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Abstract 

The measurement of corneal biomechanics has gained significant importance recently. Over 

the past two decades, three devices capable of quantifying biomechanical properties have 

become commercially available: two non-contact tonometers (ORA and Corvis ST) that 

record changes in corneal shape induced by an air-puff, and a third device (BOSS) that 

quantifies rigidity by analysing the frequency shift of light scattered within the corneal tissue, 

in accordance with Brillouin scattering. Due to its unique technology, the BOSS can also 

quantify the rigidity of the crystalline lens. 

Data from ORA and Corvis ST have been employed to train supervised machine learning 

models for the detection of keratoconus and primary open-angle glaucoma. Various learners 

and strategies were used to identify the most effective model. Subsequently, another model 

was developed to differentiate between healthy eyes, primary open-angle glaucoma, normal-

tension glaucoma, and ocular hypertension. After fine-tuning, this model was tested to 

determine if keratoconus (without glaucoma) could confound the labelling. 

Several experiments with the BOSS were conducted, including assessments of repeatability, 

correlations with measurements from ORA, Corvis ST, and OCT, and investigations into 

changes in corneal biomechanics related to age and refractive error. The thesis concludes 

with incidental findings on variations in crystalline lens thickness along the same meridian. 

The main findings are as follows: 

• It is possible to detect keratoconus and glaucoma using corneal biomechanical data 

and supervised machine learning algorithms. 

• Corneal biomechanics data from patients with keratoconus may confound the 

classification in a model designed to detect glaucoma. 

• The repeatability of the BOSS is high for lens modulus, but it is quite low for corneal 

modulus. Other lens parameters show even lower repeatability. 

• BOSS measurements do not correlate with any measurement from ORA or Corvis 

ST, the machines do measure different corneal features. 

• The most notable change in ocular biomechanics due to age is the reduction in the 

Brillouin modulus (rigidity) of the crystalline lens, which is contrary to expectations. 

• Myopic eyes generally exhibit weaker biomechanics compared to emmetropic eyes. 

• Peripheral crystalline lens thickness varies across different meridians (considering 

the same eccentricity). 
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1 Literature Review: Corneal Biomechanics 

1.1 Introduction 

Biomechanics refer to the mechanical properties of living tissues. Corneal biomechanics are 

important because they can alter the measurement of intraocular pressure (IOP). 

Goldmann Applanation Tonometry (GAT) (Goldmann and Schmidt 1957) is considered the 

gold standard for measuring IOP, but it suffers from limitations because it does not account 

for corneal features such as rigidity, elasticity, and thickness. The operating principle of GAT 

is quite simple: it is based on the Imbert-Fick Law (Markiewitz 1960) which states that the 

force required to applanate an external part of a sphere filled with liquid is directly 

proportional to the pressure of the fluid in the sphere (as shown in Eq. 1.1). GAT, the goal is 

to achieve the applanation of a fixed portion of the cornea (a circular area with a diameter of 

3.06 mm, A) using a probe. By adjusting the force applied (F) by the probe, it is possible to 

achieve applanation. Once this is reached, the instrument indicates the value of IOP (P). 

𝑃 =
𝐹
𝐴
 

Eq. 1.1 Imbert-Fick Law 

The Imbert-Fick Law is valid only for dry, spherical, perfectly elastic surfaces with infinitely 

thin membranes. However, GAT is calibrated for a central corneal thickness (CCT) of 500-

520 µm, even though it has been shown that CCT can range between 427 and 670 µm in 

healthy eyes (Ku, Danesh-Meyer et al. 2006). Even if formulae were proposed to correct 

GAT measurements according to CCT, the results would remain dubious due to the poor 

correlation between CCT and GAT (Kotecha 2007), suggesting that a more appropriate 

correction factor should include corneal biomechanical properties. 

It is possible to trace back the birth of the study of corneal biomechanical properties to the 

tentative of correction of IOP measurements, when researchers tried to calculate and 

corneal contribute to tonometry (Liu and Roberts 2005). Initially, the research about corneal 

biomechanics mainly focused on static parameters, on central corneal thickness and corneal 

curvature. Soon, it was clear that static parameters alone were not sufficient to predict how 

the cornea would respond to dynamic stressors such as IOP fluctuations or surgical 

manipulation. Being a living tissue, it is not possible to perform on a cornea all the tests that 

would been performed on an ex vivo or during an in vitro experiment. Therefore, during the 
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last 20 years the analysis of corneal biomechanics was done through the use of special non-

contact tonometers, developed for the analysis of parameters that are not usually considered 

during tonometry. 

The main corneal biomechanical properties are: 

- Stiffness: the ability to resist deformation when subjected to external force.  It is 
influenced by the collagen fibres network, that provides mechanical stability. It is 

crucial to maintain curvature and optical function. (Kling and Hafezi 2017) 

- Elasticity: the ability of the tissue to return to its original shape after the deformation. 
It depends on the organisation and density of collagen fibrils. A higher elasticity 

allows the cornea to better withstand IOP fluctuations without permanent 

deformation. It is believed to protect the eye from sudden forces. (Marinescu, 

Dascalescu et al. 2022) 

- Viscoelasticity: it is a combination of elastic (reversible deformation) and viscous 
(time-dependant flow) properties that enable corneas to absorb mechanical energy 

and slowly dissipate it. (Gatzioufas and Seitz 2015) 

- Resistance: the ability of the tissue to withstand mechanical loads without structural 
failures, even for long periods of time. It prevents ectasia, it can be weakened by 

refractive surgery but can be enhanced by cross-linking.(Rahmati, Razaghi et al. 

2021) 

Measuring corneal biomechanical properties is particularly important not only to achieve a 

more accurate intraocular pressure (IOP) reading — one that incorporates these 

biomechanical characteristics — but also because pathologies such as corneal ectasia and 

glaucoma demonstrably alter corneal biomechanical parameters (Komninou, Seiler et al. 

2024). Detecting such alterations may enable earlier diagnosis and intervention. Moreover, 

assessing corneal biomechanics is a non-invasive procedure that can be performed rapidly 

while providing a wealth of clinically relevant information. 
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1.2 How to measure and quantify corneal 

biomechanical properties 

Currently, two devices that can measure corneal biomechanics in vivo and provide IOP 

corrected according to measured properties are commercially available. These are the 

Ocular Response Analyzer (ORA), by Reichart (Depew, NY, USA), and Corneal Visualization 

Scheimpflug Technology (Corvis ST), by Oculus (Wetzlar, Germany). A third device, Brillouin 

Optical Scanner System (BOSS), by Intelon (Woburn, MA, USA) analyses the frequency 

shift of the light that is backscattered by a tissue, to compute the longitudinal elastic 

modulus. 

1.2.1 Ocular Response Analyser 

ORA, launched in 2005, is a non-contact tonometer that measures intraocular pressure IOP 

and some corneal biomechanical properties, adjusting IOP values accordingly (Luce 2005). 

The intensity of the puff of air used by the ORA follows a Gaussian profile over time (30 ms), 

meaning that the intensity increases linearly to a peak and then decreases with the same 

slope, as shown in Figure 1.1

. 
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Thanks to the IR system, the ORA can detect the two applanations, which correspond to 

peaks in IR intensity measured by the detector. In a completely elastic material, the two 

applanations would occur at the same level of air pressure. However, due to the difference in 

air pressure intensity between the two applanations, the cornea can be described as a 

viscoelastic material. In a viscoelastic material, resistance to external stress depends on the 

velocity of the applied force. The intensity of the puff of air during the second applanation is 

always lower than during the first due to the dissipation of energy during the process of 

returning to its original shape, known as damping. 

From several parameters measured during the two applanations, the ORA provides some 

clinical outputs: 

- Corneal Hysteresis (CH): the difference in the intensity of the puff of air between the 
first and second applanation. CH describes the cornea's ability to dissipate energy, 

which is transformed into heat. 

𝐶𝐻 = 𝑘1(𝑃1 − 𝑃2) + 𝑘2 

Eq. 1.2 Corneal Hysteresis Formula 

- Corneal Resistance Factor (CRF): describes the overall rigidity of the cornea. It is 
similar to CH but is more related to P1 and, therefore, to CCT. 

𝐶𝑅𝐹 = 𝑘3(𝑃1 − 0.7 × 𝑃2) + 𝑘4 

Eq. 1.3 Corneal Resistance Factor Formula 

- IOPg: a measurement of IOP that correlates to GAT. 

𝐼𝑂𝑃𝑔 = 𝑘5(𝑃1 + 𝑃2) + 𝑘6 

Eq. 1.4 GAT-related IOP Formula 

- IOPcc: the corneal-compensated IOP, a corrected measurement of IOP that 
considers corneal biomechanical properties. 

𝐼𝑂𝑃𝑐𝑐 = 𝑘7(𝑃2 − 0.43 × 𝑃1) + 𝑘8 

Eq. 1.5 Corneal Compensated IOP Formula 

Wavefront Score (WS) was introduced in the second generation of ORA. WS, providing an 

analysis of IR signal features, helps the operator evaluate the quality of the measurement. It 

is composed of seven parameters (derived using principal component analysis) that can 
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have values between 0 and 10, with 10 being the ideal score for a perfect analysis. Over the 

past ten years, it has been shown that measurements associated with a WS lower than 3.5 

should be rejected (Lam, Chen et al. 2010), that measurements with a WS higher than 6 

have good inter-operator reproducibility even if the operators are inexperienced (Mandalos, 

Anastasopoulos et al. 2013), and that a WS higher than 7 is associated with good 

agreement between GAT and IOPg (Ayala and Chen 2012). 

 

Figure 1.1 In green the intensity of the puff of air over time, in red the intensity of signal over time. The two peaks 
correspond to the applanations. The IOP is measured as the intensity of the air puff during the applanation. 

 

1.2.2 Corneal Visualization Scheimpflug Technology 

(Corvis ST) 

The second device capable of providing clinical measurements of corneal biomechanical 

properties is the Corvis ST, launched in 2013 (Hon and Lam 2013). The major difference 

between the ORA and the Corvis ST is that the latter uses a high-speed Scheimpflug 

camera that records 140 images in 30 ms to examine an 8-mm horizontal arc of the cornea 

during the puff of air. The air pulse lasts 25 ms and has a Gaussian distribution in terms of 

intensity, with a peak of 25 kPa. 
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Through the analysis of recorded images, the Corvis ST detects the two applanations (A1 

and A2) and the highest concavity (HC). Corvis ST calculates several parameters from the 

analysis of photographs. The clinical outputs provided by Corvis ST are: 

• IOP: Intraocular pressure. 
• bIOP: Biomechanically corrected intraocular pressure. 
• Pachymetry. 

• A1V: Velocity of the cornea during the first applanation. 
• A1T: Time frame of the first applanation. 
• A1L: Length of the applanated cornea during the first applanation. 
• A2V: Velocity of the cornea during the second applanation (negative). 
• A2T: Time frame of the second applanation. 
• A2L: Length of the applanated cornea during the second applanation. 
• Highest Concavity Time (HCT): Time frame between the start of the puff of air and 

the highest concavity. 

• Highest Concavity Peak Distance (PD): Distance between the two surrounding 
peaks at the highest concavity. 

• Highest Concavity Radius (HCR): Corneal radius during the highest concavity. 
• Highest Concavity Deformation Amplitude (DefoAm): Maximal displacement of 

the corneal apex between the normal corneal shape and the highest concavity. It is 

defined as the vertical movement of the corneal apex over time and is the sum of the 

deflection amplitude and the whole eye movement. 

• Deflection Amplitude (DeflAm): The movement of the corneal apex compared to 
the superimposed cornea in its initial state. To consider corneal movement only, the 

whole eye movement is compensated. 

• Deflection Amplitude Ratio (DeflAmR): The ratio between the deflection amplitude 
at the apex and the deflection amplitude at 2 mm. 

• Deflection Area (DeflAr): The area of the cornea in the horizontal sectional plane 
that is displaced. 

• Deformation Amplitude Ratio (DefAR): The ratio between the deflection amplitude 
at the apex and the deflection amplitude at 2 mm. 

• Highest Concavity Inverse Radius (InvRad): The maximum value of the inverse of 
the concave radius measured during the concave phase of the deformation. 

• Whole-Eye Movement (WEM): The movement of the whole eye in the vertical 
direction, determined by the movement of the edge points of the cornea in the 

periphery. 
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• Stress-Strain Index (SSI): Derived from an algorithm that uses a combination of 
parameters measured by Corvis ST. It is designed to be independent of central 

corneal thickness and IOP and represents corneal rigidity (Eliasy, Chen et al. 2019). 

• Stiffness Parameter at first applanation (SP-A1): Calculated as the ratio between 
the applied load and the displacement, representing corneal rigidity during the first 

applanation (Roberts, Mahmoud et al. 2017). 

• Ambrosio Relational Thickness horizontal (ARTh): Combines the central corneal 
thickness and corneal deformability, useful in keratoconus screening and diagnosis 

(Vinciguerra, Ambrósio et al. 2016). 

• Integrated Radius (IntRad): The area under the Inverse Radius curve. 
• Corneal Biomechanical Index (CBI): Based on a logistic regression formula, 

calculated from five different biomechanical parameters measured by Corvis ST 

(A1V, A2V, PD, HCR, DefoAm), representing the risk for corneal ectasia (< 0.25 low 

risk; between 0.25 and 0.5 moderate risk; above 0.5 high risk) (Vinciguerra, Ambrósio 

et al. 2016). 

• Tomographic and Biomechanical Index (TBI): integrates data from corneal 
tomography and biomechanical analysis to detect ectasia. A random forest algorithm 

is employed to compute the TBI, which provides a continuous output ranging from 0 

to 1. In the study that presented the TBI, it achieved an AUC of 0.996 for 

discriminating ectatic from healthy corneas, and a cut-off value of 0.79 yielded 100% 

sensitivity and specificity for identifying clinically evident ectasia (Ambrósio, Lopes et 

al. 2017). 

Figure 1.2-1.6 illustrate the different stages of a Corvis ST measurement. 

 

Figure 1.2 Instant 0, cornea has its natural shape, the puff of air did not reach the cornea yet. 
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Figure 1.3 First applanation (A1), the puff of air is increasing in intensity and the cornea is moving 
inward. Time, corneal velocity and length of applanation are recorded 

 

Figure 1.4 Highest concavity (HC) reached, radius, time, deformation amplitude, deflection length and 
displacement are measured. 

 

Figure 1.5 Second applanation (A2), the peak of the puff of air is passed and the cornea is moving 
outward, toward its natural shape. Time, corneal velocity and length of applanation are recorded. 
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Figure 1.6 Test is finished, cornea has regained its normal shape. 

 

1.2.3 Brillouin Optical Scanner System (BOSS) 

The BOSS is an innovative instrument that uses Brillouin confocal microscopy to assess the 

biomechanical properties of tissue. The BOSS analyses Brillouin scattering to calculate the 

longitudinal elastic modulus of a transparent tissues. The instrument comprises a laser, 

essential for its high coherence and monochromatic wavelength, and a virtually imaged 

phase array (VIPA) spectrometer. 

When a single photon passes through the cornea, it interacts with phonons—the elementary 

vibrations in tissues caused by the oscillation of atoms and molecules at a single frequency 

due to thermodynamic variations. The photon that interacts with phonons scatters 

inelastically, transferring energy. By analysing the backscattered light, it is possible to obtain 

information about phonons, which are related to the biomechanical properties of the tissue. 

The development of Brillouin confocal microscopy over the last fifteen years has enabled the 

use of this promising technology to create a map of the corneal longitudinal modulus. 

Several clinical applications of this type of instrument are yet to be investigated. 

1.2.3.1 Historical perspective and development 

In 1922, Léon Brillouin described the scattering caused by thermal acoustic longitudinal 

waves at the atomic or molecular level on coherent light, typically observed at a 90˚ angle, 

as show in Figure 1.7 (Brillouin 1922). It is important to note that the scattering described by 

Brillouin is an inelastic scattering process, where the total energy is not maintained because 

part of it causes a frequency shift between the incident and scattered light. 
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Figure 1.7 . Representation of Brillouin scattering caused by phonons. V is the velocity of the phonons in the 
media, n the refractive index of the media, θ the angle of scattering (Reiss, Burau, Stachs, Guthoff, & Stolz, 2011) 

Knowing the frequency shift, it is possible to calculate certain properties of the medium 

through which the light is passing, as there is a mathematical relation between the frequency 

shift and the thermal acoustic wave that scatters the light (phonons). Such vibrations, also 

known as lattice vibrations or phonons, are present in all media and are related to various 

features of the material, such as density and elastic modulus. 

When the phonons create constructive interference, it is called spontaneous Brillouin 

scattering. The use of a spectrometer allows the investigation of the spectral changes of the 

scattered light (spectrometry), which depends on the frequency of the incident light and the 

vibrations of the molecules around their equilibrium point. Depending on the frequency shift, 

which can be higher or lower, it is possible to detect Stokes and anti-Stokes Brillouin 

frequency shifts. Half the frequency difference between the Stokes and anti-Stokes spectral 

peaks is the Brillouin frequency shift. The Brillouin frequency shift depends on the phonon 

velocity, wavelength of incident radiation, and refractive index, as shown in Eq. 1.6 Brillouin 

frequency : 

𝜈! = ±
2𝑛
𝜆
𝑉 𝑐𝑜𝑠C𝜃 2E F	  

Eq. 1.6 Brillouin frequency shift 

Differentiating Brillouin scattering from Rayleigh and Raman scatterings represents a 

significant challenge because both Rayleigh and Raman scatterings are several orders of 

magnitude more intense. Moreover, Brillouin scattering typically occurs at frequencies in the 

range of a few GHz. 

Rayleigh scattering happens when light interacts with particles smaller than the wavelength 

of light, resulting in scattering without a change in wavelength. This scattering is responsible 
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for the blue sky and red sky during sunrise and sunset. Raman scattering, which is 

completely inelastic, occurs when light interacts with the vibrational modes of molecules, 

causing a wavelength shift proportional to the vibration. It is commonly used in molecular 

identification (Park, Min et al. 2002). 

Another issue arises from the wavelength of the electromagnetic wave used, typically a 

laser. To minimise the negative effects of the laser on the tissue, a laser with a high 

wavelength is preferred. However, increasing the wavelength of the laser reduces the shift of 

the inelastically scattered light (Reiss, Burau et al. 2011). 

Brillouin scattering, occurring at GHz frequencies, is often too small to be resolved using 

conventional spectrometers and to be distinguished from Raman and Rayleigh scatterings. 

To address this challenge, several methods have been developed: multiple-scanning Fabry-

Perot interferometers (Lindsay, Anderson et al. 1981), optical beating methods (Tanaka and 

Sonehara 1995) and monochromators (Benassi, Eramo et al. 2005) as scanning 

approaches, or non-scanning parallel approaches using angle-dispersive Fabry-Perot 

interferometers (Itoh 1998). The main limitation of these methods is that their efficiency is 

constrained by the inverse of the finesse coefficient of the Fabry-Perot interferometer. 

In the early 1980s, Brillouin frequency shift was measured in ex vivo corneas and lenses, but 

the imaging process was extremely time-consuming (Vaughan and Randall 1980, Randall 

and Vaughan 1982). 

In 2007, a new spectrometer was developed based on a virtually imaged phased array 

(VIPA) with a free spectral range of 33.3 GHz, higher finesse (up to 56), and efficiency up to 

80%. This new spectrometer, used with a confocal microscope, achieved a three-

dimensional resolution of 6×6×60 µm (on x, y, and z axes, respectively) with an integration 

time of one second instead of minutes (Scarcelli and Yun 2007). In 2012, a resolution of 

1×1×5 µm (x, y, z) was achieved (Scarcelli, Pineda et al. 2012). 

The VIPA consists of a single transparent plate with two semi-reflecting surfaces and an anti-

reflecting coating on one side. The light (laser) enters through a fissure on the edge and is 

reflected several times between the two semi-reflecting surfaces. After each reflection, part 

of the light passes through the surface, creating several parallel beams of light with different 

angles. The constructive and destructive interference creates an interference pattern that 

depends on the wavelength and beam angle. 
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Recently, Zhang and colleagues (Zhang, Tatham et al. 2016) utilised parallel detection to 

scan hundreds of points simultaneously, reducing the acquisition time from hours to 

seconds. 

Brillouin Modulus (M) is calculated using the Eq. 1.7 Brillouin Modulus: 

𝑀 =	
𝜈!"	𝜆"	𝜌

4𝑛"𝑐𝑜𝑠" J𝜃2K
	  

Eq. 1.7 Brillouin Modulus 

The Brillouin Modulus describes the rigidity of a material in terms of its elastic properties, 

specifically its resistance to deformation under stress along the direction of wave 

propagation. The Brillouin Longitudinal Modulus and Young’s Modulus (E) differ in magnitude 

due to their definitions and the scale of pressure modulation (GHz for phonons, MHz for 

mechanical stress). Consequently, these moduli are not interchangeable because they 

originate from different types of measurements. However, as shown in Eq. 1.8 there is a 

good log-log relationship between them (Scarcelli, Kim et al. 2011): 

log(𝑀) = 𝑎 log(𝐸) + 𝑏	  

Eq. 1.8 Log-Log relationship between Brillouin modulus and Young’s Modulus 

In a recent paper, Ambekar and colleagues compared the Brillouin frequency shift (for the 

longitudinal modulus) and Optical Coherence Elastography (for Young’s modulus), 

confirming the log-log relationship in Eq. 1.8 Log-Log relationship between Brillouin modulus 

and Young’s Modulus (Ambekar, Singh et al. 2020). 

1.2.3.2 Lens 

Randall and Vaughan measured the Brillouin frequency shift of lenses from various animals, 

including humans, in ex vivo conditions. They found a value of 4.71 GHz, with no difference 

between the centre and the periphery of the lens. This was the first attempt to measure 

Brillouin frequency shift in ocular tissue (Randall and Vaughan 1982). 

In 2007, Scarcelli and Yun mapped the Brillouin frequency shift of a mouse lens in a cuvette 

filled with viscous polymer. The imaging provided a cross-sectional map of the elastic 

modulus of the intraocular lens (IOL), with colour coding based on the frequency shift: dark 

red in the centre (14.6 GHz) of the lens and blue for the surrounding optical medium (11.5 

GHz), as shown in Eq. 1.8 (Scarcelli and Yun 2007). 



G. Civiero, PhD Thesis, Aston University, 2024 

13 

 

 

Figure 1.8 Cross-sectional map of a IOL placed in a cuvette filled with liquid (blue) that creates lower frequency 
shift than the material of IOL. In the left upper part, it is possible to identify the edge of the cuvette, with a 
frequency shift similar to the IOL material. 

Using Scarcelli’s configuration, in 2011 Reiss and colleagues (Reiss, Burau et al. 2011) 

measured in vitro the rheological properties of extracted lenses from rabbits, pigs, and 

humans, and in situ the rheological properties of pig and rabbit eyes. Measurements were 

taken with eyes placed in a cuvette filled with saline, and measurements were performed as 

an axial scan along the optic axis of the eye. 

Measurements performed on both rabbit and pig lenses showed higher values of Brillouin 

frequency shift in the central part of the lens (7.9 GHz for rabbit and 6.5 GHz for pig) than in 

the cortex. It was even possible to distinguish between different media (aqueous humour, 

crystalline lens, and vitreous humour) during data collection, due to the scattering at the 

anterior and posterior capsules of the lens, which correspond to slopes in the graphs, as 

shown in Figure 1.9. From the obtained measurements, researchers hypothesised that the 

nucleus has greater toughness than the cortex because the modulus in the cortex is lower 

than in the nucleus. Once the lenses (human, rabbit, and pig) were extracted, the storage 

and loss moduli were measured from the lateral positions, revealing higher moduli in the 

nucleus than in the cortex, as well as higher bulk viscosity and volume elasticity. 

 

Figure 1.9 Depth dependant frequency shift (green dots) of rabbit eye lens (left image) and porcine (right image), 
on the right y axis there are storage and loss moduli. AH is aqueous humour; L is lens and VH vitreous humour 
(Reiss et al., 2011) 
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In 2011, Scarcelli and colleagues (Scarcelli, Kim et al. 2011), measured ex vivo the 

rheological properties of porcine lenses and, for the first time in vivo, the age-related 

changes in the crystalline lens of anaesthetised mice using Brillouin frequency shift. They 

found that the peak in Brillouin shift is higher in older mice lenses (up to 16 GHz compared 

to 11 GHz for younger mice). Weekly measurements correlated with data collected on same-

age mice, showing higher values of the Brillouin frequency shift and a peak shifted toward 

the centre of the lens in older animals.  

Authors also measured the Brillouin frequency shift ex vivo on young and old porcine (< 1 

month, 6 months) and bovine corneas (< 1 month, 1-2 years). In porcine lenses, they 

observed a similar but less pronounced age-dependent increase in shift compared to mice, 

and the formation of a plateau in the centre of the crystalline lens, which loses the typical bell 

shape. In bovine lenses, besides measuring the Brillouin frequency shift, they performed a 

quasi-static stress-strain test to measure Young’s modulus and dynamic shear rheometry for 

shear moduli, comparing the results with the Brillouin longitudinal modulus calculated from 

the Brillouin frequency shift. The results showed a significant age-related increase with all 

methods: Brillouin longitudinal modulus increased from 3.5 GPa for young to 4.5 GPa for old, 

Young’s modulus from 1 kPa for young to 30 kPa for old, and shear modulus from 2 kPa for 

young to 100 kPa for old, with significant differences in the order of magnitude of 

measurement units due to differences in measurement procedures. 

In 2012 it was demonstrated that degeneration effects in specimens of porcine crystalline 

lenses were observable from 5 hours post-mortem. Five measurements were taken between 

the moment of extraction and 25.5 hours later. The deviation between values of frequency 

shift increased (from zero up to 3 GHz) as signal intensity decreased over time, likely related 

to a loss of transparency and regularity of the tissue (Rei, Sperlich et al. 2012). 

In the same year, the first pilot study on the human crystalline lens in vivo was conducted 

(Scarcelli and Yun 2012). The data showed a classic bell shape for the lens frequency shift, 

with a central plateau of about 6.05 GHz corresponding to the nucleus of the lens, as shown 

in Figure 1.10. The calculated modulus ranged from 2.38 to 3.1 GPa for the lens. This study 

was conducted on a single subject aged 42 years. 
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Figure 1.10 Depth-dependant analysis of Brillouin frequency shift measured in vivo on 42 years old male human 
(Scarcelli & Yun, 2012) 

 

Besner and colleagues in 2016  investigated age-related changes in the longitudinal 

modulus of the crystalline lens in healthy patients (Besner, Scarcelli et al. 2016). Their data 

showed that the aqueous and vitreous humours have a mean Brillouin longitudinal modulus 

of 2.4 GPa, with small variations within the instrument's accuracy for all subjects. They 

observed steeper slopes in the cortices, given by changes in the moduli (both anterior and 

posterior), and a central plateau (defined as the top 98% of the longitudinal modulus, around 

3.3 GPa) anatomically identifiable with the nucleus of the lens, which has the highest values 

of modulus. The extent of this plateau is age-dependent and increases with age. No 

statistically significant differences in the longitudinal modulus were found between the right 

and left eyes (regardless of age), while significant variability was measured between 

individuals of the same age. Between 19 and 63 years of age, the lens thickness increased 

at a rate of around 30 µm per year, but only in the stiff central region, while the periphery 

remained unchanged. The moduli of the vitreous and aqueous humours, as well as the 

central lens region, were stable until the age of 45, after which there was a linear decrease 

of -4.5 MPa per year, though the central lens region remained stiffer than the cortices. 

Significant differences in the orders of magnitude between the shear modulus (measured in 

kPa using rheometry) and Brillouin moduli (measured in GPa) are expected, given the 

incompressibility of water, but a strong correlation between the two moduli was observed 

(Reiss, Burau et al. 2011). 

In 2020, Ambekar and colleagues compared two methods to determine the ex vivo elastic 

properties of the crystalline lens: Brillouin frequency shift (for longitudinal modulus) and 

Optical Coherence Elastography (OCE, for Young’s modulus). They derived the coefficients 
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for Eq. 1.8 (a = 0.13, b = 9.13) and calculated the Brillouin longitudinal moduli for the 

anterior, central, and posterior parts of the lens: respectively 3.43 ± 0.18 GPa, 4.33 ± 0.13 

GPa, and 3.59 ± 0.16 GPa (Ambekar, Singh et al. 2020). 

1.2.3.3 Cornea 

In 2012, Scarcelli and colleagues measured the Brillouin modulus of bovine cornea samples. 

They found that the Brillouin frequency shift varied depending on the depth of the tissue, with 

higher shifts in the epithelium (8.6 GHz, corresponding to 2.96 GPa) and lower shifts toward 

the endothelium (7.8 GHz, corresponding to 2.43 GPa). This discrepancy can be explained 

by the organization of stromal lamellae, which are interwoven in the anterior part and mostly 

parallel to the corneal anterior surface in the inner part. The mean longitudinal modulus 

measured in the four samples was 2.70 ± 0.02 GPa (Scarcelli, Pineda et al. 2012). 

During the same year, the same group began in vivo measurements of the cornea and 

anterior segment in humans using a 780 nm laser. They found a decline in the Brillouin shift 

from 5.6 GHz in the anterior stroma to 5.25 GHz in the posterior portion of the cornea, a 

change marked within about 200 µm of corneal thickness. It was difficult to analyse the first 

70 µm of the cornea due to confocal resolution and Fresnel reflection from the anterior 

corneal surface. The aqueous humour appeared to have a uniform Brillouin frequency shift 

(5.25 GHz), similar to water due to its chemical composition, with variations within the 

aqueous humour being about 30 MHz. The calculated values for the Brillouin longitudinal 

modulus ranged from 2.82 to 2.5 GPa for the cornea, depending on the depth of the 

measurement. Differences from previous values in the literature were attributed to variations 

among subjects and the values of the index and density of ocular tissues. This pilot study 

had only one participant (Scarcelli and Yun 2012). 

n 2014, Scarcelli and colleagues measured the Brillouin shift in 6 healthy patients, finding a 

mean of 5.74 GHz for the anterior portion of the 5x5 mm central corneal zone, with a 

resulting Brillouin modulus of 2.83 GPa (Scarcelli, Besner et al. 2014) 

A 2019 paper by Gouveia and colleagues Brillouin microscopy could verify that the limbus 

has a lower Brillouin frequency shift than the central cornea (Gouveia, Lepert et al. 2019). 

Researchers measured the in vivo Brillouin frequency shift of various portions of the anterior 

segment: 

- Central corneal epithelium (50-60 µm of depth): 6.37 ± 0.09 GHz 

- Bowman’s membrane: 6.66 ± 0.04 GHz 
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- Anterior central stroma: 6.53 ± 0.04 GHz 

- Limbal epithelium (40-60 µm of depth): 6.34 ± 0.14 GHz 

- Extracellular matrix: 6.24 ± 0.09 GHz 

- Corneal stroma under the limbus: 6.40 ± 0.14 GHz 

The data indicated that the highest shift occurs in Bowman's membrane and that the corneal 

layers produce higher shifts than the limbus. Corneal layers also have more defined 

biomechanical properties, identified by precise shifts, than the limbus, likely due to the 

presence of Palisades of Vogt, focal stromal projections, and limbal crypts. This study used a 

671 nm laser, which may explain the differences in the magnitude of the Brillouin frequency 

shift. 

In 2019, Seiler and colleagues measured an average Brillouin frequency shift of 5.72 ± 0.01 

GHz (2.81 ± 0.01 GPa) in vivo in the central corneal region of healthy subjects. They found 

that the frequency shift increased by 4 MHz per decade, with no differences based on 

gender and bilateral symmetry between the right and left eyes within the instrument's 

resolution (Seiler, Shao et al. 2019). 

Another study reported a similar increase of about 3 MHz per decade, but this correlation 

was not statistically significant. The mean measurement for the central corneal shift was 

5.73 ± 0.03 GHz, with remarkable symmetry between the two eyes of the same subject, 

showing an inter-subject difference of ± 15 MHz within the same age group (Shao, Eltony et 

al. 2019). 

Recently, Brillouin confocal microscopy has been used to assess the presence of Fuchs 

Endothelial Corneal Dystrophy (FECD) in vivo in humans. This was possible because the 

increased water content in FECD decreases the Brillouin frequency shift from 5.73 ± 0.02 

GHz in healthy subjects to 5.65 ± 0.04 GHz in FECD subjects. Additionally, an increase in 

central corneal thickness was measured in FECD subjects (Eltony, Clouser et al. 2020). 

Data from several studies on healthy corneas seem to agree on a Brillouin frequency shift 

value around 5.72 ± 0.02 GHz using a 780 nm laser, corresponding to 2.81 ± 0.01 GPa. 

1.2.3.4 Hydration 

The influence of hydration, calculated as the percentage of water in the total weight of a 

tissue, has been investigated both in vitro on porcine corneal samples and in vivo on 

humans after waking (Shao, Seiler et al. 2018). The animal model revealed an inverse 
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relationship between hydration and Brillouin frequency shift: after soaking, the specimens 

were left to dry, and the frequency shift increased by 200 MHz in 20 minutes. Additionally, 

there was an inverse relationship between central corneal thickness (CCT) and Brillouin 

frequency shift. In humans, the inverse relationship with CCT was confirmed by measuring 

the Brillouin frequency shift and CCT just after waking up and at intervals of 1, 2, 3, and 9 

hours. The results showed that an increase in CCT, caused by physiological overnight 

swelling, is associated with a lower Brillouin frequency shift, as shown in Table 1.1. 

Differences in terms of Brillouin shift between 2 and 9 hours after waking up were not 

significant, but it is interesting to note that the complete recovery to the normal range does 

not occur within one hour. 

Table 1.1 values of swelling and frequency shift at different times after wake 

 0 h 1 h 2 h 9 h 

CCT 17 ± 8 µm 5 ± 4 µm 1 ± 4 µm 0 ± 3 µm 

Brillouin Frequency shift -25 ± 12 MHz -10 ± 13 MHz -3 ± 7 MHz 0 ± 8 MHz 

On ex vivo rabbit corneas immersed in a Dextran solution, similar results were found: higher 

hydration and increased thickness led to lower Brillouin frequency shifts, even when the 

hydration levels were greater than in the previous study (Seiler, Shao et al. 2018) as can be 

seen in Table 1.2. 

Table 1.2 Thickness, value of hydration and Brillouin frequency shift for specimens in different solutions. Corneal 
hydration is measured as grams of water per gram of dry tissue. 

 5% detran 10% dextran 15% dextran 20% dextran 

Minimal Centra Pachymetry [µm] 600 ± 31 473 ± 28 330 ± 10 305 ± 13 

Corneal hydration 4.57 ± 0.26 3.47 ± 0.24 2.23 ± 0.09 2.02 ± 0.11 

Brillouin frequency shift [GHz] 5.33 ± 0.01 5.49 ± 0.01 5.63 ± 0.01 5.79 ± 0.01 
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1.2.3.5 Retina 

In 2020, the Brillouin longitudinal modulus was measured on murine retinas ex vivo 

(Ambekar, Singh et al. 2020). The collected data indicated a longitudinal modulus of around 

2.50 GPa. Researchers were able to differentiate between retinal layers, finding that the 

inner and outer nuclear layers had the highest moduli (2.53 ± 0.02 GPa), while the outer 

plexiform layer had the lowest modulus (2.48 ± 0.02 GPa). This difference is likely due to the 

density of cell bodies in the nuclear layers, with higher density corresponding to a higher 

modulus. 

Unfortunately, this function is not yet available on the commercially available version of the 

Brillouin Optical Scanner System (BOSS). 

1.2.3.6 Cross-Linking 

One of the first uses of the new generation of Brillouin microscopy was monitoring the 

dynamic changes induced by a Cross-Linking (CXL) procedure on an optical adhesive 

polymer that responds to UV light, simulating a CXL procedure (Scarcelli and Yun 2007). 

The changes in Brillouin shift (left y-axis) and elastic modulus (right y-axis) during the 

process and after 24 hours can be observed, as shown in Figure 1.11. 

 

Figure 1.11 Effects of a UV light on optical adhesive polymer (Scarcelli et al., 2012). 

In 2012, Scarcelli and colleagues measured the changes in the Brillouin modulus of bovine 

corneas following a Cross-Linking (CXL) procedure. The corneas were soaked for 5 minutes 

with a 0.1% riboflavin solution and then exposed to 460 nm light at 15 mW/cm² for 20 

minutes. The results revealed that the Brillouin modulus increased in the stroma after the 
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CXL treatment, while the epithelium removal and riboflavin treatment alone had no effect. 

The Brillouin modulus increased by 10% (from 2.70 ± 0.03 GPa to 2.98 ± 0.03 GPa) 

compared to a greater than 200% increase in Young's modulus (from 0.4 ± 0.1 MPa to 0.9 ± 

0.2 MPa) (Scarcelli, Pineda et al. 2012).  

Results revealed that Brillouin modulus increased in stroma and that the treatment is 

effective only after blue light, the epithelium removal and riboflavin treatment does not have 

any effect. As expected, the differences in terms of Brillouin modulus between the 

measurements control and Cross-Linking group were clear: 10% of increase in Brillouin 

modulus (from 2.70 ± 0.03 GPa to 2.98 ± 0.03 GPa) against a gain higher that 200% in 

Young’s modulus (from 0.4 ± 0.1 MPa to 0.9 ± 0.2 MPa). 

In 2013 Brillouin Microscopy was used to assess the efficacy of different CXL protocols on 

porcine corneas in vitro. They found that compared to the classical Dresden protocol (30 

minutes of pre-soaking and 30 minutes of UV exposure), epi-off procedures with reduced 

pre-soaking or UV exposure times resulted in lower corneal stiffening effects (35% to 65% 

less than the Dresden procedure). The pre-soaking alone significantly stiffened the cornea, 

likely due to dehydration. The epi-on procedure had about one-third the effect of the 

classical procedure, with most stiffening in the anterior stroma. Epi-off procedures cause 

corneal dehydration, increasing Brillouin frequency shift and modulus, while epi-on 

procedures cause swelling, decreasing these metrics (Scarcelli, Kling et al. 2013). 

It was proven, that temperature differences between room temperature (22°C) and body 

temperature (37°C) do not affect shift measurements. However, in crosslinked specimens, 

UV irradiation for 12 minutes at 30 mW/cm² increased the Brillouin shift by 0.7-0.9 GHz 

(Bukshtab, Paranjape et al. 2015). 

In 2017 (Randleman, Su et al. 2017) the outcome of rapid Cross-Linking (Kanellopoulos 

2012) procedure on porcine corneas on which a LASIK flap was created was investigated in 

vitro. After creating the flap, the rapid CXL procedure was performed as follows: the corneas 

were soaked with riboflavin, avoiding contact between the riboflavin and the flap, and then 

rinsed off the excess riboflavin. The flap was then repositioned, and the cornea was 

irradiated with UV-A at 30 mW/cm² for 80 seconds. Following the rapid CXL procedure, the 

Brillouin frequency shift was slightly higher than the one measured after the flap creation 

(0.002 ± 0.019 GHz for the anterior, 0.006 ± 0.010 GHz for the central, and 0.009 ± 0.011 

GHz for the posterior part). However, these differences were not statistically significant in 

any part of the cornea and were still lower than those of the untreated (virgin) cornea. The 
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impact on the modulus was minimal, indicating that the rapid CXL procedure did not 

significantly strengthen the corneal tissue. 

In 2017, Brillouin frequency shift was used to analyse the outcomes of different Cross-

Linking procedures on porcine corneas in vitro, modifying the intensity and duration of 

exposure (Webb, Su et al. 2017). After 30 minutes of soaking with riboflavin, various 

procedures were performed on the corneal samples: each cornea was split into two 

samples, one for treatment and the other as a control. This strategy allowed for the 

assessment of the stiffness gained from the procedure for each cornea. The Cross-Linking 

procedures involved 30 minutes at 3 mW/cm², 10 minutes at 9 mW/cm², 2.65 minutes at 34 

mW/cm², and 1.80 minutes at 50 mW/cm², ensuring the same total energy on each sample 

(5.4 J/cm²). The results showed that all the procedures produced a statistically significant 

increase in corneal stiffness compared to controls, but with lower efficacy compared to the 

classical procedure (30 minutes at 3 mW/cm²). The classical procedure induced significantly 

higher stiffness than the 34 and 50 mW/cm² procedures (5.3% increase in Brillouin modulus 

compared to 1.2% and 1.1%, respectively), and the 9 mW/cm² procedure created 

significantly higher stiffness than the 50 mW/cm² procedure (3.6% compared to 1.1%), while 

the 34 and 50 mW/cm² procedures did not differ in induced stiffening. Additional differences 

were measured between 3 and 9 mW/cm², with a similar effect in the anterior part of the 

cornea and statistically lower stiffening in the central and posterior cornea for the latter 

irradiation. To strengthen the experiment, researchers measured the Young's modulus of 

samples and compared it with the Brillouin modulus; the results showed that the relationship 

between the percentage differences in the two moduli is almost linear, with lower effects for 

higher irradiation conditions. 

In 2019, Zhang and colleagues (Zhang, Roozbahani et al. 2019) compared the efficacy of 

the classical Cross-Linking procedure with Contact Lens Assisted Cross-Linking (CACXL) 

using Brillouin frequency shift ex vivo on porcine eyes. Both stress tests and Brillouin 

frequency shift results confirmed that the CACXL procedure produced lower stiffness results 

than the classical Cross-Linking procedure. The increases in Brillouin longitudinal modulus 

were 7.8%, 1.7%, and -0.7% for the anterior, central, and posterior cornea in Cross-Linking, 

while in CACXL the increases were 5.5%, 1.2%, and -0.4%. Again, the classical Cross-

Linking procedure proved to be the most effective. 

Recently, Zhang et al. investigated in vitro the efficacy of Cross-Linking performed over or 

under a LASIK flap on porcine corneas (Zhang, Roozbahani et al. 2020). The main 

difference was in the soaking procedure: in the “over” procedure, corneas were soaked with 
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riboflavin with the flap attached (over flap), while in the “under” procedure, the riboflavin was 

applied while the flap was reflected, and then the flap was repositioned once soaking was 

completed; the corneas were then irradiated with 3 mW/cm² UV for 30 minutes. The results 

showed different outcomes for the anterior and central portions of the cornea: the “over” 

procedure induced a higher frequency shift in the anterior section (8.29 ± 0.04 GHz against 

8.17 ± 0.03 GHz), which was statistically significant; while the “under” procedure induced a 

higher frequency shift in the middle portion of the cornea (8.06 ± 0.04 GHz against 8.05 ± 

0.05 GHz), but this was not statistically significant. No effect was measured in the posterior 

region. 

It is clear that Brillouin frequency shift is a useful tool for evaluating the efficacy of Cross-

Linking treatments and comparing different procedures. However, there are currently no 

published papers measuring changes in human corneas in vivo before and after treatment. 

1.2.3.7 Keratoconus  

In 2014, Scarcelli and colleagues investigated the biomechanics of ex vivo healthy and 

keratoconic corneas (Scarcelli, Besner et al. 2014). Tissue samples were taken from patients 

who underwent Descemet’s stripping endothelial keratoplasty (DSEK), as this procedure 

requires only the posterior part of the cornea, leaving the anterior and central parts available 

for research. Differences in Brillouin cross-sectional images between healthy and cone 

zones of keratoconic corneas were clear: the cone zone showed a lower shift (7.99 ± 0.10 

GHz) than healthy corneas (8.17 ± 0.06 GHz), while shifts measured in non-cone portions of 

keratoconic corneas (8.19 ± 0.04 GHz) were not significantly different from those measured 

in healthy samples. These results suggest that the weakening is limited to the cone zone. It 

is interesting to note that the authors did not calculate the Brillouin modulus because they 

did not know the density and refractive index of the tissue samples due to the swelling 

caused by the lack of endothelium. 

The first in vivo study on patients with advanced keratoconus was conducted in 2015 

(Scarcelli, Besner et al. 2015). This study showed that the cone zone has a lower Brillouin 

shift (5.67 ± 0.02 GHz) than normal corneas (5.74 ± 0.01 GHz), and the difference was 

statistically significant. A statistically significant difference was also measurable between the 

cone and the areas outside the cone zone (5.73 ± 0.03 GHz), as shown in Figure 1.12. The 

differences from the previous study can be attributed to the wavelength of the laser used 

(780 nm instead of 520 nm). 
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Figure 1.12 Maps of corneal Brillouin frequency shift. The left map is from a 53-years old normal cornea, while 
the right one is from a 40-years old patient with advanced keratoconus. Sagittal and Thickness maps in the upper 
part (Scarcelli et al., 2015) 

A lower Brillouin frequency shift in ectatic corneas (5.70 ± 0.02 GHz) compared to healthy 

ones (5.72 ± 0.01 GHz) was measured at the thinnest point (Seiler, Shao et al. 2019). 

Researchers highlighted that the frequency shift measured at the maximum posterior 

elevation had the best correlation with other clinical parameters related to keratoconus, such 

as minimal thickness and maximal keratometry. Despite the statistically significant difference 

in frequency shift, the authors stated that a single measurement would be insufficient to 

discriminate between healthy and keratoconic corneas. This is because the technology of 

the instrument used (Brillouin Optical Scanner System, Intelon Optics, Lexington, USA) was 

neither specific nor sensitive enough, as demonstrated by the Receiver Operating 

Characteristic (ROC) curves in Figure 1.13. These curves indicate that the potential of 

Brillouin frequency shift is lower than that of maximum keratometry and thickness in 

detecting keratoconus. 
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Figure 1.13 ROC curves of thinnest pachymetry (red), Kmax (green) and Brillouin frequency shift (blue). The 
latest has the lower potential in keratoconus detection (Seiler et al., 2019). 

Using an improved version of the instrument with enhanced sensitivity and stability of eye 

tracking, Shao and colleagues (Shao, Eltony et al. 2019) measured the Brillouin frequency 

shift in keratoconic corneas, categorising them into four sub-groups according to the Amsler-

Krumeich classification (Amsler 1946). Stages III and IV (advanced stages of ectatic 

disorder) exhibited less uniformity than normal and stage I corneas, with Brillouin frequency 

shift values 100-200 MHz lower than those of healthy corneas. Compared to normal 

corneas, stage I and II corneas had shifts lowered by 3 and 7 MHz, respectively, but these 

differences were not statistically significant. The authors calculated ROC curves for stage I 

keratoconus, which demonstrated good sensitivity and specificity for Brillouin frequency shift 

in the cone zone, the regional difference in Brillouin frequency shift, maximum keratometry, 

and minimum thickness. It is important to note that the Area Under the Curve (AUC) for 

Brillouin frequency shift in the cone zone and the regional difference in Brillouin frequency 

shift were similar to or higher than those for maximum keratometry and minimum thickness. 

Keratoconus causes a lowering in Brillouin frequency shift, localised in cone zone, that 

depends on the stage of pathology. 

1.2.3.8 Refractive surgery 

The effects of LASIK flap creation were analysed ex vivo on porcine eyes (Randleman, Su et 

al. 2017). Measurements taken before and after flap creation revealed a reduction in 

Brillouin frequency shift, suggesting a weakening in the anterior cornea (-0.104 ± 0.024 

GHz), coinciding with the flap. No significant differences in Brillouin modulus were measured 

in the central (-0.029 ± 0.012 GHz) and posterior corneas (-0.005 ± 0.009 GHz). Similarly, 
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Zhang and colleagues (Zhang, Roozbahani et al. 2020) found a weaker area in the anterior 

cornea due to the flap creation for LASIK. 

