be large; the size wear can be over 1.5mm in experiment 92. Another study 

shows that the size of a die can vary over 1 mm, and the volume change can be over 100 mm3 

after 3000 forgings 92. The uniform wear value can be over 2 mm 93, a big gap for surface 

scanning. Most importantly, the probe should contact and be normal to the contact surface of 

the object to guarantee the best results. Otherwise, the ultrasonic wave will be attenuated due 

to the incidence angle 94, 95. The volume change after thousands or millions of time operation 

can influence the UT scanning. Therefore, implementing a robotic arm with an off-line pre-

defined trajectory based on the original CAD model is hardly satisfactory for this task. So, the 

difficulty of the robotic task even increases when robotic UT is applied in remanufacturing.  

In contact UT, the probe must contact the object’s surface to prevent the ultrasonic wave from 

scattering and attenuation while penetrating different materials. Therefore, a constant contact 

force should be applied while implementing robotic UT. While working in a complex 

environment, the path and trajectory planning of the robotic arm driving the UT probe is also 

the key. For example, when moving the contact UT probe at the edge of the surface, the moving 

speed should be adjustable to ensure the probe attaches to the surface. 

While integrating collaborative robots (COBOTs) into the study of remanufacturing. In the 

Industrial Revolution 3.0, industrial robots started to be used in manufacturing. However, the 

safety and intelligence factors are limited in large industrial robots. Therefore, the emergence 

of COBOT is a huge step forward to I4.0. With COBOT, humans and robots can work together 

 

Figure 15 (a): illustration of close die forging. (b): the die used in this study as the object. (c): the 

process of subsurface cracking developing to the surface 77 . 

 



Z. Wang, PhD Thesis, Aston University 2024 

25 

 

more safely. Research on robotic disassembly, testing and inspection with COBOT has 

increased in recent decades. The number of COBOTs used in industry increased by 23% from 

2017 to 2018, and the number is still increasing. In the background of I4.0, more techniques 

are implemented on COBOT, such as big data, cloud computing, 5G network, Internet of 

Things (IoT), and artificial intelligence (AI). It is not only COBOT that is used in industry, but 

the more advanced control algorithms are also implemented in robotic applications.  

A Cobot such as UR5e has a built-in force/torque sensor that can acquire 6DOF force/torques. 

To simplify the equipment used in this study and reduce the budget, only the F/T sensor is used 

to perceive the environment. Other prior literature uses the combination of F/T and other 

sensors, such as computer vision; however, using other sensors is not appropriate in this study. 

This will be justified in Section 2.  

For the complex dies and moulds, most inspections must be carried out by disassembling the 

dies and moulds to make offline inspections 96, which will lead to longer downtime. If an online 

inspection method that can detect internal defects without disassembling the tools can be 

realised, this will improve the inspection efficiency. UT, as an offline NDT method, can be 

applied as an online NDT while applying a robotic arm. The final target of robotic UT will be 

a complete mobile solution, i.e., the robot can move the UT probe to the target object and carry 

out the online UT without disassembling the object. This can be studied in the future. 

1.4 Aims and objectives 

The aim of this thesis is to propose an automated robotic inspection method for industrial 

equipment such as dies and moulds. Only a force/torque sensor is used to perceive the 

environment; no other sensors, e.g., computer vision, are added. Since there is no experience 

database, a reinforcement learning model will be implemented to learn the optimal actions 

during training and carry out the actions in simulation and the real world. The proposed method 

can be implemented in simulation and the real world to verify its robustness.  

To realise these aims, the following objectives are to be finished: 

1. A compliance controller should be implemented to maintain the contact force between 

the robot’s end-effector and the surface at a constant value ± 5% error, e.g., 50 ± 2.5N. 

The controller should also be able to drive the robotic arm approach to the target 

position and switch from moving mode to surface-scanning compliance mode.  

2. A reinforcement learning algorithm should be able to use the compliance controller as 

a subsystem to implement automatic robotic scanning. A platform based on ROS 

should be established to connect all controllers in ROS and the RL algorithms in the 

stable_baselines3 library. The training of the RL model should be carried out in the 
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simulation environment Gazebo. Then, the trained model should be transferred to a 

real-world experiment to verify its availability. A UR5e robotic arm is used in this 

study; only the embedded force/torque sensor is used to perceive the environment.  

3. The RL algorithm outputs the moving speed, i.e., moving step length, and end-effector 

orientation adjustment as actions every step after acquiring contact force and current 

position. The angle difference between the actual orientation and the normal direction 

on the contact location should be within 15 degrees. 

It is hypothesised that the proposed robotic UT method has better efficiency and better POD 

results than human operators. The improved compliance controller should have a more stable 

contact force than the standard PID controller. The proposed control method hypothesises that 

only force measurement is enough to optimise trajectory for dynamic robotic UT. The trajectory 

in the simulation environment can be transferred into the real world. The RL can help optimise 

the overall trajectory of the end-effector using the compliance controller. Another hypothesis 

is that it is assumed that an optimised trajectory can lead to a good UT result. All these 

hypotheses will be verified in the literature review, simulations, and experiments.  

The scope of the research focuses on the simulation and experiment of an RL-based automated 

robotic UT scanning method. A fixed 6 DOF robotic arm UR5e is used as the manipulator, 

mobile scanning has not been studied. Though it is an automated method, it only plans trajectory 

automatically, e.g., orientation, contact force, moving speed, but the moving path is pre-defined 

(x, y) coordinates according to the shape of the object by the researcher. The object's scope is 

the dies/moulds used in the manufacturing industry. The object die used in this study is round 

and has an 80mm diameter. The die is made of solid metallic material, i.e., tool steel, with a 

reflected surface and curved profile. In the experiment section, the actual die used in the 

manufacturing is used as the real object. The trajectory optimisation algorithm is applied as a 

basic controller of the robotic arm, while the RL is applied as the main planner of the overall 

trajectory. The coding structure and parameters of every controller used in this study are studied. 

The research employs a quantitative evaluation of orientation error performance and the 

probability of detection of UT. The scope of the literature review includes the most related 

literature from 2017 to 2024. The research does not include direct RL training on real objects.  

To realise these aims and objectives, the structure of the rest of the thesis is organised as follows: 

the related prior literature is reviewed in Chapter 2. The inspection methods used in the 

manufacturing industry and the robotic ultrasonic testing methods are reviewed. According to 

the results of the literature review, the proposed method is introduced at the end of Chapter 2 

to fill the research gap. To fulfil the proposed method, a simulation should be implemented first. 

The simulation is necessary for safety because the reinforcement learning algorithm tries every 
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possible solution during training. Moreover, the simulation can be used to verify the possibility 

of the proposed method before accessing the experiment equipment. Therefore, the simulation 

is important. The simulation model used in this study is introduced in Chapter 3. The structure 

of the ROS system, simulation model, and controllers used in this study are introduced in detail 

in this chapter. The simulation model is also synchronised with the real-world robot. The 

improved compliance controller will be introduced in detail in Chapter 4, and the design and 

verification will be carried out in this chapter. The path planning and RL algorithm are 

implemented in the simulation model in Chapter 5. This chapter will implement the combined 

controller in the simulation environment. Subsequently, the controller with the RL algorithm is 

transferred to the real robot in Chapter 6. The related real-world robot experiments are also 

introduced in Chapter 6. The discussion and conclusion are drawn in the last chapter. 
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2. Literature Review 

To carry out the research on advanced NDT technology on manufacturing equipment is a 

focused topic for certain area, however, it is also a big topic since either the NDT technique or 

manufacturing equipment has been developed for over 100 years. The current and historical 

developments of the technologies should be reviewed to make sure the research can fill the 

research gap. Since in this study, the topic is focusing on UT on manufacturing equipment, the 

review of literature will focus on the related academic articles on related topics, such as, 

ultrasonic testing, NDT, manufacturing, after the year 2000.  

2.1 Online/offline NDT in manufacturing industry 

There are two categories of NDT in industry, on-line and off-line NDT. On-line NDT can be 

applied while the industrial operation is still in process, for example, vibration monitoring, 

acoustic emission, etc. The off-line NDT can be only used when the manufacturing is stopped, 

e.g., ultrasonic testing, X-ray, etc. All the online and offline NDT methods will be justified in 

this subsection to find an optimal method for the NDT on die/mould in manufacturing. 

For online NDT, the advantages are that the manufacturing processes will not be affected. There 

are many studies on vibration analysis on cutting tools 97. However, they can only detect wear 

when cracking or chipping on the edge of the tools, but they cannot detect subsurface cracks. 

They can also be applied to dies/moulds, for example, vibration analysis has been used in the 

monitoring of dies in the nut manufacturing 98. The vibration analysis study can identify when 

the faults occur. The frequency of data acquisition can be selected according to the time of 

operation. The data acquisition does not affect the manufacturing. However, the online NDT 

can only detect cracks and bends of the dies; it can only give alarms when the vibration mean 

trend becomes abnormal. Moreover, vibration analysis is a black box, it is difficult to confirm 

the source of abnormality, especially in a complex vibration system, such as a production line. 

Vibration analysis is more suitable for monitoring the health of rotating mechanical systems, 

such as bearings and rotors, but not for detecting early-stage internal defects.  

Acoustic emission (AE) is another type of online NDT, which is similar to vibration analysis 

but is more suitable for crack detection in components. When the cracks happen or any changes 

happen in the structure of the object, the generated transient elastic waves will be released. AE 

uses a sensor to collect the reflection of acoustic waves from the internal of the object. Real-

time AE can be realised using an optical microphone, this kind of application was used in the 

detection of internal defects of welding 99, but this may increase the cost. As AE is a passive 

NDT, some movement in the object is needed to motivate the acoustic waves. It cannot detect 

defects when the object is stable, for example, a die part which is not moving. If there is external 
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sound, e.g., background noises, it may lead to misinterpretation 100. Besides, AE has a low SNR 

and a large data amount 101.   

Thermography can be an online non-contact NDT in manufacturing. Using an infrared camera, 

thermographs can be taken, and with comparison, the internal abnormalities can be identified 

102. Passive and active thermography methods have been developed. The difference between 

these two methods is an internal temperature simulation model. With the simulation model, the 

normal temperature and the thermal flux with abnormalities can be compared actively 103. With 

the development of technology, laser thermography has been developed to detect near-surface 

defects. The equipment cost is relatively lower than an X-ray; however, since only one point 

can be inspected each time, the inspection is time-consuming 104.  

Visual testing (VT), as the most traditional method of NDT, can be used in the manufacturing 

of different parts and materials, including metal and composite materials. As it is fast and 

inexpensive, it is normally the initial NDT method in line. With the development of technology, 

VT has developed direct VT and remote VT, which need external illumination and cameras 105. 

However, it has nothing to do with the subsurface defects 100. It also heavily depends on the 

expertise of operators. VT can be efficient for product inspection, but it can be challenging to 

implement VT on manufacturing tools. And even if applied to the manufacturing tools, it can 

only detect surface defects and shape wear 106.  

Eddy current (EC) can be applied both online and offline. EC can detect the subsurface defects 

in the hollow depth. However, EC is only limited to the testing of electrically conductive 

materials 100. EC has been used in rail inspection while trains are travelling on them, but it was 

not applied in the inspection of manufacturing tools 44. In the recent study applying EC on 

additive-manufactured metallic parts, EC confuses the surface roughness with the internal 

defects 107The size of the objects under test cannot be too small; otherwise, the ECT probe will 

be confused by the edge effect, which mixes the edges with the defects. Moreover, the ECT 

needs a constant air gap between the probe and the objects, but it does not require a couplant, 

so it is difficult to maintain the constant gap. The smallest void that can be detected using ECT 

is 0.3mm.  

Off-line NDT, on the other hand, needs to move the object components to another place for 

inspection. Compared to the predicted results from online NDT, the offline inspection results 

are more reliable, for example, the industrial X-ray in the automotive industry can detect 

internal defects (which are deeper than subsurface defects) of size 0.03 mm 108. Though the 

equipment is powerful, the results rely on the operators' expertise. Since X-ray radiation harms 

the human body, it is normally implemented in a chamber. The density of the objects also 

influences the inspection results. The object sizes have limitations, for example, for cylinder 



Z. Wang, PhD Thesis, Aston University 2024 

30 

 

objects, the radius is up to 500mm 102. The sampling process is time-consuming. Besides, the 

cost of the X-ray equipment is higher than that of other NDTs. Online X-ray inspection can be 

applied to manufacturing products. There have been online X-ray solutions on production lines 

108However, it is challenging to conduct online X-ray inspections of manufacturing tools, such 

as dies and moulds. 

Ultrasonic testing (UT) is another offline NDT method that requires space and extra time for 

the UT probe to scan the objects. Like eddy current testing, some studies have used UT to 

inspect rails online; however, UT is still offline when applied in manufacturing. With some 

adaption on UT, for example, robotic UT and the application of phased array, UT can be applied 

half online (inspection implemented on-site, but components do not need disassembly) in the 

future. With the development of UT technology, many methods have been used in 

manufacturing, such as PAUT, guided waves, and electromagnetic acoustic transducers 

(EMAT). UT has proved its capacity applied in turbine blade inspection, it has the potential to 

apply to the inspection of manufacturing tools, such as dies and moulds 44. Laser UT has been 

used for online inspection; however, laser UT is expensive and complex in structure 109For 

conventional UT probes, defects of 1mm can be detected. For PAUT probes, defects of 0.2mm 

can be detected 110.  

Dye Penetrant Testing (DPT) is another offline NDT since it needs to clean the object’s surface, 

apply a dye penetrant, and then clean and apply a developer. It can only detect surface defects, 

e.g., cracks. It can detect defect size down to 0.01mm, but only when the defect depth is larger 

than its superficial open area 111. Again, the chemical used in PT is harmful to the human body.  

Replication metallography testing (RMT) is another offline NDT that needs to be applied to a 

film on the object surface and then a detailed microstructure inspection of the film is performed. 

It is only suitable for surface defects. It is used in aerospace and power generation industries 

102.  

The comparison of each NDT method can be seen in Figure 16. Each NDT method is described 

as a pentagon, with each vertex indicating the feature of the NDT method (overall detection 

capacity, i.e., defects depth, resolution), the amount of data needed, complexity, cost, and 

material compatibility. The distance of each vertex from the centre of the shape indicates the 

level of each ability. The bigger the pentagon is, the better the method is. After the review, it 

can be seen that UT is a proper choice for our case study. UT has a relatively robust detection 

capacity; 0.5~1 mm defect size can be detected. All the other features, i.e., the cost, data amount, 

material compatibility and complexity, of UT are all on the top of the list. Therefore, UT was 

selected as the NDT method for inspection implementation in this study. The study of robotic 

UT control can also be applied in other applications, such as EC inspection or grinding of 
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manufacturing.  

 

Figure 16 Comparison of online and offline NDT methods. 

2.2 Ultrasonic testing in industry 

Ultrasound wave was discovered by the biologist Lazzaro Spallanzani in 1794. It was 

discovered that the bats can navigate their fly without using their eyes, but their ears. The sound 

wave that the bats use is ultrasound. The frequency of ultrasound is beyond the human hearing 

range (over 20 kHz), so it is called ‘ultra’. The research of ultrasound was brought after the 

famous sinking of Titanic in 1912. The researchers started to study for a method to detect 

iceberg or any underwater obstacles when the visibility is not good. The first published article 

about ultrasound wave application is the navy application of submarine detection in the first 

world war 112. The application was quite similar to the original ultrasound function in bats. After 

the submarine detection project, the French scientist Paul Langevin developed the ultrasonic 

transducer using piezoelectric effect. Nowadays, the ultrasonic wave can be used in NDT, range 

detection (installed in automobiles), identification (used for indoor object localisation) and 

motion sensors (for automatic doors). In this study, the range detection, identification and 

motion sensor functions are not considered. 

Application wise, besides navy use for submarine detection, the ultrasound can be also used as 

a tool of underwater historic site detection and imaging 113. The UT inspection was firstly used 

in medical use in 1930s. The UT transducer with frequency over 3 GHz was used to image 

internal organs of human. Since it is portable, reasonably priced and not harmful to human 

comparing to magnetic resonance imaging (MRI) and computed tomography (CT), the UT 

equipment is now standard for emergency response teams in hospitals. With the development 

of UT transducer and imaging technology since 1980s, the 3D even 4D (live 3D) medical 
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imaging is possible for fetus 114. In the industry sector, the UT has been more and more used in 

nuclear power industry from 1960s, to check the crack in the boilers or pipelines in nuclear 

reaction plant. The technique of NDT has a huge development during 1970s. Moreover, the 

emerging of prediction tools of defects boosted the need of NDT. After 1980s, UT became 

more common in rail, welding, and manufacturing industry. After 1990s, UT has been more 

used in manufacturing industry. The number of publications with the term “ultrasonic”, “NDT” 

and related industry were investigated (shown in Figure 17). In 2010s, the number of 

publications on rail and welding industry accelerated quickly, e.g., crack in rail and welding 

were inspected using UT 115. The stars in the figure indicate the most increasing number of 

publications in that category. From these stars, it can be seen the developing trend in each 

section of research. For example, UT research firstly started in nuclear industry then shifted to 

manufacturing and aerospace. 

The publication number has a strong relationship with the development of hardware. Ultrasonic 

testing (UT) in NDT has developed for decades. Hardware aspect, the transducer has gained 

the resolution by evolving from electric conductive transducer to piezoelectric transducer in 

1920s. Based on piezoelectric structure, steel quartz steel sandwich structure was developed. 

Pulse echo instrument was developed in 1940s 116. The techniques helped to improve the quality 

of UT results, but only amplitude can be achieved. To achieve images directly, phased array 

(PA) has been developed in 1960s. The principal of phased array is similar to the radar array, 

multiple ultrasonic transducer elements are combined to emit and receive ultrasonic waves in 

the probe. For phased array, advanced algorithms, such as, synthetic aperture focusing 

technique (SAFT) (1970s. 1980s) 117, total focusing method (TFM) 118 (2000s), have been 

 

Figure 17 The number of publications on UT applications in different industries in every decade. 
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studied 119. However, since PA is much more expensive on the hardware, it is difficult to use 

PA in academic research. moreover, the image achieved by PA can be acquired by single 

element transducer. Time-of-flight diffraction (TOFD) is another type of UT which was 

invented in 1970s and developed in 1990s. It is good at measure the size of cracks and widely 

used in welding industry. Air-coupled UT filled the needs that the couplant is not necessary in 

some application scenes, such as, wood products and composite plates. In the late 1980s, the 

high-frequency air-coupled UT can be compared to contact UT. Immersion test has been used 

in research since 1970s. This method has been integrated with other types of UT, such as, PA, 

TOFD. The historic diagram of each UT method is listed in Figure 18. The curves in the figure 

show the number of publications in each decade of every method. The number of publications 

of each method has been converted to the same level to fit the figure. The single-element 

number is missing since it is not mentioned in all literature, it is difficult to achieve the number 

 

Figure 18 The historic diagram of UT NDT methods. 

 

Figure 19 Different types of UT NDT methods. 
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of publications specific on single-element UT. The stars in figure indicate the development of 

each method. It can be seen that the development of impactful methods has the effects on the 

UT related applications in industry. 

The comparison of the advantages and drawbacks of different UT methods is listed in Table 2. 

The illustration of each type of UT is shown in Figure 19. 

After reviewing the prior literature and requesting quotations from the market, it can be shown 

that air-coupled UT and PAUT are too expensive to be used in this research. The air-coupled 

UT also features high processing time and depends highly on the surface finish. Immersion test 

is not suitable for metallic components, since the object is exposed to water and susceptible to 

corrosion. TOFD needs two probes, which increase the difficulties of the research. Therefore, 

Single element contact UT is chosen in this study. Even though single-element ultrasonic 

transducer is the conventional sensor, the challenge is to integrate the transducer to the modern 

application and carry out accurate inspection results.  

The limitation of single-element UT transducer is that it can only record the amplitude, the 

imaging of the object can only be obtained by post-processing. Moreover, the post processing 

of imaging directly affects the quality of result of inspection of the object defects. Some 

researchers used SAFT algorithm in the post-processing of single-element UT 120. Researchers 

also applied single-element UT in more advanced inspection scenarios, such as the inspection 

Table 2 Comparison of industrial UT methods. 

Methods Advantages Disadvantages 

Contact UT 
• Reasonable price; 

Small contact area; 
o Only amplitude achieved; 

Air coupled UT • Non-contact; 
o Expensive; 

o Resolution not efficient; 

Phased array 
• Direct imaging; 

• High resolution;  

o Expensive; 

o Big contact area; 

TOFD • Good to detect cracks; 
o Two transducers; 

o Not suitable for complex shape; 

Immersion test 
• No need of couplant; 

• No need to contact; 

o Object exposed to water; 

o Water tank needed; 

o Complicated processes; 

o Time-consuming; 
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of wire and arc additive manufacturing (WAAM) products 121. The single-element UT probe 

was installed on a holder at the end of the production line to assess the states of products. The 

post data processing of the A-scan data from single-element UT can be used to assess the 

defined defects in WAAM products.  

Thus, single-element UT is highly related to the expertise level of the operator, and the cost of 

UT is very high due to the slow labour processes 122. Hence, the integration of machine will 

increase the high resolution and high scanning speed of UT inspection. Using the single-

element transducer to implement NDT requires accurate moving resolution and control, 

therefore, the robot is an optimal option. According to author’s knowledge, the integration of 

robotic arm and single-element UT transducer is not done by any researcher. 

Another figure (output by VOS viewer 123) can be shown is Figure 20, which shows the 

literature keywords in the Scopus database for articles on UT in manufacturing during 2000-

2023. It shows that more literature is focusing on the optimisation of ultrasonic techniques, UT 

on 3D printing products/constructions, inspection of materials and process optimisation of UT. 

Therefore, there is still a research gap to fill regarding the UT availability of manufacturing 

equipment and automatic robotic implementation.  

 

Figure 20 Literature keyword network of UT on Scopus database. 

2.3 Robotic ultrasonic testing research 

Since most of current UT in industry is still manual, manual UT is lack of the efficiency and 

effectiveness, depends heavily on the level of operators. For some tasks, more operators are 

needed to implement the inspection, discuss the results and future plans. Thus, it offers almost 

no traceability or possibility for further analysis. More researchers are considering robotic 

application in UT for future application, since it provides efficiency, traceability and reliable 

data for post processing 124.  

In the beginning of robotic UT research, most researchers used industrial robots 125, 126, 127. In 

the research at the University of Strathclyde, a Matlab-based control platform was established 
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to control the KUKA Agulis robot 125. The ultrasonic transducer is a roller dual-element probe. 

A circular shape steel pipe segment and an aluminium staircase were tested using structure from 

motion (SfM) to reconstruct the 3D model of the objects. The control of the robot was based 

on computer vision. However, the focus of the research was on the computer vision 

reconstruction, the results of UT were not focused, only the success rate of obtaining the 

ultrasonic measurement was calculated.  

In another research from Beijing Institute of Technology, the object, a turbine blade, was fixed 

on the end-effector of the robotic arm to move. The probe was fixed in the water tank for the 

immersion test 126. The challenge of this “test object grasped by robot (TOGR)” method was to 

keep a fixed distance between the object and the probe. The proposed method was computer-

aided manufacturing (CAM) algorithms. The trajectory planning method was improved to 

maximise the amplitude of ultrasonic energy, but the details of the method was not mentioned. 

The TOGR method was also compared with the conventional “ultrasonic probe grasped by 

robot (UPGR)” method, the results in this case showed the TOGR was better. The TOGR 

method was innovative, but it is not appropriate when the object is large. Moreover, the object 

to be remanufactured has a size difference from the original CAD model, so the trajectory 

planning method is not suitable in inspection of remanufacturing.  

A KUKA KR90 was used to move a roller 64-element phased array probe to inspect the 

artificial defects, i.e., side drilled holes (SDH) to simulate inclusions such as keyholes of lack 

of fusion defects, in welding of the staircase 128. TFM and SAFT algorithm of PAUT were used, 

the defects can be detected, but the control of robotic arm was not mentioned since the trajectory 

task is simple, straight line. Since the off-line path planning needs accessory to reconstruct the 

surface, some other researchers started to study real-time method to reconstruct the surface 129. 

The orientation optimisation was carried out using the real-time UT data. 

The industrial robotic arm can finish the robotic inspection tasks, however, since industrial 

robots are large and only moves according to the codes, this leads to some safety issues, i.e., if 

an operator is in the path of robot, the industrial robotic arm will hit the operator without stop. 

When collaborative robot (COBOT) is the trend of robotic research, it is safer and more flexible 

to use a COBOT in complex tasks, such as, robotic inspection. The advantage of a COBOT is 

that the safety features of the robot is better than industrial robots. The robot can be stopped 

when operators block the movement of the robotic arm. Moreover, the COBOT is smaller, 

therefore, more flexible, faster and easier to install than industrial robot. COBOT is more cost-

effective than industrial robot. And COBOT can be applied in more advanced applications, 

such as, dual arm, external control. Even though COBOT is not capable for heavy loads, its fast 

response and good flexibility are the features why many researchers use them as the robotic 



Z. Wang, PhD Thesis, Aston University 2024 

37 

 

application. 

Universal Robot (UR) is the first company which starts the COBOT manufacturing. It was also 

said the name of the company comes from the origin of the word “robot”, a novel written in 

1920s, Rossum's Universal Robots, by Czech writer- Karel Čapek. Their UR5 is the first type 

that started the COBOT trend in 2008. Comparing to their competitors, such as, Sawyer, the 

precision and control of their robot is much better and reliable. Sawyer is a good product, it has 

single-arm and double-arm options with an interactive touch panel. However, the accuracy and 

repeatability are much worse than UR. With the new manufacturer of COBOTs, the 

conventional industrial robot manufacturers also step into the booming market. For example, 

KUKA has a COBOT type- LBR iiwa, which is used by many researchers. The repeatability is 

0.1 mm, which is not as good as UR (0.03 mm), but enough for some tasks. Some other types 

have their own features, such as, Techman robots have embedded camera; ABB Yumi has 

single-arm and double-arm options. The current main-stream COBOT types are listed in Figure 

21. The repeatability and the number of publications on the COBOTs are also listed in the figure. 

The number of publications was searched using the terms “COBOT”, “industry” and the type 

of the COBOT. It can be seen that UR5 has the optimal repeatability and the biggest number of 

publications. 

 

Figure 21 Main types of COBOTs with repeatability feature and number of publications. 

In some research, robotic UT using COBOT is used to inspect defects in additive manufactured 

(AM) products 130. In this article, a KUKA LBR COBOT was used to move a roller PAUT 

probe to inspect AM object. The AM object was produced using an industrial robotic wire and 
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arc additive manufacturing (WAAM). In the UT part, it only finished the robotic inspection on 

a straight line WAAM specimen. A contact force of 50N was applied, but the trajectory of robot 

was only a straight line. To implement UT, the profile of the surface of object should be 

reconstructed. Some research used computer vision, while other used robotic laser 131. To 

guarantee the robotic UT can be carried out in one time, the surface was scanned using the 

robotic laser scanner. Subsequently, raster path of robotic UT can be generated based on the 

reconstructed surface. A COBOT was used and ROBODK software was used for simulation. 

For bigger objects, such as wind turbine blades, some researchers integrated COBOT on the 

autonomous guided vehicle (AGV) 132. With the feature that COBOT has a good robot-human 

collaboration capacity, the human-robot collaborative NDT was also carried out 133. In this case, 

robot and human collaborated each other on a welding production line to inspect the quality 

using UT. COBOT was also used with other type of UT, such as pitch-catch UT 134. In this 

research, the UT transducers were integrated in the gripper of COBOT. The UT was 

implemented when the object, the oral solid dosage in this case, travelled through the COBOT 

on the production line.   

Besides the robotic UT NDT research, the robotic UT in medical research can also bring 

innovations to NDT research. Researchers from Technical University of Munich used a KUKA 

COBOT to drive the ultrasound probe to carry out ultrasound inspection on In-Vivo and human 

volunteers 95. For medical ultrasound testing, the probe should also be normal to the object 

surface, which is human skin and muscle. A model-based method was used to optimise the 

orientation of the probe according to the contact force measured during the inspection. Due to 

the geometric feature of medical ultrasound probe and the soft texture of human muscle, many 

parameters in the function were estimated via regression from experiment dataset. The results 

were compared with human operators, it showed that the proposed method has more stable 

performance. The researchers from biomedical school, Tsinghua University, also proposed a 

solution with a UR3 robot 135. The probe was installed directly at the end-effector of the robot. 

A policy-gradient reinforcement learning algorithm was used to train the agent to achieve an 

optimal posture and position according to the contact force. Since the scanning was 

implemented on human soft skin, the simulation was not accurate, so the researchers directly 

implemented the experiments. Direct implementation of RL on real objects seems unrealistic, 

which needs further verification. Finally, the proposed robotic method was compared with free-

hand method, the results showed that the results only differed 3%. Similar to this method, Lin 

el al. also developed a robot control for robotic medical UT 136. In this study, a tool platform 

with spring was designed. A rolling ball was installed at the end of the tool platform. The spring 

and the ball made the calculation more complicated. The method was tested on flat surface, 

curved surface. However, these two methods did not consider gravity and bias components of 
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the load (the typical robotic UT examples can be shown in Figure 22). The main research on 

the research of robotic UT is listed in Table 3.  

 

Figure 22 Typical examples of robotic UT research in prior literature. 

 

In prior literature, there was also research integrating robotic UT with other sensors, such as, 

Huang 137 used computer vision combined with force control to smooth the movement during 

UT. At first, a depth camera was used to reconstruct the environment of the experiment. Two 

force sensors were installed on both the contact sides of the probe. After the 3D reconstruction 

of the environment, the normal direction was calculated by three points around the region of 

interest. The two force sensors helped to smooth the movement of the probe by measuring the 

contact force when moving. At last, the ultrasonic testing images were collected and 

reconstructed into 3D model. This was good research but implementing computer vision is not 

suitable for this study, since the object in this study is mainly industrial equipment. The 

industrial equipment is made of metal, the surface of the parts is reflective, there will be errors 

in the reconstruction of computer vision. Although other sensors, e.g., laser sensors can prevent 

problems like this, but additional sensors increase the overall cost and risk of errors of the 

system. Therefore, in this study, the proposal is to use only a force/torque sensor to plan for the 

trajectory of the probe.  

In Figure 23, it can be seen that there has been some literature on robotic UT on the Scopus 

database since 2000. The research topics focus on techniques of automatic 

inspection/detection/localisation, inspection of 3D printing products, and construction. It can  
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Table 3 Summary of prior literature on robotic UT research. 

Use cases and reference Advantages Disadvantages 

Industrial robotic arm + roller UT 

probe 

125, 127, 129 

● A combination of perceptions of 

the surrounding environment, i.e., 

computer vision and contact forces. 

● PAUT used. 

● An advanced scanner was used. 

Only flat surface was scanned. 

● More budget for facility. 

Industrial robotic arm + immersion 

UT 126 

● object-in-hand inspection. 

● Non-contact UT. 

● Difficult to control. 

