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ABSTRACT 

Aston University 

 

Physiologically Based Pharmacokinetic Modelling as a Tool for Dose 

Optimisation in Special Population Groups 

 

Khairulanwar Bin Burhanuddin 

Doctor of Philosophy 

2024 

 
This thesis explores the application of physiologically based pharmacokinetic (PBPK) 
modelling, an approach that predicts drug disposition by integrating physiological and drug 
parameters. The objective is to elucidate the impact of physiological alterations within special 
populations on drug pharmacokinetics, aiming to identify optimal dosing that accounts for 
exposure differences.    

The initial section focuses on fluvoxamine dose optimisation in pregnant women, considering 
their CYP2D6 phenotypes. The study revealed that fluvoxamine maternal concentrations 
significantly decreased during gestation, while the foetal concentrations increased 
substantially in poor metabolisers (PM) but remained constant in ultra-rapid (UM) and 
extensive metabolisers (EM). The recommended dose for UM and EM reached 300 mg daily 
at gestational weeks 15 and 35, respectively. Conversely, a consistent 100 mg daily for PM is 
sufficient to maintain the therapeutic concentration throughout the gestation.  

The succeeding part discusses the imatinib dosing strategy in obese adults with cancer. 
Results showed significant differences in maximum concentration (Cmax) and area-under-the-
curve (AUC) between obese and lean adults but not in trough concentrations (Cmin). The 
therapeutic drug monitoring (TDM) approach using the PBPK model demonstrated that the 
same TDM-guided dosing adjustment could be applied to lean, overweight, and obese adults 
to restore Cmin to the target concentration level.  

The last segment centres on the paediatric obesity population using amlodipine as a case 
study. Findings showed significant differences in predicted Cmax and AUC were observed 
across ages 2 to 18 years with a fixed dose regimen, while weight-based dosing showed no 
difference in Cmax from ages 2 to 9 years. Thus, a 1.25 – 1.5-fold dose increase is needed to 
attain the same Cmax as in non-obese children when using a fixed dose.  

In summary, PBPK modelling effectively assessed the influence of physiological changes in 
special populations on drug pharmacokinetics and ascertained the optimal dose from a 
pharmacokinetic perspective. 

 

Keywords: PBPK; pharmacokinetics; pregnancy; foetal; fluvoxamine; cancer obesity; imatinib; 
TDM; paediatric obesity; amlodipine   
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1.1 Background 

In the context of clinical practice, a successful treatment lies in achieving an optimal treatment 

outcome, and selecting an appropriate dose of medication is one of the critical inputs of the 

whole treatment management [1]. An effective dose is a delicate balance between maximising 

the therapeutic effect while minimising the risk of adverse effects. The process of deciding 

appropriate and effective drug doses for special populations, such as pregnant women, adult 

and paediatric obesity, and oncology patients is a complex and critical task and remains a 

challenge for prescribers [2, 3]. The intricate interplay between physiological alterations and 

pharmacokinetic changes in special populations is the challenging part of identifying an 

effective and safe dose.  

In terms of official dosing guidance for special populations, the primary public documents on 

the expected drug effects issued by regulatory authorities to guide prescribers, health 

professionals and end-users are the summary of product characteristics (SmPC) or United 

States Prescribing Information (USPI) and package leaflets (PLs) or patient information 

leaflets (PILs). The details in SmPC or USPI delineate the information on how to use the 

specific medication safely and effectively, including information for pregnant women, 

paediatrics, renal impairment, liver impairment and potentially other special populations [4]. 

As for the PLs or PILs, they come together with the medicines containing information derived 

from the SmPC and written in a straightforward and easy-to-understand language for the end-

users [5]. 

Although the information on the effect of drugs on special populations is made available in the 

SmPC and PILs, the information is still limited to specific populations such as pregnant 

women, paediatrics, and several others. Furthermore, the data shared is not always on the 

need for dose adjustment in special populations but more on the previous exposure and 

possible impact on the population as well as potential adverse risks associated to the foetus 

based on clinical data generated from non-clinical, clinical studies and nowadays modelling 

and simulations [4, 6]. 

Although the information on optimal doses for specific medicines in special populations is not 

always available from the SmPC or USPI, clinical practice guidelines for specific medical 

conditions or classes of medication potentially address the information gap. Clinical practice 

guidelines are developed based on systematic reviews and assessments of evidence 

available in medical research realms by a group of experts and specialists within the particular 

domain [7, 8]. Thus, guidelines may include recommendations for the treatment management 

of specific diseases in special populations based on the countries and regional-specific 

practices, such as the use of psychotropic drugs during pregnancy and lactation [9], treatment 
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strategy for obese adult patients with cancer [10], management of paediatric obesity [11-13], 

and other conditions and populations. Nevertheless, there are areas and gaps that need to be 

addressed by research communities to improve the overall effectiveness and inclusivity of 

treatment practices. 

There are a few reasons for the lack of recommendations and data to guide treatment 

management in various special populations, such as the strict set of criteria for patient 

recruitment in clinical trials and the patient subpopulation groups are typically categorised as 

high-risk and vulnerable and challenging to recruit in a standard clinical trial setting [3, 14]. 

Scientific advancement methods such as modelling and simulation techniques have been 

applied to bridge and support the optimisation of dosing regimens in special populations [15-

17]. 

Furthermore, regulatory authorities' acceptance of modelling and simulation data to support 

dosing recommendations during registration and clinical trial applications has increased over 

the years [18]. The increase was illustrated by Zhang et al. (2020) [19] and Grimstein et al. 

(2019) [20], where the percentage of new drug approvals with physiologically based 

pharmacokinetic (PBPK) data supporting the drug registration as one of the modelling and 

simulation approaches increased up to 45% in 2019 compared to the previous year.  

 

1.1.1 Modelling and simulation in assisting the dose optimisation process in 

special populations. 

Several terms are used to indicate the modelling and simulation in the drug development stage 

and clinical practice, such as model-based drug development, in silico analysis, model-

informed drug development (MIDD), model-integrated evidence, and others. Among all, MIDD 

is the most recent and commonly used term, particularly by the United States Food and Drug 

Administration (USFDA), to illustrate the myriad of quantitative modelling and simulation used 

and implemented during various drug discovery and development stages (Figure 1.1) [21]. 
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Figure 1.1 A wide range of quantitative models categorised under model-informed drug development 
(MIDD) applied in the drug development stages. 

Adapted from Liu et al. (2021) [21]. PK, pharmacokinetic; PD, pharmacodynamic; ADME, absorption, 
distribution, metabolism, excretion; E/R: exposure-response; PBPK: physiologically-based 
pharmacokinetic modelling; PK/PD, pharmacokinetic/pharmacodynamic; PopPK, population 
pharmacokinetic; QSP, quantitative system pharmacology; QSAR, quantitative structure-activity 
relationship; QSPR, quantitative structure-property relationship 
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The USFDA has recognised MIDD in the Prescription Drug User Fee Act for fiscal years 2018 

to 2022 (known as PDUFA VI) and generally defined the term as the development and 

application of exposure-based, biological, and statistical models derived from the data 

generated during pre-clinical and clinical stages to make an informed decision during the drug 

development processes [22]. The application of MIDD throughout the drug development 

stages is diverse, starting from the early stage in the laboratory, such as target identification, 

followed by various types of modelling in the pre-clinical phase, like an extrapolation of the 

animal dose to human dose, and in the clinical stage, modelling is used in many ways including 

evaluating the drug effect in special populations and predicting optimum dose, and with the 

developed model, the impact of any changes occurred after approval can be assessed (Figure 

1.2) [23]. 

In the scope of this thesis, the emphasis of modelling and simulation is placed on PBPK 

modelling within the domain of pharmacokinetic modelling, which will be the focus of the 

subsequent sections. The evolving nature of pharmacokinetic modelling concepts and 

applications warrants further exploration and research to improve confidence in accepting the 

modelling results and expand the usage in various areas, particularly clinical practices.  
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Figure 1.2 Application of modelling and simulation throughout the drug development cycle. 

Adapted from Kim et al (2018) [23]. 
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1.2 Pharmacokinetic modelling 

Pharmacokinetics is defined as the drug time course study of the absorption, distribution, 

metabolism, and excretion with the primary goal of maximising efficacy while reducing the 

toxic effect of a drug in a patient. There are several techniques to study the pharmacokinetics 

of a drug, with each approach having its specific requirement. One of them is pharmacokinetic 

modelling, which uses a mathematical method to predict how a drug moves and is handled by 

the body. 

The classic pharmacokinetic modelling, also known as the 'two-stage' approach, involves 

conducting studies with small numbers of subjects meeting specific criteria to limit the 

variability, and each subject requires extensive sampling [24]. Depending on the questions, 

the concentration-time profile will then be analysed by either compartmental or non-

compartmental modelling [25]. 

