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The rising prevalence of myopia has underscored the importance of early diagnosis
and effective management strategies to control its progression and to prevent compli-
cations. Advancements in instrumentation enable clinicians to provide individualized
evidence-based care for patients. Instrumentation for myopia control encompasses a
wide range of technologies designed to assess refractive error, biometric parameters,
including axial length, accommodative responses, as well as detailed assessment of
ocular health. These tools offer clinicians the ability to move beyond traditional clini-
cal techniques, providing more accurate, detailed, and repeatable measurements critical
for the detection and monitoring of myopia progression. This allows for a personal-
ized approach to treatment planning, enabling the selection and optimization of myopia
control interventions. Furthermore, advanced imaging and real-time data visualization
support patient education by fostering understanding, which may improve adherence to
treatment plans. By adopting these technologies, clinicians can address the complexi-
ties of myopia management, deliver precise and effective care, and contribute to global
efforts to curb the myopia epidemic. The integration of advanced instrumentation into
clinical practice encourages early intervention and management strategies for patients at
risk of becoming myopic (pre-myopia), as well as improving patient outcomes for myopic
patients.
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Ophthalmic instruments play a critical role in helping
clinicians manage myopia, from assessing at-risk chil-

dren to diagnosing, monitoring progression, and evaluating
treatment efficacy. Furthermore, they are indispensable for
monitoring the health and integrity of the posterior segment,
given the increased risk of associated disease in myopic
eyes. Relevant ophthalmic instrumentation can be broadly
categorized based on purpose, to assess the optical, struc-
tural, or functional aspects of the eye and vision as illustrated
in Figure 1.

The broad definitions of two of the categories are as
follows:

• Optical: parameters and metrics directly impacting the
light refraction (curvatures, indexes) and their conse-
quences (topography, optical power, refraction, aberra-
tions, accommodation)

• Structural: parameters and metrics defining the
intraocular distances and tissue thickness (total and
partial intra-ocular distances, thicknesses, intraocular
imaging).

For the purposes of this article, discussion is limited to
instrumentation for optical and structural assessments. Func-
tional and multimodal instrumentation will not be discussed.

Optical Assessment:

• Ocular refraction: to obtain on-axis and off-axis refrac-
tion of the eye using objective or subjective methods.

• Corneal curvature (keratometry/topography/topo-
graphy): to obtain quantitative information on the
anterior and posterior corneal curvature, elevation,
asphericity, and thickness parameters of the cornea.

• Aberrometry: to measure the optical imperfections in
the visual system

• Pupillometry: to measure the dimensions of, and stim-
ulus driven, as well as spontaneous variations in pupil
size

Structural Assessment:

• Dimensional: intraocular measurements used specifi-
cally for axial length and peripheral eye length through
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FIGURE 1. Classification of the instrumentation utilised in the management of myopia. AC/A, accommodative convergence/accommodation
ratio; ACD, anterior chamber depth; AK, autokeratometry; AR, autorefraction; CSF, contrast sensitivity function; ffERG, full-field electroretinog-
raphy; gf-mfERG, global flash multifocal electroretinography; LT, lens thickness; mfERG, multifocal electroretinogram; MRT, multispectral
refraction topography; PERG, pattern electroretinogram; RT, retinal thickness; VA, visual acuity; VCD, vitreous chamber depth; WFWFR,
wide-field wavefront refraction. Although shown in this figure, functional and multimodal instrumentation are not covered in this article.

one-dimensional scanning systems such as the low-
coherence optical biometers.

• Imaging: technologies to obtain images of the ocular
structures
◦ Fundus photography: for detailed, largely qualita-

tive analysis of internal posterior segment structures,
including wide-field retinal imaging

◦ Posterior segment high resolution cross-
sections: quantitative analysis of two- or three-

dimensional (3D) optical sections of the retina,
choroid, and sclera through optical coherence
tomography

◦ Anterior segment: assessment of cornea, anterior
chamber and crystalline lens assessment through
qualitative methods such as slit-lamp biomicro-
scope or quantitative analysis through Scheimpflug
photo/videography or anterior segment optical
coherence tomography (OCT)
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OPTICAL

Ocular Refraction

During childhood, the eye elongates alongside concomitant
changes in the cornea and lens power. A mismatch between
the eye’s axial length and the optical power of the cornea
or lens results in a refractive error. A myopic refractive error
can arise in one of a few ways because of excessive axial
length (axial myopia), excessive corneal, or lenticular power
(refractive myopia).1

Measurement of Refractive Error. Refractive error
can be measured using objective methods that assess the
eye’s optical state, as well as subjective methods that incor-
porate perceptual aspects of vision. Cycloplegic subjec-
tive refraction is considered the gold standard for deter-
mining refractive error, particularly in clinical practice,
because it incorporates both optics and perception while
controlling for accommodation. However, because patient
cooperation and comprehension is required, it may not
be suitable for younger children.2–4 For younger children,
objective methods such as cycloplegic retinoscopy and
cycloplegic autorefraction are the next best methods to
accurately determine refractive error. In clinical trials, data
obtained by objective methods tend to be favored and
considered more repeatable with less potential for subjec-
tive variability. Both cycloplegic retinoscopy and cycloplegic
autorefraction generally yield comparable refractive results,
with mean spherical differences falling within 0.50D of the
other.5,6

Cycloplegic Refraction. Control of accommodation
during refraction assessment is especially critical for young
children, where accommodation can cause measurements to
vary by as much as 4D.7 Not using cycloplegia may lead to
an overestimation of the magnitude of myopia and possi-
bly misclassifying hyperopia and emmetropia as myopia.8–14

Although noncycloplegic refractive error may be on average
0.6D–0.8D more myopic than cycloplegic results in myopic
children,11,15,16 this difference is larger and more variable
for hyperopic and emmetropic children (1.80D ± 1.11D and
1.26D ± 0.93D, respectively).11 Refraction without cyclo-
plegia can result in misclassification of children aged four
to 15 years, with errors most likely to occur in younger
children with more hyperopic refractive errors and smaller
axial length.10 There is evidence to suggest that cycloplegia
should always be included in the clinical workup for patients
up to 20 years old; beyond age 20 the difference between
cycloplegic and non-cycloplegic refractive errors falls below
0.25D.8,11

In clinical practice the two commonly used cycloplegic
agents are 1% cyclopentolate and 1% tropicamide. Cyclopen-
tolate has an overall stronger cycloplegic effect than tropi-
camide, and also has a different time course with maxi-
mal effect taking up to 60 minutes compared to maximal
cycloplegia with tropicamide at 30 minutes after installa-
tion.17 Although there are minor differences in cycloplegic
effect between the two cycloplegic agents as per a meta-
analysis, the difference is neither statistically significant
nor clinically meaningful.18 Tropicamide and cyclopentolate
have a similar effect on anterior chamber depth, crystalline
lens thickness, crystalline lens power, and vitreous chamber
depth.19 Because tropicamide demonstrates a similar cyclo-
plegic effect without the longer-lasting mydriatic effects, the
International Myopia Institute recommends the use of two
drops of 1% tropicamide separated by five minutes, with
refractive error measurement at 30 minutes after instilla-

tion.4 It should be noted that it is more difficult to achieve
complete cycloplegia in children with darker irides because
of the sequestering effect of iris pigment.20,21

When compared to cycloplegic subjective refraction, both
cycloplegic retinoscopy and cycloplegic autorefraction tend
to overestimate myopic spherical and cylindrical power
and underestimate hyperopic power.22 Retinoscopy accu-
racy strongly depends on the skill of the clinician.22 With
skilled clinicians, the repeatability (consistency of measure-
ments by the same clinician) and reproducibility (consis-
tency of measurements by different clinicians) of cycloplegic
retinoscopy can be within 0.25D.23

Although the use of cycloplegia is preferred to precisely
determine refractive error, cycloplegia can be inconvenient
for patients due to its impact on vision and the small risk
of allergic reaction.24 Also, not all eye care practitioners
have the scope of practice to perform cycloplegic refrac-
tions. A practical alternative, if unable to perform a cyclo-
plegic refraction, is to use optical fogging to relax accom-
modation in young patients. Fogging the contralateral eye
by 6.00D, in patients seven to 16 years old during non-
cycloplegic retinoscopy achieves refractive results that are
on average only 0.3D more myopic when compared to
cycloplegic retinoscopy.25 If myopia has already been deter-
mined, the amount of fogging has a negligible effect on the
final refractive result, so the conventional 2.00D fogging in
retinoscopy may suffice.26