● Water corrosion to metal. 

● Long preparation time. 

● More budget for more 

equipment. 

Cobot + AGV + immersion UT 132 
● Flexibility. 

● Mobility. 

● Only suitable for big objects. 

● Difficult to control. 

Cobot + Contact probe UT 133 ● Suitable for detailed inspections. 

● Only the flat surface was 

studied. 

● Difficult to post-process the 

results. 

Industrial robotic arm + medical 

ultrasound probe 95 

● Use the results of ultrasound 

image to estimate the orientation 

of the robotic arm. 

● Suitable for dynamic 

environments. 

● Not suitable for industrial 

applications. 

● Contact force is estimated. 

● The orientation adjustment is 

based on table-searching. 

Cobot + pitch-catch UT 134 

● Using cobot and UT to tackle 

internal cracks on compressed oral 

solid dosage (OSD). 

● Trajectory plan not included. 

● Only simple flat surface objects 

were studied. 

Depth camera+ robotic arm+ 

Ultrasound probe 137 

● Combining perceptions of the 

surrounding environment. 

● 3D reconstruction of object. 

● Too many external sensors. 

Complicated in computation. 

● Only suitable for medical 

scenarios. 

● Orientation calculation 

according to depth camera has 

errors. 

Research gaps: 

- The perception of the environment relies on external sensors, which increases the cost and 

complexity. 

- Lack of detailed study on trajectory planning optimisation algorithm. 

- Lack of combining the overall optimisation method of trajectory during scanning. 

- Lack of study of robotic UT targeting industrial equipment. 

 

be seen that more industrial robotic arm was used, and more robotic inspections were 

implemented in the aerospace or construction industry. More robotic control was implemented 

by pre-planned path or computer vision methods, but they are not adaptive enough for the 
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surface scanning task in this study. Therefore, the research topic in this study, i.e., automatic 

coordinate robotic arm UT using contact force measurement on manufacturing equipment dies 

and moulds for remanufacturing, is a research gap.  

 

Figure 23 Keyword network of literature on Scopus database on robotic UT inspection. 

In prior literature, researchers have developed some methods to optimise the orientation control 

of robotic arm in contact robotic tasks 138. There are three kinds of contact robotic tasks, i.e., 

compliance control, tactile control and hybrid position/force control 139. Compliance control is 

for most kinds of robot, in which the motion of the robot on surface of the object is studied. 

The interaction between the robot and the environment is the studied problem. Compliance 

control involves adjusting the robot's stiffness or compliance to allow for controlled interaction 

with the environment. In compliance control, there are active and passive controls. The passive 

control is to use elastic parts, such as springs, to store the energy to overcome the compliance 

in the environment. On the other hand, active compliance control is to use controller to drive 

stiff components to overcome variable compliance actively. For tactile control, it is more 

focusing on the hand-shape human-like robot doing jobs like solving cubes 140. Besides 

compliance control, tactile sensors and integration of multiple sensors are the topics in tactile 

control. Tactile control focuses on using tactile sensors or feedback to make control decisions 

during contact tasks. The hybrid position/force control is to control position and force 

simultaneously in a hybrid control in separate control subspaces. It does not only optimise the 
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interaction between robot and environment, but also drive robot to target position. The contact 

tasks in this study are in this area. However, traditional position/force control, i.e., model 

reference control, sliding mode control, and basic learning control, is more dependent on 

modelling using a fixed parameter controller or controller based on look-up table or functions, 

which is lack of adaptability and robustness 141, therefore, it needs optimisation on the 

algorithms in the position/force control. The current main control types of robotic contact tasks 

are listed in Figure 24.  

  

Figure 24 Control types of robotic contact tasks. 

Since the task in this study is UT scanning on surface, the position control is more 

straightforward, i.e., trajectory on a pre-defined routine along the surface. However, the pre-

defined path only contains (x, y) coordinates, the z coordinate is dependent on the actual surface 

and contact force between the end-effector and the surface. The force control and the 

simultaneous control of position, pose, and force are more focused in this study. To improve 

the traditional compliance control, more advanced algorithms should be involved.  

Impedance control is the most used control method in the active compliance control of robotic 

problems. In impedance control, there are fixed impedance control, variable impedance control 

(VIC) and variable impedance learning control (VILC) problems. It is a VILC problem in this 

study since the impedance during inspection is variable and the status of end-effector needs to 

adapt along the trajectory based on learning in different scenarios. VIC is only suitable for 

immediate application of control, such as simple and repetitive tasks, but the parameters need 

a longer time to tune. Moreover, it is not adaptable when the scenario changes.  

Many control methods, such as model predictive control (MPC), Differential Dynamic 

Programming (DDP), genetic algorithms (GA), particle swarm optimisation (PSO), imitation 

learning, machine learning, and reinforcement learning, can be used to solve the VILC problem.  
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MPC is suitable for tasks that have a mature, robust model which can calculate current 

performance and predict future performance as well. The model predicts the change in the 

dependent variables of the modelled system that changes in the independent variables will cause. 

It adapts the parameters by predicting the performance of the next step; therefore, the 

establishment of the model and tuning of parameters are challenging. There are different 

approaches, such as the model-focused method and the hybrid method. For the model-focused 

method, a more detailed model was established for different movements and different scenarios 

142. If the movement is in a free space, there will be too much computational load for solving 

the formulas. As mentioned in the research, the MPC controller can only optimise the controller 

in the middle level. It needs an accurate model and cannot accomplish overall high-level control. 

For the hybrid approach, researchers implemented MPC with other algorithms in VILC tasks 

143. In their study, a probabilistic ensemble neural network (PENN) was established as the model 

in MPC. Cross-entropy method (CEM) was used to improve MPC performance. With the CEM, 

MPC has evolved like RL. However, the surface scanning task in this study does not have a 

reliable model, and the objects can be variable in different scenarios. Therefore, MPC is not 

suitable.  

GA is suitable for the optimisation of control problems, but like MPC, a detailed, robust model 

is needed for GA. With the model, the chosen parameters can go through crossover and 

mutation processes to find an optimal parameter setting. The robotic used GA as the control 

algorithm to write on paper in the latest research 144. Writing is a difficult surface contact task; 

however, it does not require orientation control. The requested angle on each joint is in the gene 

arrays. The overall fitness function is calculated based on the joint angle and the distance 

between the target position and the action position of the end-effector. However, each task 

needs a different fitness function, and the algorithm cannot be real-time since the calculation 

load of random gene arrays is heavy.  

PSO has recently become a trending optimisation algorithm for robotic arm control. It has been 

used in the impedance control for dual-arm robot 145. The PSO algorithm is used to adaptively 

control the impedance when the static error is not available. PSO was applied to search for the 

optimal parameters in the formula for solving the impedance force. PSO is used to converge 

the contact overshoot in 0.03s. It has an outstanding performance of ±0.08 N contact force 

tolerance. However, only force tracking was studied in the article, and the application was not 

real-time. PSO is also used in the parameter optimisation in machine learning 146. The contact 

force is controlled via a PID controller. The impedance controller is controlled by a neural 

network which needs a joint angle to contact force map. PSO was implemented to optimise the 

efficiency of choosing the weight parameters in NN.  
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Imitation learning (IL) is a good way to improve impedance tasks; the methods applying 

imitation learning have been improved with the development of NN. For example, imitation 

learning has been applied in the cable assembly manufacturing 147. Since the task needs a higher 

precision, sensors cannot fulfil the requirements, RL was applied to improve the trajectory. It 

also developed a self-imitation mechanism to hindsight the policy it learned from RL. However, 

IL has its limitations, for example, it is not suitable for precision work and not adaptable to 

different kinds of robots.  

Machine learning (ML), or basic supervised learning, is similar to IL, which needs supervision 

from a human tutor. Instead of getting guidance directly from expert operators, ML tries to 

derive the optimal trajectory from labelled sample data. Support vector machine (SVM) was 

used in the training 148  149. In the studies, the training data will be labelled into categories, and 

then the robot will be trained based on the dataset. The tasks using ML are interactions with 

small objects, such as gripping tasks, which are simpler than surface scanning tasks. Like IL, 

the results of ML training heavily depend on the human factor, i.e., the human-labelled data 

and the settings of the NN used in the training model. There is little research using ML to solve 

impedance tasks; the reason lies that the impedance control has no clear ground truth, for 

example, how the trajectory should be in a dynamic environment. The labelling of the training 

data is a big challenge, and it may not lead to a good result.  

RL is the current most suitable solution for VILC problems since it avoids the shortcomings of 

the conventional control methods. In conventional control method, the control depends on the 

force and position feedback to close the control loop. The parameters in the model-based 

method will be estimated by using the differential changes of force and position. However, in 

various impedance control problem, the model of control is normally non-linear, and the 

controller can only tune the impedance gains by repeating the learning processes.   

Iterative learning and RL are the most used method to solve this problem. However, iterative 

learning is more suitable for fixed tasks, and the parameters of iterative learning controller are 

mostly tuned manually, so RL is the better choice for variable environment. For example, for 

the tactile tasks, the exploration on the unknown surface is a trending research topic 150. In the 

unknown surface exploration task, the information by contact was maximised by RL algorithm. 

The RL was used to plan exploration path to predict the surface shape of the object. Since this 

task needs the robot to learn to discover the features by repeatedly interacting with the 

environments and transfer the function on to new environments, so RL is suitable for this case. 

Similar to this study, researchers studying industrial processes, such as, grinding, deburring, 

found it is difficult to extract accurate contour of the surface 151. Moreover, the sudden change 

of the shape will lead to force overload during the processes and lead to a robot failure. Factors 
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such as, curved surface, insufficient rigidity of robot, the interference of the environment, 

causes the force to fluctuate. Since the trajectory of the robotic arm on a curved surface is 

challenging, and current used traditional methods of pose optimisation are lack of accuracy and 

efficiency on curved surfaces. RL algorithm does not need prior information and can optimise 

the poses on the real time. It autonomously sets and optimises the parameters in controllers, so 

it can be used in robotic tasks like this. In their study, RL was used to find the relation between 

force control and compensation parameters in the force controller.    

The artificial intelligence method, such as, reinforcement learning (RL) can be also introduced 

to control robotic UT 135 . In this study, RL was used to estimate the torque which can be used 

to rotate the end-effector. The force/torque measured from the sensor was used as the state. The 

environment is the flexible environment that the ultrasound probe worked. The total moment 

of the end-effector was used as the reward function to calculate the actions. RL is a new trending 

of robotic arm control, but it is more suitable for continuous surface scanning. The control in 

this study is mainly for normal direction calculation in point inspection. RL can be considered 

in the future study of this article.    In other tasks, such as peg-in-hole assemble tasks, RL 

algorithms were also used 152. Demonstration information was used to improve the convergence 

speed of RL, and long short-term memory (LSTM) network was used to reconstruct the critic 

network of PPO algorithm. But as a contact task, only visual information was used in this study. 

As dynamic robotic UT is the variable impedance learning process, therefore, RL is chosen in 

this study. 

The overall comparison of all these algorithms is listed in Table 4. The selection of the control 

algorithm in the VILC problem depends on the difficulty, complexity, data accessibility and 

computational constraints. After considering of all these factors, RL was chosen as the control 

algorithm in this study.  

Regarding the robotic scanning tasks using only force/torque perceptions, there is some prior 

literature studying this topic. For example, some researchers from Stanford University used a 

robotic arm model in Mojuco to implement peg-in-hole with only force sensor and position 

information 153 . In their simulation, the data was collected and then labelled as successful or 

failed by researchers during scanning. The model will learn from that labelled data. A force 

sensor is also used in the guided robotic arm operation 154 . However, only human-robot 
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interactive compliance control was studied in their study. Some researchers also used force 

Table 4 Comparison of control methods in robotic control applications. 

Methods and literature Advantages Disadvantages 

MPC 
Accurate for model-based 

method. 

Needs accurate model for each 

movement. 

Can be computational 

expensive when the problem is 

complex. 

GA 

Overall optimisation. 

Suitable for optimisation of 

one parameter. 

Unexpected mutation may 

happen. 

Struggling for complex, multi-

target problems. 

Needs different fitness 

functions for different tasks. 

Computational expensive. 

Swarm optimisation 

Model-free approach. 

Suitable for multi-objective 

optimisation problems. 

Sensitive to parameters. 

Computational expensive. 

Not suitable for a dynamic 

environment. 

Imitation learning 

Easy to apply. 

Rapid to learn. 

Less risks of exploration. 

Requires expert knowledge. 

Visual IL is difficult for robots 

to learn. 

The transferred trajectory can 

be inaccurate. 

Machine learning 

No expert knowledge is 

needed. 

No model is needed. 

Need training labelled data. 

No ground truth for a dynamic 

environment. 

Reinforcement learning 

No model nor human factor is 

needed. 

The model will learn to solve 

the problem itself. 

Suitable for dynamic 

environment and 

generalisation of the model. 

Training needs trials. 

Complex settings in training. 
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controller to optimise contact-based method 3D scanning 155. It only used the force controller 

and inverse kinematic (IK) formula to reconstruct the surface model of the object. However, 

the orientation of the end-effector was not considered. In industrial applications, grinding robot 

control also uses force control to optimise trajectory planning 156. The tooling path was also 

pre-defined. Since grinding application is more complicated than UT scanning, it removes 

material from the surface. A material removal model was established based on the contact force, 

spindle speed, etc. Except for the removal model, a force plan is pre-defined for the grinding 

process. They also implemented the simulation to verify the processes, but in a mathematical 

way, not a high-fidelity simulation environment. Another difference is that the tool orientation 

does not have to be normal to the surface, only the contact force in the normal direction must 

be calculated in the removal formula, while the orientation is more important in UT. Overall 

these prior studies proved that only force control can implement the trajectory optimisation.  

In medical UT, only-force method has been used in some studies 95 157 158. There are researchers 

using expert knowledge to train the machine-learning model 158. However, this method has 

limitations. For example, some scenarios will not be solved by experts, and expert knowledge 

is not accessible to all researchers. Other researchers studied  

The only-force sensing is also used in the aerial manipulator trajectory control 159 . Like this 

study, the task was manipulating the aerial robot to scan the flat table surface with “push and 

slide operations”. Medical UT also used force-guided method 135. In their study, only force 

measurement was used to optimise the trajectory during scanning. The RL model was used to 

build the relationship between measured force and output force which help adjusting the end-

effector. After the training, the RL model should output a target torque for the end-effector to 

rotate the probe. And the RL was trained on real object directly, which is not ideal and will be 

improved in this study. According to the prior literature, it can be proved that hypothesis of 

“using only force perception to optimise dynamic trajectory of robotic scanning task” is 

possible. 

RL is an artificial intelligence algorithm that does not need labelled data library like other deep 

neural network does, but trains the agent like real human does. Human being intakes the 

examples from real life to ‘train’ him/herself to do certain things. The intake information was 

not labelled and the actions from the training can be random, and different people may have 

different actions for the same target. Similar to this routine, RL trains the agent without fixed 

routine, but give rewards to the better solutions. The most classic example is that the RL trained 

agent, ‘AlphaGo’ beat the world champion, Lee Sedol, in the game ‘go’. Nowadays, more and 

more professional go players are training themselves with RL algorithms, according to Chinese 

professional go players. RL focuses on the optimal solution of Markov decision processes 
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(MDP), in which the future states of the environment depend on the current action. Robotic 

control is very related to MDP, since the action robot takes now will affect the future states. As 

shown in Figure 25, MDP has states like S0, S1, S2…, in different states, there is different 

probabilities to take actions, such as, at S0, it may take actions of a0, a1.  

𝑷𝒂(𝒔, 𝒔′) =  𝑷𝒓 (𝒔𝒕+𝟏 = 𝒔′|𝒔𝒕 = 𝒔, 𝒂𝒕 = 𝒂) (1) 

The probability in the equation shows the probability of the state at current time step t, with the 

action a, leads the environment to s’ in the next time step t+1. The chosen actions will lead the 

environment to the result states. It is similar in the robotic control, as the target waypoints set 

to the robot, it takes actions to set its moving speed, position and orientation. To finish a task 

within limited space and time, the current action will affect the choice of future actions and 

states. 

 

Figure 25 The similarities between MDP in RL and  robotic control.  

Nowadays, the RL has many algorithms, the main categories are value-gradient and policy-

gradient. Since robotic control research is not computer science, the algorithm applied in 

robotic control must be practical and robust for robot control, but the trend is to use more 

efficient and effective algorithms. Value-based methods, such as DQN (Deep Q-Network) 

algorithm, or double DQN, can be used in robotic arm trajectory planning. It can be used to 

train robot to trajectory in a strange environment 160 and avoid collisions 161. However, Value-

based methods are typically designed for environments with discrete action spaces, it has been 

proved that policy-based method has better performance in more dynamic actions and 

complicated cases, therefore more policy-based methods have been used in research. Such as 

the REINFORCE algorithm, can be employed to train a robotic system to perform ultrasonic 

testing efficiently. The policy represents the strategy or behaviour of the robot, and the gradient 

of the expected reward is used to update the policy parameters. This allows the robot to learn a 

policy that maximizes the cumulative reward over time. Another policy gradient method- 

proximal policy optimisation (PPO) was used to optimise the orientation of end-effector in soft 

skin UT 135. Active actor critic (A2C) algorithm was used in the surface tracking task of a 

robotic arm 151. In their study, the orientation of the end-effector was output by a neural network, 
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which is like a look-up table. After the angle recognition, the force control will be implemented 

using A2C algorithm. Like some prior research, simulation was not mentioned in their study, 

and the experiments were carried out directly. Tactile exploration using robotic arm was also 

implemented 150. RL was trained to predict the shape of the object using only tactile exploration 

on the surface of the object. Soft actor-critic RL algorithm was used in the study. Simulation in 

Gazebo and experiments in real world were both carried out. But the source code was not posted.   

A3C is a latest RL algorithm which can be used in a multiple-agent RL task 162. A3C algorithm 

integrated with distributed learning method, will significantly improve the efficiency of RL, 

however, it requires more calculation resource and needs more detailed settings.  

To implement robotic control on robotic arms, middle ware is needed. Middleware is a type of 

software or a platform to communicate and coordinate between different systems and 

components. To integrate the simulation, the control of the simulation model, the control of the 

real robot, the integration with libraries of algorithms and application programming interface 

(API) to coding languages 163 164. Some kinds of middleware can be used in academic research 

areas.  

Matlab is the most used platform; it has an extension toolbox application of robotic control. It 

is easy to implement control, however for some types of robots, it is difficult to communicate 

with the real-world robot. Many researchers use robot operating system (ROS) since it is open-

source and feasible for most types of robots. It has a better overall performance and supported 

by most software. Gazebo is a high-fidelity simulation software based on ROS. Not only 

simulation software, Gazebo can also carry out the control on the real robot, which makes it 

outstanding from other current popular software 165. Mujoco, as a popular software in machine 

learning, has a good physics engine for simulation. However, it is difficult to customise the 

world environment in it, with lower degree-of-freedom trajectories compared to Gazebo; thus, 

it is not for real robot control. Considering the flexibility, Gazebo and Webot can work with 

multiple threads, while Mujoco and Pybullet can work with only one core of the computer 

processer 165. Since Mujoco is not a free open-source middleware, and it is limited to the 

complexity of the simulation environment, it was not considered in this study. Unity 3D is 

another simulation tool that is used by many researchers 166, which was mainly focusing on 3D 

simulation of animations but can be used in robotic simulation. Morse is similar to Gazebo, but 

the support and compatibility for robots are worse. CoppeliaSim 167 (formerly V-REP) is a 

commercial software mainly for industrial robots. It is difficult to modify the world setup of 

the simulation scene. Blender is a general animation platform; it performs well in robot 

simulation with a good real-time performance. RoboDK is a simulation tool that draws attention 

gradually. It has an easy-to-use user interface; it is easy to establish simulation environment 

and tested in the author’s lab practice. However, it also uses OPC UA protocol, which is 
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difficult to implement communication with a real robot 164. After free trial test on the computer, 

it was realised that payment is needed when achieving full functions. Moreover, it is more 

complex to customise the robot's controller.  

To review the research on middleware, the number of publications on “Scopus”, “Web of 

science” and “ProQuest” databases since 2012, using the keywords “robotic arm”, “simulation” 

and the name of robot simulation platform and software listed in Figure 26. After 

comprehensive consideration, ROS was chosen as the middleware of this study since it has 

functions such as simulation, control of a real robot, and API to coding languages. ROS is open-

sourced, so the establishment of the simulation model can be easy. The system will be more 

stable, and the randomness of customisation of the system and software is better than that of 

other middlewares.  

 

Figure 26 The numbers of research on typical middleware used for robotic research. 

To establish a RL environment for robotic arms, many researchers have contributed their 

methods. Some researchers used Mujoco to build the simulation models 168 169. Openai_Gym 

with Mujoco was used as a classic suite by RL researchers. However, Mujoco has a 

disadvantage that it is not open-sourced, so the researchers cannot customise the environment. 

It does not support inverse kinematics or path planning. With the lower fidelity of Mujoco, it is 

relatively complex to transfer the results from simulation to reality. Pybullet was also used to 

fill the gap 170. Pybullet+Mujoco+Openai_Gym was the solution to implement deep 

deterministic policy gradient (DDPG) algorithm with hindsight experience replay (HER).  

On the other hand, some researchers used ROS to build the simulation model and environment 

171. ROS+ Gazebo+ Moveit+ Openai_gym+ Stable_baselines3 was used to build an “MoveRL” 

simulation platform. Moveit is an embedded solution software which includes classic inverse 

solvers for robotic arms. This platform was focusing on visual simulation Gazebo+RViz only 

on safety issues in robotic control with a PPO algorithm. Other researchers used Gazebo only 
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for controller realisation and Mujoco solution for additional RL implementation 172.    

CoppeliaSim (V-Rep) was used as the simulator 152, some researchers integrated Matlab RL 

library on top of V-Rep 173, some others directly used python API, such as Tensorflow 174. 

CoppeliaSim is a good simulation platform, however, some of the features need license and 

with limited documentation and community support, it makes CoppeliaSim a not friendly 

software for beginners. The lack of inverse dynamics makes CoppeliaSim a software relying 

on plug-ins.  

RoboDK was used as the simulation software to integrate python to implement RL algorithms 

131 173. However, the studies of RL in RoboDK are most on vision which is because the control 

of robot is not complete nor open source in RoboDK. Above all, ROS is chosen to be the 

middleware used in this study. It can be not only used in this study, but also used in future 

research of our research group for robotic remanufacturing or 3D printing. 

2.4 Gap in knowledge and contribution of this study 

As reviewed, the prior literature has studied methods to approach robotic UT. However, a 

knowledge gap exists as human operators can scan an object by only touching it, how to 

implement that on a robotic arm has not been studied yet. Moreover, previous researchers have 

not studied the application of robotic UT on dies/moulds. Some algorithms were used in the 

literature, but the scanning has never been automated.  

Less literature considers traditional UT on the surface of manufacturing equipment to be 

remanufactured. The specialities are that the size and condition of the objects are different from 

the original, the trajectory of the robotic arm for traditional UT on surface scanning is different 

from the immersion UT or PAUT, and, more importantly, how to improve the adaptability to 

implement the UT on different objects without importing the CAD model.  

Most of prior literature needs pre-planning of trajectory for the robot, which is not suitable for 

manufacturing equipment to be remanufactured. The gravity component and bias force 

component have not been considered during planning. And the optimisation of trajectory 

between waypoints is not considered. The accuracy of the orientation control can be improved, 

moreover, the adaptability of these implementations can be optimised. When applying RL on a 

robotic surface scanning task, the tuning of parameters is complicated and difficult, especially 

applying the simultaneous control of position and force. In this study, a conventional ultrasonic 

probe for industrial use will be installed on the end-effector of a 6 DOF robotic arm. A 6 DOF 

force/torque sensor is installed on the robotic arm to measure the contact force/torque. As real-

time force/torque is measured, gravity component and bias force component will be 

compensated to improve the orientation of the robot. Reinforcement learning algorithm will be 
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used to train the robot adapt its moving speed and orientation when moving. The algorithm is 

tested in simulation and experimented in the real world. 

Even though the ROS platform is open sourced, the establishment of a simulation model from 

scratch is not an easy task, especially an advanced compliance controller should be carried out 

for the orientation optimisation and the RL algorithm should be implemented on the high-

fidelity simulation software, Gazebo. Moreover, the synchronisation between the simulation 

and the real world, and the control of the real robot need additional effort and customised 

settings for the controllers. In prior literature, there are many papers discussing about 

orientation optimisation in robotic UT. However, the static orientation optimisation is easier to 

do, while the optimisation during whole dynamic UT process is difficult. In this thesis, not only 

the orientation, but also the position, the moving speed are optimised using RL. The efficiency 

of RL solution is the challenge. Moreover, the transfer from simulation model to the real 

experiments is challenging, since in the simulation environment, the parameters of the object is 

known, while in real world, the object is completely unknown and totally different from the 

object in simulation. Another challenge is that a small single-element UT probe is used in this 

study, which has never been used in prior robotic UT research.  

The contribution of this study will be a new type of robotic arm simulation platform, a new 

control method of trajectory planning of robotic arm based on RL algorithm, and the realisation 

of RL real-world experiments. In this study, a robotic arm platform based on ROS will be 

established to fulfil all the tasks needed for the robotic UT. A simulation model with 

reinforcement learning algorithm training will be built based on ROS, Gazebo, and Openai_ros 

package. The reason why Gazebo is chosen, is due to its high-fidelity. "High fidelity" generally 

refers to the degree of accuracy and realism in the representation of a system or a simulation 

compared to the real-world counterpart. In various contexts, high fidelity implies a high level 

of detail, precision, and faithfulness to the original, leading to a more accurate and realistic 

representation. Because the RL algorithm will be transferred from simulation to the real world, 

the higher the fidelity the simulation environment has, the easier the transfer will be. Naturally, 

relatively high computational cost will be paid. The controller will be transferred to the real 

world to realise the experiments. This study will fill the research gap that the accurate 

autonomous control of industrial robotic UT using a COBOT and a single-element ultrasonic 

transducer. The trajectory optimisation algorithm will not only automate the processes of UT, 

but also improve the critical parameters, such as moving speed during the surface scanning, 

which is very crucial during scanning on a complex shaped surface of the object. According to 

the knowledge of the author, this is the first study on the application of robotic UT on the 

detection of subsurface cracks on machinery tools, i.e., dies and moulds.  
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A Gazebo + Openai_ros + Stable_baselines3 combination to implement RL algorithms is 

carried out. It trains the control model to make surface scanning for UT scanning on the 

unknown surface of machinery tools. The controller is transferred to the real world to 

implement experiments. The brief overall research strategy can be shown in Figure 27. 

 

Figure 27 Overall research strategy of this study. 
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3. The Establishment of Simulation Model and Methodology 

To realise a precise robotic control and advanced orientation optimisation using RL algorithm, 

a reliable simulation environment is necessary. The simulation environment will provide the 

condition and accessories needed for the proposed controller, evaluate the performance of the 

robot. The simulation environment will also increase the efficiency of research, since the robot 

and the environment can be set as planned in simulation but may not be appliable in real world. 

Simulations also allow researchers to replicate a wide range of scenarios and environmental 

conditions easily. This capability is valuable for testing the robustness and generalizability of 

control algorithms across different situations, which may be challenging or time-consuming in 

the physical world. Regarding accessibility, due to COVID, not everyone has access to 

specialized robotic hardware during pandemic. Simulation environments democratize access to 

research in robotic arm control by enabling researchers, regardless of their location or resources, 

to participate in experiments and contribute to the field. The reason is also that during the RL 

process, the actions of the agent are random, and it can be dangerous in the real world (both to 

the robotic arm physical parts and to human operators), simulation is a reasonable option to 

carry out the training, then the model can be transferred to the real world. In this study, robot 

operating system (ROS) is selected as the middleware of the computer and the physical robot 

side.  

3.1 Research methodology 

The research methodology used in this study is as follows: to improve the reliability of 

simulation and improve the training speed of the RL training, a robotic simulation model is 

established first. The robotic model will be introduced in this section. The model will be first 

studied in the theoretic way. The theoretical model will be helpful when implementing the robot 

in the simulation platform. The model includes the forward dynamics formula and the reverse 

kinematics formula. The purpose of these formulas is to calculate the target position of the end-

effector and confirm the joint angles according to the location of the end-effector. The theoretic 

model can be compared with ROS simulation model to make sure the simulation model is 

correct.  

After the literature review, ROS was chosen as the simulation platform. Therefore, a simulation 

model and surrounding environment should be built in ROS. Most of the studies use ROS to 

implement tasks to realise the objectives. The ROS platform will be used as the simulation 

environment and it can be also used to connect the real robotic arm.  

In the simulation environment, several simulation experiments will be carried out to achieve 

the target. At first, the robotic arm model should be built and finish the compliance controller 
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tests. The compliance controller should be able to control the end-effector to move in a straight 

line or curved line on a flat surface with constant contact force. Then, RL algorithm should be 

integrated to the compliance controller. The RL model will be an overall controller harnessing 

the compliance controller to implement trajectory. A basic “target reaching” test should be 

carried to verify the RL model is valid. Then, the RL model should be able to trajectory the 

robot with the compliance controller on a flat surface. To add the difficulty, the RL+ compliance 

controller should be able to drive the robotic arm on a curved surface. At last, the trained model 

on the curved surface should be able to transfer to the object. At this stage, the object model is 

built up in the simulation environment. The trained RL model will optimise the end-effector's 

trajectory on the object model.  

After the optimised trajectory is implemented in simulation. The trajectory will be transferred 

from the simulation to the real world. The target position of the end-effector will be transferred 

from the object's location in the simulation to the object’s location in the real world. In the real-

world application, a probe is attached to the end-effector via a fixed holder. The EPOCH 650 

will be connected to the probe to acquire UT signals. After each step of movement, the result 

from EPOCH can be exported to the PC in .csv format and the results can be visualised. The 

result is a curve of the amplitude of the UT wave at the probe location. The resulting amplitude 

of UT can indicate how thick the object is (back wall echo) and how deep the detected defects 

are. 

A small-sized die used in manufacturing is chosen for the object. It has an irregular curved 

surface. Artificial defects, i.e., drilled flat bottom holes (FBH), are introduced in the die to 

imitate the internal defects, i.e., the subsurface cracks. The FBHs are located at different 

locations of the die to verify the capacity of UT. Vertical and horizontal FBHs are both 

considered in this study. After multiple-time application of the robotic UT, the The probability 

of detection (POD) of the proposed method can be achieved.  