1.2.3.9 Glaucoma 

It has been demonstrated that using etalon filters, it is possible to determine the Brillouin 

shift in the conjunctiva and sclera of ex vivo porcine eyes (Shao, Besner et al. 2016). The 

conjunctiva (5.7 GHz) and sclera (6.4 GHz) showed higher values of Brillouin shift compared 

to the cornea (5.5 GHz). This finding is promising, considering the role of the sclera in 

glaucoma pathogenesis (Jia, Yu et al. 2016). To date, no papers have investigated changes 

in Brillouin modulus or frequency shift in glaucoma. 

1.2.3.10 BOSS 

The current version of the BOSS, showed in Figure 1.14, measures the Brillouin Modulus at 

different corneal locations, with a scan every 100 µm along the z-axis. For each corneal 

location, the mean value is calculated, and a map is created based on the calculated values 

for each location. It takes up to 30 seconds to measure each location, so the duration of the 

entire corneal scan depends on the number of locations scanned.  

 

Figure 1.14 Current version of the Brillouin Optical Scanning System (BOSS) 
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For the lens, the modulus is usually measured at a single location due to pupillary 

restrictions, and this measurement takes up to a minute. The lens scan provides data about 

the modulus, including the top plateau (where the Brillouin modulus is relatively stable), the 

bottom plateau, and the anterior and posterior slopes, from the graph with a classic bell 

shape, as shown in Figure 1.15. 

 

 

Figure 1.15 The output of the lens measurement of the BOSS. The upper arrow is the Top Plateau, the lower one 
is the Bottom Plateau. The arrow on the left is the Anterior Slope, the one on the left is the Posterior Slope. On 
the x axis there is the depth of the scanning along the z-axis. On the y axis there is the value of the Brillouin 
modulus. 
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1.3 Corneal Biomechanics in Glaucoma 

Glaucoma is a group of ocular pathologies characterised by progressive damage to the optic 

nerve, often associated with raised intraocular pressure (IOP). This damage can lead to 

irreversible vision loss, which typically begins in the periphery of the visual field, preserving 

good central vision until the advanced stages of the disease. This preservation of central 

vision presents a challenge, as most people are unaware of peripheral vision loss and only 

notice visual impairment when it is too late to halt the disease. In later stages, glaucoma can 

cause tunnel vision and ultimately complete loss of vision. The diagnosis of glaucoma 

involves several tests, including tonometry to measure IOP, gonioscopy to assess whether 

the iridocorneal angle is obstructed, visual field tests to quantify peripheral vision loss, 

fundus examination to inspect the back of the eye for signs of damage, and Optical 

Coherence Tomography (OCT) to detect damage to the optic nerve and retinal nerve fibre 

layer. 

There are several types of glaucoma. Primary open-angle glaucoma (POAG) is the most 

common type, where the iridocorneal angle is open, but there is an imbalance between the 

production and outflow of aqueous humour, often due to obstruction in the trabecular 

meshwork. Its progression is slow and asymptomatic in the early stages. Closed-angle 

glaucoma is less common but more acute, with the iridocorneal angle closed, causing a 

rapid increase in IOP and symptoms such as headaches, ocular pain, glare, and nausea. 

This type can quickly lead to vision loss. Normal tension glaucoma involves damage to the 

optic disc and visual field despite normal IOP, with the mechanism not yet fully understood. 

Secondary glaucoma results from an outflow obstruction caused by a systemic or ocular 

condition such as uveitis, trauma, surgery, or drugs. Ocular hypertension is a condition 

where IOP is raised without clear signs of glaucomatous damage but is a crucial risk factor 

for developing glaucoma (Kass, Heuer et al. 2002). 

The primary goal of glaucoma treatment is the reduction of IOP. Research has shown that 

even a reduction of 1 mmHg can slow the progression of the disease (Jayaram 2020). 

Understanding and early detection of glaucoma are critical for effective management and 

prevention of vision loss. 
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1.3.1 Primary Open Angle Glaucoma (POAG) 

1.3.1.1 ORA 

Patients with POAG showed lower values of CH (Sullivan-Mee, Billingsley et al. 2008, 

Mangouritsas, Morphis et al. 2009, Abitbol, Bouden et al. 2010, Kaushik, Pandav et al. 2012, 

Costin, Fleming et al. 2014, Hussnain, Alsberge et al. 2015, Pillunat, Hermann et al. 2016, 

Tejwani, Devi et al. 2016) and CRF (Sullivan-Mee, Billingsley et al. 2008, Pillunat, Hermann 

et al. 2016, Tejwani, Devi et al. 2016) compared to healthy controls. CH is lower, but CRF is 

higher in POAG patients compared to NTG (Ang, Bochmann et al. 2008, Shah, 

Laiquzzaman et al. 2008, Kaushik, Pandav et al. 2012). Lower CH and CRF may indicate 

that the abilities to dissipate energy and overall corneal resistance in POAG are lower than 

in healthy subjects and have been suggested as risk factors in potential POAG patients. 

Weak to moderate positive correlations between CCT and CH (Shah, Laiquzzaman et al. 

2008, Mangouritsas, Morphis et al. 2009, Abitbol, Bouden et al. 2010, Narayanaswamy, Su 

et al. 2011, De Moraes, Hill et al. 2012, Prata, Lima et al. 2012, Dascalescu, Corbu et al. 

2015) and between CH and CRF (Khawaja, Chan et al. 2013, Lee, Kim et al. 2019) were 

found, suggesting that thicker corneas have higher damping and are less compliant to 

mechanical stress. 

In unilateral and asymmetric POAG, the eye with the worst visual field has lower values of 

CH and slightly lower values of CRF (Anand, De Moraes et al. 2010, Hirneiss, Neubauer et 

al. 2011). No differences were detected in CCT (Anand, De Moraes et al. 2010); some 

authors reported no significant differences once the samples were corrected for IOP 

(Hirneiss, Neubauer et al. 2011). 

Among different ethnicities, African POAG patients have lower values of CH, CRF, and CCT 

than Caucasian POAG patients. These parameters also showed differences even in healthy 

controls (Detry-Morel, Jamart et al. 2012), suggesting an ethnic dependence. In the Chinese 

POAG population, CH was measured to be similar to that in Caucasian POAG patients 

(Narayanaswamy, Su et al. 2011). 

Patients with POAG suffer from a significantly greater decrease in CH values over time (-

0.11 ± 0.73 mmHg per year) compared to healthy subjects (0.07 ± 2.31 mmHg per year) 

(Hussnain, Alsberge et al. 2015). This finding may suggest a relationship between the 

decrease in CH, the increase in IOP, and the progression of the pathology. 
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Patients with POAG have been associated with higher dIOP (the difference between IOPcc 

and IOPg) than healthy subjects (Sullivan-Mee, Billingsley et al. 2008). IOPcc may help 

differentiate between POAG and glaucoma suspect patients (Sullivan-Mee, Billingsley et al. 

2008, Tejwani, Devi et al. 2016). 

In unilateral and asymmetric glaucoma, IOPcc is higher in eyes with a worse visual field, but 

no significant differences were detected when measuring IOP with Goldmann Applanation 

Tonometry (GAT) (Anand, De Moraes et al. 2010, Hirneiss, Neubauer et al. 2011). IOPg and 

IOPcc correlate strongly, but both have poor correlation with CH and CRF (Khawaja, Chan et 

al. 2013). 

Differences in GAT measurements between POAG and healthy subjects were not significant, 

while IOPcc showed a statistically significant difference, being 3.4 ± 2.7 mmHg higher than 

GAT (Costin, Fleming et al. 2014). A negative correlation was found between CH and GAT, 

as well as between CH and IOPcc, suggesting an important role of CH in dissipating high 

IOP (Narayanaswamy, Su et al. 2011, Dascalescu, Corbu et al. 2015).  

Patients with POAG exhibit significantly lower values of CH and CRF compared to healthy 

controls, suggesting reduced ability to dissipate energy and overall corneal resistance. 

IOPcc has been measured being a more significant metrics to detect POAG than IOPg. 

In terms of diagnostic performance, a study (Ehrlich, Radcliffe et al. 2012) found that IOPcc 

exhibited a higher AUC of 0.93, with both sensitivity and specificity at 0.85, compared to 

GAT, which showed an AUC of 0.78 in detecting glaucomatous optic neuropathy. Although 

these findings are promising, the diagnosis of POAG cannot rely solely on data from corneal 

biomechanics. Instead, these biomechanical parameters provide supplementary information 

that may enhance the clinician’s ability to more accurately assess glaucoma risk and 

progression, beyond what is offered by IOP measured using GAT or CCT. Nonetheless, the 

precise clinical utility and significance of CH and CRF in the diagnosis of POAG require 

further investigation and clarification. 

1.3.1.2 Corvis ST 

A study that investigated repeatability, used Intraclass Correlation Coefficient and 

demonstrated that the inter- and intra-examiner precision of Corvis ST measurements was 

excellent for CCT, IOP, A1time, A2time, DA, and HCradius, good for A1velocity, A2velocity, 

and HCtime, and moderate to poor for A1length, A2length, and PD in both POAG and 

healthy patients. The POAG group showed higher values of A1time and lower values of 
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A1velocity, A2time, A2velocity, and DA than healthy controls. Researchers found that IOP 

affects the measurement of biomechanical parameters more than CCT. Biomechanical 

features measured by Corvis ST were evaluated to have similar or lower power in 

discriminating between POAG and healthy eyes compared to GAT. The Area Under the 

Curve (AUC) of ROC analysis for corneal biomechanical parameters was between 0.51 and 

0.72, while it was 0.73 for GAT, suggesting comparable to lower sensitivity and specificity in 

discriminating between conditions. The analysis of biomechanical parameters suggested 

that POAG patients have a less deformable cornea than healthy controls, which the authors 

attributed to high IOP or the use of glaucoma medications (Salvetat, Zeppieri et al. 2015). 

DA, A1velocity, and A2time were measured to be lower in POAG than in healthy controls, 

whereas A1time, A2velocity, and PD were higher in POAG than in controls. In both POAG 

and controls, all the aforementioned parameters, excluding PD and DA, were positively 

related to IOP, while PD and DA were inversely related to IOP, suggesting that corneal 

compliance is inversely related to IOP (Wang, Du et al. 2015). 

A2velocity and PD were found to be higher in POAG than in controls, while HCtime was 

lower. A2velocity and PD correlated moderately with IOP and CCT, while HCtime appeared 

to be the most promising risk factor to differentiate between POAG and controls, because of 

its independence from IOP and CCT (Lee, Chang et al. 2016). 

A1velocity, A2time, and PD were measured to be lower in POAG than in controls, while DA 

was higher. A significant correlation was found between DA and GAT in both POAG and 

controls. ROC curve analysis found that A2time had the highest AUC (0.797), while other 

parameters performed worse (PD: 0.724; DA: 0.695; A1velocity: 0.657). Combining all 

biomechanical parameters resulted in an AUC of 0.876, better than any single parameter 

(Tian, Wang et al. 2016). 

Compared to the normal control group, patients with POAG had lower values of DA. When 

POAG patients were divided by disease severity, the group with more advanced POAG 

showed higher values of DA and DeflA than the early-stage group, while HCradius values 

were higher in the early group than in more advanced stages. Interestingly, the relationship 

of DA with CCT was negative in normal and early groups but became positive in moderate 

and severe groups. This change could be due to the prolonged use of antiglaucoma 

medication or prolonged high IOP (Hirasawa, Matsuura et al. 2017). 
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A1velocity and DA were measured to be lower in POAG than in controls, while HCradius 

was higher. IOP can be considered a predictive factor for DA in POAG. All these parameters 

indicated a less deformable cornea in POAG than in controls (Jung, Park et al. 2020). 

In current literature, there is an agreement about certain Corvis ST values: POAG eyes have 

lower values of A1velocity, A2time, and DA, whereas they show higher values of A1time and 

A2velocity. These findings suggest that POAG eyes are less compliant to the air puff and 

exhibit higher rigidity: the first applanation occurs later, with lower velocity, the overall 

deformation is lower, and the second applanation occurs earlier with higher velocity. The role 

of raised IOP in these corneal biomechanical alterations is yet to be fully established. 

1.3.2 Normal Tension Glaucoma (NTG) 

1.3.2.1 ORA 

In NTG patients, CH was found to be lower than in healthy subjects (Kaushik, Pandav et al. 

2012, Morita, Shoji et al. 2012, Shin, Lee et al. 2015, Park, Shin et al. 2018) but higher than 

in POAG. CRF was found to be lower in NTG than in POAG and controls (Kaushik, Pandav 

et al. 2012, Morita, Shoji et al. 2012, Shin, Lee et al. 2015, Park, Shin et al. 2018). IOPg and 

IOPcc were been measured to be lower (Kaushik, Pandav et al. 2012) to comparable to 

healthy levels, but lower than POAG (Ang, Bochmann et al. 2008, Grise-Dulac, Saad et al. 

2012). IOPcc was measured to be higher than GAT, while IOPg and GAT were not 

statistically different from healthy (Morita, Shoji et al. 2012). GAT, as expected, was 

measured lower than in POAG and comparable to healthy (Ang, Bochmann et al. 2008, 

Grise-Dulac, Saad et al. 2012). CCT was found thinner or comparable to in NTG than in 

healthy controls (Kaushik, Pandav et al. 2012, Morita, Shoji et al. 2012, Shin, Lee et al. 

2015) 

Some authors suggested that in NTG patients IOP measurement is more affected by CRF 

than CH, and not affected at all by CCT (Kaushik, Pandav et al. 2012). ORA IOP indices may 

be useful in distinguishing between healthy and NTG (Morita, Shoji et al. 2012) 

In NTG, CRF and CCT were significantly different from those in POAG and OHT, while CH 

only differed from OHT. The difference between GAT and IOPg was significant between 

POAG and OHT. CCT positively correlates with CH and CRF, as well as CH with CRF (Shah, 

Laiquzzaman et al. 2008). 
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Values of VFI, PSD, and MD were found to be lower in NTG than in controls (Shin, Lee et al. 

2015, Park, Shin et al. 2018). The intraclass correlation coefficient was found to be good 

between IOPcc, IOPg, GAT, and iCare. Significant differences between NTG and healthy 

were not measured, but there were differences among tonometers in the NTG group, with 

IOPcc markedly higher than others (Shin, Lee et al. 2015). Authors suggested that, because 

it does not consider corneal biomechanics, iCare may underestimate IOP values as GAT 

does in NTG patients. CH positively correlates with rim area and volume, and negatively with 

C/D ratio. It is also associated with RNFL thickness, VFI, and MD. CRF correlates positively 

with rim area and is associated with MD and VFI, while CCT positively correlates with rim 

area and negatively with C/D ratio (Park, Shin et al. 2018). 

Dividing NTG patients by CH levels, it was found that the group with lower CH had thinner 

CCT, lower CRF, lower IOPcc, and thinner RNFL in the inferior quadrant compared to the 

group with higher CH. No differences were found in the progression of VF damage between 

groups: two-thirds showed progression in VF damages, while one-third did not. CH showed 

moderate correlation with CCT and IOPcc, and weak correlation with RNFL thickness (Park, 

Jun et al. 2015). 

In asymmetric NTG, worse eyes have lower CH, lower CRF, and higher IOPcc values. CH 

and CRF negatively correlate with MD, while the CH-CRF difference positively correlates 

with MD and IOPcc. A correlation was found between lower IOPcc, higher CH and CRF, 

smaller C/D ratio, and low MD (Helmy, Leila et al. 2016). 

Comparing slow and rapid progression of NTG patients (according to VF changes in the last 

3 years), it was found that, compared to the slow progression group, the rapid progression 

group had lower CH, lower CRF (not statistically significant), higher IOPcc, and higher IOPg. 

No differences were measured in CCT. Differences in MD, PSD, and VF were significant 

between the two groups, and the rate of change in MD positively correlated with CH, IOPcc, 

and the difference between IOPcc and GAT(Hong, Shoji et al. 2016). 

1.3.2.2 Corvis ST 

Using Corvis ST in asymmetric NTG, worse eyes were associated with lower A1time, 

A1length, A2length, PD, HCradius, and higher A1velocity and DA. Parameters such as 

A2time, A2velocity, and HCtime did not show a lack of asymmetry. A1time had a strong 

correlation with IOP but only a moderate correlation with CCT. Findings suggest that worse 

eyes are more compliant and easier to deform (Li, Cai et al. 2017). 
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Between NTG and controls, only A1velocity was statistically higher (0.15 ± 0.02 m/s) than in 

controls (0.14 ± 0.02 m/s). All other parameters measured by Corvis ST were not 

significantly different between controls and NTG. The increment of at least 0.01 m/s in 

A1velocity is 1.15 times more likely in patients with NTG compared to controls (Hong, Wong 

et al. 2019). 

Lower values of A1time, A2time, HCradius, and higher values of PD, DAR1 (ratio between 

DA on the corneal apex and the mean of two points that are 1 mm lateral to the apex) and 

Iradius (reciprocal of HCradius) were measured in NTG compared to controls. These values 

suggest that untreated NTG corneas are softer and more deformable than healthy ones 

(Miki, Yasukura et al. 2020). 

Based on parameters measured by Corvis ST, NTG corneas are softer and more compliant 

than those in controls, OHT, and POAG (Vinciguerra, Rehman et al. 2020). 

1.3.3 Ocular hypertension (OHT) 

1.3.3.1 ORA 

RF was measured to be significantly higher in OHT than in healthy subjects, and therefore 

higher than in NTG and POAG. No statistically significant differences were measured in CH 

between OHT and normal subjects, but values were higher than in NTG and POAG. In a 

recent paper, after adjusting CH and CRF for age, CCT, and IOP, no significant differences 

were measured in terms of CH and CRF between OHT and POAG patients. This can be 

explained because only a minority of OHT patients were receiving treatment to control IOP, 

which may have misled previous studies with too small and often non-treated samples of 

OHT patients. (Shah, Laiquzzaman et al. 2008, Grise-Dulac, Saad et al. 2012, Kaushik, 

Pandav et al. 2012, Nessim, Mollan et al. 2013, Pillunat, Hermann et al. 2016, Murphy, 

Pokrovskaya et al. 2017). 

GAT and IOPg correlate well, with no significant differences between measurements 

reported. IOPcc was measured to be higher in OHT than in POAG, NTG, and healthy 

subjects (Grise-Dulac, Saad et al. 2012, Kaushik, Pandav et al. 2012, Nessim, Mollan et al. 

2013, Hocaoğlu, Kara et al. 2020). CCT values in OHT were found to be significantly higher 

than in NTG and POAG, and they correlate positively with CH and CRF (Shah, Laiquzzaman 

et al. 2008, Nessim, Mollan et al. 2013, Murphy, Pokrovskaya et al. 2017). 
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In post-PRK patients with steroid-induced ocular hypertension, CH and IOP were measured 

to be higher than in control (post-PRK patients who used steroids but did not develop OHT), 

while CRF and CCT were lower than in controls (Yülek, Gerçeker et al. 2015). 

1.3.3.2 Corvis ST 

Using Corvis ST, GAT and bIOP (biomechanically corrected IOP) were compared: GAT 

values were higher (5.6 mmHg on average) than in normal, NTG, and POAG subjects. bIOP 

values were within normal limits (< 21 mmHg), and the mean difference between OHT and 

controls was 3.6 mmHg. Biomechanical parameters derived from Corvis ST analysis did not 

show any significant differences between OHT and controls (Vinciguerra, Rehman et al. 

2020). The authors suggested that the use of bIOP, which data indicate as a more accurate 

measure of IOP, may help differentiate between patients with high and low risk of glaucoma 

progression and VF defect. 

High values of CH and CRF in OHT may play a role in preventing the onset of POAG due to 

the damping effect provided by corneal viscoelasticity in energy dissipation. 
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1.4 Corneal Biomechanics in Keratoconus 

Keratoconus is a progressive corneal ectasia that causes thinning of the cornea and 

changes in both anterior and posterior curvatures, leading to distorted vision, particularly 

irregular astigmatism. The thinning results from the degeneration of proteoglycans in the 

stromal collagen fibrils, which weakens the collagen fibrils, sometimes causing breakage and 

a reduction in the number of lamellae, whose distribution is already altered. These changes 

compromise the structure and regularity of the cornea, leading to the formation of a cone 

shape (Meek, Tuft et al. 2005, Alkanaan, Barsotti et al. 2019). 

Keratoconus is currently diagnosed using a combination of tests, including retinoscopy, 

clinical observation of signs, best-corrected visual acuity, keratometry, aberrometry, 

topography, and tomography. Older studies emphasised clinical signs, scissor reflex during 

retinoscopy, and distorted keratometry mires as diagnostic standards, but these methods 

were more effective at detecting advanced stages of the disease. Today, the introduction of 

topography and tomography allows for the detection and diagnosis of early stages 

(Santodomingo-Rubido, Carracedo et al. 2022). Early detection enables prompt intervention 

with cross-linking, a surgical procedure that increases the rigidity and stability of the corneal 

tissue by creating new chemical links among collagen molecules within the stroma using 

riboflavin and UV-A (Santhiago and Randleman 2021). 

Measurable changes in corneal biomechanics have been found in several studies using both 

ORA and Corvis ST. 

1.4.1 ORA 

Several studies have revealed that corneal hysteresis and corneal resistance factor are 

lower in eyes with keratoconus compared to normal eyes (Alain, Lteif et al. , Fontes, 

Ambrósio et al. , Hurmeric, Şahin et al. , Johnson, Myhanh et al. , Kirwan, Donal et al. , 

Piñero, Alio et al. , Shah, Laiquzzaman et al.). Some authors found that despite statistically 

significant differences, hysteresis and resistance factor lack the predictive accuracy needed 

to be used as tools for detecting and diagnosing early stages of the pathology. They argue 

that biomechanical data are not sensitive or specific enough to detect or diagnose 

keratoconus on their own but should be integrated into clinical routine (Fontes, Ambrósio et 

al. , Johnson, Myhanh et al.). 
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Forme-fruste keratoconus shows significantly lower corneal hysteresis and corneal 

resistance factor, but the data often overlap with those from normal eyes, preventing clear 

discrimination between conditions (Johnson, Myhanh et al. , Kirwan, Donal et al.). The same 

happens with suspected keratoconus (Alain, Lteif et al.). Some studies investigated the 

diagnostic ability of ORA parameters in detecting keratoconus founding that CH has an AUC 

of 0.824 (sensitivity 87%, specificity 65%) for mild keratoconus (Fontes, Ambrósio et al. 

2010), and an AUC of 0.894 (sensitivity 80.7%, specificity 84.7 %) for frank (clinical) 

keratoconus (Sedaghat, Momeni-Moghaddam et al. 2018). Although it can be considered a 

good result, it is lower than index from topographic maps that have an AUC of 0.985 

(sensitivity 93.8%, specificity 99.3 %) (Sedaghat, Momeni-Moghaddam et al. 2018). 

1.4.2 Corvis ST 

In the last 10 years several studies investigated differences in terms of Corvis ST 

parameters between keratoconus and healthy eyes. 

Deformation Amplitude was the parameters that more often showed statistically significative 

differences, with greater values in eyes with diagnosis of keratoconus (Mercer, Waring et al. , 

Ye, Yu et al. , Bak-Nielsen, Pedersen et al. 2014, Yang, Xu et al. 2019), although there was 

some overlap with normal eyes that could complicate detection (Tian, Yifei et al.). Despite 

this overlap, DA had a good AUROC value (0.770) (Ali, Patel et al.). Other parameters that 

showed significant differences included the time of the first applanation, the radius at the 

highest concavity, and the lengths of the first and second applanations. However, these 

parameters alone did not allow for a diagnosis based entirely on Corvis ST measurements 

(Peña-garcía, Peris-Martínez et al. , Roghiyeh, Jafarzadehpur et al. , Steinberg, Katz et al. , 

Ye, Yu et al. , Bak-Nielsen, Pedersen et al. 2014) or for the detection of subclinical stages of 

keratoconus (Steinberg, Katz et al.). 

Since 2016, new indices such as the Cornea Biomechanical Index (CBI) have been 

introduced, showing excellent capabilities in differentiating pathology from healthy corneas 

(specificity = 98.4%, sensitivity = 100%) and even detecting subclinical stages (sensitivity = 

94.1%, specificity 100%) (Shengwei, Liyan et al. , Vinciguerra, Renato et al.).(Salomão, 

Hofling-Lima et al. 2018) 

SP-A1 is significantly lower in keratoconus (Kaili, Liyan et al. , Mercer, Waring et al. , 

Shengwei, Liyan et al.) and can be used to detect subclinical stages of the disease (AUC = 

0.753) (Abdelgawad, Elnaggar et al. 2024) or form-fruste from healthy eyes (AUC = 0.927, 
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sensitivity = 83.4 %, specificity = 100%) (Yang, Qi et al. 2024) and to monitor the 

progression of the disease (Yu, Yang et al.) 

TBI showed high repeatability and great ability in discriminating between normal and 

keratoconic corneas (Kaili, Liyan et al. , Koç, Aydemir et al.), with a AUC of 0.996 and 100% 

in terms of sensitivity and specificity for cutoff values of 0.79 (Vinciguerra, Ambrósio et al. 

2016). 

In terms of repeatability, measurements are generally more repeatable on healthy corneas, 

but the differences were not statistically significant (Shengwei, Liyan et al. , Ye, Yu et al.). 
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1.5 General hypothesis 

In light of the technological advancements, the use of data from corneal biomechanics 

gained importance in the clinical setting. 

This research project is grounded in the hypothesis that corneal biomechanical parameters 

— measured using advanced technologies such as the ORA, Corvis ST, and BOSS — 

provide informative and clinically relevant data that can enhance the early screening of 

ocular diseases such as keratoconus and glaucoma through supervised machine learning 

models. However, it is further hypothesized that the presence of coexisting pathological 

conditions — specifically keratoconus — may act as a confounding factor in the automatic 

classification of different types of glaucoma, potentially compromising the specificity and 

accuracy of predictive models. 

Moreover, the clinical validity and interpretability of biomechanical parameters are expected 

to be influenced by interindividual variability related to demographic (e.g., age) and refractive 

(e.g., myopia, hyperopia) factors. These sources of variability must be accounted for in the 

design of robust and generalizable diagnostic algorithms. Finally, it is hypothesized that the 

integration of novel imaging technologies such as BOSS may provide complementary or 

superior biomechanical measurements compared to established devices, provided that such 

measurements demonstrate adequate repeatability and show consistent correlations with 

well-validated biomechanical metrics. 
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2 Detection of Keratoconus and Primary 

Open Angle Glaucoma with Machine Learning 

and Corneal Biomechanics Data 

2.1 Introduction 

The detection and diagnosis of ocular diseases such as primary open-angle glaucoma 

(POAG) and keratoconus have significantly advanced due to recent developments in 

optometric instrumentation, machine learning algorithms and computational resources. 

POAG, the prevalent form of glaucoma, is characterised by progressive optic neuropathy, 

leading to irreversible vision loss if not promptly diagnosed and treated. Keratoconus, on the 

other hand, is a degenerative disorder resulting in thinning and conical deformation of the 

cornea, causing significant visual impairment. Traditional diagnostic methods for these 

conditions, while effective, often rely on clinical observations and basic imaging techniques 

that may not capture the subtle biomechanical changes in the cornea indicative of early 

disease stages. 

This chapter presents a comprehensive analysis of several experiments utilising corneal 

biomechanics data to improve the detection accuracy of POAG and keratoconus. The 

corneal biomechanics data used in this study were acquired using the Corvis ST and the 

Ocular Response Analyzer (ORA). 

It is well-documented that both POAG and keratoconus cause distinctive changes in corneal 

biomechanical properties. For instance, studies using the ORA have shown that keratoconic 

corneas exhibit altered biomechanical responses, such as reduced corneal hysteresis and 

corneal resistance factor, compared to healthy corneas (Luce 2005, Shah, Laiquzzaman et 

al. 2009). Similarly, the Corvis ST has demonstrated that keratoconus is associated with 

increased corneal deformation amplitude and altered dynamic response parameters (Eliasy, 

Chen et al. 2019). In the context of POAG, reduced corneal hysteresis measured by the 

ORA has been associated with the progression of glaucomatous damage (Wells, Garway-

Heath et al. 2008, Medeiros, Meira-Freitas et al. 2013), while the Corvis ST can reveal 

changes during corneal deformation that may be indicative of early glaucomatous alterations 

(Aoki, Kiuchi et al. 2020). 
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In recent years, the use of machine learning models has grown dramatically in the fields of 

optometry and ophthalmology. Techniques have been developed for the early detection of 

refractive errors and for predicting the future progression of myopia, as well as for refining 

spectacle prescriptions and contact lens fittings, and for screening tools in strabismus and 

amblyopia (Krishnan, Dutta et al. 2025) (Alnahedh and Taha 2024). Another application of 

machine learning is in natural language processing (NLP) for the analysis of patient records 

to identify patterns that can lead to more efficient and accurate clinical decisions (Santos, 

Sánchez-Tena et al. 2025). 

Ophthalmology, with its heavy reliance on imaging and complex diagnostic procedures, has 

seen a surge in the application of machine learning for a wide array of conditions. Several 

applications involve the detection and grading of diabetic retinopathy, particularly through the 

analysis of standardized fundus images in combination with convolutional neural networks 

(CNNs) for automatic detection in screening tools, forecasting disease progression, early 

diagnosis, monitoring treatment, and assisting in overall disease management (Jin and Ye 

2022) (Labib, Ghumman et al. 2024).  

Machine learning has also been employed to analyse various data from patients with 

glaucoma, including optical coherence tomography (OCT) scans, visual field plots, and 

fundoscopic images. In many cases, models have been developed for early glaucoma risk 

assessment to identify individuals who may benefit from early intervention. The use of 

machine learning algorithms also reduces intra- and inter-observer bias in diagnosis (Labib, 

Ghumman et al. 2024). Additionally, machine learning plays a role in the early detection, 

classification, and progression prediction of AMD (Li, Wang et al. 2023), as well as in 

cataract detection, pre-operative assessment, and post-surgical recovery monitoring. ML is 

also used to optimize surgical processes to improve patient outcomes, even though cataract 

surgery is already a highly successful procedure (Labib, Ghumman et al. 2024). 

The primary focus of this research is the application of machine learning algorithms to 

corneal biomechanics data to develop predictive models for POAG and keratoconus. 

Machine learning, with its ability to handle large and complex datasets, is particularly suited 

to identifying patterns and features that may not be apparent through conventional analysis. 

By training algorithms on labelled datasets of corneal biomechanics measurements, the aim 

is to create models that can accurately distinguish between healthy eyes and those affected 

by POAG or keratoconus. 
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The aim of this experiment is to demonstrate the feasibility and effectiveness of integrating 

corneal biomechanics data with machine learning algorithms for the detection of primary 

open-angle glaucoma (POAG) and keratoconus. To this end, six different learning 

techniques were employed, using two methods of hyperparameter optimization under 

various experimental conditions (with and without central corneal thickness or IOP). 

In summary, this chapter describes the methodology and results of these experiments, 

introducing a novel approach to ocular disease detection that combines advanced corneal 

biomechanics measurements with state-of-the-art machine learning techniques. Through this 

research, the ultimate goal is to improve diagnostic accuracy and patient outcomes for 

POAG and keratoconus. To the best of the authors’ knowledge, this marks the first attempt to 

(1) employ machine learning on data from the ORA to detect keratoconus and POAG, (2) 

compare the performance of the ORA and Corvis ST, and (3) train and test a broad range of 

supervised learning algorithms. 

2.2 Material and Methods 

2.2.1 Basic concept in machine learning 

Some of the concepts introduced in this chapter might not be very familiar to a clinician, so 

here are the most common terms used: 

- Model: A mathematical representation of a real-world condition, it is created using 
data to train an algorithm. It can be used to make predictions in classification or 

regression. 

- Learner (algorithm): A mathematical function that builds the model learning from the 
data. 

- Hyperparameters: A set of one or more parameters that drive the learning process, 
assigning weights and penalties to the data. 

- Training set: A portion of the entire dataset used to train the learner, usually between 
70% and 90% of the data. 

- Test set: The remaining part of the dataset, used to test the performance of the 
learner, typically between 10% and 30% of the original dataset. The learner is not 

trained on this portion of the data; otherwise, performance measurements would not 

be accurate as the learner would already know the data, and might have a perfect 

score, not reflecting the performances on real-world data. 
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- Underfitting: Occurs when the learning rate is poor and not generalisable. The 
model is too simple, does not capture the patterns and has poor performance. 

- Overfitting: Occurs when the learning is too specific; the model perfectly mimics the 
dataset but is not generalisable because it is influenced by the noise (random 

variations or errors) in the data. Usually, performance on the training data is 

excellent, but it might be poor when tested on unseen data. 

- Instances: Individual samples from which the model learns. Each instance is 
represented by a set of features. In this chapter, the instances are the eyes of the 

patients. 

- Features: The data (properties or characteristics) associated with each instance. 
These are used as input to the model. In this chapter, they are the clinical 

measurements of the eyes. 

- Labels (target): The output variable that the model predicts. Each instance is 
associated with a label that the model uses to classify data. In this chapter the label 

is the diagnosis (normal, keratoconus or POAG). 

The purpose of this chapter is to create a machine learning model using several supervised 

learning algorithms to detect cases of keratoconus and primary open-angle glaucoma from 

healthy eyes. The model searches for the optimal hyperparameters during training on the 

training set and then, once identified, is tested on the test set. Among all the learners, the 

one with the best performance on the test set is analysed to determine the importance of 

each feature. 

The general version of the code can be found in Appendix 11.1 

The code developed follows the following structure: 

1) Load of the libraries needed to execute the code. 

2) Definition of the metrics to evaluate the models’ performances: 

a. Accuracy, F1, precision, AUROC, confusion matrix, sensitivity and specificity 

3) Load the dataset: 

a. Creation of the train and test set. 

4) Definition of the algorithms used in the models: 

a. Naïve Bayes, Logistic Regression, Support Vector Machine, Decision Tree, 

Random Forest, Multi-Layer Perceptron Classifier. 

5) Definition of the cycle to run the models: 

a. Hyperparameter tuning with GridSearch and RandomSearch. 
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6) Selection of the model with highest performances (AUC). 

7) Run of the best model on the Test set. 

8) Interpretation of the best model: 

a. Permutation Feature Importance 

b. SHAP. 

2.2.1.1 Dataset 

The dataset was provided by Professors Naroo and Shah and consists of anonymized data 

collected by Dr. Haslina during her PhD. Data were collected at the corneal and glaucoma 

clinics of the Birmingham and Midland Eye Centre, City Hospital, Birmingham, where 

patients already diagnosed with keratoconus or glaucoma were selected by an independent 

ophthalmologist for inclusion in the study. Further classification based on disease severity 

was not possible, as no topographies, anterior segment images, clinical records, OCT scans, 

visual field data, or fundus photographs were included in the dataset. Moreover, because the 

dataset was fully anonymised it was impossible to retrieve patient detail or access their 

clinical records. The current analysis extends the work conducted by Dr Haslina, who initially 

examined differences in corneal biomechanics across various conditions. Because the size 

of the dataset varies among experimental groups, it is summarized in Table 2.1. Since all 

data were already collected and available, no formal sample size calculation was conducted. 

Instead, it followed the principle that a larger sample more accurately represents the 

diversity of the condition, and therefore yields more robust results (Althnian, AlSaeed et al. 

2021). 

Table 2.1 Size of datasets used for the current experiment. 

 Condition (KC/POAG) Normal 

KC_ORA 86 333 

KC_Corvis ST 114 365 

POAG_ORA 92 314 

POAG_Corvis ST 167 314 
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POAG_GAT 172 314 

Corneal parameters measured with ORA included central cornea thickness using an 

ultrasound probe (CCT.US), corneal compensated IOP (IOPcc), Goldmann-correlated IOP 

(IOPg), corneal hysteresis (CH), and corneal resistance factor (CRF). Parameters measured 

using Corvis ST were velocity at the first applanation (A1velocity), length of first applanation 

(A1length), time of the first applanation (A1time), velocity at the second applanation 

(A2velocity), length of second applanation (A2length), time of the second applanation 

(A2time), time of highest concavity (HCtime), highest concavity radius (HCradius), highest 

concavity peak distance (HCpeak.distance), highest concavity deformation amplitude 

(HCdef.amplitude), central corneal thickness measured using the Scheimpflug camera 

(CCTcor), and IOP (IOPcor). Only instances with all features measured by an instrument 

were considered. 

From the initial database, two different datasets were created, one per experiment. In the 

first dataset (normal and keratoconus), there were data from ORA and Corvis ST. In the 

second dataset (normal and POAG), there were measures from GAT, ORA, and POAG. 

Each dataset was further divided into two separate sets: the training set (80%) and the test 

set (20%). The training and test sets were stratified to ensure proportional representation of 

both classes. This step is crucial to avoid circularity, ensuring models are tested on data not 

used for training, thereby avoiding overly optimistic results that would not generalise to new 

real-world data. 

The significance of corneal thickness in keratoconus detection is well established (Ahmadi 

Hosseini, Mohidin et al. 2013), and it has also been shown to function as a confounding 

factor for CH and CRF (Galletti, Pförtner et al. 2012). Accordingly, four experimental 

conditions were tested in this study: (1) Corvis ST data including corneal thickness, (2) 

Corvis ST data excluding corneal thickness, (3) ORA data including corneal thickness, and 

(4) ORA data excluding corneal thickness. Given the recognised importance of corneal 

thickness as a potential confounding variable, the models were evaluated both with and 

without this parameter in the training and test sets. It is hypothesized that omitting corneal 

thickness from the dataset may reduce the accuracy of keratoconus detection. 

For the glaucoma experiment, ten different conditions were tested: Corvis ST data including 

IOP and corneal thickness, Corvis ST data including IOP but excluding corneal thickness, 

Corvis ST data including corneal thickness but excluding IOP, Corvis ST data excluding 
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corneal thickness and IOP, ORA data including corneal thickness and IOPs, ORA data 

including corneal thickness but excluding IOPs, ORA data including IOPs but excluding 

corneal thickness, ORA data excluding both IOP and corneal thickness, GAT and corneal 

thickness data, and GAT alone. This approach was chosen because IOP impacts POAG 

diagnosis, and corneal thickness data might help determine whether high IOP is due to the 

cornea. 

2.2.2 Libraries 

The creation of the model to detect keratoconus and glaucoma was coded in Python using 

the JupyterLab environment and several libraries: pandas, numpy, matplotlib, seaborn, and 

scikit-learn. Pandas is a library designed to handle and analyse data and datasets; it is 

commonly used to load, clean, and preprocess data. Numpy is designed for mathematical 

operations, scientific calculations, and data transformation. Matplotlib and seaborn are used 

to create graphs and visualise results. Scikit-learn is a machine learning library built on 

numpy, pandas, and matplotlib; it stores algorithms and tools to optimise their performance 

for classification, regression, clustering, dimensionality reduction, and model selection tasks. 

2.2.3 Metrics 

To evaluate the performances of each algorithm, several metrics were used: 

- Confusion matrix: this is a table that allows the visualisation the performances of a 

model’s classification. It is based on the following data: 

o TP: True Positive, the condition is present and is correctly identified by the 

model. 

o TN: True Negative, the condition is not present, and the model does not 

detect the condition. 

o FP: False Positive, the model identifies the condition, even if it is not present. 

o FN: False Negative, the model does not detect the condition, that is present. 

 Positive prediction Negative Prediction 

Positive condition TP FN 

Negative condition FP TN 
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Using this matrix, it is possible to calculate several metrics to evaluate performance: 

- Accuracy: is defined as the ratio between the sum of TP and TN and the total 
number of cases. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

- Precision: is the ratio between the TP and all the positive outcomes 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

- Sensitivity (Recall): is the ratio between TP and the total of positives (TP and FN). It 
represents the ability of the model of detecting the positive instances. 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

- Specificity: is the ratio between TN and the total of negative (TN and FP). It is the 
ability of the model of detecting the negative instances. 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

- F1: is the harmonic mean of precision and sensitivity. It is useful for unbalanced 
classes. 

𝐹1 = 2	 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

 

- AUROC: is the Area Under the Receiver Operative Characteristics Curve. It is a 
measure of the quality of prediction of a classifier. It is plotted as the function of 1 – 

Specificity on the x axis and Sensitivity on the y axis. The higher the AUROC value, 

the better the model’s performance: a value of 1 indicates a perfect classifier, while a 

value of 0.5 indicates a random classifier. 

2.2.4 Algorithms 

Several supervised learning algorithms have been used in this experiment. The following list 

explore them with a basic mathematical description about the working principles. 
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The following algorithms were selected because they are among the most frequently used in 

supervised machine learning research (Raju, Manasa et al. 2023). K-nearest neighbors 

(KNN) was excluded because it relies on instance-based learning rather than a standard 

learning method. In KNN, each classification task requires calculating the distance between 

the test instance and each of the training instances, rendering the algorithm less efficient on 

large datasets, not readily scalable, and more demanding in terms of computational 

resources (Taunk, De et al. 2019). XGBoost and AdaBoost were also omitted, as they 

involve ensemble learning—a technique that combines multiple algorithms and lies beyond 

the scope of this study. 

2.2.4.1 Naïve Bayes 

It is based on Bayes' theorem of conditional probability, assuming that features are 

independent (naïve) of each other. This assumption simplifies the calculations. Bayes' 

theorem allows us to calculate the probability that a hypothesis is true given a set of 

conditions. The theorem states that: 

𝑃(𝐻|𝐸) = 	
𝑃(𝐸|𝐻) ⋅ 𝑃(𝐻)

𝑃(𝐸)
 

Eq. 2.1 Bayes' Theorem of conditional probability 

Where 𝑃(𝐻|𝐸) is the probability of hypothesis H considering that E has been observed, 

𝑃(𝐸|𝐻) is the probability of observing E if H is true, P(H) is the a priori probability of 

hypothesis H and P(E) is the probability observing E. For this experiment, the Gaussian 

variant of Naïve Bayes was used, as the features are continuous variables. 

For classification purposes, Naïve Bayes calculates the probability that an instance belongs 

to any of the classes and then assigns the instance to the class with the highest probability. 

It is one of the simplest algorithms for classification, as it does not have any 

hyperparameters to tune and is computationally efficient even with large datasets containing 

several features. The effectiveness of Naïve Bayes decreases when the features are not 

independent of each other. 

2.2.4.2 Logistic Regression 

It is a linear algorithm that calculates the probability that an instance belongs to a class. It 

performs well when used for binary classification. The output is a number between 0 and 1, 

which can be converted into the prediction of belonging to one class or another. The usual 
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threshold is 0.5 (above it is assigned to class 1, below to class 0). The probability is 

calculated considering the features of the dataset (𝑋 = (𝑥#, 𝑥", … , 𝑥$)). These features are 

combined in a linear function: 

𝑧 = 	𝛽% + 𝛽#𝑥# +	𝛽"𝑥"+	. . . +	𝛽$𝑥$	 

Eq. 2.2 Linear Combination of Independent Variables before applying Logistic Sigmoid Function 

Where β are the coefficients of the model. Using the sigmoid function: 

𝜎(𝑧) = 	
1

1 +	𝑒&'
 

Eq. 2.3 Sigmoid Function for Linear Regression 

it is possible to calculate a probability (p), between 0 and 1. The function 𝜎(𝑧) approaches 0 

when z is toward – ∞ (since the denominator becomes very large, making the fraction 

approach 0), and approaches 1 as z approaches +∞+∞ (since the denominator approaches 

1, making the fraction approach 1). Once the probability is calculated, it is possible to 

classify the instance according to the set threshold (usually 0.5), attributing it to class 0 or 1. 

During the training the goal is to find the β coefficients that minimise the differences between 

the calculated probabilities and the real labels. This is achieved using the logistic cost 

function: 

𝐽(𝛽) = −
1
𝑚
i[𝑦( 	𝑙𝑜𝑔(𝑝() + (1 − 𝑦()	𝑙𝑜𝑔(1 − 𝑝()]
)

(*#

 

Eq. 2.4 Logistic Cost Function 

Where m is the number of the instances in the dataset, yi is the label of the i-th and pi is the 

probability calculated of the i-th instance. The cost function measures the fit of the model to 

the data. Minimisation of the cost function is performed through the gradient descent 

algorithm, which iteratively updates the parameters of the model: 

β = β − α∇J(β) 

Eq. 2.5 Gradient Descent Algorithm 

Where α is the learning rate and ∇J(β) is the gradient of the β function. 

To avoid overfitting, regularisation can be introduced in logistic regression. There are two 

types of regularisation: 



G. Civiero, PhD Thesis, Aston University, 2024 

49 

 

- L2 or Ridge Regularisation, this transforms the cost function J(β) into: 

𝐽(𝛽) =
−1
𝑚
i[𝑦( 	𝑙𝑜𝑔(𝑝() + (1 − 𝑦()	𝑙𝑜𝑔(1 − 𝑝()] +

𝜆
2𝑚

(*#

)

i𝛽+
"

$

+*#

 

Eq. 2.6 Ridge Regularisation 

- L1 or Lasso Regularisation, this transforms the cost function J(β) into: 

𝐽(𝛽) =
−1
𝑚
i[𝑦( 	𝑙𝑜𝑔(𝑝() + (1 − 𝑦()	𝑙𝑜𝑔(1 − 𝑝()] +

𝜆
𝑚

(*#

)

i|𝛽+|
$

+*#

 

Eq. 2.7 Lasso Regularisation 

Where λ is the regularisation strength (often known as C), which controls the penalisation on 

the parameters to make the model simpler to avoid overfitting. The division by m or 2m 

normalises the penalisation based on the total number of instances, n is the number of the 

features of the model and βj is the value of the j-th feature. 

Ridge regularisation penalises the sum of the squares of the coefficients, reducing the 

importance of features with higher values but keeping all β parameters in the model, even if 

with very small values. This is useful if all the features have some importance, and it can 

reduce the impact of features with multicollinearity. 

Lasso regularisation penalises the sum of the absolute values of the coefficients, potentially 

bringing some coefficients to zero and excluding some features, thus automatically selecting 

variables. This is useful when there are many features, some of which might be irrelevant. 

Lasso typically creates simpler models with fewer features. 

The functions that manage the minimisation of the cost function are called solvers. In the 

scikit-learn library that runs logistic regression in Python, there are four different solvers: 

- liblinear: Uses coordinate descent to optimise the cost function, supports both L1 
and L2 regularisation, and is particularly efficient for small and medium-sized 

datasets. 

- netwon-cg: Uses the Newton-conjugate gradient and supports L2 regularisation 
only. It is used for datasets with high dimensionality. The Newton-conjugate gradient 

combines the Newton method (using both first and second derivatives, the Hessian 

matrix) and the conjugate gradient, which does not require the inversion of the 

Hessian matrix. 
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- Lbfgs: Uses the Limited-memory Broyden-Fletcher-Goldfarb-Shanno algorithm and 
supports L2 regularisation only. It does not keep the entire approximation matrix of 

the Hessian in memory but saves a limited series of updated vectors from recent 

iterations. It is particularly efficient and useful for large datasets. 

- saga: Uses Stochastic Average Gradient algorithm and supports both L1 and L2. It 
combines the advantages of Stochastic Gradient Descent (updating the parameters 

of the model using a single example per time) and Batch Gradient Descent 

(calculates the gradient using the entire dataset), minimising the noise (errors or 

random variability in data) and improving the velocity of convergence (the 

optimisation process to get to a stable solution, that corresponds to the minimum of 

the cost function). It calculates the partial gradients, then the average and update 

them. 

Logistic regression is a powerful classifier that works well with linear data and calculates the 

probability of belonging to a class. It is quite easy to interpret (Osl, Baumgartner et al. 2008), 

typically exhibits low variance, and is less prone to overfitting (Westreich, Lessler et al. 