Autorefraction. Autorefractors, whether closed-field
or open-field, are widely used as an objective method for
measuring refractive error and are generally well tolerated
by most patients. Closed-field devices use an enclosed target
image, whereas open-field models allow patients to view
an external target through a beam-splitter, offering a natu-
ral viewing experience and minimizing instrument-induced
accommodation.27

Using fogging as a technique to relax accommodation
has proven ineffective for closed-field autorefractors result-
ing in an overestimation of myopia.28 With fogging, refrac-
tive results with handheld and tabletop autorefractors elicit
on average 0.60 to 0.80 D more myopia (less hyperopic) in
comparison to subjective refraction.10,11,16,29–31 Repeatabil-
ity of measurements with fogged autorefraction is, at best,
within 1.00 D.32 The difference between cycloplegic and
non-cycloplegic autorefraction is greater in younger and
more hyperopic children.13 However, myopic eyes exhibit
the smallest differences across all age groups.11 Although
handheld devices allow for measurements with younger chil-
dren, they tend to produce more myopic results than table-
top instruments,29,30 with the overestimation being as much
as 2.00 D.33 Non-cycloplegic autorefraction with fogging in
closed-field devices lacks the accuracy needed for precise
diagnosis and is best suited as a preliminary step prior to
subjective refraction. However, with cycloplegia, validated
autorefractors provide reliable and accurate measurements
regardless of the device type.33

Binocular open-field autorefractors minimize proximal
accommodation by offering a natural viewing environment
with an unobstructed view of a distant target. They can also
measure peripheral refraction and generally produce less
myopic results compared to closed-field devices.34 If cyclo-
plegia cannot be used, open-field autorefractors provide the
results closest to cycloplegic retinoscopy, especially in chil-
dren aged six to 11 years.35 The differences between open-
field autorefractor measurements and binocular subjective
refraction are clinically insignificant (mean difference <0.25
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D), and highly repeatable within 0.25 diopters.30,36,37 Open-
field autorefractors offer more accurate measures of astigma-
tism, particularly for oblique axes, than closed-field counter-
parts.35 Cycloplegia does not appear to significantly affect
the accuracy of measurements for the astigmatic compo-
nents.35 Axis determination is deemed to be more accurate
with autorefraction than with retinoscopy.38

Despite the reduced accuracy of non-cycloplegic autore-
fraction, it can be useful for screening purposes, partic-
ularly with binocular open-field instruments, which are
more effective at accurately classifying myopia, hyper-
opia, and high myopia in school-aged children.6,28

However, the accuracy of these instruments varies among
models.16,30

Peripheral Refraction. The eye has multiple refrac-
tive states surrounding the fovea based on the radially gradi-
ent optical powers of the lens and cornea and contour
of the retina. This is termed peripheral refraction. Measur-
ing peripheral refraction has been a significant focus in
clinical research serving as an indicator of how prolate
the eye is subsequent to axial elongation and to deter-
mine whether there is a relationship between periph-
eral refraction, myopia progression and efficacy of myopia
control treatments.39 Peripheral refraction is often most
commonly measured with patients viewing fixation targets
placed along the horizontal visual field typically at 10°,
20° and 30° nasal and temporal to the fovea.40 Relative
peripheral refraction (RPR) is calculated as the difference
between peripheral and central refractive states; hyperopic
RPR refers to the relative hyperopia along the periphery
and is denoted by a positive value (and vice versa for
myopic RPR).41–45 Variations of techniques including subjec-
tive refraction, retinoscopy, autorefraction and aberrometry
have been used to measure peripheral refraction.46,47 As with
central refraction, peripheral refraction is best measured
with cycloplegia.47 Accuracy is limited with subjective refrac-
tion in the periphery because of poorer resolution thresh-
olds with increasing eccentricity.48–50 Because the use of
autorefractors for peripheral refraction is beyond the scope
of manufacturers’ intended use, validation of the instru-
ments is needed to determine accuracy and repeatabil-
ity of peripheral measurements.37,51 Specifically, the pupil
shape is more elliptical than spherical in off-axis measure-
ments, which challenge the wavefront assumptions in the
algorithm used by the autorefractor to determine refrac-
tive power.50 Open-field autorefractors have shown strong
repeatability and accuracy for peripheral refraction across
different pupil sizes in comparison to their aberrometer
counterparts.52

Measuring RPR may have clinical relevance for predicting
myopia control treatment effects. Children with hyperopic
RPR in the nasal retina have been shown to have a greater
treatment effect with myopia control spectacles compared
to children with myopic RPR.53 Naso-temporal asymmetry
did not increase as much in the spectacle group compared
to the group treated with single-vision spectacles, but more
research is needed to ascertain the full relevance and clinical
application of this finding.54

Wide-Field Refractive Mapping. Recently, new tech-
nologies have been marketed that allow a quick and continu-
ous refractive characterization across the central 50° to 100°
of the visual field.55–58 Further work is needed, but this tech-
nique may have value in predicting patients at risk of devel-
oping myopia or perhaps to support algorithms to individu-
alize myopia control management.

Corneal Topography/Tomography

Corneal topography provides detailed mapping of the
corneal front surface curvature/elevation, and in addition,
tomography can measure corneal thickness and back surface
curvature. These techniques play a crucial role in contact
lens fitting, and in the diagnosis and management of a
variety of ocular conditions. Corneal topography refers to
the measurement and visualization of the anterior corneal
surface, primarily focusing on curvature and elevation data.
Tomography involves the 3D reconstruction of the entire
cornea, including both anterior and posterior surfaces, and
corneal thickness. Reflective and projection-based methods
are commonly used in corneal imaging.

Application of Topography/Tomography. Corneal
topography/tomography plays a crucial role in eval-
uating patients’ suitability for contact lens fitting, in
particular orthokeratology treatment.59 Baseline topogra-
phy/tomography serves as a critical reference point in
orthokeratology procedures representing the original shape
and condition of the cornea, which will subsequently be
altered by treatment. Changes to the corneal shape are
measured and analyzed in relation to this baseline and can
be used to help quantify treatment success and effectivity.

Some instruments have integrated software for contact
lens fitting, allowing practitioners to simulate how specific
lens designs will interact with a patient’s cornea. This feature
supports a tailored approach to lens selection, optimizing
comfort and vision. Additionally, the software may include
free-form design capabilities, enabling precise customiza-
tion of lens parameters to align with the unique curvature
and characteristics of the individual’s cornea, resulting in
improved lens fit and visual outcomes.

Contact lens fitting with external software based on
corneal mapping information offers an alternative approach
with enhanced customization, particularly for challenging
cases requiring asymmetric or specialized lens designs.
This approach provides significant flexibility in lens design,
enabling effective management of even the most challenging
cases with tailored, bespoke solutions.

Topography. Placido disc-based keratoscopy uses a
circular pattern of alternating light and dark rings with
a central aperture for observing tear film reflections that
conform to the corneal shape.60 The Placido disc tech-
nique does not measure corneal height directly but rather
treats the eye as a mirror, with the reflected image’s loca-
tion being highly responsive to corneal slope but less so to
corneal height.61 These topographers depend on reflections,
so issues such as tear film instability can cause distorted
reflections, leading to data gaps and inaccuracies.62 Addi-
tionally, irregular corneal surfaces can result in skew ray
errors when using a reference axis for calculations.63

Placido-disc systems come in two variations: small-cone
and large-cone. Small-cone units use a shorter working
distance and project more rings onto the cornea compared
to large-cone systems. Nose and eyebrow shadowing is
more significant with larger Placido-disc cones, limiting the
analyzed area. Some modern devices combine Placido discs
with Scheimpflug imaging and scanning-slit technology to
improve accuracy.