Besides the classical method, there is the area of population pharmacokinetic (PopPK) 

modelling, also known as 'mixed-effects' modelling, which is often utilised with sparse drug 

concentration data, and analysis will be made at the population setting rather than individual 

by considering the interindividual, intraindividual, and residual variability [26]. Both techniques 

are considered 'top-down' or empirical approaches, where the observed data is needed to 

develop the mathematical model. In contrast, 'bottom-up' or mechanistic approaches such as 

PBPK modelling, which is the centre of this thesis, can generally predict the pharmacokinetic 

profiles without using clinical data [27]. 

 

1.3 'Two-stage' approach, non-compartmental and compartmental modelling 

The 'two-stage' approach is a classic or traditional method to analyse and study the 

pharmacokinetics of a drug, and it is still widely used in the drug development stage. Generally, 

intensive sampling will be collected from each subject in the classic study, and usually, the 

subjects recruited are homogenous with stringent inclusion and exclusion criteria [28]. The 

collected samples will then be analysed either using a naïve average data approach or naïve 

pooled data analysis in addressing the overall data from several subjects [29]. This 'two-stage' 

approach is still very much used in the current drug development process, particularly in the 

early phase trial, such as phase 1, when the information on the drug action in humans is 

minimal and even widely used in the bioequivalence study [30-32]. 

Once the comprehensive plasma concentration data have been collected, the investigator 

must decide which modelling approach to apply for analysis in order to quantitatively describe 

the drug disposition under study. One option is the non-compartmental model, also known as 
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the model-independent method. The non-compartmental approach requires fewer 

assumptions to fit the drug's pharmacokinetic profile; among others, the drug displays linear 

pharmacokinetics, and the elimination phase is log-linear [33]. The aim is to estimate the 

essential pharmacokinetic parameters using statistical moment analysis, such as the 

estimation of the mean residence time (MRT), mean transit time (MTT), and area under the 

first moment curve (AUMC). The MRT is defined as the average time a drug spends in a body, 

which can be calculated from the AUMC and area under the curve (AUC) as specified in 

equation (1.1) [34]. Both AUMC and AUC can be obtained using the trapezoidal method from 

the first-moment (plasma concentration x time) versus time curve and plasma concentration-

time curve, respectively (Figure 1.3). 

 
 

 

 

Figure 1.3 Plasma concentration-time and first-moment versus time curve. 

Adapted from Rowland et al. (1995) [35]. The plasma concentration-time curve is in black (A), and the 
plasma concentration x time-time curve is in red (B). The trapezoidal method for black and red graphs 
will obtain AUC and AUMC, respectively. 

  

MRT =  
AUMC

AUC
  (1.1) 
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For any drug administered through the extravascular route, the MRT in equation (1.1) is 

replaced with MTT to address the average drug transit time from absorption to elimination [36]. 

All the other essential pharmacokinetics parameters can then be calculated from the MRT and 

AUC, which include the elimination half-life (t½), clearance (CL), and volume of distribution at 

steady-state (Vss).  

In contrast, compartmental modelling uses the concept of drug absorption, distribution, 

metabolism, and elimination translated into logical-mathematical terms to create simple 

models of complex physiological processes. Generally, a body is represented by a 

compartment or several manageable compartments to express the drug disposition and 

estimate the pharmacokinetic parameters such as volume of distribution (Vd), t½, elimination 

rates, and others [34]. A compartment is regarded as a group of tissues with similar drug 

distribution rates with assumptions of homogenous drug concentration [36].  

The assumptions made for each compartment do not precisely represent any specific organs 

and tissues like in the mechanistic pharmacokinetics model. The main compartment usually 

means central, where rapid absorption occurs, with the additional compartments added when 

distribution and metabolism happen at a slower rate, while the elimination can either be from 

the main compartment only or at another compartment [37]. The numbers of compartments 

are typically determined by the shape of the plasma concentration-time profile facilitated with 

the known characteristics of the physicochemical properties of the drug under investigation 

(Figure 1.4). The application of compartmental modelling can be upscaled from individual to 

population by considering interindividual variability, which will be discussed further in a 

different section. 

Both the non-compartmental and compartmental approach have their advantages and 

disadvantages. The availability of necessary data and resources is the deciding factor on 

which modelling approach to use. For example, the information on sampling timing is not 

critical in the non-compartmental approach. Furthermore, the non-compartmental approach is 

straightforward and quick, with less experienced modellers able to perform the analysis 

compared to the compartmental modelling [34, 36]. 
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Figure 1.4 Illustration of common compartmental models for intravenous bolus administration with the 
correlated plasma-concentration profile. 

(A) One-compartment model; (B) Two-compartment model; (C) Three-compartment model. All three 
diagrams showed the three basic compartmental models used to fit the plasma-concentration profile for 
a single intravenous bolus drug. 
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1.4 Population pharmacokinetic (PopPK) modelling 

Population pharmacokinetics (PopPK) modelling is an empirical or 'top-down' approach, 

where plasma concentration data is required for the model development, similar to the 

classical model. However, the concentration required is less intensive than the non-

compartmental and compartmental modelling. Therefore, the data can be sparse and collected 

from a large number of subjects, with only a few samples needed from each subject, which is 

commonly applied in the late-phase clinical trial design [28]. In addition, the PopPK can 

determine and measure the inter-subject, inter-occasion, and intra-subject variabilities that 

may cause the pharmacokinetics variabilities, and it is commonly performed in patients who 

have taken different doses at various time periods or other routes of administration instead of 

healthy subjects [25]. The target is that the optimal dosing strategy for patients can be 

determined by considering the variabilities. Thus, improving the drug development processes 

and, ultimately, patient care. 

The PopPK analysis studies the population level instead of the individual level. The term 

PopPK also refers to 'mixed-effect' modelling, which is the mixture of fixed and random effects. 

For example, parameters such as CL and Vd are fixed effects, and factors that impact those 

parameters are covariates, such as age, weight, creatinine clearance, comorbidities, 

comedications, and a few others, while random effects are inter-subject, intra-subject, and 

inter-occasion variabilities [24]. The random effects represent the distribution of some model 

elements. The three essential components of the distribution assumptions are (1) the shape 

of the distribution, (2) the central tendency (mean, median, mode), and (3) the variation of 

individual distribution value around the central tendency (variance), where the first two 

assumptions are tested during model development, and the third assumption achieved when 

the estimation of population variance as a random variable was made [38].  

Understanding the concept of individual and population models is essential to ensure the 

appropriate model is used during the model development. In the individual model, the 

difference between observed data and the model-predicted data for an individual is minimised, 

where the error is denoted by 'ε' (Figure 1.5). In contrast, the population model is more 

elaborate and accounts for variability at the population level, where the variation between 

individual and population value is denoted 'η' (Figure 1.5). 
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Figure 1.5 Illustration of one-compartment model of concentration-time profile following intravenous 
bolus administration showing observed and predicted value. 

(A) Predicted individual one-compartment model data fit the observed individual data; (B) One-
compartment model fit with one population plot, two predicted individual plots and observed data from 
2 subjects. Solid circles in (A) represent observed individual data, solid circles in (B) represent observed 
data of subject 2, and solid squares in (B) represent observed data of subject 1. Cobs represent the 
measured concentrations, and Cpred designate predicted concentrations. Adapted from Huang et al. 
(2021) [37]. 
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There are several methods to perform the PopPK modelling, which include (1) naïve pooled 

data analysis, (2) naïve average data analysis, (3) two-stage approach, and (4) nonlinear 

mixed-effects modelling. The naïve pooled and average data require an intense sampling from 

individual subjects to estimate the population mean, and the inter-subject variability is ignored 

in the covariance estimation [29]. As for the two-stage approach, there are standard, iterative, 

and Bayesian methods where typically rich individual data is needed [29]. Among all, nonlinear 

mixed-effect modelling is commonly used in handling sparse sampling.  

Since this thesis focuses on the special populations where concentration samples are typically 

limited, the PBPK modelling tool was utilised. 

 

1.5 Physiologically based pharmacokinetic (PBPK) modelling 

In contrast to PopPK, PBPK modelling is a 'bottom-up' approach and uses the same 

mathematical framework as compartmental modelling, namely a series of differential 

equations to represent a substantial number of compartments. The distinction is that each 

compartment in PBPK represents different organs and tissues, which are parameterised with 

the knowledge of physiological variables, and the mechanistic framework can quantitatively 

describe the absorption, distribution, metabolism, and excretion. The PBPK was introduced in 

1937 by Teorell, with one of the earliest applications described by Bischoff et al. (1971) [39] 

for the pharmacokinetics of methotrexate in mice, rat, and human (Figure 1.6) [27]. PBPK 

modelling started to grab the attention of pharmaceutical industries when the computational 

advancement could solve the mathematical complexity to deal with a massive number of 

parameters as inputs, which is evident from the increasing trend of publications and regulatory 

acceptance over the past few decades [40].  
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Figure 1.6 Illustration of body compartments for the methotrexate distribution by Bischoff et al. (1971). 