2010). Its main limitations are the assumption of linearity between model features and the 

susceptibility to imbalanced data, where the class distribution is not uniform (Abd Rahman 

and Yap 2016). 

2.2.4.3 Support Vector Machine (SVM) 

It is an algorithm that creates separation hyperplanes in the data space to efficiently 

separate data belonging to different classes. In a bidimensional space (two features 

describing the instance), the hyperplane is a line. In a three-dimensional space (three 

features), it is a plane. In datasets with higher dimensionality (more than three features), it is 

called a hyperplane and cannot be visualised. The main goal of SVM is to maximise the 

margins between the separation plane and the closest training instances. Maximising the 

decision boundaries minimises generalisation errors in classification tasks. 

The support vectors are the data points (instances) on the boundaries that guide the 

position, shape, and structure of the hyperplanes. SVM only uses these data points, ignoring 

the others. 

Considering a hyperplane described by the following equation: 
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𝑤	 ⋅ 𝑥 − 𝑏 = 0 

Eq. 2.8 SVM Hyperplane Formula 

Where w is the vector of the coefficients, b is the bias and x is the feature. The goal is to find 

the values of w and b that maximise the margins. Considering a support vector per class, 

one with label +1 and one with label -1, the hyperplanes become: 

𝑤	 ⋅ 𝑥, − 𝑏 = 1 

𝑤	 ⋅ 𝑥& − 𝑏 = −1 

It can be easily demonstrated that the margin width is "
||.||

, where ||w|| is the norm of the 

vector w (it represents the length of the vector). The goal is to maximise "
||.||

 minimising 

#
"
||𝑤||". The rationale behind is that ensures that all the instances of one class fall on one 

side of the hyperplane and all the instances of the other class fall on the opposite side. This 

concept can be expressed through the following formula: 

𝑦((𝑤	 ⋅ 𝑥( − 𝑏) ≥ 1							∀𝑖 

Eq. 2.9 Condition to have the hyperplane with the widest margin possible for data separation 

Where yi is the label of the class [+1; -1] for a binary classification of the i-th feature; (w ⋅ xi) 
is the scalar product between w and the i-th feature and represents the projection of the data 

point xi on the hyperplane defined by w, and ∀i is the condition that must be true for all the i 
considered. 

If data cannot be perfectly separated, it is possible to consider an error introduced by slack 

variables (ξi), so the generalised formula becomes: 

1
2
||𝑤||" + 𝐶i𝜉(

$

(*#

 

𝑦((𝑤	 ⋅ 𝑥( − 𝑏) ≥ 1 − 𝜉( 						∀𝑖 

𝜉( ≥ 0						∀𝑖 

Eq. 2.10 Conditions for data not linearly separable 

Where C is the regularisation parameter that controls the penalisation for misclassification 

and is one of the hyperparameters that can be tuned in SVM. Another hyperparameter is the 
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kernel, which transforms data into a higher-dimensional space to make data linearly 

separable. There are four different kernels in SVM: 

- Linear Kernel: add the dot product of the vectors in the original space. It is 
commonly used when data are already linearly separable. 

𝐾C𝑥( , 𝑥+F = 𝑥( ⋅ 𝑥+ 

- Polynomial Kernel: expands the dimensionality with a large number of variables to 
overcome data that are not linearly separable. c is a constant and d is the degree of 

the polynomial. 

𝐾C𝑥( , 𝑥+F = (𝑥( ⋅ 𝑥+ + 𝑐)/ 

- Radial Basis Function (RBF) Kernel: is the default kernel of SVM, widely used for 
non-linearly separable data. The parameter γ determines the amplitude of the 

function. A high value of γ decreases the effect of a single instance on the model, 

increasing the risk of overfitting. Conversely, a low value of γ makes the model more 

influenced by single instances, increasing the risk of underfitting. It can be set to 

"auto" (reciprocal of the number of features), "scale" (considering the variance and 

number of features), or a fixed number. 

𝐾C𝑥( , 𝑥+F = 𝑒(&1|2!&2"|)# 

- Sigmoid Kernel: is not commonly used, it mimics the sigmoid activation function of 
neural networks, making it useful for non-linearly separable data. α controls the slope 

of the sigmoid function and c shifts the function along the x-axis. 

𝐾C𝑥( , 𝑥+F = 𝑡𝑎𝑛ℎ(𝛼𝑥( ⋅ 𝑥+ + 𝑐) 

SVM main advantages are its strong statistical foundations that allow for generalisation even 

with limited training datasets (Hearst, Dumais et al. 1998), its effectiveness with high-

dimensional data spaces (Moguerza and Muñoz 2006) and the ability to use kernels to adapt 

to different types of data, even detecting non-linearly separable data without complex 

transformations (Steinwart and Christmann 2008). However, results can be difficult to 

interpret, especially for high-dimensional datasets (Navia-Vazquez, Gutierrez-Gonzalez et al. 

2006). SVMs are not highly scalable and large datasets may require significant 

computational power (Suthaharan, Suthaharan et al. 2016). Additionally, choosing the right 

kernel can be challenging (Yang, Wu et al. 2004) 
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2.2.4.4 Decision Tree 

It is a supervised learning algorithm used for both classification and regression. It has a tree 

structure: it starts from the root node, choosing the feature that best separates the classes. 

The root node contains the entire dataset, and all following nodes contain subsets of the 

initial dataset. These decisions are made using either the Gini index or entropy. The Gini 

index measures the impurity of the split: if all points belong to the same class, the split is 

pure (pi is the proportion of elements that belong to the class i). 

𝐺𝑖𝑛𝑖 = 1 −i𝑝("
$

(*#

	 

Eq. 2.11 GIni Index 

Entropy is a measure of the disorder at a split or its uncertainty. It is defined by the following 

formula: 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = −i𝑝(

$

(*#

log"	(𝑝() 

Eq. 2.12 Entropy index 

After selecting the best feature to divide the data, the data is split accordingly, creating two 

branches (if it is a binary tree) leading to two new nodes. Each node represents a decision 

based on a single feature. This process is repeated for each node, each time choosing the 

best feature to separate the remaining data. The algorithm stops when one of these 

conditions is met: 

- Reaches the maximum number of levels (max depth). 

- All the instances in a node belong to the same class, forming leaves or terminal 

nodes. 

- Further splitting does not improve the classification performances. 

The other hyperparameters that can be tuned are: 

- Splitter: choose between "best" (the feature that best splits the remaining instances) 
and "random" (the feature is selected randomly). A random choice can avoid 

overfitting but might reduce model performance. 

- Maximum depth: the maximum depth of the tree. Limiting the depth prevents 
overfitting, but a too shallow tree might underfit. 
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- Minimum samples per split: sets the minimum number of instances required to split 
a node. It can be an integer or a float (percentage of total samples). If a node has 

fewer samples than the minimum required, it is not split and becomes a leaf node. 

Preventing splits with very few samples reduces overfitting and makes the model 

more generalisable. 

- Minimum samples per leaf: Sets the minimum number of samples required to form 
a leaf. If a split results in a leaf with fewer samples than the minimum, the split is 

discarded, and the node is not split again. A high value for this parameter avoids 

overfitting, while a lower value may lead to underfitting. 

The main advantages of decision trees are their interpretability and visualisation, even for 

people without a background in data science or statistics. The tree maps are immediate and 

easy to understand (Safavian, Landgrebe et al. 1991). Decision trees can easily handle non-

linear relationships, analyse smaller data spaces, and do not require data transformation or 

preprocessing (Swain and Hauska 1977, Sethi 1997). 

On the downside, the risk of overfitting is quite high, and strategies must be used to avoid 

creating a model that is not generalisable (Hashemi, Yang et al. 2008). Decision trees are 

also highly sensitive to small variations in the dataset, which can lead to completely different 

tree maps. This problem can be mitigated using ensemble learning models (such as random 

forests). Additionally, decision trees do not handle large datasets with a high number of 

features well, as they require significant computational power (Pal and Mather 2002, Yu, 

Zhong-liang et al. 2009). 

2.2.4.5 Random Forest 

Random Forest is an ensemble learning algorithm based on multiple decision trees 

(estimators), merged to provide more accurate and stable predictions. Instead of selecting 

the most important feature to divide the dataset, each tree works on a portion of the dataset 

and uses a random subset of features to find the best threshold to separate the data (this 

process is called bootstrap sampling). Consequently, many trees are trained in a weak 

manner, each specialising in a small portion of the dataset. Once all the trees have been 

built, the algorithm aggregates the predictions. For classification, the aggregation process is 

based on majority vote: each tree makes an independent prediction for a sample, and the 

class that receives the majority of votes is chosen as the final prediction. 
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Therefore, the number of trees is crucial for Random Forest performance: too few trees 

result in poor performance, while too many trees require high computational power. All the 

other hyperparameters considered in a Decision Tree are present as well, except for the 

splitter, with the separation criterion being Gini by default. The number of randomly selected 

features is by default the square root of the total number of features.  

The hyperparameters that can be set are: 

- Number of estimators: is the number of trees build.  
- Maximum depth: is the maximum depth that each tree can get. 
- Minimum samples per split: set the minimum number of instances to split a node. 
- Minimum samples per leaf: set the minimum number of samples to form a leaf. 

The main advantages of Random Forest are its ability to manage high-dimensional datasets 

and its robustness to noise and overfitting, which overcomes the main disadvantages of 

Decision Trees (Scornet, Biau et al. 2015). On the other hand, the models tend to be more 

complex and less interpretable than Decision Trees, and a high number of estimators 

requires significant computational power and time, especially for larger datasets (Breiman 

2001, Genuer, Poggi et al. 2010). 

2.2.4.6 Multi-Layer Perceptron Classifier (MLP) 

MLP (Multilayer Perceptron) is a type of artificial neural network used in supervised learning 

classification tasks. Like any other neural network, it consists of nodes (neurons). The 

particularity of MLP is that neurons are organised in multiple layers, with each layer 

connected to both the previous and the following ones. The typical architecture of an MLP 

includes: 

- Input Layer: each neuron in the input layer represents a feature of the dataset. 
- Hidden Layer(s): There can be one or more hidden layers (in which case it is called 

a deep neural network). Each layer consists of multiple neurons that process the 

input, extract features, and pass the information to the output layer. Each neuron 

applies a weighted sum, adds bias, and then applies an activation function. 

- Output layer: it has one layer per class to produce the prediction.  

It is possible to identify three main steps in the MLP functions: 
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1) Forward Propagation: After the input layer receives the data, the information is 
passed to the hidden layer. The input values are multiplied by the associated 

weights, summed together, and bias is added. The results pass through a non-linear 

activation function to avoid linearity within the network. Considering two neurons (i, j) 

in two different layers the function is: 

𝑎+ = 𝑓(i𝑤(+

$

(*#

𝑥( +	𝑏() 

Eq. 2.13 Neuron Output for MLP Classifier 

Where aj is the output of the neuron j; wij are the weight that connect the neuron i to 

the neuron j; xi are the input values, bj is the bias of the neuron j; f is the activation 

function. This process is repeated for all neurons in the hidden layers. After the last 

hidden layer, the outputs pass through the output layer, where each neuron 

represents a class. For binary classification, the output layer will have one neuron 

that quantifies the probability of belonging to the positive class. Neurons in the output 

layer use a softmax activation function, while a sigmoid function is used for binary 

classification. In the output layer, the argument of the function is called z (the input to 

the output neuron) and is used to calculate the probability 𝜎. 

𝑧 =i𝑤+

$

+*#

𝑎+ +	𝑏+ 

Eq. 2.14 Input to Output neuron 

𝜎(𝑧) = 	
1

1 +	𝑒&(∑ ."" 5",	7")
 

Eq. 2.15 Function to calculate probability 

2) Loss Calculation: The next step is to calculate the error of the prediction compared 
to the actual labels. The categorical cross-entropy loss function is used, defined as: 

𝐿 = −ii𝑦+8

9

8*#

:

(*#

log	(𝑜(8) 

Eq. 2.16 Loss Calculation 

Where N is the number of the samples, M is the number of the classes, yik is a binary 

indicator (0; 1) if label (k) is correct or not the i-th example, oik is the predicted 

probability to belong to class k. 
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3) Backpropagation: This process updates the weights of the network to reduce and 
minimise the loss. The loss function is used to calculate the gradient for each weight 

in the network: 
𝛿𝐿
𝛿𝑧+

= 	𝑜 − 𝑦 

Where o is the predicted label and y is the true label. The weights are adjusted in the 

opposite direction of the gradient: 

𝛿+ =
𝛿𝐿
𝛿𝑧+

= (i𝛿8𝑤+8
8

)𝑓′(𝑧+) 

Eq. 2.17 Loss Gradient 

Where 𝛿8 is the loss gradient with respect to the output of the neuron k in the 

following layer, 𝑤+8 is the weight between neuron j and k and f’(𝑧+) is the derivative of 

the activation function applied to 𝑧+. The weights are updated using the calculated 

gradients: 

𝑤(+$;. = 𝑤(+ − 𝜂
𝛿𝐿
𝛿𝑤(+

 

Eq. 2.18 Weight Update Function 

Where 𝜂 is the learning rate that controls the update. 

This whole process is controlled by the optimisation algorithm, which iteratively updates the 

weights to minimise the loss function until convergence is reached. 

The hyperparameters that can be set are: 

- Hidden layer size: the number of neurons in the hidden layer. In this experiment a 
maximum of two layers was set. 

- Activation function of neurons in the hidden layers: 
o Rectified Linear Unit (relu): this whole process is controlled by the 

optimisation algorithm, which iteratively updates the weights to minimise the 

loss function until convergence is reached. 

o Hyperbolic tangent (tanh): maps input values between -1 and 1, centring 
data around 0, which might improve learning. Gradients might vanish in deep 

networks, causing some neurons not to activate. 

o Logistic: maps input values between 0 and 1. The output can be interpreted 
binarily but may not be efficient in deep networks. 
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o Identity: does not transform the input, commonly used for regression tasks. 
- Solver: the optimisation algorithm 

o Adaptive moment estimation (adam): calculates adaptive learning rates for 
all parameters. It quickly converges, especially with high noise and complex 

optimisation but might be computationally expensive. 

o Stochastic Gradient Descendent: updates the weights using the gradient of 
the loss function on single instances or small batches. It is computationally 

efficient but may be slow if the learning rate is not optimised. 

- Learning rate: sets the initial value of the learning rate 
- Maximum number of iterations: the maximum number of iterations (epochs) for the 

optimisation algorithm. 

Despite the flexibility of the MLP Classifier in managing complex non-linear relationships 

and providing high performance compared to other classifiers (Windeatt 2008, 

Bonaccorso 2018, Raschka and Mirjalili 2019), it has some drawbacks. Tuning 

hyperparameters can be time-consuming and computationally expensive (Windeatt 

2006, Windeatt 2008) and if there is insufficient data, the model might overfit (training 

that does not generalise to real-world data due to extensive recursive iterations between 

layers) (Chi 1995). 

2.2.5 Learning and hyperparameter tuning 

The hyperparameter tuning was carried out using two different techniques: GridSearch 

(GridSearchCV in the scikit-learn library) and RandomSearch (RandomizedSearchCV in the 

scikit-learn library). GridSearchCV creates a grid with all possible combinations of 

hyperparameters and then calculates the learning performance, in terms of AUROC, for 

each combination. RandomizedSearchCV tries a fixed number (50 in this experiment) of 

random combinations of hyperparameters, being computationally less expensive than 

GridSearchCV. 

The rationale behind RandomSearch is that only a fraction of the hyperparameters 

significantly impact the algorithm's performance. Therefore, it can be inefficient to try all 

combinations, as many will likely yield similar or poor results (e.g., very high or very low 

values of the cost function). This is especially true in contexts with a high number of 

hyperparameters. RandomSearch is equally effective with no computational restriction, and 

it has been shown that, given the same computational budget as GridSearch, 

RandomSearch tends to find better patterns due to its ability to explore a larger, less 
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promising configuration space effectively, avoiding the rigidity of the default grid (Bergstra 

and Bengio 2012). 

Learning occurs using cross-validation techniques: the whole dataset is divided into a fixed 

number of folds (k). The folds are stratified to maintain the proportion between classes. A 

cycle runs k times, and during each run, the algorithm learns from k-1 folds and is tested on 

the fold left out. Using this approach, the model is tested each time on unseen data, avoiding 

overfitting and confounding results. The AUROC of each run is stored, and the performance 

is expressed as the average of all the runs. 

2.2.6 Test 

The best configuration of hyperparameters was then tested on the test set. The label 

assigned by each algorithm was compared with the actual label, the confusion matrix was 

computed, and all the previously described metrics were calculated. The learner with the 

highest AUROC on the test set was chosen as the best algorithm. Feature importance was 

then assessed using Permutation Feature Importance and SHAP values. 

2.2.7 Permutation Feature Importance (PFI) 

It is a technique that provides information about the importance of each variable in the 

model. Once the model has been trained and tested, it is run again on the test set, but this 

time the values of a specific feature are randomly shuffled. This process breaks the 

relationship between the feature and the output label, while the other variables remain 

unchanged. The importance of each feature is calculated as the difference in terms of 

performance (AUROC) between the original run on the test set and the new run with the 

shuffled feature. This operation is repeated for all the features. A positive score indicates that 

the shuffling lowered the performance by the amount specified by the value, while a score 

very close to zero indicates that the feature has low importance, ideally a negative result 

may occur, implying that the shuffle improved the performance of the model. It is important to 

note that Permutation Feature Importance (PFI) does not provide information about the 

direction of the contribution of each variable, but only about the importance of the feature to 

the model (Altmann, Toloşi et al. 2010). 
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2.2.8 Shapley Additive exPlanations (SHAP) 

It is an advanced and novel method to explain the predictions of machine learning models. It 

is based on Shapley values, derived from game theory. SHAP values represent the 

contribution of each individual feature to the final prediction (Nohara, Matsumoto et al. 2022). 

SHAP values are computed by considering the marginal contribution of each feature's value 

to the outcome. This is determined by altering the feature's value and evaluating the change 

in the prediction. 

A pool of instances from the test set is passed through SHAP, which determines both the 

importance and the direction of each feature in the final prediction for each instance. In this 

sense, SHAP analysis provides local explanations but can be useful to identify trends in the 

prediction and determine the contribution of a single feature. After calculating SHAP values, 

two different outputs were created: 

Bar Graph: This graph represents the impact of each feature on the output. Data are divided 
by class and ranked vertically, with the most important feature at the top. The horizontal axis 

represents the absolute scale of the SHAP value: the higher the SHAP value, the greater the 

impact of the feature on the outcome. It is important to note that this analysis does not 

provide information about the direction of the outcome, only about the importance of the 

feature for the model. The data are aggregated, so it is not possible to analyse individual 

instances or features. 

Scatterplot: On the vertical axis features are ranked by their importance (the same rank as 
in the bar graph). The horizontal axis represents the SHAP values, indicating the impact of 

that feature on the prediction. Each analysed instance is plotted as a coloured dot, where the 

colour depends on the value of the feature (high is red, low is blue). Points are distributed 

along the horizontal axis according to the impact and the direction of the prediction. This 

graph is analysed for one class only; for the other class, the value is the same but in the 

opposite direction (the graph is reversed). 

SHAP values analysis is particularly useful as it can be applied to all learners tested in this 

experiment. However, it is computationally expensive, especially for complex models with 

high dimensionality and large datasets. Moreover, interpreting the results of SHAP is not 

immediate or precise and can only provide a trend. It is also quite sensitive to outliers. For all 

these reason SHAP graphs provide an overall representation of the trends, but nothing too 

specific. 
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2.3 Results 

Results of all the learners are in Appendix 11.2. Only the single algorithm that works best for 

each experimental condition is discussed in this section. 

2.3.1 Keratoconus 

Results on test set for KC models are listed in Table 2.2 

Table 2.2 Performances of the models on Keratoconus detection 

Algorithm CST_CCT CST_noCCT ORA_CCT ORA_noCCT 
NaiveBayes_grid 0.957 0.945 0.947 0.894 

LogisticRegression_random 0.977 0.952 0.904 0.842 
LogisticRegression_grid 0.977 0.971 0.905 0.845 

SVM_random 0.990 0.983 – – 
SVM_grid 0.987 0.985 – – 

DecisionTree_random 0.917 0.938 0.824 0.767 
DecisionTree_grid 0.921 0.938 0.828 0.758 

RandomForest_random 0.980 0.977 0.829 0.782 
RandomForest_grid 0.980 0.983 0.828 0.766 
MLPClassifier_random 0.975 0.984 0.845 0.718 
MLPClassifier_grid 0.970 0.946 0.904 0.772 

 

2.3.1.1 Corvis ST 
2.3.1.1.1 Corvis ST including Central Corneal Thickness. 

The algorithm with the best AUROC on the test set was SVM with Random Search (C = 

4.60, γ = auto, kernel = rbf, AUROC = 0.990, with a sensitivity of 0.870 and specificity of 

0.959), which can be considered exceptionally good. The performance on the test set was 

excellent for all the learners, which reached AUROC values above 0.91. Compared to the 

learning score (the average AUROC at the end of cross-validation), all the algorithms 

exhibited better performance on the test set. The learner with the best score during training 

was Random Forest with GridSearch (AUROC 0.962). 

Analysing the performance of the SVM with Random Search using PFI, it is evident that the 

most important feature for the model is the radius at highest concavity (HCradius, 0.10 ± 

0.02), while corneal thickness (CCTcor, 0.03 ± 0.01) is the second most important feature. 
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This finding is confirmed by the SHAP bar graph. The scatter plot shows that a lower value 

of HCradius is typical in keratoconic eyes, as well as a reduced corneal thickness. 

 

 

Figure 2.1 ROC Curves for Grid Search, Corvis ST 
including CCT in KC detection 

Figure 2.2 ROC Curves for Random Search, Corvis 
ST including CCT in KC detection

 

Figure 2.3 PFI for Corvis ST including CCT in KC detection 
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Figure 2.4 SHAP impact of each predictor on KC 
detection for Corvis ST including CCT data 

Figure 2.5 SHAP effect of each predictor on KC 
detection for Corvis ST including CCT data 

  

2.3.1.1.2 Corvis ST excluding Central Corneal Thickness 

The algorithm with the highest AUROC on the test set was again SVM, but this time using 

GridSearch (C = 10, γ = 0.1, kernel = rbf, AUROC = 0.985, specificity = 0.945, sensitivity = 

0.826). All the performances on the test set were very good, exceeding an AUROC value of 

0.930. Again, the AUROCs on the test set were better than the performances during training 

(except for the MLP Classifier with GridSearch, which had an AUROC of 0.953 during 

training and 0.946 during testing). The learner with the highest AUROC during training was 

Random Forest (GridSearch) with 0.959. 

Analysing the PFI, the contribution of HCRadius is crucial (0.20 ± 0.04), even higher than in 

the previous experimental condition, likely due to the absence of CCTcor. Following 

HCRadius, the most important features are IOPcor (0.07 ± 0.01) and A1Time (0.04 ± 0.01). 

SHAP analysis confirmed the importance of HCRadius for both classes and highlighted 

those lower values of HCRadius, IOPcor, A1Time, and A2Time influence the final outcome. 
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Figure 2.6 ROC Curves for Grid Search, Corvis ST 
excluding CCT in KC detection 

Figure 2.7 ROC Curves for Random Search, Corvis 
ST including CCT in KC detection 

 
Figure 2.8 PFI for Corvis ST excluding CCT in KC detection 
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Figure 2.9 SHAP impact of each predictor on KC 
detection for Corvis ST excluding CCT data 

Figure 2.10 SHAP effect of each predictor on KC 
detection for Corvis ST excluding CCT data 

 

2.3.1.2 ORA 
2.3.1.2.1 ORA including Central Corneal Thickness 

The algorithm with the highest AUROC value on the test set was Naïve Bayes (AUROC = 

0.947). The performances on the test set were good, but generally lower than those of 

Corvis ST. The learner with the highest AUROC was Random Forest (GridSearch) with 

0.924. 

Analysing the PFI, it is clear how important corneal thickness is (0.12 ± 0.02), followed by 

corneal hysteresis (0.09 ± 0.02) and the corneal resistance factor (0.05 ± 0.02). SHAP 

analysis partially confirmed this: corneal thickness remains the most important, but the 

corneal resistance factor and IOPg have the same impact on the model output, which is 

greater than that of corneal hysteresis and IOPcc. In terms of effect on prediction, lower 

values of all the parameters measured by ORA tend to indicate the keratoconus label. 
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Figure 2.11 ROC Curves for Grid Search, ORA 
including CCT in KC detection 

Figure 2.12 ROC Curves for Random Search, ORA 
including CCT in KC detection 

 
Figure 2.13 PFI for ORA including CCT in KC detection 

  
Figure 2.14 SHAP impact of each predictor on KC 
detection for ORA including CCT data 

Figure 2.15 SHAP effect of each predictor on KC 
detection for ORA including CCT data 

 

2.3.1.2.2 ORA excluding Central Corneal Thickness 

The algorithm with the highest AUROC value on the test set was Naïve Bayes (AUROC = 

0.894, sensitivity = 0.818, specificity = 0.890). The performances on the test set were lower 

than those of the ORA with corneal thickness among the features. The learner with the 

highest AUROC was Random Forest (GridSearch) with 0.924. 

Analysing the PFI, the most important feature is IOPg (0.10 ± 0.04), followed by corneal 

hysteresis (0.08 ± 0.02) and the corneal resistance factor (0.06 ± 0.03). SHAP analysis did 

not confirm this: the corneal resistance factor is the most important, similar to IOPg, while 
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CH and IOPcc have limited impact. In terms of effect on prediction, lower values of all the 

parameters measured by ORA tend to indicate the keratoconus label. 

  

Figure 2.16 ROC Curves for Grid Search, ORA 
excluding CCT in KC detection 

Figure 2.17 ROC Curves for Random Search, ORA 
excluding CCT in KC detection 

 

Figure 2.18 PFI for ORA excluding CCT in KC detection 
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Figure 2.19 SHAP impact of each predictor on KC 
detection for ORA excluding CCT data 

Figure 2.20 SHAP effect of each predictor on KC 
detection for ORA excluding CCT data 

2.3.2 Primary Open Angle Glaucoma 

Results on test set for all the combination with Corvis ST are listed in Table 2.3. 

Table 2.3 Performances of different combinations of Corvis ST data in POAG detection 
 

CCT_IOP CCT_no_IOP IOP_no_CCT noIOP_no_CCT 
NaiveBayes_grid 0.779 0.777 0.773 0.771 
LogisticRegression_random 0.759 0.716 0.772 0.741 
LogisticRegression_grid 0.758 0.718 0.773 0.745 
SVM_random 0.824 0.808 0.830 0.817 
SVM_grid 0.830 0.809 0.831 0.813 
DecisionTree_random 0.746 0.690 0.699 0.699 
DecisionTree_grid 0.746 0.690 0.736 0.699 
RandomForest_random 0.803 0.803 0.811 0.802 
RandomForest_grid 0.796 0.803 0.822 0.814 
MLPClassifier_random 0.803 0.805 0.823 0.810 
MLPClassifier_grid 0.807 0.791 0.811 0.818 

 

2.3.2.1 Corvis ST 
2.3.2.1.1 Corvis ST including Central Corneal Thickness and IOP 

The algorithm with the best AUROC was SVM with GridSearch (C = 1000, γ = 0.001, kernel 

= rbf, AUROC = 0.830, sensitivity = 0.625, specificity = 0.842). The algorithm that performed 

best during training was Random Forest with GridSearch (AUROC = 0.896). 

The PFI analysis showed that for POAG classification, the two most important parameters 

were A2Time (0.23 ± 0.03) and IOPcor (0.16 ± 0.04), followed by A1Time (0.06 ± 0.02). 

SHAP analysis confirmed these findings. The calculation of the effect of each predictor on 

the final outcome revealed that high A2Time and IOPcor point towards POAG, while for 

A1Time, it was the opposite. 
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Figure 2.21 ROC Curves for Grid Search, Corvis ST 
including CCT and IOP in POAG detection 

Figure 2.22 ROC Curves for Random Search, 
Corvis ST including CCT and IOP in POAG 
detection 

 

Figure 2.23 PFI for Corvis ST including CCT and IOP in POAG detection 
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Figure 2.24 SHAP impact of each predictor on 
POAG detection for Corvis ST including CCT and 
IOP data 

Figure 2.25 SHAP effect of each predictor on POAG 
detection for Corvis ST including CCT and IOP data 

 

2.3.2.1.2 Corvis ST including Central Corneal Thickness, excluding IOP 

The algorithm with the highest AUROC on the test set was SVM with GridSearch (C = 1, γ = 

scale, kernel = rbf, AUROC = 0.809, sensitivity = 0.860, specificity = 0.650). The best learner 

during training was Random Forest with GridSearch. 

According to PFI analysis, the most important feature was A2Time (0.14 ± 0.1), followed by 

A1Time (0.06 ± 0.02) and A1Length (0.04 ± 0.02). The calculation of SHAP values confirmed 

these findings: a high value of A2Time or A1Time points towards POAG, while the 

interpretation for A1Length is less clear. 
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Figure 2.26 ROC Curves for Grid Search, Corvis ST 
including CCT and excluding IOP in POAG 
detection 

Figure 2.27 ROC Curves for Random Search, 
Corvis ST including CCT and excluding IOP in 
POAG detection 

 

Figure 2.28 PFI for Corvis ST including CCT and excluding IOP in POAG detection 

  

Figure 2.29 SHAP impact of each predictor on 
POAG detection for Corvis ST including CCT and 
excluding IOP data 

Figure 2.30 SHAP effect of each predictor on POAG 
detection for Corvis ST including CCT and 
excluding IOP data 

 

2.3.2.1.3 Corvis ST including IOP, excluding Central Corneal Thickness 

The algorithm with the highest AUROC on the test set is SVM with GridSearch (C = 1, γ = 

0.1, kernel = rbf, AUROC = 0.831, sensitivity = 0.889, specificity = 0.651). All the learners 



G. Civiero, PhD Thesis, Aston University, 2024 

72 

 

showed lower AUROC values on the test set than during training. The best learner during 

training was Random Forest with GridSearch (AUROC = 0.892). 

The PFI analysis shows that the feature with the highest importance is A2Time (0.17 ± 0.03), 

followed by IOPcor (0.06 ± 0.02) and A1Length (0.03 ± 0.02). The SHAP analysis confirmed 

the PFI findings, indicating that high values of A2Time and IOPcor point towards POAG 

classification, while the interpretation of A1Length is less clear due to the lack of a distinct 

separation.  

  

Figure 2.31 ROC Curves for Grid Search, Corvis ST 
including IOP and excluding CCT in POAG 
detection 

Figure 2.32 ROC Curves for Random Search, 
Corvis ST including IOP and excluding CCT in 
POAG detection 



G. Civiero, PhD Thesis, Aston University, 2024 

73 

 

 

Figure 2.33 PFI for Corvis ST including IOP and excluding CCT in POAG detection 

 

Figure 2.34 SHAP impact of each predictor on 
POAG detection for Corvis ST including IOP and 
excluding CCT data 

Figure 2.35 SHAP effect of each predictor on POAG 
detection for Corvis ST including IOP and excluding 
CCT data 

 

2.3.2.1.4 Corvis ST excluding IOP and Central Corneal Thickness 

The last analysis, which excluded corneal thickness and IOP, had the lowest results. The 

algorithm with the highest AUROC was MLP Classifier (activation: tanh, hidden layer sizes: 

50, 50, learning rate = 0.01, maximum iterations = 300, solver = sgd, AUROC = 0.818, 

sensitivity = 0.831, specificity = 0.632). Again, the performances on the test set were lower 
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than during training. The learner with the highest score during training was Random Forest 

using GridSearch (AUROC = 0.898). 

The permutation feature importance analysis identified A2Time as the most important 

predictor (0.22 ± 0.03), followed by A1Time (0.08 ± 0.03). The other predictors showed lower 

scores. SHAP analysis confirmed that A2Time and A1Time have the major impact on the 

output. High values of both features are associated with an increased likelihood of POAG. 

 

Figure 2.36 ROC Curves for Grid Search, Corvis ST 
excluding CCT and IOP in POAG detection 

Figure 2.37 ROC Curves for Random Search, 
Corvis ST excluding CCT and IOP in POAG 
detection 

 

Figure 2.38 PFI for Corvis ST excluding CCT and IOP in POAG detection 
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Figure 2.39 SHAP impact of each predictor on 
POAG detection for Corvis ST excluding CCT and 
IOP data 

Figure 2.40 SHAP effect of each predictor on POAG 
detection for Corvis ST excluding CCT and IOP 
data 

 

2.3.2.2 ORA 

Results on test set for all the combination with ORA are listed in Table 2.4 

Table 2.4 Performances of different combinations of ORA data in POAG detection 
 

CCT_IOP CCT_no_IOP IOP_no_CCT noIOP_no_CCT 
NaiveBayes_grid 0.858 0.804 0.856 0.822 

LogisticRegression_random 0.892 0.846 0.894 0.875 
LogisticRegression_grid 0.893 0.846 0.894 0.876 
DecisionTree_random 0.701 0.754 0.770 0.719 
DecisionTree_grid 0.701 0.779 0.745 0.758 

RandomForest_random 0.790 0.759 0.828 0.787 
RandomForest_grid 0.797 0.767 0.835 0.793 

MLPClassifier_random 0.827 0.834 0.882 0.850 
MLPClassifier_grid 0.845 0.833 0.876 0.858 

 

2.3.2.2.1 ORA including Central Corneal Thickness and IOP 

The algorithm with the highest AUROC value on the test set was Logistic Regression with 

hyperparameters set using GridSearch (C = 100, regularisation = L1, solver = liblinear, 

AUROC = 0.893, sensitivity = 0.894, specificity = 0.750). Logistic Regression performance 

with parameters found using RandomSearch was very similar (AUROC = 0.892), despite the 

hyperparameters being completely different (C = 35, regularisation = L2, solver = lbfgs). The 

learner with the best score on the training set was the MLP Classifier (AUROC = 0.812). 
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Analysing PFI, the feature with the highest importance was corneal hysteresis (0.529 ± 

0.05), followed by IOPg (0.22 ± 0.03) and the corneal resistance factor (0.17 ± 0.04). The 

contributions of IOPcc and corneal thickness were considered marginal. SHAP analysis 

confirmed the significant impact of corneal hysteresis and, to a lesser extent, the corneal 

resistance factor but swapped the importance of the IOPs, considering IOPcc to have a 

higher impact on prediction than IOPg. The SHAP scatterplot highlights the opposite 

importance of corneal hysteresis and the corneal resistance factor (high hysteresis and low 

resistance factor towards POAG). The same applies to the IOPs (high IOPcc and low IOPg 

towards POAG). 

 

Figure 2.41 ROC Curves for Grid Search, ORA 
including CCT and IOP in POAG detection 

Figure 2.42 ROC Curves for Random Search, ORA 
including CCT and IOP in POAG detection 
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Figure 2.43 PFI for ORA including CCT and IOP in POAG detection 

 

Figure 2.44 SHAP impact of each predictor on 
POAG detection for ORA including CCT and IOP 
data 

Figure 2.45 SHAP effect of each predictor on POAG 
detection for ORA including CCT and IOP data 

2.3.2.2.2 ORA Including Central Corneal Thickness, excluding IOP 

Not considering IOP, the algorithm with the highest AUROC is Logistic Regression, which 

achieved the same learning (AUROC = 0.846, sensitivity = 0.822, specificity = 0.667) and 

test score with both GridSearch (C = 0.1, regularisation = L1, solver = liblinear) and 

RandomSearch (C = 0.2, regularisation = L1, solver = saga), both in less than 2 seconds. 

The best learner during training was the MLP Classifier with GridSearch (AUROC = 0.813). 

From PFI analysis, it appears the only important feature is corneal hysteresis (0.34 ± 0.06), 

which is confirmed by the SHAP analysis. The SHAP scatterplot suggests that a high value 

of corneal hysteresis can positively influence the prediction of POAG. 
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Figure 2.46 ROC Curves for Grid Search, ORA 
including CCT and excluding IOP in POAG 
detection 

Figure 2.47 ROC Curves for Random Search, ORA 
including CCT and excluding IOP in POAG 
detection 

 

Figure 2.48 PFI for ORA including CCT and excluding IOP in POAG detection 

  

Figure 2.49 SHAP impact of each predictor on 
POAG detection for ORA including CCT and 
excluding IOP data 

Figure 2.50 SHAP effect of each predictor on POAG 
detection for ORA including CCT and excluding IOP 
data 
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2.3.2.2.3 ORA including IOP, excluding Central Corneal Thickness 

Not including corneal thickness, the situation was very similar. The algorithm with the best 

performance on the test set was Logistic Regression (AUROC = 0.894, sensitivity = 0.894, 

specificity = 0.750), regardless of whether GridSearch (C = 10, regularisation = L1, solver = 

saga) or RandomSearch (C = 14, regularisation = L2, solver = saga) was used. The learner 

with the best performance during training was the MLP Classifier (AUROC = 0.808). 

Corneal hysteresis was the most important parameter (0.53 ± 0.05) according to PFI, 

followed by IOPg (0.20 ± 0.03) and CRF (0.17 ± 0.04). SHAP confirmed the importance of 

corneal hysteresis but swapped the importance of the IOPs: IOPcc is more important than 

IOPg. According to the scatterplot, high hysteresis and high IOPcc influence the decision 

towards POAG, while the opposite is true for the corneal resistance factor and IOPg.  

 

Figure 2.51 ROC Curves for Grid Search, ORA 
including IOP and excluding CCT in POAG 
detection 

Figure 2.52 ROC Curves for Random Search, ORA 
including IOP and excluding CCT in POAG 
detection 
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Figure 2.53 PFI for ORA including IOP and excluding CCT in POAG detection 

 

Figure 2.54 SHAP impact of each predictor on 
POAG detection for ORA including IOP and 
excluding CCT data 

Figure 2.55 SHAP effect of each predictor on POAG 
detection for ORA including IOP and excluding CCT 
data 

2.3.2.2.4 ORA excluding IOP and Central Corneal Thickness 

For the last experimental condition, only corneal hysteresis and corneal resistance factor 

were considered. The algorithm with the best AUROC was again Logistic Regression 

(AUROC = 0.876, sensitivity = 0.881, specificity = 0.733) with GridSearch (C = 10, 

regularisation = L2, solver = newton-cg). RandomSearch gave very similar results (AUROC 

= 0.875, with the same specificity and sensitivity). The learner with the best performance 

during training was the MLP Classifier (AUROC = 0.796). 

PFI analysis showed that corneal hysteresis has great importance in the model output (0.37 

± 0.06), followed by corneal resistance factor (0.06 ± 0.02). The SHAP graph confirmed that 
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a high value of hysteresis influences the output towards POAG, while the opposite is true for 

the corneal resistance factor. 

  

Figure 2.56 ROC Curves for Grid Search, ORA 
excluding CCT and IOP in POAG detection 

Figure 2.57 ROC Curves for Random Search, ORA 
excluding CCT and IOP in POAG detection 

 

Figure 2.58 PFI for ORA excluding CCT and IOP in POAG detection 
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Figure 2.59 SHAP impact of each predictor on 
POAG detection for ORA excluding CCT and IOP 
data 

Figure 2.60 SHAP effect of each predictor on POAG 
detection for ORA excluding CCT and IOP data 

2.3.2.3 GAT 

Results for GAT combinations are listed in Table 2.5 

Table 2.5 Performances of different combinations of GAT data in POAG detection 
 

CCT no_CCT 
NaiveBayes_grid 0.634 0.535 

LogisticRegression_random 0.636 0.500 
LogisticRegression_grid 0.637 0.500 
DecisionTree_random 0.624 0.575 
DecisionTree_grid 0.624 0.575 

RandomForest_random 0.696 0.591 
RandomForest_grid 0.631 0.572 

MLPClassifier_random 0.678 0.560 
MLPClassifier_grid 0.674 0.590 

 

2.3.2.3.1 GAT including Central Corneal Thickness 

Using only tonometry and pachymetry data, the performance of the models decreased 

drastically. The best learner during training was the MLP Classifier (AUROC = 0.694), while 

the algorithm that showed the best performance on the test set was Random Forest 

(AUROC = 0.696, specificity = 0.625, sensitivity = 0.667) with RandomSearch (11 

estimators, minimum samples split = 41, minimum samples leaf = 9, maximum depth = 52). 

From PFI analysis, it is evident that pachymetry (0.07 ± 0.06) is more important than 

tonometry (0.04 ± 0.04). This finding is confirmed by SHAP bar plots. The SHAP scatterplot 

suggests that higher values of pachymetry drive the output towards POAG, as do tonometry 

values, although the latter is less clear. 
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Figure 2.61 ROC Curves for Grid Search, GAT 
including CCT in POAG detection 

Figure 2.62 ROC Curves for Random Search, GAT 
including CCT in POAG detection 

 

Figure 2.63 PFI for GAT including CCT in POAG detection 

 

Figure 2.64 SHAP impact of each predictor on 
POAG detection for GAT including CCT data 

Figure 2.65 SHAP effect of each predictor on POAG 
detection for GAT including CCT data 
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2.3.2.3.2 GAT excluding Central Corneal Thickness 

The performance of the models showed a further decrease when removing central corneal 

thickness from the features, as shown in the ROC curves. The algorithm with the best 

AUROC (0.591, specificity 0.800, sensitivity 0.667) is Random Forest with RandomSearch 

(11 estimators, minimum samples split = 41, minimum samples leaf = 9, maximum depth = 

52), while the best learner during training was the MLP Classifier with RandomSearch 

(AUROC = 0.610). 

As expected, PFI suggests that the only parameter influencing the outcome is GAT. The 

SHAP scatterplot suggests that high values of IOP are associated with POAG predictions, 

although this relationship is less clear than expected. 

  

Figure 2.66 ROC Curves for Grid Search, GAT only 
in POAG detection 

Figure 2.67 ROC Curves for Random Search, GAT 
only in POAG detection 

 

Figure 2.68 SHAP effect of each predictor on POAG detection for GAT only 
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2.4 Discussion 

A total of 14 experimental conditions were analysed: 4 for keratoconus detection and 10 for 

primary open angle glaucoma detection. The metric chosen to compare the models was the 

area under the receiver operating characteristic curves (AUROC). The major advantage of 

using AUROC is that it is not affected by class imbalance and is considered a good indicator 

of a model's performance in discrimination (Fawcett 2006). Any score above 0.8 is 

considered good, and anything above 0.9 is excellent. A score of 1.0 represents perfect 

performance but can sometimes indicate overfitting or circularity in training and testing. A 

performance of 0.5 is considered random, meaning the model is unable to discriminate 

between the two conditions and the label is randomly assigned. 

2.4.1 Performances GridSearch vs RandomSearch 

As can be seen from the table results in the Appendix 11.2, the performances on the test set 

obtained with hyperparameter tuning using GridSearch and RandomSearch are similar. The 

performances of algorithms using hyperparameters found with GridSearch rarely are better 

than those with hyperparameters found with RandomSearch. The major difference lies in the 

time required to find the best combination of hyperparameters, which depends on the 

number of hyperparameters to be tuned and, consequently, the number of combinations to 

try. For some algorithms, the differences in time are minimal (Logistic Regression, Decision 

Tree, and Random Forest take roughly the same time, with differences of only a few 

seconds). For others, the differences in time are substantial (SVM and MLP Classifier, up to 

ten times longer) with minimal performance improvement. RandomSearch does not try all 

possible combinations, making it more computationally and time efficient, as described in the 

paper that proposed the technique (Bergstra and Bengio 2012). 

2.4.2 Interpretation 

Permutation Feature Importance (PFI) and SHAP can lead to different interpretations of the 

model's features. This occurs because the two methods are intrinsically different: PFI 

quantifies the importance of each feature by calculating the variation in the model’s 

performance when the feature’s values are randomly shuffled. SHAP values, calculated 

using Shapley values from game theory, reflect the contribution of each feature to the 

prediction of each instance in the test set and better represent interactions between different 

features. If there are several interactions among features, SHAP values more accurately 
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reflect the importance of each feature. Moreover, PFI can be influenced by the permutations 

if the data are highly correlated, potentially overestimating or underestimating the importance 

of individual features. If the model is non-linear or very complex, PFI can provide unreliable 

results, whereas SHAP has more robust theoretical foundations (Hooker and Mentch 2019, 

Aas, Jullum et al. 2021). 

2.4.3 Support Vector Machine  

SVM was not used with ORA or GAT data, as it could not handle these datasets. The reason 

is unknown to the author, but the code crashed every time it was run. A possible explanation 

lies in the handling of the small dataset. SVMs are efficient in classification and regression 

tasks but might have limitations when used on low-dimensional datasets. If there are too few 

features, SVMs tend to overestimate the feature space using kernels to separate data that 

would not be linearly separable. With too few features, it may be difficult to find a good 

separating hyperplane due to the high complexity induced by the kernel. Conversely, SVMs 

work well with high-dimensional dataset (Cortes and Vapnik 1995). Similar conditions have 

already been reported in literature (Burges and discovery 1998) and a possible solution 

suggested is to have a minimum number of features that is at least the natural logarithm of 

the number of instances (Hastie, Tibshirani et al. 2009). Using this approach, it is evident 

that for the dataset used in this experiment (more than 400 instances), the minimum number 

of features is 6, while ORA had a maximum of 4 or 5 features, and GAT had 2. 

2.4.4 Keratoconus 

Performance in keratoconus detection using Corvis ST data has consistently outperformed 

ORA, both with and without corneal thickness as a parameter. This is anticipated because 

the Corvis ST evaluates a broader array of dynamic corneal parameters compared to the 

ORA. For instance, while the ORA primarily provides metrics such as corneal hysteresis and 

corneal resistance factor that are related to the viscoelastic behaviour of the cornea, the 

Corvis ST captures additional details—including deformation amplitude, applanation times, 

and other dynamic responses to an air puff. These extra parameters enable a more nuanced 

assessment of the cornea’s biomechanical behaviour under stress, thereby allowing for a 

more comprehensive evaluation of corneal biomechanical alterations. 

Performance significantly improved when corneal thickness was included among the 

features, irrespective of the instrument or algorithm used. Exceptions were noted with the 

MLP Classifier using RandomSearch and Random Forest with GridSearch, both utilising 
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Corvis ST data, where classification performance was higher without corneal thickness data. 

The improved performance of algorithms with corneal thickness data aligns with 

expectations, as corneal thickness is a critical parameter in keratoconus diagnosis, 

alongside corneal curvature, clinical signs, and best corrected visual acuity, which were not 

included in the models for this experiment. 

Although corneal thickness is typically considered one of the most important parameters in 

keratoconus detection and diagnosis, analysis of PFI and SHAP graphs indicates it is not the 

most crucial among Corvis ST measurements. The most important feature is the radius at 

highest concavity, with an impact two (SHAP) to three (PFI) times that of corneal thickness. 

This finding is confirmed by some authors (Tian, Huang et al. 2014, Wu, Li et al. 2018), 

although most literature reports that the greatest differences are found in deformation 

amplitude at highest concavity (Ali, Patel et al. 2014, Bak-Nielsen, Pedersen et al. 2014, 

Tian, Huang et al. 2014), In the models created for the experiment, deformation amplitude at 

highest concavity showed limited importance. According to SHAP analysis, the larger the 

radius, the smaller the impact on the keratoconus label. This can be explained by the fact 

that a smaller radius indicates a less rigid cornea, whereas a flatter radius at highest 

concavity suggests smaller deformation due to increased corneal rigidity. Radius at highest 

concavity remained the most informative parameter even when corneal thickness was 

excluded. 