An alternative corneal topography approach utilizes color
light-emitting diode technology, first introduced in 1997 but
only recently made commercially available. This type of
topographer uses 670 multicolored pseudorandom points
through specular reflection to reconstruct corneal shape64
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Unlike Placido-disc based systems, this method eliminates
alignment errors (Placido mismatch), improving accuracy for
asymmetric or irregular corneas.65–67

An alternative method for comprehensive ocular surface
assessment uses the corneo-scleral profilometry system,
capturing topographical data across the cornea, limbus, and
sclera. The system uses a sequential dual-projector configu-
ration with symmetrical telecentric projectors aligned with
a digital camera. This design enables critical noise and bias
reduction during image processing through redundant data
acquisition, thereby significantly enhancing measurement
accuracy.61

Tomography. There are various methods available to
obtain a 3D topographical map of the cornea: The scanning
slit system combines a 3D scanning slit beam with a Placido
attachment. It uses triangulation to measure the distance
between a reference slit beam and its reflection captured by
a camera, generating a detailed 3D topographic map includ-
ing corneal curvature, anterior and posterior elevation, and
pachymetry.68

Anterior segment OCT utilizes low-coherence interfer-
ometry to compare time-delayed infrared light reflections
from anterior segment structures against a reference.69

Time-domain OCT generates cross-sectional images through
adjustments in the reference mirror’s position, while Fourier-
domain OCT utilizes a stationary mirror, with cross-sectional
images created through interference between sample and
reference reflections.70 Fourier-domain OCT offers faster
acquisition times, reducing motion artifacts and improving
resolution to better characterize normal and pathological
structures.

The Scheimpflug principle uses a camera perpendicular
to a slit-beam, creating an optical section of the cornea and
lens when applied to the anterior eye. Multiple images can
be used to create a 3D representation of the anterior cham-
ber through lateral raster scanning or by rotating around
the visual axis.71 Scheimpflug imaging addresses poor data
capture from the corneal periphery due to its non-planar
shape.72 It ensures accurate focus by aligning the refracting
lens and desired image plane. This principle allows for clear
imaging of non-parallel objects by manipulating the image
and lens planes.73

Additional Features of Topography for Dry
Eye Assessment. Research links dry eye symptoms to
myopic refractive error, with higher prevalence in myopic
children significantly affecting their education and well-
being.74,75 Long-term use of orthokeratology can reduce
meibomian gland integrity and have a detrimental impact
on the tear film in children and adolescents.76,77 Conversely
it has been noted that symptoms of discomfort and
dryness may be lower in patients using overnight orthok-
eratology than those wearing contact lenses during the
day.78

Some corneal topographers offer supplementary func-
tions for evaluating the tear film including measurement
of its volume (tear meniscus height) and stability (breakup
time or surface quality) using non-invasive videokeratog-
raphy. There are also instruments with integrated meibog-
raphy (by eyelid transillumination of infrared light reflec-
tion) to image the meibomian glands.79 The creation of
customizable dry eye reports integrating imaging, grading
scales, and questionnaires can support patient education and
hopefully compliance with treatment recommendations.80

However, further work is needed to better understand the
within-patient repeatability and correlation of many of these

objective measures of tear film quality with patient-reported
symptoms.

Aberrometry

Aberrometry is the measurement of optical imperfections in
the visual system, measures can be acquired using various
technologies, including:

• Hartmann-Shack Aberrometers
• Tscherning Aberrometers
• Ray-Tracing Aberrometers
• Pyramidal Wavefront Sensing

Each method uses different techniques and offers unique
advantages for assessing and correcting optical imperfec-
tions in the visual system.

Hartmann-Shack (or Shack-Hartmann) aberrometers are
among the most widely used devices and were some of
the earliest instruments developed for clinical use.81–86 These
instruments input a small infrared laser source into the eye
that after reflection from the retina creates an exiting wave-
front that gets subdivided by a lenslet array to create spot
images on a sensor. Deviations in location of these spot
images yield the wavefront slope.

Tscherning aberrometers project a collimated laser source
through a mask containing a matrix of pinholes forming a
bundle of thin rays. These rays form a spot pattern on the
retina that is distorted according to the aberrations of the
eye. This spot pattern is imaged onto a sensor, and the loca-
tion of the spot patterns from their ideal positions provides
the wavefront slope. A limitation of some Tscherning aber-
rometers is overlapping of the spots in eyes with higher
amounts of aberrations.87,88

Ray-Tracing aberrometers direct a narrow laser beam into
the eye parallel to the line of sight by means of an x-y scan-
ner. The scanner moves the beam to cover the entire pupil
area. The direction that the light beams take when enter-
ing and leaving allows for a reconstruction of the wavefront
error.87

Pyramidal wavefront sensing aberrometer technology is
based upon the Foucault knife-edge test and uses a four-
faceted pyramid prism in the focal plane to divide the
wavefront into four parts.89 The pyramid prism creates four
images of the pupil at the detector plane. Differences in
intensity between these images are caused by the differences
in slope of the wavefront as it exits the eye.90–92 The sensor
range can be extended by introducing dynamic modulation
of either the pyramid itself or the focused beam.

Application of Aberrometry. On-eye aberrometry
can quantify how myopia control strategies affect the accom-
modative response.93–95 Studies have shown that if an eye
fails to accommodate properly while wearing a myopia
control lens, the lens may not effectively slow down axial
elongation as intended.93–97 However, in general, accom-
modation is not affected by current myopia control opti-
cal designs.95,96 Measures of accommodative response have
been found to be similar between an autorefractor and aber-
rometer when care is taken to measure through the same
pupil and lens position98 Additionally, because aberrometry
provides localized refractive state measurements across the
entire pupil, it allows localized defocus within specific zones
to be assessed (Fig. 2).95

Aberrometry has been used, primarily in clinical research,
to analyze the pupil, measuring the percentage exposed to

Downloaded from iovs.arvojournals.org on 07/09/2025



Myopia Management Instrumentation IOVS | July 2025 | Vol. 66 | No. 9 | Article 7 | 6

-4.0

-3.0

-2.0

-1.0

0.0

1.0

3.0

3.0

0.0

0.0

3.0

3.0

2

x

y

FIGURE 2. Example of zone-wise lens analysis method. Refractive state can be quantified as the average dioptric value within the available
lens regions of the central and first annular zone of a dual-focus (top panel) lens. Equivalent pupil regions can then be used to analyze the
same regions on a single vision contact lens (bottom panels). Reproduced from reference 95.

emmetropic, hyperopic and myopic defocused light. In eyes
wearing dual-focus lenses, hyperopic defocus decreased
while myopic defocus increased, both theoretically aiding
in slowing axial elongation.96,99 Similarly, myopic defocus
within the pupil area increased 1.2- to 3.0-fold with a multi-
zoned compared to a single vision contact lens design when
measured on eye.97 On-eye aberrometry also potentially
allows for visualization of how a contact lens behaves on the
eye, making it possible to detect issues such as lens decen-
tration.100

Representation of Aberrations. The optical aberra-
tion map of the eye can be presented using color coded
wavefront slope measurements, but it is more common
to have aberrations expressed using mathematical models
such as Zernike polynomials.101,102 Another method for
analyzing aberration maps is to compute the retinal image
of a visual object, such as a point of light, resulting in
a point-spread function (PSF). This PSF can be mathe-
matically combined with an image to provide an esti-
mated representation of the vision attainable.103 For easier
comparisons, wavefront data or PSF may be reduced to
various single metrics that have been shown to correlate
well with human vision.104,105 Some authors have ques-
tioned the effectiveness of Zernike polynomials in accu-
rately representing total ocular wave aberrations, particu-
larly in cases with higher-order aberrations, such cases of
keratoconus or in eyes wearing zonal contactor spectacle
lenses.92,96,106–110

An alternative approach is zonal wavefront reconstruc-
tion, which avoids the use of Zernike polynomials.95,110,111

Unlike the modal method, which tends to smooth out irreg-
ularities caused by abrupt local slope changes in wavefront
profiles, the zonal wavefront reconstruction may preserve
more detailed features of the slope data.112

Additionally, although autorefractors provide local refrac-
tion at a single point or over a small pupil area, aber-

rometers can assess the refractive state across the entire
pupil (Fig. 3).98 Sagittal power or wavefront vergence can
be calculated as the local slope at each pupil point divided
by the local radius at the same point.113 Local curva-
ture power can be determined as the derivative of sagit-
tal power, offering advantages in describing zonal lenses
with non-coaxial optics.108,114 Aberrometry also enables
detailed descriptions of myopia control contact and spec-
tacle lenses.97,98,107,108,115–118

Pupillometry

Pupillometry refers to the measurement of the dimen-
sions and spontaneous variation of the eye’s pupil. The
pupil responds to three distinct kinds of stimuli: illumi-
nation (causing constriction – the pupillary light reflex),
near fixation (causing constriction—pupil near response),
and emotionally charged stimuli (causing dilation in the
psychosensory pupil response). The pupil controls the
amount of light entering the eye, and changes in its size
and shape impacts the optics of the eye.119,120 Gener-
ally, smaller pupils enhance image quality and depth of
field, while larger pupils improve visual sensitivity.119,121,122

Understanding pupil dimensions under different illumina-
tion and task conditions is crucial for comprehending the
eye as a complex optical system.