Adapted from Bischoff et al. (1971) [39]. G.I., gastrointestinal; QL, plasma flow rate to liver; QG, plasma 
flow rate to gastrointestinal; QK, plasma flow rate to kidney; QM, plasma flow rate to muscle; T, nominal 
residence time in bile subcompartment; r, drug-transport rate in bile; C, drug concentration. 
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1.5.1 Fundamentals and concept 

Physiologically based pharmacokinetic (PBPK) models are built of many compartments that 

represent different tissues and organs in the body, such as lung, heart, adipose tissue, brain, 

gut, liver, kidney, muscle, and others connected by the arterial and venous blood. Furthermore, 

models can also be specific for certain physiological barrier tissues such as the gut, muscle, 

and liver (Figure 1.7).  

 

Figure 1.7 Schematic diagram of typical PBPK models. 

Adapted from Peters (2021) [41].  
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The physiological information used for each compartment is grouped under 'system data' 

defined by the tissue volume or weight and tissue blood flow rate specific to the species of 

interest. In addition, the data on organ perfusion rate, glomerular filtration rate, transporter, 

and enzyme abundance are also integrated into the equation and grouped under 'system data' 

[42]. In order to express the pharmacokinetics of a drug, 'compound data' on the absorption 

(lipophilicity, solubility, polar surface area (PSA), and hydrogen-bonded donors (HBD)), 

distribution (octanol to water partition coefficient (log P), ionisation coefficient (pKa), blood to 

plasma ratio (B/P), and unbound tissue partition coefficients (Kp)), metabolism and elimination 

(intrinsic clearance) are required to be integrated and to enable the plasma-concentration 

profiles while considering the variability with the simulated population of interest [27]. 

 

1.5.1.1 Assumptions 

The tissues and organs' compartments are connected by the circulating blood system, arterial 

and venous. Thus, each compartment amounts to a volume (VT) in which the information can 

be obtained from published literature [42-45]. The blood flow into and out of the compartments 

is represented by the blood flow rate (QT). Drug partitioning into and within the tissue 

compartments is defined by the Kp, the fraction unbound of drug in plasma (fup), and the 

permeability-surface area metric (PST) [27]. Each tissue compartment is assumed to be well-

stirred, and the distribution of the drug into the tissue can either be perfusion rate-limited or 

permeability rate-limited, depending on the compound's physicochemical properties (Figure 

1.8). 

 

 

Figure 1.8 Illustration of perfusion vs. permeability rate-limited tissue models 

(A) Perfusion rate-limited; (B) Permeability rate-limited. CA, concentration in arterial blood; CT, 
concentration in tissue; CV, concentration in venous blood; Cev,T, concentration in extravascular; Vev,T, 
volume in extravascular. 
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Perfusion rate-limited processes are those where the blood flow to the tissue is the limiting 

process, while the permeability rate-limited divides the tissue into extracellular and intracellular 

spaces separated by a diffusional barrier, which the permeability across this barrier is the 

limiting process instead of blood flow [27]. Whereas, the perfusion rate-limited model assumes 

that the total drug concentration in blood and tissue is equilibrium at steady-state, with equal 

Kp and fup. The time taken to reach the steady-state depends on the VT, QT, and Kp. In contrast, 

the permeability rate-limited model assumes that at equilibrium, the fup is equal, but the time 

to reach equilibrium is highly dependent on the compound permeability through the diffusion 

barrier rather than blood flow [46].  

In general, most of the PBPK models assume the tissue compartment is well-stirred and 

perfusion rate-limited [46]. The use of a perfusion rate-limited assumption is justified for small 

and lipophilic drugs distributed into organs, and commonly, highly perfused tissue will reach 

the steady-state faster. On the other hand, the hydrophilic and large molecules, including 

biologic products, are limited by permeability.  

 

1.5.1.2 System data 

The PBPK models for common species such as rat, dog, and human have been published 

and are incorporated into commercially available PBPK software [42, 46, 47]. In addition, the 

models can be adapted to simulate pharmacokinetics profiles for special populations such as 

pregnant women, paediatric, specific ethnicity, and particular disease states such as renal 

impairment and hepatic impairment [48-51].  

The nature of mechanistic models allows the inclusion of physiological and biochemical 

variability in the system parameters so that pharmacokinetic estimation can be made for the 

population instead of an individual. Variability is expected in the 'system data' due to inter-

individual variability, impacting the pharmacokinetics parameter predictions. Therefore, the 

variability is incorporated into the models with a defined limit of 30% coefficient variation (CV) 

[41]. The virtual population can then be generated based on data and formulae considering 

the demographic, anatomical, and physiological variables using a Monte-Carlo approach that 

allows for randomness, thus mimicking the variability in the observed data in clinical studies 

[52]. This prior approach provides an opportunity to make a prediction before conducting 

clinical studies as opposed to the PopPK or statistical approach, which requires clinical data 

to address the variability. 
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1.5.1.3 Compound data 

The key to prediction success is well-defined compound-specific data on absorption, 

distribution, metabolism, and elimination.  

For absorption, the critical measurement is the permeation of the compound through cell 

membranes, which is measured as human effective permeability (Peff). The value can be 

predicted from in silico models or in vitro studies using either the human epithelial colorectal 

adenocarcinoma cells (Caco-2) or Madin-Darby canine kidney cells (MDCK-II) [53]. The 

measurement obtained from the in vitro study resulting in apparent permeability (Papp) is then 

needed to scale up to the in vivo value using the linear regression that correlates the Papp and 

Peff applied by Sun et al. (2002) [54]. As for the in-silico method, quantitative structure-activity 

relationship (QSAR) parameters such as the number of HBD and PSA are required for the 

estimation of Peff. The formulae have been used to estimate passive absorption in the human 

intestine for various drugs [55]. In addition, input on compound solubility and lipophilicity is 

crucial for a reliable PBPK simulation, as shown by several publications [56, 57].  

The key compound parameter for distribution is the Kp value, which characterises the drug's 

movement into different tissues in the body. The Kp value is a ratio of the total compound 

concentration in tissue to the total compound concentration in plasma at a steady-state. 

Commonly, the value is obtained from pre-clinical studies; however, the mechanistic method 

has been used in recent years due to its cost-effectiveness [58]. The mechanistic approach 

developed by Poulin and Theil [59], Rodgers and Rowland [60], and Schmitt [61] used the 

physicochemical properties, in vitro data on compound binding characteristics and tissue 

composition (lipids, proteins, and water) to lipids and proteins such as molecular weight (MW), 

pKa, fup, and log P to estimate the value. The prediction performance of mechanistic equations 

showed good accuracy compared to several other methods [62]. However, the mechanistic 

equation may not be suitable for modelling specific target tissue due to the oversimplification 

of tissue kinetics.  

Hepatic clearance is the parameter of interest for metabolism and excretion. The human 

hepatic clearance (CLH) can be predicted from the in vitro test using physiological scaling 

factors based on the type of liver cells used during the in vitro assays, either microsomes or 

hepatocytes [63]. There are advantages and disadvantages of using each cell, such as the 

isolation of microsomal cells is more straightforward and cost-effective, but the predictability 

is better with hepatocytes because it contains both phase I and II enzymes [64]. The apparent 

in vitro intrinsic clearance (CLintapp) is then extrapolated to the human hepatic intrinsic 

clearance (CLintscaled). The CLH can then be predicted from the CLintscaled value using a well-
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stirred liver model or several other models. This approach has been widely used and 

extensively validated [64, 65].  

Regarding renal and biliary excretion, there are various approaches to predict the intrinsic 

organ clearance for renal and biliary, with some of the methods still evolving and reviewed [27, 

46]. However, the most common approach is an allometric-based from one species to another 

species, described by Mahmood (2012) [66] for biliary excreted drugs and Paine et al. (2011) 

[67] for renally excreted drugs. Besides, the in vitro-in vivo scaling approach has also been 

employed for the biliary excreted drug [68]. 

 

1.5.2 Model development strategy 

A proper strategy is crucial to successfully incorporating all the information on the population 

system data and compound data for the development of a PBPK model. Typically, there are 

at least five steps used in the PBPK model development: (1) Specify the general model 

structure, (2) specify the tissue and organs model, (3) set down the model equation, (4) define 

the model parameter, and (5) simulation and parameter estimation (Figure 1.9).  

 

Figure 1.9 General steps to develop a PBPK model  
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1.5.3 Software 

The software used to perform PBPK modelling can generally be divided into specialised 

software for PBPK modelling and general mathematical programming software. The 

specialised software is commercially available, such as Simcyp® Population-Based Simulator 

(Simcyp, UK) (https://www.certara.com/software/simcyp-pbpk/), Open Systems 

Pharmacology consisting of PK-Sim® and MoBi® (Bayer Technology Services, Germany) 

(https://www.open-systems-pharmacology.org/), and GastroPlus® (SimulationPlus, US) 

(https://www.simulations-plus.com/software/gastroplus/). The specialised software is suitable 

for inexperienced modellers since the software is less flexible for the model development 

process. In addition, the add-on function of virtual population simulation allowed for the 

estimation of pharmacokinetics in a special population such as paediatric and pregnancy. The 

software can also simulate complex pharmacokinetics with multiple metabolites and drug 

interactions [69, 70]. Nonetheless, the software is still relatively complicated, where a 

substantial understanding of fundamental pharmacokinetics and clinical pharmacology is 

required to recognise the various models offered in the software and further determine the 

appropriate model to be used.  