Among ORA parameters, corneal thickness was the most important for both PFI and SHAP, 

as expected. Notably, there is a difference in the analysis of other parameters between 

SHAP and PFI. In order of importance, PFI ranked the parameters as corneal hysteresis, 

corneal resistance factor, IOPg, and IOPcc, whereas SHAP ranked them as IOPg, CRF, CH, 

and IOPcc. This indicates that the contribution of IOP corrected for corneal biomechanical 

features (corneal hysteresis and corneal resistance factor) is minimal. 

Interestingly, SHAP interpretation shows that high values of any parameters measured by 

ORA negatively impact keratoconus labelling. This aligns with well-established literature from 

the past 15 years, indicating that eyes with keratoconus exhibit lower values of corneal 

hysteresis and corneal resistance factor (Ortiz, Piñero et al. 2007, Shah, Laiquzzaman et al. 

2007, Galletti, Pförtner et al. 2012). 

In recent years, several papers have been published on detecting keratoconus using 

machine learning and corneal biomechanics, all utilising data from Corvis ST and none from 

ORA. Castro-Luna et al. investigated the performance of a Random Forest algorithm in 
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detecting subclinical keratoconus (corneal thickness > 490 µm, mild topographical signs, 

mean corneal curvature < 46.5 D, no clinical signs such as Fleischer’s ring or Vogt’s striae). 

The authors used data from both Corvis ST and Pentacam, achieving an AUROC of 0.992 

(sensitivity = 94.2%, specificity = 98.8%) (Castro-Luna, Jiménez-Rodríguez et al. 2021).  

Another study aimed to predict keratoconus severity (healthy, mild, moderate, and advanced 

keratoconus) using Corvis ST data, Linear Discriminant Analysis, and Random Forest 

algorithms. The Random Forest model demonstrated excellent performance (AUC of 0.97, 

0.88, 0.89, and 0.95, respectively) and was considered capable of predicting keratoconus 

severity without keratometric data (Herber, Pillunat et al. 2021). This study utilised an 

updated version of Corvis ST software that provided more corneal biomechanical 

parameters than the version used when data for this experiment were collected. 

A large recent study, including 3,886 eyes from 25 different centres, aimed to create an 

index (TBIv2) using random forest to distinguish normal from keratoconic corneas, using 

data from both Pentacam and Corvis ST. The dataset included normal and keratoconic 

corneas, as well as two additional groups with very asymmetric ectatic patients: eyes with 

normal topography and ectatic unoperated eyes. The results were excellent for normal 

versus all keratoconic (AUC = 0.985), exceptionally good for normal versus keratoconic and 

very ectatic corneas (AUC = 0.999), and acceptable for ectatic corneas with normal 

topography (AUC = 0.899). This study incorporated measurements from Pentacam, and all 

new parameters measured with Corvis ST (Ambrósio, Machado et al. 2023). 

Ren and colleagues built a model to detect clinical and subclinical keratoconus in 

adolescents using data from Corvis ST and Pentacam. Researchers created several models 

using multivariate logistic regression. The best model (Model 3) included corneal posterior 

elevation, deformation amplitude measured 2 mm from the corneal centre and stiffness 

parameter at the first applanation. Such model reached good performances between 

different classes (AUC 0.909, sensitivity 0.904, specificity = 0.769) (Ren, Yang et al. 2023). 

In the most recent study, authors used Corvis ST images to detect fruste form keratoconus, 

which is asymptomatic. Data were used to train and validate two different learners: Naïve 

Bayes and Random Forest. Then, a model based on a majority voting system was built. A 

majority vote is an ensemble learning technique where each learner predicts the probability 

of an instance belonging to a class, then the average of all probabilities is calculated, and 

the label is assigned accordingly. Despite the already excellent performance of the Random 

Forest on the validation set (AUC = 0.99, specificity = 0.92, sensitivity = 1.00), the voting 
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system's performance was even better (AUC = 1.00, specificity = 0.75, sensitivity = 1.00). 

This approach, based solely on Corvis ST images, was found to be highly effective in 

detecting fruste form keratoconus (Yang, Qi et al. 2024). 

Results of the present study and results found in literature are summarised in Table 2.6 

Table 2.6 Findings of other studies in terms of AUC in Keratoconus detection 

Study Instrument Algorithm AUC 
Current Corvis ST SVM 0.990 
(Castro-Luna, Jiménez-
Rodríguez et al. 2021) 

Corvis ST Random Forest 0.992 

(Herber, Pillunat et al. 
2021) 

Corvis ST Random Forest 0.97 

(Ambrósio, Machado et 
al. 2023) 

Corvis ST + 
Pentacam 

Random Forest 0.999 

(Ren, Yang et al. 2023) Corvis ST + 
Pentacam 

Logistic Regression 0.909 

(Yang, Qi et al. 2024) Corvis ST images Naïve Bayes + Random 
Forest 

0.999/1.00 

 

The results of this experiment align with the literature, with some differences: most studies 

included data from topography or tomography (Pentacam), while the Corvis ST data used in 

this study are limited compared to the number of parameters that can be measured with 

current Corvis ST technology. Moreover, in this study, the absence of proper keratoconus 

staging precluded further analysis in terms of severity. 

2.4.5 Glaucoma 

Performance of models in detecting POAG was consistently lower than those for 

keratoconus. Among the models developed with Corvis ST measurements, the best-

performing one did not utilise all the data but excluded central corneal thickness (SVM with 

GridSearch, AUC = 0.831), slightly better than the model including all measurements (SVM, 

GridSearch, AUC = 0.830). Excluding IOP from the features markedly reduced performance, 

as demonstrated by lower AUC values for conditions excluding IOP. Regarding feature 

importance, IOP was never the most important, ranking behind the time of the second 

applanation (for both SHAP and PFI). In models excluding IOP, the most important 

predictors were the times of the first and second applanation. 
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From SHAP analysis, it was observed that in all developed models, higher values of the time 

of the second applanation tended to lead to POAG classification. This finding contradicts the 

literature, which indicates higher values of the time of the second applanation in healthy 

patients, while POAG patients show lower values. Such differences were statistically 

significant in a meta-analysis (Wang, Du et al. 2015). 

The impact of the time of the first applanation varied: it was marginal in the model including 

IOP but excluding corneal thickness and showed different directions across models. In the 

first model (including IOP and corneal thickness), higher values of the time of the first 

applanation indicated normality, contrary to other models and existing literature (Wang, Du et 

al. 2015, Lee, Chang et al. 2016), (Salvetat, Zeppieri et al. 2015). 

Discrepancies between the impact of individual features and the literature can be attributed 

to several causes: the overall healthy and POAG groups did not show statistically significant 

differences in the times of first and second applanations, but the groups created to train and 

test the model might not be stratified for all features, causing an imbalance and potential 

bias. It is important to note that SHAP analysis does not explain the model's functioning but 

calculates the impact of each feature value on the prediction, showing trends but not 

explanations. 

Few studies have recently investigated the use of Corvis ST data and machine learning to 

detect glaucoma. A study from Brazil compared several supervised learners in myopia (low 

and high) and glaucoma detection, applying feature selection based on the information 

provided by each feature. The best learner was the gradient boosting classifier, with 

performance in terms of accuracy, recall, precision, and F1 comparable to this experiment's 

results (Leite, Campelos et al. 2022). Another study investigated glaucoma detection in 

myopic patients using a selection of eight highly informative features, achieving an AUROC 

of 0.917, with 0.947 for high myopia and 0.857 for non-myopic eyes (Baptista, Ferreira et al. 

2024). A third study investigated the detection of glaucoma using densitometry, from Corvis 

ST Scheimpflug camera. Images were exported, to be segmented and modelled to highlight 

pixel distribution. Through this analysis two parameters were calculated α (scale parameter, 

corneal clarity) and β (shape parameter, corneal tissue homogeneity). Authors reached a 

very good AUROC on the test set (0.94) with Decision Tree using only the first 20 frames 

(García-Jiménez and Consejo 2022). 

Analysing the results of ORA models, performance was lower compared to models using 

Corvis ST data. The impact of corneal thickness was minimal, as performance did not 
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decrease when this parameter was excluded (AUROC = 0.893 vs AUROC = 0.894). 

However, excluding IOP significantly reduced performance; interestingly, excluding both 

corneal thickness and IOP yielded better performance than excluding only IOP, indicating 

that corneal thickness might be a confounding factor. In all models, corneal hysteresis was 

the most important feature for both SHAP and PFI. Unexpectedly, high values of corneal 

hysteresis drove the decision towards POAG, despite literature documenting lower corneal 

hysteresis in glaucoma patients and the dataset showing similar trends (CH Normal = 10.2 ± 

1.5 mmHg, CH POAG = 8.3 ± 1.9 mmHg). Conversely, a reduction in corneal resistance 

factor increased the probability of POAG classification, consistent with the dataset 

distribution (POAG CRF = 8.7 ± 1.9 mmHg; CRF Normal = 9.9 ± 1.6 mmHg). The opposite 

interpretation of IOPs was also interesting: high IOPcc indicated POAG, while high IOPg 

indicated normality, even though both were higher in POAG (IOPcc = 17.6 ± 4.7 mmHg; 

IOPg = 16.2 ± 4.2 mmHg) than in healthy patients (IOPcc = 15.1 ± 3.0 mmHg; IOPg = 14.3 ± 

3.0 mmHg). No machine learning model based on ORA data has been published to the 

author’s knowledge. 

Machine learning has been extensively used in glaucoma detection with other technologies: 

OCT (Burgansky-Eliash, Wollstein et al. 2005, Xiong, Li et al. 2022) or fundus photographs 

(Ramesh, Subramaniam et al. 2022, Wu, Huang et al. 2024), predicting disease progression 

(Dixit, Yohannan et al. 2021, Mohammadzadeh, Wu et al. 2024) or onset (Singh, Smith et al. 

2024) from the visual field. 

The performances of the best models developed in this experiment to detect POAG are 

worse than other techniques that are currently used clinically. Previous research found that 

the analysis of RNFL thickness showed an AUC of 0.88 (Elbendary and Mohamed Helal 

2013) and 0.91 (Medeiros, Zangwill et al. 2005). A recent meta-analysis showed that the 

performance in detecting is extremely high using fundus photography (AUC = 0.97, 

sensitivity = 0.92, specificity = 0.93) or OCT (AUC = 0.96, sensitivity = 0.90, specificity = 

0.91) in combination with ML (Wu, Nishida et al. 2022). In terms of visual field, the AUC is 

between 0.88 and 0.93 for 24-2 and between 0.91 and 0.94 for 10-2 (Nishijima, Hosaka et 

al. 2024). Considering tonometry alone, the AUC drops to 0.78 (Ehrlich, Radcliffe et al. 

2012). 

 

Results are summarised in Table 2.7 

Table 2.7 Findings of other studies in terms of AUC in POAG detection 
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Study Technique AUC 
Current Corneal Biomechanics + ML 0.831 

(Elbendary and Mohamed Helal 2013) RNLF 0.88 

(Medeiros, Zangwill et al. 2005) RNFL 0.91 

(Wu, Nishida et al. 2022) OCT + ML 0.96 

(Wu, Nishida et al. 2022) Fundus photo + ML 0.97 

(Nishijima, Hosaka et al. 2024) Visual field (24-2) 0.88-0.93 

(Nishijima, Hosaka et al. 2024) Visual field (10-2) 0.91-0.94 

(Ehrlich, Radcliffe et al. 2012) Tonometry 0.78 

 

The confounding findings of some models analysed in this chapter highlight the lack of 

control over learning processes and the need for explainable AI. Explainable AI refers to the 

ability to describe, understand, and explain the working principles of an AI model, which are 

typically considered black boxes. Explainable AI is crucial for building trust in AI, especially in 

healthcare (Saraswat, Bhattacharya et al. 2022). 

2.5 Conclusions 

The models created in this chapter exhibit performances that are in line with other studies 

published. The performance in keratoconus detection is notably better than in POAG 

detection, and models using Corvis ST data outperform those using ORA data. These results 

are promising, suggesting that with further refinement, it may be possible to develop a robust 

index for the early detection of both keratoconus and glaucoma. The superior performance 

with Corvis ST data can be attributed to its ability to measure a broader range of corneal 

biomechanical parameters, which provides a more comprehensive understanding of the 

corneal structure and behaviour. 

2.6 Limitations 

The major limitation of this study is the unavailability of all Corvis ST parameters, as the data 

were collected using an older version of the firmware. This restriction may have hindered the 

full potential of the models. Another significant limitation is the lack of a separate and 

independent test set, which is crucial for validating the generalizability of the models. 

Additionally, the selection of the best features was not performed rigorously due to the 



G. Civiero, PhD Thesis, Aston University, 2024 

93 

 

already limited number of features available. These constraints highlight the need for more 

comprehensive datasets and rigorous validation methodologies in future research. 

2.7 Future Studies 

Future research should aim to address these limitations by incorporating a separate test set 

to validate the models independently. Rerunning the models with datasets containing 

updated measures from the latest version of Corvis ST would provide a more accurate 

assessment of their performance. Furthermore, developing a staging system based on 

clinical measurements for different pathologies — such as clinical signs and topographies for 

keratoconus, and visual field, retinal images, and OCT for POAG — would enhance the 

diagnostic accuracy. Expanding the research to include other ocular pathologies could also 

provide valuable insights and improve the general applicability of the models. This broader 

approach could lead to more comprehensive screening tools capable of early detection 

across a range of eye conditions, ultimately benefiting clinical practice and patient outcomes. 
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3 Impact of Keratoconus Data on Glaucoma 

Screening Algorithm 

3.1 Introduction 

Glaucoma is a leading cause of irreversible blindness worldwide, and early detection is 

critical for preventing progressive vision loss. Optometrists screen for glaucoma by 

measuring IOP, with the diagnosis subsequently confirmed through OCT, fundus 

examinations, and visual field tests (Shah, Bowd et al. 2006, Thomas, Loibl et al. 2011, 

Michelessi, Lucenteforte et al. 2015). However, IOP measurements are significantly 

influenced by corneal biomechanics (Tian, Huang et al. 2014, Herber, Vinciguerra et al. 

2020). Since conditions such as keratoconus alter these biomechanical properties, they may 

confound the screening process. 

Recent advancements have shown that machine learning (ML) algorithms can detect 

glaucomatous damage and keratoconic alterations in corneal biomechanics (see previous 

chapter). Despite these promising results, it remains unclear whether an ML model trained to 

detect glaucoma might produce false-positive results when screening patients with 

keratoconus but without glaucoma. Therefore, the primary rationale of this study is to 

investigate whether altered corneal biomechanics in non-glaucomatous keratoconic eyes 

adversely impact the diagnostic accuracy of ML-based glaucoma screening. Clarifying this 

issue is essential for refining screening protocols and ensuring reliable diagnosis in 

populations with corneal biomechanical abnormalities. 

Orange Data Mining is an open-source software platform that provides a visual programming 

interface for building and comparing machine learning models without requiring extensive 

coding skills. Orange was selected for the current analysis because it allows for rapid 

prototyping and transparent workflow construction, which is particularly advantageous when 

integrating data from instruments such as the Ocular Response Analyzer (ORA) and Corvis 

ST. Its user-friendly interface facilitates the exploration and optimization of multiple 

algorithms, thus enhancing reproducibility and interpretability—key factors in clinical 

research (Demšar, Curk et al. 2013). This approach enables researchers with limited 

programming expertise to efficiently develop and test models aimed at predicting the 

absence of glaucoma. 
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The hypothesis was that if keratoconus significantly affected glaucoma screening, the model 

would show a statistically significant reduction in correctly identifying non-glaucomatous 

eyes among those with keratoconus compared to those without. Supporting this hypothesis 

would suggest that the variation in corneal biomechanics in non-glaucomatous eyes, with or 

without keratoconus, is a contributing factor. 

Additionally, this study aimed to determine (a) whether corneal biomechanics measured with 

ORA or Corvis ST were more susceptible to these errors, and (b) whether two different 

models, Naïve Bayes (NB) or Logistic Regression (LR), would yield consistent results. These 

models were selected because they can highlight the relative importance of ORA or Corvis 

ST parameters, offering 'white box' solutions that address explanatory issues often 

encountered with machine learning algorithms. Consequently, the models developed in this 

study can provide clinically interpretable decision support, enabling clinicians to understand 

the reasoning behind the model's outputs rather than relying solely on its predictions. 

3.2 Methods 

3.2.1 Use of both eyes from the same research 

participants 

Both eyes from the same subjects were included in this study, considering previous research 

that highlights the asymmetric nature of glaucoma (Rodríguez-Robles, Verdú-Monedero et 

al. 2023) and keratoconus (Zadnik, Steger-May et al. 2002). Thus, both eyes of each 

participant were analysed in the present study. By analysing both eyes, the aim was to 

capture the full spectrum of intra-subject variability, which may enhance the sensitivity of the 

machine learning models. This approach reflects the clinical reality and provides additional 

insights that could improve the model’s performance, while any potential bias introduced by 

the non-independence of eyes will be addressed in subsequent studies. 

Consistent with the previous chapter, data were collected by Dr Haslina at Birmingham and 

Midland Eye Centre, City Hospital, Birmingham during her PhD. Although a formal sample 

size calculation was not performed, it is common in data science to utilise the entire 

available dataset rather than pre-defining a sample size, as it mimics the “all-inclusive” 

approach allowed us to maximize the real-world data available. 

While the current dataset did not include detailed demographic information or precise 

severity metrics for glaucoma and keratoconus, the primary focus of the study was on 
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leveraging a large, diverse set of clinical data to develop robust predictive models. It is 

important to note that all data were anonymized for privacy reasons, which prevented the 

retrieval of detailed patient identifiers or additional demographic information. 

3.2.2 Dataset A for creating models 

Dataset A, used for creating models, consisted of 409 eyes without keratoconus from 

approximately half that number of participants. Among these eyes, 253 were classified as 

normal, 47 had ocular hypertension (OHT), 19 had normal tension glaucoma (NTG), and 90 

had primary open-angle glaucoma (POAG). These classifications were made by an 

ophthalmologist, ensuring that all models were based on eyes without the corneal 

biomechanical changes associated with keratoconus. 

3.2.3 Dataset B for investigating the impact of 

keratoconus on glaucoma screening 

Dataset B was utilised to explore the impact of keratoconus on glaucoma screening. It 

included 150 eyes without glaucoma, of which 78 had keratoconus. The models needed to 

correctly identify all 150 eyes as free of glaucoma. By comparing the number of errors in 

eyes with and without keratoconus, the impact of keratoconus on glaucoma screening could 

be determined. It is crucial to note that the eyes labelled as normal in Dataset B were not 

present in Dataset A. Dataset B was created by extracting 72 eyes from the normal group 

and merging them with the keratoconic eyes. 

3.2.4 Corneal biomechanics measured using ORA 

and Corvis ST 

Separate models were developed using the corneal biomechanical parameters measured by 

ORA and Corvis ST. Since it is uncommon for clinics to have access to both instruments, a 

single model combining measurements from both was deemed irrelevant to clinical practice. 

Additionally, one of the study's objectives was to determine which device was more affected 

by the corneal biomechanical properties of keratoconic eyes. 

ORA provided four measurements: corneal-corrected IOP (IOPcc), Goldmann-correlated 

IOP (IOPg), corneal hysteresis (CH), and corneal resistance factor (CRF). 



G. Civiero, PhD Thesis, Aston University, 2024 

97 

 

Corvis ST provided twelve measurements, including IOP based on the first applanation 

response, central corneal thickness (CCT), time to the first applanation (A1T), cord length of 

the cornea during the first applanation (A1L), velocity of the first applanation (A1V), 

equivalent measurements for the second applanation (A2T, A2L, and A2V), the amplitude of 

corneal movement at the highest corneal concavity deformation (DA), the radius of corneal 

curvature at the highest corneal concavity deformation (HcR), the distance of the most 

anterior point of the anterior corneal surface during the highest corneal concavity 

deformation (HcD), and the time to reach the highest corneal concavity deformation (HcT). 

3.2.5 Use of Orange Data Mining software to create 

the models 

Free and open-source Orange Data Mining software (version 3.37.0), developed by the 

Bioinformatics Laboratory at the University of Ljubljana in Slovenia (Demšar, Curk et al. 

2013), was utilised to create the models. This software is specifically designed for individuals 

without a background in computer science, enabling any clinician to replicate this analysis if 

desired. 

Figure 3.1 illustrates the virtual canvas with connected widgets used in this part of the 

processing. 

 

Figure 3.1 : Orange Data Mining canvas and connected widgets used to create the ORA NB, ORA LR, Corvis ST 
NB and Corvis ST LR models 
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The File widget was used to upload Dataset A. The Select Columns widgets enabled the 

assignment of independent variables (corneal biomechanics measurements) and dependent 

variables (diagnosis categories: normal, OHT, NTG, and POAG) for the ORA and Corvis ST 

models. The upper part of Figure 1 represents the ORA models, while the lower part 

represents the Corvis ST models, with identically connected widgets. 

Naive Bayes (NB) and Logistic Regression (LR) widgets were employed to perform two 

types of conventional supervised machine learning. Logistic regression is more complex as it 

can be hyperparameter tuned for optimal performance by adjusting its Lasso regularisation 

strength. Lasso regularisation offers the advantage of eliminating redundant independent 

variables, which is explained in greater detail in Chapter 2. 

Connections between these widgets and the Test and Score widget facilitated 

hyperparameter tuning and comparison of model performance based on the Area Under the 

Receiver Operating Characteristic Curve (AUROC), averaged across all classes (normal, 

OHT, NTG, and POAG) after 10-fold stratified cross-validation. 

The Confusion Matrix widgets were connected to allow observation of correct and incorrect 

class predictions made by each model. This study focused on predictions where normal 

eyes were either correctly identified or incorrectly classified as OHT, NTG, or POAG. 

Nomogram widgets were connected to display the relative absolute importance of corneal 

biomechanical parameters in identifying normal eyes. The Save widgets were utilised to 

store the four created models (ORA NB, ORA LR, Corvis ST NB, and Corvis ST LR) for 

future use. 

3.2.6 Use of Orange Data Mining software for 

investigating the impact of keratoconus on glaucoma 

screening 

Figure 3.2 shows the virtual canvas with connected widgets that carried this part of the 

processing. 
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Figure 3.2 : Orange Data Mining canvas and connected widgets used to create the ORA NB, ORA LR, Corvis ST 
NB and Corvis ST LR models 

. 

The File widget was used to upload Dataset B. The Load Model widgets retrieved the four 

previously stored models (ORA NB, ORA LR, Corvis ST NB, and Corvis ST LR). Predictions 

made by all four models applied to Dataset B were passed through the Predictions and Data 

Table widgets to the Box Plot widget. Here, the Chi-square test was employed to determine 

whether any of the four models showed a statistically significant reduction in correctly 

identifying normal (non-glaucomatous) eyes in cases with and without keratoconus. 

3.3 Results and Discussion 

3.3.1 Main study findings 

This study utilised machine learning models to investigate how keratoconic alterations in 

corneal biomechanics affect glaucoma screening outcomes based on measurements from 

the Ocular Response Analyzer (ORA) and Corvis ST. 

To avoid the risk of overfitting, cross-validation, hyperparameter tuning, and a separate test 

dataset were employed. 

Cross-validation helps minimise overfitting, as implemented via the Test and Score widget 

shown in Figure 1. This method splits the training data into stratified folds, ensuring that a 

model is never tested on the same data it was trained on. Stratified folds maintain the same 

proportion of classes (Normal, POAG, OHT, and NTG). Using 10 folds means that 10 

versions of each model were tested, providing a realistic estimate of model performance. 



G. Civiero, PhD Thesis, Aston University, 2024 

100 

 

Hyperparameter tuning optimises model complexity to prevent overfitting (high variance) and 

underfitting (high bias). This tuning process involves assigning weights to each predictor 

(independent) variable in the form of log odds ratios in NB and LR models. The complexity of 

the models is at its maximum when these log odds ratios exert their maximum cumulative 

effect on each predicted (dependent) variable. LR models have the advantage of 

hyperparameter tuning through a regularisation strength parameter (C), which adjusts the 

cumulative effect of each log odds ratio, thereby reducing model complexity to achieve the 

bias-variance trade-off. 

In this study, hyperparameter tuning required regularisation values of C = 25 for the ORA LR 

model and C = 1 for the Corvis ST LR model, both using Lasso regularisation. 

3.3.2 Model for Glaucoma 

Table 3.1 displays the AUROC values of all four models. The Corvis ST LR model (AUROC 

= 0.807) outperformed the others, whose AUROC values ranged from 0.780 to 0.753. This 

data, obtained from the Test and Score widgets shown in Figure 1, indicates that the 

hyperparameter-tuned LR models generally performed better than the NB models. However, 

the performance difference was relatively marginal. According to D'Agostino et al. (2013), an 

AUROC below 0.7 is considered suboptimal, 0.7 to 0.8 is good, and above 0.8 is excellent 

(D'Agostino, Pencina et al. 2013). 

 

Table 3.1 The performance of all four models (ORA NB, ORA LR, Corvis ST NB and Corvis ST LR) ranked in 
order of best to worst in terms of the area under the ROC curve (AUROC) averaged over all classes (Normal, 
OHT, NTG and POAG), after 10-fold stratified cross validation 

Model AUROC 
Corvis ST LR 0.807 
ORA LR 0.780 

Corvis ST NB 0.771 
ORA NB 0.753 

 

Table 3.2 illustrates the relative importance of the corneal biomechanical parameters 

measured by ORA and Corvis ST in predicting normal eyes without keratoconus, as 

determined by the ORA NB, ORA LR, Corvis ST NB, and Corvis ST LR models. This part of 

the study examines the consistency with which the two machine learning models evaluated 

relative importance. This information was derived from the Nomogram widgets connected to 
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each of the four models shown in Figure 1. Where applicable, IOP and CCT are highlighted 

in red to indicate their relative importance. It is noteworthy how many corneal biomechanical 

parameters were deemed more important than IOP and CCT for glaucoma screening. Table 

2 indicates that there were considerable inconsistencies between models regarding the 

relative importance of corneal biomechanical parameters. However, Table 1 showed that the 

performance of all models ranged from good to excellent. 

Table 3.2 The relative importance of the 12 Corvis ST and 3 ORA corneal biomechanical parameters according to 
the ORA NB, ORA LR, Corvis ST NB and Corvis ST LR models. Were applicable, IOP and CCT are highlighted in 
red 

Model Corneal biomechanical parameters listed in order of most to least 
important  

Corvis ST LR A2T > HcR > IOP > A2V > A1T > CCT > A1L > HCPD > HCT > A2L > DA > A1V 
Corvis ST NB A2T > A2L > A1L > DA > A2V > A1T > A1V > IOP > HcR > HcT > HCPD > CCT 
ORA LR CRF > IOPcc > IOPg > CH 
ORA NB IOPg > IOPcc > CH > CRF 

 

None of the models perfectly predicted cases free of glaucoma (Normal). This is illustrated in 

Table 3.3, which shows the baseline performance in terms of errors associated with each 

model’s predictions of Normal. This information was obtained from the Confusion Matrix 

widgets connected to each of the four models in Figure 1. Table 3 may be of interest as it 

displays the percentages of correct (Normal) and incorrect (POAG, OHT, and NTG) 

predictions, focusing on predictive values rather than sensitivity. 

 

Table 3.3 Baseline performance of the ORA NB, ORA LR, Corvis ST NB and Corvis ST LR models that had been 
trained on Dataset A (as shown in the Orange Data Mining canvas of Figure 1). Values show, for each model, the 
percentage (and frequency) of the predicted Normal that were correct (green: as these were Normal in reality) 
and incorrect (red: as these were POAG, OHT or NTG in reality). 

Model Normal POAG OHT NTG 
Corvis ST LR 70.5% 

(241) 
18.1% 
(62) 

6.4% 
(22) 

5.0% 
(17) 

Corvis ST NB 81.1% 
(167) 

14.1% 
(29) 

2.9% 
(6) 

1.9% 
(4) 

ORA LR 72.7% 
(240) 

17.0% 
(56) 

5.8% 
(19) 

4.5% 
(15) 

ORA NB 78.5% 
(193) 

13.4% 
(33) 

3.7% 
(9) 

4.5% 
(11) 
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3.3.3 Impact of Keratoconus on Glaucoma Screening 

Table 1.1Table 3.4 presents the results of investigations into the impact of keratoconus on 

glaucoma screening. The ORA NB, ORA LR, Corvis ST NB, and Corvis ST LR models, 

trained on Dataset A (as depicted in the Orange Data Mining canvas in Figure 3.1), were 

used to make predictions on Dataset B, which included Normal eyes with and without 

keratoconus. It is crucial to note that Dataset A contained no cases of keratoconus, meaning 

that none of the four models had been trained on data exhibiting the corneal biomechanical 

properties of keratoconic eyes. 

The application of these models to Dataset B, which comprised eyes without glaucoma but 

about half of which had keratoconus, was designed to identify any confounding effects on 

predictions due to the corneal biomechanical properties associated with keratoconus. Table 

4 shows, for each model, the percentage (and frequency) of correctly (green) and incorrectly 

(red) predicted Normal cases in eyes with and without keratoconus. P-values from Chi-

square tests compare the predictions made in eyes with and without keratoconus by each 

model. 

These analyses, derived from the Box Plot widget in the Orange Data Mining canvas in 

Figure 3.2, reveal a consistent, statistically significant decrease in the percentage of 

correctly classified non-glaucomatous eyes in cases with keratoconus (66.7 - 100% 

depending on the model) compared to those without keratoconus (24.4 – 94.9% depending 

on the model). Table 4 also indicates an increase in the number of normal eyes misclassified 

as having POAG (0 - 11.1% in eyes without keratoconus compared to 2.3 - 51.3% in eyes 

with keratoconus, depending on the model) or NTG (0 - 15.1% in eyes without keratoconus 

compared to 0 - 65.4% in eyes with keratoconus, depending on the model). 

Table 3.4 The impact of keratoconus on glaucoma screening is revealed by observing the performance of the 
ORA NB, ORA LR, Corvis ST NB and Corvis ST LR models, that had been trained on dataset A (as shown in the 
Orange Data Mining canvas of Figure 1) that had been used to make predictions on Dataset B containing Normal 
without and with keratoconus. Values show, for each model, the percentage (and frequency) of the predicted 
Normal that were correct (green: as these were Normal in reality) and incorrect (red: as these were POAG, OHT 
or NTG in reality) in eyes with and without keratoconus. P-values (from Chi-square tests) are shown for the 
comparison of predictions made in eyes without and with keratoconus by each model 

Model 
Normal without keratoconus Normal with keratoconus P-value 

(Chi2, df) Normal POAG OHT NTG Normal POAG OHT NTG 

Corvis ST LR 
98.6% 

(71) 

1.4% 

(1) 

0% 

(0) 

0% 

(0) 

80.8% 

(63) 

14.1% 

(11) 

0% 

(0) 

5.1% 

(4) 

0.002 

(12.59, 2) 

Corvis ST NB 66.7% 6.9% 11.1% 15.3% 24.4% 10.3% 0% 65.4% <0.001 
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(48) (5) (8) (11) (19) (8) (0) (51) (46.89, 3) 

ORA LR 
100% 

(72) 

0% 

(0) 

0% 

(0) 

0% 

(0) 

94.9% 

(74) 

2.6% 

(2) 

2.6% 

(2) 

0% 

(0) 

0.150 

(3.79, 2) 

ORA NB 
77.8% 

(56) 

11.1% 

(8) 

11.1% 

(8) 

0% 

(0) 

46.2% 

(36) 

51.3% 

(40) 

2.6% 

(2) 

0% 

(0) 

<0.001 

(29.09, 2) 

 

These findings suggest that alterations in corneal biomechanical properties due to 

keratoconus may confound glaucoma screening, potentially increasing false positives. This 

information will be of particular interest to primary care clinicians who use ORA and Corvis 

ST machines for screening keratoconus or glaucoma. It may also be of interest to 

manufacturers of these machines, who might want to develop corrective algorithms to 

address these issues when screening for glaucoma in keratoconic eyes. 

The potential impact of keratoconic biomechanical alterations on glaucoma screening has 

been hypothesised by some authors (Cohen and Myers 2010, Curatolo, Birkenfeld et al. 

2020) but this effect has not been quantified until now. 

To that end, the limitations of this study are now discussed followed by recommendations for 

further study that might lead to the desired corrective algorithms. 

3.3.4 Study limitations and recommended further 

research 

(1) The study revealed that corneal biomechanical parameters potentially confound 

glaucoma screening when using Corvis ST and ORA machines. 

(2) Although previous studies have documented that glaucomatous damage and 

keratoconus exhibit asymmetry between eyes, the current analysis included both 

eyes from each participant. This methodological choice could introduce bias due to 

the non-independence of observations from the same individual. It is clear that 

including both eyes might lead to an overestimation of the effective sample size and 

potentially affect the precision of our estimates; therefore, this represents a limitation 

of the study. 

(3) One limitation of the study is the unequal number of cases in each subgroup, which 

can distort the findings of machine learning models. To address this, Datasets A and 

B should be reconstructed to contain equal numbers in each subgroup before re-
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running the analysis. However, this re-analysis would result in less data for the 

machine learners to train on, as all subgroups would be limited to the size of the 

smallest group (e.g., only 19 cases in the OHT group). 

(4) Keratoconic eyes were not included in Dataset A. If excluding them reduces the 

confounding observed in Table 4, this approach could provide a corrective algorithm 

beneficial for users and manufacturers of ORA and Corvis ST. This supports the 

continued use of 'white box' machine learning models like NB and LR, as both reveal 

the log odds ratios that form their models. 

(5) Although 'white box' machine learning methods like NB and LR are recommended, 

other methods such as decision trees (available in Orange Data Mining) should also 

be considered. Furthermore, 'black box' methods, including support vector machines, 

neural networks, random forests, and various boosting methods available in Orange 

Data Mining, can be explored. These models can be created and saved using the 

Save Model (Figure 1) and Load Model (Figure 2) widgets. However, Orange Data 

Mining currently lacks functions like Grid Search or Random Search for 

hyperparameter optimization, making hyperparameter tuning time-consuming. 

(6) Newer versions of the Corvis ST software include novel indices that were not 

available when the dataset was collected. It would be worthwhile to rerun the entire 

experiment, incorporating these newer indices. 

3.4 Conclusions 

The findings of this study suggest that keratoconic alterations to corneal biomechanical 

properties may confound glaucoma screening, potentially leading to an increased rate of 

false positives. This is of significant concern for ophthalmologists and optometrists, as 

accurate glaucoma screening is critical for early detection and management of the disease. 

These results will be particularly relevant to users and manufacturers of the ORA and Corvis 

ST, both of which are commonly employed in clinical settings to assess corneal 

biomechanics. 

Moreover, the study highlights the utility of Orange Data Mining, a powerful tool developed at 

the University of Ljubljana, which is especially beneficial for individuals lacking advanced 

coding skills. Orange Data Mining allows users to engage in data mining by simply 

connecting widgets, thereby making complex data analysis more accessible through its 

intuitive interface and comprehensive tutorials. This democratization of data analysis tools is 
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crucial in fostering a broader understanding of data science principles among researchers 

and clinicians alike. 

The integration of Orange Data Mining or similar software into undergraduate programmes is 

strongly recommended. Providing students with hands-on experience in these tools will 

enable them to grasp the basics of machine learning and data analysis. Such knowledge is 

increasingly essential given the profound transformations occurring in scientific research and 

the anticipated advancements in clinical practices. Equipping the next generation of 

professionals with these skills will be pivotal in ensuring they are prepared to leverage 

emerging technologies and methodologies in their respective fields. 

By incorporating these tools into educational curricula, institutions can better prepare 

students for the demands of modern research and clinical environments, ultimately 

enhancing their ability to contribute to advancements in healthcare and other scientific 

domains. 

Following the exploration of machine learning algorithms for the diagnosis of KC and POAG, 

attention now shifts towards a new instrument capable of quantifying ocular biomechanical 

properties: the Brillouin Optical Scanner System (BOSS), whose functioning and 

development were discussed in Chapter 1. Due to its recent introduction, clinical research on 

the BOSS is quite limited. Therefore, the following chapters will investigate the repeatability 

of its measurements, the relationships between measurements from the BOSS, ORA, and 

Corvis ST, as well as the effects of age-related and refractive errors on ocular biomechanics. 
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4 BOSS Repeatability 

4.1 Introduction 
The concept of repeatability represents a fundamental aspect of scientific measurements for 

multiple reasons. Firstly, repeatability is a crucial indicator of an instrument’s reliability and 

accuracy, reflecting its ability to provide stable and consistent results when the same sample 

or condition is assessed multiple times under identical conditions (Bartlett and Frost 2008). 

Ensuring high repeatability is essential for data reproducibility, as it guarantees consistency 

over time and across different instruments, thus supporting comparability and validity of 

experimental outcomes (Atkinson and Nevill 1998). High repeatability also minimizes 

variability within identical measurement conditions, which is vital for establishing the 

precision and trustworthiness of obtained data, especially in clinical settings where 

measurement consistency directly impacts decision-making and patient outcomes (Koo and 

Li 2016). Moreover, repeatability can be viewed as a critical component of the broader 

concept of reproducibility, which pertains to the capability of obtaining the same or similar 

results when key conditions such as operators, instruments, time-points, or laboratories are 

varied (Goodman, Fanelli et al. 2016). Assessing and documenting repeatability thus not 

only confirms the internal reliability of instruments but also strengthens confidence in 

subsequent interpretations and applications of scientific and clinical findings. 

In this experiment the intra-session and inter-session repeatability of the Brillouin Optical 

Scanner System (BOSS, Intelon Optics, Woburn, MA, USA) were assessed. Intra-session is 

defined as the repeatability within the same session, so different measurements separated 

by few minutes, while for inter-session is meant that the two measurements are usually 

taken days or weeks apart. To date, this is the first study that investigates the BOSS 

repeatability. 

4.2 Material and Methods 

4.2.1 Participants 
67 participants were enrolled in the study: all 67 completed the intrasession experiment, 63 

completed the both the visits to assess intersession repeatability. Each participant chose the 

eye that had to be measured (52 OD, 15 OS) and underwent three different scans for both 

cornea and lens, the first as baseline measurement, the second time 15 minutes after the 

first one (intra-session repeatability), and the third two 14 days apart (inter-session 
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repeatability). The inclusion criteria were the absence of ocular pathology and not to have 

worm contact lenses in the 24 hours prior to the experiment. Only one BOSS machine, 

operated by the same skilled researcher, was utilised in this study. 

4.2.2 Scan Pattern 

The cornea scan strategy used was the 4-dots scan, where four different locations of the 

cornea are scanned. Scanned points were located 2 mm upper (BSup), lower (BInf), nasally 

(BNas), and temporally (BTem) to the detected centre of the pupil, the mean of the four 

measurements was included in the analysis too (Mean). The BOSS has a specific function 

that detect the centre of the pupil, that is indicated by four green arrows. The centre of the 

pupil is calculated using the pupil itself as reference for the creation of a circle and the centre 

is calculated and displayed live on the screen. To be accepted, each scanned point had to 

be assessed as “GOOD” by the quality index, if the level had any other indication (“LOW” or 

“AVERAGE”) the scan was repeated, until the measure was good enough. 

The lens scan was done 1 mm temporally to the centre of the pupil, as it is not possible to 

carry out a measurement in the centre of the lens (or of the cornea), due to the reflection 

caused by the front surface of the tissue that lower the quality of the measurement. The 

distance of 1 mm was chosen considering that the average pupil diameter is unlikely to be 

smaller than 3 mm (Kobashi, Kamiya et al. 2012), no vertical offset was considered. Any lens 

scan must have a quality index score lower than 3 to be accepted. The BOSS quality index 

for the lens scan has a reverse scale, where the higher score means lower quality and a 

score of 0 means that the measurement was optimal. 

Both the quality indices (cornea and lens) are based on the number of points on the z-axis 

not properly scanned by the BOSS. 

4.2.3 Statistical Analysis 
The data analysis was carried out using JupyterLab from Anaconda, using the following 

packages: pandas, numpy, matplotlib, scipy, seaborn, statsmodels and sklearn. The 

repeatability was assessed creating Bland Altman plots, correlation (Pearson and 

Spearman), regression, within subject standard deviation (wSD), coefficient of variation (CV) 

and coefficient of variation within-subject (CVwS). 
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4.3 Results 

4.3.1 Mean and Standard Deviation for all the three 

sets of measurements 

Alongside mean and standard deviation of the three sets of measurements, in the Table 4.1 

is shown the CV, defined as the ratio between SD and mean, and that can be considered an 

expression of the spread of the data around the mean (Lovie 2005). In Figure 4.1 there are 

histograms with the values of average and SD for the three sets of measurements. 

Table 4.1 Mean, Standard Deviation and Coefficient of Variation for the three sets of measurements 

Measurement Mean SD CV (%) Measurement Mean SD CV (%) 
BSup#1 2.831 0.051 1.81 BLens#1 3.381 0.057 1.67 

BSup#2 2.827 0.053 1.88 BLens#2 3.387 0.048 1.43 

BSup#3 2.832 0.063 2.22 BLens#3 3.365 0.132 3.93 

BNas#1 2.819 0.057 2.01 TopPlat#1 2.811 0.521 18.53 

BNas#2 2.820 0.067 2.38 TopPlat#2 2.809 0.498 17.73 

BNas#3 2.810 0.067 2.39 TopPlat#3 2.822 0.592 20.97 

BInf#1 2.811 0.064 2.26 BotPlat#1 4.223 0.583 13.81 

BInf#2 2.807 0.062 2.21 BotPlat#2 4.316 0.568 13.17 

BInf#3 2.797 0.068 2.44 BotPlat#3 4.258 0.600 14.08 

BTem#1 2.824 0.059 2.09 AntSl#1 1.563 0.423 27.03 

BTem#2 2.809 0.061 2.17 AntSl#2 1.567 0.462 29.49 

BTem#3 2.789 0.059 2.11 AntSl#3 1.628 0.539 33.12 

BMean#1 2.821 0.038 1.36 PostSl#1 -1.546 0.564 36.49 

BMean#2 2.816 0.044 1.57 PostSl#2 -1.354 0.491 36.24 

BMean#3 2.807 0.044 1.57 PostSl#3` -1.443 0.451 31.28 
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Figure 4.1 Histograms of the mean and standard deviation for the three sets of measurements 
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4.3.2 Bland Altman Analysis and Coefficient of 

Variation 

The use of Bland Altman plots (Bland and Altman 1986) allowed the calculation of the bias 

(B), that is defined as the mean of the differences between the two measurements: 

𝐵 =	
1
𝑛
	i	(𝑥(# − 𝑥(")
$

(*#

 

Eq. 4.1 Bias for Bland Altman analysis 

 

and the Coefficient of Repeatability (COR), defined as: 

𝐶𝑂𝑅 = 	𝐵	 ± (	1.96	 × 	𝑆𝐷	) 

Eq. 4.2 Coefficient of Repeatability 

 

The interval within COR limits is the range where lie the 95% of the differences between the 

two measurements (Bland and Altman 1996). 

Within-subject standard deviation (wSD) represents the variability within a single participant 

and is defined in  

𝑤𝑆𝐷	 = 	Å
1
2
	×
∑ 	(	(	𝑥(# 	− 𝑥("	) − �̅�		)	"	$
	(*#

𝑛	 − 1
 

Eq. 4.3 Within-subjects Standard Deviation (wSD) 

 

The Coefficient of Variation within Subjects (CVwS) is a percentage defined as the ratio 

between the within-subjects standard deviation and the mean of the measurement for each 

subject. It is dimensionless and allows for the comparison between different variables or 

scales, in this case it represents the average of the ratio between the within-subjects 

standard deviation and the average of the two measurements calculated for every single 

participant. 
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Table 4.2 and Table 4.3 contain the results of the Bland Altman analysis for intrasession and 

intersession repeatability. 

Table 4.2 Intrasession Repeatability 

Measure Bias 
Lower 
COR limit 

Upper COR 
limit 

COR 
Interval 

Ratio 
(Mean/ 
Interval) 

wSD 
CVwS 
(%) 

BSup [GPa] 0.004 -0.119 0.128 0.247 0.09 0.044 1.14 

BNas [GPa] 0.003 -0.160 0.166 0.326 0.12 0.056 1.59 

BInf [GPa] 0.005 -0.156 0.166 0.321 0.11 0.059 1.63 

BTem [GPa] 0.014 -0.156 0.183 0.340 0.12 0.060 1.63 

BMean [GPa] 0.006 -0.091 0.104 0.196 0.07 0.034 0.99 

BLens [GPa] -0.002 -0.083 0.079 0.163 0.05 0.035 0.60 

TopPlat [mm] 0.007 -0.766 0.780 1.546 0.55 0.287 7.77 

BotPlat [mm] -0.090 -1.142 0.963 2.106 0.49 0.388 6.89 

AntSl [GPa/mm] 0.002 -1.214 1.218 2.432 0.09 0.450 20.69 

PostSl [GPa/mm] -0.183 -1.445 1.078 2.523 0.12 0.468 20.55 

 

Table 4.3 Intersession Repeatability Table 

Measure Bias 
Lower COR 
limit 

Upper 
COR limit 

COR 
Interval 

Ratio 
(Mean/ 
Interval) 

wSD CVwS (%) 

BSup [GPa] -0.002 -0.158 0.154 0.312 0.11 0.079 1.45 

BNas [GPa] 0.009 -0.171 0.189 0.360 0.13 0.092 2.08 

BInf [GPa] 0.014 -0.174 0.202 0.376 0.13 0.096 1.93 

BTem [GPa] 0.034 -0.120 0.188 0.308 0.11 0.079 1.65 

BMean [GPa] 0.014 -0.103 0.131 0.234 0.08 0.060 1.21 

Lens [GPa] 0.004 -0.100 0.108 0.208 0.06 0.139 0.77 

TopPlat [mm] -0.010 -0.806 0.786 1.592 0.57 0.406 8.87 

BotPlat [mm] -0.035 -1.047 0.978 2.024 0.48 0.516 6.80 

AntSl [GPa/mm] -0.065 -1.438 1.309 2.747 1.72 0.701 21.79 

PostSl [GPa/mm] -0.103 -1.307 1.101 2.408 1.61 0.614 22.20 
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The Bias (red line) and the 95% Coefficient of Repeatability Interval (green lines) are plotted 

in the following graphs for both intra and inter session repeatability: on the x axis is plotted 

the mean between the two variables, while on the y axis is plotted the difference between 

the two variables. 

4.3.2.1 Bland Altman Intrasession Repeatability plots

 
Figure 4.2 Bland Altman Plot (Bias and 95% of COR 
interval) for the intrasession repeatability of the 
Brillouin modulus measured in the superior part of 
the cornea. 