Application of Pupillometry. It is well established
that the pupil diameter influences the type and magnitude
of higher-order aberrations experienced by the eye.123–126

These aberrations impact several factors including the eye’s
measured refraction,127 the on-eye effective power of a
lens,128–130 optimal image quality,131–133 and associated opti-
mal myopic correction.116 The pupil not only regulates the
light entering the eye, but also determines which optical
components influence the light, which reaches the retina.134
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FIGURE 3. Color maps of ex-vivo measures wavefront error (top panels, micrometers) and power (bottom panels, diopters) of a single vision
(left panels) and dual-focus (right panels) contact lens across a 10.0 mm measurement diameter with nominal distance powers of −1.00 and
−1.25 D, respectively. Map coordinates are in millimeters. Reproduced from reference 95.

In presbyopic corrections or myopia control methods
which aim to introduce myopic defocus, such as dual-focus
soft contact lenses with zonal designs, pupil size interacts
with lens centration and lens optical zone geometry to influ-
ence image quality and the amount of myopic defocus reach-
ing the retina.96,97,100,135 For example, Figure 4 row 1 shows
sample refractive power maps over an 8 mm aperture of
a single vision lens (column 1) and two-sample zonal lens
designs. If this power map were limited by a 4 mm aperture,
the central lens zone would dominate the optics received by
the retina (Fig. 4, row 2). However, because contact lenses
typically center well on the cornea, although the pupil is not
typically centered within the limbus, the lens’s zonal geom-
etry may not align perfectly with the pupil.100 This decen-
tration causes irregularly-shaped zonal portions of the lens
to appear in front of the pupil, impacting the distribution
of optical zones and the may impact the effectiveness of
myopia control (Fig. 4, row 3).

Knowledge of pupil size is crucial in understanding the
visual impact of all myopia control treatments, including
pharmacological agents and can also be used to monitor
compliance.136,137 The combination of pupil size and opti-
cal properties of an optical device, such as orthokeratology
lenses, can have an impact on myopia control efficacy.138

Pupil dimensions should be measured and considered when
managing myopia to better understand visual outcomes and
treatment effectiveness.

Methods of Measurement. There are various meth-
ods available to measure the pupil diameter accurately,
although pupil dynamics because of light and accommoda-
tive responses do create challenges.139,140 Most frequently
pupil diameter is measured with distance fixation in high
or low illumination.141 However, task-dependent pupil size
may have many important advantages for optimizing visual
performance for a patient. For example, in young children or
presbyopic patients, pupil size may dictate the effectiveness
of the treatment approach, knowing a patient’s pupil size
during their typical tasks may help troubleshoot problems
and optimize treatment.142

Traditional methods to measure pupil size, such as rulers
or low-tech subjective cards (e.g., Rosenbaum Cards143) with
varying sizes of black circles to compare to the perceived
pupil size may be sufficient for some general clinical prac-
tice situations. However, these methods have often been
replaced by objective methods in many clinical and research
settings. Automated objective pupillometry provides more
accurate, reliable, and reproducible measurements.144,145

Objective measures of pupil size have become commonplace
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FIGURE 4. Lens-only defocus maps of a Proclear 1 day (left column), MiSight 1 day (middle column), and Biofinity center distance 2.00 D
(right column) lens (all CooperVision) for an 8 mm central aperture (top row), 4 mm centered aperture (middle row), and 4 mm aperture
with the lens decentered horizontally (bottom row) (courtesy of Clinical Optics Research Lab, Indiana University).

in some multifunction instruments that also provide other
important clinical data.

Handheld Pupillometers. Modern handheld pupillome-
ters typically use infrared light to obtain an average pupil
diameter over the measurement time (e.g., 3–4 seconds)
providing greater accuracy and repeatability, making them
reliable for most clinical practices.146 It should be noted that
although pupil diameter is typically quantified with a single
number, the shape of the pupil is typically elliptical rather
than perfectly round and changes with time.147,148

Mobile Device-Based Pupillometers. As mobile device
hardware and software have advanced significantly over
the past decade, pupil measurement technology has been
integrated into these devices through native technology or
specialized applications. Examples include applications in
which the device’s native camera flash is used to trigger
pupil constriction and capture a video of the pupil during
the constriction and re-dilation phases.149

Additionally, other technologies not only monitor viewing
distance but can also acquire pupil size information, further
demonstrating the versatility of mobile devices in providing
advanced eye care assessments. These developments have

made pupillometry more accessible and convenient, allow-
ing for broader application in both clinical and everyday
settings.150

Multifunction Instruments. Instruments designed for
other primary purposes, such as autorefractors, aberrome-
ters and corneal topographers can also be used for pupil-
lometry, generally using an infrared light source to mini-
mize their impact on the pupil size measured.80,151,152

It is important to note that aberrometers and corneal
topographers usually acquire measures along various axes.
Topographers are typically aligned to the videokeratoscopic
axis whereas aberrometers align to the primary line of
sight.153–155 Although this difference is subtle and unlikely to
significantly affect pupil size measurements, it may impact
the apparent location of the pupil.151,153,156,157

Similarly, OCT instruments, which provide high-
resolution, cross-sectional images of the eye’s anterior
segment using infrared light, can also provide pupil diam-
eter information. However, the test-retest reliability and
accuracy of a binocular prototype was found to be slightly
inferior to those of a dedicated infrared pupillometer,
perhaps because of a slower measurement of a single
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B-Scan frame (so no averaging and potential alignment
errors).158

STRUCTURAL

Axial Dimension Measurement (Biometry)

Biometry, although infrequently defined in the scientific
literature, is generally understood in two contexts. First,
it refers to “measurements of human features,” which are
often used to identify individuals—a field commonly known
as biometrics. Second, it encompasses “the application of
statistical analysis to biological data,” a discipline recognized
as biostatistics.159 In ophthalmology, biometry specifically
pertains to the measurement of ocular anatomical features,
such as length, curvature, and optical power. These measure-
ments are critical for various clinical applications, includ-
ing the assessment of eye growth, the planning of refrac-
tive surgery and the fitting of contact lenses. Axial dimen-
sion biometers are used in the field of myopia to assess
principally axial length but have also been used to moni-
tor changes in choroidal thickness.

Application of Biometry. Axial length is a criti-
cal biomarker in myopia management, directly correlating
with ocular complications and vision loss in myopia.160 Its
measurement provides a reliable and precise method for
assessing individual risk profiles and monitoring the effec-
tiveness of myopia control treatments over time.161–163 There
is a direct correlation between axial length and refractive
error. However, changes in ocular components, such as
the crystalline lens, influences the impact that axial elon-
gation has on refractive error.164,165 As a general guide,
0.1 mm of axial growth equates to approximately 0.2 D
increase in myopic refractive error (or decrease in hyperopic
refractive error).165,166 Biometry is particularly valuable in
regions where optometrists and other primary eye care prac-
titioners are restricted from using cycloplegia. Axial length
measurements have not been found to be affected by cyclo-
plegia.167,168 Correlation between choroidal thickness, axial
length, and refractive error has been well established.169

Methods of Measurement.
A-Scan Ultrasonography. Ultrasonography uses moder-

ate to high-frequency, mechanical ultrasound pulses, rather
than light, to measure distances from the time taken for the
ultrasound waves to reflect from a surface.170 The ultrasound
impedance of the intervening media needs to be accounted
for, as it affects the speed of propagation of the waves. Avail-
able commercial instruments have a precision of ≈0.1 mm
(equivalent to about 0.25 D) with a moderately high intraob-
server and low interobserver reproducibility.171–174 Because
it also requires the contact of a probe (ultrasound source)
with the ocular surface corneal anesthesia is required and
as such is invasive and less ideal for pediatric assessment.