To validate the proposed method, the following experiments are planned: experiment 1 (E1) is 

to verify the accuracy of the model and repeatability of the model in simulation. E2 is to validate 

the synchronisation of the simulation model and the real world. E3 is to fine tune the control 

parameters of the compliance controller for surface scanning. E4 is to test the implementation 

of RL in ROS simulation with simple tasks. E5 is to compare different RL algorithms on the 

same scenario. E6 is to tune the hyperparameters of the proposed RL algorithm. E7 is to validate 

the proposed method in the scanning task on a simple curved surface. E8 is to apply the 

proposed method on the real object in the simulation. E9 is to measure the real robot’s contact 

force of the compliance controller on a flat surface. E10 is to verify the proposed method on 

the real object. 
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3.2 Kinematic and dynamics model 

In this study, UR5e is used as the robot. To implement all robot control in simulation and real-

world, inverse kinematic (IK) control is needed because it plays a key role in commanding 

manipulators. The control platform should calculate the robot joint demand according to 

human’s requirements for the end-effector. Complete kinematic and dynamic solutions of 

robots need to be verified before being employed for modelling and simulation, particularly 

when they are used to command advanced control states. Therefore, the kinematic and 

dynamics model of the robot is necessary. They can be used to describe the relationship between 

the joint angles or positions and the position and orientation (pose) of the end-effector (or any 

other point of interest) of the robot. The kinematic model is typically used to calculate the 

forward kinematics (end-effector pose given joint angles) and inverse kinematics (joint angles 

required to achieve a desired end-effector pose). It is important for motion planning, trajectory 

generation, and controlling the robot's position and orientation in workspace. The dynamic 

model describes how forces and torques affect the motion of the robot's joints and the resulting 

motion of the end-effector. This model takes factors into account such as inertia, friction, 

gravity, and external forces acting on the robot. The dynamic model is essential for designing 

and controlling the robot's motion to achieve desired tasks while considering physical 

constraints and optimizing performance. It is used in simulation, control algorithms, and motion 

planning to ensure accurate and efficient operation of the robot. Since the target in this study is 

not only to control the force, but also the position and pose of the robot, both the models are 

important.  

The kinematic model of the Universal Robots UR5 robotic arm describes the relationship 

between the joint angles or joint positions and the pose (position and orientation) of the end-

effector. The UR5 is a 6-degree-of-freedom (DOF) robot, meaning it has six joints that can be 

controlled to position its end-effector in 3D space. 

The kinematic model of robot is often expressed using Denavit-Hartenberg (DH) parameters, 

which provide a systematic way to represent the geometry and joint connections of a robot. The 

DH parameters for the UR5 are configured in the URDF (Unified Robot Description Format) 

files of ROS, which are XML-based files used for describing robot models. 

DH parameters are a set of parameters commonly used to describe the kinematic structure of 

robotic manipulators. These parameters define the geometry and spatial relationships between 

consecutive robot links and joints in a standardized manner. DH parameters are widely used in 

robotics for forward and inverse kinematics calculations. The DH parameters consist of four 

parameters associated with each joint and link of the robot: Link Length (a): The distance 

between the Z axes of consecutive joints measured along the common normal between the two 
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joint axes. Link Twist (alpha): The angle between the X axes of consecutive joints measured 

about the common normal between the two joint axes. Link Offset (d): The distance between 

the X axes of consecutive joints measured along the previous joint's Z axis. Joint Angle (theta): 

The angle between the Z axes of consecutive joints measured about the previous joint's Z axis. 

These parameters are typically represented as a table, with each row corresponding to a joint 

and link pair. The table is often organized in a way that facilitates sequential multiplication of 

transformation matrices for forward kinematics calculations. Here is an example of a simplified 

kinematic model for the UR5 using DH parameters (see Table 5): 

Table 5 DH parameters of UR5e robot. 

a(mm) Alpha(𝛼𝑖)(rad) d(mm) Theta Mass(kg) 

0 pi/2 162.5 θ1 3.761 

425.0 0 0 θ2 8.058 

392.2 0 0 θ3 2.846 

0 pi/2 133.3 θ4 1.37 

0 -pi/2 99.7 θ5 1.3 

0 0 99.6 θ6 0.365 

Here, θ1 to θ6 are the joint angles for joints 1 to 6. 

Homogeneous Transformation Matrix (Forward Kinematics) can be used to solve direct 

kinematic (DK) problem. The forward kinematics equation to find the end-effector pose 

(position and orientation) given the joint angles is obtained by multiplying the individual 

transformation matrices for each joint: 

𝑻 =  𝑻 ∗  𝑻𝟐
𝟏 ∗  𝑻𝟑

𝟐 ∗  𝑻𝟒
𝟑 ∗  𝑻𝟓

𝟒 ∗  𝑻𝟔
𝟓

𝟏
𝟎

𝟔
𝟎  

(2) 

Where 𝑇𝑗
𝑖  represents the homogeneous transformation matrix from frame i to frame j. The 

resulting matrix 𝑇𝑛
0  represents the transformation from the robot base frame (frame 0) to the 

end-effector frame (frame n). 

𝑻 =  [

𝒄𝒊     − 𝒔𝒊𝒄𝒐𝒔𝜶𝒊    𝒔𝒊𝒔𝒊𝒏𝜶𝒊    𝒂𝒊𝒄𝒊

𝒔𝒊    𝒄𝒊𝒄𝒐𝒔𝜶𝒊     − 𝒄𝒊𝒔𝒊𝒏𝜶𝒊      𝒂𝒊𝒔𝒊

𝟎          𝒔𝒊𝒏𝜶𝒊          𝒄𝒐𝒔𝜶𝒊        𝒅𝒊

𝟎              𝟎                 𝟎              𝟏

]𝒊
𝒊−𝟏  (3) 

The actual URDF file for the UR5 in ROS provides detailed information on the kinematic model, 

including DH parameters, joint limits, and other necessary information. You can find the URDF 
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file for the UR5 in the ROS package associated with the UR5 model you are using. The URDF 

file is typically located in the ur_description package. 

𝑻 =  𝑻 ∗  𝑻𝟐
𝟏 ∗  𝑻𝟑

𝟐 ∗  𝑻𝟒
𝟑 ∗  𝑻𝟓

𝟒 ∗  𝑻𝟔
𝟓

𝟏
𝟎

𝟔
𝟎  

= [

𝒓𝟏𝟏    𝒓𝟏𝟐    𝒓𝟏𝟑     𝒑𝒙

𝒓𝟐𝟏    𝒓𝟐𝟐    𝒓𝟐𝟑    𝒑𝒚

𝒓𝟑𝟏    𝒓𝟑𝟐    𝒓𝟑𝟑    𝒑𝒛

𝟎       𝟎       𝟎        𝟏

] 

(4) 

This is a simplified representation, and for accurate control and motion planning, you might 

want to use ROS packages like MoveIt! that provide more advanced tools for working with the 

UR5's kinematic model. After doing this, the coordinate frame for each joint can be transferred 

from the base frame to the end-effector (see Figure 28). UR5e is a 6 DOF robot with only 

rotating joints. Frame 0 represents the base link and frames 1 ~ 6 represent the other joints (see 

Figure 119 in Appendix A). 

 

Figure 28 Coordinate system assignment of UR5e. 

The homogeneous transformation matrix that uses the classic DH parameters is shown in (2), 

this matrix represents frame i with respect to frame i−1. The position and rotation of the end 

effector with respect to the robot’s base can be calculated by multiplying the 6 transformation 

matrices as shown in (4). The following equations are used in the (4). 𝜽𝒊 is the same in Table 5 

as the joint angle.  

𝒔𝒊 = 𝒔𝒊𝒏𝜽𝒊 ;  𝒄𝒊 = 𝒄𝒐𝒔𝜽𝒊 
(5) 

𝒔𝒊𝒋… = 𝒔𝒊𝒏(𝜽𝒊 + 𝜽𝒋 + ⋯ ) ; 𝒄𝒊𝒋… = 𝒄𝒐𝒔(𝜽𝒊 + 𝜽𝒋 + ⋯ ) 
(6) 

𝒓𝟏𝟏 =  𝒄𝟏𝒄𝟐𝟑𝟒𝒄𝟓𝒄𝟔 +  𝒄𝟔𝒔𝟏𝒔𝟓 − 𝒄𝟏𝒔𝟐𝟑𝟒𝒔𝟔 
(7) 
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𝒓𝟐𝟏 =  𝒄𝟐𝟑𝟒𝒄𝟓𝒄𝟔𝒔𝟏 − 𝒄𝟏𝒄𝟔𝒔𝟓 − 𝒔𝟏𝒔𝟐𝟑𝟒𝒔𝟔 
(8) 

𝒓𝟑𝟏 =  𝒄𝟓𝒄𝟔𝒔𝟐𝟑𝟒 +  𝒄𝟐𝟑𝟒𝒔𝟔 
(9) 

𝒓𝟏𝟐 =  −𝒄𝟏𝒄𝟐𝟑𝟒𝒄𝟓𝒔𝟔 −  𝒔𝟏𝒔𝟓𝒔𝟔 − 𝒄𝟏𝒄𝟔𝒔𝟐𝟑𝟒 
(10) 

𝒓𝟐𝟐 =  −𝒄𝟐𝟑𝟒𝒄𝟓𝒔𝟏𝒔𝟔 +  𝒄𝟏𝒔𝟓𝒔𝟔 − 𝒄𝟔𝒔𝟏𝒔𝟐𝟑𝟒 
(11) 

𝒓𝟑𝟐 =  −𝒄𝟓𝒔𝟐𝟑𝟒𝒔𝟔 +  𝒄𝟐𝟑𝟒𝒄𝟔 
(12) 

𝒓𝟏𝟑 =  −𝒄𝟏𝒄𝟐𝟑𝟒𝒔𝟓 +  𝒄𝟓𝒔𝟏 
(13) 

𝒓𝟐𝟑 =  −𝒄𝟐𝟑𝟒𝒔𝟏𝒔𝟓 −  𝒄𝟏𝒄𝟓 
(14) 

𝒓𝟑𝟑 =  −𝒔𝟐𝟑𝟒𝒔𝟓 
(15) 

𝒑𝒙 =  −𝒄𝟏𝒄𝟐𝟑𝟒𝒔𝟓𝒅𝟔 +  𝒄𝟓𝒔𝟏𝒅𝟔 + 𝒄𝟏𝒔𝟐𝟑𝟒𝒅𝟓 + 𝒔𝟏𝒅𝟒 + 𝒄𝟏𝒄𝟐𝟑𝒂𝟑 +  𝒄𝟏𝒄𝟐𝒂𝟐 
(16) 

𝒑𝒚 =  −𝒄𝟐𝟑𝟒𝒔𝟏𝒔𝟓𝒅𝟔 −  𝒄𝟏𝒄𝟓𝒅𝟔 + 𝒔𝟏𝒔𝟐𝟑𝟒𝒅𝟓 − 𝒄𝟏𝒅𝟒 +  𝒄𝟐𝟑𝒔𝟏𝒂𝟑 + 𝒄𝟐𝒔𝟏𝒂𝟐 
(17) 

𝒑𝒛 =  −𝒔𝟐𝟑𝟒𝒔𝟓𝒅𝟔 −  𝒄𝟐𝟑𝟒𝒅𝟓 + 𝒔𝟐𝟑𝒂𝟑 + 𝒔𝟐𝒂𝟐 +  𝒅𝟏 
(18) 

In this study, a one DOF 2 finger ROBOTIQ gripper is installed on the end-effector of UR5e. 

This gripper added another configuration to the DH model of the robot. Moreover, the real end-

effector and base frame transform matrix needs calibration, which will be described in Chapter 

5.  

Finger Length: assume the length of each finger as L, 38 mm. when fully closed, the total length 

of the gripper is 162.8 mm. when holding the transducer holder, the open percent is 72%. the 

length of the gripper is then, 190 mm, including the transducer holder and transducer.  

Finger Position: The position of each finger along its linear path can be represented by a single 

variable, typically denoted as x_i, where i represents the finger index (i = 1 for the first finger 

and i = 2 for the second finger). This variable represents the displacement of each finger from 

its fully closed position. 

End-Effector Pose: Since the gripper has a fixed orientation and does not have rotational DOFs, 

the pose of the gripper's end-effector can be determined solely by the positions of the two 

fingers. The end-effector pose is usually represented by the position of the center point between 

the two fingers. The forward kinematics equation computes the position of the gripper's end-

effector based on the positions of the two fingers, i.e., the x_center, the position of the gripper's 

end-effector along the linear path is the average of the positions of the two fingers. 

The actual kinematic model for the 2F-85 Robotiq gripper may include additional parameters 

such as joint limits, maximum opening width, and calibration offsets. These parameters are 

typically provided by the manufacturer or documented in the gripper's specifications. 
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To implement control of simulation and real robot, not only DK, but also Inverse Kinematics 

(IK) is necessary. IK is a mathematical process used in robotics to determine the joint 

configurations (joint angles or positions) of a robotic manipulator that will result in a desired 

end-effector pose (position and orientation). In other words, inverse kinematics deals with 

calculating the joint variables necessary to achieve a specific end-effector position and 

orientation. The formulas used in inverse kinematics vary depending on the specific kinematic 

structure of the robotic manipulator. However, the basic idea is to solve a set of equations that 

relate the joint variables (typically denoted as theta) to the desired end-effector pose (typically 

denoted as X, Y, Z for position and roll, pitch, yaw for orientation). For the IK, several solutions 

can be used to solve the problem for UR5e. To solve IK, in the Denavit-Hartenberg (DH) 

convention, a series of homogeneous transformation matrices are used to represent the 

transformations between consecutive links of the robot. These transformation matrices are often 

denoted as A, B, C, D, E, and F, and they represent the transformations from one coordinate 

frame to another along the robot's kinematic chain. 

𝑨 =  𝒑𝒚 − 𝒅𝟔𝒓𝟐𝟑 
(19) 

𝑩 =  𝒑𝒙 − 𝒅𝟔𝒓𝟏𝟑 
(20) 

𝑪 =  𝒄𝟏𝒓𝟏𝟏 + 𝒔𝟏𝒓𝟐𝟏 
(21) 

𝑫 =  𝒄𝟏𝒓𝟐𝟐 − 𝒔𝟏𝒓𝟏𝟐 
(22) 

𝑬 =  𝒔𝟏𝒓𝟏𝟏 − 𝒄𝟏𝒓𝟐𝟏 (23) 

𝑭 =  𝒄𝟓𝒄𝟔 (24) 

𝜽𝟏 = ± 𝐚𝐭𝐚𝐧 𝟐 (√𝑩𝟐 + (−𝑨)𝟐 − 𝒅𝟒
𝟐, 𝒅𝟒) + 𝐚𝐭𝐚𝐧𝟐(𝑩, −𝑨) (25) 

𝜽𝟓 = ± 𝐚𝐭𝐚𝐧 𝟐 (√𝑬𝟐 + 𝑫𝟐, 𝒔𝟏𝒓𝟏𝟑 − 𝒄𝟏𝒓𝟐𝟑)  (26) 

𝜽𝟔 =  𝐚𝐭𝐚𝐧 𝟐 (
𝑫

𝒔𝟓
,

𝑬

𝒔𝟓
)  (27) 

𝜽𝟐𝟑𝟒 = 𝐚𝐭𝐚𝐧 𝟐 (𝒓𝟑𝟏𝑭 − 𝒔𝟔𝑪, 𝑭𝑪 + 𝒔𝟔𝒓𝟑𝟏)  
(28) 

𝑲𝑪 = 𝒄𝟏𝒑𝒙 + 𝒔𝟏𝒑𝒚 − 𝒔𝟐𝟑𝟒𝒅𝟓 + 𝒄𝟐𝟑𝟒𝒔𝟓𝒅𝟔 
(29) 

𝑲𝑺 = 𝒑𝒛 − 𝒅𝟏 + 𝒄𝟐𝟑𝟒𝒅𝟓 + 𝒔𝟐𝟑𝟒𝒔𝟓𝒅𝟔 (30) 

𝒄𝟑 =
𝑲𝑺

𝟐 + 𝑲𝑪
𝟐 − 𝒂𝟐

𝟐 − 𝒂𝟑
𝟐

𝟐𝒂𝟐𝒂𝟑
 

(31) 
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𝒔𝟑 = √𝟏 − 𝒄𝟑
𝟐 

(32) 

𝜽𝟑 = ± 𝐚𝐭𝐚𝐧 𝟐 (𝒔𝟑, 𝒄𝟑)  
(33) 

𝜽𝟐 = 𝐚𝐭𝐚𝐧 𝟐 (𝑲𝑺, 𝑲𝑪) −  𝐚𝐭𝐚𝐧 𝟐 (𝒔𝟑𝒂𝟑, 𝒄𝟑𝒂𝟑 + 𝒂𝟐)  
(34) 

𝜽𝟒 = 𝜽𝟐𝟑𝟒 − 𝜽𝟐-𝜽𝟑 
(35) 

Where atan2 is inverse tangent function, which gives results between -pi to pi.  

Experiment 1 (E1): This experiment is to verify the accuracy of the model and repeatability of 

the model using the inverse kinematic formulas. After building the model, 10 positions in the 

workspace were set to check the results of the kinematic model. Then, the locations of the end-

effector are input to the inverse kinematic formulas. The required joint angles are calculated 

with the formulas. The robotic arm is driven to each target joint angle with the calculated joint 

angle. The actual end-effector’s location coordinates are compared with the theoretical location 

coordinates. The average error for the ten locations is 1.02mm (see Table 6). The actual 

coordinates’ locations can be read from the ROS system. ROS system uses forward kinematics 

to calculate the location of the end-effector. It first acquires joint states from published states 

and then transforms the joint angles to the location of the end-effector. The differences between 

target and actual are because of the system error in the ROS robot model and the error in the 

inverse kinematic calculations. For example, the ROS-based URDF model may introduce 

systematic errors due to simplifications or parameter inaccuracies in the robot’s virtual 

representation. For the rest of the thesis, there will be more experiments which will be numbered, 

and the findings in the experiments will be introduced.  

For some specific tasks, such as welding, velocity control is used for control. Velocity 

kinematic is to solve the control parameters of UR5e. Velocity kinematics provides a way to 

relate the velocities of the robot's joints to the velocities of its end-effector (tool or gripper). 
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This relationship allows for real-time control of the arm's motion based on desired end-effector 

velocities. By understanding how joint velocities translate to end-effector velocities, velocity 

kinematics enables the generation of smooth and accurate trajectories for the robotic arm. This 

is important for tasks such as pick-and-place operations, painting, welding, or any application 

where precise and continuous motion is required. 

To solve the velocity of the end-effector, Jacobian matrix is needed to solve each joint 

according to the end-effector. For a robotic manipulator with 6 degrees of freedom (DOF) 6 

joint robot UR5e, the Jacobian matrix J is a 6*6 matrix. 

𝒙𝒆𝒏𝒅−𝒆𝒇𝒇𝒆𝒄𝒕𝒐𝒓̇ = 𝑱(𝒒)�̇� 
(36) 

Where 𝒙𝒆𝒏𝒅−𝒆𝒇𝒇𝒆𝒄𝒕𝒐𝒓̇  is the velocity of end-effector. 𝑱(𝒒)  is Jacobian matrix, �̇�  = 

[𝜃1̇, 𝜃2̇, 𝜃3̇, 𝜃4̇, 𝜃5̇, 𝜃6̇]T is the velocity of joint. 

The Jacobian matrix is as follows:  

Table 6 Comparison of target and actual positions of end-effector 

No 𝜽𝟏(°) 𝜽𝟐(°) 𝜽𝟑(°) 𝜽𝟒(°) 𝜽𝟓(°) 𝜽𝟔(°) Target Actual 

1 204.05 321.30 251.00 235.03 93.01 32.89 

(-0.14042, 

0.07769, 

0.53325) 

(-0.14135, 

0.07751, 

0.53342) 

2 104.10 321.05 234.00 235.12 93.00 33.53 

(0.09810, 

0.13599, 

0.40391) 

(0.0996, 

0.13628, 

0.4045) 

3 105.00 -45.20 262.00 235.00 91.00 153.26 

(0.09670, 

0.14741, 

0.60260) 

(0.0969, 

0.14762, 

0.6035) 

4 -20.17 -89.09 136.00 -137.02 -89.90 153.85 

(-0.39762, 

0.00385, 

0.20164) 

(-0.3978, 

0.000371, 

0.2012) 

5 -256.11 -89.09 -103.57 -62.82 89.37 46.68 

(0.01108, 

0.51513, 

0.43009) 

(0.01134, 

0.51461, 

0.43019) 

6 -256.19 -105.02 -100.80 -67.38 90.38 33.68 

(-0.00418, 

0.57276, 

0.29714) 

(-0.00423, 

0.57279, 

0.29588) 

7 -254.30 -103.03 -103.63 -66.82 -88.31 11.00 

(-0.01495, 

0.55657, 

0.29509) 

(-0.01545, 

0.55607, 

0.29559) 

8 -147.73 -81.95 -125.00 -62.59 -270.09 -238.23 

(-0.4015,  

-0.09573, 

0.30672) 

(-0.4006, -

0.09618, 

0.30632) 

9 -147.73 -81.50 -124.58 -69.9 89.74 134.58 

(-0.39022, 

-0.08825, 

0.29462) 

(-0.3894,  

-0.08874, 

0.29397) 

10 -6.47 -103.44 -87.42 -74.28 89.81 91.13 

(0.57291, 

-0.19950, 

0.41116) 

(0.57401, 

-0.19991, 

0.41155) 
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𝑱 =  [
𝑱𝑳𝒊

𝑱𝑨𝒊

] =  [
𝒃𝒊−𝟏 × 𝒓𝒊−𝟏,𝒆

𝒃𝒊−𝟏
] 

(37) 

where 𝒃𝒊−𝟏 is the unit vector representing the z-axis of joint i-1 with respect to the base (frame 

0), 𝒓𝒊−𝟏,𝒆 is the end-effector position with respect to frame i-1, and 𝑱𝑳𝒊
 and 𝑱𝑨𝒊

 represent the 

parts of the Jacobian that relate the joint velocities to the linear and angular ones. 

𝑱𝑨 =  [

𝟎      𝒔𝟏     𝒔𝟏     𝒔𝟏     𝒄𝟏𝒔𝟐𝟑𝟒      𝒓𝟏𝟑

𝟎  − 𝒄𝟏   − 𝒄𝟏   − 𝒄𝟏   𝒔𝟏𝒔𝟐𝟑𝟒   𝒓𝟐𝟑

𝟏     𝟎      𝟎      𝟎       − 𝒔𝟐𝟑𝟒      𝒓𝟑𝟑

] (38) 

Where 𝒓𝟏𝟑  𝒓𝟐𝟑 and𝒓𝟑𝟑 are the elements of the rotation matrix R associated with the orientation 

of the end-effector frame with respect to the base frame. 

𝒓𝟎,𝒆 =  [

𝒑𝒙

𝒑𝒚

𝒑𝒛

] (39) 

𝒓𝟏,𝒆 =  [

𝒑𝒙

𝒑𝒚

𝒑𝒛 −  𝒅𝟏

] (40) 

𝒓𝟐,𝒆 =  [

𝒑𝒙 −  𝒄𝟏𝒄𝟐𝒂𝟐

𝒑𝒚 −  𝒄𝟐𝒔𝟏𝒂𝟐

𝒑𝒛 − 𝒔𝟐𝒂𝟐 − 𝒅𝟏

] (41) 

𝒓𝟑,𝒆 =  [

𝒑𝒙 −  𝒄𝟏𝒄𝟐𝟑𝒂𝟑 − 𝒄𝟏𝒄𝟐𝒂𝟐

𝒑𝒚 −  𝒄𝟐𝟑𝒔𝟏𝒂𝟑 − 𝒄𝟐𝒔𝟏𝒂𝟐

𝒑𝒛 − 𝒔𝟐𝟑𝒂𝟐 − 𝒔𝟐𝒂𝟐 −  𝒅𝟏

] (42) 

𝒓𝟒,𝒆 =  [

 𝒓𝟐𝟑𝒅𝟔 + 𝒄𝟏𝒔𝟐𝟑𝟒𝒅𝟓

 𝒓𝟐𝟑𝒅𝟔 + 𝒔𝟏𝒔𝟐𝟑𝟒𝒅𝟓

𝒓𝟐𝟑𝒅𝟔 − 𝒄𝟐𝟑𝟒𝒅𝟓

] (43) 

𝒓𝟓,𝒆 =  [

 𝒓𝟏𝟑𝒅𝟔

 𝒓𝟐𝟑𝒅𝟔

𝒓𝟑𝟑𝒅𝟔

] (44) 

Where 𝒓𝒊,𝒆  is the rotation transform matrix between i-th frame and end-effector. Related 

equations can be found from (5) ~ (18).  

 

 

𝑱𝑳𝟏
=  [

−𝒑𝒚

𝒑𝒙

𝟎
] (45) 
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𝑱𝑳𝟐
=  [

−𝒄𝟏(𝒑𝒛 − 𝒅𝟏)
−𝒔𝟏(𝒑𝒛 − 𝒅𝟏)
𝒔𝟏𝒑𝒚 + 𝒄𝟏𝒑𝒙

] (46) 

𝑱𝑳𝟑
=  [

𝒄𝟏(𝒔𝟐𝟑𝟒𝒔𝟓𝒅𝟔 + 𝒄𝟐𝟑𝟒𝒅𝟓 − 𝒔𝟐𝟑𝒂𝟑)
𝒔𝟏(𝒔𝟐𝟑𝟒𝒔𝟓𝒅𝟔 + 𝒄𝟐𝟑𝟒𝒅𝟓 − 𝒔𝟐𝟑𝒂𝟑)
−𝒄𝟐𝟑𝟒𝒔𝟓𝒅𝟔 + 𝒔𝟐𝟑𝟒𝒅𝟓 + 𝒄𝟐𝟑𝒂𝟑)

] (47) 

𝑱𝑳𝟒
=  [

𝒄𝟏(𝒔𝟐𝟑𝟒𝒔𝟓𝒅𝟔 + 𝒄𝟐𝟑𝟒𝒅𝟓)
𝒔𝟏(𝒔𝟐𝟑𝟒𝒔𝟓𝒅𝟔 + 𝒄𝟐𝟑𝟒𝒅𝟓)
−𝒄𝟐𝟑𝟒𝒔𝟓𝒅𝟔 + 𝒔𝟐𝟑𝟒𝒅𝟓)

] (48) 

𝑱𝑳𝟓
=  [

−𝒅𝟔(𝒔𝟏𝒔𝟓 + 𝒄𝟏𝒄𝟐𝟑𝟒𝒄𝟓)
𝒅𝟔(𝒄𝟏𝒔𝟓 − 𝒄𝟐𝟑𝟒𝒄𝟓𝒔𝟏)

−𝒄𝟓𝒔𝟐𝟑𝟒𝒅𝟔

] (49) 

𝑱𝑳𝟔
=  [

𝟎
𝟎
𝟎

] (50) 

 

The dynamic equations of a robotic arm describe how the joint torques or forces affect the 

motion of the arm. These equations take into account factors such as inertia, gravity, Coriolis 

and centrifugal forces, friction, and external forces acting on the arm. The dynamic model of 

UR5 is  

𝑴(𝒒)�̈� + 𝑪(𝒒, �̇�)�̇� + 𝒈(𝒒) = 𝒖 
(51) 

where M(q) is symmetric positive definite mass inertia matrix of the system, 𝐶(𝑞, �̇�) is the 

matrix of Coriolis and centrifugal terms. 𝑔(𝑞) is the vector of gravity terms and u is the input 

vector. u is the joints torque vector.  

The inverse dynamic equation is:  

�̈� =  𝑴−𝟏(𝒒)( 𝒖 −  𝑪(𝒒, �̇�)�̇� −  𝒈(𝒒)) 
(52) 

 

 𝑴(𝒒) =  ∑( 𝒎𝒊 𝑱𝑳𝒊 
𝑻  𝑱𝑳𝒊 +  𝑱𝑨𝒊

𝑻 𝑹𝒊𝑰𝒊𝑹𝒊
𝑻𝑱𝑨𝒊

)

𝒏

𝒊=𝟏

 (53) 

where 𝑚𝑖  is the mass of link i. 𝑅𝑖 is the rotation matrix representing the orientation of link i 

with respect to the world frame. 𝐼𝑖 is the inertia tensor of link i with respect to its center of mass. 

Singularity is an extreme situation for robotic arms in which they lose some of their degree of 
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freedom. Singularities were also encountered during the robotic arm's commissioning. The 

robot fully extended and cannot move to the required position. A limited drive space was 

defined to prevent workspace singularities so that the robotic arm only moves to the necessary 

locations for the scanning tasks and would not move to singularity spaces. The singularity space 

is the edge of the arm's reach. The singularity can also be prevented in the kinematic formulas 

175. 

The Jacobian matrix establishes the relationship between the joint velocities and the linear and 

angular velocities of the end effector. The singularities happen at the points where the Jacobian 

matrix becomes rank-deficient (det(J) = 0), then the robot loses the ability to control certain 

directions of motion. According to the formulas above, det(J) can be listed as:  

𝒅𝒆𝒕(𝑱) =  𝒔𝟑𝒔𝟓𝒂𝟐𝒂𝟑 (𝒄𝟐𝒂𝟐 +  𝒄𝟐𝟑𝒂𝟑 +  𝒔𝟐𝟑𝟒𝒅𝟓) 
(54) 

Three singularities exist for the shoulder, elbow, and wrist of UR5. A shoulder singularity 

happens when the last factor in Equation (46), which involves angles 𝜃2, 𝜃3, and 𝜃4, is equal to 

zero. The end effector cannot be moved along z6. An elbow singularity is present when s3 = 0, 

which happens when 𝜃3 = 0 or 𝜃3 = pi. This means that the arm is fully stretched or bent; 

however, only the former case is physically possible. Wrist singularities exist when s5 = 0, 

which mathematically happens when 𝜃5 = 0 or 𝜃5 = pi. This renders z4 and z6 parallel (see 

Figure 28). The joint angles above should be avoided. The combined method including the 

limited use space and joint angles is used in this study to prevent singularities.  

3.3 Simulation model of robotic arm UR5e 

ROS is a robotic middleware framework that connects the physical and application layers of 

the robotic arm by enabling communication and data exchange across these layers (introduced 

in Appendix A: Implementation part). Gazebo is a simulation software based on ROS. A 

physical environment can be established in Gazebo, such as a room, a table, and all the objects 

used in this study. Within the physical environment, the robotic arm (see Figure 29) can interact 

with other objects, such as collisions between objects and computer vision among objects. 

Within the simulation software, the developers can see the environment of the robot and the 

movement of the robot. Gazebo has a large library of physical objects, such as van vehicles and 

cola cans, for the developer to insert into the simulation environment. Apart from that, 

developers can also render their own designs of objects into the world. Gazebo is not only for 

simulation visualisation, but also supports realistic physics, sensor simulations. However, 

within Gazebo itself, it is not interactive. The developers can move the robot using coding API, 

such as Python, C++, and other planning tool software, such as, RViz. The developers can 

define the environment with .world file, spawn the controller, spawn the robot urdf at specified 
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location. After the launch of the .launch file the Gazebo environment can be started. 

‘gazebo_ros_pkgs: This is a collection of ROS packages that provide Gazebo plugins, models, 

and other resources for the integration of Gazebo with ROS. It includes packages like 

gazebo_ros_control for connecting ROS controllers to simulated robots. 

 

Figure 29 Gazebo simulation of UR5e. 