On the other hand, mathematical programming software packages such as MATLAB® 

(http://www.mathworks.com/products/matlab/), R software (https://www.r-project.org/), and 

several others provide a programming language platform to model the code, equations, and 

graphical output to develop the PBPK models. Advanced programming and modelling skills 

with experience in PBPK modelling are required to successfully develop the PBPK model 

using this software due to the vast flexibility for creating the model from scratch [69]. For 

example, the PBPK model built using MATLAB® software can be seen in a publication by Lin 

et al. (2017) [71], which assesses the performance of the PBPK models in the toxicology area 

and Reali et al. (2023) [72], who developed a minimal PBPK model for the development of an 

anti-tuberculosis drug to be used in the pre-clinical drug development stage. As for R software, 

a publication by Rostami et al. (2022) [73] developed a PBPK model using the software 

assessing nicotine exposure in humans after consumption of nicotine-containing products 

through various routes, including buccal cavity, upper respiratory tract and lower respiratory 

tract. 

From the software usage perspective, based on the trend over the last two decades, more 

than 70% of the publications on PBPK modelling were developed using commercial-off-the-

shelf software such as Simcyp®, Gastroplus® and PK-Sim® [74-76].  

 

https://www.certara.com/software/simcyp-pbpk/
https://www.open-systems-pharmacology.org/
https://www.simulations-plus.com/software/gastroplus/
http://www.mathworks.com/products/matlab/
https://www.r-project.org/
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1.6 Applications in pharmaceutical product development and regulatory 

acceptance 

Physiologically based pharmacokinetic (PBPK) models have been used throughout the drug 

development cycle, starting from the early stages of lead compound development when data 

on the compound is still limited to the late stages when the compound data is plenty. The 

application of PBPK modelling can start as early as candidate selection, during the transition 

phase of pre-clinical to clinical, such as determining the safe and optimum first-in-human dose, 

and at the clinical stages like potential drug-drug interaction assessment, facilitating in clinical 

trial design, alternative for the need of bioequivalence study and dose recommendation for the 

special population such as paediatric and pregnant women (Table 1.1) [50, 51, 77-82].  

Table 1.1 The application of PBPK modelling throughout drug development stages 

Model target Example 

Lead optimisation Characterisation of a novel, selective dopamine D3 receptor agonist 
as a potential compound to treat drug addiction in humans: 
The compound structure gave an early signal that the compound 
possibly has poor bioavailability. However, the predicted human 
pharmacokinetics profiles extrapolated from the animal PBPK model 
utilising in vitro and pre-clinical data proclaim the compound as a 
promising candidate for human testing [83].  

Translation from 
animal dose to human 
dose  

Prediction of first-in-human dose from pre-clinical data: 
The plasma concentration profiles for the first-in-human trial of a new 
non-steroidal progesterone receptor were predicted for a range of 
doses using the PBPK model combined with the clearance estimation 
from the intrinsic clearance of in vitro assay from human liver 
microsomes and dog [84]. 

Optimisation of clinical 
trial design  

Inclusion of renally impaired patient in a pivotal clinical trial: 
Estimation of an appropriate orteronel dose for renally impaired 
patients allows the inclusion of renally impaired patients in the pivotal 
study. Thus, optimised the trial design and excluded the need for an 
additional human trial [85].  

Drug-drug interaction Drug-drug interaction modelling of polatuzumab vedotin: 
Clinical data from brentuximab vedotin, the analogous of polatuzumab 
vedotin, was used to predict the polatuzumab vedotin drug-drug 
interaction and support the drug label [86]. 

Specific population 

Pregnant women Venlafaxine dosing recommendation in pregnant women: 
The predicted trough plasma concentration significantly decreased in 
pregnant women with extensive (EM) and ultrarapid metaboliser (UM) 
CYP 2D6 phenotypes. Thus, a dosing regimen was simulated for 
pregnant women with both phenotypes using the PBPK model [87].  

Paediatric Facilitate the development of new hydrocortisone formulations for 
congenital adrenal hyperplasia (CAH) in adolescents: 
The PBPK model for hydrocortisone in children with CAH dose 
prediction in adolescents has assisted in the approval of 
hydrocortisone modified-release hard capsules by the European 
Regulatory Authority [88]. 



K. B. Burhanuddin, PhD thesis, Aston University, 2024 

 

45 
 

 

Various guidelines issued by regulatory authorities since 2012 on PBPK modelling and the 

increasing trend in the number of submissions with the PBPK model as supporting documents 

to USFDA and European Medicines Agency (EMA) since 2008 showed the regulatory 

confidence in the modelling data to support the regulatory decision [20, 89]. Physiologically 

based pharmacokinetics (PBPK) modelling data submitted to support regulatory decisions are 

categorised according to the high, medium, or low impact and assessed according to the 

therapeutic context and availability of supportive data [90]. High impact submission indicates 

that the modelling data has a better chance of being accepted for labelling and regulatory 

decisions, while the medium impact submission is reviewed on a case-to-case basis with a 

likelihood for regulatory acceptance, whereas low impact submission has a lower chance of 

regulatory acceptance due to limited experience and substantial knowledge gaps [90]. The 

main high impact PBPK models are the drug-drug interaction and, in a particular situation, the 

paediatric population where the modelling data alone will support the drug label, whereas the 

medium impact stands between the mixture of modelling and clinical data or modelling data 

to support the clinical trial applications [89-91]. The area of acceptability correlated to the 

impact level is further summarised in Figure 1.10.  

  



 
 

 

Figure 1.10 The predictive performance on PBPK applications for regulatory submissions. 

Adapted from Certara (2019) [92]  



 
 

The efforts from regulatory agencies to encourage industries to utilise the PBPK modelling 

and further improve the usage of PBPK modelling to support regulatory decisions can be seen 

in several initiatives. For example, the USFDA has awarded a grant for research in complex 

generics, where one of the focus areas is to implement the PBPK modelling to support generic 

product registration [93]. The outcome can be seen in the approval of generic diclofenac 

sodium topical gel (1%) with PBPK modelling data, replacing the need for a comparative 

clinical endpoint study [94]. On the other hand, a grant was awarded to the Medicines and 

Healthcare Products Regulatory Agency (MHRA), United Kingdom, to work on the PBPK 

modelling for the pregnant population, which resulted in at least two publications and a 

workshop on pregnancy PBPK modelling [95-97].  

Moving to the other side of the world, the Pharmaceuticals and Medical Devices Agency 

(PMDA), a Japanese regulatory agency, has received 17 product submissions in the year 2014 

to 2016 that were supported with PBPK modelling data, with 48% of it in the drug-drug 

interaction area [98]. Furthermore, in 2021, PMDA issued a guideline for the analysis reports 

involving PBPK models, which further showed that PBPK modelling is accepted across the 

globe as one of the tools in advancing the drug development process [99]. On top of that, a 

presentation during a workshop on MIDD organised by PMDA in March 2021 described 

several initiatives taken by PMDA in modernising the reviews on modelling and simulation, 

such as the development of the project team within PMDA and the analysis of the accumulated 

electronic study data submission to improve regulatory decision across various therapeutic 

areas and products [100].  

In terms of harmonisation of regulatory standards for the MIDD among various regulatory 

authorities across all continents, the works have been going on under the International Council 

for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (ICH) with 

the issuance of various guidelines that are related to a particular area of MIDD such as dose-

response studies, ethnic factors, clinical trials in paediatrics, drug interaction studies and 

several others [101]. Currently, the ICH is working on MIDD general principles guidelines to 

harmonise the regulatory standards of MIDD practice and reports for regulatory submission 

and further optimise the utilisation of MIDD approaches in drug development and the 

regulatory decision-making process [102]. 
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1.7 Physiologically based pharmacokinetic (PBPK) in special populations 

The flexibility of PBPK models on the population 'system data' can be exploited to simulate 

populations that undergo a significant ontogeny change in a specific period, such as 

paediatric, pregnant women and cancer patients. The input on physiological and biochemical 

changes during a particular duration of months or years, integrated with 'compound data,' 

enables simulation to be made to see the impact of those changes on the pharmacokinetics 

of medicines.  

 

1.7.1 Pregnant women 

The anatomical, physiological, and biochemical changes that occur during the gestational 

period are complex and have been reported to impact drug pharmacokinetics. Generally, the 

changes throughout pregnancy are viewed according to trimesters, where 1st trimester is from 

0 to 12 gestational weeks, 2nd trimester is from 13 to 27 gestational weeks, and 3rd trimester 

is from 28 gestational weeks to full-term (38 to 40 gestational weeks). This classification is 

based on the foetal growth as well as the physiological and physical changes of the pregnant 

women. As for PBPK modelling, the changes are captured across the gestational period based 

on various published literature [43, 103].  