 

Figure 4.3 Bland Altman Plot (Bias and 95% of COR 
interval) for the intrasession repeatability of the 
Brillouin modulus measured in the inferior part of 
the cornea 

  

Figure 4.4 Bland Altman Plot (Bias and 95% of COR 
interval) for the intrasession repeatability of the 
Brillouin modulus measured in the nasal part of the 
cornea  

Figure 4.5 Bland Altman Plot (Bias and 95% of COR 
interval) for the intrasession repeatability of the 
Brillouin modulus measured in the temporal part of 
the cornea 
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Figure 4.6 Bland Altman Plot (Bias and 95% of COR 
interval) for the intrasession repeatability of the 
mean corneal Brillouin modulus  

Figure 4.7 Bland Altman Plot (Bias and 95% of COR 
interval) for the intrasession repeatability of the 
crystalline Brillouin modulus 

 

Figure 4.8 Bland Altman Plot (Bias and 95% of COR 
interval) for the intrasession repeatability of the top 
plateau 

Figure 4.9 Bland Altman Plot (Bias and 95% of COR 
interval) for the intrasession repeatability of the 
bottom plateau 

 

Figure 4.10 Bland Altman Plot (Bias and 95% of 
COR interval) for the intrasession repeatability of 
the anterior slope 

Figure 4.11 Bland Altman Plot (Bias and 95% of 
COR interval) for the intrasession repeatability of 
the posterior slope 
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4.3.2.2 Bland Altman Intersession repeatability plots: 

 

Figure 4.12 Bland Altman Plot (Bias and 95% of 
COR interval) for the intersession repeatability of 
the Brillouin modulus measured in the superior part 
of the cornea  

Figure 4.13 Bland Altman Plot (Bias and 95% of 
COR interval) for the intersession repeatability of 
the Brillouin modulus measured in the inferior part 
of the cornea 

 

Figure 4.14 Bland Altman Plot (Bias and 95% of 
COR interval) for the intersession repeatability of 
the Brillouin modulus measured in the nasal part of 
the cornea 

Figure 4.15 Bland Altman Plot (Bias and 95% of 
COR interval) for the intersession repeatability of 
the Brillouin modulus measured in the temporal part 
of the cornea 

 

Figure 4.16 Bland Altman Plot (Bias and 95% of 
COR interval) for the intersession repeatability of 
the mean corneal Brillouin modulus 

Figure 4.17 Bland Altman Plot (Bias and 95% of 
COR interval) for the intersession repeatability of 
the crystalline Brillouin modulus 
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Figure 4.18 Bland Altman Plot (Bias and 95% of 
COR interval) for the intersession repeatability of 
the top plateau 

Figure 4.19 Bland Altman Plot (Bias and 95% of 
COR interval) for the intersession repeatability of 
the bottom plateau 

 

Figure 4.20 Bland Altman Plot (Bias and 95% of 
COR interval) for the intersession repeatability of 
the anterior slope 

Figure 4.21 Bland Altman Plot (Bias and 95% of 
COR interval) for the intersession repeatability of 
the posterior slope 

 

4.3.3 Is the bias proportional to value measured? 

Using the same plotted data (mean vs difference) correlations (𝑟, 𝑝, and 𝑅") and regression 

lines were calculated to determine whether the bias increases or decreases linearly with the 

measurement. To test for correlation the first step was to check that mean and differences 

were normally distributed. Kolmogorov-Smirnov and Shapiro Wilk tests were used because 

the size of the sample could not assure that one test would have been more accurate than 

the other: some authors report that the power of Shapiro-Wilk test decreases when the 

sample size il larger than 50 (Mendes, Pala et al. 2003), while other authors state that 

Kolmogorov-Smirnov is more powerful than Shapiro-Wilk only when the sample size is larger 

than 100 (Steinskog, Tjøstheim et al. 2007, Razali, Wah et al. 2011). If Mean and Difference 
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were normally distributed (p < 0.05) Pearson correlation was used, in any other case 

Spearman correlation was used. 

The results of the tests can be found in Tables Table 11.15-18: 

The analysis of the results presented in these tables reveals no statistically significant 

correlation among the measured parameters, indicating a consistent bias that does not vary 

with changes in the magnitude of these parameters. This consistency in bias, devoid of 

proportional fluctuations relative to the measured parameters, is a positive outcome, 

suggesting reliability in the measurement process. The findings affirm the stability of the bias 

across varying measurement conditions, negating the presence of a systematic relationship 

between the bias and the parameter magnitudes. This stability is crucial for the integrity of 

the measurement process, warranting the absence of any linear or predictable variation in 

bias with changes in the parameters. 

4.3.4 Difference in intersession repeatability due to 

time of the measurement 

It is well known that the water content of the stroma can influence the measurement of the 

Brillouin modulus (Silverman, Patel et al. 2009) (Shao, Seiler et al. 2018), and that the water 

content changes throughout the day (Harper, Boulton et al. 1996). To examine this effect, the 

variation in the time of day between the first and third measurements was considered, while 

the second measurement was excluded from this analysis due to its occurrence merely 15 

minutes after the first and can be assumed that water content does not change in such small 

timeframe. Consequently, two additional analyses were conducted to further explore this 

aspect:  

1) For each single parameter, the difference in terms of time of the day between the first 

and third measurements was plotted against the difference in terms of value. In this 

case were considered both the relative difference (positive, when the third measure 

was taken earlier than the first one, or negative, when it was taken later, TimeD 

analysis) and the absolute value of the difference (TimeDABS analysis). Both TimeD 

and TimeDABS considered the difference in terms of time of the day as a continuous 

measurement. 

2) A series of Bland Altman plots, dividing the data according to the time difference with 

data divided in groups according to the time difference, between measurement 1 and 

3. For the relative difference data were divided in three groups: A ( < -3 hours 
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difference), B (between -0,5 and 0,5 hours difference), and C ( > 3 hours difference), 

so in the group A the second measure was taken at least three hours before the first 

(if the first was taken at 4 pm, the first was taken at 1 pm at the latest), in the group B 

roughly at the same time (half an hour earlier or later) and in the group C three hours 

later (if the first measure was taken at 11 am the second one was taken at least at 2 

pm). For the absolute difference the data were divided in two groups: A (up to half an 

hour difference) and B (at least three hours difference). 

The results for the experiment 1 are plotted in Table 4.4-5: 

Table 4.4 Correlation between TimeD and differences in BOSS measurements 

Variable SW stat SW p Correlation test r Corr p R2 

BSup 0.984 0.595 Pearson -0.031 0.812 0.001 

BNas 0.980 0.395 Pearson 0.362 0.004 0.131 

BInf 0.985 0.661 Pearson 0.135 0.239 0.018 

BTem 0.987 0.749 Pearson -0.001 0.996 0.000 

Mean 0.992 0.961 Pearson -0.200 0.117 0.040 

BLens 0.949 0.012 Spearman -0.140 0.272 0.020 

 

Table 4.5 Correlation between TimeDABS and differences in BOSS measurements 

Variable SW stat SW p Correlation test r Corr p R2 

BSup 0.984 0.595 Spearman -0.212 0.095 0.045 

BNas 0.980 0.395 Spearman -0.130 0.308 0.017 

BInf 0.985 0.661 Spearman -0.052 0.688 0.003 

BTem 0.987 0.749 Spearman -0.143 0.264 0.020 

Mean 0.992 0.961 Spearman -0.200 0.117 0.040 

BLens 0.949 0.012 Spearman -0.099 0.440 0.010 

 

It worths noting that TimeD variable is normally distributed (Shapiro-Wilk test W = 0.980, p = 

0.302), while TimeDABS is not (Shapiro-Wilk test W = 0.911, p= 0.000). 

The observed statistical analysis revealed a sole statistically significant correlation (p = 

0.004), albeit weak (r = 0.364), between the relative difference in time of the day (TimeD) 

and the variation of the Brillouin Modulus measured in the inferior part of the cornea (BInf). 
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No statistically significant correlations were found between TimeDABS and any 

measurement taken by the BOSS. 

The second analysis based on time involved the creation of three different groups for the 

TimeD classification and two for the TimeDABS and testing them to verify the presence of 

differences in repeatability due to different time of the measurements. The size of the groups 

created for TimeD were A = 13, B = 22 and C = 6, while the groups for TimeDABS were A = 

22 and B = 19. 

For the TimeD analysis the difference between groups were tested using ANOVA and 

Kruskall-Wallis (KW), while to test for differences between TimeDABS groups were used t-

test and Mann-Whitney U. The choice of the test was based on the outcome of the normality 

test conducted on all subgroups. 

The results of the tests for normality of distribution and differences between groups are listed 

in Table 4.5-6. 

Table 4.6 Results of Normality test (Shapiro Wilk) and for differences between groups in TimeD subgroups 

 

Table 4.7 Results of Normality test (Shapiro Wilk) and for differences between groups in TimeDABS subgroups 

 Shapiro 

Group A 

Shapiro A 

p value 

Shapiro 

Group B 

Shapiro B 

p value 

Shapiro 

Group C 

Shapiro C 

p value 

Test  Test 

Stat 

P value 

BSup 0.966 0.844 0.948 0.282 0.962 0.836 ANOVA 2.021 0.146 

BNas 0.938 0.432 0.985 0.975 0.963 0.841 ANOVA 2.999 0.062 

BInf 0.953 0.645 0.978 0.879 0.963 0.841 ANOVA 1.478 0.241 

BTem 0.975 0.950 0.953 0.365 0.693 0.005 KW 0.507 0.776 

Mean 0.976 0.956 0.940 0.194 0.940 0.658 ANOVA 1.903 0.163 

BLens 0.959 0.736 0.933 0.144 0.930 0.579 ANOVA 0.005 0.995 

 Shapiro 

Group A 

Shapiro A 

p value 

Shapiro 

Group B 

Shapiro B 

p value 

Test Test 

Statistics 

P value 

BSup 0.948 0.282 0.970 0.771 t-test 2.009 0.052 

BNas 0.985 0.975 0.950 0.398 t-test 1.064 0.294 

BInf 0.978 0.879 0.980 0.942 t-test 0.482 0.632 

BTem 0.953 0.365 0.933 0.198 t-test 0.987 0.330 
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From the above tables it is possible to see that the groups of the TimeD analysis are all 

normally distributed, except for the group C (> 3 hours difference) of the measurement of the 

Brillouin modulus in the temporal part of the cornea (BTem). It is important to consider that 

Group C of TimeD analysis only has 6 members and that being so small is more prone to 

distribution shifts. The statistical analysis revealed that the differences between the 

distributions of the three groups were not statistically significative, the only parameter that 

had subgroups tha were close to be statistically different was th measurement of Brillouin 

modulus in the nasal portion of the cornea (Bias BNas Group A: -0.029 ± 0.088 GPa; Bias 

BNas Group B: 0.019 ± 0.068 GPa; Bias BNas Group C: -0.032 ± 0.064 GPa; p = 0.062). 

All the subgroups created for TimeDABS analysis were normally distributed, the t-test 

revealed no statistically significative differences between groups A and B. The only 

parameter that was close to be statistically significant different was the measurement of 

Brillouin modulus in the superior part of the cornea (Bias BSup Group A: 0.019 ± 0.068 GPa; 

Bias BSup Group B: -0.030 ± 0.081 GPa, p = 0.052). 

The experimental conditions that were close to be statistically significant different are BNas 

for Time D and BSup for TimeDABS. Figure 4.22-23 show the differences between groups 

with Bland Altman plots. 

 

Figure 4.22 Bland Altman plots for TimeD subgroups for Brillouin modulus measured in the nasal part of the 
cornea 

 

Mean 0.940 0.194 0.981 0.955 t-test 1.550 0.130 

BLens 0.933 0.144 0.934 0.209 t-test 0.084 0.934 
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Figure 4.23 Bland Altman plots for TimeDABS subgroups for Brillouin modulus measured in the superior part of 
the cornea 

 

Tables with all the data for Bland Altman plots for TimeD and TimeDABS are in Table 11.19 

and Table 11.20. 

4.3.5 ICC 

Intraclass Correlation Coefficient (ICC) was calculated for intra and intersession 

repeatability. Due to the nature of the experiment, it was used Cronbach’s Alpha (Tavakol 

and Dennick 2011), a two ways mixed model (Koo and Li 2016) to test absolute agreement 

between average measures (McGraw and Wong 1996). The results for the ICC for the 

Brillouin Modulus measurements are in the following Tables. 

4.3.5.1 ICC Intrasession 
Table 4.8 ICC for Intrasession repeatability 

 ICC Superior CI Limit Inferior CI limit F Test p-value 

BSup 0.423 0.030 0.477 1.725 0.014 

BNas 0.246 -0.235 0.538 1.322 0.130 

BInf 0.199 -0.310 510 1.246 0.187 

BTem 0.050 -0.535 0.414 1.054 0.416 

Mean 0.440 0.091 0.655 1.787 0.010 

BLens 0.722 0.548 0.829 3.589 <0.001 

 



G. Civiero, PhD Thesis, Aston University, 2024 

121 

 

4.3.5.2 ICC Intersession 
Table 4.9 ICC for Intersession repeatability 

 ICC Superior CI Limit Inferior CI limit F Test p-value 

BSup 0.075 -0.214 0.285 1.080 0.382 

BNas -0.198 -0.991 -0.277 0.836 0.759 

BInf -0.128 -0.859 0.316 0.886 0.683 

BTem 0.179 -0.257 0.478 1.256 0.186 

Mean -0.086 -0.752 0.333 0.918 0.632 

BLens 0.710 0.522 0.825 3.441 <0.001 

4.3.6 Repeatability of Cornea Measurements 

Regardless Location 

Another analysis was carried out considering all corneal measurements, regardless position, 

and location. Such analysis can be considered more general and related to the quality of the 

measurement provided by the technology. 

4.3.6.1 Bland Altman Analysis 
Table 4.10 Bland Altman analysis for all corneal measurements (excluding Mean) regardless location 

 Bias Lower COR Upper COR COR Interval Ratio wSD CVwSD 

Intrasession 0.006 -0.148 0.161 0.309 0.11 0.042 1.49 

Intersession 0.014 -0.157 0.185 0.342 0.12 0.050 1.77 

The significance of the differences was tested using Z test for matched pairs: the 

intrasession bias is 0.115 ± 0.604 GPa lower than the intersession Bias (p = 0.002), the intra 

session within- subjects SD is -0.008 ± 0.050 GPa lower than the inter session one (p = 

0.012) and the coefficient of variation within subjects is 0.28 ± 1,78 % lower than the 

intersession one (p = 0.011). 
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Figure 4.24 Bland Altman plots for Intrasession 
Repeatability of all corneal measurements 
(excluding Mean) regardless location 

Figure 4.25 Bland Altman plots for Intersession 
Repeatability of all corneal measurements 
(excluding Mean) regardless location 

 

4.3.6.2 Correlation between Value and Bias 

The correlation between the difference in terms of magnitude of the corneal Brillouin 

modulus value is statistically significant, albeit very weak (correlation coefficient = - 0.131), 

only for the intersession repeatability, but not within the same session. 

Table 4.11 Correlation between mean value and Bias for all corneal measurements (excluding Mean) regardless 
location 

 Normality p 

Mean 

Normality p 

Difference 

Method Correlation 

Coefficient 

Correlation p 

value 

Intrasession <0.001 0.30 Spearman -0.048 0.431 

Intersession <0.001 0.48 Spearman -0.131 0.038 

  

Figure 4.26 Correlation between average of the 
measurements and difference between the 
measurements for intrasession repeatability of 

Brillouin modulus for all corneal measurements 
(excluding Mean) regardless location 
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Figure 4.27 Correlation between average of the 
measurements and difference between the 
measurements for intersession repeatability of 

Brillouin modulus for all corneal measurements 
(excluding Mean) regardless location 

 

4.3.6.3 ICC 
Table 4.12 ICC for all corneal measurements (excluding Mean) regardless locations 

 ICC Superior CI limit Inferior CI limit F Test P value 

Intrasession 0.239 0.032 0.401 1.314 0.013 

Intersession 0.045 -0.217 0.251 1.048 0.356 

 

The calculation of ICC is relevant and statistically significant, albeit low, only for 

measurement within the same session. Measurements take in separate sessions are less 

repeatable. 

4.4 Discussion 

Within the array of parameters quantified by the BOSS, the Brillouin modulus emerges as 

the most consistent in terms of repeatability. This assertion is substantiated by the data 

presented in the Bland-Altman plots and further corroborated by the calculated coefficients, 

specifically the coefficient of variation (CV), the within-subject coefficient of variation (CVwS), 

and the coefficient of repeatability (COR). 

The reproducibility of values associated with plateaus and slopes is notably lower. This 

variability is largely ascribable to their computation being based on transitional zones 

between the lens cortexes and the nucleus. The BOSS precludes central crystalline lens 

measurements due to pronounced reflections, necessitating an established offset of 1 mm 

towards the temporal side for practical measurement. The BOSS does not have an intrinsic 

mechanism to adjust for ocular movements. Thus, the practitioner must compensate for any 

patient-related ocular or head movement during the examination. The final offset, quantified 

in both y and x coordinates, is computed as the arithmetic mean of the offsets recorded 

throughout the duration of the measurement, taking the calculated pupillary centre as the 

reference point. 

Results from correlations clearly show that Bias is not dependent on the Brillouin modulus. 

This is evident from the lack of strong and statistically significant correlations between the 
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average and difference in measurements for both intra and inter session repeatability. This 

conclusion holds regardless of whether the Shapiro-Wilk or Kolmogorov-Smirnov test is used 

to assess the normality of the distribution. 

4.4.1 Ratio between means and COR interval 

The comparative analysis between the Coefficient of Repeatability (COR) Interval and the 

mean average of Brillouin modulus measurements (utilising the first and second 

measurements for intra-session, and the first and third for inter-session) reveals that the 

COR intervals account for approximately 10% of the average in corneal measurements. This 

percentage varies, ranging from 9 to 12% in intra-session and 11 to 13% in inter-session 

evaluations. In a marked contrast, lens modulus measurements demonstrate significantly 

lower percentages, with 5% for intra-session and 6% for inter-session. This difference can 

be primarily attributed to the denser scanning frequency in the lens area, involving several 

tens of points at 0.1 mm intervals, thereby yielding greater consistency. In comparison, 

corneal measurements typically do not exceed four points (also at 0.1 mm intervals), a 

limitation often imposed by the corneal detection system's capabilities. The lower number of 

points measured within each scan increases variability and decreases repeatability, because 

the influence of a single outlier is higher. 

It is noteworthy that the ratios were consistently slightly lower in intra-session analyses and 

moderately higher in inter-session analyses. In contrast, for other parameters, the ratio 

between the average and the COR interval was significantly higher, approximately 50% for 

TopPlat and BotPlat, and surpassing 100% for AntSl and PostSl. 

4.4.2 ICC 

The analysis of ICC results confirms that corneal Brillouin modulus measurements are less 

repeatable than lens Brillouin modulus measurements. In intrasession repeatability BSup 

(ICC = 0.423, p = 0.014) and Mean (ICC = 0.440, p = 0.010) are the only corneal 

measurements associated with a significative p value, while all the other corneal parameters 

have lower values of ICC and non-significative p values. In the intersession analysis no one 

of the corneal measurement had a statistically significant values of ICC. In both the analysis 

the lens modulus showed good values of ICC (intra ICC = 0.722, p value < 0.001; inter ICC 

= 0.710, p value < 0.001), confirming that, using BOSS, the measurement of the lenticular 

modulus is more repeatable than the corneal one. 
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A post hoc analysis was conducted using Monte Carlo simulations. Specifically, 1000 

datasets were simulated under the assumption of the desired ICC (0.75), which represents 

the minimally acceptable reliability threshold for clinical acceptability (Koo and Li 2016)). For 

each simulated dataset, ICC values and their associated 95% confidence intervals were 

computed. Power was estimated as the proportion of simulations in which the upper bound 

of the ICC’s 95% confidence interval fell below the desired ICC threshold. The resulting 

power estimates were very low (range: 0.01 to 0.03). Such extremely low power values 

indicate that, given the current sample sizes (n = 67 and n = 63), the study had minimal 

ability to statistically confirm that the observed ICC was significantly lower than the desired 

ICC threshold of 0.75. Consequently, the observed poor repeatability values likely reflect 

genuinely low reliability rather than inadequate sample sizes. Therefore, it can be stated that 

the sample size is adequate and future studies can use similar sample size. 

4.4.3 Time of the measurement 

The only statistically significant correlation found between the absolute time difference 

(TimeD) and BNas suggests a potential, albeit minimal (the trendline has an equation of 𝑦	 =

	0.014𝑥	 + 	0.016), impact of time of the measurement on corneal stiffness measured value, 

as showed in Figure 4.28. 

 

Figure 4.28 Time difference between the measurements and difference of Brillouin modulus measured in the 
nasal part of the cornea 

However, no other strong or statistically significant correlation was detected between the 

time of day and the stiffness of either the cornea or the lens, as well as between the absolute 

difference in time (TimeDABS) and intersession measurement differences. The results 

collectively suggest that, based on the data gathered, the time of day does not have a 

noticeable impact on the measurement outcomes. 
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Differences in terms of repeatability were not found during the groups analysis. Therefore, it 

is possible to state that repeatability is not influenced by the time difference (relative or 

absolute) between the two visits. 

Two studies explored how corneal hydration affects Brillouin measurements. A recent paper 

(Seiler, Shao et al. 2018) conducted in vitro research on rabbit corneas and discovered that 

hydration levels positively influence the Brillouin frequency shift, particularly in the anterior 

stroma. They observed that the shift ranged from 2.499 to 2.904 GPa with hydration levels 

varying between 5% and 20%. For corneas with normal hydration (around 13%), the 

longitudinal Brillouin modulus was determined to be approximately 2.673 GPa. On the other 

hand, Another study (Shao, Seiler et al. 2018) observed that changes in the Brillouin 

frequency due to sleep were fully reversed within 2 hours after opening the eyes. They noted 

that from 2 to 9 hours post-awakening, the Brillouin frequency deviations from the average 

value had a standard deviation of 7.2 MHz, indicating stable hydration levels during this 

period and negligible variation in the Brillouin frequency shift, and hence the Brillouin 

modulus. Consequently, the authors recommended measuring the corneal modulus at least 

two hours after waking up to ensure accuracy.  

It is important to note that this study does not focus on the variation during the time of the 

day, but on the repeatability of the measurements taken during different part of the day. The 

experiment's limitation pertains to the constrained time frame for measurements, which were 

solely conducted between 9 am and 5 pm. This limitation excludes data from early morning 

and late-night periods, potentially impacting the comprehensiveness of the results. However, 

it' is important to note that this time span aligns with the usual operational hours of clinical 

settings, thereby reflecting the practical realities of routine examinations. 

4.4.4 All Cornea Measurements together 

From the analysis of all the corneal measurements together, regardless the location, it is 

clear that the intrasession repeatability is higher than the intersession repeatability, as Bias, 

within subjects SD and Coefficient of Variability within subjects are statistically significantly 

lower. The ratio between the mean and the COR interval is similar between intra and 

intersession analysis. Bias and mean negatively correlate in intersession analysis, but the 

correlation coefficient, albeit statistically significant, is weak. This finding may suggest that 

the influence of magnitude of the measured value does not influence the bias at least with 

measurements taken few minutes apart, that can be considered a positive finding. Such 

relationship cannot be confirmed for measurements take days or weeks apart and further 
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studies are needed, as the technology is innovative and there might be several factors that 

could influence the measured value. 

4.5 Conclusion 

The aggregated data clearly indicate that crystalline lens modulus measurements obtained 

with the BOSS exhibit good repeatability. Conversely, repeatability for corneal modulus 

measurements is considerably lower, despite intra-session repeatability being consistently 

higher than inter-session repeatability. Furthermore, additional lens parameters such as 

plateaus and slopes show inherently greater variability due to the intrinsic characteristics of 

the quantification process. This variability underscores the need for caution when 

interpreting and applying these specific parameters clinically. 

Following a recent update, the company reduced the step size between measurement points 

along the z-axis, enabling more focused and precise data acquisition within the cornea 

(previously, only two or three points were typically scanned at each location). This 

refinement significantly decreases the time spent unnecessarily analysing the aqueous 

humour, thus enhancing measurement efficiency and potentially improving repeatability. 

In the following Chapter the comparison with other instruments’ indices that quantify corneal 

biomechanical properties (ORA and Corvis ST) is investigated, to understand if the 

measurements overlap. 
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5 Is BOSS interchangeable with ORA or 

Corvis ST? 

5.1 Introduction 

The precise assessment of corneal biomechanics has become increasingly critical in the 

diagnosis and management of various ocular conditions, including keratoconus, glaucoma, 

and postoperative refractive surgery. Traditionally, the Ocular Response Analyzer (ORA, 

Reichert, Inc., Depew, NY, USA) and Corneal Visualization Scheimpflug Technology (Corvis 

ST, OCULUS Optikgeräte GmbH, Wetzlar, Germany) have served as pivotal tools in this 

domain, each offering unique methodologies and insights. Recently, Brillouin Optical 

Scanning System (BOSS, Intelon Optics, Woburn, MA, USA) was introduced in clinical 

settings offering a different analysis of corneal biomechanics, as it is able to measure the 

longitudinal elastic modulus (here called Brillouin modulus) in several locations on the 

cornea and can create a map of the distribution of the modulus.  

Several studies have examined the correlations between measurements obtained from the 

ORA and the Corvis ST. A study reported that while many Corvis ST parameters showed 

significant correlations with CH measured by ORA, the strength of these correlations ranged 

from weak to moderate. Specifically, parameters such as deformation amplitude ratio (R = -

0.51), stiffness parameter at first applanation (SP-A1, R = 0.41), and inverse radius (R = -

0.44) exhibited significant correlations with CH. An optimal model for explaining CH using 

Corvis ST measurements included the first and second applanation times, deformation 

amplitude at maximum concavity, and central corneal thickness, achieving a determination 

coefficient of R² = 0.67 (Fujishiro, Matsuura et al. 2020). 

Another study compared biomechanical parameters measured with ORA and Corvis ST in 

glaucomatous eyes. Their results showed that while many Corvis ST parameters were 

significantly correlated with CH and CRF measured by ORA, the strength of these 

correlations remained weak to moderate. Similarly, the best predictive model for CH included 

the first and second applanation times, deformation amplitude at maximum concavity, and 

central corneal thickness, with a determination coefficient of R² = 0.67 (Matsuura, Hirasawa 

et al. 2016). 
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Furthermore, Salouti et al. (2018) compared ORA, Corvis ST, and GAT in healthy children. 

Their findings indicated significant correlations between various CST parameters and CH, 

CRF, IOPg, and IOPcc as measured by ORA. However, correlations between IOP 

measurements obtained using the three devices (GAT, ORA, and Corvis ST) were weak or 

negligible (Salouti, Alishiri et al. 2018). 

Despite these observed correlations, it is important to highlight that ORA and Corvis ST 

assess different biomechanical properties of the cornea. ORA primarily provides 

measurements of CH and CRF, which are dynamic indicators of corneal viscoelasticity and 

its ability to absorb and dissipate energy. These parameters are influenced by both the 

elastic and viscous components of the corneal tissue. 

Conversely, Corvis ST evaluates corneal biomechanics based on high-speed Scheimpflug 

imaging of corneal deformation in response to an air pulse. It provides parameters such as 

deformation amplitude, applanation times, and stiffness-related metrics, which describe the 

mechanical response of the cornea in terms of structural deformation rather than energy 

dissipation. While Corvis ST and ORA share the goal of assessing corneal biomechanics, 

their methodologies and measured properties differ fundamentally, making their results 

complementary rather than interchangeable. 

While ORA and Corvis ST provide valuable but distinct biomechanical insights, BOSS is an 

emerging technology capable of directly measuring intrinsic corneal stiffness at the 

microscale through non-contact Brillouin light scattering. Unlike ORA and Corvis ST, which 

rely on external forces (air-puff-based deformation), BOSS provides a spatially resolved 

measurement of the corneal elastic modulus, offering a fundamentally different perspective 

on corneal biomechanics. 

Given that ORA and Corvis ST exhibit only moderate correlations, it remains unclear 

whether BOSS measurements will overlap with either device or provide independent, 

complementary information. If BOSS parameters correlate strongly with ORA-derived CH 

and CRF, this may indicate a shared sensitivity to viscoelastic properties. Conversely, if 

BOSS shows stronger correlations with Corvis ST parameters such as stiffness parameter 

(SP-A1) or deformation amplitude, this may suggest greater sensitivity to structural corneal 

rigidity rather than energy dissipation properties. 
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Despite the established utility of these instruments, comparative analyses in existing 

literature often fall short in addressing the relative efficacy under identical clinical conditions. 

This chapter embarks on a novel investigation aimed at juxtaposing these three devices, 

with a specific emphasis on their comparative performance, reliability, and diagnostic 

potential when utilised concurrently in a controlled experimental setting. 

In this pioneering study, the biomechanical parameters obtained from ORA, Corvis ST, and 

BOSS across a diverse cohort of patients are evaluated and correlated. By doing so, the 

intent is to unveil nuanced differences and potential synergies among these instruments. 

In summary, this correlation study represents a significant stride towards optimising corneal 

biomechanical assessments by leveraging the distinct capabilities of ORA, Corvis ST, and 

BOSS. 

5.2 Material and Methods 

Participants were required to be at least 18 years old, able to read and understand the 

informed consent and without the diagnosis of any ocular condition. Moreover, if contact lens 

wearer, they were asked to not to use contact lenses for the 24 hours before the experiment, 

to avoid any confounding factor. 

One eye only, right or left was at patients’ discretion, of 67 participants was examined using 

ORA, Corvis ST and BOSS, and Anterion OCT (OCT, Heidelberg Engineering GmbH, 

Heidelberg, Germany). The order of the instrument was randomly generated using a Python 

script, to avoid any possible bias. During the BOSS measurement the four dots pattern was 

used for corneal measurements: each measured point was 2 mm away from corneal centre, 

up, bottom, nasal and temporal. For crystalline lens measurement a single axial scan with a 

1 mm offset from the lens centre was done. The distance of 1 mm was chosen as rarely the 

pupil diameter is smaller than 3 mm (Kobashi, Kamiya et al. 2012). 

ORA measurements had to have a waveform score of 7 out of 10, to be considered reliable. 

Corvis ST measurements had display OK as quality specification. BOSS corneal 

measurements had to be “GOOD”, “LOW” or “AVERAGE” measurements were not 

accepted. BOSS lens scan had to have a score lower than 3 (the scale is reverse and 0 is 

the optimum). 

The collected data were analysed for normality and then correlations were tested, according 

to normality results. Normality was tested with Shapiro Wilk. Correlations were tested among 
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corneal measurements performed with different instruments: BOSS against ORA, BOSS 

against Corvis ST, BOSS against central corneal thickness with OCT. Correlations between 

BOSS lens and OCT measurements were calculated as well. Correlations were tested using 

Pearson or Spearman correlation, depending on the results of the normality test, considering 

the classical alpha level (0.05). Due to the high number of correlations, two levels of 

Bonferroni correction were applied. A first one that considered the correlation between 

couples of instruments independent, so the Bonferroni correction was strictly calculated for 

the single couple of instruments. Using this method three different p-values were obtained: 

BOSS vs ORA (20 correlations, p = 2.5 × 10-3), BOSS vs Corvis ST (125 correlations, p = 4 

× 10-4) and BOSS vs OCT (10 correlations, p = 5 × 10-3). Then, the classic and more 

conservative one, that considered all the correlations computed in this experiment (155 test, 

p = 3.2 × 10-4) was included. 

5.3 Results 

The mean and the standard deviation of the measurements are in Table 5.1. The results of 

the normality test are in the Table 11.21 in Appendix 11.4. 

Table 5.1 Demographics of participants; Mean and SD of clinical measurements 

 Age Eye SphEq VA IOPcc IOPg CH CRF A1L 
Mean 29.8 (RE) 52 -0.77 -0.03 15.9 14.9 10.0 9.9 2.24 
SD 15.0 (LE) 15 2.40 0.13 3.5 3.7 1.6 1.8 0.35 
          
 A1V A1T A2L A2V A2T HCT HCPD HCR HCDefoAm 
Mean 0.15 7.16 1.98 -0.27 21.48 16.76 4.80 7.40 1.02 
SD 0.02 0.35 0.32 0.03 0.39 0.42 0.27 0.93 0.11 
          
 CCTcor IOPnct ArcL DeflAm DeflAmR DeflAr DefAR InvRad WEM 
Mean 524 15.3 -0.13 0.86 6.12 3.04 4.67 0.16 0.33 
SD 37 2.5 0.02 0.10 0.77 0.46 0.49 0.02 0.09 
          
 SSI SP-A1 ARTh IntRad CBI bIOP BSup1 BNas1 BInf1 
Mean 1.20 92.9 487.1 8.2 0.59 15.7 2.831 2.822 2.811 
SD 0.21 16.2 109.2 1.1 0.27 2.4 0.050 0.060 0.062 
          
 BTem1 Mean1 BLens1 TopPlat1 BotPlat1 AntSl1 PostSl1 CLT CCT 
Mean 2.822 2.821 3.384 2.802 4.225 1.553 -1.533 3.898 530 
SD 0.064 0.039 0.056 0.514 0.577 0.412 0.557 0.403 36 
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Among all the measurements taken from the instruments, the ones that were not normally 

distributed are: length of first applanation, time of first applanation, length of second 

applanation, time of highest concavity, non-corrected IOP, inverse concave radius, whole-

eye-movement, stress-strain index, corneal biomechanical index, biomechanically corrected 

IOP for Corvis ST; Brillouin lenticular modulus, top plateau length, anterior slope, posterior 

slope for BOSS; corneal lens thickness measured using the OCT. 

The results of all the correlations are in Table 11.22 (Appendix 11.4). The correlations that 

were considered statistically significant before Bonferroni correction were: 

Table 5.2 Statistically significative correlations between BOSS measurements and parameters measured by 
ORA, Corvis ST and OCT 

Variable 1 Variable 2 Correlation P-value R^2 Method 
BInf1 CRF 0.246 0.045 0.060 Pearson 

BInf1 A1T 0.350 0.004 0.123 Spearman 

BInf1 IOPnct 0.328 0.007 0.107 Spearman 

BInf1 bIOP 0.318 0.009 0.101 Spearman 

BLens1 CLT -0.299 0.017 0.090 Spearman 

TopPlat1 CLT 0.748 0.000 0.559 Spearman 

BotPlat1 CLT 0.727 0.000 0.528 Spearman 

PostSl1 CLT 0.357 0.004 0.128 Spearman 

 

As can be seen from the table above, the only corneal Brillouin modulus that correlates with 

parameters measured by other machines is the one measured in the inferior portion of the 

cornea, that correlates positively with corneal resistance factor, time of first applanation, non-

corrected IOP, biomechanically corrected IOP. Although these correlations are statistically 

significative considering the classic alpha level (0.05), they are not significative anymore if 

any of the Bonferroni correction is applied.  

Among the lens measurements, it is possible to see that there is a negative correlation 

between lens thickness measured with OCT and Brillouin modulus. Such correlation was, 

again not enough to overcome Bonferroni correction. The posterior slope showed a 

statistically significative correlation with lens thickness that was enough to overcome the first 

level of Bonferroni correction. Both the plateaus showed strong and statistically significative 

positive correlation with lens thickness, and both surpassed the Bonferroni correction. 
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Figure 5.1 Correlation between Brillouin Modulus 
measured in the inferior part of the corneal and time 
of the first applanation (Corvis ST) 

Figure 5.2 Correlation between Brillouin Modulus 
measured in the inferior part of the corneal and 
biomechanically corrected IOP (Corvis ST) 

 

Figure 5.3 Correlation between Brillouin Modulus 
measured in the inferior part of the corneal and 
corneal resistance factor (ORA) 

Figure 5.4 Correlation between Brillouin Modulus 
measured in the inferior part of the corneal and non-
corrected IOP (Corvis ST)

 

Figure 5.5 Correlation between crystalline lens 
Brillouin Modulus and central lens thickness (OCT) 

Figure 5.6 Correlation between bottom plateau and 
central lens thickness (OCT) 
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Figure 5.7 Correlation between posterior slope 
central lens thickness (OCT) 

Figure 5.8 Correlation between top plateau and 
central lens thickness (OCT)

 

5.4 Discussion 

To the best author’s knowledge, this is the first study that investigates the relationship 

between Brillouin modulus with commercially available instruments that measure corneal 

biomechanical properties. Optical coherence elastography (OCE) does not fall within this 

definition, as it is not commercially nor clinically available and it is used for research 

purposes only. 

5.4.1 Corneal Measurement 

Given that no corneal measurements taken with the BOSS other than inferior ones (superior, 

nasal, temporal or the average of all of them) correlate with measurements from ORA or 

Corvis ST, it can be stated that these correlations might be due to chance, especially 

considering that IOPnct and bIOP are not even corneal measurements, and that thanks to 

Bonferroni correction it is possible to rule out such findings. 

It seems that the BOSS measures a different property than ORA and Corvis ST. Indeed, the 

latter are non-contact tonometers, that quantify corneal biomechanical features based on 

displacement created by the air puff, where the IOP play a fundamental role. BOSS 

measurements, on the contrary, does not consider IOP at all, as the measurement is based 

on the scattering that happens within the tissue. For these reasons, data from different 

machine can be considered complementary but not necessarily comparable or correlated. 
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5.4.2 Lens Measurement 

Among the lens measurements, the most interesting is the negative correlation between lens 

thickness and lens moduli. The explanation is simpler than how it might appear: it is well 

known that lens becomes thicker with age and, as will be discussed in Chapter 6 the 

Brillouin lens moduli significantly decreases with age, therefore it is explained the statistically 

significative correlation. 

Something similar happens with posterior slope: the variation in terms of stiffness between 

nucleus and posterior cortex changes with age and the slope becomes less steep. Being 

posterior slope negative, it moves towards zero (so a more positive value) and this, joined to 

a thicker lens, can explain such correlation. 

The last two correlations are between lens thickness and length plateaus: both correlations 

are strong and statistically significative, but to understand if measures can be 

interchangeable a further analysis is needed. 

5.4.3 Confrontation between lens thickness 

measured using BOSS and OCT 

Given the strong and significative correlation measured, a further analysis was performed 

between BOSS plateaus and the lens thickness measured with the OCT. 

Top and Bottom plateau measurements with a vertical offset between -0.05 and 0.05 mm, 

and with a temporal offset between 0.95 and 1.05 mm were compared with thickness 

measured 1 mm temporally from the centre of the crystalline lens. The 1 mm offset was 

measured from the lens axis traced by the software. 

From the entire dataset 15 cases were isolated, with the offset features required for this 

analysis. Two Bland Altman plots were created to compare the Top and Bottom plateaus with 

the lens thickness measured 1 mm temporally from the centre of the lens. 

From the Bland Altman analysis it is visible that the bias is significant in both cases: the Top 

Plateau measurement is half a millimetre thinner (0.586 mm) than the lens thickness 

measured using the OCT, while the bottom plateau is almost a millimetre thicker than the 

OCT measurement. Considering the 95% limit of agreement interval (adding and subtracting 

1.96 times standard deviation to the bias values) it appears the Top and Bottom Plateaus do 
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not match the measurement of the lens thickness done using and OCT and that cannot be 

used as reference for lens thickness. Plateaus are calculated considering the change of 

modulus between humours and lens. Bottom plateau is calculated including the transition 

zone, where the Brillouin modulus start increasing, while the Top Plateau is calculated 

including only the portion where the Brillouin modulus is constant. 

There are two factors that can explain such findings: 1) the measurement of plateaus is 

made with a movement on the Z-axis and with single scan every 0.1 mm, the entire scan of 

the lens is 8 mm long, it starts in the aqueous and end in the vitreous. The entire scan takes 

some time (almost 30 seconds) and during this timeframe it is possible that the patient 

moves. The offset calculated by the BOSS software, and that was used to compare plateaus 

with OCT thickness, computes an average of the offset during the measurement. The 

second factor is related to the system used to calculate of the offset: thanks to the contrast 

between pupil and iris, the pupil was computed as a perfect circle and the software 

calculated the centre of the circle. This approximation led to consider the centre of the pupil 

as the reference for any measurement. In this case the discrepancy lays on the fact that is 

well known that the centre of the pupil moves (Wyatt 1995), and often the iris is not perfect 

circle (Basit, Javed et al. 2008). 

Such changes create “transition zones” where the Brillouin modulus is increasing, from 

aqueous to cortex and then to nucleus, and decreasing, from nucleus to cortex (and then 

vitreous). Using these moduli variations, anterior and posterior slopes are calculated: as the 

increase and the decrease of the modulus per millimetre. 

 

Figure 5.9 Bland Altman Plot Central Lens 
Thickness (OCT) vs Bottom Plateau 

Figure 5.10 Bland Altman Plot Central Lens 
Thickness (OCT) vs Top Plateau 
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5.5 Conclusions 

Measures from BOSS and other instruments are not interchangeable as each machine 

evaluates different ocular features. BOSS assesses the longitudinal modulus of transparent 

tissues but does not correspond with any measurements from the Ocular Response 

Analyzer (ORA) or Corvis ST. Furthermore, BOSS cannot reliably measure lens thickness 

due to the high bias observed in its measurements. These findings suggest that BOSS 

measurements are truly innovative and represent a significant advancement in corneal 

biomechanics. BOSS is the first instrument capable of detecting localised areas of weakness 

in the cornea, offering unique insights that other instruments cannot provide. 

The following chapter focuses on age-related changes in corneal biomechanics, comparing 

the differences between younger individuals and those with presbyopia. This exploration is 

crucial for understanding how corneal properties evolve with age and the implications these 

changes have for ocular health and the development of age-related eye conditions. 
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6 Age-Related Changes in Corneal 

Biomechanics 

6.1 Introduction 

The biomechanical properties of the cornea are essential for maintaining the structural 

integrity and optical functionality of the eye. As individuals age, the cornea undergoes 

changes that affect its elasticity, stiffness, and overall mechanical stability. Understanding 

these age-related variations not only deepens our knowledge of ocular physiology but also 

plays a crucial role in improving clinical outcomes and advancing early diagnostic strategies 

for corneal pathologies. 

Despite the increasing interest in assessing corneal biomechanics, a significant gap remains 

in the literature regarding the specific impact of aging on these parameters. Much of the 

existing research has focused on younger populations or subjects with ocular pathologies, 

thereby overlooking the biomechanical alterations in healthy, aged individuals. This gap 

underscores the need for further investigation into how aging affects corneal mechanical 

properties. 

In this context, the precise evaluation of corneal biomechanics is pivotal for clinical practice. 

A more detailed understanding of age-related variations can enhance predictive models for 

surgical outcomes, particularly in refractive surgery and cataract procedures. Comparative 

analyses of the available measurement technologies – including the ORA, the Corvis ST, 

and the BOSS – reveal that each instrument offers unique advantages. These insights can 

facilitate the development of personalized protocols that account for age-specific corneal 

characteristics (Scarcelli, Kim et al. 2011). 

By investigating the biomechanical changes associated with aging, this research aims to 

bridge the current literature gap and provide valuable data for optimising surgical procedures 

and refining diagnostic methodologies. 

6.1.1 Calculus of sample size 

The calculus of the sample size was done using GPower 3.1 (University of Dusseldorf, 

Dusseldorf, Germany) (Faul, Erdfelder et al. 2007, Faul, Erdfelder et al. 2009). As no data 

are about age related changes in Brillouin modulus are available in literature, corneal 
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hysteresis data from (Sharifipour, Panahi-Bazaz et al. 2016) were considered for young 

(groups 10-19 and 20-29 years) and presbyopes (40-49, 50-59 and 60-69). The sample size 

calculation was done for the t test family, considering the difference between two groups, two 

tails, using a priori approach with α = 0.05, Power (1 - β) = 0.8 and calculated effect size d = 

0.86. The result of the calculation was 44 participants in total, 22 per group. 

6.2 Materials and Methods 

The current study was done using data from two different groups: young (n = 23) and 

presbyopes (n = 23). The inclusion criteria were the age range (19-22 for group Y and above 

45 for group P) and the absence of any ocular of systemic pathology. All the participants 

completed the study. Each participant chose the eye they wanted to be examined. 

Participants were required to not have worn contact lenses in the prior 24 hours to avoid any 

possible influence on corneal biomechanical measurements, that is still unclear. (González-

Méijome, Villa-Collar et al. 2008, Cankaya, Beyazyildiz et al. 2012, Peyman, Ghoreishi et al. 

2021) 

Each participant underwent the entire set of measurement using Ocular Response Analyzer 

(ORA, Reichert, Inc., Depew, NY, USA), Corneal Visualization Scheimpflug Technology 

(Corvis ST, OCULUS Optikgerate GmbH, Wetzar, Germany), Brillouin Optical Scanner 

System (BOSS, Intelon Optics, Woburn, MA, USA) and Anterion OCT (Heidelberg 

Engineering GmbH, Heidelberg, Germany) for one eye only, chosen by the participant. The 

absence of ocular pathology was done during the initial interview and the refractive error was 

measured with an open field autorefractor (WAM 5500, Grand Seiko, Shigiya Machinery 

Works LTD, Hiroshima, Japan). 

The order of the measurements with ORA, Corvis ST and BOSS was randomised to avoid 

any bias (the randomised order was selected using a random generator script coded in 

Python). The measurement of the refractive error was performed before the set of three 

instruments. The OCT imaging was always done at the end of the experiment. During the 

BOSS measurement the four dots pattern was used for corneal measurements (each 

measured point was 2 mm away from corneal centre, up, bottom, nasal and temporal), while 

for crystalline lens a single axial scan with a 1 mm offset from the lens centre was done. The 

distance of 1 mm was chosen as rarely the pupil diameter is smaller than 3 mm (Kobashi, 

Kamiya et al. 2012). 
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To be considered reliable, each measurement ORA measurement had to have a minimum 

waveform score of 7 out of 10, any Corvis ST measurement had to display OK as quality 

specification (QS), while the corneal BOSS measurements had to display “GOOD” (“LOW or 

“AVERAGE” were not accepted) and lens scan needed to be lower than 3 (BOSS has a 

reverse scale, so 0 is considered optimum). 

After the comparison between the two groups, a second analysis was done correlating data 

from ORA, Corvis ST and BOSS with age but, due to the extreme narrow distribution of age 

of the group Y, it was done only for group P. 

Data were analysed using JupyterLab from Anaconda Navigator: pandas, seaborn, numpy, 

scipy.stats and matplolib packages were used. All the collected data were moved on a 

spreadsheet and anonymised, then it was load into JupyterLab to be get analysed. 

6.3 Results 

6.3.1 Differences between Young and Presbyopes 

Demographic data of the two groups are presented in Table 6.1. 

Table 6.1 Demographics 

 Group Y Group P 

Age [years] 19.13 ± 1.06 49.39 ± 7.94 

Age Range [years] 19-22 45-67 

RE/LE 16 / 7 20 / 3 

M/F 7 / 16 12 / 11 

Spherical Equivalent Range [D] -3.88 / 5.38 -3.38 / + 5.63 

Groups did not have differences in terms of objective refractive error distribution. Such 

condition was tested analysing the spherical equivalent of the two groups are show in Figure 

6.1 
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Figure 6.1 Refractive error distribution in terms of Spherical Equivalent for group Y and P 

Both young and presbyopes groups had a normal distribution of the mean spherical 

equivalent (Table 6.2). Because refractive error distribution was normal in both groups, a t-

test was conducted to reveal statistically significant differences. The result of the test 

showed no statistically significant differences between the two groups in terms of refractive 

error (t = -0.691, p = 0.493). 

Table 6.2 Mean, SD and results of normality test (Shapiro Wilk) for refractive error for groups Y and P 

Group Mean [D] SD [D] Shapiro-Wilk test p-value 

Y -0.182 1.837 0.941 0.187 

P 0.217 2.075 0.948 0.271 

 

Figure 6.2 Boxplot for Refractive Error (SphEq) for groups P and Y 

A series of Shapiro-Wilk test was run to evaluate the distribution of each single parameter 

measured. The results of these tests are shown in Table 11.23 in Appendix 11.5 alongside 

the values of mean/median and SD/IQR. Mean and SD are reported if distribution is normal 

(p > 0.05), median and IQR if data were not normally distributed. 
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Then, according to the distribution, the differences between the two groups were tested 

using t-test (if both groups showed normally distributed data) or Mann Whitney U (if one of 

both were not normally distributed). Given the high number of test carried out (41), two levels 

of Bonferroni correction were carried out: the classic and more conservative one, where the 

significance level was adjusted dividing alpha by the number of the test carried out (𝛼	 =

	0,05/41	 = 	0,0012) and a less conservative one, that considered the number of the 

parameter measured by each instrument (4 for the ORA, 25 for the Corvis ST, 10 for the 

BOSS and two using the OCT). With the second approach the level of significance is 

different for every instrument: 0,012 for the Ocular Response Analyzer, 0,002 for the Corvis 

ST, 0,005 for the BOSS and 0,025 for the OCT. 