RViz is a “ROS Visualization” software tools, which can be synchronised with Gazebo 

environment. the defined positions in Moveit of the robot can be directly assigned to the robot 

in RViz. The joint_state controller under ros_control can read the states of joints, this controller 

will be used by RViz to synchronise the robot in RViz and Gazebo. There are many features 

that can be used in the simulation, such as, “interactive marker” which can be directly dragged 

and release to define the targeted position of the end-effector. RViz is not only a visualisation 

tool, but also a planner. There is an open motion planning library (OMPL) embedded it to plan 

the trajectory of the robotic arm. After the trajectory is planned, the movement of the joints and 

links can be assigned by Moveit. Algorithms, such as rapid random tree (RRT), can be used to 

plan the trajectory (as shown in Figure 30).  

Besides roslaunch file, ROS can also run Python code by using rosrun command, which can 

directly find the related packages and execute the executable documents under the package. 

This command is suitable for external controller or command coded by Python or C++. Rosrun 

can only run one node from one package at a time in one terminal window, which is less 

powerful than roslaunch 176. The novelty of this study is that all the joints of UR5e and the 

gripper can be controlled not only with Python code, but also with RViz. The advantages of 

using RViz are that potential trajectory of robot and trajectory parameters can be visualised and 

extra plug-in tools such as computer vision tools can be used in RViz.  

Above all, the robotic control platform based on ROS has been developed in the author’s prior 

conference article 177. It is implemented in a Linux operating system. It can finish simulation 

work, the synchronisation between simulation and real-world. Additional works, such as, 
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adding gripper, digital twin, computer vision, deep neural network training, can be implemented 

on this platform. 

As shown in Figure 119 in Appendix A, the joints and links of UR5e are set in the .urdf 

document. The urdf and mesh file are from the open-sourced repository 178. Based on these 

packages, the move group and planner can be designed on Moveit software. To make it a 

complete setup, a 2F-85 gripper from ROBOTIQ company was also installed on the end-

effector of the robot. “2F-85” is the type, which means it has two fingers and the maximum 

distance between the fingers is 85 mm. The urdf file of the gripper can be imported from the 

repository 179. An overall urdf.xacro should be established for the “robotic arm+gripper”. 

Within the urdf.xacro, the base link of the gripper should be fixed to the end-effector of the 

main robot. To make the gripper move properly like the real-world one, the setup in Moveit is 

necessary. The processes of Moveit setting are shown in Figure 31. To make the gripper move, 

a fixed joint must be defined, then, the rotary joint in the gripper must be defined to make it 

work properly. In the Moveit software, there are some pre-defined positions that can be set. In 

this study, open (0%) and close (80%) position was set up. After the setup of the gripper, the 

base link of the gripper is fixed to the end-effector link of the robotic arm. Subsequently, the 

complete robotic arm is finished in simulation (as shown in Figure 32).  

  

Figure 31 Joints and links in Robotiq gripper (left), and the Moveit setup (right). 

 

Figure 30 Planners in RViz.  
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Figure 32 Picture of the real robot and the simulation model in Gazebo. 

Another point to make the gripper work properly is to make it “collision-aware” and “able to 

grip”. These functions are easy in real-world, but difficult to realise in the simulation 

environment. The processes are explained step-by-step.  

To make the gripper collision aware, the setup in the urdf is important. The first thing is to set 

the inertial and physics parameters properly (see Figure 126 Appendix). In the left figure, the 

object (a table in this case) SDF file is set to be static. In the surface link, a collision is defined 

with a name. Within the collision definition, parameters, such as friction coefficient, should be 

set up. In the right figure, the URDF of the gripper should be defined carefully. In the section 

of the finger-tip link, a collision is defined. Referencing the name of the collision, a collision 

contact sensor is defined with the ‘libgazebo_ros_bumper’ plug-in. The detection rate is defined 

as 15 Hz. A rostopic is also defined to publish the contact position and the contact force. The 

plug-in will publish a rostopic when the robot collides with a static object, which is built as 

the .SDF file in the simulation world. After the setup of the collision features, when the robot 

collides with the static object in the simulation, the rostopic will publish the position and the 

type of collision in the real-time (as shown in Figure 33). This function is not only for the safety 

issue in the simulation, but also the preparation for the surface scanning task in the future 

operation. As the gripper touches the surface of the object, the collision should be notified. 

 

Figure 33 Screenshot of collision happened in Gazebo and the collision detection. 
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For the gripping task, this task is more for the function test of the simulation model. In previous 

simulation, the gripper just slipped away from the object, and the object, such as the cube just 

flied away from the original position. After checking, the problem is the version of Gazebo and 

the necessity of using a plug-in named “gazebo_grasp_fix” 180. With this gripper setup, the 

movements of the gripper can be optimised. The details are: when the finger tips of the gripper 

contact with the object, the PID force controller will take actions, to make the gripping action 

more realistic. To make sure gripping action more properly finished, these plug-in should be 

implemented (as shown in Figure 36). Moreover, the hardware interface of the gripper is set to 

be the type of “EffortJointInterface”, which control the robot basically depending on the effort 

the robot is under, but not the position, i.e., the conventional interface type 

“PositionJointInterface”. To change from position controller to effort controller, the 

transmission of the urdf file should be modified. The most important thing is to change the 

setup in the ros_controller.yaml, from position_controller to effort_controller. 

The feature of UR5e is an embedded force-torque (FT) sensor, which can measure 6DOF force 

and torque. This sensor is installed in the real robot, but not embedded in simulation model. 

Therefore, a plug-in for force and torque measurement should be inserted in the ROS package 

(see Figure 34). To add the FT sensor plug-in, the necessary Gazebo ROS packages should be 

installed, such as, ‘gazebo_ros_pkgs’ and ‘gazebo_ros_control’. Edit the URDF file of the UR5 

to include a force/torque sensor. This involves adding a sensor element to the robot's URDF 

model to a specific link, wrist_3_link, in this case. Write a Gazebo plugin that simulates the 

force/torque sensor. This plugin “libgazebo_ros_ft_sensor.so” will generate simulated 

force/torque readings based on the robot's interaction with the environment. Inside the plugin, 

you will need to subscribe to the physics update and apply force/torque values accordingly. For 

simulation, these values will be calculated based on the robot's interactions. After this, a 

catkin_make is necessary to make it work.  

 

Figure 34 Screenshot of force/torque sensor plug-in in Gazebo simulation. 
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The plugin establishes a connection with the Gazebo physics engine. It subscribes to updates 

from the Gazebo simulation loop to retrieve information about the simulated robot and 

environment. The plugin publishes force and torque readings as ROS messages on specified 

topics, “wrench” in this case. These topics can be configured based on the plugin parameters or 

settings in the URDF file. The simulated force-torque sensor data can be used by other ROS 

nodes, such as controllers or perception modules, to simulate the response of a real-world force-

torque sensor. This enables the testing and development of robot control algorithms and 

perception systems in a simulated environment. 

For the configuration of the robot, the controllers of each joint can be defined in the config.yaml 

(see Figure 127 Appendix). Effort controller is used instead of “position controller” in the 

control of robot see Figure 35. Since in Gazebo software, the control and physics parameters 

are complicated to tune. To make the robot actions more realistic, for example, applying forces 

and pick-and-place, the optimal way is to use effort controller. Effort controller is a kind of 

controller that controls the torque or effort on the joint of robot. Unlike position controllers, the 

effort controller does not strictly follow the positions of target. The torque/effort applied to the 

joint is important during the tasks such as, surface scanning on flat or curved surfaces, pick-

and-place task. In Gazebo, if the joints are not set properly, the performance of the particular 

task, such as pick-and-place (see Figure 36), will be abnormal, i.e., the object jumped from the 

gripper, or abnormal movement of the links of the gripper. The setup of the effort controllers 

of the robot is shown in Figure 40. In effort controller package, the controller receives the state 

of the joints firstly. The information of the position, velocity and acceleration of the joint will 

be collected. The torque topic will be calculated using a PID controller based on the deviation 

between current position and the target positions. Once the torque is calculated, the value will 

be published to the target torque topic. Subsequently, the joint state publisher will update the 

information of the joint. The processes will repeat for the next time step. 

 

Figure 35 Screenshot of the effort controllers used in this study. 
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Using these settings, relatively complex tasks, such as, pick-and-place, computer vision (see 

Figure 37) recognition tasks can be realised.  

 

Figure 36 Screenshot of the pick-and-place task. 

 

Figure 37 Screenshot of the computer vision task. 

To simulate the real-world scenario, the transducer holder was added to the end-effector of the 

simulation model (see Figure 38). Since the ultrasonic transducer is to be installed on the robotic 
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arm, a holder will be installed on the robot. It is essential to put the holder on the simulation 

model. In this way, the simulation model and real robot are more alike, and after the physical 

environment is set, it is a digital twin model of the robotic UT platform. To add the holder on 

to the robot, the 3D model of the holder has be fixed as a link on to the gripper link, finger_1 

link, in this case. The code should be modified in urdf.xacro file. After that, the configuration 

of Moveit should be modified accordingly. The details of the transducer holder will be 

introduced in Chapter 5. To add this holder, the .stl model should be included in the urdf of the 

robot. Different parts of the holder will be joined together via fixed joint in the urdf. After this, 

the joints and links information will be updated in Moveit software, then the related 

moveit_config package will be updated. Within the srdf document included in the 

planning_context.launch file, the collision information will be updated, otherwise the collision 

between the holder parts will stop the execution of the simulation.  

 

Figure 38 Simulation model of robotic arm and transducer holder. 

To realise the surface scanning task with the simulation model for UR5e, the special place is to 

insert a force/torque sensor at the last link of the robot, which will close the loop of 

force/position control of the end-effector. The plug-in code will be added into the urdf 

document of the robot. The location of the sensor on the link and the name of the link are 

defined in the urdf file. After the lunching of the simulation model, the force/torque will be 

calculated based on the motion of the robot. The force/torque data is published on the topic 

“wrench/force” and “wrench/torque” in this study. It is a beneficial method to make the 

simulation closer to the real world. According to the real situation of real-world, the simulation 

environment of UR5e can be shown as in Figure 39. With the implementation of the sensor, the 

model has included all three contact task features, compliance control, tactile sensor and 

force/position control. With the structure of the controller, the scanning task will be planned 

with a higher-level controller. This is the innovation of this study.  



Z. Wang, PhD Thesis, Aston University 2024 

73 

 

 

Figure 39 Screenshot of the environment in Gazebo simulation. 

To realise surface scanning and other applications in the simulation environment is not as easy 

as that. Even though it seems that the environment has been set up perfectly, the details of the 

robot and the objects need further setups, for example, the original pose of the robotic arm, the 

physics parameters of the object and the world. 

After the force/torque sensor has been plugged in ROS, the force/torque sensor can measure 

the contact forces and torques in three directions of the closed end-effector (shown in Figure 

40). It shows the 6DOF force/torque change before and after the contact of the gripper with the 

table surface. During this process, the robot was only controlled to approach the surface of table. 

As can be seen the z-axis contact force changed from 0 to -5N, which means it has contact with 

another surface. Forces on x and y-axis have vibration but not very much. The torque around 

y-axis had a big change since the end-effector had an orientation error along y-axis, but it is 

still along with x-axis, so the torque around x-axis stayed stable.  

 

Figure 40 Force and torque measurement in Gazebo simulation.  

After the end-effector touched the table surface, the contact force reached -5N. During the 

touching period, the standard deviation (SD) of force on the z-axis is 0.1395, which means the 

force on the z-axis is very stable. However, scanning on the surface was not considered in this 

case. The force on the y-axis has the most significant SD, 0.2398, which can also be seen in the 
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figure, the force on the y-axis has a big oscillation in the range of ±1.5N. This indicates the 

pose when it touches the surface along the y-axis.  

To implement the final task, i.e., surface scanning on an unknown curved surface, some demos 

are to be created as a pre-trained task, e.g., surface scanning on a flat surface and pick and grasp 

task. In these tasks, the performance of the effort controller in robotic arm and gripper can be 

tested. The actual results of these tasks are shown in the following Figure 41: a target -50N 

constant contact force is set, and the robotic arm scans the flat desktop surface with the 

transducer holder on the tip of the end-effector. The error is over ±25N. The standard deviation 

is 5.8595, which is big and needs improvement in this study. 

   

Figure 41 Constant force control on flat surface scanning in real robot environment. 

To realise these tasks and the final tasks, more complicated controllers should be implemented 

in ROS to realise the position/force control. The controllers used in this project are introduced 

in the next sub-section.  

3.4 Controllers used in simulation 

In this study, several controllers should be used to realise the proposed function (as shown in 

Figure 42). The control of the robot switches between different controllers to realise a sequence 

of tasks in the surface scanning job. The force controller is mainly for the driving force of the 

end-effector, it will drive the end-effector to approach the target surface and keep the contact 

force between end-effector and the contact surface in the assigned direction constant. When 

force controller is in charge, the motion will be driven by target force defined in the rostopic 

and the motion will be solved by the configurations in dynamic config. The motion of the robot 

cannot be modified separately since it is not the purpose of force controller. To modify the pose 

of the robot, the trajectory controller should be used. This controller can not only adjust the 

position of the robot, but also the orientation of the end-effector. So, the trajectory controller in 

this task will control the pose movements to fulfil the task, i.e., the orientation adjustment on 

the target position, the movement between the original home position and target positions. The 

orientation adjustment is especially important for this task, since the transducer should be 

normal to the contact surface. With the help of Moveit in ROS environment, the orientation 

controller will optimise the orientation of the end-effector according to the measured forces to 
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keep it normal to the contact surface, during the trajectory.  

Since the control theories of the controllers above are different, force controller includes the 

desired force in loop to solve the target pose using dynamics config of the robot, while trajectory 

controller uses a PD controller to interpolate between target positions and actual positions. 

Normally, they can only control the robot separately, i.e., it is not possible to control the robot 

with any combination of two controllers, however, since the compliance controller can 

cooperate with trajectory controller, it is possible to move the end-effector while applying 

compliance control 181. The trajectory controller under compliance controller can control the 

moving speed, the targeted position. On the other hand, this allows us to control the end-effector 

to implement surface scanning, i.e., with contact force control and position/pose control. If the 

control on robot can be implemented both in simulation and reality, then the training of the RL 

agent will be easier. We can only consider the implementation of RL code, but no need to think 

about implementing the control during RL or in the real world again.  

 

Figure 42 Controllers of the robot used in this study. 

Force controller: in ROS there are some kinds of controllers, such as position controller, 

velocity controller and effort controller. Since force is concerned in this study, effort controller 

is used as main controller in the configuration of robotic arm. In the configuration of robot, 

there is a parameter named “max_effort” for each joint. By increasing the max_effort value, it 

is allowed that the joint exerts a larger maximum force or torque. This can be beneficial when 

the joint needs to resist external disturbances or apply stronger forces to manipulate objects or 

maintain stability, for example, to maintain the orientation of the end-effector during scanning 

on the surface. However, it's important to ensure that the increased effort is within the safe 

operating limits of the robot and its components. The force controller will take whatever it takes 

to fulfil the “target_wrench”, therefore it cannot maintain the pose while meeting the force 

target. The iterations parameters of the force adjustment which defines how many times the 

solver will iterate the force solution to approach targe value in one control cycle are not 

functional in force controller. 
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PID Parameters of controllers for each joint are also important (see Figure 43). The PID 

(Proportional-Integral-Derivative) control parameters, including the proportional gain (Kp), 

integral gain (Ki), and derivative gain (Kd), directly affect the joint's response to errors, 

velocities, and accelerations. By tuning these parameters, you can adjust the joint's control 

behavior to achieve better tracking, stability, and force/torque control. Proportional Gain (Kp): 

A higher Kp value increases the joint's response to positional errors, allowing it to exert a 

stronger corrective force. However, a too high Kp value can lead to instability or oscillations. 

Integral Gain (Ki): The Ki term helps address steady-state errors by accumulating the integral 

of the error. Tuning the Ki value can improve the joint's ability to maintain position against 

external forces. Derivative Gain (Kd): The Kd term provides damping and reduces overshoot 

or oscillations caused by rapid changes in position or external disturbances. Adjusting the Kd 

value can enhance the joint's stability and response to sudden forces. 

    

Figure 43 Max_effort and PID setup for effort controller. 

Motion controller: The cartesian motion controller is used with the help of trajectory planning 

controller to control the movement in this case. Effort controller and position controller have 

been tested. An effort controller is also used to control the trajectory when force/torque is 

applied on actuator (see Figure 128).  

Effort controller considers more about the torque generated on the joint. As an embedded 

controller in ROS, it can be used on many robots with effort PID control parameters. Position 

controller, on the other hand, only focuses on the position of the joints. In this case, since the 

compliance controller will control the applied force, effort controller increased the difficulties 

of tuning of compliance controller, therefore only position controller is used in this study.  

The controller type must be defined in the “hardware_interface” of the robot description file, 

“PositionJointInterface” in this case. For the gripper description file, the transmission of the 

classic position controller must be also carried out. In the main launch file of Gazebo, the 

controllers should be spawned for two times. The first time is the joint controllers for Gazebo, 

the second time is the ROS controllers. The two times of spawning must be finished, otherwise 

there will be errors in launching Gazebo.  

For controller parameters in Gazebo, only the parameters should be loaded from the yaml files. 

To really spawn the controllers, controller nodes should be started. In the definition of the node, 

the arguments-“args” should be the names of the pre-defined controllers. They should be 
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“spawned” to the “screen”. The respawn should be false. The “pkg” has been defined as 

“controller_manager” in the “package.xml” which defines the dependency of the ROS package. 

It is a C++ class that provides an interface for loading, starting, stopping, and managing 

controllers. It should be notified that the Gazebo ROS controllers and the ROS controllers 

should not be the same, otherwise there will be errors spawning the controllers. The motion 

controller can not only plan for the position of the end-effector, but also the orientation. It 

calculates the value between actual and target positions using PD controller. The “error_scale” 

to tune the proportion of the difference in the PD control. For example, increase the error_scale 

will increase the moving speed of robot, increase the P parameter in PD controller will speed 

up the movement of robot. “JointTrajectoryController” refers to a type of controller used for 

controlling the joint trajectory of a robotic system. This controller is part of the ros_control 

framework, which is a set of ROS packages designed to provide a standardized interface for 

robot controllers. The JointTrajectoryController specifically deals with the control of joint 

movements along a predefined trajectory. It is commonly used in scenarios where you want to 

plan and execute a trajectory for a robot's joints. This type of controller is often employed in 

applications such as robot arms, where precise control of joint movements is essential. 

Compliance controller: in this study, a compliance controller is used to adjust the orientation of 

the end-effector. The controller is a customised controller to optimise the orientation of the 

robotic arm according to the recorded contact force and torque (shown in Figure 44). It 

combines the advantages of active impedance controller, admittance controller and force 

controller. Thanks to the inverse dynamics feature of Gazebo and ROS environment, the 

prediction of the force reaction is possible in this platform. The idea is to implement the force 

prediction directly into trajectory planning of the manipulator. In this study, compliance 

controller is used to adjust the orientation of the end-effector. The target is set by setting the 

position and orientation of target_pose in waypoints. Force and torque values are calculated (in 

simulation) and measured (in reality) with the ft-sensor, under the rostopic of ‘wrench’. When 

these values are captured, the difference between actual value and the target value, i.e., actual 

measured force in z direction is -45N, and the target is -50N, the difference 5N with the 

error_scale will be used to calculate the next target joint position of each joint with the help of 

dynamic reconfigure, in this case, with Moveit planner. The error_scale is a convenient option 

to post-multiply the error on all dimensions uniformly. In this study, PositionJointInterfaces is 

used as compile-time interfaces to control the robot. PD controller is used to calculate the 

forward dynamics model 181 with the difference. The relation between the position of end-

effector and the target force is like follows: 

𝑭 =   𝒎(�̈� − �̈�𝟎) + 𝒅(�̇� − �̇�𝟎) + 𝒄(𝒙 − 𝒙𝟎)   (55) 
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With this equation, the time-dependent motion x is related with the applied force. In compliance 

controller, the controller is a hybrid of position controller and force controller. F is the external 

contact force, d is the damping factor, c is the stiffness. In current study, the controller is 

position controller, so the damping is not considered. Stiffness is the factor should be tuned in 

config. The end-effector should be assigned as “wrist_3_link” and the forward dynamics model 

calculates the joint positions from base link to the end-effector link. Ft-sensor link and 

compliance_ref_link are assigned to acquire the actual and target wrench force/torque values. 

The “stiffness” configs how the compliance controller reacts with the difference between actual 

and target, it is in the unit “N/m” indicating the end-effector moving distance with the contact 

force. The stiffness is in 6 DOF, functioning with 3 axis force and 3 axis torque. When the 

stiffness is bigger, it is harder to move the joints. The trans_gain and rot_gain are still there for 

PD control of the movement of the end-effector. To move the robot with compliance controller, 

another controller is needed to move the robot to target position, “joint_to_cartesian” controller 

is used in this case. The design is that joint_to_cartesian has a “son” namespace, which contains 

the robot joints, in this case, the compliance controller controls the joints in the “mother” 

namespace while the joint_to_cartesian controller moves the joints in “son” namespace without 

conflicts. If these two controllers are in one namespace, the controllers with the same joints will 

be conflicting.  

 

Figure 44 Details of the solvers in the controller. 

After setting the controllers, the more important thing is to control the robot with the good 

planning of using these controllers. Currently, only simple PD controller is used in the 

compliance controller, it can be optimised in future study to implement PID and adaptive 

parameters to improve the compliance control. 

3.5 Simulation test and the synchronisation with real robot 

With the help of firmware in the teach pendant of UR5e, the external control (shown in Figure 

45) can be realised (shown in Figure 46). On the dependant of UR5e, design a new program 

named “External Control”, which contains a step requires external control from the IP of the 

working computer. Use the launch file in ROS to bring up the real UR5e to the control. During 

the processing of the code, run the “External Control” test program on the dependant of UR5e. 
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The feedback of real robot can be detected as shown in Figure 45. 

   

Figure 45 Left: Installation of the ‘external control’ firmware into the teach pendant. Right: terminal 

display when synchronisation started.  

 

Figure 46 Synchronisation of the simulation model and the real-world robot. 

In the point contact scenario, the orientation of the robotic arm can be adjusted by the steps as 

follows: the robot is prepared with the original position. The robot moves horizontally to the 

top of the first pre-defined waypoint. The end-effector moves downwards to the first waypoint. 

After contact, the force and torque during contact is measured, then the robot leaves the surface. 

The optimised orientation is calculated, the pose of the robot will be adjusted. Then, the pose 

is optimised, the robot moves back to the surface (shown in Figure 47). 
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Figure 47 The processes of orientation control of point contact scenario. 

Experiment 2(E2): synchronisation of the simulation model and the real world. This is to verify 

the established robotic platform can control both the simulation model and the real robot. To 

implement compliance controller, extra settings should be carried out on the controller config. 

Since the physical condition in the real-world is not completely the same as the simulation 

environment, the adjustment of the controller should be done. The flat surface scanning in 

simulation and real world are shown in Figure 48. 

 

Figure 48 The surface scanning on flat surface in simulation (left) and real world (right). 

However, since the real scanning task is implemented on real objects, which are curved or even 

irregular shapes in some cases. As an intermediate stage between flat surfaces and real target 

objects, a known, regular curved shape can be set as the object. The compliance controller 

should implement the force control, orientation adjustment and position movement on the 

curved surface. The contact force curve and simulation environment can be shown in Figure 

49. As can be seen, when compliance controller was applied, the contact force had an oscillation. 

The issue happened when the end-effector touched the curved surface. The end-effector moves 

towards the target location via the force controller with target force. When the end-effector 
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touches the surface and applies impedance force, the compliance end-effector will move 

passively, which causes a measured force oscillation. After that, the compliance controller will 

kick in and the actual contact force is approaching the target force and kept steady.  

To carry out the curved surface scanning, the detailed processes are shown in Figure 50. On 

  

   

Figure 49 The surface scanning on a curved surface in simulation (upper: simulation environment; 

lower left: location of the airplane wing on the table; lower right: the curve of contact force during 

scanning). 

 

Figure 50 Flow chart of the whole work processes in the surface scanning task. 
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each targeted position, the force controller should be used to approach the position firstly, after 

the contact force is larger than 20N, switch to compliance controller, keep the target_wrench at 

-50N. During the appliance of compliance controller, record the force data and calculate the 

average and variance for future use. In the next step, use the average force in 3DOF to calculate 

the actual current orientation. Subsequently, get the current location of the end-effector and use 

the interpolation algorithm to get the actual normal orientation vector on the target surface. 

Then, the difference between the actual and target orientation can be calculated. After that, 

under compliance controller, adjust the orientation of the end-effector and move the end-

effector to the next position.  

In this case, an airplane wing CAD model is placed on the table.  The wing model is in regular 

curve, which the cross-sectional shape is an airfoil, and the 3D model and the position of the 

model are known (see Figure 49). The advantage of setting the model is that the actual trajectory 

can be compared to the real object surface curvature. Only in this case, the controller and 

methodology of this study can be proved in a transitional scenario.  The curved surface is also 

used in RL training, which will be described in detail in the next section.   
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4. Control System Design and Implementation 

4.1 Control criteria and strategy 

Normally, the controllers in ROS are position or velocity based, which can be only used to 

trajectory to target position, but not apply target contact force. While some other controllers 

only control the contact force, but never good at trajectory to the target position. While in NDT 

inspection tasks, adding compliance is essential for this study. For classic external force control 

on robotic arms, impedance and admittance controllers are commonly used in research. 

Impedance controller focuses on trajectory following, controlling its stiffness or rigidity in 

response to external forces or desired trajectories. While admittance controller controls the 

interaction between a robot and its environment by regulating the robot's compliance or 

stiffness in response to external forces. Above all, the difference between admittance and 

impedance control is that the former controls motion after a force is measured, and the latter 

controls the force trajectory is taken. Since this study needs control both the force and position, 

the compliance controller combining impedance and admittance should be implemented.  

UR5e is a classic articulated robotic arm, which is powered in their joints, and hence require 

control algorithms to perform continuous mappings from task space to joint space. To transfer 

from task space to joint space, Based on the kinematic model of the robotic arm mentioned 

above and the studied questions in this article, it can be observed that there are 3 constraint 

equations, while the criteria: force control should be within ±5N, and the position and pose 

control should be ±1mm and ±10 degree.  

The controller should be used in normal conditions, which is not limited to the contact scenarios. 

The controller should be able to control UR5e in simulation and real-world, so the RL training 

results can be transferred between them. The compliance controller is used as a low-level 

controller as classic position controller, while RL controller will be used to train the robot to 

implement scanning inspection actions. Subsequently, the scanning movements will be 

transferred to the real world, with the trained RL model and the real-world compliance 

controller (see Figure 51).  
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Figure 51 Control strategy of compliance controller. 

The control model is based on equations (51) and (55). The external force on the end-effector 

equals to the compliance force that the controller produces, while the displacement, velocity 

and acceleration of the end-effector can be calculated based on the reverse kinematic model 

and dynamics model in Section 3. The goal here is to compute a time dependent motion x(t) of 

the end-effector in order to control the applied force on the system (Admittance Control). For 

the general case, a series of joint motion q(t) must be found, which would affect this 6D motion 

x(t), which is essentially trying to solve this problem from an inverse perspective. With the 

force/torque (FT) sensor of UR5e, the control loop of the controller can be closed. The 

controller takes the real measured force and current joint positions and velocities as input and 

calculate the target joint positions as output to control the robotic arm. The direct solution of 

the model is the accelerations of the joints, after integration, the velocities and positions can be 

assigned to joints.  

The target of the control is to implement the same controller not only in simulation, but can 

also be transferred into the real world. Since in the UR5 ROS controller, PID is the most used 

basic controller in industrial, the advanced PID control parameters are applied to implement the 

compliance controller.  

4.2 Controller design and analysis 

To describe robotic tasks in task space, the system should provide user interfaces, which receive 

commands of task or a target position, while maintaining its compliant behaviour for the end 

effector. The proposed controller provides interfaces to simultaneously command both desired 
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motion xd and desired force Fd with respect to an arbitrary end effector coordinate system (x, y, 

z). This is possible through the conjunction of virtual Impedance Control and Admittance 

Control. The characteristics of the compliant behaviour can be adjusted through parameters for 

the virtual inertia, dampers and springs (see Figure 52). 

 

Figure 52 Illustration of virtual spring, damper in force control and target position in position controller. 

The virtual spring and damper indicate the PD controller at the inertia of the end-effector. While 

spring acts like proportional controller, the damper acts as derivative controller. The proposed 

controller will not only control the target force, but also trajectory the end-effector from original 

position and pose (x, y, z) to the target position and pose (xd, yd, zd).  

𝑭𝒔 =  𝒄 ∗ ∆𝒙   (56) 

𝑭𝒅 =  −𝒌 ∗ �̇�   (57) 

𝑭𝒊 =  −𝑰 ∗ �̈�     (58) 

𝑭𝒏𝒆𝒕 =  𝑭𝑻𝒂𝒓𝒈𝒆𝒕 + 𝑭𝑴𝒆𝒂𝒔𝒖𝒓𝒆𝒅 +  𝑭𝒊 +  𝑭𝒔 +  𝑭𝒅 (59) 

𝑭𝒄 =  𝑭𝒆𝒙𝒕 =  −𝑲𝒑 ∗ 𝑭𝒏𝒆𝒕  − 𝑲𝒅 ∗ 𝑭𝒏𝒆𝒕
̇  (60) 

 

Where𝑭net is the net force from target force, sensor measured force and all virtual spring and 

damper force. Fs  is the force from virtual spring, which is also proportional controller. c 

indicates the stiffness of virtual spring. Fd is the force generated from the virtual damper. k is 

the damping factor. Fi is the force generated through accelerating the apparent mass of the end 

effector. I is the inertia of the end-effector. 𝑭c is the control force, it equals to the external force 

𝑭ext. And they equal to a PD controller (see Figure 44). The control force will be calculated at 

each joint and then the demand position will be calculated using IK solver. 

In the controller design, both open-loop and close-loop are considered, since there are scenarios 
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such as when the compliance controller is applied, but the end-effector is still not contacting 

with the rigid surface. In such scenarios, the open-loop controller will be used, and it will be 

switched to close-loop controller when contact is happening. The virtual model in this controller 

is important, which can be used to calculate the demand position for compliance control. 

Because the movement during compliance control is not straightforward, especially when 

applied dynamic forces, the virtual model of the controller can calculate the virtual  

Stiffness in each Cartesian dimension. It balances force-torque measurements with motion 

offsets. The higher the values, the higher the restoring forces (and torques) when trying to move 

the robot's end-effector away from the commanded target poses.  

The controller will set the “wrist_3_link” as the end-effector link. The end-effector link will be 

set and all the calculations will be implemented based on the TF tree relationship from the base 

link to the end-effector link.  

The compliance reference link will be set again as “wrist_3_link” as the compliance contact 

force will be measured on this link and also the contact force and calculated acceleration will 

be assigned on this link.  