The physiological changes with the potential impact on the drug pharmacokinetics are 

described in Table 1.2. Besides, changes in body weight, body surface area (BSA), eating 

habits, comorbidities, and others during pregnancy may also impact drug administration, 

metabolism, distribution, and excretion. The combination of all factors may lead to the need 

for dosing adjustment for certain drugs to maintain the drug efficacy throughout the gestational 

period [104]. A review article reported that the compounds which are extensively metabolised 

by hepatic enzymes and with the liver as the primary elimination route might require dose 

adjustment in order to maintain the same exposure and effect throughout the duration of 

pregnancy [51]. 
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Table 1.2 Physiological changes during pregnancy and potential impact on drug pharmacokineticsa. 

Physiological changes in pregnancy Impact on pharmacokinetics 

 
Absorption 

 

• Increased gastric pH 

• Decreased intestinal motility 

• Altered metabolic enzyme 

• Increased transporter expression (P-gp) 

• Increased absorption of basic drugs 

• Reduced drug absorption 

• Changes the bioavailability 

• Reduce bioavailability 

 
Distribution 

 

• Increased maternal body fat 

• Increased body water, plasma, and blood 
volume  

• Changes in protein binding 

• Decreased plasma protein concentration 
(albumin, α-acid glycoprotein) 

• Increased or decreased in the volume 
of distribution depending on the type of 
drug, either lipophilic or hydrophilic  

• The changes in the unbound fraction of 
drugs may impact the intrinsic 
clearance 

 
Metabolism 

 

• Increased enzyme activity (CYP3A4, 
CYP2D6, CYP2C9, UGT1A4, UGT1A9) 

• Decreased enzyme activity (CYP1A2, 
CYP2C19) 

• Increase hepatic blood flow 

• Decreased the concentration of 
metabolism substrate 

• Increased the concentration of 
metabolism substrate 

• Increased hepatic clearance 

 
Excretion 

 

• Increased renal blood flow 

• Increased glomerular filtration rate (GFR) 

• Increased transporter expression (OCT2, 
OAT1, P-gp) 

• Increased clearance for renally excreted 
drugs 

a Compilation from several published references [43, 105-107].  
P-gp, P-glycoprotein; CYP, cytochrome P450; OCT, organic cation transporter; OAT, organic anion 
transporter 
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The physiological changes that occur during pregnancy, including the body weight and hepatic 

metabolism enzymes, have been incorporated in the PBPK commercial software with an add-

in of a foetoplacental unit on the basic structure [43, 105]. The pregnancy PBPK model 

structure for the three leading PBPK software is illustrated in Figure 1.11. The Open Systems 

Pharmacology software includes the foetoplacental compartment and separates the unit into 

the placental, amniotic fluid, and foetus [108]. As for the Simcyp®, the unit consists of the 

placenta, foetus, umbilical cord, membrane, and amniotic fluid, with the uterus and mammary 

glands integrated into the maternal muscle compartment [105]. For Gastroplus®, the unit 

includes the foetus, uterus, placenta, and amniotic fluid [109].  

Reviews by Abduljalil et al. (2020) [51] showed that the simulation of the drug's 

pharmacokinetics during the gestational period using pregnancy PBPK modelling had been 

developed for at least 46 drugs. In addition, several recent publications on pharmacokinetic 

predictions during pregnancy using the PBPK modelling approach on several other 

compounds, such as metronidazole and venlafaxine, further added the number of compounds, 

thus improving the confidence in using the pregnant women population model to predict drug 

exposure during the gestational period and enhance the trust to rely on PBPK model prediction 

[87, 110]. 

The pregnancy PBPK modelling is considered low-impact in terms of the likelihood of 

supporting the regulatory decision due to a significant information gap needed for the model 

qualifications [90, 97]. For model qualifications, input on the 'system data' needs to be verified 

with simulation on another compound with similar distribution and elimination behaviour as the 

drug of interest [97]. Thus, drugs with complex distribution and elimination processes involving 

various enzymes and transporters may need a considerable amount of data for model 

qualification. Nevertheless, ongoing efforts to improve the accuracy and precision of 

pregnancy simulation will boost regulatory confidence with the aim of providing a high-impact 

regulatory decision. 

  



 
 

 

Figure 1.11 Illustration of the pregnancy PBPK models in (A) Gastroplus®, (B) Simcyp®, and (C) Open Systems Pharmacology 

Dashed lines indicate the foetoplacental compartment. Adapted from Chaphekar et al. (2020) [111] 

  



 
 

1.7.2 Adults with obesity and cancer 

Recognised as a global health crisis, obesity presents a staggering prevalence of more than 

2.6 billion in 2020 and is projected to soar beyond 4 billion by 2035 worldwide [112]. Obesity 

has been linked to major chronic diseases, such as diabetes, hypertension, cardiovascular 

disease, mental illness, and several others [113, 114]. Furthermore, literature has reported 

that obesity increases the risk of cancers, one of the leading causes of death in 2019, with 

approximately 10 million deaths occurring worldwide in 2020 [115, 116].  

The physiological alterations that occur in obese and cancer patients are intricate and known 

to change the drug pharmacokinetics. Various guidelines and systematic reviews were 

published to address the dose adjustment that needs to be made for each population, with 

obese patients on the dosing guidance on antimicrobial agents [117] and several other 

medications [118] and cancer patients with dosing adjustment for voriconazole [119], opioids 

for pain treatment [120], and several other medications [121, 122]. The interplay with both 

obesity and cancer further complicates the physiological changes that are inherently complex 

in each population. The pharmacological alterations in obese and cancer populations that 

influence drug pharmacokinetics include tissue composition, plasma proteins, renal functions, 

and metabolism enzymes [123-125]. The physiological alternations that manifest in obese and 

cancer populations are summarised in Table 1.3. 

Considering the complex physiological changes in adults with obesity and cancer population 

and the impact on drug absorption, distribution, metabolism, and excretion, dealing with the 

dosing adjustment requires a critical consideration. Furthermore, most antineoplastic agents 

are administered according to body size, such as weight and BSA, the primary physiological 

changes in obesity [126, 127]. The body-size-based dosing schedules have led to various 

practices in deciding the chemotherapy dose in obese patients, including using ideal body 

weight (IBW), adjusted IBW, or capping the BSA at 2.0 m2 to ensure an optimum dose is 

administered and avoid toxicity [128, 129].  

Several dosing guidelines for antineoplastic agents in cancer patients with obesity have been 

published, for example, Appropriate Chemotherapy Dosing for Obese Adult Patients With 

Cancer: American Society of Clinical Oncology (ASCO) Clinical Practice Guideline in 2012 

[126] and the update in 2021 [10], Antineoplastic dosing in overweight and obese cancer 

patients: an Associazione Italiana Oncologia Medica (AIOM)/ Associazione Medici Diabetologi 

(AMD)/ Società Italiana Endocrinologia (SIE)/ Società Italiana Farmacologia (SIF) 

multidisciplinary consensus position paper in 2021 [127], and several other guidelines for 

specific condition, such as patient undergoing haematopoietic cell transplantation [130, 131].  
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Table 1.3 Summary of physiological changes in obese and cancer adults 

 Obese Cancer 

Anatomy and physiology   

Weight Increase No change 

   

Organs   

Blood flow Increase No change 

Weight Increase No change 

   

Plasma protein bindings   

Albumin No change Decrease 

α1-acid glycoprotein (AGP) Increase Increase 

   

Blood component   

Haematocrit No change Decrease 

   

Hepatic metabolism enzyme 

Phase 1 metabolism Increase or decrease 
depending on enzymes. 

Increase or decrease 
depending on enzymes.  

CYP3A4 Decrease Decrease 

CYP2E1 Increase Inconclusive 

CYP1A2 Inconclusive Decrease 

CYP2C19 Inconclusive Decrease 

Phase 2 metabolism Lack of information Lack of information  

   

Renal clearance   

Glomerular filtration rate (GFR) Increase Abnormal renal function is 
higher in cancer patients. 

   

Information in the table was available from Ghobadi et al. (2011) [124], Launay-Vacher et al. (2007) 
[132], Janus et al. (2010) [133], Cheeti et al. (2013) [125], and Schwenger et al. (2018) [134]. Phase 1 
metabolism involves reduction, oxidation, or hydrolysis reactions and is catalysed by cytochrome P450 
(CYP) enzymes. Phase 2 metabolism involves conjugation reactions and is catalysed by several 
enzymes such as UDP-glucuronosyltransferases (UGTs), sulfotransferases (SULTs), or glutathione S-
transferases (GSTs). 

 

From the absorption, distribution, metabolism, and excretion perspective, the impact depends 

on both the drug characteristics and physiological alterations.  