Partial Coherence Interferometry. Partial coherence
interferometry (PCI) was introduced clinically in the early
1990s.175 As light is approximately 930,000 times faster than
sound, the time for a reflection to reach a sensor is too fast
for it to be accurately quantified. Hence, in its current form,
this technique splits the laser beam, both passing through
the optics of the eye, taking different paths before they are
recombined to produce an interference pattern (because
the path difference between the beams is smaller than the
coherence length). Measurements of axial dimensions using
this approach are more than 10 times higher in resolution
than that of ultrasound.176 Lens thickness measurement

with this technique has only been reported in two proto-
type devices,177,178 commercial instruments using partial
coherence interferometry typically use imaging instead.179

In children, the repeatability (standard deviation) of this
technique has been found to vary between ∼0.02 mm and
0.06 mm dependent on the instrument used.167,179–184

Optical Low Coherence Reflectometry. Optical low coher-
ence reflectometry (OLCR) was developed in the late 1980s
for reflection measurement in telecommunication devices
with micrometer resolution and first applied to in vivo
biological tissue (the eye).185 It differs from partial coher-
ence interferometry by using a superluminescent diode of
a slightly higher wavelength (typically 820 nm) and a rotat-
ing glass cube that alters the path length of the reference
beam,186 allowing for the measurement of corneal and lens
thickness as well as axial length. It has a similar resolution to
partial coherence interferometry with a repeatability in chil-
dren of 0.02 to 0.06 mm.167,183,184,187,188 Attempts have also
been made to assess the choroidal reflections, but these are
less reproducible.189,190

Optical Coherence Tomography. OCT was developed in
the late 1990s and its potential to increase the accu-
racy of axial length measurement was soon recognized.191

However, it was not until swept light sources with a large
coherence length became available that they were able to
have the depth of scan needed to measure axial length.191

The technique is similar to partial coherence interferom-
etry and optical low coherence reflectometry, except that
the beam is scanned across the eye to create a B-scan
(which can demonstrate whether the beam is accurately
targeted on the macula) and the change of path of the
reference beam has moved from time domain (a physi-
cally moving mirror or cube) to spectral domain (where
the point detector is replaced by a spectrometer using a
diffractive element to spatially separate the different wave-
length contributions into a line image that is recorded by a
high-speed line scan camera) or a swept light source (which
rapidly sweeps a narrow line-width over a broad range of
wavelengths, detected sequentially by a high-speed photo-
detector). Repeatability of axial length measurement in chil-
dren has been reported to be 0.01 to 0.05 mm.167,180,183,192

Enhanced depth imaging has been achieved by view-
ing the inverted image when the instrument head is moved
closer to the eye,193 effectively moving the instruments
focal point or using a longer wavelength,194 allowing imag-
ing of choroidal thickness. However, this still has its chal-
lenges (see the International Myopia Institute–The Dynamic
Choroid report).195 Repeatability in children between two
sessions has not been reported.

Image Analysis. The Scheimpflug principle is
achieved with a camera perpendicular to a slit beam,
allowing it to image an optical section of the cornea and
lens with quantification of parameters using image analysis.
As with all optical and acoustic techniques, the refractive
index of the intervening tissues needs to be corrected for.196

Some instruments can rotate around the visual axis to allow
a 3D image of the anterior eye to be rendered and corneal
thickness and anterior chamber depth to be measured;
however, the pupil size “aperture” prevents its ability to
measure axial length.197

Multifunction Instruments. Multifunction instru-
ments have revolutionized clinical practice by integrating
multiple diagnostic capabilities into a single device. These
instruments, which combine axial length measurement, typi-
cally via PCI or OLCR as previously described, with assess-
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ments such as autorefraction, pupillometry, keratometry, and
corneal topography, streamline patient care. This integration
helps in gathering comprehensive data efficiently, saving
time and reducing costs for both practitioners and patients.

In addition to their primary functions related to myopia
management, such instruments often come equipped with
features for contact lens fitting and dry eye assessment.
They are also supported by software that track changes over
time and include normative data for axial length, helping
practitioners compare individual patient data to established
benchmarks. The generated reports are valuable tools for
tracking patient progress and making informed decisions
about myopia management.

Algorithms to Estimate Axial Length. Measur-
ing axial length should be regarded as the benchmark
for myopia management, but lack of access to a biome-
ter should not delay implementation.162 In the absence of
direct measurements, algorithms for estimating axial length,
endorsed by professional bodies including the College of
Optometrists in the United Kingdom,198 serve as interim
tools for risk assessment alongside refraction.

Although these models help to differentiate between
normal and high-risk ocular profiles, biological variability
limits their accuracy.199 Axial length estimation should be
viewed as a transitional approach to guide clinical decision
making and encourage future adoption of direct biometry.

Despite its clear benefits, axial length measurement
remains underused in primary care settings, ranking behind
refraction, age, and family history in clinical decision making
for myopia control.200 Financial constraints appear to be
a significant barrier to biometry adoption, with cost of
adding new technology frequently cited as a barrier.201–204

Clinicians have also expressed concerns about the inter-
pretation of axial length data and its role in distinguish-
ing normal from myopic eye growth.203 Addressing these
challenges through improved estimation models and cost-
effective solutions can facilitate winder integration of biom-
etry into myopia management.

Early axial length estimation models, were based on
the linear relationship between refractive error and axial
length,205–208 deriving estimates from spherical equivalent
refractive error alone or combined with corneal curva-
ture.209–213 However, these models performed poorly in clin-
ical settings, showing wide limits of agreement (0.70 mm
to −1.56 mm),199,213,214 and a 30% misclassification rate for
vision impairment risk.214

Their limitations stem from their failure to account for key
factors such as age and sex. Age, significantly influences eye
growth, with rapid elongation in the first two years, nearing
adult size by age five, and elongating slightly thereafter.215

Myopic eyes exhibit abnormal growth patterns, potentially
continuing into adulthood, especially in highly myopic
eyes at risk of complications.216–222 Biological sex also
affect axial length with males typically having longer eyes
than females.223–226 Although age-adjusted models show
improved accuracy, their limits of agreement (±0.23 mm)
are still too wide for treatment monitoring.213

Machine learning techniques, including multiple linear
regression, symbolic regression, gradient boosting and
multilayer perceptrons have enhanced estimation models
by incorporating non-linear relationships between age, sex,
refraction and corneal.199,210,227–229 Among these, multiple
linear regression demonstrated superior performance across
diverse populations, accurately identifying high-risk myopic
eyes and approaching the physiological limits of estima-

tion accuracy without including lens power, demonstrating
the effectiveness of a comprehensive approach.199 These
advancements highlight the potential for improved screen-
ing but reinforce the need for direct biometry in long-term
management.

Posterior Segment Imaging

Application of Posterior Segment Imaging.
Posterior eye imaging has a role to play in monitoring the
safety of myopia control treatments, which are generally
used in children and young adults, and also in the monitor-
ing of older adults to detect and monitor pathology caused
by myopia.230,231 Short-term choroidal thickness changes
imaged with OCT have also been suggested to aid in predict-
ing the effectiveness of myopia treatments in an individual,
refractive development in young adults and myopia macu-
lopathy.232–237

Fundus Cameras. Retinal cameras use digital imaging
chips for instant image capture and viewing. Many devices
include an autofocus function while others allow the initial
working distance to be more accurately determined using
a split pupil presentation. A second anterior eye-focused
camera can also be used to aid positioning. A high positive-
powered lens is then dropped into place to neutralize the
optical power of the crystalline lens and cornea, allowing
an inverted aerial view of the fundus to be seen.238 Near-
infra-red sensitive light is typically used to facilitate posi-
tioning such that the retina is in focus and the camera
centered on the features of interest.239 This feature mini-
mizes the impact on pupil size prior before the synchro-
nized white light flash captures the image to optimize retinal
imaging.238

The quality of the images captured depends on both the
camera optics and the optics of the patient being imaged.
Factors such as cataracts and corneal anomalies can affect
image quality, as will small pupils unless a mydriatic is used
for dilation. The image size varies based on the refractive
error of the patient and the camera used with a magnification
difference of approximately 5% to 30%,240,241 impacting the
accuracy of calliper measurements. Consistent monitoring of
the size of a lesion over time should use the same camera for
reliability. Recording flash intensity helps streamline follow-
up images and ensures more consistent results. Extracting
color planes can aid in highlighting important features, such
as viewing just the green pixels to enhance blood vessels and
hemorrhages (Fig. 5).