The analysis was done considering each instrument: 

• ORA: none of the measured parameter showed a statistically significant difference 

between young and presbyope. 

• Among Corvis ST measured parameters 

- Length at the First Applanation (A1L, Figure 6.3), that is higher in younger 
(2.45 ± 0.30 mm) than in presbyopes (2.10 ± 0.30 mm; t-test p < 0.001). Even 

applying the most conservative Bonferroni correction, it remains statistically 

significantly higher. 

- Velocity at the First Applanation (A1V, Figure 6.4), the value of the young is 
lower (0.14 ± 0.02 mm/s) that the value of the presbyope group (0.15 ± 0.02 m/s). 

Despite p value is lower than 0.05 (t-test p = 0.039), applying even the least 

conservative Bonferroni correction (α = 0.012) it is not statistically significant 

anymore. 

- Velocity at the Second Applanation (A2V, Figure 6.5), the velocity of the 
presbyope group (-0.28 ± 0.03) is still higher that velocity of the young group ( -

0.26 ± 0.03). Again, p value (t-test p = 0.023) is smaller than 0.05 but does not 

reach any significant level if Bonferroni correction is applied. 

- Highest Concavity Deformation Amplitude (HCDefoAm, Figure 6.6), the 
displacement along the Z axis of the corneal apex between the beginning of the 

air puff and the moment of highest concavity is smaller in the young group (0.98 ± 

0.10 mm) compared to the presbyope group (1.06 ± 0.11). The difference was 

statistically significant (t-test, p = 0.010), but not enough if considering Bonferroni 

correction. 

- Biomechanical Corrected IOP (bIOP, Figure 6.7), young group showed a 
statistically significant (t-test, p = 0.021) higher value (16.4 ± 2.7 mmHg) than 
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older group (14.7 ± 2.0 mmHg). Again, adjusting α to consider Bonferroni 

correction, the difference was not statistically significant anymore. 

- Whole Eye Movement (WEM, Figure 6.8), the difference between young (0.31 ± 
0.06 mm) and presbyope (median 0.34, IQR 0.06 mm) was statistically significant 

(Mann Whitney U, as WEM values in P group were not normally distributed, p = 

0.006) but did not meet criteria after Bonferroni correction was applied. 

• Among BOSS measurement, none of the corneal moduli was different between groups. 

Some changes were measured in the lens parameters: 

- Lens Modulus (BLens, Figure 6.9)was lower in the presbyope group (3.351 ± 
0.059 GPa) compared to young group (3.411 ± 0.028 GPa). Such difference was 

statistically significant (Mann Whitney U, p = 0.002) even adjusting α for the 

number of parameters measured with the same instrument (in this case α = 

0.005), but not if all the parameters measured by all the instruments were 

considered (α = 0.0012). 

- Top Plateau (TopPl, Figure 6.10)showed a statistically significant difference 
(Mann-Whitney U, p < 0.001) between the two groups (Y = 2.557 ± 0325 mm; P = 

3.200 ± 0.600 mm). This difference is statistically significant even applying the 

most conservative Bonferroni correction (α = 0.0012). 

- Bottom Plateau (BotPl, Figure 6.11)showed a strong statistically significant 
difference (t-test, p < 0.001) between groups Y (3.950 ± 0.437 mm) and P (4.272 

± 0.516 mm). Even applying the most conservative Bonferroni correction (α = 

0.0012), it remained statistically significant. 

- Posterior Slope (PostSl, Figure 6.12): the slope of the transition between lens 
and vitreous humour was significantly different. The group Y had a statistically 

significant (Mann Whitney U, p = 0.015) steeper posterior slope (-1.481 ± 0.599 

GPa/mm) than group P (-1.190 ± 0.643 GPa/mm). 

- Central Lens Thickness (CLT, Figure 6.13): a statistically significant difference 
(t-test, p < 0.001) was measured between the two groups, the P group showing 

thicker lenses (4.35 ± 0.26 mm) than group Y (3.67 ± 0.18 mm). 
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Figure 6.3 Boxplot for Length of First Applanation 
(Corvis ST) 

Figure 6.4 Boxplot of Velocity at First Applanation 
(Corvis ST) 

 

Figure 6.5 Boxplot of Velocity at Second 
Applanation (Corvis ST) 

Figure 6.6 Boxplot of Deformation Amplitude during 
Highest Concavity (Corvis ST) 

 

Figure 6.7 Boxplot of Biomechanically Corrected 
IOP (Corvis ST) 

Figure 6.8 Boxplot of Whole-Eye-Movement (Corvis 
ST) 
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Figure 6.9 Boxplot of Brillouin modulus of the 
crystalline lens (BOSS) 

Figure 6.10 Boxplot of Top Plateau (BOSS) 

 

Figure 6.11 Boxplot of Bottom Plateau (BOSS) Figure 6.12 Boxplot of Posterior Slope (BOSS) 

 

Figure 6.13 Boxplot of Central Lens Thickness (OCT) 



G. Civiero, PhD Thesis, Aston University, 2024 

146 

 

6.3.2 Correlation with age for group P 

Table 11.24 contains the results of the correlation test with age only for group P. Spearman 

correlation was used as within group P Age was not normally distributed (Shapiro Wilk stat = 

0.91, p = 0.04) as can be seen in Figure 6.14. 

 

Figure 6.14 Age distribution of P Group 

 

Again, were considered a standard p value (0.05) and two Bonferroni corrections: one strictly 

related to the instrument and a more conservative one that considered the total number of 

measurements collected. 

The parameters that showed a statistically significant significant correlation with age were: 

- Time of the Second Applanation (A2T, 

- Figure 6.15): negatively correlates with age (R = -0.44, R2 = 0.19, p = 0.035). 

- Brillouin Modulus measured in the temporal side of the cornea (BTem, Figure 
6.16: negatively correlates with age (R = -0.44, R2 = 0.19, p = 0.038). 

- Mean of the Brillouin Modulus measured across the cornea (Bmean, 

- Figure 6.17): negatively correlates with age (R = -0.44, R2 = 0.18, p = 0.043). 

- Brillouin Modulus of the Lens (Blens, Figure 6.18): negatively correlates with age 

(R = -0.44, R2 = 0.19, p = 0.037) 

- Anterior Slope (AntSl, Figure 6.19): positively correlates with age (R = 0.50, R2 = 
0.25, p = 0.015). 
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None of the above correlations are significant if Bonferroni Correction is considered, both for 

the most and least conservative approaches. 

 

Figure 6.15 Scatterplot, Regression Line and 95% 
Confidence Interval for Age and Time of Second 
Applanation (Corvis ST) 

Figure 6.16 Scatterplot, Regression Line and 95% 
Confidence Interval for Age and Brillouin modulus 
measured in the temporal cornea (BOSS) 

  

Figure 6.17 Scatterplot, Regression Line and 95% 
Confidence Interval for Age and Mean Corneal 
Brillouin modulus (BOSS) 

Figure 6.18 Scatterplot, Regression Line and 95% 
Confidence Interval for Age and Crystalline Lens 
Brillouin Modulus (BOSS) 

 

Figure 6.19 Scatterplot, Regression Line and 95% Confidence Interval for Age and Anterior Slop (BOSS) 
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6.4 Discussion 

Most of the measured variables were normally distributed, only Time of the First Applanation, 

Length of the Second Applanation, Time of Highest Concavity, Inverse Concave Radius, 

Whole Eye Movement, Integrated Radius, Corvis Biomechanical Index, Mean of Corneal 

Moduli, Lens Modulus, Top Plateau and Posterior Slope were not normally distributed, for 

one or both groups, therefore were analysed using Mann Whitney U. All the other 

parameters were tested for differences between groups using t-test. 

6.4.1 ORA 

Despite no one of the four parameters measured by the Ocular Response Analyzer showed 

a statistically significant difference between the two group, it is possible to see that there are 

some differences between the two groups: IOPg is higher in Group Y and lower in Group P, 

while IOPcc is lower in Group Y and higher in Group P. IOPg was calibrated to match 

Goldmann Applanation Tonometry (Ehrlich, Haseltine et al. 2010), while IOPcc consider 

corneal biomechanical features to correct IOP (Luce 2006). In this case the changes in CH 

and CRF are not statistically significant although are not far from significance level (p = 

0.072 and 0.078, respectively). These changes mean that with aging, cornea becomes less 

rigid and that therefore dissipates a lower amount of energy. Age related decreases in 

corneal hysteresis and corneal resistance factor were seen and measured in several studies 

and some explanation were proposed: alteration in collage cross-linking and cornea 

hydration that are independent from central thickness or IOP (Kamiya, Shimizu et al. 2009); 

a global change of the anterior eye, including both biomechanics and IOP, with age, even if 

IOP changes are minimal, but might have an impact in post refractive surgery stability in 

elderly patients and create a paradox in corneal ectatic disorders that tend to stabilise with 

aging (El Massry, Said et al. 2020); some genetic factors can play a role in corneal 

hysteresis and corneal resistance factor changes: more than 200 gene loci (192 novel) were 

identified in a recent genome-wide association study (GWAS) that included more than 

100000 participants, but did not evaluated age related changes. 

ORA values measured in this study are in accordance with data measured in several studies 

that showed a marked reduction of corneal hysteresis and a milder reduction of corneal 

resistance factor with age (Rosa, Lanza et al. 2015, El Massry, Said et al. 2020, Simcoe, 

Khawaja et al. 2020). 
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Differences between young and presbyopic subjects are often reported as statistically 

significant in the literature, yet such differences were not observed in the present study. One 

possible explanation may lie in several methodological and sampling factors that could 

account for this discrepancy. First, it is important to consider sample size and intra-group 

variability: a small or homogeneous sample in terms of other parameters (e.g., corneal 

thickness, intraocular pressure, or systemic characteristics) might not reveal statistically 

significant differences, even though such differences may be detected in larger and more 

diverse studies. Additionally, methodological variations—such as differing inclusion criteria, 

measurement conditions, and statistical approaches—can lead to contrasting results. The 

literature that reports significant differences often relies on studies in which not all 

confounding factors were adequately controlled, whereas the present study may have 

employed more stringent criteria, thereby reducing variance and attenuating the observed 

differences. 

6.4.2 Corvis ST: 

Kenia et al. (Kenia, Kenia et al. 2020) investigated the variability of Corvis ST parameters 

across different age groups, categorising the population into six age ranges: 5-11, 11-20, 21-

30, 31-40, 41-50, and over 50 years. They employed analysis of variance to discern 

differences among these groups, although the absence of post hoc analysis limited insights 

into specific inter-group differences. However, it is feasible to examine the directional trends 

of parameters that demonstrated statistically significant differences. Notably, the length at 

the first applanation (A1L) exhibited a counterintuitive trend, with higher values observed in 

the oldest group (>50 years, 2.50 ± 0.26 mm) compared to lower values in younger groups 

(11-20 and 21-30 years, 2.38 ± 0.26 mm and 2.38 ± 0.22 mm, respectively). Contrarily, the 

present study found a significant difference, with the younger group exhibiting a longer 

applanation length (2.45 ± 0.30 mm) compared to the older group (2.10 ± 0.33 mm). 

Additional parameters that were statistically significant in both studies, velocity at the second 

applanation (A2V), deformation amplitude at highest concavity (HCDefAm), and 

biomechanically corrected intraocular pressure (bIOP) demonstrated consistent trends 

across age groups. These parameters showed higher values in the older group, aligning with 

the anticipated increase in corneal stiffness (SP-A1 value), which typically corrects for 

increased intraocular pressure in this demographic. The SP-A1 index, which incorporates 

corneal load, bIOP, and displacement at first applanation, has been validated as useful in 

detecting keratoconus (Vinciguerra, Ambrósio et al. 2016). Despite the significant number of 
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tests conducted, Kenia et al. did not apply a Bonferroni correction, maintaining an alpha level 

of 0.05 as sufficient for statistical significance. 

Furthermore, comparative studies by Liu et al. (Liu, Rong et al. 2020) Eliasy et al. (Eliasy, 

Chen et al. 2019). explored age-related changes in the Stress Strain Index (SSI) across 

Chinese, Brazilian, and Italian populations. While these studies found a positive correlation 

between SSI and age, this investigation did not find statistically significant differences in SSI 

values, despite observing an increase within the older group (p = 0.079, R^2 = 0.139, before 

Bonferroni correction). This discrepancy might be attributed to the variability inherent in a 

smaller sample size (23 eyes) compared to the larger cohorts in the aforementioned studies 

(480 and 175 eyes, respectively). 

6.4.3 BOSS - Cornea 

To date, no studies have explicitly correlated corneal Brillouin modulus with age. Analysis of 

the collected data indicates that there are no significant differences in Brillouin modulus 

between the two groups. Two of the measured locations demonstrated an increase in 

modulus (Nasal and Temporal, with changes of 0.003 GPa and 0.011 GPa, respectively), 

while two showed a decrease (Superior and Inferior, with changes of -0.008 GPa and -0.025 

GPa, respectively). The mean of these measurements reflects a marginal increase of 0.001 

GPa. However, none of these differences reached statistical significance. 

After analysing the correlation between corneal modulus measurements and age, it is 

noteworthy that both the mean Brillouin corneal modulus and the Brillouin modulus 

measured on the temporal side of the cornea exhibit a negative correlation with age. 

Although these correlations are statistically significant, they are weak and do not retain their 

significance under the application of the Bonferroni Correction. The observation that only 

one out of four measured corneal points shows a significant age-related change is peculiar. 

Typically, in the absence of corneal pathologies such as keratoconus, the cornea is expected 

to exhibit uniform properties and should not display such inhomogeneities. Moreover, the 

change observed in the mean of the measurements presents an intriguing contradiction to 

existing literature: previous research has suggested changes in Brillouin frequency shift 

(Seiler, Shao et al. 2019, Shao, Eltony et al. 2019) , quantifying the increase in 3 and 4 MHz 

per decade. However, these results were not statistically significant. Considering that these 

minor frequency shifts correspond to an increase in Brillouin modulus of approximately 1 kPa 

per decade, which is three orders of magnitude below the instrument's resolution limit of 1 
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MPa (or 0.001 GPa), it is probable that the observed variations of this study are attributable 

to random fluctuations rather than substantive changes that the instrument failed to detect. 

6.4.4 BOSS - Lens 

Among the various lens parameters measured, those showing statistically significant 

differences between the two groups include the Brillouin modulus of the lens, the top and 

bottom plateaus, and the posterior slope. 

The statistical robustness observed in both plateaus aligns with expectations based on the 

well-documented age-related thickening of the crystalline lens (Dalziel and Egan 1982, 

Dubbelman, Van der Heijde et al. 2003). As discussed in Chapter 5, the central lens 

thickness measured using OCT is approximately 1 mm greater (Bias: 1.087 ± 0.376 mm, 

95% limits of agreement: 0.460 to 1.714 mm) compared to measurements from the bottom 

plateau, which are comparatively smaller (Bias: -0.325 ± 0.376 mm, 95% limits of 

agreement: -1.062 to 0.413 mm). This discrepancy allows for the interpretation of the top 

plateau as representing the thickness of the nuclear portion of the lens, while the bottom 

plateau corresponds to the thickness of the entire crystalline lens (nucleus and cortexes). 

Such theory is supported by the measurements of the central lens thickness, in Table 5.1, 

where can be seen that central lens thickness values are closer to bottom plateau, rather 

than to top plateau.  

Given that major age-related changes predominantly occur in the nucleus rather than in the 

cortex, it is unsurprising that the variations in the bottom plateau are similar to the variation 

in the top plateau. It should be noted that the measurement of plateau length does not 

correspond to the central thickness of the crystalline lens, as the BOSS cannot accurately 

measure this due to excessive reflections that impair the analysis of scattering. All the lens 

measurements taken with the BOSS were performed at 1 mm temporally from the pupil 

centre. 

Unexpectedly, if the correlations within the elder group were analysed, none reached 

statistically significance. The correlations were still positive (plateaus length increase with 

age), but both failed in reaching significance; on the contrary, central lens thickness 

measured with OCT shows a significative correlation with age in group P, as expected. 

The observed difference in the posterior slope between the two groups suggests a reduction 

in the gradient of change across the posterior cortex. As expected, the cortex is more 

deformable than the nucleus; however, the region of the cortex that is most susceptible to 
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deformation is larger, as indicated by the negative slope. A more positive value would 

suggest a less steep slope, indicating a more gradual, rather than abrupt, change. Notably, 

this change is not statistically significant when the posterior slope is correlated with age. 

However, the anterior slope shows a positive correlation with age, indicating that the 

modulus of the anterior portion of the lens increases with age, particularly after the age of 

45. 

It is important to note that these values do not provide any information regarding the shape 

of the crystalline lens. Furthermore, it should be acknowledged that the slopes were 

computed using limited data from the transition between the aqueous humour and the 

nucleus of the lens. 

Interestingly, the Brillouin modulus of the lens is significantly lower in the elder group than in 

the younger group. Although this finding may seem counterintuitive - given the common 

belief that presbyopia is caused by a crystalline lens that becomes less deformable and 

therefore more rigid—this could be an example of the lens paradox. According to this 

paradox According to this paradox, as outlined by Dubbelman and Van der Heijde 

(Dubbelman and Van der Heijde 2001), the growth in the thickness of the crystalline lens is 

accompanied by a decrease in the refractive index of the nucleus, which changes from 1.433 

to 1.417 between the ages of 20 and 70. Such a change is unlikely to affect the 

measurement significantly, as it creates a variation that is considered negligible (Besner, 

Scarcelli et al. 2016) and the ratio between the mass density of the lens (ρ) and the square 

of the refractive index (r) is set to a constant value (0.57). 

Similar findings about the plateaus and modulus changes were found in a 2016 study 

(Besner, Scarcelli et al. 2016), that was the first in vivo study that characterised the lens 

properties using Brillouin technology: a lower amount of Brillouin modulus for crystalline lens 

after the age of 45 and a substantial increment in the plateaus length throughout life. In this 

study it was authors identified the variation in modulus for the central portion of the lens was 

– 4.5 ± 1.4 MPa per year, while no changes were measured for the cortexes (anterior and 

posterior slopes), after the age of 45. 

6.5 Conclusion 

This study has extensively examined age-related changes in corneal and lens biomechanics 

using multiple instruments. 
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Our findings confirm that corneal biomechanics, as measured by ORA and Corvis ST, subtly 

but significantly alters with age. While ORA measurements did not reveal statistically 

significant differences between the groups, there was a notable trend in the behaviour of 

IOPg and IOPcc, which reflects the intrinsic biomechanical changes within the cornea, 

potentially due to changes in collagen cross-linking and hydration independent of central 

thickness or IOP. Such biomechanical degradation may have profound implications on the 

stability of post-refractive surgery and the progression of corneal ectatic disorders in the 

elderly. 

Significant differences in lens biomechanics were observed with the use of BOSS. Notably, 

the Brillouin modulus of the lens was found to be lower in the older group, contrary to the 

conventional expectation that the lens becomes more rigid with age. Furthermore, this study 

highlights a stronger correlation of lens thickness changes with age, as detected by OCT, 

suggesting that age primarily influences the nucleus rather than the cortex. 

Additionally, expanding the sample size and including more diverse age groups could 

validate and refine findings, providing a more detailed mapping of biomechanical aging in the 

human eye. Another possible limitation is related to the measurement of refraction: an open 

field autorefractor was used, while a combination of axial length and autorefraction would 

have probably been more precise in terms of characterisation of refractive error. 

The integration of biomechanical assessments into routine ophthalmic evaluation could 

revolutionise the approach to ocular health, paving the way for targeted interventions that 

are finely tuned to the biomechanical profile of each patient at different ages. 

In the following Chapter the changes in terms of ocular biomechanics related to different 

refractive errors are investigated. 
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7 Corneal Biomechanics Changes related to 

Refractive Error 

7.1 Introduction 

This chapter aims to elucidate the relationships between refractive errors and corneal 

biomechanical parameters by employing a range of advanced diagnostic tools. Refractive 

errors—such as hyperopia, emmetropia, and myopia—reflect variations in the eye’s ability to 

focus light on the retina, thereby impacting visual acuity. While numerous studies have 

focused on the optical aspects of these errors, the underlying biomechanical differences of 

the cornea among various refractive groups remain less understood. The rationale for this 

study is based on the hypothesis that the corneal biomechanical properties (e.g., corneal 

hysteresis and resistance factor) differ among individuals with different refractive statuses, 

which may influence not only the progression of refractive errors but also the outcomes of 

refractive surgical interventions. 

The primary objective is to quantitatively assess the differences in corneal biomechanics 

among groups with different refractive errors and to explore the correlations between these 

biomechanical parameters and the magnitude of refractive error. By integrating data from 

state-of-the-art diagnostic technologies, this study seeks to provide deeper insights into the 

structural and functional variations of the cornea, potentially guiding more personalized 

approaches to refractive error management and treatment in the future. 

7.1.1 Sample Size Calculation 

The sample size calculation was conducted using GPower 3.1 (University of Dusseldorf, 

Dusseldorf, Germany) (Faul, Erdfelder et al. 2007, Faul, Erdfelder et al. 2009). For this 

study, five different groups were identified based on the mean spherical equivalent (MSE) 

refractive error: hyperopes (MSE > +0.50 D), emmetropes (−0.50 D ≤ MSE ≤ +0.50 D), low 

myopes (−0.50 D > MSE ≥ −3.00 D), medium myopes (−3.00 D > MSE ≥ −6.00 D), and high 

myopes (MSE ≤ −6.00 D). As no previous studies have investigated differences in the 

Brillouin modulus across various refractive errors, data from the Ocular Response Analyzer 

(ORA) were utilised. Corneal hysteresis data from the study "Relationship among Corneal 

Biomechanics, Refractive Error, and Axial Length" (Bueno-Gimeno, España-Gregori et al. 

2014) informed the sample size calculation. Using corneal hysteresis data from these 
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groups, an effect size of 0.44 was calculated, and the sample size was computed with the 

following settings in GPower: α = 0.05, power (1 – β) = 0.8, across five groups. A total of 65 

participants was required (13 participants per group). 

 

7.2 Material and Methods 

To refine the age range of the sample, it was determined that only participants aged 19-23 

were eligible for this study. The inclusion criteria included the absence of ocular pathology 

and this specific age range. Participants were required not to wear contact lenses during the 

24 hours preceding the experiment. 

A total of 45 participants were enrolled in the study, with 44 completing it. The initial target 

sample size could not be met due to time constraints and participant availability. Participants' 

refractive errors were measured using an open field autorefractor (WAM 5500, Grand Seiko, 

Shigiya Machinery Works LTD, Hiroshima, Japan); each eye was measured five times and 

the mean of these measurements was calculated. Each participant then chose which eye 

would be included in the study. 

Measurements were taken using three different instruments: the Ocular Response Analyzer 

(ORA, Reichert, Inc., Depew, NY, USA), Corneal Visualization Scheimpflug Technology 

(Corvis ST, OCULUS Optikgeräte GmbH, Wetzlar, Germany), and the Brillouin Optical 

Scanner System (BOSS, Intelon Optics, Woburn, MA, USA). The sequence of instrument 

use was randomised to mitigate potential confounding factors. Following these 

measurements, an anterior segment tomography was conducted using an Anterion OCT 

(Heidelberg Engineering GmbH, Heidelberg, Germany). 

For the data to be deemed acceptable, measurements taken with the ORA had to have a 

minimum wavefront score of 7 out of 10. The Corvis ST measurements needed to display 

'OK' as a quality specification, and BOSS measurements of the cornea had to be rated 

'GOOD' for each scanned point (with 'LOW' or 'Average' scans being rejected). For lens 

measurements with the BOSS, the quality index had to be lower than 3 on a reverse scale, 

where 0 is optimal. The scanning pattern employed with the BOSS used a 4-dots 

configuration, where each point was positioned 2 mm from the computed centre of the pupil: 

upper (BSup), nasal (BNas), inferior (BInf), and temporal (BTem). The mean of these points 
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was calculated (Mean). The BOSS lens scan was performed 1 mm temporally from the 

centre of the pupil to avoid reflections that could impede accurate measurements. 

Two analyses were conducted with the collected data: one assessing differences between 

groups based on refractive errors, and another examining correlation with the mean 

spherical equivalent (MSE), treated as a continuous variable. 

The normality of the distribution within each group was assessed using the Shapiro-Wilk 

test. Differences among groups were evaluated using either ANOVA or the Kruskal-Wallis 

test, depending on the normality results. Post hoc analyses were performed using the Tukey 

test for ANOVA and the Dunn test for Kruskal-Wallis, as appropriate. 

Due to the high number of tests conducted, a Bonferroni correction was applied in addition to 

the classic significance level of α = 0.05. Two levels of Bonferroni correction were 

considered: a more traditional and conservative approach, where alpha is divided by the 

total number of tests (αB = 0.05	 ÷ 42 = 0.00119) and a less conservative one, which 

depends on the number of parameters measured by each instrument. The adjusted 

significance levels were as follow: αORA (0.05	 ÷ 4 = 0.0125); αCST (0.05	 ÷ 25 = 0.002); αBOSS 

(0.05	 ÷ 10 = 0.005); αOCT (0.05	 ÷ 2 = 0.025). 

7.3 Results 

7.3.1 Participants 

Due to challenges in recruiting participants and time constraints, the final recruitment 

comprised only 44 patients: 7 in the hyperopic group, 12 in the emmetropic group, 15 in the 

low myopia group, 9 in the medium myopia group, and 1 in the high myopia group. Owing to 

the limited representation in the high myopia group, the sole participant was included in the 

medium myopia group to facilitate a more robust analysis. All the participants were recruited 

among Aston University undergraduate students, to have a restricted age range and be sure 

that age did not bias the experiment. 

Demographics of the participants are listed in Table 7.1. 
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Table 7.1Demographics of participants divided in groups according to the refractive error 

 Hyperopia Emmetropia Low Myopia Medium Myopia 

Age [years] 19.85 ± 1.14 19.43 ± 0.98 19.20 ± 1.26 19.70 ± 1.06 

RE/LE 5 / 2 10 / 3 11 / 4 7 / 3 

M/F 1 / 6 4 / 9 6 / 9 2 / 8 

SER [D] 1.77 ± 1.65  -0.03 ± 0.19 -1.43 ± 0.76 -4.70 ± 1.71 

 

7.3.2 Differences among groups 

The initial analysis involved testing for the normality of distribution within each group. Given 

the small number of subjects in each group, the Shapiro-Wilk test was employed (Razali, 

Wah et al. 2011). According to Table 11.25 in the Appendix 11.6.1, most measurements 

exhibited a normal distribution, with exceptions including: length at first applanation, time of 

the first applanation, length at the second applanation, time of highest concavity, radius at 

highest concavity, non-corrected intraocular pressure (IOP), deflection area, inverse concave 

radius, whole-eye-movement, stress-strain index, biomechanically corrected IOP, Brillouin 

modulus on the temporal side, Brillouin mean modulus, Brillouin modulus of the lens, bottom 

plateau, and posterior slope. For all these parameters differences between groups were 

tested with Kruskall Wallis test. All the other measurements were tested with ANOVA. 

Results of ANOVA and Kruskall Wallis test are in Table 11.26 in Appendix 11.6.1. For all 

these non-normally distributed parameters, differences between groups were assessed 

using the Kruskal-Wallis test. For all other measurements, which conformed to a normal 

distribution, ANOVA was applied. 

The analyses identified several parameters that demonstrated statistically significant 

differences among the groups: 

- Length at First Applanation (A1L, Figure 7.1): Assessed using the Kruskal-Wallis 
test (K = 8.901, p = 0.002), a significant difference was noted between the hyperopic 

and medium myopia groups (p = 0.019), as shown by the Dunn post hoc test. The 

box plot illustrates that myopic eyes are associated with shorter lengths at first 

applanation compared to hyperopic eyes. 

- Highest Concavity Radius (HCR, Figure 7.2): This parameter also showed 
significant differences (Kruskal-Wallis, K = 14.743, p = 0.002). The Dunn post hoc 

test indicated significant differences between the medium myopia and emmetropia 
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groups (p = 0.001), and between medium and low myopia groups (p = 0.025). More 

myopic eyes exhibited lower values of radius.  

- Inverse Concave Radius (InvRad, Figure 7.3): Significant variation was found 
(Kruskal-Wallis, K = 12.049, p = 0.007) with a notable difference between the 

emmetropia and medium myopia groups (p = 0.005), identified by the Dunn post hoc 

test. The medium myopia group showed higher values of inverse concave radius. 

- Stress-Strain Index (SSI, Figure 7.4): Showing the most pronounced differences 
(Kruskal Wallis, K = 18.945, p = 0.00028), the medium myopia group differed 

significantly from the other three groups (p < 0.001 for all comparisons) as per the 

post hoc analysis. The stress-strain index in medium myopia is markedly reduced 

and shows less variability. This parameter passed both Bonferroni corrections. 

- Integrated Radius (IntRad, Figure 7.5): Evaluated through ANOVA (F = 4.738, p = 
0.006), significant differences were detected between the emmetropia and medium 

myopia groups (p = 0.003), as shown by the Tukey post hoc test, with the medium 

myopia group presenting a higher value. 

- Brillouin Modulus of the Crystalline Lens (BLens, Figure 7.6): Another significant 
finding from the Kruskal Wallis test (K = 10.896, p = 0.012) was noted between 

hyperopia and emmetropia groups (p = 0.0199) via post hoc analysis. The hyperopic 

group showed a slightly higher lenticular Brillouin modulus. 

Boxplot of differences in Length at First Applanation across Refractive Error groups 

(Corvis ST) 

 

Figure 7.1 Boxplot of differences in Length at First 
Applanation across Refractive Error groups (Corvis 
ST) 

Figure 7.2 Boxplot of differences in Radius at 
Highest Concavity across Refractive Error groups 
(Corvis ST) 
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Figure 7.3 Boxplot of differences in Inverse Radius 
across Refractive Error groups (Corvis ST) 

Figure 7.4 Boxplot of differences in Stress-Strain 
Index across Refractive Error groups (Corvis ST) 

 

Figure 7.5 Boxplot of differences in Integrated 
Radius across Refractive Error groups (Corvis ST) 

Figure 7.6 Boxplot of differences in Crystalline Lens 
Modulus across Refractive Error groups (BOSS) 

 

7.3.3 Correlation with Refractive Error 

For the second analysis, which explored the correlation between biomechanical parameters 

and the magnitude of refractive error, it was necessary to test the normality of both sets of 

variables. The Shapiro-Wilk test indicated that the distribution of refractive error was not 

normal (W = 0.938, p = 0.018), as illustrated in Figure 7.7 Refractive error distribution. Given 

the non-normal distribution of the refractive error, the Spearman correlation coefficient was 

employed for the analysis. This choice was appropriate as Spearman's method does not 

assume normality and is thus suited for data that are either ordinal or not normally 

distributed. This approach ensures a robust analysis of the correlation between refractive 

error and various biomechanical properties of the eye. 
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Figure 7.7 Refractive error distribution 

The analysis of correlations between biomechanical parameters and the magnitude of 

refractive error, as detailed in Table 11.27 in Appendix 11.6.2, identified several parameters 

with statistically significant correlations: 

- Length at First Applanation (A1L, Figure 7.8) Exhibits a positive, weak correlation 
(ρ = 0.360, p = 0.015, R² = 0.130), suggesting that longer applanation lengths 

correlate with higher refractive error. 

- Highest Concavity Time (HCT, Figure 7.9): Shows a positive, weak correlation (ρ = 
0.296, p = 0.048, R² = 0.088), indicating a slight association between the time of 

highest concavity and refractive error. 

- Highest Concavity Radius (HCR, Figure 7.10): Also presents a positive, weak 
correlation (ρ = 0.306, p = 0.041, R² = 0.094), aligning with a minimal increase in 

radius with higher refractive errors. 

- Deflection Amplitude (DeflAm, Figure 7.11): Demonstrates a negative, weak 
correlation (ρ = -0.305, p = 0.041, R² = 0.093), indicating that higher deflection 

amplitudes are associated with lower refractive errors. 

- Deflection Amplitude Ratio (DeflAmR, Figure 7.12): Has a negative, weak to 
moderate correlation (ρ = -0.392, p = 0.008, R² = 0.153), suggesting a stronger 

negative relationship with refractive error. 

- Deformation Amplitude Ratio (DefAR, Figure 7.13): Exhibits a moderate negative 
correlation (ρ = -0.430, p = 0.003, R² = 0.185), implying that greater deformations are 

linked to lower refractive errors. 

- Inverse Concave Radius (InvRad, Figure 7.14): Shows a moderate negative 
correlation (ρ = -0.429, p = 0.003, R² = 0.184), suggesting similar trends as 

deformation amplitude ratio. 
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- Whole-Eye-Movement (WEM, Figure 7.15): Displays a weak positive correlation (ρ 
= 0.313, p = 0.036, R² = 0.098), indicating a slight increase in eye movement with 

higher refractive errors. 

- Stress Strain Index (SSI, Figure 7.16): Reveals a moderate positive correlation (ρ = 
0.517, p < 0.001, R² = 0.267), indicating a substantial relationship where higher SSI 

values correlate with higher refractive errors (Figure XX16). This parameter also 

surpassed both the instrument-specific and the classic Bonferroni corrections. 

- Integrated Radius (IntRad, Figure 7.17): Shows a weak negative correlation (ρ = -
0.321, p = 0.032, R² = 0.103), suggesting that a larger radius correlates with lower 

refractive errors. 

It is notable that among all these correlations, only the SSI achieved a level of significance 

robust enough to withstand both Bonferroni corrections. None of the measurements from 

ORA, BOSS, or OCT reached statistical significance, highlighting specific biomechanical 

characteristics associated with different refractive errors and providing a focused insight into 

ocular biomechanics. 

 

Figure 7.8 Scatterplot and regression line of 
Refractive Error and Length of First Applanation 
(Corvis ST) 

Figure 7.9 Scatterplot and regression line of 
Refractive Error and Highest Concavity Time 
(Corvis ST) 
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Figure 7.10 Scatterplot and regression line of 
Refractive Error and Highest Concavity Radius 
(Corvis ST) 

Figure 7.11 Scatterplot and regression line of 
Refractive Error and Deflection Amplitude (Corvis 
ST) 

 

Figure 7.12 Scatterplot and regression line of 
Refractive Error and Deflection Amplitude Ratio 
(Corvis ST) 

Figure 7.13 Scatterplot and regression line of 
Refractive Error and Deformation Amplitude Ratio 
(Corvis ST) 

 

Figure 7.14 Scatterplot and regression line of 
Refractive Error and Inverse Radius (Corvis ST) 

Figure 7.15 Scatterplot and regression line of 
Refractive Error and Whole-Eye-Movement (Corvis 
ST) 

 

Figure 7.16 Scatterplot and regression line of 
Refractive Error and Stress-Strain Index (Corvis ST) 

Figure 7.17 Scatterplot and regression line of 
Refractive Error and Integrated Radius (Corvis ST) 
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7.4 Discussion 

7.4.1 ORA 

While none of the parameters measured by the Ocular Response Analyzer showed 

statistically significant differences among the groups, there are noteworthy observations 

regarding corneal hysteresis and the corneal resistance factor. Corneal hysteresis was 

observed to be reduced in the low and medium myopia groups compared to emmetropic 

values, indicating a potential decrease in the viscoelastic properties of the cornea in myopic 

eyes. Similarly, the corneal resistance factor was lower in the medium myopia, low myopia, 

and hyperopia groups when compared with emmetropia, further suggesting a potential 

reduction in corneal biomechanical stability in these conditions. 

Interestingly, the hyperopia group exhibited a higher degree of variability in both corneal 

resistance factor (standard deviation, SD = 3.1 mmHg, almost double that of the other 

groups) and corneal hysteresis (SD = 2.6 mmHg, 1.5 to 2.4 times the SD of other groups). 

This variation suggests that hyperopic corneas do not follow a consistent biomechanical 

pattern and may indicate a more complex interplay of factors influencing corneal properties 

in hyperopia. 

Furthermore, intraocular pressure compensated for corneal characteristics (IOPcc), which 

adjusts for variables such as corneal hysteresis and resistance factor, was found to be 

higher in myopic individuals, with greater variability compared to emmetropic or hyperopic 

subjects. 

The correlation analysis, while not yielding statistically significant results, did show clear 

trends in how intraocular pressure compensated for corneal characteristics (IOPcc) and 

Goldmann-correlated intraocular pressure (IOPg) vary with different refractive errors. IOPcc 

and IOPg were observed to increase with the degree of myopia and decrease towards 

hyperopia, with IOPcc demonstrating a steeper slope. This pattern may reflect the impact of 

refractive error on the biomechanical properties of the eye, influencing intraocular pressure 

measurements. 

Conversely, corneal hysteresis and corneal resistance factor exhibited opposite trends: 

increasing with hyperopia and decreasing with myopia. This suggests that the cornea's 

ability to handle deformation and dissipate energy is compromised in myopic eyes compared 

to hyperopic ones. The reduction in corneal hysteresis and resistance factor in myopic eyes 



G. Civiero, PhD Thesis, Aston University, 2024 

164 

 

has been posited by some researchers to potentially contribute to the onset and progression 

of myopia. These findings, however, are subject to variability due to factors like the 

demographic characteristics of the study populations (often Southeast Asian) and the 

degrees of myopia considered (Del Buey, Lavilla et al. 2014). Furthermore, the association 

between changes in axial length and corneal biomechanics has been documented (Bueno-

Gimeno, España-Gregori et al. 2014) , suggesting that as the eye elongates—a typical 

change in myopia—corneal properties are altered. 

The findings of Plakitsi et al (Plakitsi, O'Donnell et al. 2011) which highlighted a reduction in 

corneal hysteresis in highly myopic eyes compared to those with low to moderate myopia 

and emmetropes, align somewhat with your study's observations. They also noted a 

correlation between corneal hysteresis and refractive error, quantifying an increase in 

hysteresis of 0.13 mmHg per dioptre (D) of refractive change. In contrast, your study 

observed a more pronounced increase in corneal hysteresis relative to refractive error, 

quantifying it at 0.413 mmHg per D. This discrepancy could be indicative of methodological 

differences, variations in the populations studied, or differences in the severity and range of 

myopia examined between the two studies. Moreover, while Plakitsi et al. found a correlation 

with corneal hysteresis, they did not observe any correlation between corneal resistance 

factor and refractive error. The absence of hyperopic participants in their study could limit the 

applicability of their findings across a broader refractive spectrum, potentially skewing the 

understanding of how corneal biomechanics interact with refractive error universally. 

The study used to calculate the sample size for this experiment (Bueno-Gimeno, España-

Gregori et al. 2014) found a consistent reduction in corneal hysteresis with the decrease in 

hyperopia and increase in myopia. Similar results were observed for the resistance factor, 

though the reduction was less pronounced and not statistically significant. 

A study investigating corneal biomechanical differences among myopes (< -5.00 D), 

hyperopes (> +3.00 D), and controls (between +1.00 and -1.00 D) reached similar 

conclusions to this study: corneal hysteresis was reduced in myopes and increased in 

hyperopes compared to controls. This suggests that excessive axial elongation might 

influence the rigidity of ocular structures and, consequently, corneal hysteresis. While the 

corneal resistance factor (CRF) was not affected by refractive error, intraocular pressure 

(IOPcc and IOPg) was higher in myopic eyes (İnceoğlu, Emre et al. 2018). 

A fascinating theory hypothesises that lower values of corneal hysteresis might contribute to 

the development of refractive errors (Huang, Huang et al. 2011). Animal models have shown 
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that induced ametropia causes changes in scleral fibril orientation (McBrien, Young et al. 

2009) which can affect corneal collagen and potentially lead to both local (reduction in 

corneal hysteresis) and global (axial elongation) ocular changes. Currently, there is a lack of 

strong evidence supporting this theory, and it remains unclear whether the reduction in 

corneal hysteresis is a cause or an effect of refractive error development. This uncertainty is 

compounded by the fact that the corneal resistance factor, which is generally considered to 

reflect the overall resistance and elastic behaviour of the cornea, is not affected by refractive 

error. 

7.4.2 Corvis ST 

The analysis of the statistically significant differences between groups in the Corvis ST 

measurements highlighted that only a few parameters showed differences among the 

groups: 

- Length at the First Applanation: The post hoc analysis revealed that the corneas of 
hyperopic eyes (median 2.60 mm; IQR 0.17 mm) are more deformable than those of 

moderately myopic eyes (median 1.94 mm; IQR 0.29 mm), as indicated by the 

greater applanated length. A positive statistically significant correlation was found, 

suggesting that the applanated portion of the cornea increases with hyperopia and 

decreases with myopia. Similar findings are reported in the literature, with statistically 

significant differences observed between groups with different refractive errors (Lu, 

Hu et al. 2022). 

- Highest Concavity Radius: Moderately myopic eyes have smaller radii (median 
6.53 mm; IQR 0.53 mm) compared to low myopic (median 7.34 mm; IQR 0.67 mm) 

and emmetropic eyes (median 7.90 mm; IQR 0.52 mm). Interestingly, no differences 

were found with hyperopic eyes. The correlation with refractive error was positive and 

statistically significant. Lower values of radius indicate a stiffer and less deformable 

cornea, as this measurement reflects the curvature of the cornea at its maximum 

concavity. A shorter radius suggests that the portion of the cornea displaced during 

maximum concavity is smaller, indicating greater stiffness. Similar findings are 

reported in the literature (Kenia, Kenia et al. 2020, Sedaghat, Momeni-Moghaddam 

et al. 2020, Yu, Shao et al. 2020). However, opposite results were found in Chinese 

children, where high myopes showed flatter curvatures than hyperopes and 

emmetropes (Lu, Hu et al. 2022) 
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- Inverse Concave Radius: The medium myopia group (median 0.17 mm⁻¹; IQR 0.01 
mm⁻¹) showed a statistically significant difference compared to the emmetropia group 

(median 0.14 mm⁻¹; IQR 0.01 mm⁻¹). The inverse radius exhibits a negative 

statistically significant correlation with refractive error. As the reciprocal of the highest 

concavity radius, a higher inverse radius value is associated with a stiffer cornea. 

Therefore, these results align with the findings for length at first applanation and 

highest concavity radius. 

- Stress-Strain Index: The medium myopia group (median 0.95; IQR 0.07) showed 
statistically significant differences compared to all other groups: low myopia (median 

1.16; IQR 0.09), emmetropia (median 1.25; IQR 0.13), and hyperopia (median 1.24; 

IQR 0.24). A positive correlation was also found with the degree of refractive error. 

The results were robust enough to withstand Bonferroni correction. Interestingly, the 

interpretation of the stress strain index suggests the opposite of the other Corvis ST 

parameters: a higher value indicates greater resistance to deformation, thus a stiffer 

cornea. Similar findings were recently observed in the Indian population, where a 

higher degree of myopia was associated with lower stress strain index values (Kenia, 

Kenia et al. 2024). The discrepancy with other measurements could be explained by 

the fact that the stress strain index is independent of IOP, making it more reflective of 

corneal structure than other Corvis ST parameters (Eliasy, Chen et al. 2019). 

- Integrated Radius: The only statistically significant difference in the post hoc 
analysis was found between medium myopia (9.0 ± 0.9) and emmetropia (7.6 ± 0.7). 

A negative statistically significant correlation was found with refractive error, 

suggesting that the integrated radius increases with myopia but remains the same for 

hyperopes and emmetropes. The integrated radius is the integral under the curve of 

the concave radius and the inverse concave radius. Although it represents an area, it 

does not have a unit of measurement. As an integral, it sums the infinitesimal areas 

beneath the curve representing the inverse concave radius (the reciprocal of the 

radius of curvature). The result depends on the specific values of the curve. A curve 

with higher values of the reciprocal of the radius of curvature (indicating a smaller 

radius of curvature and thus a stiffer cornea) will produce a greater integral value. 

Therefore, the results align with the highest concavity radius and inverse concave 

radius: myopia is associated with stiffer corneas, and hyperopia with softer ones. 

Similar findings are reported in the literature, showing an increase in integrated 

values associated with more severe myopia (Sedaghat, Momeni-Moghaddam et al. 

2020, Kenia, Kenia et al. 2024) or the presence of myopia (Lu, Hu et al. 2022). 
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- Highest Concavity Time: A positive, albeit weak, statistically significant correlation 
with refractive error was found. Highest concavity time represents the interval 

between the initiation of the puff of air and the point of highest concavity. A stiffer 

cornea reaches maximum concavity sooner than a more deformable (and elastic) 

cornea, which can be deformed more and thus requires more time (Kling and Hafezi 

2017, Liu, Pang et al. 2022). Similar correlations have been reported in the literature 

(Yu, Shao et al. 2020) suggesting that highly myopic corneas reach highest concavity 

sooner than low myopic corneas. 

- Deflection Amplitude: A negative statistically significant correlation was found with 
refractive error. Deflection amplitude measures the movement of the corneal apex 

while accounting for the overall eye movement, thus isolating the corneal 

displacement. It is calculated by comparing the superimposed cornea with the actual 

corneal movement during displacement. A smaller deflection amplitude indicates a 

stiffer cornea (Bak-Nielsen, Pedersen et al. 2014, Chun, Moon et al. 2020), implying 

that more myopic eyes have softer corneas. Similar findings are reported in the 

literature, where higher myopes exhibit greater values of deflection amplitude (Kenia, 

Kenia et al. 2020). 

- Deflection Amplitude Ratio: A negative, statistically significant correlation was 
found with refractive error. The deflection amplitude ratio describes the ratio between 

the deflection amplitude at the corneal apex and the deflection amplitude 2 mm 

laterally from the corneal apex. This parameter reflects the uniformity of corneal 

deformation between the centre and periphery. Similar to deflection amplitude, a 

stiffer cornea exhibits more uniform displacement within the tissue, resulting in a 

lower deflection amplitude ratio. 

- Deformation Amplitude Ratio: A negative, statistically significant correlation was 
found with refractive error. Deformation amplitude represents the displacement of the 

corneal apex along the Z-axis, indicating the inward movement caused by the air 

puff. Unlike deflection amplitude, it does not account for the overall eye movement. 

The deformation amplitude ratio describes the ratio between the apex and peripheral 

corneal displacements. The interpretation is similar: a stiffer cornea exhibits higher 

displacement uniformity compared to a softer cornea. 

- Whole Eye movement: A positive, statistically significant correlation was found with 
refractive error. It is computed by considering the movement of the peripheral part of 

the cornea along the Z-axis. This correlation suggests that myopic eyes exhibit a 

smaller movement of the whole eye compared to hyperopic eyes, indicating a stiffer 

structure. 
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The results present an inherent ambiguity: while parameters such as length at first 

applanation, highest concavity time, highest concavity radius, inverse radius, integrated 

radius, and whole eye movement suggest increased stiffness in myopic corneas, others, 

including the stress strain index, deflection amplitude, deflection amplitude ratio, and 

deformation amplitude ratio, indicate a reduction in corneal stiffness associated with myopia. 

This inconsistency may be attributed to the significant dependence of most of these 

parameters on intraocular pressure (IOP). Notably, the stress strain index, which is 

independent of IOP, is the only parameter that consistently withstands both levels of 

Bonferroni correction. 