With respect to absorption, the change in gastric emptying and gut perfusion might influence 

the absorption of drugs that are administered orally, such as tyrosine kinase inhibitors (TKIs), 

while the change in the mass of adipose tissue and the blood flow to subcutaneous tissue may 

impact the absorption of antineoplastics that are administered subcutaneously [135].  
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In terms of distribution, the change in body fat composition, blood flow and plasma protein 

binding components from the physiological side of the obese cancer population, together with 

the lipophilicity and binding status of the compounds, are the main determinants influencing 

drug distributions [136-138]. For example, imatinib, one of the TKIs, is highly bound to AGP, 

which is reported to increase in both obese and cancer patients and, thus, expected to lower 

the total amount of free drug in plasma [138, 139]. 

The metabolism primarily takes place in the liver and is subjected to phase I and phase II 

metabolism. Information on various CYP enzyme activities that regulate phase I metabolism 

in adults with cancer and obese populations is still limited, with only CYP3A4 being reported 

to decrease in both cancer and obese populations [124, 134]. As for phase II metabolism, the 

information is limited (Table 1.3). In addition, an increase in blood flow to the liver and an 

increase in liver size may influence drug metabolism.  

With respect to elimination through urine, compounds such as carboplatin, cisplatin and others, 

in which dosing adjustment is needed in renal-impaired patients, may also be affected in obese 

cancer patients [133, 140]. An increase in GFR has been reported in obese patients, while 

data for the cancer population is still lacking [141, 142]. Nevertheless, a higher percentage of 

renal insufficiency has been reported in the cancer populations, which will affect the drugs that 

are renally excreted [132, 133]. 

The flexibility to input population system data in PBPK modelling is able to address the dose 

adjustment that might be needed in adults with obesity and cancer population. To date, the 

utilisation of PBPK modelling to assess the necessity for dose adjustment of any drug in adults 

with obese and cancer populations is yet to be explored. Therefore, chapter 3 of this thesis 

focuses on the application of PBPK in imatinib dose optimisation in the adult obese cancer 

population.  
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1.7.3 Paediatric populations 

According to ICH, paediatric populations are classified into five different age classes;  

- preterm newborn infants,  

- term newborn infants (birth to 27 days), 

- infants and toddlers (28 days to 23 months), 

- children: two to 11 years old,  

- adolescents: 12 to 16-18 years old (depending on region).  

 
To a certain extent, the classification is arbitrary, and the growth and developmental issues 

across different group classes may significantly overlap [143]. In addition, the physiological, 

cognitive, organ maturation, and psychosocial changes across the age classes are non-linear, 

particularly from newborns to children [144].  

The ‘system data’ for paediatrics based on different age classes have been compiled by 

Edginton et al. (2006) [144], which include the body weight, height, portal blood flow, organ 

blood flow, cardiac output, total blood volume, total body water, extracellular water, total lipid, 

and total protein. The information is classified according to age and simulated using five 

compounds with different physicochemical properties, which results in acceptable predicted 

performance. Furthermore, the information has been incorporated into the main commercially 

available software such as Gastroplus®, Simcyp®, and PK-sim® [144-147].  

The USFDA has broadly classified the MIDD application in paediatrics into three categories: 

(1) dose selection and optimisation, (2) informing clinical trial design, and (3) leveraging 

knowledge for bridging the gap [148]. As for PBPK, paediatric population simulation is the 2nd 

highest area (15%) after drug-drug interaction submitted to support regulatory decisions based 

on submissions between 2008 and 2018 [20]. The primary use of paediatric PBPK modelling 

in supporting regulatory decisions is to recommend the initial dose for clinical trials involving 

new chemical entities, and the utilisation is expanding with recent evidence revealing that a 

dosing recommendation was made, replacing the need for a clinical endpoint study [20, 148, 

149].  

In addition, the USFDA has suggested the ‘integrate-simulate-optimise’ workflow to apply the 

MIDD in the paediatric population, and this workflow has been accepted to facilitate regulatory 

decisions (Figure 1.12) [148]. The paediatric PBPK modelling is considered high- to medium-

impact for regulatory submission depending on the purpose of the modelling, where the 

application to determine the clinical trial dose and design stays at a medium-impact level, while 

any recommendation made for a label which replaces the need for human trial is a high-impact 

application with better simulation made for paediatric age two years old and above [50, 90].  
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Figure 1.12 Recommended workflow when applying MIDD in paediatric drug development. 

Adapted from Bi et al. (2019) [148]. BA, bioavailability; BE, bioequivalence; PK, pharmacokinetic.  

 

The nature of mechanistic pharmacokinetic modelling with the broad scope for application in 

the paediatric population warrants further exploration to improve the confidence in estimation, 

thus increasing the number of drugs licensed for paediatric use. In addition, the model can be 

expanded to predict drug exposure in paediatric with obesity population, one of the special 

populations under exploration in this project. 
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1.7.3.1 Paediatric obesity 

The increasing trend of obesity among children and adolescents worldwide over the past 

decade has led to various consequences, such as elevated susceptibility to develop non-

communicable diseases [150, 151]. Physical alteration in obesity is known to affect the drug 

pharmacokinetics, and the complexity intensifies in paediatrics due to the interplay between 

age-related ontogeny and obesity-related factors. The classification of childhood obesity is 

based on the BMI-to-age chart as defined by the WHO and the Centre for Disease Control 

and Prevention (CDC), respectively. The WHO defined childhood obesity as BMI above the 

+3 standard deviation (SD) for ages 0 to 5 and +2 SD for ages 5 to 18, while the CDC define 

it as above the 95th percentile of the BMI-to-age curve [152, 153]. 

The foundation of BMI calculation is weight and height, the primary physical alterations that 

occur in paediatric obesity. These correlate with an increase in total body fat and lean body 

mass, which influence drug distribution. These changes and the drug's lipophilicity and 

hydrophilicity influence the volume of distribution (Vd) [154]. In addition, the increase in weight 

and size also relates to an increase in plasma and tissue volume, which correlates to a rise in 

cardiac output, thus potentially positively influencing the Vd [155]. Moreover, the plasma protein 

binding components, such as serum albumin and α1-acid glycoprotein (AGP), also impact the 

drug Vd. Nevertheless, the literature suggests no difference in plasma protein binding 

components between obese and non-obese children [156, 157]. The same has been reported 

for the composition of haematocrit in plasma, which was unaffected by obesity [156]. 

As for drug clearance through the liver, the data on hepatic metabolism enzymes and 

transporter activities in paediatric obesity is still limited [158]. Nevertheless, the liver size and 

blood flow to the liver were reported to be larger and higher in paediatric obesity, influencing 

the hepatic clearance in obese children [156, 159]. For renal clearance, the main parameter 

of interest is the glomerular filtration rate (GFR), which has been reported to increase by 12 – 

29% in children with obesity [156, 160]. In addition to the rise in GFR, an increase in kidney 

size will influence drug clearance, especially for drugs that are significantly eliminated through 

the renal route [158]. The physiological changes due to obesity that occur in both adults and 

children relevant to drug pharmacokinetics are summarised in Table 1.4. 

  



K. B. Burhanuddin, PhD thesis, Aston University, 2024 

 

58 
 

Table 1.4 Summary of physiological changes in obese adults and children 

 Adults Paediatrics 

Organs   

Blood flow Increase Increase 

Weight Increase Increase 

   

Plasma protein bindings   

Albumin No change No change 

α1-acid glycoprotein (AGP) Increase No change 

   

Hepatic metabolism enzyme 

Phase 1 metabolism Increase or decrease 
depending on enzymes. 

Information is limited. 

Phase 2 metabolism Information is limited. Information is limited. 

   

Renal clearance   

Glomerular filtration rate (GFR) Increase Increase 

   

Information in the table was available from Gerhart et al. (2022) [156], Ghobadi et al. (2011) [124], 
Chagnac et al. (2000) [141], and Iyanagi et al. (2007) [161]. Phase 1 metabolism involves reduction, 
oxidation, or hydrolysis reactions and is catalysed by cytochrome P450 enzymes. Phase 2 metabolism 
involves conjugation reactions and is catalysed by several enzymes such as UDP-
glucuronosyltransferases (UGTs), sulfotransferases (SULTs), or glutathione S-transferases (GSTs). 

 

Contemporary dosing strategies employed in paediatric obesity populations have highlighted 

that over 60% of medications given to obese children resulted in plasma concentrations that 

fall outside the therapeutic range and exhibit clinically significant changes in drug 

pharmacokinetics [162]. Furthermore, there are various dosing strategies for paediatric 

obesity, with the standard approach applied in clinical practice based on body weight, such as 

total body weight (TBW) and ideal body weight (IBW), or based on body size, such as BSA 

[163]. More complex dosing strategies for paediatric obesity, which require special skills, have 

also been presented in the literature, such as allometric scaling, clearance-based scaling, and 

PBPK modelling [164]. 