Composite images, where a range of images (usually
about seven) can be taken with the patient looking in set
locations, which are subsequently “stitched” together using
software to give a larger field of view of up to 85° (Fig. 6).242

Some software is capable of displaying stereo image-pairs
to appropriate goggles from fundus images captured from
different locations or angles.243 Overlay or comparison func-
tions enable enhanced monitoring of change between visits.
Deep learning artificial intelligence has been applied to
fundus images of children to predict the development of
high myopia244 and to grade lesions.245

Scanning Laser Ophthalmoscopes. Rather than
using a pixel matrix to image the fundus, scanning laser
ophthalmoscopes scan a laser in a raster pattern, with
the reflectance of light at individual successive points across
the fundus used to form an image.246 This approach allows
the use of brighter light than conventional photography,
producing clearer images. Incorporating adaptive optics
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FIGURE 5. Fundus image (top left) split into its red (top right), green (bottom left), and blue (bottom right) components (courtesy James
Wolffsohn).

FIGURE 6. Fundus mosaic made up of nine 45° standard images
“stitched” together using registration software (courtesy James
Wolffsohn).

corrects higher-order aberrations to enhance lateral and
axial resolution, enabling detailed visualization of retinal
structures such as photoreceptors, nerve fibers and retinal
blood flow as well as axial sectioning of retinal tissue.247

A widescreen confocal scanning laser ophthalmoscope
provides up to a 200° view of the retina, covering approx-
imately 82% of the surface area.248 This is achieved using
two ellipsoidal mirrors with focal points that are conju-
gate (one at the pupillary plane to minimize wavefront
aberrations and facilitate the wide field of view). The
system focuses light through a confocal aperture and vari-
ous filters onto the light sensor to capture images of
the retinal periphery without the need for high illumi-
nation, largely without pupil dilation.248 The collimated,
low powered green laser (532 nm) image contains infor-
mation from the sensory retina through to the pigment
epithelium layers of the retina. The red channel (633 nm
laser) image contains information from the deeper struc-
tures of the retina, from the pigment epithelium through
to the choroid. Fluorescein angiography can be achieved
with the blue (488 nm) and indocyanine green angiogra-
phy with the infrared (805 nm) laser. Because of the combi-
nation of red and green images of different retinal layers,
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FIGURE 7. Widefield scanning laser ophthalmoscope fundus image
(courtesy James Wolffsohn).

the fundus pictures look very different compared to those
conventionally seen from standard fundus cameras, which
capture red, green, and blue light from the retinal surface
(Fig. 7).

Optical Coherence Tomography. OCT uses low-
coherence interferometry to generate high-resolution, cross-
sectional (B-scan) images of the retina and choroid. It
captures two-dimensional slices, displaying distinct retinal
layers. Analysis of these layers aids in detecting pathologi-
cal changes and monitoring of ocular disease. Its noninva-
sive nature makes it ideal for repeated clinical evaluations.
Enhanced depth imaging and swept-source OCT improve
visualization of deeper structures such as the choroid to
reveal thickness and vascular patterns (Fig. 8). The measure-

ment of choroidal thickness provides insights into structural
changes associated with myopia, including changes with
myopia progression.OCT can also be valuable in diagnosing,
evaluating, and monitoring retinal changes associated with
myopia such as myopic maculopathy and staphyloma.249–251

Studies have shown that myopia is associated with a
thinner choroid, and a thinner choroid is linked to faster
axial elongation, making it a potential biomarker for myopia
progression.252–254 Because of the natural distribution of
thickness across the choroid, measurement variations can
occur between visits and across different instruments.255

Studies have highlighted the limitations in the reliability
and reproducibility of choroidal thickness measurements,
suggesting that changes of less than 10 μm may not repre-
sent a true physiological change.189,256

Interventions such as orthokeratology and atropine have
been associated with choroidal thickening, suggesting a
protective mechanism against myopia progression.257,258

Although choroidal thickness may be a valuable indicator
for monitoring myopia, it is primarily used in research, and
its direct role in the clinical management of patients has yet
to be established.

General Application of Instrumentation for
Myopia Management

The use of instrumentation varies according to the stage
in the natural history of myopia from assessment of the
at-risk patients who are not myopic, through the initial
onset and progression of myopia to its active manage-
ment through optical, pharmacological, or combined treat-
ments. This approach spans across the individual’s life-
time, beginning in childhood or adolescence, through the
active progression phase, and into the stabilization and
long-term management of myopia in adulthood and old
age.

Pre-Myopia. Before the onset of myopia, assessing
a child’s risk of becoming myopic involves evaluating
various factors, including family history, near vision activities
and outdoor exposure. Quantifiable parameters such as axial
length and refractive error offer valuable insights. Refractive

200 µm 200 µm200 µm

FIGURE 8. OCT image (courtesy Deborah Jones).
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error at the age of 6 years (1st grade) has been indicated to
be a strong predictor of future myopia.259 Researchers have
found that only 10% of third graders with a refractive error of
at least 1.00 D developed myopia, compared to 75% of those
with emmetropia.260 Also, children at high risk of develop-
ing myopia (refraction less than 0.75 D at age six) had a
greater likelihood of becoming myopic by age 13. Using such
predictors does depend on the availability of cycloplegic
refractive error data, which may not be the case in all situ-
ations. Noninvasive quantitative methods are now preferred
for estimating myopia risk. New algorithms and nomograms
based on optical biometry have been developed to assess the
likelihood of developing myopia in adulthood by analyzing
axial length measurements taken during childhood, adoles-
cence, and young adulthood.163 Normative axial length data
have been incorporated into multifunction instruments to
aid in the prediction and progression monitoring of myopia.
There are also a variety of online myopia risk assessment
tools available to support clinicians in their management of
patients.

The use of peripheral and wide-field refraction as
predictors of myopia progression remains controversial.
Although a study identified significant changes in rela-
tive peripheral refraction before the onset of myopia
and until stabilization, other research found no causal
link between peripheral refraction patterns and one-year
myopia progression.261,262 Emerging technologies such as
wide-field wavefront refraction and multispectral refrac-
tion topography have shown a potential connection
between retinal refraction patterns across a wide field
(50° to 100°) and myopia trends, but evidence remains
limited.263–265

Myopia Onset and Progression. Frequent compre-
hensive assessments of visual function (distance visual
acuity) and refraction (with relaxed accommodation) are
essential for early diagnosis of myopia. Studies have shown
that on average, myopia is first diagnosed in a patient when
the spherical equivalent value is −1.00 D or worse suggest-
ing that myopia has been progressing and those eyes have
been uncorrected for some time.200,266 For patients at risk of
developing myopia, frequent visits, at least every six months,
can support initiation of a myopia control treatment at the
earliest onset of myopia.162,164 Early detection of myopia is
also possible through measuring changes in axial length as
it is known that the peak rate of axial elongation occurs in
the two to three years before the onset of a myopic refrac-
tive error.163,267 Biometry changes (axial growth) are crucial
to understand the rate of ocular growth whereas binocular
vision, accommodation, and AC/A ratio might also identify
functional changes that apparently accompany the process
of myopization.267

A study conducted in Taiwan examined changes in
corneal curvature, anterior chamber depth and crystalline
lens thickness in myopic, emmetropic and hyperopic eyes.
The study found notable differences in ocular growth
among these three refractive groups. Between the ages
of eight and 14 years, a significant change in lens thick-
ness was observed, coinciding with a period of rapid eye
growth. During this time, myopic eyes consistently demon-
strated a trend towards having thinner crystalline lenses
compared to emmetropic and hyperopic eyes.268 Another
study investigated the change in the crystalline lens before
and after the onset of myopia and discovered that although
axial length and refractive error changed significantly in
the one year before the onset of myopia, the lens thick-

ness remained largely stable with age associated changes
observed before and after the onset of myopia.269 Simi-
lar to using nomograms to estimate the risk of develop-
ing myopia before its onset, these same nomograms remain
useful for individuals who are already myopic and help
assess the risk of further progression toward high myopia in
adulthood.270

Myopia Control Treatment. Myopia control today
primarily focuses on monitoring ocular growth by measur-
ing changes in refraction and axial length with an opti-
cal biometer. Comprehensive evaluations of myopic patients
should also include assessments of binocular vision, accom-
modation and corneal curvature/topographical changes. In
cases of rapid myopia progression or when high or very
high myopia occurs during childhood and adolescence,
visual function may deteriorate and retinal changes can
often be detected through fundus photography and OCT
imaging.