To implement controller in ROS, it has to be set the joints and PD controllers for the end-

effector. The p and d gains determine the responsiveness in each individual Cartesian axis. The 

higher these values, the faster does the robot move in response to the force-torque and motion 

inputs. For all UR robots, shoulder_pan_joint, shoulder_lift_joint, elbow_joint, wrist_1_joint, 

wrist_2_joint, wrist_3_joint are all the links used in simulation and real-world control. In end-

effector link, there is a PD controller to make the external force to be 0. PD controllers dropped 

integral controllers since the control are continuous and integral factor is not used. It increases 

the efficiency and stability, since it decreases the calculation and without noise disturbance in 

the system, which is mainly caused by integral term. Integral windup can result in poor 

performance or even instability of the control system. It can be also prevented by using PD 

controller.  

There is a solver used in the PD control, the solver setups include error_scale, iterations. 

Error_scale sets the scaling factor for the error in the solver. It determines how much the error 

affects the control output. In simulation, for example, the scale is set to be 0.01. Iterations 

parameter specifies the number of iterations performed by the solver during each control cycle. 

More iterations generally result in a more accurate solution but may increase computation time. 

In your configuration, the solver performs 10 iterations. 

Moreover, it is even more important to have the data interface between the controller and the 

measured values. In Gazebo, there is a plug-in UR5e simulated FT sensor- wrench. The sensor 
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can calculate the physics contact force based on all the physics settings, such as the rigidity of 

the objects.   Target wrench is a rostopic that can be used to set the target contact force. The 

type of the rostopic is geometry_msgs/WrenchStamped (see Figure 53). 

 

Figure 53 Target wrench rostopic publisher. 

To achieve the measured force, a simulated FT sensor needs to be inserted in the urdf file. This 

involves adding a sensor link and defining the sensor's properties such as its mass, inertia, 

geometry, and frame relative to the robot's base link. The plugin should subscribe to Gazebo's 

physics engine to obtain information about the forces and torques acting on the sensor link due 

to contact with objects or other physical interactions in the simulation. Within the Gazebo 

plugin, publish simulated force and torque measurements as ROS topics using Gazebo's ROS 

interface. These topics will contain the simulated force and torque data generated by the plugin, 

which can be used by ROS controllers or other components in your simulation setup. 

The controller is implemented via C++ code in ROS. The pseudo code for the solver part is: 

1: procedure Solver (xd, q0, ∆𝑡, N) 

2:    𝜖0 = 0 

3:    for i = 1 to N, do:  

4:        𝜖i = xd  - g(qi-1) 

5:        𝜖�̇�= (𝜖I - 𝜖i-1)/ ∆𝑡 

6:        Fi = Kp* 𝜖𝑖  + Kd*𝜖�̇� 

7:        𝑞𝑖 ̈ =  𝐻−1(𝑞𝑖−1)𝐽𝑇(𝑞𝑖−1)𝐹𝑖 

8:        𝑞�̇� = 0.5 𝑞𝑖 ̈ ∆𝑡 

9:        qi = qi-1 + 0.5𝑞�̇�∆𝑡 



Z. Wang, PhD Thesis, Aston University 2024 

88 

 

10:    end for 

11:    qd = qN 

12:    return qd 

13: end procedure 

where qd is the demand motion, q0 is the original joint position, ∆𝑡 is the time step, N is the total 

number of steps. 𝐻−1 is the inverse matrix of IK transformation. 𝐽𝑇 is the transformation of 

Jacobian matrix. Kp , Kd are the parameters of PD controller.  

In this study, the compliance controller will be used for the contact force control, in addition to 

that, a RL optimised controller will be used to control the trajectory. The target of this study is 

to combine compliance controller with RL algorithm, since compliance controller focuses on 

force control and path control, while RL will affect the trajectory planning based on the real-

time situation. RL controller will only adjust the moving velocity and orientation adjustment 

during scanning, therefore, the compliance controller is used as a basic lowest-level controller 

(see Figure 51). For the RL task, during each training session, the RL controller will be using 

the force controller approach the trajectory and then use the compliance controller to implement 

scanning actions. The RL controller will then optimise the parameters during the compliance 

scanning (see Figure 54).  

 

Figure 54 Working diagram of RL controller and compliance controller. 

 

4.3 Simulation and verification 

To implement the controller in this study, ROS Gazebo simulation and real-world validation 
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tests were carried out. To validate the compliance controller, the robot model is implemented 

in the simulation environment which is similar to the real-world lab. Set a starting point with 

the x,y coordinates (0.3, 0.4) and use the force controller to approach the table surface. Set 

target force as force_z is -50N, after the end-effector hit the surface, switch to compliance 

controller, then keep target force as -50N and start the flat surface scanning.  

As shown in Figure 55, the working scenario is firstly launched via roslaunch. It will deploy 

the world (which includes light, physics properties), the table, the object and the robotic arm. 

RViz will be also started from the roslaunch, which can be used to plan trajectories, however, 

python code is used for a series of activities, so RViz is currently not used. After Gazebo is 

started, a python code will be ran via rosrun. It will guide the end-effector to the position x=0.3, 

y=0.4, and make the pose as perpendicular to the table surface. Subsequently, switch the 

controller to force controller, which will only control the target force. The currently used 

controllers can be checked in the ROS tools “rqt”, in which there are many more tools, such as 

joint trajectory controller, TF tree, rostopic curve plot, etc (see Figure 56). In the python code, 

the condition will be evaluated, if the contact force in the z direction exceeds -10N, it means 

the end-effector is contacting the physical table surface, then the compliance controller and 

joint controller will replace force controller. It should be noted that when applying force 

controller, it is not possible to use joint controller, since the control principle is different. After 

the compliance and joint controller are switched, target contact force can be set again (see 

Figure 57) and the end-effector can make the target trajectory to target position and pose.  

 

 

Figure 55 Screenshot of working scenario in Gazebo. 
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Figure 56 Screenshot of rqt tools in ROS. 

As shown in Figure 57, the end-effector of the robotic arm has contacted the surface and it is 

still normal to the surface. Subsequently, the end-effector can be manoeuvred to target position 

(see Figure 58). The end-effector moves from position 1 to position 3, the straight line action 

distance is 20 cm. With the pose of the end-effector staying the same, the end-effector keeps 

the contact force during the movement.  

 

Figure 57 The end-effector contacts the surface of table and compliance controller started to function. 
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Figure 58 The surface scanning on the flat table surface. 

There are some parameters in the controller that need to be modified to tune the controller. As 

shown in Table 7, the orthogonal experimental method was used in this test. A rough tuning 

was implemented firstly and then a finer tuning of the parameters was carried out. In the rough 

tuning, the stiffness of each joint was set the same. Only the gains of “trans” and “rot” of these 

joints were adjusted. For PD controllers of each joint, they still stayed the same for every joint. 

Error scale and iteration number of the solver are also tuned to get better results. The average 

and variance of the control results were logged to compare the results. 30 seconds of the logged 

data in the stable stage will be used to calculate the average and variance from each log. The 

final experimental result was shown in Figure 59.  

Experiment 3(E3): tuning parameters for the compliance controller to maintain constant contact 

force.  

The data in Table 7 was selected from whole simulation experiments. It can be seen that when 

the stiffness is too small, the end-effector cannot reach target wrench, moreover, the stability 

was very poor. Too big stiffness will lead to contact force overshoot. A bigger PD controller 

parameter will lead to unstable performance. And the selection of iteration in the solver is very 

impactful on the result. After all the experiments in the simulation environment, the final 

parameter selection was confirmed for the controller. The average contact force is close to the 

target wrench, and the variance is small comparing to the results from other parameters.  
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During the movement, the FT sensor will measure 6 DOF force and torque. As shown in Figure 

59, 3 directions of force data were logged. After logging, the statistic is calculated. The average 

value of contact force is -51.062N, the variance is 2.507. 

 

Figure 59 Force curve of the end-effector during movement. 

As shown in Figure 59, the contact force will be switched to -20N when it is approaching the 

surface, using force controller. When contact force is smaller than -5N, the target wrench will 

switch to -50N. Then, after switch, the end-effector will be moving to the target position (as 

shown in the vibration section in the curve). To compare the control parameters in the controller, 

the results can be seen in Table 7. Because the tasks in this study are not related to complex 

Table 7 The comparison of the control parameters of compliance controller. 

 Stiffness PD Error 

scale 
Iteration 

Result 

 Trans Rot Trans Rot Average Derivative 

1 500 20 0.005 0.1 0.001 2 36.539 26.019 

2 500 20 0.05 0.1 0.001 2 51.558 29.310 

3 500 20 0.005 0.1 0.01 2 54.557 3.607 

4 500 50 0.005 0.1 0.001 2 57.462 6.063 

5 2000 20 0.005 0.1 0.01 2 64.691 7.932 

6 1000 20 0.005 0.1 0.001 2 57.023 7.118 

7 1000 20 0.005 0.1 0.001 10 60.565 7.464 

8 1000 20 0.005 0.1 0.001 20 53.839 7.464 

9 1000 20 0.005 0.1 0.001 25 51.062 2.507 
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trajectories, the action space is limited to the table surface. The singularities were not studied 

in this article.  

The contact force was also measured during the transition stage (see Figure 60). Once the actual 

contact force is smaller than -10N, the target wrench switches to -50N, and the compliance 

controller tries to achieve the target contact force. The system vibrated for 0.4 seconds, the error 

was ±20N, and then the end-effector settled down.  

 

Figure 60 Force curve during the transition phase. 

It can be seen, when the actual measured force-z reached -10N, the target wrench will be set to 

-50N. The reason why the target wrench for force controller is -20N is that the force controller 

has a bigger acceleration for the end-effector. If target wrench is set to -50N, then the end-

effector will have a bigger speed touching the table, which is not safe for the transducer during 

scanning. The oscillation period took only 0.4 seconds.  

To validate the controller, the compliance was also applied on the real arm (see Figure 61). The 

similar movement was tested, trajectory along y-axis for 20cm. the force data logging curve is 

shown as Figure 62. The average of the measured force was 48.5 N and standard deviation 

1.742. 

 

Figure 61 Photo of real arm using compliance controller. 
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Figure 62 Force curve for compliance controller of real arm. 

As can be seen, the real arm performance is not ideally the same as the simulation. But the 

target force is met, and it can be seen that it took 1 second for the real arm to reach the target 

wrench, which is close to the simulation. 
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5. Path Planning, Optimisation of Trajectory Planning 

Since the target of this study is to implement robotic surface scanning on unknown surface of 

the objects to be remanufactured, it is important to implement reinforcement learning (RL) in 

the robotic scanning process. The reasons to implement RL are as follows: the objects in robotic 

UT in remanufacturing are often unknown shape problem in industrial UT. And since UT is 

very sensitive to the movement of the transducer, robotic UT needs the probe to be contacting 

the surface of the object and a constant contact force is needed to make sure the probe is sticking 

to the surface to get better reflection of UT. The control of robot which manipulates the probe 

is very crucial to the inspection results. Therefore, it is a dynamic optimisation problem for the 

robotic control without any prior knowledge. Comparing to normal machine learning methods, 

which need massive tagged data that is normally not available for certain tasks, RL can learn 

from the interaction between the agent and the environment and evolve during training, 

therefore, it is the choice for this problem. Since UT is a mature technique in industry, the UT 

quality is not considered in this study. 

Robotic arm is good at implementing repetitive tasks, UT scanning in manufacturing industry 

is a suitable job for it. Since the UT in industry is straightforward, no complicated path planning 

is needed. And since the objects in industrial UT are often rigid body, while the target in medical 

UT is soft object, such as human body, the dynamic contact force and deformation problem is 

easier to solve. The only need for robotic tasks is to plan the control of the robot according to 

the profile of the object. However, the UT on industrial object is still challenging, it is a multi-

objective control, i.e., the contact force, the orientation of the end-effector and the overall 

scanning trajectory should be all evaluated and controlled in the real-time.  

Since the components under remanufacturing are within various types of shapes, furthermore, 

the components under remanufacturing are mostly used for a long time or under heavy loads, 

the shape and size are different from the original one. So, the planning the trajectory of robot 

with original CAD model is unavailable, for example, in die casting, the average experimental 

tool wear is over 1.5mm 182, which is enough to affect UT inspection. Even with CAD model, 

the control of robotic scanning at extreme situation is challenging, for example, at the edge of 

the object. Computer vision was planned and tested to reconstruct the object and plan the path, 

but since most of the industrial components are made of metal, the reflection of illumination 

affects the results of CV reconstruction results. Other metrology method, such as, 3D scanner, 

can be implemented to achieve robot trajectory path, however, the equipment needed is 

expensive, and the operation of equipment is experience-based. The mis-operation will lead to 

noise in result and result in errors or distortion in robotic trajectory. The reflectivity of the 

surface and the condition of environment also have effects on the results of metrology. 
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Therefore, contact-planning, which is similar to manual UT, is planned in this study, as it saves 

extra sensors and is not influenced by ambient environments 183 . 

Several methods in prior literature have been considered for controlling algorithm consideration 

(see Figure 63). The traditional PID control is easy to implement, but it is unsuitable for 

unknown surface scanning, since it can only adjust the contact force, and the overshoot always 

happens in minor actions. For orientation, it has no capability to control it with multiple inputs, 

i.e., forces and torques. Moreover, since PID controller only has one set, or more sets of linear 

model control tuning parameters, it is lack of interaction with the special environment 184. PID 

is also difficult to handle real-time tasks, therefore not suitable for non-linear complex tasks.  

Fuzzy control can be used combining the PID control or other algorithms, but there is 

probability to malfunction. And the drawbacks of fuzzy control are the randomness of the 

control, the sensitivity to disturbance and the limitation in complex system 185.  

Model predictive control (MPC) can be also used to control orientation of robot. However, the 

tuning of MPC parameters has been always difficult and like a black box. The calculation 

complexity makes the time delay, and this may cause communication problem. MPC is also 

sensitive to disturbance, which will increase the instability of system.  

Sliding Mode Control (SMC) can be also used for the task, it is used to control the system along 

the sliding surface and is well-known of its robustness of performance. However, the tuning of 

SMC is also experience-based, and it often causes chattering in robot trajectory 186.  

Optimisation algorithms, such as, particle swarm optimisation (PSO) is also used in orientation 

optimisation tasks. PSO can provide decent results, but it suffers from initial conditions, such 

as, the positions and velocities of the particles. The algorithm depends heavily on 

hyperparameters, but finding optimal parameters has been never a simple job. Traditional 

machine learning combined with computer vision has been tested, but since the machine 

learning needs a large database to train itself, it is not suitable for what we are expecting, a 

quick adaptive, quick capable solution for a certain task which is like a black-box of scenario. 

The overall brief research topics bibliographic coupling network on robotic orientation 

optimisation in Web of Science and Scopus database was built using VOSViewer (shown in 

Figure 63). 
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Figure 63 Network of literature on orientation optimisation of robotic arm. 

5.1 Path planning for robotic scanning 

The main topic in this study is the optimisation of trajectory planning, but path planning is the 

basement of trajectory. The path planning is not studied, so it is set to be a simple strategy. 

However, it is still not easy to plan the path of robot for any task, for example, the UK scientist 

is still working on landing on the moon, which is far more difficult than this study, but still, the 

path planning on an unknown object is always difficult.  

For the path planning on the topic of UT or additive manufacturing, there are some classic path 

pattern used: raster, spiral, zigzag, hybrid, grid, triangles, etc 125, 187. There can be possibilities 

to study energy-saving path planning strategies in future study, however, due to the limits of 

the article, classic path planning methods are used in this study. Raster path pattern is based on 

planar ray along one direction, it is simple, efficient, and robust to cope with any boundaries. 

However, due to the difference in the shapes, classic raster cannot be used in the scanning of 

dies in this study, the circle (spiral) path is used. The selection of path can be also studied in 

future studies. 

To make the path planning simple for the scanning task, it was planned like this: The target 

object will be located in the assigned workspace (object detection can be implemented but not 

for now). Based on the specific situation, the starting point location of the scanning can be 

assigned based on the location of the object. The starting x,y coordinates of the end-effector 

will be assigned to the robot. Then, the z coordinate will be confirmed by using compliance 

controller. The controller will bring the end-effector to the surface of the object and apply target 
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contact force, when the target force is met, the z coordinate will be the final starting position. 

After this starting position, a series of path points will be assigned to the robot according to the 

shape of the object (shown in Figure 64). In this study, raster is assigned for rectangle shape 

object, and circle path is assigned for circle shape object.  

 

Figure 64 The raster path planning on wing surface in simulation 

For example, in the task of scanning on a curved wing surface (shown in Figure 65), raster path 

planning is used. To scan the biggest area on the wing, the starting position is set to be (x=0.3, 

y=0.4) of the base link of the robot. The end-effector of robot is set to be perpendicular to the 

x,y surface to approach the object.  

 

Figure 65 The raster path planning on wing surface in simulation.  

As described, the path is not completely planned, as the compliance controller will force the 

end-effector to stick to the surface of the object. Therefore, the z coordinate is not planned pre-
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hand. However, the x,y coordinates can be planned since it is the path points. During the 

implementation of these path points, the compliance controller will plan the z coordinate 

dynamic. For the die object, the scanning path of radius of 5cm can be planned (see Figure 66). 

For future research, it can be implemented that shape recognition and adaptive path planning.  

 

Figure 66 The circle path planning on die surface.  

For future reconstruction work, it can be done as follows: since the position of the base_link is 

fixed. The position of the end-effector will be calculated by the base_link position and the end 

of wrist_3_link. As the end-effector moves, the position of the tip of the end-effector will be 

logged. Since the feature of the compliance controller, it applies contact force to the surface, it 

makes the end-effector stick to the surface, the trajectory of the tip of end-effector can be 

reconstructed as the surface of the object. The target contour and actual trajectory are shown in 

Figure 67.  

  

Figure 67 The surface contour of the die surface, left: trajectory points on die surface, right: coordinates 
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of contour. 

As can be seen from Figure 67 , after the simulation, the actual trajectory is deviate from the 

target contour, i.e., the actual points on the die surface. The average difference between the 

actual end-effector trajectory and the target contour is 0.5506mm, the variance is 0.4287. The 

difference is acceptable, and it can be used in future research to make a 3D reconstruction of 

the object combined with UT results. 

5.2 Implementation of reinforcement learning with ROS 

At first place, it should be considered where to implement the RL algorithm. It is also about 

why RL should be used. In some prior literature, the application of RL was not clearly explained 

188. Therefore, the details of RL should be interpreted in this work. Someone will suspect the 

use of RL, for example, if we check Figure 50, the robot can work well on curved surfaces 

without RL. However, RL is not for simple jobs, when the task is not only simply scanning but 

to adjust on different shapes and even unknown shapes, RL can be implemented. For example, 

in the intermediate stage, a target is set for the searching scenario, a target position is set for the 

robot that if the end-effector reaches the target position or gets closer to it, the reward will 

increase. This strategy can be also used in real UT scanning. In the real task of surface scanning, 

the scanning velocity selection and the dynamic orientation optimisation should rely on RL 

algorithm to adapt on different objects (shown in Figure 68), since it is almost impossible to 

manually tune the control parameters. 

In this subsection, a first-stage RL task with robotic arm will be realised to reach a target in the 

workspace. To implement RL, the whole RL structure should be understood. At first, the 

movement to be trained should be a Markov decision process (MDP), in which the previous 

action selection will have influences on next-step actions. In our case, the surface scanning 

using UT is a very good example of MDP, since the whole process is a continuous, dynamic 

action sequence. The actions, in this study, is the movement of the robotic arm. The robotic arm 

will interact with the environment around it and the reward will be evaluated according to the 

status of the interactions. The environment provides a scalar feedback signal, i.e., reward, to 

the agent after each action. The reward indicates how well the agent is performing in achieving 

its goals. The “agent” in this case is the robotic arm, the environment is the dynamics and 

physics of the robotic arm system. It defines how the state evolves in response to actions taken 

by the RL agent. The environment also provides feedback to the agent in the form of rewards, 

which the agent uses to learn. The states are the current situation or configuration of the robotic 

arm. The RL agent receives observations from the environment, which make up the state. 

Observations are used to determine the system's current state and are crucial for decision-

making. These could include information such as joint angles, end-effector position, velocity, 
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and other relevant parameters of the robotic arm (shown in Figure 69). During scanning, all 

contact forces, transducer orientations, and moving velocity should be considered to maintain 

a good UT inspection. These parameters will be the criteria for calculating rewards in RL.   

In this study, the combination of ROS+ Gazebo + Moveit + OpenAI_ros + Stable_baselines3 

packages is used with Python code. This will be used to establish the agent and environment. 

The ROS is the middleware of the simulation model and the controllers. Gazebo is the 

simulation environment, within which the robotic arm can move with physical features and 

interact with environment. Moveit is a solution for the inverse kinematic model, in which the 

links and joints of the simulation model can be defined, and the method used for inverse 

kinematic can be defined. OpenAI_ros is a package created by the ‘Construct’ company from 

Spain 189, 190. The package can communicate between ROS Gazebo and Gym environment from 

OpenAI company. The advantages of the package are that it has interface with pre-built ROS 

environment, instead of Mujoco. Since in surface scanning case, customised controller should 

be used in simulation and real-world to make the robotic compliance with the surface, Mujoco 

cannot do this. Mujoco is a light-weight simulation software which is more focused on RL 

training in simulation, however, it is difficult to build customised controller and implement 

 

Figure 68 The implementation of RL in the flow chart.  
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control in the real-world. OpenAI_ros has a clear RL structure, i.e., robot environment and task 

environment. It has multiple modular and examples to reference to build customised 

environment. It is compatible with high-fidelity simulation. Stable_baselines3 packages are a 

commonly used reinforcement learning algorithm library. It has up-to-date RL algorithms 

library and interfaces to gym environment and tensorboard evaluation tool. There are many 

codes of the latest RL algorithms available in this library. The overall proposal of RL in this 

study is shown in Figure 69.  

 

Figure 69 Structure of implementing the trajectory optimisation algorithm using RL. 

The structure of realising RL with openai_ros is shown in Figure 70. The main code of RL in 

openai_ros uses OpenAI gym to build training environment and stable_baselines3 library to 

choose RL algorithms to train the agent. Gym library is created by OpenAI company. It has 

been updated to Gymnasium in 2021. It is an open-source Python library for developing and 

comparing reinforcement learning algorithms by providing a standard API to communicate 

between learning algorithms and environments.  

The simulation environments include classic RL scenarios, such as, robot problem and video 

game problem. Each environment has a well-defined API with methods like reset (to start a 

new episode) and step (to take an action in the environment). It serves as a platform which 

defines the agent, the environment, the action spaces and observation spaces. With these 

settings, different RL algorithms can be implemented and compared upon this platform. The 

detailed settings of trainings and configurations of algorithms are designed in the training script. 

In this study, ROS is linked to gym via API interface. After the launch of the code, the gym 

environment for the robotic arm is registered via the registration function in 

gym.envs.registration library. On the other hand, stable_baselines3 library is a set of high-

quality implementations of reinforcement learning algorithms in Python, built on top of the 

PyTorch deep learning framework. It has the compatibility with gym library and Pytorch. 
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Except for algorithms, stable_baselines3 also has the evaluation, callback system, logging 

monitoring, multi-processing, etc.  

The whole ROS package is still launched by a roslaunch file. Within the roslaunch file, an 

overall python code will be included, which will also link to the task environment. The gym 

environment is launched in the launch file and the main training python file at first. With the 

help of gym library, the working environment can be established. “gym” is an open-sourced 

library launched by OpenAI company. In gym, all the reinforcement learning algorithms can 

be used in the common ground called “environments”. However, the environments do not have 

accesses to other simulation environment, such as Gazebo. It needs the interface like 

Openai_ros, which will build gym environment with detailed settings in ROS. When training 

starts, the script loads the task environment in Openai_ros firstly.  

In task environment, there are two main script files. One defines the rules of the RL, e.g., reward 

function, loss function. The other file defines the detailed actions and the reset_world 

movement which also includes the interactions with Gazebo software. The robot environment 

is loaded within the task environment. The settings of the robot are defined in robot 

environment. Subsequently, the RL code loads the robot environment, which contains the 

launch file loading the robot and world and the original position and orientation of the robotic 

arm. In the robot environment, it provides the complete integration between the Gazebo 

simulation of the robot and the OpenAI algorithm environments. Finally, the robot description 

urdf file is loaded in a launch file. The Gazebo environment will connect the tasks to the Gazebo 

software. The Gazebo environment is started at the start of a training episode, it will be stopped 

at the end of all the training episodes.  

 

Figure 70 Structure of openai_ros package realising RL in ROS. 

To implement RL in robotic tasks, a simplified task with a UR5e robot is implemented at first, 

which is only for the robot to reach a target goal using RL. In this study, task environment is 

always defined as “move”, within this environment, a class defining the task environment is 

coded. At first, the directory of the robot environment is defined. With this launch file, the 

objects in the world which the robot will simulate in is started, currently, the robot model is not 

spawned. The parameters of the RL parameters in yaml file are also loaded via loading the yaml 
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file. In the yaml file, the moving space limitations of the (x,y,z) coordinates of the robot are 

defined. The robot will not move out of the space.  

In the setting of RL parameters, the delta movement of each time episode (moving speed) will 

be defined, for example, 0.05, means in each time step, the certain joint of the robot will move 

for 0.05 m. This parameter will also determine the resolution of the movement in the task. In 

this case, discrete action space and observation space are defined using gym.spaces. The 

number of actions is defined here, for example, if we define movement along z-axis and the 

delta displacements are 0.05 and 0.1, then they are two actions. Each action should be defined 

specifically, and the total number of the actions must be consistent with the real number. For 

the target searching task, the “acceptable_distance_to_ball” is another important parameter that 

can determine, it is used to evaluate if the agent has reached the target. If the real distance 

between the end-effector and the target ball is smaller than this acceptable distance, it means 

the robot reaches the target, the “done_reward” can be earned by the agent. This is also related 

to the difficulty of the tasks. The reward mark when moving closer to the target and reaching 

the final target will be also set. The observation is acquired to calculate the reward, the 

observation is the location of the end-effector. With the location information, the distance 

between the end-effector and the target ball can be calculated.  

In this study, a special code file is written to define the detailed actions. The feature of this 

study is that the RL can be implemented in the Gazebo environment, which has not been used 

by many researchers. To demonstrate and test the methodology, a simple environment was 

established at first. A red cricket ball is fixed at (0.2, 0.2) on the ground of the simulation world, 

the robotic arm is set to have two actions, which are moving the gripper up and down to reach 

the ball (shown in Figure 71).  

The overall main code is a training script which contains the interface with all “environment”-

s. With the integration of gym and stable_baselines3 libraries, it can implement the RL 

algorithms from stable_baselines3 library into the gym environment. The main code initiates 

the node for the RL training (“ur5e_train_all” node in Figure 71), it uses gym to start OpenAI 

environment. gym.make is the main function that is used. For example, gym.make("CartPole-

v1") creates an instance of the CartPole environment, which is a classic control problem in 

which the goal is to balance a pole on top of a cart by moving the cart left or right. The 

gym.make() function returns an instance of the environment class, which provides methods for 

interacting with the environment, such as reset(), which resets the environment to its initial state, 

and step(), which takes an action and returns a new observation and reward. In this study, before 

making the OpenAI environment, the number of max episodes steps is defined in the 

“RegisterOpenAI_ROS_Env” function. When applying RL algorithms, such as PPO, it can be 
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more efficient to train agents on multiple environments in parallel. In such case, 

‘DummyVecEnv’ class provides a simple way to create multiple copies of an environment and 

manage them together. It is a class from stable_baselines3 library, which vectorized training, 

where agents can take actions on multiple environments at once and receive feedback in parallel. 

The number of the parallel environments can be defined with the “num_envs” function. 

Experiment 4(E4): tests for implementing RL in ROS simulation. This is to verify the proposed 

method can be used to communicate between ROS and RL libraries. For the task environment 

of the ball searching task, the definitions of RL algorithm are set up in a code file. For example, 

the set of actions is defined here, the actions include moving up, down, left, right, forward and 

backward. For each action, the delta distance can be defined in yaml config file. The reward of 

RL is calculated according to the distance between the end-effector and the target. The reset of 

the world can be defined using the initial states of the joints. For details of movement: it defines 

the action space, which has the x-axis limitation from -0.5 to 1, y-axis: -0.5 to 1, z-axis, 0 to 1. 

“move_tip” function which contains how to move the end-effector. In this study, move_tip only 

move the position of the end-effector tip, but not the orientation. In this searching case, it can 

change the moving speed of the robot, modify the factor of orientation adjustment. Reward 

definition: if it moves closer to the target, reward +10. If the agent reaches the target, the reward 

+100. The reset action rules are also defined in the task environment, when the agent reaches 

the target, it should go back to the home position. Other functions, such as distance calculation 

between target location and tcp, if the tcp is in the working space, are defined.  

 

Figure 71 Screenshot of UR5e in Gazebo simulation using RL algorithm. 

For the robot environment, the main function of this environment is to link the robot Gazebo 

simulation and gym library. Moreover, the more detailed setups or special actions for 

customised robots in the task environment can be also linked to this environment, so everything 

can be linked in the chain. In the definition of the robot environment, the robot model should 
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be spawned into the simulation world firstly, which is realised via a python class.  

A class ROSLauncher is used to launch the Gazebo environment. This class function is the 

interface between roslaunch and gym environment. Then, an entry point to the Gazebo 

simulation should be set in the function. This entry point is the interface between the robot 

environment and the task environment. The initial settings of the robot environment should be 

loaded, for example, the “reset_controls” can be set to “False”, then when the initialisation of 

the robot environment, the controllers of robot will not be reset. The reset control function 

should be also set with extra care, during reset, if a related controller has been stopped, it should 

be switched on again after the reset. Otherwise, the related control function cannot take place. 

The RobotGazeboEnv class function is inherited from gym.env, which defines the standard 

interface that an environment should implement. It includes methods such as reset, step, and 

properties like observation_space and action_space.   Besides launching the robot description 

file, the class also defines the initial states of the robot, i.e., the joint states. The class also 

defines the actions, such as check all the sensors in the robot. The limits of the joints positions 

should be set carefully, if the limits are too small, the robot will not move to the target location. 

The position limits of “elbow_joint” in this study are set to [-360°, 360°] in the robot description 

file. In the robot environment, the function of task environment can be imported, for example, 

the initial state of the robot.  

The initial state of the robot environment is defined to make the robot original pose, which 

include the start of launch file, the load of config parameters. The working directory of the 

robot is defined in the robot environment. The states of all sensors and all joints are checked in 

robot environment. Subsequently, the Gazebo environment will be started, the movement of 

the robot will be loaded. After the finish of the task, the Gazebo environment will be paused 

and the loop of task will start again till the training target is reached. 

For the OpenAI-ROS Gazebo simulation environment, a gym RL simulation environment 

should be established in Gazebo using gym.make function. When coding, the max episode_step 

can be defined for the gym make process. “max_episode_steps=10000” sets the maximum 

number of steps which allowed the agent in an episode of the registered environment to reach 

the target. Episodes are typically used in reinforcement learning, and limiting the number of 

steps helps control the duration of an episode. During training or evaluation, the environment's 

step function is called at each time step. The episode continues until one of the following 

conditions is met: the agent reaches a terminal state (e.g., goal achieved or failure). Or the 

maximum number of steps specified by max_episode_steps is reached. 