Focusing on the PBPK modelling, the advantage of considering the changes of physiological 

parameters in obese children coupled with compound data has been applied in verifying the 

current dosing approach for paediatric obesity and proposing a new dosing regimen [156]. To 

date, the PBPK modelling has been implemented for paediatric obesity on metformin, 

midazolam, clindamycin, trimethoprim, sulfamethoxazole, fentanyl, methadone and 

midazolam compounds [156, 165-167]. 
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1.8 Aims and objectives 

This thesis aims to demonstrate the application of PBPK modelling in illustrating the influence 

of physiological changes in special populations on drug pharmacokinetics profiles and 

identifying the optimal dose to compensate for the exposure differences. 

The general aim was fulfilled by employing the PBPK modelling techniques in three special 

populations: 

i. Chapter 2: Pregnant women population treated with fluvoxamine: 

• To evaluate the impact of pregnancy on maternal and foetal fluvoxamine plasma 

concentrations.  

• To elucidate the influence of CYP2D6 polymorphism on maternal and foetal 

concentrations.  

• To identify the optimum dosing regimen for pregnant women throughout gestation, 

considering the CYP2D6 phenotype status. 

 

ii. Chapter 3: Obesity and its impact on imatinib pharmacokinetics in the cancer 

population: 

• To delineate differences in physiological parameters between lean, overweight, 

and obese cancer populations.  

• To assess the influence of obesity on the imatinib concentrations in the adult 

cancer population.  

• To evaluate the effectiveness of TDM-guided dose adjustment to restore the 

imatinib trough concentrations into the target concentration level in lean, 

overweight, and obese cancer populations. 

 

iii. Chapter 4: Paediatric obesity population with a case study of amlodipine: 

• To develop and validate the paediatric obesity population model.  

• To address the influence of obesity on amlodipine pharmacokinetics in paediatrics.  

• To identify the dosage modification required for amlodipine in obese paediatric to 

attain the same exposure as non-obese paediatric.   
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CHAPTER 2 - Optimising fluvoxamine maternal/foetal 

exposure during gestation: A pharmacokinetic virtual 

clinical trials study 

 

 

 

Disclaimer 

This chapter has been published as follows: 

Burhanuddin, K. and Badhan, R. Optimising Fluvoxamine Maternal/Foetal Exposure during 

Gestation: A Pharmacokinetic Virtual Clinical Trials Study. Metabolites, 2022. 12(12):1281. 

DOI: 10.3390/metabo12121281 
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2.1 Introduction 

The rates of pregnant women diagnosed with depression have been reported as high as 25%, 

with a higher prevalence in the second and third trimesters [168-170]. Proper treatment is vital 

because poor management may lead to a myriad of complications for the mother and the 

foetus, such as malnutrition due to poor diet, preterm deliveries, foetal growth retardation, and 

miscarriages [171]. Thus, ensuring the optimisation of doses through gestation is essential; 

accordingly, plasma concentration levels are used as a guide in this respect [172]. In terms of 

the treatment selection, the use of selective serotonin reuptake inhibitors (SSRI) such as 

fluoxetine, fluvoxamine, paroxetine, sertraline, citalopram, and escitalopram has increased 

over the years from 1.5% in 1996 to between 3 – 6% in the last decade [173, 174]. 

Fluvoxamine is used for the treatment of several conditions, such as major depression, 

obsessive-compulsive disorder (OCD), and social anxiety disorder. In addition, fluvoxamine 

has also been used in an off-labelled manner for various indications, such as post-traumatic 

stress disorder (PTSD), panic disorder, binge-eating disorder, and others [175-178]. Before 

the Pregnancy and Lactation Labelling Final Rule (PLLR) was implemented by the United 

States Food and Drug Administration (USFDA) in 2015, fluvoxamine was in category C of 

pregnancy risk based on the adverse effects noted in the foetus in a non-clinical study on 

pregnant rats, but no adequate information in humans was presented in order to draw 

conclusions from the findings [6, 179]. This has been updated to highlight that no clear 

associated risk of significant congenital disability or miscarriage was linked with fluvoxamine 

usage based on several human observational studies [180].  

In the context of the post-natal period, SSRIs have been reported to lead to Post Natal 

Adaptation Syndrome (PNAS), in which case they cross the placenta, and this traversal may 

result in increased concentrations in the developing foetus, thus impacting foetal respiratory, 

cardiovascular, and neurological development [181-183]. Unfortunately, information on 

fluvoxamine’s efficacy and plasma concentrations in the pregnant population is lacking, 

particularly with respect to a large-scale and well-controlled trial, which may be due to the 

ethical and safety concerns surrounding recruiting pregnant women as subjects. However, 

despite this lack of information, a study by Westin et al. (2017) [184] highlighted that 

fluvoxamine plasma concentrations significantly drop in the third trimester, possibly leading to 

ineffective treatment. However, further research is needed due to the small amount of data. In 

addition, the impact of pregnancy on fluvoxamine plasma concentration levels suggests the 

need to explore the dosing regimens in the pregnant population. 

Cytochrome P450 2D6 (CYP2D6) is a highly polymorphic drug-metabolism enzyme and is the 

primary hepatic enzyme responsible for fluvoxamine metabolism, with fluvoxamine acid being 
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the major metabolite that is inactive and excreted through urine [185]. In this respect, a 

physiologically based pharmacokinetic (PBPK) simulation showed that dose increments are 

required for paroxetine, an antidepressant metabolised primarily by the same hepatic enzyme, 

in order to maintain the plasma concentration within the therapeutic window during gestation 

[186]. This result relates to an analysis of therapeutic drug-monitoring (TDM) services by 

Westin et al. (2017) [184], which showed that the fluvoxamine dose needs to be doubled to 

maintain the same plasma concentration as the prenatal period based on a linear mixed model 

analysis. However, the model was developed without considering the physiological changes 

that occurred throughout pregnancy and different CYP2D6 phenotypes. 

The advancement of PBPK modelling with respect to simulating virtual clinical trials has 

provided a platform for addressing the scarcity of pharmacokinetic data, particularly in special 

populations such as pregnant women [51, 186-191]. The physiological changes that occur 

during pregnancy are complex and include changes in cardiac output, plasma volume, body 

fat, protein binding, hepatic enzyme processes, and the glomerular filtration rate, which can 

impact drug distribution and excretion and may necessitate dosing adjustment to maintain a 

drug’s effectiveness [104, 192-195]. The application of PBPK and virtual clinical trials in 

guiding the dose selection for the pregnant population has been applied for at least 46 

compounds, of which 33 compounds showed that dose adjustment might be needed, 

particularly for the drugs that were metabolised extensively by hepatic enzymes [51]. 

Due to a paucity of fluvoxamine-related pharmacokinetic data on the pregnant populations, 

this study, for the first time, applied the concept of PBPK and virtual clinical trials in assessing 

the influence of pregnancy on both maternal and foetal fluvoxamine plasma concentrations. 

Furthermore, a dosing regimen has been identified for pregnant women considering the 

CYP2D6 phenotype status to maintain the plasma concentration within the therapeutic window 

during the perinatal period. This study aimed to utilise the concept of mechanistic, 

pharmacokinetic modelling and virtual clinical trials to: (1) evaluate the impact of gestational 

changes on fluvoxamine maternal and foetal concentration levels; (2) elucidate the influence 

of CYP2D6 polymorphism on maternal and foetal concentrations; and (3) determine the 

optimal dosing adjustment strategy considering the CYP2D6 phenotype status throughout 

gestation. 
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2.2 Methodology 

This study used the PBPK modelling tool, Simcyp® Version 20 (Simcyp Ltd., Certara, Sheffield, 

UK), to develop and conduct virtual clinical trials on both healthy and pregnant subjects. 

The Simcyp Simulator implements a minimal or full-body PBPK model. The former is a 

“lumped” four-compartment model and considers systemic, portal vein, and liver 

concentrations with the addition of a “single adjusting compartment” representing a lump of all 

tissues except for the liver and portal vein. The full PBPK model is a generic, whole-body, 14-

compartment model with the ability to incorporate additional compartments, such as a foetal-

placental unit during pregnancy. 

A four-step workflow was implemented to develop, validate, and simulate studies involving 

fluvoxamine (Figure 2.1).  

 

Figure 2.1 A four-step workflow for fluvoxamine gestational model development 
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2.2.1 Step 1: Development and verification of fluvoxamine model in a healthy 

population  

The “healthy volunteer” (HV) population group available in Simcyp® was used for simulation 

as a baseline population for non-pregnant females. 

The fluvoxamine compound file developed by Simcyp®, which is available in the simulator, 

was employed with modifications made to a few parameters. First, the distribution model was 

changed from a minimal-PBPK model to a full-body PBPK distribution model with an 

estimation of tissue partition coefficients (Kp) to calculate the Vss using the Rodgers and 

Rowland approach [60, 196]. The calculated Vss was in line with several published studies 

[197, 198]. The changes made to the distribution model are necessary to ensure that the tissue 

physiological temporal changes were considered throughout gestation when implementing the 

data on the pregnant population. Further, adaptations were made to the absorption rate 

constant (ka), fraction of dose absorbed (fa) and blood-to-plasma ratio (B/P) [199, 200], with 

final compound parameters detailed in Table 2.1. 