7.4.3 BOSS 

7.4.3.1 Cornea 

This study is the first to examine the relationship between BOSS measurements and 

refractive error. None of the measurements of the corneal Brillouin modulus were correlated 

with the magnitude of the refractive error, and no statistically significant differences were 

found between the four groups. Interestingly, even though not statistically significant, all the 

correlations are negative: as the myopic refractive error decreases or the hyperopic 

refractive error increases, the Brillouin modulus decreases. This finding might be due to 

chance, as differences between groups do not follow a consistent trend. The mean values 

across the four corneal locations support the trend observed in the correlations, but again, 

no statistically significant differences were identified. 

7.4.3.2 Lens 

Among lenticular parameters the only measurement that showed a statistically significative 

difference is Brillouin modulus of the lens. Post hoc analysis revealed a statistically 

significant difference between hyperopes (median 3.430 GPa; IQR 0.014 GPa) and 

emmetropes (median 3.401 GPa; IQR 0.037 GPa). However, this finding was not confirmed 

by the correlation analysis, and none of the lens parameters measured using BOSS were 

correlated with refractive error. 
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7.4.4 OCT 

Central corneal thickness did not show any statistically significant differences among groups, 

nor did it correlate with refractive error distribution, consistent with previous literature (Chen, 

Liu et al. 2009, Nangia, Jonas et al. 2010). 

Similarly, the crystalline lens did not exhibit any statistical differences. The correlation, 

although neither strong nor significant, suggests a positive relationship between refractive 

error and lens thickness: hyperopes tend to have thicker lenses than myopes. Literature 

findings are inconclusive and inconsistent, largely due to confounding factors such as age, 

gender, and developmental stage (Shih, Chiang et al. 2009, Hashemi, Pakzad et al. 2018, 

Wang, Zhu et al. 2022). A recent study investigating lens morphology differences in eyes of 

patients with unilateral high myopia found no significant differences (Zhang, Zhang et al. 

2024). It can be inferred that limited differences in lens thickness are expected among 

patients with varying refractive errors within a narrow age range, although further studies are 

necessary to confirm these findings. 

 

7.5 Conclusions 

The results of this study highlighted some significant differences between groups with 

different refractive errors, particularly in parameters measured with the Corvis ST. 

Parameters such as length at first applanation, highest concavity radius, and the stress-

strain index showed statistically significant differences among the groups, suggesting 

variations in corneal deformability and stiffness associated with different refractive errors. 

Despite some limitations, such as the inability to achieve the initially planned sample size, 

the study provided valuable insights into the biomechanical characteristics of the cornea in 

relation to refractive errors. The data suggest that myopia is generally associated with 

increased corneal stiffness, while hyperopia tends to be associated with a more deformable 

cornea. 

In particular, the stress-strain index showed a robust correlation with refractive error, 

indicating potential use as a biomarker to evaluate the biomechanical properties of the 

cornea in patients with varying degrees of myopia and hyperopia. However, the variability 

observed in some parameters suggests that further research is needed to confirm these 
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findings and deepen the understanding of the interactions between corneal biomechanics 

and refractive errors. 

These results underscore the importance of considering corneal biomechanical properties in 

the clinical management of refractive errors and in planning refractive surgical interventions. 

Future studies could benefit from larger sample sizes and greater demographic diversity to 

confirm and expand upon the conclusions of this study. 

7.6 Limitations 

Due to recruitment limitations, it was not possible to fulfil the criteria established with the 

sample size calculation and the groups did not match in numbers. The high myopia group 

had to be eliminated, and the only participant was included in the medium myopia group. 
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8 Lens Peripheral Thickness Variations 

8.1 Introduction 

The final chapter addresses an incidental finding encountered during the investigation 

detailed in the previous chapters. Specifically, while selecting the most appropriate cases for 

comparing the measurements of the BOSS plateau with lens thickness evaluated using OCT 

as described in section 5.4.3, it became apparent that the peripheral thickness of the 

crystalline lens exhibited variability not only across different meridians but also within 

individual meridians themselves. Such variations have received limited attention in the 

ophthalmic literature, despite their potential importance in refining intraocular lens (IOL) 

power calculations, improving refractive surgery outcomes, and deepening the 

understanding of accommodative changes that accompany aging. To comprehensively 

explore the extent and implications of this observation, data from all participants involved in 

the prior studies were extrapolated and subjected to further analysis. 

The human crystalline lens is a transparent, avascular, and biconvex anatomical structure 

primarily responsible for the eye's ability to accommodate, thereby enabling clear vision at 

near distances. In adults, typical dimensions of the lens are approximately 9 to 10 mm in 

equatorial diameter and 4 to 5 mm in axial thickness (Ruan, Liu et al. 2020). While 

traditionally assumed to exhibit radial symmetry about its optical axis, the lens frequently 

demonstrates toricity, characterized by differential refractive powers along distinct meridians. 

Such toricity contributes significantly to variations in optical performance and may be 

influenced by both anatomical and physiological factors, including zonular tension 

distribution, capsular elasticity, and lens fibre architecture. Understanding these peripheral 

thickness variations can thus offer valuable insights into lens biomechanics and optical 

function, particularly in the context of refractive surgery, presbyopia management, and 

cataract extraction. 

8.2 Materials and Methods 

A total of 58 eyes (44 right eyes [OD] and 14 left eyes [OS]) were included in this analysis. 

Measurements of crystalline lens thickness were acquired using the Anterion OCT device 

(Heidelberg Engineering GmbH, Heidelberg, Germany), a swept-source optical coherence 

tomography system designed for anterior segment imaging. All scans were conducted 

without the use of mydriatic agents, under standardized ambient room lighting conditions. 
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Following image acquisition, the central lens thickness automatically calculated by the 

Anterion software was recorded and subsequently used as a reference point, designated as 

the lens centre. To investigate peripheral lens thickness variability, measurements were 

manually obtained from OCT images at 1 mm distance from the lens centre along four 

principal meridians (superior, inferior, nasal, and temporal). For accuracy and consistency, 

each measurement was carefully extracted by visual inspection of cross-sectional OCT 

images oriented along the respective meridians. 

Statistical analyses and data visualization were performed using Python 3 (Python Software 

Foundation, Wilmington, DE, USA), employing widely accepted libraries including Pandas for 

data management, SciPy.stats for statistical testing, NumPy for numerical analysis, and 

Matplotlib for graphical 

Demographics of the patients are reported in Table 8.1. 

Table 8.1 Demographics of participants 

Age [years] 30 ± 15 

RE / LE 44 / 14 

M / F 21 / 37 

SER [D] -0.76 ± 2.39 

 

8.3 Results 

The descriptive statistics (mean ± standard deviation) of lens thickness at the central and 

peripheral locations, as well as the results of the Shapiro-Wilk test for normality, are 

summarized in Table 8.2. Figure 8.1 visually depicts the distribution patterns of peripheral 

lens thickness measurements at each of the four investigated meridians. 
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Table 8.2 Mean, SD and Shapiro Wilk results for normality 

 Mean [mm] SD [mm] Statistic p-value 

Central Lens Thickness 3.89 0.41 0.91 < 0.001 

Thickness 1 mm Nasally 3.73 0.41 0.91 < 0.001 

Thickness 1mm Temporally 3.76 0.41 0.90 < 0.001 

Thickness 1 mm Superiorly 3.79 0.41 0.90 < 0.001 

Thickness 1 mm Inferiorly 3.72 0.40 0.90 < 0.001 

 

Since peripheral lens thickness data deviated significantly from a normal distribution (see 

Table 8.2), non-parametric statistical methods were employed for further analyses. 

Friedman’s test revealed statistically significant differences in lens thickness among the four 

peripheral locations (χ² = 107.12, p < 0.001). Subsequently, a post hoc pairwise comparison 

using the Wilcoxon signed-rank test, adjusted with Bonferroni correction to account for 

multiple comparisons, was conducted. Results indicated statistically significant differences 

(all p ≤ 0.01 after correction) in lens thickness between each of the four peripheral locations, 

as detailed inTable 8.3. 

 

Table 8.3 Results of post hoc analysis, with differences along meridians 

 Mean Difference SD W Statistics P value Corrected  

p-value 

Temporal-Nasal 0.03 0.05 267.0 < 0.001 < 0.001 

Temporal-Superior -0.01 0.3 346.5 0.002 0.011 

Temporal-Inferior 0.05 0.03 0.0 < 0.001 < 0.001 

Nasal-Superior -0.04 0.03 34.0 < 0.001 < 0.001 

Nasal-Inferior 0.02 0.04 343.0 < 0.001 < 0.001 

Superior-Inferior 0.07 0.04 3.0 < 0.001 < 0.001 
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Figure 8.1 Box plot of lens thickness according to location. CLT (Central Lens Thickness) Inferiorly (I), Superiorly 
(S), Nasally (N) and Temporally (T). 

 

8.4 Discussion 

At 1 mm of eccentricity, the crystalline lens exhibited notable asymmetry, with the temporal 

side measuring 0.03 ± 0.04 mm thicker than the nasal side and the superior aspect 

measuring 0.07 ± 0.04 mm thicker than the inferior aspect. These observations of regional 

peripheral differences have not been documented previously. For instance, Ortiz, Pérez-

Merino et al. (2012) developed 3D models of the crystalline lens using OCT images; 

however, their study did not assess differences in peripheral thickness along the same 

meridian at identical eccentricities. Their findings indicated that the lens surface could be 

well described by symmetric conoids with deviations from perfect symmetry being minimal 

(on the order of microns) (Ortiz, Pérez-Merino et al. 2012). Similarly, a study reported that 

the ratio of lens equatorial diameter to axial thickness remains relatively constant 

(approximately 2.1 in younger subjects, decreasing to 2.0 with age), suggesting a uniformly 

expanding and symmetric lens structure (Rosen, Denham et al. 2006). 

Several hypotheses may account for the observed peripheral asymmetry: 

1) Measurement Error: Although measurement error is always a consideration, the 
Anterion OCT has demonstrated high repeatability (Schiano-Lomoriello, Hoffer et al. 

2021). Nonetheless, the inability to cross-validate with an additional machine means 
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that an undetected systematic error cannot be entirely ruled out, even if the Anterior 

needs to be calibrated every time is turned on. 

2) Head Positioning and Instrument Alignment: The configuration of the chinrest and 
forehead rest may induce a slight head tilt, potentially causing a corresponding tilt in 

the lens during measurement. This positional adjustment might contribute to the 

apparent differences in lens thickness. 

3) Convergence Effects: The proximity of the fixation target—located only a few 
centimeters away—could induce convergence. A previous work suggests that 

convergence is accompanied by a slight downward rotation of the eye, which might 

manifest as the observed asymmetry in thickness (Enright 1989). 

4) Accommodation-Induced Changes: The close distance between the eye and the 
instrument may provoke a minor degree of accommodation. It has been well 

documented that accommodative changes are not entirely symmetric. It is well 

documented that the anterior lens surface tends to become more convex than the 

posterior surface during accommodation (Koretz, Cook et al. 2002, Esteve-Taboada, 

Domínguez-Vicent et al. 2017, Gibson, Cruickshank et al. 2018); the posterior 

surface of the lens tends to show less change on the vertical meridian than on the 

horizontal one (Leng, Yuan et al. 2014). An analysis of higher-order aberrations 

during accommodation confirmed the asymmetry between anterior and posterior 

lenticular changes in terms of curvature (Yuan, Shao et al. 2013). The asymmetry 

measured during accommodation has never been reported along a single meridian 

but only across meridians. 

5) Differential Zonular Tension and Biomechanical Variability: Variations in the 
distribution and mechanical properties of the zonular fibers may produce differential 

tension across the lens capsule. A study found that the biomechanical forces exerted 

by the zonules influence lens shape and could lead to localized differences in 

thickness (Koretz and Handelman 1982). This hypothesis suggests that regional 

disparities in zonular insertion or tension, potentially due to subtle variations in ciliary 

muscle activity, may contribute to the asymmetric peripheral measurements. 

6) Intrinsic Anatomical Variation: The asymmetry may represent an intrinsic 
anatomical feature that has not been previously described. This stable variation, 

potentially compensated by neural mechanisms to mitigate image degradation from 

high-order aberrations (Chen, Artal et al. 2007, Sabesan and Yoon 2010), might also 

be influenced by the natural orientation of human orbits—which typically point 

temporally to optimize peripheral vision. While this could explain discrepancies along 

the horizontal meridian, it does not fully account for the vertical differences. 
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To further elucidate the underlying mechanisms and clinical implications, several strategies 

for future investigation are recommended: 

- Multi-Device Validation: Employing additional OCT systems to corroborate the 
reproducibility of these measurements can help rule out instrument-specific biases. 

- Optimizing Patient Positioning and Open Field OCT: Investigating alternative 
chinrest designs and open field OCT systems (currently not available) may reduce 

the constraints imposed by conventional head stabilization, thereby mitigating 

potential measurement biases associated with head tilt and effects of ocular 

accommodation and near fixation. Although there is limited published evidence 

directly addressing this modification, the approach could offer a more natural viewing 

environment and improved accuracy. 

- Enhanced Imaging Techniques: Utilizing advanced imaging modalities (e.g., high-
resolution ultrasound biomicroscopy or MRI) may provide more detailed assessments 

of zonular fibres distribution and lens capsule integrity. 

- Accommodation Control: Future studies could incorporate cycloplegic protocols or 
controlled fixation distances to minimize accommodative effects during 

measurement. 

8.5 Conclusions 

This chapter has demonstrated that the peripheral thickness of the human crystalline lens 

exhibits significant asymmetry, with the temporal and superior regions displaying greater 

thickness compared to the nasal and inferior regions, respectively. These observations 

challenge the conventional assumption of radial symmetry and underscore the importance of 

considering regional variations in lens morphology. 

The potential benefits of these insights are multifaceted. Clinically, recognizing and 

quantifying peripheral lens asymmetries could enhance the precision of intraocular lens 

(IOL) power calculations and improve outcomes in refractive surgery. Furthermore, these 

findings may contribute to a better understanding of accommodative dynamics and 

presbyopia development, leading to more targeted therapeutic interventions. From a 

research perspective, the demonstration of subtle regional differences prompts a 

reevaluation of current biomechanical models of the lens and may inform the design of future 

optical imaging studies. 
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Further studies are needed to understand the nature of the differences in terms of lenticular 

thickness along the same meridians at the same eccentricity. The use of different OCTs, 

different setup of forehead rest and chinrest or the use of an open field OCT (not 

commercially available right now) could help clarifying the unexpected findings. 
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9 Summary and Future Work 

9.1 Summary of Findings 

Despite ocular biomechanics only recently becoming quantifiable in clinical settings, 

substantial progress has been made over the past 20 years. This field has seen remarkable 

technological advancements and has rapidly expanded, establishing itself as a significant 

area of study in optometry and ophthalmology. At present, three distinct instruments are 

commercially available; however, their outputs are not directly comparable, as each device 

assesses different biomechanical properties. The Ocular Response Analyzer measures 

corneal viscoelasticity, the Corvis ST evaluates parameters related to air-puff-induced 

deformation, and the BOSS quantifies the Brillouin modulus, which reflects the longitudinal 

elastic modulus and may thus be interpreted as an index of corneal stiffness. This diversity 

in instrumentation underscores the complexity and multifaceted nature of ocular 

biomechanics, which necessitates a comprehensive approach to fully understand its 

implications. 

The increasing accessibility to machine learning algorithms and computational power has 

naturally led to the integration of ocular biomechanics data with supervised machine learning 

algorithms for detecting and diagnosing ocular pathologies. Chapter 2 demonstrated that 

even traditional indices measured by the Corvis ST could reveal alterations in corneal 

biomechanics. When these indices are properly combined with a robust algorithm, they can 

detect keratoconus with a high degree of accuracy. This achievement highlights the potential 

for machine learning to enhance diagnostic precision and offers a promising avenue for early 

detection of this condition. While the performance in detecting POAG was lower compared to 

keratoconus detection, it was still noteworthy, indicating room for further refinement and 

optimisation of the algorithms. Such refinement could lead to an improvement in pathology 

detection, that could possibly reach accuracy of the other methods that are currently used to 

screen for keratoconus of POAG. The superior performance of the Corvis ST compared to 

the ORA can be attributed to the larger number of indices it measures, providing a broader 

range of features for characterisation and quantification, thus offering more detailed insights 

into corneal biomechanics. 

Having established that keratoconus and POAG can be detected using machine learning 

algorithms, attention shifted to the potential confusion keratoconus alterations might cause in 

a classifier designed to differentiate various types of glaucoma (POAG, NTG, and OHT) from 
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healthy subjects. Using Orange Data Mining software facilitated the rapid development of a 

pipeline where models were trained, optimised, and tested with data from patients with 

keratoconus but without glaucoma. Findings suggest that keratoconus alterations could 

indeed confound a glaucoma screening tool. This underscores the importance of developing 

more sophisticated models that can accurately distinguish between different ocular 

conditions, ensuring that diagnostic tools are both sensitive and specific. 

Chapter 4 assessed the repeatability of BOSS measurements, revealing that the Brillouin 

modulus exhibits excellent repeatability in the crystalline lens, on the contrary repeatability of 

corneal measurements is low, due to the fewer points measured along the z axis. High 

repeatability is crucial for ensuring consistent and reliable data, which is fundamental for 

both clinical practice and research. 

Chapter 5 demonstrated that the Brillouin modulus is a novel parameter that does not 

correlate with any indices measured by other devices, indicating that BOSS data are distinct 

from other corneal biomechanical data or from OCT data about lens thickness. This finding 

is significant as it suggests that the Brillouin modulus provides unique information about the 

biomechanical properties of the eye, which could lead to new insights and potentially new 

diagnostic criteria. 

Age-related analysis in Chapter 6 revealed an unexpected finding: the Brillouin modulus 

decreases with age, suggesting that the lens becomes softer over time. This finding is 

contrary to expectations for presbyopia, where lens thickening in the central region 

counteracts lens softening, leading to presbyopia. Lens growth was confirmed with both 

BOSS and OCT measurements. These results indicate that while the lens becomes softer 

with age, its overall thickness increases, which complicates the biomechanical 

understanding of presbyopia and calls for a reassessment of existing theories. 

Chapter 7 highlighted the importance of considering corneal biomechanics as a biomarker 

for myopia onset and progression, especially considering stress-strain index (SSI) that is 

independent from IOP measurement. The findings suggest that changes in corneal 

biomechanics may precede or accompany the development of myopia, making it a valuable 

target for early intervention strategies. Furthermore, the chapter underscores the need to 

develop new technologies to quantify scleral biomechanics, as the sclera plays a critical role 

in the structural integrity of the eye and may significantly influence myopia progression. 

Chapter 8 reported an unexpected finding not reported in literature before: along the same 

meridian (vertical or horizontal), at the same distance from the centre of the crystalline lens 
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(1 mm), the thickness varies. Along the vertical meridian, the lens is thicker in the superior 

portion than in the inferior; along the horizontal meridian, it is thicker in the temporal portion 

than in the nasal portion. This anisotropy in lens thickness could have important implications 

for understanding the biomechanics of the lens and its role in visual function, and it may 

influence the development of new optical models and correction strategies. 

In summary, the advancements in ocular biomechanics over the past two decades have 

been significant, driven by technological innovation and the integration of machine learning. 

These developments have not only improved our understanding of ocular biomechanics but 

also opened new avenues for diagnosing and managing ocular pathologies, ultimately 

enhancing patient care. 

 

9.2 Future Research 

The fourth industrial revolution and the development of more complex and powerful neural 

networks will provide even more advanced tools for the early detection and prompt 

management of ocular pathologies. Future research should address some limitations of the 

studies presented in this thesis. 

Firstly, it is essential to train all models with the updated indices from all available machines, 

including data from the BOSS. While BOSS has proven effective in detecting keratoconus 

alterations, no studies have yet explored its application to glaucoma alterations. Investigating 

the confounding factors due to KC in a screening tool developed for glaucoma would benefit 

from these updated indices. Moreover, optimising machine learning algorithms, such as 

SVM, MLP classifiers, Decision Trees, and Random Forests, is crucial. These algorithms 

were not trained in the present work because the optimisation using Orange Data Mining 

must be done manually and it is extremely inefficient and time-consuming. Despite this, 

Orange Data Mining is a powerful learning tool and should be included in undergraduate 

programmes to educate the next generation of clinicians. These clinicians must have the 

knowledge to interact with and interpret AI tools, which will become increasingly predominant 

in healthcare. 

Intelon, the company that manufactures BOSS, recently communicated that modifications 

were made to the measurement process. The system now scans more than 3 to 5 points per 

location, as the steps between points on the z-axis were modified to increase accuracy. 
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Additionally, the depth of the scan for the cornea will soon be reduced from 8 mm to 2 mm, 

allowing for faster measurement, which is crucial for patient comfort. These changes are 

expected to enhance repeatability and improve the ability to recognise alterations. 

The next step in research will be the study of scleral biomechanics to evaluate the effect of 

scleral rigidity on glaucoma, keratoconus, and the development of refractive errors. This 

exploration is vital for understanding the broader biomechanical properties of the eye and 

their implications for various ocular conditions. 
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11 Appendix 

11.1 General Version of the ML Code 
# Import libraries 
import pandas as pd 
import numpy as np 
from sklearn.model_selection import train_test_split, RandomizedSearchCV, 
GridSearchCV, cross_val_score 
from sklearn.preprocessing import StandardScaler, LabelEncoder 
from sklearn.neural_network import MLPClassifier 
from sklearn.ensemble import RandomForestClassifier 
from sklearn.svm import SVC 
from sklearn.linear_model import LogisticRegression 
from sklearn.naive_bayes import GaussianNB 
from sklearn.tree import DecisionTreeClassifier 
from sklearn.metrics import accuracy_score, f1_score, precision_score, 
confusion_matrix, roc_auc_score, roc_curve 
from scipy.stats import f_oneway, uniform, randint 
import matplotlib.pyplot as plt 
import warnings 
from sklearn.exceptions import ConvergenceWarning 
import time 

 

# Function to calculate metrics and create ROC 
def calculate_metrics_and_plot_roc(model, X_test_scaled, y_test, 
title=None, save_as=None): 
    # Calculate predictions and probabilities 
    y_pred = model.predict(X_test_scaled) 
    y_pred_proba = model.predict_proba(X_test_scaled)[:, 1] 
 
    # Evaluation metrics 
    accuracy = accuracy_score(y_test, y_pred) 
    f1 = f1_score(y_test, y_pred) 
    precision = precision_score(y_test, y_pred) 
    auc = roc_auc_score(y_test, y_pred_proba) 
 
    # Confusion matrix 
    confusionMatrix = confusion_matrix(y_test, y_pred) 
    TN = confusionMatrix[1, 1] 
    TP = confusionMatrix[0, 0] 
    FP = confusionMatrix[0, 1] 
    FN = confusionMatrix[1, 0] 
 
    # Sensitivity and specificity 
    sensitivity = TP / float(FN + TP) if FN + TP != 0 else 0 
    specificity = TN / float(TN + FP) if TN + FP != 0 else 0 
 
    # Metrics printing 
    print('Accuracy: ', accuracy) 
    print('F1 Score: ', f1) 
    print('Precision: ', precision) 
    print('AUC: ', auc) 
    print('Sensitivity: ', sensitivity) 
    print('Specificity: ', specificity) 
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    print('Confusion Matrix: ', confusionMatrix) 
     
    # ROC calculation 
    fpr, tpr, thresholds = roc_curve(y_test, y_pred_proba) 
 
    # Plot ROC 
    plt.figure() 
    plt.plot(fpr, tpr, label='ROC curve (area = %0.2f)' % auc) 
    plt.plot([0, 1], [0, 1], 'k--') 
    plt.xlim([0.0, 1.0]) 
    plt.ylim([0.0, 1.05]) 
    plt.xlabel('False Positive Rate') 
    plt.ylabel('True Positive Rate') 
    plt.title(title if title else 'Receiver Operating Characteristic') 
    plt.legend(loc="lower right") 
    if save_as: 
        plt.savefig(save_as) 
    plt.show() 
    plt.close() 
     
    # return the metrics calculated and roc curve data 
    return { 
        'accuracy': accuracy, 
        'f1': f1, 
        'precision': precision, 
        'auc': auc, 
        'sensitivity': sensitivity, 
        'specificity': specificity, 
        'fpr': fpr, 
        'tpr': tpr 
    } 

 

#Function to merge together ROC curves 
def plot_combined_roc(roc_data, title, save_as=None): 
    plt.figure(figsize=(10, 8)) 
    for fpr, tpr, auc_value, label in roc_data: 
        plt.plot(fpr, tpr, label=f'(Antonacci, Beck et al.) (AUC = 
{auc_value:.2f})') 
    plt.plot([0, 1], [0, 1], 'k--', lw=2) 
    plt.xlim([0.0, 1.0]) 
    plt.ylim([0.0, 1.05]) 
    plt.xlabel('False Positive Rate') 
    plt.ylabel('True Positive Rate') 
    plt.title(title) 
    plt.legend(loc="lower right") 
    if save_as: 
        plt.savefig(save_as) 
    plt.show() 

 

# Load dataset 
data = pd.read_excel('normal_kc_CST.xlsx') 
 
# Delete columns 'no' 
data_cleaned = data.drop(columns=['no']) 
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# Separation between features (X) and target (y) 
X = data_cleaned.drop(columns=['DIAGNOSIS']) 
y = data_cleaned['DIAGNOSIS'] 
 
# Labelling ('Normal' a 0 e 'KC' a 1) 
le = LabelEncoder() 
y = le.fit_transform(y) 
 
# Creation of train and test sets (80% addestramento, 20% test) 
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, 
random_state=42, stratify=y) 
 
# Features normalisation 
scaler = StandardScaler() 
X_train_scaled = scaler.fit_transform(X_train) 
X_test_scaled = scaler.transform(X_test) 
 
#Convert to DataFrame to retain features names 
X_train_scaled = pd.DataFrame(X_train_scaled, columns=X_train.columns) 
X_test_scaled = pd.DataFrame(X_test_scaled, columns=X_test.columns) 

 

# Models and parameters definition for RandomSearch and GridSearch 
models_params = { 
    'NaiveBayes': { 
        'model': GaussianNB(), 
        'params_grid': {}, 
        'params_dist': {} 
    }, 
    'LogisticRegression': { 
        'model': LogisticRegression(random_state=42), 
        'params_grid':[  
            {'C': [0.001, 0.01, 0.1, 1, 10, 100, 1000], 'solver': ['newton-
cg', 'lbfgs'], 'penalty': ['l2']}, 
            {'C': [0.001, 0.01, 0.1, 1, 10, 100, 1000], 'solver': 
['liblinear'], 'penalty': ['l1', 'l2']}, 
            {'C': [0.001, 0.01, 0.1, 1, 10, 100, 1000], 'solver': ['saga'], 
'penalty': ['l1', 'l2']}, 
        ], 
        'params_dist':[  
            {'C': np.logspace(-3, 2, num=100), 'solver': ['newton-cg', 
'lbfgs'], 'penalty': ['l2']}, 
            {'C': np.logspace(-3, 2, num=100), 'solver': ['liblinear'], 
'penalty': ['l1', 'l2']}, 
            {'C': np.logspace(-3, 2, num=100), 'solver': ['saga'], 
'penalty': ['l1', 'l2']}, 
        ], 
    }, 
    'SVM': { 
        'model': SVC(random_state=42, probability=True), 
        'params_grid': { 
            'C': [0.001, 0.01, 0.1, 1, 10, 100, 1000], 
            'gamma': ['scale', 'auto', 0.001, 0.01, 0.1, 1, 10, 100], 
            'kernel': ['linear', 'rbf', 'poly', 'sigmoid'], 
        }, 
        'params_dist': { 
            'C': uniform(0.1, 10),                



G. Civiero, PhD Thesis, Aston University, 2024 

203 

 

            'kernel': ['linear', 'rbf', 'poly', 'sigmoid'],               
            'gamma': ['scale', 'auto'] + list(np.logspace(-3, 3, 5)),   
        } 
    }, 
    'DecisionTree': { 
        'model': DecisionTreeClassifier(random_state=42), 
        'params_dist': { 
            'criterion': ['gini', 'entropy'], 
            'splitter': ['best', 'random'], 
            'max_depth': [None, 10, 20, 30, 40, 50], 
            'min_samples_split': [2, 5, 10], 
            'min_samples_leaf': [1, 2, 4] 
        }, 
        'params_grid': { 
            'criterion': ['gini', 'entropy'], 
            'splitter': ['best', 'random'], 
            'max_depth': [None, 10, 20, 30, 40, 50], 
            'min_samples_split': [2, 5, 10], 
            'min_samples_leaf': [1, 2, 4] 
        } 
    }, 
    'RandomForest': { 
        'model': RandomForestClassifier(random_state=42), 
        'params_grid': { 
            'n_estimators': [50, 100, 200], 
            'max_depth': [None, 10, 20, 30], 
            'min_samples_split': [2, 5, 10], 
            'min_samples_leaf': [1, 2, 4] 
        }, 
        'params_dist': { 
            'n_estimators': range(10, 500), 
            'max_depth': range(1, 100), 
            'min_samples_split': range(2, 50), 
            'min_samples_leaf': range(2,20) 
        } 
    }, 
    'MLPClassifier': { 
        'model': MLPClassifier(random_state=42), 
        'params_grid': { 
            'hidden_layer_sizes': [(50,), (100,), (50, 50), (100, 100)], 
            'activation': ['relu', 'tanh', 'logistic', 'identity'], 
            'solver': ['adam', 'sgd'], 
            'learning_rate_init': [0.01, 0.001, 0.0001], 
            'max_iter': [200, 300, 400] 
        }, 
        'params_dist': { 
            'hidden_layer_sizes': [(i,) for i in range(10, 200)], 
            'activation': ['relu', 'tanh', 'logistic', 'identity'], 
            'solver': ['adam', 'sgd'], 
            'learning_rate': ['constant', 'adaptive'], 
            'learning_rate_init': np.logspace(-4, -1, num=100), 
            'max_iter': range(100, 500) 
        } 
    }    
} 

 

# Performances dictionary initialisation with a low value 
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best_overall_score = -np.inf 
best_overall_params = None 
best_overall_model_name = None 
best_overall_model = None 

 

# Function to calculate best hyperparameters, train and test  
def safe_set_params(model, params): 
    try: 
        return model.set_params(**params) 
    except ValueError: 
        return model 
 
performance_dict = {} 
time_random_search = {} 
time_grid_search = {} 
 
roc_data_grid = [] 
roc_data_random = [] 
 
for model_name, model_params in models_params.items(): 
    print(f"\n{model_name}") 
 
    if model_params['params_dist']: 
        start_time = time.time() 
        random_search = RandomizedSearchCV(model_params['model'], 
                                           
param_distributions=model_params['params_dist'], n_iter=50, 
                                           n_jobs=-1, cv=10, 
random_state=42, scoring='roc_auc') 
        try: 
            random_search_result = random_search.fit(X_train_scaled, 
y_train) 
            print("Best score using RandomSearch: %f using %s" % 
(random_search_result.best_score_, 
                                                              
random_search_result.best_params_)) 
            end_time = time.time() 
            elapsed_time = end_time - start_time 
            time_random_search[model_name] = elapsed_time 
 
            model_random_search = safe_set_params(model_params['model'], 
random_search_result.best_params_) 
            model_random_search.fit(X_train_scaled, y_train) 
 
            print('Metrics for the model trained with the best 
hyperparameters from RandomSearch:') 
            title_random = f"ROC for {model_name} (Random Search)" 
            metrics_random = 
calculate_metrics_and_plot_roc(model_random_search, X_test_scaled, y_test, 
                                                            
title=title_random, save_as=f"{model_name}_RandomSearch_ROC.png") 
            roc_data_random.append((metrics_random['fpr'], 
metrics_random['tpr'], metrics_random['auc'], title_random)) 
             
            model_random_key = model_name + "_random" 
            performance_dict[model_random_key] = { 
                'score': random_search_result.best_score_, 
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                'params': random_search_result.best_params_, 
                **metrics_random 
            } 
            performance_dict[model_random_key]['model'] = 
model_random_search 
        except Exception as e: 
            logging.error(f"Error during RandomizedSearchCV for 
{model_name}: {e}") 
 
    try: 
        start_time = time.time() 
        grid_search = GridSearchCV(model_params['model'], 
param_grid=model_params['params_grid'],  
                                   n_jobs=-1, cv=10, scoring='roc_auc') 
        grid_search_result = grid_search.fit(X_train_scaled, y_train) 
        print("Best score using GridSearch: %f using %s" % 
(grid_search_result.best_score_,  
                                                            
grid_search_result.best_params_)) 
        end_time = time.time() 
        elapsed_time = end_time - start_time 
        time_grid_search[model_name] = elapsed_time 
 
        model_grid_search = safe_set_params(model_params['model'], 
grid_search_result.best_params_) 
        model_grid_search.fit(X_train_scaled, y_train) 
        print('Metrics for the model trained with the best hyperparameters 
from GridSearch:') 
        title_grid = f"ROC for {model_name} (Grid Search)" 
        metrics_grid = calculate_metrics_and_plot_roc(model_grid_search, 
X_test_scaled, y_test, title=title_grid, 
save_as=f"{model_name}_GridSearch_ROC.png") 
        roc_data_grid.append((metrics_grid['fpr'], metrics_grid['tpr'], 
metrics_grid['auc'], title_grid)) 
     
        model_grid_key = model_name + "_grid" 
        performance_dict[model_grid_key] = { 
            'score': grid_search_result.best_score_, 
            'params': grid_search_result.best_params_, 
            **metrics_grid 
        } 
        performance_dict[model_grid_key]['model'] = model_grid_search  # 
Salva il modello addestrato qui 
    except Exception as e: 
        logging.error(f"Error during GridSearchCV for {model_name}: {e}") 
 
plot_combined_roc(roc_data_grid, title="Combined ROC for Grid Search ", 
save_as="Combined_GridSearch_ROC.png") 
plot_combined_roc(roc_data_random, title="Combined ROC for Randomized 
Search", save_as="Combined_RandomSearch_ROC.png") 

 

# Creation of performances table 
df = pd.DataFrame.from_dict(performance_dict, orient='index') 
df['Time Random Search'] = df.apply(lambda row: 
time_random_search[row.name.replace('_random', '')] if '_random' in 
row.name else None, axis=1) 
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df['Time Grid Search'] = df.apply(lambda row: 
time_grid_search[row.name.replace('_grid', '')] if '_grid' in row.name else 
None, axis=1) 
 
# save to excel 
df.to_excel('performance_results.xlsx') 

 

# Update the best_overall_model after RandomSearchCV 
if random_search_result.best_score_ > best_overall_score: 
    best_overall_score = random_search_result.best_score_ 
    best_overall_params = random_search_result.best_params_ 
    best_overall_model_name = model_name + " (Random Search)" 
    best_overall_model = model_random_search 
 
# Update the best_overall_model after GridSearchCV 
if grid_search_result.best_score_ > best_overall_score: 
    best_overall_score = grid_search_result.best_score_ 
    best_overall_params = grid_search_result.best_params_ 
    best_overall_model_name = model_name + " (Grid Search)" 
    best_overall_model = model_grid_search 

 

#Print best model during learning 
print(f"The best model during learning is {best_overall_model_name} 
 with a score of {best_overall_score:.4f}.") 
print(f"The best hyperparameters are: {best_overall_params}") 

 

best_test_auc = 0 
best_test_auc_model_key = None 
for model_key, performance in performance_dict.items(): 
    if performance['auc'] > best_test_auc: 
        best_test_auc = performance['auc'] 
        best_test_auc_model_key = model_key 
 
print(f"The model with the best AUC score on test set is 
{best_test_auc_model_key} with a score of {best_test_auc:.4f}") 

 

# Load libraries for PFI 
from sklearn.inspection import permutation_importance 
import matplotlib.pyplot as plt 
import seaborn as sns 
 
# Exctract the best model 
best_model = performance_dict[best_test_auc_model_key]['model'] 
 
# Calculate Permutation Feature Importance 
result = permutation_importance(best_model, X_test_scaled, y_test, 
n_repeats=10, random_state=42, n_jobs=-1, scoring='roc_auc') 
 
# Extract importance feature 
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importances = result.importances_mean 
std_devs = result.importances_std 
features = X_test.columns 
 
# Create a dataframe with importance feature 
importance_df = pd.DataFrame({ 
    'Feature': features, 
    'Importance': importances, 
    'Std Dev': std_devs 
}) 
 
# Print the DataFrame 
print(importance_df) 
 
# Plot feature importances with error bars 
plt.figure(figsize=(10, 6)) 
sns.barplot(x='Importance', y='Feature', data=importance_df, xerr=std_devs, 
capsize=0.2) 
plt.title('Permutation Feature Importances with Confidence Intervals') 
 
plt.savefig('permutation_feature_importances.png') 
 
plt.show() 

 

#import libraries for SHAP 
import shap 
 
# extract the best model 
best_model = performance_dict[best_test_auc_model_key]['model'] 
 
print(best_model) 
 
original_column_names = X_test.columns 
 
if not isinstance(X_test_scaled, pd.DataFrame): 
    X_test_scaled = pd.DataFrame(X_test_scaled, 
columns=original_column_names) 
 
#define classes 
class_names = ["Normal", "KC"] 
 
# Stratif distribution 
if len(X_test_scaled) > 100: 
    X_subset, _, y_subset, _ = train_test_split(X_test_scaled, y_test, 
test_size=len(X_test_scaled)-100, stratify=y_test, random_state=42) 
else:     
    X_subset = X_test_scaled 
    y_subset = y_test 
 
# Calculate SHAP values 
background = shap.sample(X_train_scaled, 100) if len(X_train_scaled) > 100 
else X_train_scaled 
 
# Create an explainer using KernelExplainer 
explainer = shap.KernelExplainer(best_model.predict_proba, background, 
columnn_jobs=-1) 
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# Compute SHAP values on test set. Note that you might need to use a subset 
of test set, as KernelExplainer can be slow. 
shap_values = explainer.shap_values(X_subset[:100]) 

 

# Display the summary plot 
shap.summary_plot(shap_values, X_subset, show=False) 
plt.title("Impact of each predictor on output") 
plt.savefig('summary_plot.png') 
plt.show() 
 
# Display the scatter plot  
shap.summary_plot(shap_values[1], X_subset[:100], plot_type="dot", 
show=False) 
plt.title("Effect of each predictor on KC prediction") 
plt.savefig('summary_scattered_plot_2.png') 
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11.2 Results ML to detect KC and POAG 

11.2.1 KC 

11.2.1.1 Corvis 

 

Table 11.1 Corvis ST considering CCT 

Algorithm Learning 
Score 

Accuracy F1 Precision AUROC Sensitivity Specificity Time 

NaiveBayes_grid 0.908 0.875 0.915 0.942 0.957 0.704 0.942 15.9 
LogisticRegression_random 0.915 0.927 0.952 0.946 0.977 0.864 0.946 2.3 
LogisticRegression_grid 0.914 0.938 0.959 0.947 0.977 0.905 0.947 1.1 

SVM_random 0.947 0.938 0.959 0.959 0.990 0.870 0.959 4.3 
SVM_grid 0.949 0.938 0.959 0.947 0.987 0.905 0.947 224.0 

DecisionTree_random 0.890 0.885 0.922 0.956 0.917 0.714 0.956 1.9 
DecisionTree_grid 0.896 0.927 0.952 0.958 0.921 0.833 0.958 3.7 

RandomForest_random 0.958 0.938 0.959 0.959 0.980 0.870 0.959 71.6 
RandomForest_grid 0.962 0.938 0.959 0.959 0.980 0.870 0.959 73.0 

MLPClassifier_random 0.943 0.958 0.973 0.973 0.975 0.913 0.973 47.6 
MLPClassifier_grid 0.952 0.938 0.958 0.972 0.970 0.840 0.972 419.3 

 

Table 11.2 Corvis ST excluding CCT 

Algorithm Learning 
Score 

Accuracy F1 Precision AUROC Sensitivity Specificity Time 

NaiveBayes_grid 0.889 0.854 0.903 0.915 0.945 0.680 0.915 20.6 
LogisticRegression_random 0.915 0.906 0.940 0.921 0.952 0.850 0.921 2.7 
LogisticRegression_grid 0.916 0.906 0.940 0.921 0.971 0.850 0.921 1.2 

SVM_random 0.949 0.917 0.945 0.945 0.983 0.826 0.945 4.4 
SVM_grid 0.948 0.917 0.945 0.945 0.985 0.826 0.945 161.5 

DecisionTree_random 0.907 0.885 0.921 0.970 0.938 0.700 0.970 1.9 
DecisionTree_grid 0.907 0.885 0.921 0.970 0.938 0.700 0.970 4.0 

RandomForest_random 0.953 0.896 0.931 0.944 0.977 0.760 0.944 61.1 
RandomForest_grid 0.959 0.938 0.959 0.947 0.983 0.905 0.947 66.6 

MLPClassifier_random 0.952 0.917 0.944 0.958 0.984 0.800 0.958 44.0 
MLPClassifier_grid 0.953 0.927 0.951 0.971 0.946 0.808 0.971 346.7 
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11.2.1.2 ORA 

 

Table 11.3 ORA including CCT 

Algorithm Learning 
Score 

Accuracy F1 Precision AUROC Sensitivity Specificity Time 

NaiveBayes_grid 0.908 0.905 0.943 0.904 0.947 0.909 0.904 19.2 
LogisticRegression_random 0.887 0.857 0.917 0.857 0.904 0.857 0.857 1.9 
LogisticRegression_grid 0.888 0.893 0.936 0.892 0.905 0.900 0.892 1.0 
DecisionTree_random 0.899 0.893 0.934 0.914 0.824 0.786 0.914 1.4 
DecisionTree_grid 0.900 0.821 0.885 0.906 0.828 0.550 0.906 3.0 

RandomForest_random 0.923 0.893 0.936 0.892 0.829 0.900 0.892 60.9 
RandomForest_grid 0.924 0.893 0.936 0.892 0.828 0.900 0.892 69.4 

MLPClassifier_random 0.909 0.905 0.943 0.904 0.845 0.909 0.904 43.1 
MLPClassifier_grid 0.907 0.905 0.943 0.904 0.904 0.909 0.904 307.8 

 

Table 11.4 ORA excluding CCT 

Algorithm Learning 
Score 

Accuracy F1 Precision AUROC Sensitivity Specificity Time 

NaiveBayes_grid 0.878 0.881 0.929 0.890 0.894 0.818 0.890 20.0 
LogisticRegression_random 0.857 0.857 0.917 0.857 0.842 0.857 0.857 2.0 
LogisticRegression_grid 0.857 0.857 0.915 0.867 0.845 0.778 0.867 0.9 
DecisionTree_random 0.872 0.845 0.902 0.909 0.767 0.611 0.909 1.5 
DecisionTree_grid 0.880 0.833 0.896 0.896 0.758 0.588 0.896 3.2 

RandomForest_random 0.883 0.869 0.923 0.868 0.782 0.875 0.868 67.4 
RandomForest_grid 0.883 0.869 0.923 0.868 0.766 0.875 0.868 65.0 

MLPClassifier_random 0.889 0.857 0.914 0.877 0.718 0.727 0.877 33.1 
MLPClassifier_grid 0.893 0.845 0.908 0.865 0.772 0.700 0.865 294.8 

 

11.2.2 POAG 

11.2.2.1 Corvis ST 
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Table 11.5 Corvis ST including Central Corneal Thickness and IOP 

 

Table 11.6 Corvis ST including Central Corneal Thickness, but not IOP 

 

Table 11.7 Corvis ST including IOP, but not Central Corneal Thickness 
 

Learning 
Score 

accuracy f1 precision auc sensitivity specificity Time 

NaiveBayes_grid 0.795 0.691 0.464 0.591 0.773 0.720 0.591 16.5 
LogisticRegression_random 0.837 0.691 0.583 0.553 0.772 0.780 0.553 2.1 
LogisticRegression_grid 0.837 0.691 0.583 0.553 0.773 0.780 0.553 1.1 

SVM_random 0.885 0.784 0.727 0.651 0.830 0.889 0.651 7.3 

 
Learning 
Score 

accuracy f1 precision auc sensitivity specificity Time 

NaiveBayes_grid 0.801 0.701 0.491 0.609 0.779 0.730 0.609 17.8 
LogisticRegression_random 0.839 0.680 0.563 0.541 0.759 0.767 0.541 2.5 
LogisticRegression_grid 0.840 0.680 0.587 0.537 0.758 0.786 0.537 1.3 

SVM_random 0.889 0.763 0.676 0.649 0.824 0.833 0.649 7.8 
SVM_grid 0.894 0.753 0.676 0.625 0.830 0.842 0.625 327.2 

DecisionTree_random 0.791 0.691 0.595 0.550 0.746 0.789 0.550 1.6 
DecisionTree_grid 0.791 0.691 0.595 0.550 0.746 0.789 0.550 3.6 

RandomForest_random 0.892 0.701 0.613 0.561 0.803 0.804 0.561 71.5 
RandomForest_grid 0.896 0.711 0.622 0.575 0.796 0.807 0.575 78.6 

MLPClassifier_random 0.881 0.753 0.667 0.632 0.803 0.831 0.632 49.9 
MLPClassifier_grid 0.888 0.784 0.720 0.659 0.807 0.875 0.659 396.3 

 
Learning 
Score 

accuracy f1 precision auc sensitivity specificity Time 

NaiveBayes_grid 0.811 0.701 0.491 0.609 0.777 0.730 0.609 20.9 
LogisticRegression_random 0.818 0.691 0.545 0.563 0.716 0.754 0.563 2.3 
LogisticRegression_grid 0.819 0.691 0.545 0.563 0.718 0.754 0.563 1.2 

SVM_random 0.884 0.763 0.685 0.641 0.808 0.845 0.641 7.5 
SVM_grid 0.885 0.773 0.703 0.650 0.809 0.860 0.650 254.9 

DecisionTree_random 0.806 0.660 0.522 0.514 0.690 0.742 0.514 1.4 
DecisionTree_grid 0.806 0.660 0.522 0.514 0.690 0.742 0.514 3.4 

RandomForest_random 0.891 0.711 0.611 0.579 0.803 0.797 0.579 62.9 
RandomForest_grid 0.895 0.701 0.613 0.561 0.803 0.804 0.561 72.0 

MLPClassifier_random 0.876 0.742 0.667 0.610 0.805 0.839 0.610 41.5 
MLPClassifier_grid 0.871 0.753 0.684 0.619 0.791 0.855 0.619 326.1 
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SVM_grid 0.891 0.784 0.727 0.651 0.831 0.889 0.651 245.6 
DecisionTree_random 0.808 0.701 0.603 0.564 0.699 0.793 0.564 1.3 
DecisionTree_grid 0.808 0.722 0.597 0.606 0.736 0.781 0.606 3.1 

RandomForest_random 0.892 0.732 0.629 0.611 0.811 0.803 0.611 62.2 
RandomForest_grid 0.892 0.742 0.658 0.615 0.822 0.828 0.615 69.4 

MLPClassifier_random 0.885 0.763 0.685 0.641 0.823 0.845 0.641 45.3 
MLPClassifier_grid 0.890 0.773 0.694 0.658 0.811 0.847 0.658 300.1 

 

Table 11.8 Corvis ST excluding IOP and Central Corneal Thickness 

 

11.2.2.2 ORA 
Table 11.9 ORA including IOP and Central Corneal Thickness 

 
Learning 
score 

accuracy f1 precision auc sensitivity specificity Time 

NaiveBayes_grid 0.774 0.841 0.683 0.636 0.858 0.917 0.636 14.0 
LogisticRegression_random 0.789 0.866 0.686 0.750 0.892 0.894 0.750 1.8 
LogisticRegression_grid 0.789 0.866 0.686 0.750 0.893 0.894 0.750 0.9 
DecisionTree_random 0.720 0.768 0.537 0.500 0.701 0.867 0.500 1.4 
DecisionTree_grid 0.720 0.768 0.537 0.500 0.701 0.867 0.500 3.6 