The main code of RL training of UR5e can be shown in Figure 129 in Appendix B. In the first 

18 lines of the code, related libraries and functions are imported to the main code. 
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Stable_baselines3, openai_ros package are imported. The working directory is assigned to the 

directory of the code located. The training model is defined, as in this study, the method used 

is PPO. With the “StartOpenAI_ROS_Environment” function, the initial gym environment for 

the robot in Gazebo can be established. The “MlpPolicy” is used for RL tasks except for images, 

CnnPolicies are for images only. In each RL training, there are time_steps and time_episodes. 

Each time_step is structured with pre-defined number of time_episodes. For example, if 100 

time_steps with 1000 time_episodes, the RL agent will be trained 100*1000 times. During this 

time, the progressive reward of each time_step can be evaluated. Except for the code of RL 

training, the limits of training are also very important (see Figure 130 in Appendix B).  

In the config file, the most important parameter is the “acceptance distance”, this parameter is 

to define how the action of the agent can be evaluated as a “done”. The number of decimal 

precisions should be also set up in config, this will affect the calculated distance between the 

end-effector and the target location. The training of RL agent can be ended by several methods, 

for example, the most normal method is to define the total timesteps of the training process, 

once the total number of training time steps is reached, the training will be ended. Another 

method is to set a certain level of reward, when the reward is reached, the training will be ended. 

However, since the reward can be random and sometimes it gets very outstanding, the reward-

stopping criterion is not used in this study. The total_timesteps parameter in the learn method 

specifies the total number of training steps that the algorithm should perform during training. 

The actual meaning of a "timestep" can vary depending on the environment, but it generally 

corresponds to one interaction of the agent with the environment. Every time when the agent 

reacts with the environment, it is a timestep, and an episode can be a series of time step. When 

the episode ends, the agent will reset to original position and start over again.  

The training data is recorded by the code “tensorboard_log”. In stable_baselines3 library, extra 

setup of logging data should be made. Data call back should be defined as a list. 

“n_eval_episodes” and “eval_freq” are defined to evaluate the performance of agent. The 

n_eval_episodes parameter is an integer that specifies the number of episodes to use for 

evaluation of the agent's performance. For example, if the n_eval_episodes is set to be 10, the 

evaluation will be carried out in 10 episodes. During evaluation, the agent's policy is used to 

control the environment without learning, and the resulting rewards are used to assess the 

agent's performance. The average reward during the 10 episodes will be calculated. The time 

spent to complete each episode is also recorded.    

The eval_freq parameter is an integer that specifies the frequency at which evaluation is 

performed, in terms of the number of training episodes completed. In this case, evaluation is 

performed every 100 episodes of training. In the setting of RL, “max_episode_steps” is a 
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parameter that is often used in reinforcement learning to set a maximum length for each episode. 

It specifies the maximum number of time steps that can occur during an episode before the 

episode is terminated. If the conditions of termination of an episode are met, the episode will 

be finished earlier than plan. So, as the survival of the agent becomes easier, the length of 

episode should decrease. Another problem happened during the simulation in Gazebo, that the 

simulation sometimes failed due to error “the start motion planning tree could not be found”. 

Therefore, a reset call back was defined during the training, to reset the Gazebo environment 

every time when the time_step ends. To validate the code program of RL, testing over 24 hours 

has been carried out. To visualise the log data, use the command “tensorboard --logdir ” with 

the directory of the log data. The visualisation of the log is shown in Figure 72. It shows that 

the mean reward of training episode is increasing along the time steps. It can be seen in Figure 

73, that the end-effector is approaching to the target ball using “moving-down” action. In this 

study, since the target is an “overall” target, such as, reaching target, the reward curve along 

episode makes more sense.  

 

Figure 72 Simulation result for the RL algorithm. 

 

Figure 73 Training result of the RL agent reaching target. 

In RL training of simplified task, the performance of RL agent may not be improved due to 
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various reasons. For example, the setting of reward function can be improved to make it more 

specific. And the criterion of the success of the task should be also well prepared in case the 

target is reached too soon.  

The main process of RL is to train and validate the agent to fine-tune the training policy. Also, 

focus on the reward structure RL design policy architecture and continue the training process. 

RL training is time-intensive and takes minutes to days based on the end application. Thus, for 

a complex set of applications, faster training is achieved by using a system architecture where 

several CPUs, GPUs, and computing systems run in parallel. 

To evaluate RL algorithms, the evaluation methods need to be improved since the inconstancy 

of the metrics. The inconsistency of performance stems from the use of flawed evaluation 

metrics. Normally, evaluation is through each episode, which contains many timesteps 191. In 

this study, the average reward in a time step will be used to evaluate the performance of RL 

algorithms. 

To save the RL model, a customised code section should be designed. Since the original 

model.save function can only save the model after the training is finished, and the training 

environment sometimes collapses due to heavy computing load, the model cannot be saved at 

the end of the training. A callback function is inserted in the model training function to save 

the RL model in every 100 episodes. 

In this subsection, it was proved that the customised platform with ROS+ Gazebo + Moveit + 

OpenAI_ROS+ Stable_baselines3 can implement RL algorithms in ROS Gazebo environment. 

The simulation ran smoothly, and the reward can be evaluated using the tensorboard log. The 

simplified RL task will be extended to surface scanning in the next subsection. 

5.3 Simulation model with RL algorithm 

For implementing surface scanning tasks using RL, a flat surface scanning task is carried out 

at first. This task is to validate the basic surface scanning implementation of RL robot model. 

once the flat surface can be scanned by the model, the curved surface can be implemented for 

the next step. A table is spawned in the world at first. The target ball is located on the table 

surface to mimic the scanning target on the table (see Figure 74). In this scenario, the ball 

indicates the moving target of the end-effector. 4 actions are defined: moving forward (y++), 

backward (y--), left (x++) and right (x--). The delta movement distance for each time step is set 

to be 5cm. The acceptance distance of the task is set to be 15cm. For each movement closer to 

the target, the reward is 10. If the task is done, the reward is 100. All the movement of the end-

effector should be attached to the table surface.  



Z. Wang, PhD Thesis, Aston University 2024 

110 

 

 

Figure 74 Simulation environment for flat surface scanning. 

To move the end-effector along defined paths, the poses need to be set using code. The reason 

is that if the position of the end-effector is changed, the orientation needs to be changed to make 

the actual orientation the same as the previous one. For example, to make the end-effector 

normal to the ground, and move the position from (0.3944, 0.3331, 0.3765) to (0.4944, 0.3331,  

0.3765), the orientation needs to be changed from (x: 0.049964109711171496, y: -

0.9978167636671763, z: -0.012601549681218514, w: 0.041309742569569693) to (-

0.049964109711171496,  0.9978167636671763, 0.012601549681218514, -

0.041309742569569693). In the context of robot orientation, the terms x, y, z, and w often refer 

to the components of a quaternion, which is a mathematical representation of orientation in 

three-dimensional space. Quaternions are commonly used to represent rotations in robotics and 

computer graphics. The quaternion is usually denoted as 𝑞 = (𝑥, 𝑦, 𝑧, 𝜔) , as 𝜔 is the scalar 

(real) part of the quaternion. x, y, z are the vector (imaginary) parts of the quaternion. Together, 

these components define the orientation of the robot in 3D space. The quaternion can be used 

to represent a rotation about an arbitrary axis. PyKDL movement transformation was used to 

set up the actions. PyKDL is used to transfer the current orientation to next pose. So the position 

of end-effector will be moved, but not the orientation. The function used is PyKDL. It uses a 

transformation matrix to transfer current pose to a KDL frame. Then, use the movement data, 

such as displacement in x,y,z axis and the rotation around roll, pitch, yaw directions to build a 

transformation matrix to change the target frame in the next step.  

Due to setting up of Gazebo, the starting state of the robot is not properly prepared, and the 

simulation cannot continue. In this case, the joint states of the robot are set back to the initial 

pose and restart the trajectory. During the movement of the robotic arm, a constraint is set for 

the orientation of the end-effector to make the flat surface scanning task easier.  

It can be seen that at the beginning of the training, the robot moves randomly. At most of the 

time, it moved backward and right to move farther away from the target. The reward is 
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definitely low, sometimes even negative.  

In this study, two RL algorithms, i.e., PPO192 and A2C193 algorithms are used to validate the 

proposed method. For the PPO (Proximal Policy Optimization) algorithm, it is a policy-based 

algorithm. A policy is a function that maps a given state of an environment to an action that the 

agent should take in that state. The policy defines the behaviour of the agent in the environment 

and determines how the agent interacts with the environment to achieve its goal. On the surface 

level, the difference between traditional policy gradient methods (e.g., REINFORCE) and PPO 

is small. In the context of RL, a policy π is simply a function that returns a feasible action at 

the given state s. In policy-based methods, the function (e.g., a neural network) is defined by a 

set of parameters θ. To identify PPO from other policy-based algorithm, the core idea is to 

replace the deterministic policy π:s→a with a parameterized probability distribution πθ(a|s) = 

P (a|s; θ). Instead of returning a single action, we sample actions from a probability distribution 

tuned by θ. These parameters can be adjusted, researchers can observe the differences in 

resulting rewards, and update θ in the direction that yields higher rewards. This mechanism 

underlies the notion of all policy gradient methods. The policy πθ(a|s) is stochastic, meaning 

that the parameters dictate the sampling probability of actions a, and thereby influence the 

probability of following trajectories τ=s1, a1,…sn, an. The objective function of PPO can 

described as:  

𝑱(𝜽) =  𝑬𝝉~𝝅𝜽 ∗ 𝑹(𝝉) =  ∑ 𝑷(𝝉; 𝜽) ∗ 𝑹(𝝉)

𝝉

 
(61) 

in which R is the reward value, P is the probability of taking related actions. 

In policy-based method, the policies are stochastic. When various actions are sampled for 

measuring differences in rewards with corresponding probabilities. The observed rewards, 

combined with the action probability, yields a reward signal. To determine the update direction 

that improve the objective function, policy gradient methods rely on gradients ∇θ (a vector of 

derivatives). This yields the following update function: 

𝜽 ← 𝜽 + 𝜶 ∗ 𝜵𝜽 ∗  𝑱(𝜽) (62) 

in which 𝛼 stands for learning rate, 𝜃 stands for policy weights.  

The adjustment of 𝜃 has a big impact on the training result. So the approach is straightforward, 

by increasing the probabilities of high reward trajectories, the expected reward can be improved. 

Take the classic REINFORCE algorithm (or Vanilla policy gradient) as an example, it 

calculates the cumulated reward by trying out state-action trajectories. Then, θ can be updated 

in the direction that yields higher rewards. 
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What makes PPO different is the PPO penalty and PPO clip. During training, a “surrogate 

optimisation” technique to update the policy parameters. The surrogate objective function used 

in PPO is designed to both maximize the expected reward and constrain the policy update to be 

close to the previous policy. At first, PPO collects a set of trajectories by running the current 

policy in the environment for a fixed number of steps. For each time step, the policy outputs an 

action given the current observation. For each time step in each trajectory, PPO computes an 

estimate of the advantage function, which is the difference between the observed reward and 

the expected reward. This advantage estimate measures how much better or worse the actual 

action taken was compared to the average action taken by the current policy. Using the collected 

trajectories and the computed advantage estimates, PPO then calculates a surrogate objective 

function that is designed to maximize the expected reward and also ensure that the new policy 

is not too different from the previous policy. The surrogate objective function is based on the 

probability ratio between the new and old policies, weighted by the advantage estimate. Finally, 

PPO updates the policy parameters by optimizing the surrogate objective function using a 

stochastic gradient descent (SGD) algorithm. The update is typically done using mini batches 

of trajectories to improve computational efficiency. These steps are repeated for a fixed number 

of epochs, where each epoch consists of collecting new trajectories, computing advantages, 

computing the surrogate objective, and updating the policy parameters. 

The advantage of PPO is that it is a good balance on efficiency and comprehension of RL, it 

works well in high-dimensional spaces. PPO is particularly effective in high-dimensional action 

spaces, such as those found in robotics and video games. It is because PPO uses a neural 

network to represent the policy, which can handle large state and action spaces. Moreover, PPO 

is relatively robust to hyperparameters, meaning it can perform well across a range of 

hyperparameter settings. This is because PPO uses a clipping mechanism that makes it less 

sensitive to hyperparameters such as the learning rate and batch size. With the penalty, PPO 

checks the size of the update after each update. If the realized divergence exceeds the target 

divergence by more than 1.5, for the next iteration we penalize divergence harder by doubling 

β. The other way around, we halve β if updates are too small, effectively expanding the trust 

region. With the clip, the range of the penalty is restricted within which the policy can change. 

The clipped PPO is reported to have a better result than penalty methods. 

While the shortcomings of PPO are that as a policy-based method, the inconsistent policy 

update overshoot the results and sometimes make the agent missed the peak reward. Sample 

inefficiency as the samples are only used once. After that, the policy is updated and the new 

policy is used to sample another trajectory. As sampling is often expensive, this can be 

prohibitive. And as the policy gradient is a Monte Carlo learning approach, taking into account 

the full reward trajectory (i.e., a full episode). Such trajectories often suffer from high variance, 
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hampering convergence. If the reward is 0, then neither the good actions or the bad actions will 

not be learned. 

 

Figure 75 Diagram of PPO algorithm  

(link: https://intellabs.github.io/coach/components/agents/policy_optimization/cppo.html). 

To implement PPO in simulation, the algorithm can be directly used from the 

“stable_baselines3” library. However, to improve the functions of PPO, an improved PPO 

algorithm is coded and loaded in the main code of training.  

A2C (advantage actor-critic) algorithm is another latest RL algorithm, which uses actor and 

critic to “discuss” an optimal solution. In A2C, a baseline strategy is used to tackle high 

deviance problem in PPO algorithm. The “Critic” estimates the value function. This could be 

the action-value (the Q value) 𝑄𝑤(𝑠𝑡 , 𝑎𝑡) or state-value (the V value) 𝑉𝑣(𝑠𝑡). The “Actor” 

updates the policy distribution 𝜋𝜃(𝑠, 𝑎) in the direction suggested by the Critic (such as with 

policy gradients), which makes this method like a combination of value-based and policy-based 

method. Both the Critic and Actor functions are parameterized with neural networks. Intuitively, 

the advantage value means how much better it is to take a specific action compared to the 

average, general action at the given state. Similar to PPO algorithm, 𝜃 indicates the parameters 

in policy neural network. 𝜔 stands for the parameters in value estimation neural network in 

critic. 𝑣 is the v-function as the baseline function in estimating the V-value. 

𝑨(𝒔𝒕, 𝒂𝒕) =  𝑸𝒘(𝒔𝒕, 𝒂𝒕) −  𝑽𝒗(𝒔𝒕)  (63) 

in which 𝑄𝑤 is the Q-value, and 𝑉𝑣 is the V-value. The V-value stands for the average of the 

state, the advantage value can indicate how well the action affects the environment. And since 

the Q-value and V-value have relationship like this:  

 𝑸 (𝒔𝒕, 𝒂𝒕) = 𝑬[𝒓𝒕+𝟏 + 𝜸𝑽𝒗(𝒔𝒕+𝟏)]   (64) 
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At each timestep, t, we get the current state 𝑠𝑡  from the environment and pass it as input through 

our Actor and Critic. Our Policy takes the state and outputs an action 𝑎𝑡 . After the acquisition 

of the state and action, the Q-value can be calculated. Therefore, once (4) and (5) are combined, 

only one neural network is needed to calculate optimal solutions, and this is the advantage that 

A2C has over value-based AC methods. The descriptive model of A2C algorithm is shown in 

Figure 76.  

 

Figure 76 Diagram of A2C algorithm. 

∆𝜽 =  𝜶𝜵𝜽(𝒍𝒐𝒈𝝅𝜽(𝒔, 𝒂))�̂�𝒘(𝒔, 𝒂) (65) 

∆𝝎 =  𝜷[𝑹(𝒔, 𝒂) + 𝜸�̂�𝒘(𝒔𝒕+𝟏, 𝒂𝒕+𝟏) − �̂�𝒘(𝒔𝒕, 𝒂𝒕)]𝜵𝝎�̂�𝒘(𝒔𝒕, 𝒂𝒕) (66) 

In (65), ∆𝛉  is the change in policy parameters (weights). α  is the learning rate. ∇θ  is the 

gradient of 𝜃 function. ∇θ(logπθ(s, a)) indicates the gradient of the function logπθ(s, a) with 

the respect to 𝜃. In (66), 𝛻𝜔�̂�𝑤(𝑠𝑡, 𝑎𝑡) is the gradient of value function. 𝛽 is the learning rate. 

The formula in the square bracket is the TD error as a good estimator of the advantage function 

(comes from (63)).  

To compare the algorithms, a simulation test program is designed, to validate the current 

algorithm with different parameters (see Table 8).  

Table 8 The criteria parameters of RL simulation comparison evaluation. 

Item Details 

RL algorithm used PPO A2C 

Time steps in each episode 100 1000 

Delta movement in each action 5cm 10cm 

Acceptance distance for reward 5cm 10cm 

For the long-horizon RL training tasks, there have been problems that block the efficiency of 

learning. The first is the sparse reward given and the other is the adaptability of the trained 

model. a slight change in the environment can affect the performance in practice hugely. To 
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overcome these two problems, a new proposed RL method is carried out in this study.  

At first, the whole task is divided into a sequence of sub-tasks. Reward is defined for each sub-

task. For long-horizon tasks, if the reward can be only achieved when the whole task is finished, 

immature policy finished in earlier stage will be taken. In this study, good and bad actions are 

all assigned a reward. Positive reward for good actions and negative reward for bad actions. 

This arrangement is to balance the “exploration and exploitation” problem in RL. In the 

definition of training processes, the pose of the robot can be only reset to the original pose when 

the robot is stuck, or the joint movement is out of limits. In this case, the robotic arm can not 

only learn from well-rewarded actions, but also from the negative-rewarded actions. In the 

“ball-reaching” task, in each action, if the end-effector is moving closer to the target, the reward 

will gain 10. The reward will reduce 10 if it moves farther from the target. If the end-effector 

reaches the target, the reward will gain 100. In the reaching task, the delta movement of the 

end-effector is pre-defined, however, due to simulation environment and reverse-kinematic 

reasons, sometimes the movement of the end-effector is less than the delta value. In this case, 

the robot is set back to the original pose. And the reward calculation will continue. The timer 

of the Gazebo simulation should be restarted in code. For the adaptability, transfer learning is 

proposed for the implementation in real world, which will be introduced in the next section. 

Another problem for RL is that the exploration of actions is too slow at the beginning of the 

training. By comparing different setups, it can be seen that if the limits and constraints of 

kinematics parameters of robotic arm is well designed. And the action space, within which the 

robotic arm operates, is very important to the training. If the action space can be detailed defined, 

the training will focus more on the assigned space and converge quicker. The detailed action 

space can also prevent the joint problem during actions, e.g., joint position moves out of range.       

The results of RL training are listed in Table 9. The best reward and the time steps to achieve 

it are listed as the assessment.  

It can be seen from the results that the A2C is better for the task, since it took shorter time to 

reach the terminal of training. And as expected, as the acceptance distance is bigger, the training 

time is shorter. And as the timesteps get more in each episode, the model tends to find better 

solutions for the task.  
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Experiment 5(E5): comparing two RL algorithms with the proposed ROS platform. To compare 

the actual performance of GPU with the CPU, a PC is used to test the same algorithm with GPU 

and CPU. The setup of PC is: Intel Core i5-12400F processor, NVIDIA GTX3060 GPU, 16Gb 

memory. Testing the same A2C algorithm with 100 time episodes, CPU outperformed GPU, 

30,161,925.2018ms vs. 34,238,581.8924ms. It can be shown that CPU performed close to GPU, 

the possible reason is that the A2C algorithm was not well-tuned for GPU performance. The 

complexity of neural networks in A2C is not sufficient to unleash all the computational power 

of GPU. Another possible reason for this may due to the Bottleneck in GPU Usage. GPUs have 

a limited number of cores, and if the A2C algorithm does not fully utilize these cores or is not 

efficiently parallelized, the GPU may not demonstrate its full potential. This comparison test 

will be discussed in the later part of this thesis.  

To evaluate the effectiveness of algorithms, another parameter, success rate is introduced to the 

results. For example, if you have 1000 time-steps and the robot successfully completes the task 

in 800 of those time steps, the success rate would be 80%. To implement this definition, you 

can track the successful completion of the manipulation task within the time step and increment 

a success counter accordingly. At the end of the simulation or at specific intervals, you can 

calculate the success rate by dividing the number of successful time steps by the total number 

of time steps. 

To make the scanning task more complete, contact force measurement is included during the 

scanning. In flat surface scanning task, since the surface is flat, the orientation optimisation is 

not implemented. So the next step is to add the orientation optimisation  

While the settings of robot, training parameters can solve the convergence problem and the 

exploration and exploitation problem, the RL network parameters should be also studied to 

Table 9 The results of simulation tests with A2C algorithm. 

 100 step/5/5 100 step/5/10 100 step/10/5 100 step/10/10 

PPO 
80(reward)/100(steps) 

(9.98 hours) 

150/95 

(9.54h) 

80/100 

(9.55h) 

180/90 

(9.53h) 

A2C 
100/80  

(7.38 hours) 

160/75 

(7.23h) 

80/60 

(7.17h) 

190/70 

(7.3h) 

 1000 step/5/5 1000 step/5/10 1000 step/10/5 1000 step/10/10 

PPO 
500/100 

(106.30 hours) 

580/100 

(100.30 hours) 

500/100 

(99.54 hours) 

600/90 

(98.94 hours) 

A2C 
600/80 

(78.90 hours) 

650/75 

(76.43 hours) 

550/75 

(75.90 hours) 

680/75 

(75.54 hours) 
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improve the efficiency and effectiveness of training. Since A2C is a model-free algorithm to 

tackle RL problem also with modelling the policy, it is more complex to build the algorithm 

and it is more sensitive to the option of hyperparameters, such as learning rate and neural 

network size.  

The A2C algorithm uses a shared neural network architecture for both the actor and critic 

components. It consists of layers that process the input observations and output the action 

probabilities and value estimates. The neural network takes the environment observations as 

input, which is the position and pose of the end-effector in this study. The initial layers of the 

neural network are typically shared between the actor and critic components. These layers 

capture common features and representations from the observations. The actor head is 

responsible for outputting the action probabilities. It typically consists of one or more fully 

connected layers followed by a softmax activation function to generate a probability 

distribution over the available actions. The critic head estimates the value function, which 

represents the expected cumulative reward from a given state. It usually consists of one or more 

fully connected layers that output a single value estimate.   The activation functions used in the 

neural network layers can vary, but commonly used options include ReLU (Rectified Linear 

Unit) or tanh (hyperbolic tangent) activation functions. The A2C algorithm uses appropriate 

loss functions for both the actor and critic components. The actor loss is often defined using the 

advantage estimation, while the critic loss is typically based on the mean squared error between 

the estimated values and actual returns. 

In the source code of A2C in Stable_baselines3 library, there are some hyperparameters that 

can be modified to improve the performance. n_steps: The number of steps to collect experience 

before performing a gradient update. This parameter affects the trade-off between exploration 

and exploitation. Increasing n_steps can lead to more stable updates but may slow down 

learning. The discount factor, gamma, for future rewards. It determines the importance of future 

rewards compared to immediate rewards. Adjusting gamma can influence the agent's preference 

for immediate rewards versus long-term planning. Lambda is the Generalized Advantage 

Estimation (GAE) parameter. It controls the trade-off between bias and variance in estimating 

the advantages. A higher value of gae_lambda increases bias but reduces variance. The learning 

rate for the optimizer used in the A2C algorithm. It controls the step size during parameter 

updates. Modifying the learning_rate can impact the speed and stability of learning. Ent_coef: 

The coefficient for the entropy regularization term in the A2C objective function. It balances 

exploration and exploitation by encouraging exploration through increased policy entropy. 

Adjusting ent_coef can affect the level of exploration the agent exhibits. vf_coef: The 

coefficient for the value function loss term in the A2C objective function. It determines the 

importance of the value function estimation during optimization. Modifying vf_coef can 
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influence the agent's focus on value estimation versus policy improvement. 

The neural network of A2C algorithm is to estimate both the policy and the value function of 

the algorithm. After the input of environmental values, two values, i.e., policy and value, are 

output. Combining policy and value, the policy will guide agent to take better actions, while 

the value provides the advantages of current action. So, the policy estimator acts like “actor”. 

The policy network, implemented as part of the actor, helps the agent make decisions on which 

action to take given the current state. The output of the policy network is a probability 

distribution that assigns probabilities to each possible action, indicating the likelihood of 

selecting each action.    The value estimation is acting as the “critic” role. During training, the 

critic's role is to help the agent learn more accurately assess the value of different states. By 

estimating the state values, the critic provides a baseline for the advantage estimation, which is 

the difference between the observed rewards and the expected values. The advantage is then 

used to update the policy and guide the agent's actions towards more advantageous states. By 

customise the “MlpPolicy” function, it can be modified and improve the performance.  

To customise the neural network, the modification from the “MlpPolicy” class can be 

implemented. Inside the CustomMlpPolicy class, you can modify the net_arch parameter to 

define your desired network architecture. In this case, the network architecture is set to have 

two hidden layers with 256 and 128 units, respectively. The “MlpPolicy” represents a Multi-

Layer Perceptron (MLP) neural network-based policy. It is a simple and widely used policy 

architecture for reinforcement learning algorithms. 

The MlpPolicy consists of a feedforward neural network with multiple fully connected layers. 

The number of layers and the number of units in each layer can be customized based on the 

problem requirements. By default, the MlpPolicy uses the Rectified Linear Unit (ReLU) 

activation function for hidden layers. ReLU helps introduce non-linearity into the network, 

allowing it to learn complex patterns and representations. The MlpPolicy has separate output 

layers for the policy and value function estimation. The policy output layer typically uses a 

softmax activation function to produce a probability distribution over available actions, while 

the value output layer provides a single value estimation for the state value. The MlpPolicy 

allows for customization of the network architecture through the net_arch parameter. It accepts 

a list of integers, where each integer represents the number of units in a hidden layer. By 

modifying this parameter, you can easily adjust the number of hidden layers and the number of 

units in each layer. The MlpPolicy is compatible with various reinforcement learning 

algorithms in the Stable_Baselines3 library, including A2C, PPO (Proximal Policy 

Optimization), and SAC (Soft Actor-Critic). Normally, the actor and critic use separate neural 

networks. In stable_baselines3 library, the same network structure is used for the actor and 
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critic before the output layer. This makes it easy to switch between different algorithms while 

using the same policy architecture (see Figure 77). 

 

Figure 77 Diagram of neural network in A2C 

The neural network in A2C is more of more traditional fully connected networks, i.e., multi-

layer perceptron (MLP), instead of convolutional neural network (CNN). The reason is the NN 

in A2C is not for classification, and the output of MlpPolicy function is divided into two 

branches, actor and critic.  MLPs, also known as fully connected networks, consist of multiple 

layers of neurons where each neuron is connected to every neuron in the adjacent layers. MLPs 

lack spatial or temporal structure as they don't leverage convolution or recurrence. MLPs are 

commonly used in A2C when the observations are represented as a flattened feature vector or 

when there is no inherent grid or temporal structure in the data. MLPs are versatile and can 

model complex relationships in high-dimensional feature spaces. If the task is image-related, 

CNN policy neural network can be used to capture spatial features and patterns. 

For the input layer, the function is to transfer the observation information into RL training. A 

linear transformation (or fully connected) layer is normally used. It is used to transfer the 

dimensionality of the observation into the dimension that the hidden layer needs. The input data, 

which could be a vector or a set of features are fed into the input layer, where a linear 

transformation is applied. This transformation involves a matrix multiplication and a bias 

addition. The output of the input layer is the transformed representation of the input features. 

This representation is passed to the subsequent layers of the neural network for further 

processing and learning. Although there are other kinds of functions, the input layer is limited 

to linear transformation or none activation.  

After the input layer, an activation function is used to pass through the input to hidden layer. 
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The ReLU activation function introduces non-linearity into the network, enabling it to learn 

complex patterns and relationships in the data. 

ReLU is the most common hidden layer function, within ReLu, it introduces non-linearity to 

the network by mapping negative values to zero and keeping positive values unchanged. 

ReLU(x) = max(0, x). By setting negative values to zero, ReLU effectively removes the 

negative saturation, allowing the network to focus on important and relevant features in the 

data. The primary motivation behind using ReLU is to address the vanishing gradient problem. 

In deep neural networks, gradients can diminish as they propagate backward through layers, 

making it difficult for earlier layers to learn effectively. ReLU helps alleviate this problem by 

maintaining non-zero gradients for positive inputs. 

In the context of neural networks, the input values can be negative depending on the weights 

and biases associated with the connections between neurons. The negative input values can 

arise due to various factors, such as the initial weights, the specific data being processed, or the 

learned weights during training. It's important to note that negative inputs are not inherently 

bad or undesirable in neural networks. In fact, negative input values contain valuable 

information and contribute to the overall learning process. Neural networks are designed to 

handle both positive and negative inputs to capture complex patterns and relationships in the 

data. 

In the context of the A2C RL algorithm, the ReLU activation function is typically applied to 

learn complex relationships and patterns.    The role of ReLU in the A2C algorithm is to capture 

non-linear dependencies between the input features. By setting negative values to zero, ReLU 

effectively removes the negative saturation and introduces sparsity in the network, which can 

be beneficial for learning more expressive and efficient representations.    ReLU has become a 

popular choice for activation functions in neural networks due to its simplicity and effectiveness. 

It avoids the vanishing gradient problem, which can occur with activation functions like 

sigmoid and tanh, by allowing for more efficient gradient flow during backpropagation. 

Additionally, ReLU can help neural networks learn faster and converge more quickly compared 

to other activation functions.   In the A2C algorithm, the Actor and Critic components share the 

same neural network architecture, including the ReLU activation function. The shared MLP 

policy network with ReLU activation is responsible for generating action probabilities (Actor) 

and estimating state values (Critic). By applying ReLU activation after the linear 

transformations in the hidden layers, the network can learn to model non-linear relationships in 

the environment and improve the policy and value estimates. However, when the input has too 

many negative bias, ReLU is not functioning, various modifications and variants of ReLU, such 

as Leaky ReLU and Parametric ReLU, have been proposed to mitigate this issue. 
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Other than ReLU, Sigmoid, Tanh, softplus, ELU, etc algorithm have been used in hidden layer 

for other applications. These are just a few examples of activation functions that can be used in 

fully connected layers of the A2C algorithm. The choice of activation function depends on the 

specific problem, network architecture, and desired behavior of the network. Experimentation 

and tuning are often required to find the most suitable activation function for a particular task. 