Various myopia control treatments have been shown
to increase choroidal thickness, which may influence the
assessment of their actual effectiveness. Because these
increases in choroidal thickness may be transient and may
return to baseline after stopping treatment, this effect should
be considered when evaluating axial elongation control and
potential rebound effects.271–274

In both clinical practice and research settings, the assess-
ment of potentially myopic or newly myopic eyes often
involves a standard comprehensive ophthalmic examina-
tion. Researchers utilize various additional technologies to
explore the effects of myopia control treatments on ocular
structure, optical properties and the functional status of
the myopic eye. Although refractive error change and axial
length are primary outcomes in myopia control trials, other
parameters such as corneal thickness, anterior chamber
depth, crystalline lens thickness, retinal changes, choroidal
thickness and electroretinal activity have also been studied
to provide a more detailed understanding of the impact of
these treatments.232,275–278

Adult and Elderly Myopic Eye Follow-Up. Given
the risks associated with high myopia,279 frequent follow-up
is crucial, particularly starting at age 50 for patients with very
high myopia (≤−10 D, or ≥28 mm) and after 60 years for
high myopia (−6.00 to −10.00 D, or 26–28 mm).163 Along-
side the standard clinical techniques of fundus biomicrosopy
and binocular indirect ophthalmoscopy for assessing the
anterior segment and the fundus, the use of fundus photog-
raphy and OCT are preferred for identifying and monitoring
myopic maculopathy and other retinal changes.250,280 Periph-
eral changes that can increase the risk of retinal detach-
ment can be more easily identified with wide-field fundus
photography. A study conducted in China demonstrated that
the use of an ultrawide field imaging fundus camera was
superior to mydriatic standard examination for the detec-
tion of lesions in superior and inferior quadrants.281 Indi-
viduals with myopia, particularly those with high myopia,
have an increased risk of developing glaucoma282–285 As a
result, tonometry should be performed. Various methods are
available to measure IOP; however Goldmann tonometry
is still considered to be the gold standard.286 Non-contact
tonometry methods tend to overestimate IOP in compari-
son to Goldmann applanation tonometry.287,288 Along with
careful monitoring of intraocular pressure, changes in the
retinal ganglion cell layer and optic head nerve struc-
ture should be carefully investigated and followed up
with posterior segment OCT and visual field assessment
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with perimetric techniques to evaluate potential functional
changes.289

Communication and Clinical Decision Support
Software

Despite increasing awareness and engagement in myopia
control, many eye care professionals (ECP) continue to
prioritize vision correction only with single vision spec-
tacles or contact lenses. Although the perceived effective-
ness of myopia control methods is high, their adoption
remains inconsistent.200 This hesitancy to fully engage in
myopia management can be attributed to a range of clin-
ical, communication and commercial factors. The addi-
tional chair time and continuity of care requirements to
best serve the needs of individual patients raise signifi-
cant concerns. Despite high levels of training, eye care
professionals also report a lack of confidence in person-
alized decision making and communication of essential
information for myopia management.201,203 Clinical deci-
sion support and communication tools that alleviate or
resolve residual barriers to the use of myopia control treat-
ments by ECPs, and their uptake by patients and parents,
will be instrumental in supporting ECPs to manage their
patients in accordance with the widely accepted standard of
care.

Communication Challenges. Raising parental
awareness about myopia’s causes, risks, and treatment
benefits is crucial, because parents play a pivotal role
in healthcare decisions and lifestyle choices affecting
their children.290,291 Effective treatment uptake relies on
parents recognizing the importance of interventions for
their child’s eye health. Many parents see myopia as a
minor inconvenience rather than a serious health issue,292

often unaware of the risks of eye disease and vision loss.
Educating parents about the potential consequences of
progressive myopia and the practicalities, costs, risks, and
benefits of various treatment options is essential.292 It’s also
important to set realistic expectations, as the benefits of
myopia management may take years to become evident,
unlike the benefits of simple vision correction which are
immediately evident. Simplifying this complex information
into relatable terms within consultation time constraints
is a significant challenge, but worth addressing as most
parents will respond positively to the clear message that
action can be taken to prevent or slow their child’s antic-
ipated vision changes. Standardized communication tools
that simplify and clarify myopia management can enhance
parents’ understanding, foster trust in ECP recommenda-
tions and ultimately improve treatment implementation and
outcomes.

Clinical Challenges. Myopia management presents
complex clinical challenges that go beyond the straight-
forward task of updating vision prescriptions. The field
demands nuanced decision-making, with evolving treat-
ments and guidelines often providing conflicting evidence
about efficacy and safety.293,294 Clinicians frequently face
uncertainties in identifying suitable candidates, managing
pre-myopic children, and addressing progressive myopia
in adults.201 The absence of clear protocols for discon-
tinuing treatment and the need for ongoing monitor-
ing, particularly as eye growth and myopia progression
continues, further complicates care. Clinical decision
support software could support clinical decision making and

offer the personalized, evidence-based care necessary for
myopia management.

Rationale for the Introduction of Communica-
tion and Decision Support Software. The persis-
tent challenges and uncertainties in myopia manage-
ment highlight the need for decision-support tools that
enhance clinician confidence, improve communication and
provide evidence-based insights for informed clinical deci-
sion making. An ideal software solution would make myopia
management accessible to clinicians, patients and parents,
delivering several key benefits including:

1. Enhanced Clinical Guidance: Up-to-date, evidence-
based tools tailored to individual patients would
help clinicians navigate complex myopia management
cases, reducing uncertainty and boosting confidence.
Incorporating current clinical guidelines would also
aid compliance and governance.

2. Efficient Patient Communication: Automated tools that
deliver personalized, easy-to-understand information
on myopia risks and treatment options would bridge
communication gaps between ECPs and parents.
These tools could simplify the conversation, empha-
sizing treatment benefits while encouraging early
intervention and management, ultimately increasing
treatment uptake.

3. Streamlined Workflow: Integration with existing elec-
tronic health record systems would reduce adminis-
trative burdens, freeing up clinician time for patient
care by streamlining the clinical workflow.

4. Improved Clinical Outcomes: By supporting better
decision-making, early risk identification, and
comprehensive treatment monitoring, such tools
would contribute to more consistent and effective
myopia management, optimizing outcomes for each
child.

Essential Characteristics of Communication and
Decision Support Software. Effective decision-support
software should be robust, offering precise, individualized,
and evidence-based insights to ECPs. The key characteristics
that such software must possess to be effective in myopia
management include:

• Evidence-Based
The software should be grounded in the latest clin-
ical research and use robust, multinational datasets
to provide reliable and representative guidance.
The computational models behind its recommen-
dations must reflect the most up-to-date scientific
knowledge.

• Clinically Validated
Rigorous testing against clinic data is essential to
ensure that the software’s recommendations are both
theoretically sound and practically effective. Clinically
validated tools build ECP trust and confidence in the
robustness of the software.

• Individual Patient Application
The software must provide personalized guidance by
considering key predictive factors, such as baseline
refraction, axial length, age, sex, and ethnicity,295 offer-
ing tailored insights for each patient’s unique progres-
sion and treatment response.
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• Dual Applicability: Refractive Error and Axial Length
The software should integrate data from both spheri-
cal equivalent refractive error and axial length monitor-
ing, because both are critical for evaluating treatment
outcomes. By addressing both parameters, the software
enables a comprehensive approach to myopia manage-
ment. It should accommodate situations where cyclo-
plegic refraction is not available by making suitable
adjustments for noncycloplegic data and when axial
length data is unavailable, it should use keratometry
values to estimate axial length.