RandomForest_random 0.777 0.817 0.571 0.625 0.790 0.864 0.625 58.5 
RandomForest_grid 0.810 0.829 0.611 0.647 0.797 0.877 0.647 65.6 

MLPClassifier_random 0.804 0.854 0.684 0.684 0.827 0.905 0.684 37.0 
MLPClassifier_grid 0.812 0.878 0.722 0.765 0.845 0.908 0.765 292.1 

 

 
Learning 
score 

accuracy f1 precision auc sensitivity specificity Time 

NaiveBayes_grid 0.797 0.691 0.464 0.591 0.771 0.720 0.591 14.6 
LogisticRegression_random 0.824 0.660 0.492 0.516 0.741 0.727 0.516 2.0 
LogisticRegression_grid 0.826 0.649 0.452 0.500 0.745 0.710 0.500 1.1 

SVM_random 0.881 0.773 0.694 0.658 0.817 0.847 0.658 7.1 
SVM_grid 0.886 0.773 0.711 0.643 0.813 0.873 0.643 224.3 

DecisionTree_random 0.807 0.660 0.560 0.512 0.699 0.768 0.512 1.8 
DecisionTree_grid 0.807 0.660 0.560 0.512 0.699 0.768 0.512 3.7 

RandomForest_random 0.896 0.722 0.630 0.590 0.802 0.810 0.590 62.9 
RandomForest_grid 0.898 0.711 0.622 0.575 0.814 0.807 0.575 70.9 

MLPClassifier_random 0.874 0.763 0.701 0.628 0.810 0.870 0.628 41.5 
MLPClassifier_grid 0.882 0.753 0.667 0.632 0.818 0.831 0.632 294.7 
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Table 11.10 ORA including Central Corneal Thickness, excluding IOP 
 

Learning 
score 

accuracy f1 precision auc sensitivity specificity Time 

NaiveBayes_grid 0.769 0.780 0.526 0.526 0.804 0.857 0.526 15.5 
LogisticRegression_random 0.781 0.805 0.429 0.667 0.846 0.822 0.667 1.7 
LogisticRegression_grid 0.781 0.805 0.429 0.667 0.846 0.822 0.667 0.8 
DecisionTree_random 0.725 0.805 0.500 0.615 0.754 0.841 0.615 1.4 
DecisionTree_grid 0.751 0.817 0.516 0.667 0.779 0.843 0.667 3.3 

RandomForest_random 0.783 0.805 0.500 0.615 0.759 0.841 0.615 59.3 
RandomForest_grid 0.782 0.829 0.563 0.692 0.767 0.855 0.692 62.5 

MLPClassifier_random 0.812 0.854 0.647 0.733 0.834 0.881 0.733 31.2 
MLPClassifier_grid 0.813 0.854 0.647 0.733 0.833 0.881 0.733 258.8 

 

Table 11.11 ORA including IOP, excluding Central Corneal Thickness 
 

Learning 
score 

accuracy f1 precision auc sensitivity specificity Time 

NaiveBayes_grid 0.766 0.829 0.650 0.619 0.856 0.902 0.619 19.4 
LogisticRegression_random 0.793 0.866 0.686 0.750 0.894 0.894 0.750 2.1 
LogisticRegression_grid 0.792 0.866 0.686 0.750 0.894 0.894 0.750 0.9 
DecisionTree_random 0.741 0.829 0.611 0.647 0.770 0.877 0.647 1.6 
DecisionTree_grid 0.751 0.793 0.452 0.583 0.745 0.829 0.583 3.3 

RandomForest_random 0.773 0.841 0.606 0.714 0.828 0.868 0.714 61.5 
RandomForest_grid 0.777 0.829 0.611 0.647 0.835 0.877 0.647 86.0 

MLPClassifier_random 0.802 0.854 0.667 0.706 0.882 0.892 0.706 38.0 
MLPClassifier_grid 0.808 0.866 0.718 0.700 0.876 0.919 0.700 383.0 

 

Table 11.12 ORA excluding IOP and Central Corneal thickness 

 Learning 
score 

accuracy f1 precision auc sensitivity specificity Time 

NaiveBayes_grid 0.768 0.793 0.514 0.563 0.822 0.848 0.563 20.8 
LogisticRegression_random 0.782 0.854 0.647 0.733 0.875 0.881 0.733 2.1 
LogisticRegression_grid 0.781 0.854 0.647 0.733 0.876 0.881 0.733 0.9 
DecisionTree_random 0.725 0.805 0.500 0.615 0.719 0.841 0.615 1.6 
DecisionTree_grid 0.751 0.817 0.516 0.667 0.758 0.843 0.667 3.1 

RandomForest_random 0.761 0.780 0.471 0.533 0.787 0.836 0.533 59.0 
RandomForest_grid 0.761 0.829 0.563 0.692 0.793 0.855 0.692 61.5 

MLPClassifier_random 0.792 0.866 0.703 0.722 0.850 0.906 0.722 26.4 
MLPClassifier_grid 0.796 0.866 0.686 0.750 0.858 0.894 0.750 243.3 
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11.2.2.3 GAT 
Table 11.13 GAT including central corneal thickness 

 
Learning 
score 

accuracy f1 precision auc sensitivity specificity Time 

NaiveBayes_grid 0.592 0.663 0.298 0.583 0.634 0.674 0.583 16.7 
LogisticRegression_random 0.613 0.643 0.054 0.500 0.636 0.646 0.500 1.6 
LogisticRegression_grid 0.613 0.643 0.146 0.500 0.637 0.652 0.500 0.8 
DecisionTree_random 0.654 0.673 0.429 0.571 0.624 0.701 0.571 1.4 
DecisionTree_grid 0.654 0.673 0.429 0.571 0.624 0.701 0.571 3.2 

RandomForest_random 0.657 0.663 0.233 0.625 0.696 0.667 0.625 57.7 
RandomForest_grid 0.680 0.724 0.526 0.682 0.631 0.737 0.682 67.9 

MLPClassifier_random 0.694 0.673 0.448 0.565 0.678 0.707 0.565 26.8 
MLPClassifier_grid 0.691 0.653 0.414 0.522 0.674 0.693 0.522 257.8 

 

Table 11.14 GAT excluding Central corneal thickness 

 

  

 
Learning 
score 

accuracy f1 precision auc sensitivity specificity Time 

NaiveBayes_grid 0.395 0.673 0.158 1.000 0.535 0.663 1.000 14.7 
LogisticRegression_random 0.500 0.643 0.000 0.000 0.500 0.643 0.000 1.7 
LogisticRegression_grid 0.500 0.643 0.000 0.000 0.500 0.643 0.000 0.8 
DecisionTree_random 0.565 0.673 0.158 1.000 0.575 0.663 1.000 1.6 
DecisionTree_grid 0.565 0.673 0.158 1.000 0.575 0.663 1.000 3.0 

RandomForest_random 0.575 0.673 0.200 0.800 0.591 0.667 0.800 56.6 
RandomForest_grid 0.568 0.673 0.158 1.000 0.572 0.663 1.000 58.7 

MLPClassifier_random 0.610 0.673 0.158 1.000 0.560 0.663 1.000 17.6 
MLPClassifier_grid 0.605 0.673 0.158 1.000 0.590 0.663 1.000 125.6 
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11.3 Repeatability 

11.3.1 Correlation Difference-Mean value for 

Intrasession Repeatability 

 

Table 11.15 Correlation tested according to Kolmogorov Smirnov test 

Measure 
Mean Normality 

p-value 
Difference 

Normality p-value 
Method 

Correlation 
Coefficient 

Correlation 
p-value 

BSup 0.88 0.55 Pearson -0.08 0.54 

BNas 0.73 0.82 Pearson -0.09 0.48 

BInf 0.76 0.73 Pearson 0.03 0.82 

BTem 0.67 0.47 Pearson 0.06 0.64 

Mean 0.74 0.95 Pearson -0.12 0.35 

BLens 0.00 0.07 Spearman 0.20 0.11 

TopPlat 0.20 0.62 Pearson 0.06 0.62 

BotPlat 0.45 0.83 Pearson 0.00 0.99 

AntSl 0.81 0.66 Pearson -0.10 0.41 

PostSl 0.27 0.09 Pearson 0.15 0.23 

 

Table 11.16 Correlation tested according to Shapiro Wilk test 

Measure 
Mean Normality 

p-value 
Difference 

Normality p-value 
Method 

Correlation 
Coefficient 

Correlation 
p-value 

BSup 0.62 0.15 Pearson -0.08 0.54 

BNas 0.18 0.52 Pearson -0.09 0.48 

BInf 0.37 0.76 Pearson 0.03 0.82 

BTem 0.88 0.01 Spearman 0.00 0.99 

Mean 0.41 0.56 Pearson -0.12 0.35 

BLens 0.00 0.00 Spearman 0.20 0.11 

TopPlat 0.00 0.10 Spearman 0.05 0.67 

BotPlat 0.06 0.04 Spearman -0.01 0.91 

AntSl 0.79 0.14 Pearson -0.10 0.41 
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PostSl 0.00 0.00 Spearman 0.24 0.06 

 

11.3.2 Correlation Difference-Mean value for 

Intrasession Repeatability 
Table 11.17 Correlation tested according to Kolmogorov Smirnov test 

Measure 
Mean Normality 

p-value 
Difference 

Normality p-value 
Method 

Correlation 
Coefficient 

Correlation 
p-value 

BSup 0.92 0.83 Pearson -0.20 0.11 

BNas 0.79 0.88 Pearson -0.17 0.18 

BInf 0.95 0.98 Pearson -0.07 0.58 

BTem 0.89 0.92 Pearson 0.00 1.00 

Mean 0.59 1.00 Pearson -0.14 0.29 

BLens 0.09 0.09 Pearson -0.11 0.41 

TopPlat 0.11 0.58 Pearson -0.19 0.14 

BotPlat 0.24 0.94 Pearson -0.04 0.79 

AntSl 0.53 0.72 Pearson -0.24 0.06 

PostSl 0.18 0.59 Pearson 0.23 0.07 

 

 

Table 11.18 Correlation tested according to Shapiro Wilk test 

Measure 
Mean Normality 

p-value 
Difference 

Normality p-value 
Method 

Correlation 
Coefficient 

Correlation 
p-value 

BSup 0.01 0.59 Spearman -0.14 0.28 

BNas 0.24 0.39 Pearson -0.17 0.18 

BInf 0.51 0.66 Pearson -0.07 0.58 

BTem 0.96 0.75 Pearson 0.00 1.00 

Mean 0.47 0.96 Pearson -0.14 0.29 

BLens 0.00 0.01 Spearman -0.12 0.34 

TopPlat 0.00 0.27 Spearman -0.17 0.19 

BotPlat 0.02 0.40 Spearman 0.02 0.90 

AntSl 0.03 0.00 Spearman -0.07 0.56 
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PostSl 0.00 0.42 Spearman 0.16 0.20 

 

11.3.3 Bland Altman analysis for time of the day 

 

Table 11.19 Bland Altman analysis results for TimeD subgroups 

Measure Group Mean SD Upper COR 

Limit 

Lower COR 

Limit 

COR 

Interval 

BSup 

A -0.029 0.088 0.143 -0.201 0.343 

B 0.019 0.068 0.152 -0.115 0.267 

C -0.032 0.064 0.094 -0.158 0.252 

BNas 

A -0.050 0.099 0.144 -0.244 0.389 

B 0.014 0.089 0.188 -0.160 0.348 

C 0.050 0.067 0.181 -0.082 0.263 

BInf 

A -0.016 0.094 0.168 -0.201 0.370 

B 0.022 0.090 0.198 -0.154 0.352 

C 0.059 0.075 0.205 -0.087 0.292 

BTem 

A 0.034 0.072 0.175 -0.107 0.282 

B 0.048 0.073 0.191 -0.095 0.286 

C 0.001 0.096 0.188 -0.186 0.374 

Mean 

A -0.015 0.069 0.120 -0.150 0.270 

B 0.026 0.055 0.134 -0.083 0.217 

C 0.019 0.046 0.109 -0.070 0.179 

BLens 

A 0.005 0.056 0.115 -0.105 0.220 

B 0.008 0.055 0.115 -0.100 0.215 

C 0.007 0.074 0.152 -0.137 0.288 

 

Table 11.20 Bland Altman analysis results for TimeDABS subgroups 

Measure Group Mean SD Upper COR Limit Lower COR Limit COR Interval 

BSup A 0.019 0.068 0.152 -0.115 0.267 

B -0.030 0.081 0.129 -0.189 0.317 

BNas A 0.014 0.089 0.188 -0.160 0.348 
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B -0.019 0.101 0.180 -0.218 0.398 

BInf A 0.022 0.090 0.198 -0.154 0.352 

B 0.007 0.095 0.194 -0.179 0.373 

BTem A 0.048 0.073 0.191 -0.095 0.286 

B 0.023 0.082 0.183 -0.136 0.320 

Mean A 0.026 0.055 0.134 -0.083 0.217 

B -0.004 0.065 0.122 -0.131 0.253 

BLens A 0.008 0.055 0.115 -0.100 0.215 

B 0.006 0.062 0.128 -0.116 0.244 

 

  



G. Civiero, PhD Thesis, Aston University, 2024 

219 

 

11.4 Relationship with other instruments 

 

Table 11.21 Results of Normality test (Shapiro Wilk) for clinical measurements 

Instrument Parameter Statistic P-value 
 

Instrument Parameter Statistic P-value 
CST A1L 0.954 0.015 

 
ORA IOPcc 0.975 0.190 

A1V 0.966 0.061 IOPg 0.981 0.397 
A1T 0.949 0.008 CH 0.976 0.230 
A2L 0.849 0.001 CRF 0.983 0.504 
A2V 0.969 0.090 BOSS 

Cornea 
BSup1 0.97 0.103 

A2T 0.988 0.793 BNas1 0.98 0.351 
HCT 0.95 0.009 BInf1 0.983 0.476 
HCPD 0.969 0.097 BTem1 0.982 0.423 
HCR 0.992 0.934 Mean1 0.984 0.524 

HCDefoAm 0.972 0.131 BOSS Lens BLens1 0.856 < 0.001 
CCTcor 0.99 0.869 TopPlat1 0.943 0.004 
IOPnct 0.944 0.005 BotPlat1 0.989 0.800 
ArcL 0.969 0.088 AntSl1 0.964 0.047 

DeflAm 0.985 0.613 PostSl1 0.904 < 0.001 
DeflAmR 0.976 0.227 CLT CLT 0.933 0.002 
DeflAr 0.984 0.529 CCT CCT 0.987 0.752 
DefAR 0.982 0.426 

 

InvRad 0.942 0.004 
WEM 0.751 < 0.001 
SSI 0.963 0.042 

SP-A1 0.982 0.461 
ARTh 0.973 0.146 
IntRad 0.976 0.218 
CBI 0.939 0.003 
bIOP 0.944 0.005 

 

Table 11.22 Correlations between measurements from different instruments 

Var 1 Var 2 Corr P-
value 

Test Adj P-
value 

 
Var 1 Var 2 Corr P-

value 
Test Adj 

P-
value 

BSup1 IOPcc -0.06 0.65 Pear 1 
 
BInf1 HCR 0.03 0.83 Pear 1 

BSup1 IOPg 0.03 0.78 Pear 1 
 
BInf1 HCDefoAm -0.23 0.06 Pear 1 

BSup1 CH 0.18 0.14 Pear 1 
 
BInf1 CCTcor -0.03 0.78 Pear 1 

BSup1 CRF 0.15 0.22 Pear 1 
 
BInf1 IOPnct 0.33 0.01 Spear 1 

BNas1 IOPcc 0.11 0.37 Pear 1 
 
BInf1 ArcL 0.01 0.94 Pear 1 
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BNas1 IOPg 0.13 0.29 Pear 1 
 
BInf1 DeflAm -0.16 0.20 Pear 1 

BNas1 CH 0.02 0.89 Pear 1 
 
BInf1 DeflAmR 0.10 0.43 Pear 1 

BNas1 CRF 0.09 0.46 Pear 1 
 
BInf1 DeflAr -0.17 0.17 Pear 1 

BInf1 IOPcc 0.11 0.38 Pear 1 
 
BInf1 DefAR -0.04 0.74 Pear 1 

BInf1 IOPg 0.21 0.10 Pear 1 
 
BInf1 InvRad 0.04 0.73 Spear 1 

BInf1 CH 0.16 0.20 Pear 1 
 
BInf1 WEM -0.11 0.37 Spear 1 

BInf1 CRF 0.25 0.04 Pear 1 
 
BInf1 SSI -0.13 0.31 Spear 1 

BTem1 IOPcc 0.16 0.18 Pear 1 
 
BInf1 SP-A1 0.12 0.31 Pear 1 

BTem1 IOPg 0.13 0.29 Pear 1 
 
BInf1 ARTh -0.07 0.57 Pear 1 

BTem1 CH -0.09 0.47 Pear 1 
 
BInf1 IntRad -0.02 0.88 Pear 1 

BTem1 CRF 0.01 0.93 Pear 1 
 
BInf1 CBI 0.01 0.91 Spear 1 

Mean1 IOPcc 0.13 0.28 Pear 1 
 
BInf1 bIOP 0.32 0.01 Spear 1 

Mean1 IOPg 0.20 0.11 Pear 1 
 
BTem1 A1L 0.06 0.64 Spear 1 

Mean1 CH 0.09 0.47 Pear 1 
 
BTem1 A1V 0.01 0.94 Pear 1 

Mean1 CRF 0.19 0.13 Pear 1 
 
BTem1 A1T 0.02 0.89 Spear 1 

BSup1 A1L -0.15 0.22 Spear 1 
 
BTem1 A2L 0.17 0.16 Spear 1 

BSup1 A1V 0.12 0.33 Pear 1 
 
BTem1 A2V 0.11 0.36 Pear 1 

BSup1 A1T 0.15 0.22 Spear 1 
 
BTem1 A2T 0.00 0.97 Pear 1 

BSup1 A2L -0.07 0.57 Spear 1 
 
BTem1 HCT -0.08 0.53 Spear 1 

BSup1 A2V 0.08 0.49 Pear 1 
 
BTem1 HCPD -0.07 0.58 Pear 1 

BSup1 A2T -0.01 0.92 Pear 1 
 
BTem1 HCR 0.02 0.88 Pear 1 

BSup1 HCT -0.14 0.25 Spear 1 
 
BTem1 HCDefoAm -0.08 0.54 Pear 1 

BSup1 HCPD -0.09 0.49 Pear 1 
 
BTem1 CCTcor 0.01 0.93 Pear 1 

BSup1 HCR -0.04 0.75 Pear 1 
 
BTem1 IOPnct -0.01 0.92 Spear 1 

BSup1 HCDefoAm -0.08 0.53 Pear 1 
 
BTem1 ArcL -0.19 0.11 Pear 1 

BSup1 CCTcor 0.10 0.40 Pear 1 
 
BTem1 DeflAm -0.01 0.92 Pear 1 

BSup1 IOPnct 0.09 0.46 Spear 1 
 
BTem1 DeflAmR 0.00 0.99 Pear 1 

BSup1 ArcL 0.06 0.65 Pear 1 
 
BTem1 DeflAr 0.06 0.63 Pear 1 

BSup1 DeflAm -0.08 0.52 Pear 1 
 
BTem1 DefAR 0.05 0.67 Pear 1 

BSup1 DeflAmR 0.01 0.92 Pear 1 
 
BTem1 InvRad 0.03 0.80 Spear 1 

BSup1 DeflAr -0.10 0.44 Pear 1 
 
BTem1 WEM -0.02 0.85 Spear 1 

BSup1 DefAR 0.00 0.97 Pear 1 
 
BTem1 SSI -0.19 0.13 Spear 1 

BSup1 InvRad 0.07 0.59 Spear 1 
 
BTem1 SP-A1 -0.01 0.93 Pear 1 

BSup1 WEM 0.00 0.97 Spear 1 
 
BTem1 ARTh -0.04 0.75 Pear 1 

BSup1 SSI -0.05 0.69 Spear 1 
 
BTem1 IntRad 0.03 0.81 Pear 1 

BSup1 SP-A1 0.01 0.94 Pear 1 
 
BTem1 CBI 0.08 0.52 Spear 1 

BSup1 ARTh 0.05 0.67 Pear 1 
 
BTem1 bIOP 0.00 0.99 Spear 1 

BSup1 IntRad 0.03 0.84 Pear 1 
 
Mean1 A1L -0.02 0.89 Spear 1 

BSup1 CBI -0.03 0.79 Spear 1 
 
Mean1 A1V -0.03 0.81 Pear 1 

BSup1 bIOP 0.12 0.31 Spear 1 
 
Mean1 A1T 0.24 0.05 Spear 1 

BNas1 A1L 0.05 0.71 Spear 1 
 
Mean1 A2L 0.02 0.86 Spear 1 

BNas1 A1V -0.02 0.87 Pear 1 
 
Mean1 A2V 0.21 0.09 Pear 1 

BNas1 A1T 0.11 0.39 Spear 1 
 
Mean1 A2T -0.10 0.43 Pear 1 

BNas1 A2L 0.06 0.62 Spear 1 
 
Mean1 HCT -0.18 0.15 Spear 1 
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BNas1 A2V 0.23 0.07 Pear 1 
 
Mean1 HCPD -0.15 0.24 Pear 1 

BNas1 A2T -0.07 0.55 Pear 1 
 
Mean1 HCR 0.05 0.67 Pear 1 

BNas1 HCT 0.01 0.92 Spear 1 
 
Mean1 HCDefoAm -0.18 0.14 Pear 1 

BNas1 HCPD -0.10 0.41 Pear 1 
 
Mean1 CCTcor 0.05 0.71 Pear 1 

BNas1 HCR 0.12 0.32 Pear 1 
 
Mean1 IOPnct 0.19 0.12 Spear 1 

BNas1 HCDefoAm -0.09 0.46 Pear 1 
 
Mean1 ArcL -0.06 0.65 Pear 1 

BNas1 CCTcor 0.06 0.65 Pear 1 
 
Mean1 DeflAm -0.16 0.19 Pear 1 

BNas1 IOPnct 0.09 0.45 Spear 1 
 
Mean1 DeflAmR 0.02 0.89 Pear 1 

BNas1 ArcL 0.00 0.99 Pear 1 
 
Mean1 DeflAr -0.14 0.27 Pear 1 

BNas1 DeflAm -0.18 0.14 Pear 1 
 
Mean1 DefAR -0.03 0.78 Pear 1 

BNas1 DeflAmR -0.07 0.59 Pear 1 
 
Mean1 InvRad 0.00 0.97 Spear 1 

BNas1 DeflAr -0.17 0.18 Pear 1 
 
Mean1 WEM 0.02 0.86 Spear 1 

BNas1 DefAR -0.11 0.39 Pear 1 
 
Mean1 SSI -0.06 0.64 Spear 1 

BNas1 InvRad -0.08 0.52 Spear 1 
 
Mean1 SP-A1 0.06 0.64 Pear 1 

BNas1 WEM 0.22 0.07 Spear 1 
 
Mean1 ARTh -0.03 0.83 Pear 1 

BNas1 SSI 0.20 0.10 Spear 1 
 
Mean1 IntRad -0.02 0.88 Pear 1 

BNas1 SP-A1 0.02 0.84 Pear 1 
 
Mean1 CBI -0.04 0.77 Spear 1 

BNas1 ARTh 0.00 1.00 Pear 1 
 
Mean1 bIOP 0.15 0.23 Spear 1 

BNas1 IntRad -0.08 0.52 Pear 1 
 
BSup1 CCT 0.09 0.49 Pear 1 

BNas1 CBI -0.05 0.71 Spear 1 
 
BNas1 CCT 0.08 0.53 Pear 1 

BNas1 bIOP 0.02 0.85 Spear 1 
 
BInf1 CCT -0.07 0.61 Pear 1 

BInf1 A1L 0.02 0.87 Spear 1 
 
BTem1 CCT 0.06 0.65 Pear 1 

BInf1 A1V -0.16 0.19 Pear 1 
 
Mean1 CCT 0.05 0.67 Pear 1 

BInf1 A1T 0.35 0.00 Spear 0.57 
 
BLens1 CLT -0.30 0.02 Spear 1 

BInf1 A2L -0.12 0.35 Spear 1 
 
TopPlat1 CLT 0.75 0.00 Spear 0.00 

BInf1 A2V 0.12 0.34 Pear 1 
 
BotPlat1 CLT 0.73 0.00 Spear 0.00 

BInf1 A2T -0.16 0.19 Pear 1 
 
AntSl1 CLT 0.11 0.39 Spear 1 

BInf1 HCT -0.24 0.05 Spear 1 
 
PostSl1 CLT 0.36 0.00 Spear 0.62 

BInf1 HCPD -0.13 0.30 Pear 1 
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11.5 Age Analysis 
Table 11.23 Results of normality test, mean/median, SD/IQR, and test for differences between groups Y and P. 

Variable 
p-value 
Group 
Y 

p-value 
Group 
P 

Mean 
Median 
(Group Y) 

SD/IQR 
(Group Y) 

Mean 
Median 
(Group 
P) 

SD/IQR 
(Group 
P) 

Test p-value 

IOPcc 0.59 0.43 15.9 3.6 16.3 2.9 t-test 0.656 

IOPg 0.18 0.11 15.4 3.6 14.7 3.1 t-test 0.502 

CH 0.63 0.09 10.4 1.9 9.5 1.5 t-test 0.072 

CRF 0.50 0.15 10.4 2.0 9.4 1.7 t-test 0.078 

A1L 0.13 0.35 2.45 0.30 2.10 0.33 t-test 0.000 

A1V 0.39 0.11 0.14 0.02 0.15 0.02 t-test 0.039 

A1T 0.19 0.01 7.22 0.35 7.05 0.18 Mann-Wh 0.067 

A2L 0.00 0.10 1.95 0.30 1.94 0.24 Mann-Wh 0.373 

A2V 0.16 0.64 -0.26 0.03 -0.28 0.03 t-test 0.023 

A2T 0.50 0.28 21.45 0.47 21.49 0.35 t-test 0.748 

HCT 0.22 0.02 16.71 0.49 16.86 0.46 Mann-Wh 0.099 

HCPD 0.43 0.09 4.73 0.30 4.85 0.28 t-test 0.154 

HCR 0.51 0.86 7.54 0.91 7.58 0.97 t-test 0.881 

HCDefoAm 0.35 0.06 0.98 0.10 1.06 0.11 t-test 0.010 

CCTcor 0.98 0.90 521 40 527 40 t-test 0.605 

IOPnct 0.54 0.07 15.7 2.8 14.9 2.5 t-test 0.326 

ArcL 0.40 0.09 -0.12 0.02 -0.14 0.03 t-test 0.068 

DeflAm 0.27 0.90 0.82 0.10 0.88 0.11 t-test 0.064 

DeflAmR 0.06 1.00 5.93 0.86 6.19 0.69 t-test 0.272 

DeflAr 0.74 0.52 2.91 0.49 3.17 0.53 t-test 0.090 

DefAR 0.07 0.69 4.48 0.49 4.71 0.45 t-test 0.112 

InvRad 0.04 0.58 0.15 0.02 0.16 0.02 Mann-Wh 0.158 

WEM 0.07 < 0,001 0.31 0.06 0.34 0.06 Mann-Wh 0.006 

SSI 0.22 0.07 1.23 0.18 1.29 0.23 t-test 0.309 

SP-A1 0.28 0.28 93.16 15.99 93.95 18.08 t-test 0.876 

ARTh 0.94 0.27 472 72 491 144 t-test 0.564 

IntRad 0.04 0.93 7.50 1.25 8.16 1.25 Mann-Wh 0.350 

CBI 0.54 0.03 0.63 0.24 0.61 0.57 Mann-Wh 0.404 
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bIOP 0.20 0.44 16.4 2.7 14.7 2.0 t-test 0.021 

BSup 0.61 0.08 2.824 0.055 2.816 0.047 t-test 0.581 

BNas 0.39 0.07 2.819 0.056 2.822 0.057 t-test 0.850 

BInf 0.64 0.23 2.817 0.064 2.792 0.064 t-test 0.180 

BTem 0.49 0.33 2.810 0.061 2.821 0.047 t-test 0.497 

Mean 0.38 0.04 2.818 0.038 2.819 0.051 Mann-Wh 0.843 

BLens 0.00 0.07 3.411 0.028 3.351 0.059 Mann-Wh 0.002 

TopPlat 0.27 0.04 2.557 0.325 3.200 0.600 Mann-Wh 0.000 

BotPlat 0.89 0.72 3.950 0.437 4.727 0.516 t-test 0.000 

AntSl 0.82 0.33 1.496 0.358 1.647 0.457 t-test 0.219 

PostSl 0.01 0.01 -1.481 0.599 -1.190 0.643 Mann-Wh 0.015 

CLT 0.70 0.44 3.67 0.18 4.35 0.26 t-test 0.000 

CCT 0.74 0.73 528 39 534 38 t-test 0.606 

 

 

Table 11.24 Correlation between age and parameters measured with ORA, Corvis ST, BOSS and OCT for group 
P 

Variable Spearman 
Correlation 

Spearman p-
value 

R^2 

IOPcc 0.29 0.173 0.09 

IOPg 0.11 0.632 0.01 

CH -0.39 0.063 0.16 

CRF -0.22 0.322 0.05 

A1L 0.02 0.921 0.00 

A1V -0.02 0.920 0.00 

A1T -0.05 0.834 0.00 

A2L 0.08 0.702 0.01 

A2V -0.08 0.725 0.01 

A2T -0.44 0.035 0.19 

HCT -0.23 0.290 0.05 

HCPD -0.11 0.618 0.01 

HCR 0.05 0.821 0.00 

HCDefoAm -0.21 0.346 0.04 
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CCTcor -0.15 0.491 0.02 

IOPnct -0.02 0.925 0.00 

ArcL -0.02 0.936 0.00 

DeflAm 0.02 0.942 0.00 

DeflAmR 0.12 0.578 0.01 

DeflAr 0.05 0.810 0.00 

DefAR 0.07 0.758 0.00 

InvRad 0.13 0.546 0.02 

WEM -0.16 0.455 0.03 

SSI 0.37 0.079 0.14 

SP-A1 -0.10 0.638 0.01 

ARTh 0.05 0.815 0.00 

IntRad 0.02 0.930 0.00 

CBI 0.01 0.972 0.00 

bIOP -0.11 0.625 0.01 

BSup1 -0.28 0.190 0.08 

BNas1 -0.26 0.224 0.07 

BInf1 -0.22 0.317 0.05 

BTem1 -0.44 0.038 0.19 

Mean1 -0.43 0.043 0.18 

BLens1 -0.44 0.037 0.19 

TopPlat1 0.35 0.104 0.12 

BotPlat1 0.32 0.141 0.10 

AntSl1 0.50 0.015 0.25 

PostSl1 0.34 0.117 0.11 

CLT 0.43 0.040 0.19 

CCT -0.12 0.587 0.01 
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11.6 Refractive Error Analysis 

11.6.1 Groups 
Table 11.25 Results of Normality test, Mean and SD for groups 

Measure Group Statistic p-
value 

Mean/Median Value SD/IQR 
Value 

IOPcc MM 0.89 0.16 Mean 16.1 SD 5.0 
LM 0.94 0.43 Mean 16.3 SD 4.5 
EM 0.95 0.65 Mean 15.7 SD 2.6 
HY 0.84 0.11 Mean 14.4 SD 2.8 

IOPg MM 0.90 0.23 Mean 14.8 SD 4.7 
LM 0.94 0.40 Mean 15.1 SD 4.7 
EM 0.92 0.27 Mean 15.6 SD 2.8 
HY 0.92 0.44 Mean 13.7 SD 4.0 

CH MM 0.95 0.62 Mean 9.8 SD 1.5 
LM 0.97 0.84 Mean 9.8 SD 1.1 
EM 0.92 0.27 Mean 10.8 SD 1.7 
HY 0.94 0.64 Mean 10.5 SD 2.6 

CRF MM 0.88 0.12 Mean 9.7 SD 1.4 
LM 0.97 0.85 Mean 9.8 SD 1.5 
EM 0.95 0.57 Mean 10.8 SD 1.8 
HY 0.98 0.94 Mean 9.9 SD 3.1 

A1L MM 0.84 0.05 Median 1.94 IQR 0.52 
LM 0.95 0.49 Mean 2.28 SD 0.34 
EM 0.87 0.05 Median 2.47 IQR 0.33 
HY 0.94 0.60 Mean 2.61 SD 0.22 

A1V MM 0.87 0.11 Mean 0.15 SD 0.02 
LM 0.96 0.69 Mean 0.15 SD 0.02 
EM 0.92 0.24 Mean 0.14 SD 0.01 
HY 0.89 0.25 Mean 0.14 SD 0.02 

A1T MM 0.74 0.00 Median 7.07 IQR 0.27 
LM 0.96 0.61 Mean 7.15 SD 0.32 
EM 0.85 0.03 Median 7.29 IQR 0.22 
HY 0.82 0.07 Mean 7.05 SD 0.40 

A2L MM 0.84 0.05 Median 1.91 IQR 0.16 
LM 0.86 0.03 Median 1.93 IQR 0.21 
EM 0.68 0.00 Median 1.92 IQR 0.08 
HY 0.87 0.19 Mean 2.19 SD 0.44 

A2V MM 0.96 0.83 Mean -0.28 SD 0.03 
LM 0.94 0.43 Mean -0.27 SD 0.02 
EM 0.97 0.94 Mean -0.27 SD 0.02 
HY 0.87 0.18 Mean -0.25 SD 0.04 
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A2T MM 0.85 0.06 Mean 21.48 SD 0.49 
LM 0.97 0.86 Mean 21.47 SD 0.39 
EM 0.90 0.13 Mean 21.31 SD 0.30 
HY 0.93 0.52 Mean 21.73 SD 0.49 

HCT MM 0.90 0.20 Mean 16.54 SD 0.39 
LM 0.91 0.13 Mean 16.63 SD 0.46 
EM 0.82 0.01 Median 16.63 IQR 0.69 
HY 0.63 0.00 Median 16.86 IQR 0.12 

HCPD MM 0.88 0.13 Mean 4.81 SD 0.31 
LM 0.97 0.90 Mean 4.83 SD 0.15 
EM 0.96 0.79 Mean 4.64 SD 0.20 
HY 0.92 0.47 Mean 4.76 SD 0.44 

HCR MM 0.92 0.34 Mean 6.49 SD 0.68 
LM 0.98 0.92 Mean 7.47 SD 0.82 
EM 0.96 0.68 Mean 7.73 SD 0.61 
HY 0.76 0.02 Median 7.18 IQR 0.51 

HCDefoAm MM 0.90 0.23 Mean 1.03 SD 0.12 
LM 0.93 0.29 Mean 1.00 SD 0.11 
EM 0.96 0.81 Mean 0.95 SD 0.05 
HY 0.93 0.54 Mean 1.02 SD 0.12 

CCTcor MM 0.93 0.48 Mean 517 SD 42 
LM 0.94 0.35 Mean 518 SD 31 
EM 0.94 0.49 Mean 533 SD 29 
HY 0.91 0.38 Mean 517 SD 50 

IOPnct MM 0.66 0.00 Median 15.3 IQR 1.0 
LM 0.94 0.36 Mean 15.2 SD 2.4 
EM 0.80 0.01 Median 16.0 IQR 2.5 
HY 0.95 0.76 Mean 14.2 SD 2.9 

ArcL MM 0.94 0.55 Mean -0.12 SD 0.02 
LM 0.93 0.32 Mean -0.12 SD 0.02 
EM 0.92 0.22 Mean -0.13 SD 0.02 
HY 0.96 0.78 Mean -0.12 SD 0.03 

DeflAm MM 0.89 0.18 Mean 0.89 SD 0.11 
LM 0.95 0.59 Mean 0.85 SD 0.07 
EM 0.93 0.32 Mean 0.79 SD 0.05 
HY 0.88 0.21 Mean 0.85 SD 0.13 

DeflAmR MM 0.96 0.78 Mean 6.64 SD 0.68 
LM 0.93 0.25 Mean 6.02 SD 0.66 
EM 0.93 0.37 Mean 5.82 SD 0.59 
HY 0.85 0.12 Mean 5.90 SD 1.29 

DeflAr MM 0.78 0.01 Median 3.20 IQR 0.44 
LM 0.95 0.52 Mean 2.98 SD 0.33 
EM 0.94 0.44 Mean 2.76 SD 0.23 
HY 0.91 0.38 Mean 3.13 SD 0.67 
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DefAR MM 0.97 0.92 Mean 5.00 SD 0.46 
LM 0.98 0.98 Mean 4.66 SD 0.49 
EM 0.88 0.07 Mean 4.48 SD 0.42 
HY 0.87 0.21 Mean 4.45 SD 0.58 

InvRad MM 0.92 0.34 Mean 0.17 SD 0.01 
LM 0.83 0.01 Median 0.15 IQR 0.02 
EM 0.85 0.02 Median 0.14 IQR 0.01 
HY 0.89 0.28 Mean 0.15 SD 0.02 

WEM MM 0.99 0.99 Mean 0.28 SD 0.04 
LM 0.98 0.96 Mean 0.31 SD 0.07 
EM 0.83 0.02 Median 0.31 IQR 0.04 
HY 0.91 0.40 Mean 0.35 SD 0.07 

SSI MM 0.83 0.03 Median 0.95 IQR 0.07 
LM 0.95 0.61 Mean 1.16 SD 0.11 
EM 0.97 0.92 Mean 1.25 SD 0.16 
HY 0.88 0.23 Mean 1.27 SD 0.28 

SP-A1 MM 0.95 0.66 Mean 88.9 SD 14.3 
LM 0.94 0.43 Mean 90.8 SD 14.0 
EM 0.95 0.64 Mean 99.6 SD 12.1 
HY 0.97 0.90 Mean 87.2 SD 21.1 

ARTh MM 0.96 0.75 Mean 494.7 SD 104.1 
LM 0.95 0.50 Mean 481.1 SD 94.8 
EM 0.92 0.29 Mean 494.2 SD 84.6 
HY 0.98 0.96 Mean 453.0 SD 56.2 

IntRad MM 0.85 0.06 Mean 9.0 SD 0.9 
LM 0.93 0.24 Mean 8.1 SD 1.0 
EM 0.93 0.39 Mean 7.6 SD 0.7 
HY 0.89 0.26 Mean 8.2 SD 1.0 

CBI MM 0.89 0.18 Mean 0.68 SD 0.24 
LM 0.94 0.44 Mean 0.64 SD 0.23 
EM 0.96 0.72 Mean 0.53 SD 0.22 
HY 0.89 0.30 Mean 0.67 SD 0.26 

bIOP MM 0.77 0.01 Median 16.4 IQR 1.9 
LM 0.93 0.30 Mean 16.0 SD 2.3 
EM 0.70 0.00 Median 16.4 IQR 1.2 
HY 0.97 0.89 Mean 15.1 SD 2.7 

BSup1 MM 0.91 0.29 Mean 2.849 SD 0.038 
LM 0.89 0.08 Mean 2.838 SD 0.056 
EM 0.95 0.62 Mean 2.838 SD 0.052 
HY 0.93 0.56 Mean 2.825 SD 0.059 

BNas1 MM 0.91 0.29 Mean 2.810 SD 0.067 
LM 0.96 0.64 Mean 2.832 SD 0.072 
EM 0.92 0.26 Mean 2.823 SD 0.050 
HY 0.91 0.42 Mean 2.812 SD 0.066 
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BInf1 MM 0.98 0.98 Mean 2.837 SD 0.036 
LM 0.91 0.15 Mean 2.809 SD 0.066 
EM 0.94 0.51 Mean 2.836 SD 0.056 
HY 0.90 0.33 Mean 2.803 SD 0.077 

BTem1 MM 0.79 0.01 Median 2.847 IQR 0.050 
LM 0.98 0.97 Mean 2.808 SD 0.086 
EM 0.87 0.07 Mean 2.831 SD 0.063 
HY 0.95 0.72 Mean 2.831 SD 0.060 

Mean1 MM 0.82 0.02 Median 2.847 IQR 0.032 
LM 0.97 0.91 Mean 2.822 SD 0.036 
EM 0.82 0.02 Median 2.836 IQR 0.040 
HY 0.92 0.50 Mean 2.818 SD 0.053 

BLens1 MM 0.60 0.00 Median 3.427 IQR 0.033 
LM 0.80 0.00 Median 3.410 IQR 0.022 
EM 0.82 0.02 Median 3.401 IQR 0.082 
HY 0.93 0.52 Mean 3.432 SD 0.017 

TopPlat1 MM 0.92 0.38 Mean 2.536 SD 0.344 
LM 0.94 0.39 Mean 2.555 SD 0.271 
EM 0.92 0.29 Mean 2.633 SD 0.332 
HY 0.95 0.76 Mean 2.434 SD 0.360 

BotPlat1 MM 0.67 0.00 Median 3.928 IQR 0.124 
LM 0.96 0.68 Mean 3.993 SD 0.438 
EM 0.90 0.16 Mean 3.906 SD 0.429 
HY 0.90 0.30 Mean 3.936 SD 0.452 

AntSl1 MM 0.96 0.83 Mean 1.499 SD 0.311 
LM 0.97 0.89 Mean 1.429 SD 0.323 
EM 0.91 0.20 Mean 1.684 SD 0.442 
HY 0.96 0.84 Mean 1.366 SD 0.450 

PostSl1 MM 0.98 0.94 Mean -1.393 SD 0.266 
LM 0.98 0.93 Mean -1.628 SD 0.501 
EM 0.86 0.04 Median -1.500 IQR 0.657 
HY 0.70 0.00 Median -1.494 IQR 0.439 

CLT MM 0.98 0.95 Mean 3.586 SD 0.080 
LM 0.93 0.38 Mean 3.647 SD 0.169 
EM 0.97 0.87 Mean 3.658 SD 0.263 
HY 0.95 0.74 Mean 3.653 SD 0.145 

CCT MM 0.94 0.65 Mean 517 SD 37 
LM 0.93 0.36 Mean 527 SD 35 
EM 0.91 0.19 Mean 540 SD 28 
HY 0.93 0.58 Mean 523 SD 47 
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Table 11.26 Results of test among groups 

Measure Test Used Statistic p-value Sig_0.05 Bonf_Inst Bonf_All 
IOPcc ANOVA 0.383 0.766 No No No 
IOPg ANOVA 0.332 0.802 No No No 
CH ANOVA 1.046 0.382 No No No 
CRF ANOVA 0.797 0.503 No No No 
A1L Kruskal-Wallis 8.901 0.031 Yes No No 
A1V ANOVA 1.135 0.346 No No No 
A1T Kruskal-Wallis 3.936 0.268 No No No 
A2L Kruskal-Wallis 3.010 0.390 No No No 
A2V ANOVA 1.679 0.186 No No No 
A2T ANOVA 1.638 0.195 No No No 
HCT Kruskal-Wallis 3.615 0.306 No No No 
HCPD ANOVA 1.361 0.268 No No No 
HCR Kruskal-Wallis 14.743 0.002 Yes No No 
HCDefoAm ANOVA 1.602 0.204 No No No 
CCTcor ANOVA 0.572 0.637 No No No 
IOPnct Kruskal-Wallis 4.807 0.186 No No No 
ArcL ANOVA 0.100 0.960 No No No 
DeflAm ANOVA 2.831 0.050 No No No 
DeflAmR ANOVA 2.402 0.081 No No No 
DeflAr Kruskal-Wallis 6.506 0.089 No No No 
DefAR ANOVA 2.827 0.050 No No No 
InvRad Kruskal-Wallis 12.049 0.007 Yes No No 
WEM Kruskal-Wallis 7.165 0.067 No No No 
SSI Kruskal-Wallis 18.945 0.000 Yes Yes Yes 
SP-A1 ANOVA 1.552 0.216 No No No 
ARTh ANOVA 0.389 0.761 No No No 
IntRad ANOVA 4.738 0.006 Yes No No 
CBI ANOVA 1.012 0.397 No No No 
bIOP Kruskal-Wallis 2.251 0.522 No No No 
BSup1 ANOVA 0.292 0.831 No No No 
BNas1 ANOVA 0.278 0.841 No No No 
BInf1 ANOVA 0.906 0.447 No No No 
BTem1 Kruskal-Wallis 1.408 0.704 No No No 
Mean1 Kruskal-Wallis 1.149 0.765 No No No 
BLens1 Kruskal-Wallis 10.896 0.012 Yes No No 
TopPlat1 ANOVA 0.585 0.628 No No No 
BotPlat1 Kruskal-Wallis 0.458 0.928 No No No 
AntSl1 ANOVA 1.421 0.251 No No No 
PostSl1 Kruskal-Wallis 2.488 0.477 No No No 
CLT ANOVA 0.272 0.845 No No No 
CCT ANOVA 0.742 0.534 No No No 
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11.6.2 Continuous Distribution of Refractive Error 
Table 11.27 Correlation between Refractive Error and parameters measured by ORA, Corvis ST, BOSS, OCT 

Variable Correlation 
Coefficient 

R^2 p-value Sig_0.05 Bonf_Inst Bonf_All 

IOPcc -0.174 0.030 0.252 No No No 
IOPg -0.026 0.001 0.863 No No No 
CH 0.214 0.046 0.157 No No No 
CRF 0.096 0.009 0.530 No No No 
A1L 0.360 0.130 0.015 Yes No No 
A1V -0.271 0.073 0.072 No No No 
A1T 0.166 0.028 0.276 No No No 
A2L 0.218 0.048 0.150 No No No 
A2V 0.204 0.042 0.178 No No No 
A2T 0.017 0.000 0.913 No No No 
HCT 0.296 0.088 0.048 Yes No No 
HCPD -0.249 0.062 0.099 No No No 
HCR 0.306 0.094 0.041 Yes No No 
HCDefoAm -0.212 0.045 0.161 No No No 
CCTcor 0.117 0.014 0.445 No No No 
IOPnct 0.058 0.003 0.704 No No No 
ArcL 0.027 0.001 0.858 No No No 
DeflAm -0.305 0.093 0.041 Yes No No 
DeflAmR -0.392 0.153 0.008 Yes No No 
DeflAr -0.158 0.025 0.300 No No No 
DefAR -0.430 0.185 0.003 Yes No No 
InvRad -0.429 0.184 0.003 Yes No No 
WEM 0.313 0.098 0.036 Yes No No 
SSI 0.517 0.267 0.000 Yes Yes Yes 
SP-A1 0.111 0.012 0.468 No No No 
ARTh -0.025 0.001 0.870 No No No 
IntRad -0.321 0.103 0.032 Yes No No 
CBI -0.140 0.020 0.359 No No No 
bIOP -0.026 0.001 0.864 No No No 
BSup1 -0.128 0.016 0.409 No No No 
BNas1 -0.069 0.005 0.657 No No No 
BInf1 -0.046 0.002 0.767 No No No 
BTem1 -0.089 0.008 0.564 No No No 
Mean1 -0.165 0.027 0.284 No No No 
BLens1 0.085 0.007 0.583 No No No 
TopPlat1 0.075 0.006 0.630 No No No 
BotPlat1 0.018 0.000 0.908 No No No 
Height1 0.085 0.007 0.583 No No No 
AntSl1 0.009 0.000 0.955 No No No 



G. Civiero, PhD Thesis, Aston University, 2024 

231 

 

PostSl1 -0.185 0.034 0.229 No No No 
CLT 0.253 0.064 0.115 No No No 
CCT 0.137 0.019 0.399 No No No 

 