Since A2C algorithm will generate two outputs, i.e., policy and value, the output layer is 

different for actor and critic. A softmax function is often used in actor case since it is designed 

for multi-class classification problems. The softmax function takes a vector of input values and 

produces a probability distribution over multiple classes. It exponentiates the input values and 

normalizes them so that the resulting values sum up to 1. Each output value represents the 

probability of the corresponding class. In the context of A2C, the softmax layer is typically 

used in the Actor component of the algorithm. The Actor is responsible for generating action 

probabilities, and the softmax function is applied to the output of the preceding hidden layer to 

convert the values into a probability distribution over possible actions. For the Critic component 

of A2C, which estimates state values, does not typically involve a softmax layer in its output. 

The Critic may use a linear activation or another appropriate activation function depending on 

the specific requirements of the task. 

The number of epochs affects how many times the algorithm performs gradient updates and 

policy improvements based on the collected data. The number of epochs is considered a 

hyperparameter. It does not directly correspond to the total number of timesteps or interactions 

with the environment. It's important to note that the interpretation and usage of epochs may 

vary across different reinforcement learning libraries and algorithms. Therefore, it's always 

recommended to consult the specific documentation or source code of the algorithm you are 

using for accurate details on how epochs are defined and utilized. Learning algorithms take 

hundreds or thousands of epochs to minimize the error in the model to the greatest extent 

possible. The number of epochs may be as low as ten or high as 1000 and more. 

Experiment 6(E6): tuning hyper-parameters for A2C algorithm. To improve the performance 

of A2C, neural network structure is also tuned in this study. Learning rate indicates the extent 

to which an agent updates its estimated values or policies based on new experiences or feedback. 

It is a crucial hyperparameter that influences the speed and stability of learning. The 

exploration/exploitation rate is set to be higher than normal, i.e., 0.1 as in the Epsilon-Greedy 

exploration. since RL has the exploration rate, during training, some actions beyond the normal 

action space can be seen. Except for exploration rate, other factors, such as optimiser type, 

learning rate, can be tuned in NN. The hyperparameters of RL training are compared in Table 

10. 
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From the training results, it can be shown that Adam optimizer can achieve more reward. When 

the learning rate is bigger, the RL can reach higher reward faster. To compare the results better, 

the 0.0001 learning rate was also tested. The time to reach 180 reward was 10 times longer than 

0.001 learning rate. Moreover, the bigger learning rate has the bigger success rate, the 0.001 

learning rate has a 2 times bigger success rate than original learning rate. Comparing to 0.99, 

the 0.95 discount factor can achieve better reward. The value function coefficient 0.5 and 0.8 

have similar rewards, so the original value 0.5 was chosen. As a conclusion, Adam optimizer, 

0.001 learning rate, 0.95 discount factor, and 0.5 value function coefficient are chosen as 

hyperparameters of A2C RL training.  

A smaller discount factor in reinforcement learning algorithms, you can set the discount factor 

(also known as the gamma value) to a value less than the default value of 0.99. The discount 

factor determines the importance of future rewards compared to immediate rewards in the 

reinforcement learning process. A smaller discount factor places less emphasis on future 

rewards and may result in the agent focusing more on immediate rewards. For example, in the 

result, it can be seen that the agent reward hit 160 in 37 timesteps, while with original discount 

factor, 11 steps were taken. It can be noted that with smaller discount factor, the success rate 

was smaller than original factor, 1.8% vs 2.2%. The variance of original factor is 28% bigger 

than the gamma 0.95 rewards. It means, that the bigger discount factor focuses more on the 

overall improvement of rewards.  

In Stable Baselines3, the default value function coefficient for the Advantage Actor-Critic 

(A2C) algorithm is 0.5. This coefficient determines the weight given to the value function loss 

compared to the policy loss during the training process. In A2C, the total loss consists of two 

components: the policy loss and the value function loss. The policy loss is responsible for 

updating the policy to maximize the expected cumulative reward, while the value function loss 

helps to improve the estimation of the state-value function. The default value function 

coefficient of 0.5 means that the value function loss is weighted equally with the policy loss. 

Table 10 The comparison of results with different hyperparameters in A2C algorithm. 

 Value Results  Value Results 

Optimiser RMSprop 550/100 Adam 570/100 

Learning rate 0.0007 580/90 0.001 620/70 

Discount 

factor 
0.99 550/100 0.95 570/100 

Value function 

coefficient 
0.5 560/100 0.8 550/100 
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However, this value can be modified if desired, allowing you to give more or less importance 

to the value function during training. 

In reinforcement learning tasks for robots, various result parameters are commonly discussed 

to evaluate the performance and effectiveness of the learning algorithms. These parameters 

provide insights into the robot's behavior, learning progress, and achievement of task objectives. 

Some of the commonly discussed result parameters in reinforcement learning for robots include: 

Reward: The reward received by the robot during the learning process. The reward signal is an 

important component of reinforcement learning, guiding the robot's actions towards 

maximizing cumulative rewards. 

Cumulative Reward: The total sum of rewards accumulated by the robot over an episode or a 

series of episodes. It indicates the overall success or performance of the learning algorithm in 

achieving the task objectives. 

Episode Length: The number of time steps or actions taken by the robot within a single episode. 

Episode length can provide insights into the efficiency and speed of the learning algorithm in 

completing tasks. The episode length should reduce when the agent trains more which means 

it survives easier than before.  

Success Rate: The percentage of episodes or trials in which the robot successfully achieves the 

desired task objectives. It measures the overall success of the learning algorithm in 

accomplishing the assigned tasks. 

Convergence: The convergence refers to the point at which the learning algorithm reaches 

stable and consistent behavior. It indicates that the robot has learned an effective policy and is 

performing optimally. 

Exploration vs. Exploitation Trade-off: Reinforcement learning algorithms often balance 

exploration (trying out different actions to learn more about the environment) and exploitation 

(using the learned policy to maximize rewards). Analyzing this trade-off can provide insights 

into the learning algorithm's ability to explore the environment effectively while exploiting the 

learned knowledge. 

Learning Curve: The learning curve illustrates the learning progress of the robot over time or 

the number of episodes. It shows how the performance (e.g., cumulative reward, success rate) 

evolves as the robot gains experience through learning. 

Generalization: The ability of the learned policy to generalize to new and unseen scenarios or 

variations of the task. Evaluating the robot's performance on unseen situations measures the 

degree of generalization achieved by the learning algorithm. 
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These result parameters can vary depending on the specific task, environment, and learning 

algorithm being used. It is essential to define appropriate evaluation metrics that align with the 

objectives and requirements of the reinforcement learning task for robots. 

To improve the performance of surface scanning on flat surface, force compliance controller is 

applied in surface scanning. After the compliance controller added to Gazebo, the reward 

function of RL is modified. Shown in Figure 78, the contact force during simulation can be 

maintained as -50N. The curve in the figure shows the force_z during scanning. The maximum 

error is 0.619N; the SD is 0.0285, which is stable in a simulation scanning task like this. 

 

Figure 78 Force curve during one time-step in simulation. 

To evaluate the force controller, the comparison between the compliance controller and a 

traditional proportional controller is implemented. As a tradition proportional controller, the z-

axis position of the end-effector is modified as the z-direction contact force varies. To realise 

the final purpose of this study, an intermittent simulation was implemented firstly. The 

intermittent simulation is to test the workflow of RL+compliance controller on surface scanning. 

The target is to reach the target on the table using surface scanning. The target is a fixed ball, 

which is fixed on the table. The UR5e starts from its original position and pose, then the end-

effector will firstly move to be normal to the table surface, then use force controller to drive the 

end-effector to the surface, when the contact force is larger than 5N, which means the end-

effector is contacting the table surface, the compliance controller will step in. During these 

processes, the target wrench, which is the target of applied force is always -50N (in Gazebo 

environment, the measured force from the end-effector is minus when they are contacting).  
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Figure 79 Force curve comparison between compliance controller vs. simple proportional controller. 

It can be seen from Figure 79 that the conventional PID controller cannot realise the force 

control and position control task. The average of the compliance controller is -52.438N, while 

the PID controller average is -101N with a significant oscillation of ±50N. The SD of the 

compliance controller is 5.2338, which is much better than the PID’s 56.0597. The reason for 

that is the PID controller is a simple controller, which makes it difficult to control a complex 

robotic arm system, while the compliance controller has a model in it that helps predict 

compliance. 

Experiment 7(E7): simulation on a curved surface and implementation of RL training. To train 

the model in a more complex environment, a curved plane wing model is imported into the 

Gazebo simulation environment. The plane wing .stl model was established in SolidWorks. The 

model document was positioned in the Gazebo model library, a .sdf file was edited using the 

directory of the model file, the position and the property, including material and texture of the 

model (shown in Figure 80). As the RL training uses much computing resource, the redundant 

objects in the simulation environment, such as the table, were removed from the environment. 

The height of base of UR5e is 0.7m. The height of the plane wing is 0.6m. The state of plane 

wing is set to be static, so it will not fall on the floor. The location of the airplane wing on the 

table is shown in Figure 49.  
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Figure 80 Simulation environment for surface scanning using RL. 

As the airplane wing is the object, it is assumed that the information of the object is known in 

order to evaluate the RL training function, especially the control of orientation of the end-

effector. As shown in Figure 81, the interpolation algorithm was used in the code to calculate 

the normal vector of each contact point on the surface. During the scanning process, the real-

time location of the end-effector will be extracted, the actual normal vector of the airplane wing 

will be calculated using interpolation algorithm and compared with the actual orientation of 

end-effector.  

 

Figure 81 Model of airplane wing and the normal orientation vectors.  

To optimise the orientation adjustment and to navigate the inherent uncertainties in real world, 

fuzzy controller is combined with RL to adjust the orientation 194. The fuzzy controller will 

output a factor, to adapt the action selection to adjust the dynamic orientation adjustment. 

The reason to add fuzzy controller in the robot control is that at the beginning of each time step, 
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the controller will calculate the distance between the target position and the current position of 

the end-effector. If the end-effector has not reached the target, it will continue moving. The 

movement will start from current position and the action will be selected from the action space. 

Once the action is selected, the end-effector will move according to the action. During the action, 

the trajectory will be monitored, according to the data during the trajectory, the reward will be 

calculated, and the next step will be determined. So, the action selection will affect the 

trajectory and will affect the reward calculation. Even though the trajectory movement is not 

big, but if the trajectory is not selected carefully, it will end up with a bad end position and pose. 

So, it is reasonable to implement a fuzzy controller at the action selection. The trajectory 

correction factor can be defined in the fuzzy controller and the factor can be selected by RL 

and output a detailed output to correct the action to make the position better than normal 

trajectory (see Figure 82).  

 

Figure 82 Fuzzy in RL controller.  

Fuzzy logic controller is used for decision making and control. It has fuzzy input fuzzification 

model and defuzzification model. As the input values (crisp input value) are fed to the controller, 

it brings the value to fuzzy input model to confirm which catalog it belongs. For example, in 

Figure 83, there are 3 catalogues of input(1,2,3). In the membership function of the input, the 

crisp input value is mapped to the level of truth value. Then, the catalog will continue to operate 

the fuzzy rules. Within fuzzy rules, the catalog will be related to the control output categories 

by rules. For example, the output 1,2,3, are assigned to input 1,2,3 in Figure 83. With the level 

of the catalogs of input (truth value), the area of the output value will be decided. The final 

output value of control paramter will be decided by calculating the centroid of the total area of 

control value. The output value is the crisp output value(as shown in see Figure 83).  
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Figure 83 Fuzzy controller.  

In the task of curved surface (shown in Figure 84), several factors are considered in the reward 

evaluation:  

1. Average contact force. In the surface scanning task, the target contact force is set to -

50N for the compliance controller. A data logger is set in the python code to log the 

actual measured contact force and calculate the difference between the actual and the 

target force value. The average will be calculated in every time step, if the average of 

the difference is within 5N, reward +10, if not, reward -10. Variance is also considered.  

2. Average orientation difference, variance of orientation difference. Since the curved 

surface of the airplane wing is assumed to be known, the normal vector orientation can 

be calculated using interpolation method, in this case, KNN(k-Nearest Neighbors) 

algorithm. After this, the actual position of the end-effector in every time step is logged 

and the related actual normal vector on the surface will be calculated. A data logger is 

also set in the python code to log the actual end-effector orientation and the real normal 

vector of the curved surface as the target orientation. In every time step, the real and 

target values are logged and the average value and variance value of the difference are 

logged to evaluate the reward. Since the average value indicates the control of the 

orientation, and the variance value indicates the stability of the controller.  

3. Distance to target. As before, the distance to the target is the main criterion of the 

reward. If it touches the target, reward +100. If it moves closer to the target, reward 

+10, if it moves farther from the target, reward -10.  

As shown in Figure 85, the cumulated average of the reward of RL training increased from 

137.81 to 231.71 when the time step increased. It proves that RL training can be implemented 

in the curved surface environment, and the scanning of the curved surface is improving during 

the training stage. The red line in the figure is the 3rd order polyfit of the reward data, which 

shows the increasing trend.  
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Figure 84 Training processes for curved surface. 

 

Figure 85 Reward curve of RL training on curved surface.  

As also can be seen in Figure 86, in each episode, the average values of orientation difference 

have been recorded. As can be seen, the difference of the difference is also going down from 

14.16 to 8.51. The red curve is the 3rd order polyfit curve of the data.  

 

Figure 86 Orientation difference between actual and target. 
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For the training, it took 10.25 hours to finish the training of 200 time steps. The reward curve 

is shown in Figure 87.  

 

Figure 87 Screenshot of the tensorboard evaluation of curved surface RL training with 

“done_reward=1000”. 

As can be seen in the figure, the length of the episodes dropped from the original 16 steps to 

later 2 or 3 steps each episode. It shows the agent has survived the environment. The original 

reward is good enough, 1280, however, it costed 16 steps to get there. After some episodes of 

training, the reward was increasing. The optimal reward for the simplified curved surface task 

should be 1400. It can be seen that the agent was approaching the target with less steps in the 

later training session. After several training sessions, it can be seen that the reward distribution 

may have some problem. The agent was training to achieve the target, but not getting more 

reward. The total reward is around 1000 and not improving, therefore, the reward strategy needs 

improvement.  Moreover, there is a problem that the average reward is going down after the 

reward reaches its peak. As can be seen in Figure 87. 

The reward can be re-arranged like this: the done_reward is 100, and each step that get closer 

to the target, force average, force variance, and angle difference can all get 20 points. Therefore, 

each timestep, the moving reward can get maximum 80, which is closer to the done_reward. 

The training scenario can be seen in Figure 88.  
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Figure 88 RL+ compliance controller+ raster scanning on curved object in Gazebo. 

Subsequently, the best trained model will be used to implement the scanning task. As the 

orientation of end-effector is more important in the task, the orientation difference between the 

actual end-effector and the surface normal vector is shown in Figure 89. The results are based 

on the best RL trained model with the compliance controller. 

 

Figure 89 Accuracy of RL+compliance controller on curved wing scanning. 

To compare with normal control without RL training, the normal compliance controller without 

any training was also carried out. The scanning results without RL can be seen in Figure 90.  
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Figure 90 Accuracy of normal compliance controller on curved wing scanning. 

It can be seen from the figures that with RL + compliance controller, the orientation 

performance is better than only compliance controller. Moreover, it can be seen that the farther 

the end-effector can get, the bigger difference between the actual end-effector and the normal 

vector of the surface will be. This is decided by the feature of the compliance controller which 

also depends on the torque supplied by the joint. When the end-effector reached the farthest 

location, it is close to the singularity position, which cannot support orientation control and 

compliance control.  The average force value of non-RL controller is -78.325N  which is 42.055% 

larger than RL trained model (55.137N). And it can be seen from Figure 89 and Figure 90 that 

the non-RL trained model is overall 30% worse in the orientation performance, based on the 

angle difference data.  

Experiment 8(E8): simulation on the target object. After the training of curved surface, the real 

scanning scenario is implemented in the environment. Firstly, the simulation model of robot 

should be added with the ultrasonic transducer holder. Subsequently, it should scan on the target 

object, the defected die (as shown in Figure 91).  
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Figure 91 Simulation environment of real scanning scenario with transducer holder and die. 

The transducer holder was imported into Gazebo simulation via .stl format (shown in Figure 

92). At first, the main part of the cover was imported to urdf file and attached to the gripper 

finger tip link via a fixed joint. After updating the moveit and srdf file, the holder link can move 

with the robot.  

 

Figure 92 Real world (left) and simulation environment(right) of transducer holder and robot. 

After attach the main part of the holder to the gripper, the other parts, i.e., the cover of gripper 

and the cover of transducer of the holder were fixed on to the gripper (shown in Figure 93). The 

whole holder set will move with the end-effector of the robot.  
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Figure 93 Full set of the transducer holder in Gazebo simulation environment.  

For the scanning object, the normal vectors of die surface can be also calculated using the 

interpolation algorithm (shown in Figure 94). The calculated normal vectors can be used to 

calculate the angle difference between the actual end-effector’s orientation and the normal 

direction on the dis top surface.  

 

Figure 94 Normal vector of the die surface.  
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Figure 95 Accuracy of scanning on die surface. 

In the simulation task, change the path to circular path along the die. Load the best trained RL 

model in the curved wing scanning task, and implement the scanning task on the die again.  

From Figure 95, it can be seen that the angle difference became bigger at the edge of the die. 

The edges of the die have the biggest peak points of the curvature and the biggest derivative of 

the normal vector, which will lead to the challenge of control. The average of the angle 

difference is 12.2299 degrees. The maximum difference is 15.4924, and the minimum is 4.7129. 

In this study, the edge point is not the research topic, it can be seen from the overall performance, 

that the end-effector had a bigger angle difference at the edges, but it came back and aligned 

with the normal vectors of the surface in the next stage scanning task, which resulted in an 

overall good performance. 
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6. Experiment 

6.1 Equipment and preparation of experiment 

Experiment in this study is to validate the results of simulation tests, since the UT part of the 

task cannot be simulated in the current simulation environment. The experiment should be 

carried out to validate the robotic control function. The experiment should include the functions 

such as: real robotic arm compliance control implementation, manual and robotic UT inspection, 

manual vs. robotic UT comparison, RL robotic UT validation.  For experiments in the real 

world, hardware is needed as follows: UR5e robotic arm, which includes the main body of the 

6 DOF robot and the ROBOTIQ 2F-85 gripper. With UR5e robot, a force/torque sensor is 

embedded in the last link of the robot, the contact force and torque around the end-effector can 

be measured. The teach pendant that is the original control panel of the robot. The teach pendant 

is also needed to realise the synchronisation of the external control and the real robot. With the 

teach pendant, random control of the robotic arm and emergency stop of the robot is possible. 

The control box of the robot is the assemble of all power electric and control signal hardware. 

The communication Ethernet cable is connected to the port in this box. 

The control computer is with an Intel Core i7 processor. NVidia RTX 3070 GPU is used as the 

acceleration of the deep learning algorithm. The control computer is connected with the robot 

via an Ethernet cable. In the teach pendant, a firmware of “External Control” was installed to 

realise the control from ROS.  

Besides robot and control computer, ultrasonic probe and data collection device is needed. 

Since single-element ultrasonic probe is used in this study, the Olympus EPOCH 650 is used 

as the data collection device. Since the surface of the object is curved, a delay-line probe, V203-

RM, is chosen as the probe. All the hardware needed in this thesis is listed in Figure 96. 

 

Figure 96 Hardware used in simulation and experiment in this study. 
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The V203-RM probe is a small-sized single-element delay-line probe, which is suitable for 

curved surface and detection of subsurface cracks. The centre frequency of V203-RM is 10MHz. 

The diameter of the element is 0.125 inches (3.175 mm), the diameter of the case is 0.39 inches 

(9.906 mm), which is the smallest delay-line probe from Olympus. As shown in Figure 97, the 

probe, the Lemo interfaced wire and couplant was prepared. Olympus EPOCH 650 is the latest 

data collection device for single-element probes. The EPOCH 650 is suitable for most kinds of 

single-element UT inspections, including mechanical testing. The LEMO interface is included, 

and the A-scan amplitude can be recorded via a USB cable to the control computer. The 

recorded data is in .csv format. Before planning the experiment, the recording function of 

EPOCH was tested. The probe was also tested on the real object, as shown in Figure 97, the 

probe can detect the subsurface defects at 8 mm depth.  

  

Figure 97 Ultrasonic transducer V203-RM and data collection equipment EPOCH 650. 

Before the purchase of ultrasonic transducer, the comparison of different probes was carried 

out (see Figure 98). The contact transducer M109-RM, and delay line transducer M201-RM 

and M203-RM were compared. It can be seen that M203 with 10MHz frequency had the better 

results, so the delay line probes are more recommended for this task. 

   

Figure 98 Ultrasonic transducer MR201 and MR203 with equipment EPOCH 650. 

A holder is designed to connect the ultrasonic transducer and the gripper of the robot. The 

purpose of designing the holder is to realise robotic ultrasonic testing with no disruption of the 

other tasks that the robotic arm engaged with. The holder can be directly installed on the fingers 

of the gripper, and it can be uninstalled anytime. A spring damper is installed in the holder to 

prevent harsh contact between the transducer and the target surface (seen in Figure 99). The 
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picture of the holder installed on the gripper can be shown in Figure 100. The z-axis position 

of the holder is secured by closing tight of the gripper and the design depth of the slots for the 

gripper fingers is just the length of the finger. The x,y-axis movement is prevented by fixing 

the holder on the gripper with screws. The transducer is locked by a cover and the cover is 

placed at the end of the holder. 

 

Figure 99 The structure of transducer holder. 

   

Figure 100 The picture of the 3D printed holder installed on the gripper. 

The holder is manufactured by 3D printing from advanced prototyping facility (APF) at Aston 

University. The reason to use 3D printing is that the holder of the transducer is complex due to 

the transducer needs damper and the cabling needs special design. If using metallic part, it will 

be too complicated to design and produce. Considering the weight, the 3D printed part is much 

lighter than the metallic one, the total weight is 85 g in this 3D printed case. The density of steel 

is 8 times of PLA, due to design reason, the weight of metallic part can be over 10 times of the 

weight of PLA. As the load range of UR5e is 5N, using metallic transducer holder is a burden 

to the robotic arm. More information is introduced in the Appendix A. After manufacturing, 

the transducer holder can be assembled with the transducer (the assemble seen in Figure 101). 
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Figure 101 The picture of the transducer holder with the transducer and cable. 

The real object in this study is chosen as a real metallic die (as shown in Figure 102). The real 

object has a small area, but a complex upper surface. It can be used to demonstrate the 

application of the proposed method. 4 internal artificial defects, i.e., flat bottom drilled hole 

(FBH), is carried out on the object to imitate subsurface cracks. The internal structure is shown 

as Figure 102. 4 FBHs, i.e., 2 holes are horizontal group, the other 2 are vertical group. Each 

hole has the same features, 3mm in diameter, 10mm in depth. For every 2 holes in a group, one 

hole is underneath the lowest point of the curved surface, the other one is underneath the peak 

point of the curved surface. The design is to verify the capability of robotic UT. For UT of 

internal defects, the horizontal defects in this case should be simpler to detect, but the vertical 

defects are difficult. And the defects under the lower point of curved surface should be easier 

to detect since the upper surface is close to flat. But the defects underneath the peak point of 

curved surface are difficult to detect, since the upper surface is more complex, and the trajectory 

of the probe will be more challenging.  

 

Figure 102 Test object for the experiment. 
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Experiment 9(E9): contact force measurement on the real robotic arm on the flat surface. Even 

though it is simpler to detect the defects from the lower flat surface of the die, it is conventional 

that implementing UT from the upper surface. The reasons include that the upper surface is 

closer to the defects, and the upper surface is more accessible than the lower surface. Even 

during the regular maintenance, the upper surface can be accessed using the robot for all kinds 

of dies/moulds.  

As shown in Figure 103, the FT sensor can perceive force from the x, y, and z axes. The gravity 

components on three axes will be estimated and then help to improve the accuracy of force 

measurement. And according to the force measurement on each axis, the target orientation can 

be calculated using the forces at the location (x, y, z). 

To implement the orientation optimisation on real arm, model-based orientation optimisation 

method:  Similar to the case in this thesis, researchers from Taiwan developed a method based 

on RL 136 136   195. 

 

Figure 103 The robotic arm UR5e used in this study and the gravity component at the FTS. 

In Figure 104, the real arm contact forces were measured in the approach of the table surface. 

It can be seen that when the end-effector touched the table surface, the force on the z-axis 

increased to -30N, while the torque about the z-axis was stable at 0, which means it has no 

rotation motion around the z-axis. In the meantime, the forces on the x and y-axis had different 

variance and the torque about the x and y-axis had changes too. It indicates the end-effector 

was not perpendicular to the touch point and there was rotation motion around the x and y-axis 

at the 6DOF TF sensor. According to the measured force, the target orientation of the end-

effector can be calculated. The adjustment around the y-axis should be Fx/Fz, the adjustment 

around the x-axis should be Fy/Fz. The actual situation before and after the adjustment can be 

shown in Figure 105.  
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Figure 104 The measurement of contact force and torque of the end-effector of real robot. 

 

Figure 105 The end-effector before and after the orientation optimisation. 

Gravity component affects the force measurement in robotics. Gravity component applies force 

on the z-axis. If the robotic arm is tilted, gravity also affects the X-axis and Y-axis components. 

The torque readings will also include gravitational effects due to the mass distribution. The 

effect of gravity can be shown in Figure 106. The approaches to the table surface was 

implemented two times, the force was measured. The fuchsia colour curve is the measured force 

without gravity compensation and was measured in another measurement. When approaching 

the table surface, the contact force had a big oscillation as it touched the table surface and the 

controller of robotic arm switched from the force controller to the compliance controller, then 

the scanning began. During the scanning, the average force was -14.14N without compensation, 

while the average force was -54.92N with the gravity compensation, which is closer to the target. 

Therefore, gravity compensation will be applied in this study. 

 

Figure 106 Comparison between with/without gravity compensation. 
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6.2  Transferring RL controller to real-world 

As discussed before, due to safety reasons, RL models are limited to simulation environment 

in training phase. Due to the features of RL, the agent searches the optimal actions by itself, the 

random movement of the robot may cause safety issues. Even after the training is finished in 

simulation, since there is more noise of the signal in observation in the real world, there will be 

more unexpected objects and scenarios, directly transferring the model to this environment is 

dangerous for the operators and risky for the hardware. Therefore, transferring RL to real world 

(sim2real) is a challenging topic, the real world environment is more complex and totally 

different from the simulation one 196. The differences between simulation and real world will 

result in two kinds of differences: different observations and different system dynamics. 

Methods, such as, extracting features in common between tasks (domain adaptation), enriching 

training experience (domain randomisation), multitask learning, continual learning and fast 

learning can be used in the transferring tasks. Other methods, such as, more advanced 

simulation software, adding real feedback to simulation environment, can also help improve 

the sim-to-real performance. 

Domain adaptation is a method used for the same task in different domains. In prior literature, 

domain adaption can be divided into two kinds: active and passive domain adaptation. In active 

domain adaptation, noises were added to the simulated actions or sensors to simulate real world 

to transfer the simulated model to reality. Simpler policies will perform inefficiently in reality 

since the environment condition is too complicated 197. In their article, low-fidelity simulation 

software SimSpark was used to compare with high-fidelity Gazebo. The results showed that 

Gazebo was closer to the real world. Gazebo was also used as a surrogate of the real world to 

implement sim2sim firstly and prepared for the sim2real. In passive domain adaptation, the 

researchers used simulation software to surrogate the reality as well as possible and transfer the 

policies without any modifications 198. The method used in the article can be considered as 

domain adaption.     

For domain randomisation, tools like RoboMaker from Amazon Web Services or the Unity 

Machine Learning Agents (ML-Agents) toolkit provide capabilities for domain randomization, 

allowing you to generate diverse training data that is more robust to real-world variations. 

Simulation has been implemented on mobile robot 199. The shortcomings of the method were 

prolonged training time, nondeterministic which means the repeatability of the method is not 

satisfactory.    

Inverse dynamics method should address the discrepancies between source domain and target 

domain. Forward dynamics model is usually used in this method to predict the actions taken in 

certain observations. The data from real forward dynamics model should be collected before 
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training, therefore, the training phase is expensive.    

Progressive neural network (PNN) was developed to solve continual and multi-task transferring. 

PNN is less sensitive to the hyperparameters. Using LSTM makes the method less forgetive 

about the hyperparameters 200. However, the downside of PNN is that the parameters in the 

algorithm increases exponentially when the number of tasks increases, so that the 

computational cost will be more.      

Transfer learning and meta-learning can transfer RL from simulation to reality. Transfer 

learning is effective when there is sufficient overlap between the simulation and real-world 

domains. It can be easier to implement and requires fewer computational resources compared 

to meta-learning. However, transfer learning may face challenges due to the reality gap, where 

the differences between simulation and reality can degrade the performance of the transferred 

policy. There are specialised libraries and frameworks that focus on transfer learning in RL, 

such as TensorFlow Agents (TF-Agents) and TRFL (Transfer from Lab to Field). These 

libraries provide tools, techniques, and pre-trained models specifically designed for transferring 

RL from simulation to reality.       

Meta-learning, or "learning to learn," focuses on training models that can quickly adapt to new 

tasks or environments (see Figure 107). In the context of RL, meta-learning can be used to train 

an RL agent in a distribution of simulated environments that capture various aspects of the real-

world task. The agent learns a meta-policy that can generalize to new tasks or environments 

more efficiently. During the transfer to reality, the agent adapts its meta-learned policy using a 

few real-world samples, which allows for faster learning and better performance in the real 

environment. This method can transfer the prior knowledge from the simulation environment 

to reality with a few new working samples and prevent overfitting with new data. Meta-learning 

explicitly focuses on adapting to new environments, which can be beneficial when the real-

world domain presents significant variations or challenges not captured in the simulation. Meta-

learning typically requires more complex algorithms, extensive training, and a larger number 

of simulation environments for effective generalization. The learning from simulation to reality 

phase is fast when the reality task is similar to the simulated one. Currently, there are two kinds 

of meta-reinforcement learning methods: gradient-based and recurrence-based. After all, the 

state-of-the-art methods used in transferring sim2real are domain adaption, domain 

randomisation, inverse dynamics, PNN and Meta-RL. 

For the simulation platform, there are cases using ROS+Gazebo to make the simulation 197. 

Grounded action transformation (GAT) algorithm was designed to leverage the simulated data 

to learn policies which are useful in reality. Gazebo was also used in the computer vision RL 

transfer task 201. The proposed method can not only learn image representations, but also the 
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control policies based on the image information. The image in the real world was acquired by 

copying the joint angles in the Gazebo simulation. The image pairs from the simulation and 

real-world at the same pose were compared to train a model to regress the 3D gripper pose. 

From a supervised method, the control model was evaluated, and a proposed unsupervised 

transferring method was also carried out to check the effectiveness of the alignment method.  