• Direct Comparison Capabilities
Tools should allow for direct comparison between
refractive error and axial length changes, using metrics
and visualizations that help ECPs track the overall effec-
tiveness of treatments across both dimensions.

• Meaningful Age-Specific Projections
The software must offer age-specific projections of
myopia progression, helping ECPs anticipate changes
and adjust treatment plans accordingly. These projec-
tions provide an essential benchmark for long-term
management.

• Monitoring and Treatment Efficacy Metrics
To track myopia progression and treatment effi-
cacy, various metrics are currently available.161 These
include:

° Absolute Change and Centile Chart Comparisons:
Track changes in refraction and axial length and
compare them against standardized centile growth
charts.

° Progression Rate and Axial Growth Rate: Calculates
rates of myopia progression and axial length growth,
tailored to patient-specific factors like age, sex and
ethnicity

Although useful, these existing metrics for monitoring
myopia progression and treatment are primarily derived
from clinical trial analyses. Decision-support software
should prioritize development of enhanced metrics tailored
for use in individual patients in a clinical setting rather
than clinical trials. This will help streamline the complex
process of delivering personalized care, enabling clinicians
to make evidence-based decisions, communicate effectively
with parents and thereby foster greater treatment adoption
and long-term adherence without sacrificing valuable chair
time.

Artificial Intelligence in Myopia Control

The interest in applications of artificial intelligence (AI) in
ophthalmology and vision science has grown dramatically in
recent years, with over 1000 papers on this topic in PubMed
in 2023 alone. The majority of these publications relate to
the detection of disease, such as diabetic retinopathy,296 age-
related macular degeneration,297 anterior segment diseases,
and glaucoma.298

Generally, AI functions by applying mathematical models
or algorithms to large datasets to identify patterns and make
predictions. These algorithms often go through initial train-
ing phases and improve in performance over time when
exposed to increasing amounts of data. In myopia detec-
tion and monitoring, the approach depends on the available
data that can be used to train AI models.299 For example,

machine learning can use statistical techniques to analyze
baseline demographics and clinical measurements, such as
spherical equivalent refractive error, axial length, keratome-
try, and visual acuity. Meanwhile, deep learning, a subset of
machine learning, excels in recognizing intricate patterns in
medical images, such as those produced by corneal topog-
raphers or fundus cameras.244

AI’s Role in the Prediction of Myopic Progres-
sion. A random forest machine learning model based on
10-year refraction data from electronic medical records in
China demonstrated high prediction accuracy for up to eight
years, with limits of agreement of 0.5 D to 0.8 D of the actual
value at eight years.57 Other models have included behav-
ioral factors, such as amount of indoor and outdoor activ-
ities, diet, reading habits and cell phone use, have shown
high predictive accuracy.300 Additionally, various machine
learning algorithms, including linear regression and logis-
tic regression, have been tested to predict aspects such as
axial length elongation301 and visual acuity in eyes with high
myopia.302

AI’s Role in Detecting Myopic Pathology. The
detection of pathological changes associated with high
myopia, such as staphyloma, myopic maculopathy, optic
disc tilting, and chorioretinal atrophy,303 can also be chal-
lenging, especially in the early stages of myopic disease.
Deep learning methods, such as convolutional neural
networks, have shown high accuracy in their ability to
detect fundus lesions in high myopic patients.304–306 AI
has also been used to explore the genetic components of
myopia. For example, machine learning algorithms iden-
tified 23 differentially expressed genes associated with
myopia, four of which were highly effective diagnostic
biomarkers.304–306 In addition to the detection of pathologi-
cal myopia and its associated fundus changes, deep learning
AI has also been used in the classification of myopia-related
fundus lesions, including choroidal neovascularization, peri-
papillary atrophy, and fundus tessellation.307–314

Although the classification of myopia-related fundus
changes can be applied clinically, AI’s deep learning algo-
rithms can also help in the understanding of the eye’s struc-
tures. This process has led to the ability to study underly-
ing choroidal changes in myopic patients254 to train ophthal-
mology residents in the identification of pathologic myopia
through the interpretation of fundus images,315 and to the
ability to label the choroid and retinal layers in high myopia
patients.316

AI’s Role in Myopia Treatment. Possible appli-
cations of AI have also been explored for use within
some of available treatments for myopia, including orthok-
eratology317,318 and topical atropine.319 A retrospective
study found machine learning to better estimate the
return zone depth and landing zone angle of the
four quadrants of an orthokeratology contact lens that
three other methods, including the traditional sliding
card method provided by the manufacturer.317 Multiple
machine learning models have been applied to retro-
spectively study the effect of 19 factors on intraocular
pressure in myopic children being treated with topical
atropine.319

As with any technology, AI is not without important
considerations of proper use. Two major considerations for
AI that must always be considered include the general-
izability and bias of the outcomes.320 The datasets used
in AI algorithm development might carry biases related
to ethnicity, gender, techniques/equipment used, or other
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TABLE. Instrumentation for Clinical Practice and Research in Myopia Management

Clinical Technique Methodology Clinical Practice Clinical Research

Cycloplegic refraction • 1 drop of 1% Cycloplentolate OR
• 2 drops of 1% Tropicamide

Essential*—at initial visit and
appropriate intervals thereafter

Essential for primary
outcome measures

Objective refraction • Retinoscopy
• Open-Field Autorefraction
• Closed Field Autorefraction

Essential – at initial and
subsequent visits

Essential—typically
open-field used

Subjective Refraction • Subjective refraction Preferred by clinicians Suitable
for older
children—confirmation of
objective findings

Non-essential Typically not a
primary outcome measure

Axial Length (Biometry) • PCI
• OLCR
• OCT

Preferred Essential—a primary
outcome measure for
clinical trials

Topography/Tomography
(Corneal Curvature)

• Reflection
• Projection

Essential for OrthoK patients Clinical trial dependent

Objective Pupillometry • Infrared light
• Mobile device software

Preferred for OrthoK patients Clinical trial dependent

Dry Eye Assessment • Slit lamp microscopy
• Videokeratography
• Meibography

Preferred Clinical trial dependent

Aberrometry • Hartmann-Shack
• Tscherning
• Ray-Tracing
• Pyramidal Wavefront Sensing

Non-essential Clinical trial dependent

Posterior segment imaging • Fundus camera
• Scanning laser ophthalmoscope
• OCT

Preferred—for
monitoring patients

Clinical trial dependent

* Where scope of practice permits.

factors, potentially leading to biased algorithms, or at least
algorithms with limited heterogeneity or applicability.321

The opacity of machine learning models, often referred to
as “black box” systems, poses challenges in understand-
ing their inner workings and accordingly, the appropriate-
ness of the assumptions these algorithms have made. Simi-
lar to much of advancing technology in healthcare, ethi-
cal concerns also arise regarding unequal access, exac-
erbating disparities in patient care. Other ethical consid-
erations with AI include data security, informed consent,
privacy, accountability, and trustworthiness for decisions
made by AI systems.322 The ideal clinical situation likely
uses AI to augment clinical decision-making rather than
supplanting it and requires AI models to be built on large,
diverse datasets. Addressing these challenges, however, is
paramount for the effective and ethical application of AI in
healthcare.

SUMMARY

The rising prevalence of myopia has driven the devel-
opment of advanced diagnostic and management tools.
Clinical instrumentation plays a crucial role in myopia
control, enabling practitioners to measure refractive
error, axial length, accommodative responses, and ocular
health. Although wavefront aberrometers provide valu-
able insights into higher-order aberrations and ocular
optics, their use remains largely confined to research
settings rather than routine clinical practice. In contrast,
axial length measurement is a cornerstone of myopia
management, with technologies such as PCI, OLCR, and
swept-source OCT providing highly precise and repeatable
data.

Modern instrumentation provides precise and repeat-
able measurements critical for monitoring progression and
evaluating effectiveness of myopia control treatments. The
Table summarizes the instrumentation available and its rele-
vance to clinical practice and research. By leveraging the
appropriate technologies, clinicians can optimize patient
care, effectively monitor myopia progression, and enhance
treatment outcomes in the fight against the global myopia
epidemic.
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