According to the literature review, the Meta-learning+Domain randomisation is an optimal 

method to tackle sim2real problem. Meta-learning was used in the transferring task 202. In meta-

learning, the purpose is to use less previous experience to adapt to new tasks. Meta-learning 

assumes that the new tasks are similar to the previous tasks. Meta-learning was developed to 

solve the problem that machine learning algorithms are not suitable for all domains. Some 

algorithms are suitable for one domain, but cannot perform well on another domain. A domain 

in machine learning is including all the parameters and data that can make a context, or a 

function.  

𝑫 = 𝑷{𝑿, 𝑷(𝑿)} (67) 

where D is the domain, X is the inputs, and P(X) is the probability distribution. Meta-learning 

is designed to tackle this problem. For transferring sim2real, the problem can be considered as 

a problem transferring between different domains. However, meta-reinforcement learning has 

a disadvantage that it does not consider observation discrepancies between simulation and 

reality. 

Currently, most of prior literature mentioned about transferring from simulation to reality, but 

less of them published their codes, which adds a bit of difficulties to replicate their algorithms. 

Some tools that can be used for sim2real are open-sourced. Habitat, for example, is a high-level 

library for the tasks like transferring 203. Gibson’s environment, on the other hand, focuses on 

the rendering of the environment to get closer to reality 204. 

 

Figure 107 Illustration of meta-learning. 
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Due to time limitations, only domain adaption transfer is carried out in this study. More adaptive 

transfer will be studied in future research. To implement the transfer from simulation to the 

real-world, the classic transferring method, “pre-training followed by Fine-Tuning”, is used. 

The pre-trained RL model in a simulation environment can be saved and then fine-tuned with 

real-world data to adapt to the target domain. The current solution is to transfer the simulated 

solution to the real world. Since the real-world robot location is not the same as the simulation.  

6.3 Implementation of robotic inspection 

Since the RL training of simulation model has been finished, the transfer from simulation to 

real-world is finished, all the hardware and software for the robotic inspection have been done. 

The implementation of the robotic inspection can be started. In this sub-section, the real robotic 

inspection using ultrasonic transducer will be implemented. 

To get a pre-trained model, the best reward-scored model should have been saved. Then, in 

stable_baselines3 code, load the model in the modified real-world environment. In this case, 

the best_model in simulation environment should be loaded into the real-world environment.  

To log the data in EPOCH650, a series of software named “GageView” will be used. In 

Epoch650, live videos can be exported to external storage. After the export, the video is in the 

format of “.vid”, which is in a special code that the video players cannot play. A transformation 

software “GageView Video” should be used to convert the .vid to .avi format. The video can 

be presented in the presentation.  

The EPOCH650 was set up as shown in Figure 108, then the device was calibrated firstly (see 

Figure 109). The reflective data can be exported to PC via USB communication, while the 

MicroSD card can be used to transfer screenshots and videos. GageView Pro is needed to save 

the raw data (see Figure 110), and using the code “param_RawData=0,x” (x is the range of 

detection), the raw data will be exported. With the setups, the raw data can be logged as shown 

in Figure 111. 

The “x” in the code indicates the maximum limit of the range of the detection. It should be 

equal to or smaller than the range set on EPOCH device. The difference between x=10 and 

x=30 at the same place can be seen in Figure 111. 
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Experiment 10(E10): this experiment is the final part of the study to test the proposed robotic 

UT on the real object. To verify the working process or robotic UT, the UT on flat surface was 

firstly implemented on the die (shown in Figure 112). It uses compliance controller with 

 

Figure 108 Settings of EPOCH 650.  

 

Figure 109 Calibration of the transducer.  

    

Figure 110 Screenshot of the software GageView Pro (left). USB and MicroSD card interface on Epoch650 

(right).  

 

Figure 111 Screenshot of the data and curve of the saved data from EPOCH650.  
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target_wrench -50N, and the path of the end-effector is a circle with a radius of 5cm. At each 

position, the thickness was measured with EPOCH650, the results are shown in Figure 113. 

 

Figure 112 Screenshot of the robotic UT on flat surface. 

 

Figure 113 UT raw data of thickness measurement around the surface of the die.   

After the trial on the flat surface, the experiment on the complex surface is implemented. As all 

equipment and software have been set up, a complete experiment scenario can be presented as 

shown in Figure 114. In this figure, it is shown that the whole set of hardware: UR5e robotic 

arm gripping the holder with the ultrasonic transducer contacting the target die. The robot is 

communicating with ROS and the transducer is displayed in Epoch650. Couplant is also 

implemented on the dies, as the bottle can be seen in the figure. 
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Figure 114 Photo of experiment scenario with Epoch, PC, Robotic arm and transducer.  

During the experiment stage, it was found that the inspection of ultrasonic probe had much 

noise. After check of the probe and the cable, it was found the cable had a grounding issue, 

which lead to much noise even when the probe was not connected. Due to transducer problem, 

the probe and cable were sent back to Olympus Europe to repair. During this period, a pencil 

was fixed at the transducer holder to continue the experiment (as shown in Figure 115). The 

target contact force is -20N, and the average of the measured force is -20.4494N, with the error 

   

Figure 115 Screenshot of scanning experiment.  
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of ±2.24% which is within the limit of expectation (2.5%). The standard deviation is 0.2327, 

which is better than the simulation situation, and acceptable in the real-world experiment.  

The processes for the transducer scanning the complex surface are shown in Figure 116. It is 

the screenshot of end-effector scanning over each waypoint on the die top surface. The target 

contact force is also -20N. The video of scanning can be checked on the Box share of the 

university.  

 

Figure 116 Scanning of complicated surface of the die.  

6.4 Results 

The results of proposed inspection method are compared with manual inspection and 

conventional robotic inspection on the same die are shown in Table 11. Since the experiment 

in this study is to validate the optimised control of robot and the RL training, it was not focused 

on the detection of size of the defects, but only the detection of the defects.  

To validate the optimisation of control in simulation, the experiment was carried out. The 

comparison between manual UT inspection, conventional compliance controller and RL+ 

compliance controller methods are implemented. The efficiency and accuracy were mainly 

checked. For efficiency, the total time used during inspection was logged. For each method, 

several times of inspection were carried out and the efficiency values are the average value. For 

accuracy, since the UT probe used in this study is only a single-element conventional probe and 

the probability of detection was not much studied in this study, the value of accuracy mainly 

takes the detection of defects in consideration. Because the manual inspection was limited to 

the method, that it cannot provide accurate position information of the defects, the accuracy 
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value cannot be valued.  

It should be noticed that the length of efficiency time is only for scanning, but not including 

training time for the robotic scanning. And the accuracy of manual inspection cannot be 

assessed since manual inspection has too much flexibility and cannot log the coordinates of 

each scanning position.  

Table 11 The comparison of inspection results. 

 Efficiency Accuracy 

Manual inspection 8 hours 

N.A. 

(cannot evaluate, since manual 

inspection does not include 

any position information) 

Conventional robotic 

inspection 
4 hours 50% 

The proposed method 4 hours 80% 
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7. Discussion and Conclusion 

7.1 Discussion 

In this study, an automated inspection method on dies with a robotic arm is proposed. The 

simulation and control model of the robotic arm were first implemented. This was not only for 

the thesis but also for all future researchers in the Aston University robot community. The 

study's contributions include but are not limited to an improved compliance controller on a 

UR5e robot, which can be used both in simulation and real-world, an RL-trained compliance 

controller on a ROS platform, and a simulation and real-world RL-guided surface scanning 

robotic task. 

Even though this study's research concerns robotic inspection, the main topic is the robotic 

control. The proposed robot control method can be used in many other applications, such as 

robotic polishing, robotic machining, mobile robotic machining, 3D printing, etc. The 

difference between UT inspection and other applications is that UT will not remove or apply 

extra materials on the surface. Therefore, for the applications of the proposed method in other 

industries, more studies on dynamic process control are needed. Some say this study's 

innovation is not convincing, but I reckon if the research can be used in applications and make 

value, it is good research.  

In addition to building a control model for UR5e on surface scanning, simulation and 

experiments were also carried out in the study. It can be seen that the RL-guided compliance 

controller has 40% better force control and 30% better orientation control than the pure 

compliance controller. Although the evaluation is mainly on the orientation performance, the 

speed control of the RL controller also affects the orientation performance on the curved surface. 

The influence of this can be studied in future studies. And the robotic implementation saves 

more time than manual UT regardless of the training time. In this study, the robotic tasks are 

only limited to surface scanning operations, if the training research in future can include more 

tasks or transfer it to other applications, then it will be more valuable even with the long training 

time. Since only a force/torque sensor was used to keep the simplicity, the tasks can only be 

small surfaces scanning on whose location is known.  

Someone argues that the accuracy of localisation of the defects does not matter. However, as I 

disclaimed, the localisation of the defects is important as it will decide for future planning of 

remanufacturing, for example, where to apply SM, how much material should be removed, 

what feed rate should be for 3D printing. And, the prediction of the defects is also important 

for predictive maintenance and predictive remanufacturing. If the subsurface defects develop 

into surface cracks and being fatal, then the repairing will be costly, and the catastrophe brought 
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to the manufacturing will be massive.  

7.1.1 Limitations 

The UT inspection was assumed to be perfect in the robotic control. The probability of detection 

(POD) was not discussed in this study. So, all the control of the robotic arm is implemented for 

only one time. However, in the real world, sometimes the results of UT are not reliable, and a 

re-test is needed. The potential future research trend will be including the UT simulation in the 

closed-loop of robotic UT. 

The study is limited to the physics settings in Gazebo simulation, which set the surface of the 

object and all the objects in the world to rigid blocks, which may sometimes not be the actual 

case. Research is also trending toward using dynamic soft materials for ultrasonic testing, but 

since Gazebo's performance is limited, other simulation software (better with UT simulation) 

can be studied for future research on UT on soft objects.  

3D reconstruction using the proposed control method can be studied in the future, and more 

advanced equipment, such as 3D scanner can be used to reconstruct the object to validate the 

proposed method. It can be also used to validate the accuracy of locations of the end-effector. 

The 3D reconstructed model can again, improve the training quality of the RL algorithm.  

The objective of this study is to carry out automated inspection without adding extra sensors to 

the robotic arm. Therefore, only a force/torque sensor is used to comply with the surface. 

However, this limits the working capacity of the method, it cannot locate the objects or estimate 

the size of the object. It cannot do path planning, navigating to the objects. This can be improved 

in the future work. 

Due to the limitation of single-element UT, the UT results on edges are not reliable enough. 

And the actual control on the edges of the object is not ideal. To implement better control and 

prepare for future research, more sophisticated control on the edges of the complicated objects 

can be carried out, which will be the next step of the researcher.  

RL simulation in this study took days to finish. As a simulation, I was watching the performance, 

which contains no redundant actions from the robotic arm. However, it can be more efficient 

when carrying out the simulation experiments, for example, using different time scales in 

Gazebo. 

And for the adaptability of the RL model, it was only trained on a flat surface, curved surface 

and the actual surface of the object. It only transfers the RL-trained model in flat and curved 

surfaces into the actual scanning task, which may not be generic enough. However, training on 

too many scenarios will lead to different problems, such as catastrophic forgetting. Moreover, 
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training on a more challenging surface will increase the difficulty of finishing the training, 

which will result in no data. Therefore, it is more important to focus on the ability of the 

generalisation of the RL model. Transfer learning, on the other hand, can be another potential 

research in the future, it can be used to transfer the pre-trained model to implement the 

controller on different tasks, such as different surfaces, and different application scenarios, such 

as polishing or disassembly, which will be challenging, especially to real industrial application 

scenarios. Future research from the group is anticipated. 

7.1.2 Future work 

The compliance controller of this study is good enough to maintain constant contact force; 

however, the position accuracy can be improved. For further research, obstacle and collision 

avoidance can be considered since safety is the most critical factor in manufacturing, and the 

objects for the proposed method can be valuable. A camera can be attached to the robot to 

navigate to the object, subsequently, implement the compliance surface scanning.  

Studies can be continued to consider overall energy consumption and coverage of the object’s 

surface for scanning path planning. I have started some research using Postman problem 

optimisation path planning to plan the path economically; the interesting research was stopped 

while some researchers considered it unevaluable. However, as the object’s surface becomes 

larger and more complex, path planning can be very valuable. Moreover, the automatic 

approach from the home position to the object can also be studied to implement fully automatic 

robotic UT.  

In this study, the RL was trained in simulation environments. The next step is to implement RL 

directly in the real world, i.e., directly train the robot in the real world to adapt more types of 

objects. Moreover, a potential research direction is to combine supervised learning and RL to 

improve training efficiency even more. Transfer learning can be used to improve the controller's 

intelligence with less learning data. The overall purpose is to make the controller solving the 

robotic scanning task more human-like. 

For robotic industrial UT, more complex scenarios should be studied. Different defects on 

different objects and different depths should be studied to study the POD of the proposed 

method further. To compare the results, PAUT can be used to improve the efficiency and 

effectiveness of the method. If possible, it can be a very interesting study to combine the robotic 

simulation platform (ROS) with the UT simulation platform, such as CIVA. In that case, the 

robotic UT can be simulated thoroughly and implemented in the real world. As mentioned, the 

proposed method, RL-guided compliance controller, can be applied to other industrial 

applications, such as grinding, 3D printing, etc. Moreover, applying this robotic arm onto a 
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mobile platform and implementing autonomous vehicle control can be applicable to large-size 

industrial objects, such as turbines. 

7.2 Conclusion  

In this thesis, an RL-based automated robotic ultrasonic testing method using only force sensing 

is proposed. At first, a control platform for the UR5e robotic arm, which includes the simulation 

environment and the implementation in the real world, was established. With the platform, the 

ultrasonic testing surface scanning task was simulated and carried out in the real world. UT 

transducer was fixed on the end-effector of the robotic arm with a 3D-printed holder.  

Based on the robotic control platform, an improved compliance controller is tuned to maintain 

constant contact force. The tolerance is within 5%. The controller is used as subsystem of the 

proposed method. To make the UT task more reliable and efficient, the RL algorithm was used 

in the control of the robotic arm. With the RL algorithm, a CAD model is not needed for the 

surface scanning tasks. Only the contact force between the probe and the object’s surface is 

measured to optimise the probe's orientation.  

A Python interface between ROS and Stable-Baselines3 has been established. The interface 

makes the RL training in the ROS simulation environment feasible. It perceived the 

environment in ROS, trained the model using the Stable-Baselines3 library, and then sent 

actions back to the ROS simulation environment to close the loop. 

The RL trains the robot model for the assigned tasks and the trained model can be carried out 

in the real world. The RL was simulated in Gazebo firstly, then transferred to the real world. 

The implementation in the real world proves that the robotic automatic UT has better efficiency 

and better adaptability than human manual UT and conventional control method. The method 

gets rid of the constraint of CAD model of the object and can be implemented on any object. 

The platform established in this study can be used in inspection in manufacturing industry, it 

can help inspection in remanufacturing and help improve economic benefits for the 

entrepreneurs. Traditional entrepreneurs may not be interested in this topic since it is a bit far 

away from realistic manufacturing. However, it can also be used in future research as a 

basement to develop future robotic contact tasks, such as robotic 3D printing remanufacturing, 

polishing, etc.  

The proposed method has been verified in simulation and experiments. The proposed controller 

can not only optimise the orientation of the end-effector but also optimise the moving speed to 

optimise the trajectory of scanning. Compared to conventional compliance control, the overall 

probe orientation error of the proposed method is much better improved. The error between the 

actual orientation and the normal direction of the object surface is within 15 degrees.  
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Future research topics could include integrating a mobile platform into this robot, a mobile 

robotic inspection platform can be carried out for a more significant object and a flexible 

application scenario. Since UT inspections are typically implemented on high-added-value 

objects, such as high-end dies and moulds and aeroplane components, sometimes the size 

matters. If the surface contact implementation can be extended to the full size of a large object, 

the value of this research will be enlarged, moreover, with mobile platforms, more research 

topics can be involved.  

ROS2 can be tried out for more real-time control. More unknown objects and surfaces can be 

explored, and more meta-learning algorithms can be developed to transfer from simple 

simulation scenarios to complicated reality applications.  

If possible, UT simulation software, such as CIVA, can be implemented via an API in the 

platform to finish the close loop of the UT simulation.  At that point, the RL training can be 

evaluated by the real-time UT inspection results, which will be reliable and closer to the real 

world. 
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Appendix A: Implementation of ROS 

ROS is an open-source middleware, which was launched by Stanford University PhD students 

Eric Berger and Keenan Wyrobek in 2007. The original target of ROS is to develop a 

middleware that is suitable for everyone with no deep robotic knowledge foundations. With the 

development through these years, ROS has become not only a middleware, but also a 

community of robotic researchers and developers, for example, there have been over 150,000 

repositories for ROS on the largest software development platform, Github.  

ROS is currently releasing ROS2, which is more supportive on real-time control, however, 

there are some stability issues on ROS2, therefore ROS1 is still in use in this study. Even though 

ROS is compatible to Windows operating system, it is preferred that Linux system to be used 

with ROS. Since ROS is designed for Linux kernel and more packages and codes have been 

tested in Linux environment, but the main tools, such as catkin tools are not compatible in 

Windows OS. To use updated python 3 libraries, Ubuntu 20.04 system is used in this study. 

Accordingly, ROS Noetic is used on Ubuntu 20.04 (see Figure 117).  

 

 

Figure 117 Top: “nine dots” ROS logo. Bottom left: logo of ROS Noetic Ninjemys, bottom right: 

screenshot of Ubuntu 20.04 system.  

Since there will be some problems during building dependencies of ROS due to dependencies 

incompatible issues or installation issues, Miniconda is used along with ROS to secure 

installation of necessary dependencies. Miniconda is a minimal installer for Conda, a package 

and environment management system. It allows developers to create and manage isolated 

environments with different versions of Python and other packages. It has been proven that 

Conda helped build of ROS a lot.  

The first step is to build a conda environment, an environment with python version 3.7 was 

created in this study. After creating of new environment, the conda environment needs to be 

activated each time when ROS is launched (see Figure 118). As shown in the figure, if it shows 

“(base)” before the command line in the terminal, it indicates that the conda environment is 

working. A customised conda environment needs to be activated and source to the setup.bash. 

It contains environment variable settings and configurations needed for ROS packages to work 

correctly in the workspace. Sourcing this file ensures that ROS commands and packages are 

available in the current shell session. After this conda environment establishment, ROS is 

installed in Ubuntu. 

 

Figure 118 Base environment and created Robot_ur5e_ws environment in Conda.  
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ROS is a middleware which is mainly based on C++ and Python. Many core components and 

libraries of ROS are implemented in C++. This includes the ROS middleware, communication 

libraries, and key functionalities. To build the inter-dependent system, ROS community built 

the tool, catkin tools. Catkin is the build system that ROS uses to manage the compilation and 

build process of ROS packages. It organizes code into packages and provides tools for building, 

testing, and managing dependencies. Catkin uses CMake as its underlying build system, 

allowing for a more modular and flexible build process. Catkin organizes code into packages, 

each with its own CMakeLists.txt file. An advantage of this approach is that the total 

configuration would be smaller than configuring each package individually and that the Make 

targets can be parallelized even among dependent packages. Catkin Tools provides better 

dependency management compared to the older rosbuild system.  Every time after significant 

change including the first-time installation has been made in ROS, a “catkin_make” in the 

workspace of ROS is necessary. ROS also has extensive support for Python. Python is 

commonly used for writing high-level scripts, prototyping, and interacting with various ROS 

functionalities. One of the strengths of ROS is its support for interoperability between 

components written in different languages. ROS nodes written in C++ and Python can 

communicate seamlessly through the ROS middleware. 

ROS is basically a system based on information threads. It helps developers build and manage 

software for robotic systems. Despite its name, ROS is not an operating system in the traditional 

sense. Instead, it provides a set of tools and libraries that facilitate communication and 

coordination among the various components of a robotic system. The main format of document 

ran by operators in ROS is the .launch file, which is an XML (eXtensible Markup Language) 

format text document (see Figure 122). In each .launch file, it contains the information of a 

sender, a receiver, a heading and a message body. Different from HTML files, XML files are 

designed to transfer data which is suitable for ROS structure. In the launch file, it defined the 

environment that the robot will run, which is .world file. The default world used in Gazebo is 

“empty_world”. Within this world file, the illuminations and gravity properties within the 

environment can be defined in the .world file. Within the world, there are model files, Unified 

Robot Description Format (urdf) and   Simulation Description Format (sdf), which are the 

objects in the simulation environment. Any objects in normal world can be defined if there is a 

3D model of the object, e.g., a drink can or a vehicle. The mass, inertia, material, texture and 

mesh can be defined in the text-based document. The robot model needs to be “spawned” when 

starting the launch file. The model of robot is in the format of .urdf format, in which every joint 

and link is defined. Links should be inserted in urdf as .dae format, and described in text for 

other features. Joint is the connection between two main parts of the robotic arm, it is normally 

rotational in robotic case. The link is the “main part” of robot, in UR5e case, 6 joints and 7 links 

are defined (shown in Figure 119). Except for the text description of these links and joints, the 

3D model is also needed for further simulation. The links in the urdf file are connected with the 

relation as parent link and child link, and with the relationship, the transform tree (TF tree) will 

be established in ROS to realise dynamic pose/position transform (see Figure 120).  

 

Figure 119 Joints and links of UR5e robot. 
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The launch file also includes the parameters of the ROS running. There are two kinds of 

parameter settings, param and rosparam. Param can be used to set single parameter in ROS, it 

can be set within the launch file. While rosparam is to load the parameters set up in the .yaml 

(yet another markup language) files. These parameters are specified for the robot, they are set 

in a separate file since the parameters are more complex. Group is the tag to set up a group of 

parameters within the launch file. Within the group, arg is to define a single argument, which 

can be only used within the launch file. The value of the argument can be set in text, it can be 

also set as a ‘default’ value and overwritten by command lines in the future commands. Include 

is to set up the set-up files needed to be included, such as world files, launch files or python 

files. The screenshot of a launch file can be seen in Figure 121. As can be seen in the figure, 

the robot description is cited in line 15, which has been defined in line 6, pointed to the directory 

of the robot description.  

 

Figure 120 Example of TF tree of the robot.  
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Figure 121 Screenshot of a launch file. 

Unified robotic description format (URDF) or simulation description format (SDF) file is the 

robot description file which defined the structure of the robot by text. Within the description 

file, the inertia, mass, material, size and friction features of the links will be defined. Besides 

the description files of the robot, mesh files (.dae or .stl) and config files are necessary for the 

simulation purpose. Dae file is used in COLLADA, which stands for "Collaborative Design 

Activity”. Stl (stereolithography) file is used in most 3D CAD software, such as, Solidworks, 

Meshlab. Robot links are normally defined in .dae format and cited in .urdf format. Other 

objects in simulation are normally defined in .stl format and cited in .sdf files and used in 

simulation. However, there will be special cases, such as, when plugging objects, such as the 

holder, into the robot model, the .stl file will be inserted into the .urdf file. Materials and plugins 

can be also defined. In plug-in, sensors, such as cameras, inertial measurement unit (IMU) can 

be defined and installed on the robot. Subsequently, the setting of the robot model can be 

visualised in Gazebo or RViz.  

The ROS works based on packages, each package communicates with each other by sending 

and receiving messages. The package can be created based on roscpp or rospy, which are 

“ROS+ C++” and “ROS+ Python”. Roscpp is the implementation of ROS on C++, it is a pre-

defined client library which can quickly interact with topics, services and parameters. ROS is 

designed based on roscpp, it is used to make high-performance packages. Similarly, rospy is 

the similar client library for Python. The advantage of rospy is the speed of implementation. 

After the spawn of robotic arm, related rosnode will be established. From each rosnode, there 

will be some arguments within the node, and there will be rostopic generated from the nodes. 

ROS master will take charge of how the nodes are named, and the master can be invoked by 

using roscore command. Besides the spawn of the robotic arm model, the controllers of the 

robotic arm and the gripper will be spawned and the rosnodes for the controllers will be 

established. The other rosnodes, such as for the Moveit motion planning, publisher of the joint 

positions, are also started when the .launch file starts. The messages can be delivered between 

rosnodes via rostopics. The rostopics are established as soon as the publisher or the subscriber 

of a topic is ready within a rosnode. The message, or the data will be delivered via the rostopics. 

The rostopics are mostly defined in the library and easy to use. Use command in the prompt 

window, the information of the rostopics can be checked. For some nodes, such as 

spawn_model, rosservices are used to finish the node. Rosservice can also deliver messages. 

Unlike rostopics, rosservice are bi-direction one-to-one communication. It invokes request to 

one node and receives response from the node. For each rosnode, “pkg”, “type”, “respawn”, 

“output” and “args” should be defined. The pkg is the defined rosnode name, which is in the 

directory of the roscore. When creating the ROS package, the core code has been created to 

create the rosnode. In the “package.xml” file of each package, the dependant files are defined 

in the file to align the rosnode “pkg” to defined files. The rosnode should be connected to the 

“catkin” libraries. “catkin” is a build system of ROS to generate the target packages from raw 

source code to the end users. The products of catkin can be libraries, executable programs, 

simulations, or anything else than static codes. Catkin in ROS is similar to CMake, which is a 
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common build tool for C++. Therefore, in each package of ROS, there is a CMakeList.txt, 

which is defining the processes of preparing and executing the build process. 

Besides the physical settings in ROS, the controller of the robot should be also designed. ROS 

has application programming interface (API) to main coding languages, i.e., python and C++. 

The controllers define how the joints and links move under certain condition, for example, 

position controller will guarantee the joints and the links to move to the targeted positions, with 

the help of ROS API library that has been defined by ROS developers, such as, 

moveit_commander transfers the defined rosnode in Moveit, e.g., the position of the end-

effector to the coding. In this thesis, the ROS platform was established to realise these functions: 

simulation, implementation of surface scanning tasks, implementing reinforcement learning 

algorithms, synchronisation of simulation models and real robot, control of real robots. The 

communication between ROS and the real robot can be realised via Ethernet cable. The main 

structure of ROS is listed in Figure 122.   

 

Figure 122 Main structure of ROS. 

Ros_control is a package that takes the joints states as input and calculate the effort output to 

realise the control closed loop (shown in Figure 123). The information of the joints, such as 

position, speed or effort is sent to ros_control as input. The calculated output will be sent to the 

actuators in the robot. Ros_control contains controller manager, controller interface, 

transmissions, hardware interfaces. In controller manager, it manages the start, stop, load and 

unload of the controllers. Hardware interface is for communication with real hardware. To 

make the ros_control in Gazebo simulation, the “transmission” from normal joints to actuators 

should be made in the urdf file. Plug-in is also needed when using ros_control in Gazebo. This 

plug-in is specially for parsing the urdf and loading the appropriate hardware interfaces in 

Gazebo. In ros_control, the joint position control normally uses the proportional integral 

derivative (PID) control. The parameters of PID should be set up in the .yaml config file. The 

commands to the joints will be sent to the ROS interface, i.e., joint_states. Besides the control 

of joints, the planer is also needed. A classic planner for ROS is Moveit.  
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Figure 123 Structure of ROS_control (Source: ROS wiki).  

Parameter server is a component of ROS, which can contain the configuration data. It is a 

centralised storage that is accessed by multiple nodes. Configuration data, such as, robot 

geometry, sensor calibration, controllers, and other parameters are saved here. The parameters 

can be saved to the parameter server by any node, and can be accessed by other nodes which 

have the permission. Any parameter in the launch file, which starts with “param name” will be 

saved to the parameter server. With the command “rosparam list” in the terminal window, all 

the parameters on the server can be checked. 

Moveit is a software that can define the movement of the robot. It is an embedded solution for 

the inverse kinematic problem. To start setting up Moveit, command in Linux is “roslaunch 

moveit_setup_assistant setup_assistant.launch”, which will start the setup assistant of Moveit 

(shown in Figure 124). At first, the name list of joints and links that has been defined by the 

developers will be listed. A control group will be established by selecting related links, for 

example, 7 links for UR5e. After this, a move group will be established with all these links. 

Subsequently, abnormal collision and self-collision will be checked. Certain positions of the 

joints can be defined as particular positions of the robot and the gripper. Controllers of robot 

and gripper are also set up in Moveit. Moveit has several defined inverse solvers that can be 

used to solve the inverse kinematic problem. The targeted positions can be assigned to the robot, 

the solver will calculate the precise positions of the joints, with an optimal solution. Many 

classic planners in OMPL (Open Motion Planning Library) Planners are provided in Moveit, 

such as, RRT (Rapidly Exploring Random Tree), RRTConnect, etc. Moveit is a mature solution 

for reverse kinematic problem, even though sometimes it gives non-available solutions, but 

most of the time it is working, and it saves time for kinematic problem solution.  

  

Figure 124 Screenshot of Moveit setup. 
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After the Moveit setup, the final step of the Moveit assistant is to generate the packages, which 

is normally named as “*_moveit_config”. Within this package, there will be originally three 

files: CMakeList.txt, package.xml, .setup_assistant and two folders: config, launch. In the 

MoveIt framework, the CMakeLists.txt and package.xml files in the moveit_config folder are 

essential for configuring and building MoveIt configurations. The CMakeLists.txt file is written 

in the CMake scripting language and is used by CMake, the build system used by ROS, to 

control the software build process. In the context of MoveIt and moveit_config, the 

CMakeLists.txt file typically includes instructions for building and configuring the MoveIt 

configuration package. It specifies the minimum required version of CMake and other 

dependencies. It helps define the source files to be compiled, executable targets, and any 

additional build instructions. It helps specify ROS-specific information, such as dependencies 

on other ROS packages, ROS package export settings, and ROS messages/services. It 

configures MoveIt plugins and extensions that are specific to the MoveIt configuration package. 

For the package.xml, it is an XML file used to declare metadata about the ROS package. It 

provides information about the package name, version, maintainer, license, and dependencies 

on other ROS packages. And for the config folder, it contains mainly the controllers codes. In 

launch folder, most of the original roslaunch files are located there, such as, 

demo_gazebo.launch.  

The high-end 3D printing machine Ultimaker S5 was used to manufacture it with polylactic 

acid (PLA) material (shown in Figure 125). PLA is a commonly used material for industrial 

application. PLA material has some advantages, such as, relatively acceptable price, good 

strength and elastic, low thermal expansion, good layer adhesion. PLA will degrade when 

temperature is over 60°C, which is not possible in this application. The good output 

performance of 3D printing is secured by adjusting the printing parameters, such as, feeding 

speed, temperature. The optimal extruding temperature of the filament should be 190-220 °C. 

Since the target contact force between the transducer and the surface should not beyond 20N, 

and all the experiment processes are monitored, so the strength of PLA material is enough for 

this study.  

 

Figure 125 Ultimaker S5 3D printer used in this study. 

 

 

  



Z. Wang, PhD Thesis, Aston University 2024 

176 

 

Appendix B: Codes in This Study 

   

Figure 126 Screenshot of physics parameters setup of the object (left) and the gripper(right).  

 

 

Figure 127 Screenshot of controllers in the config. 

 

Figure 128 Settings of controllers in launch file. 
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Figure 129 Screenshot of RL training code. 

 

Figure 130 Config of RL training. 

 