Table 2.1 Fluvoxamine compound parameters with a full PBPK model 

  

Parameters Fluvoxamine Notes 

Compound type Monoprotic Base  

Molecular weight (g/mol) 318.3  

Log P 3  

pKa 1 8.7  

fu 0.14  

B/P 0.826 Predicted in Simcyp® based on Log P, 
plasma pH, haematocrit, and fu [199, 200] 

Vss (L/kg) 35.48 Full PBPK model with Kp scalar of 13 

Kp 13 Estimated using Simcyp® parameter 
estimation function 

ka (h-1) 0.15 Optimised through sensitivity analysis guided 
by data from USFDA (2021) [180] 

fa 0.8 Optimised through sensitivity analysis  guided 
by data from USFDA (2021) [180] 

Lag time (h) 0  

Absorption Model First Order  

Distribution Model Full PBPK  

CLPDM & CLPDF 0.253 Predicted from HBD and PSA information 
using Winiwarter et al. (1998) [55] method 

Log P, partition coefficient; B/P, blood-to-plasma ratio; fu, unbound fraction; Vss, steady-state volume 
of distribution; Kp, tissue partition coefficient; ka, absorption rate constant; fa, extend of absorption; 
CLPDM, maternal-placenta permeability clearance; CLPDF, placenta-foetal permeability clearance; 
HBD, hydrogen bond donor; PSA, polar surface area. 



K. B. Burhanuddin, PhD thesis, Aston University, 2024 

 

65 
 

Plasma concentration data from three single-dose and three multiple-dose studies were 

applied to establish the fluvoxamine model and confirm modifications to the fluvoxamine 

compound. Thereafter, validation was conducted with three single-dose and three multiple-

dose studies. In addition, the model was further validated using CYP2D6 extensive 

metaboliser (EM) and poor metaboliser (PM) populations with plasma concentration data 

published from three single-dose and one multiple-dose study. All studies used to develop and 

validate the amended fluvoxamine model are detailed in Table 2.2. 

Virtual clinical trials were run in Simcyp® with a 10 x 10 study design. The subjects’ age, male-

to-female ratio, and dosage regimen were correlated with the study design used in the 

development and verification. 

Table 2.2 Published data used in fluvoxamine model development and validation. 

Study Study Design 
Number of 
Subjects 

Age (Years) Dosing regimen 

Studies used for Model Development 

De Vries et al. 
(1993) [201] 
 

Crossover 
with 7 days 
washout 
between each 
dose 

12 healthy males 
 

22 – 41 
 

25 mg/ 50 mg/ 100 mg 
single-dose under 
fasted condition 
 

Van Harten et 
al. (1991) [202] 

Crossover 
with 7 days 
washout 
between each 
period 

8 healthy males and 
4 healthy females 

18 – 30 50 mg single-dose 
under fed and fasted 
condition 

Bahrami et al. 
(2007) [203] 

Crossover 
bioequivalenc
e study with 3 
weeks 
washout 
period 

24 healthy males 27.2 ± 3.1 100 mg single-dose 

De Vries et al. 
(1992) [204] 

Multiple-dose 3 healthy males and 
3 healthy females 

25 – 31 50 mg on day 1, 
followed by 50 mg 
twice daily from day 4 
to day 31 

Fleishaker et al. 
(1994) [205] 

Multiple-dose 10 healthy males 
and 10 healthy 
females 

20 – 44 50 mg daily for 3 days, 
followed by 100 mg 
daily for 7 days 

Studies used for Model Validation 

Orlando et al. 
(2010) [206] 

Single-dose 10 healthy males 35 ± 7 50 mg single-dose 
under fasted condition 

Debree et al. 
(1983) [207] 

Single-dose 9 healthy males and 
1 healthy female 

20 – 25 100 mg single-dose 
under fasted condition 

USFDA (2008) 
[208] 

Single-dose 
Study code: 
S1141107 

15 healthy males 
and 13 healthy 
females 

20.3 – 44.7 100 mg single-dose 
under fasted condition 
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Spigset et al. 
(1998) [209] 

Multiple-dose 10 healthy males 28.9 ± 5.2 12.5 mg twice daily for 
1st week, followed by 
25 mg twice daily for 
2nd week, followed by 
50 mg twice daily for 
3rd week, followed by 
100 mg twice daily for 
4th week 

USFDA (2008) 
[208] 

Multiple-dose 
Study code: 
1098001 

12 healthy males 
with EM CYP2D6 

19 – 43 100 mg daily for 10 
days under fasting 
condition 

USFDA (2008) 
[208] 

Multiple-dose 
Study code: 
1098002 

12 healthy males 
with EM CYP2D6 

21 – 44 100 mg daily for 10 
days under fasting 
condition 

Studies used for validation with CYP2D6 EM and PM population 

Carrillo et al. 
(1996) [210] 

Single-dose EM: 3 healthy males 
& 2 healthy females, 
PM: 2 healthy males 
& 1 healthy female 

EM: 26 – 40 
PM: 31 – 49 

50 mg single-dose 
under fasting condition 

Spigset et al. 
(1997) [211] 

Single-dose EM: 7 healthy males 
& 3 healthy females, 
PM: 5 healthy males 

EM: 28.7 ± 
8.1 
PM: 24.0 ± 
1.6 

50 mg single-dose 
under fasting condition 

Hartter et al. 
(2000) [212] 

Single-dose EM: 4 healthy 
males, 
PM: 1 healthy male 

34 – 55 50 mg single-dose 

Christensen et 
al. (2002) [213] 

Single-dose & 
Multiple-dose 

EM: 7 healthy 
subjects, 
PM: 5 healthy 
subjects 

22 – 45 Period 1: 
EM-50 mg single-dose 
PM-25 mg single-dose 
Period 2: 
EM-25 mg twice daily 
for 7 days 
PM-25 mg daily for 7 
days 
Period 3: 
EM-10 mg twice daily 
for 7 days 
PM-10 mg daily for 7 
days 

Age represented by range or mean ± standard deviation (SD) 

  



K. B. Burhanuddin, PhD thesis, Aston University, 2024 

 

67 
 

2.2.2 Step 2: Validation of fluvoxamine PBPK model in pregnancy  

After developing and verifying the fluvoxamine model in the HV population, the pregnant 

population model developed by Simcyp® was used for simulation. The pregnant population 

incorporated in the Simcyp® simulator includes the essential physiological changes that occur 

throughout the gestational period. The pregnant population established in Simcyp® 

incorporates the physiological changes in tissue composition/blood volume, renal/liver 

function, and temporal changes in enzyme activities throughout the maternal period, 

particularly with respect to CYP2D6, which plays an essential role in fluvoxamine metabolism 

[51, 105, 214]. 

Specifically, a gestational age-dependant function is incorporated into Simcyp Pregnancy to 

reflect the increase in CYP2D6 enzyme abundance throughout gestation and is based on a 

study by Ryu et al. (2016) [215], with the function (2.1) expressed as: 

CYP2D6 (fold change in activity) = 1 x (1 + 0.0163 x GW + 0.0009 x GW2) (2.1) 

 
where GW represents gestational week. This function is then propagated within the model to 

alter baseline CYP2D6 expression (9.4 pmol/mg protein) [216]. 

In order to validate the fluvoxamine model in the pregnant population, fluvoxamine 

pharmacokinetics throughout the entire gestational period were simulated using 10 trials x 10 

patient design. A 100 mg daily oral dose was utilised, and pharmacokinetic data samples were 

collected in the last 24 hours of every 5th GW. As for baseline, a similar study design was 

simulated with a healthy female population dosed with 100 mg of fluvoxamine daily. Then, the 

simulated steady-state trough plasma concentrations were verified with observed data from 

TDM services in Norway published by Westin et al. (2017) [184]. The data were collated from 

three pregnant women taking 100 mg of fluvoxamine per day, consisting of three serum drug 

concentrations at baseline and five serum drug concentrations during pregnancy. The data 

presented individually allowed for extraction and comparison with the fluvoxamine model 

simulated in the pregnant population. 

After verifying the fluvoxamine administration during pregnancy virtual trial simulation, the 

fluvoxamine plasma concentration trend was explored. The therapeutic range for fluvoxamine 

recommended by Consensus Guidelines for Therapeutic Drug Monitoring in 

Neuropsychopharmacology: Update 2017 [172], was applied as a guide to review the effective 

level of fluvoxamine plasma concentration during pregnancy as an antidepressant from the 

TDM perspective. The recommended range is between 60 ng/mL – 230 ng/mL [172]. 
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2.2.3 Step 3: Validation of fluvoxamine foetoplacental PBPK model 

In order to predict foetal exposure, the foetoplacental model within the Simcyp Pregnancy 

model was utilised. This model incorporates an “additional” set of compartments that account 

for the foetal blood and the foetal lumped body, with the description of transplacental clearance. 

Simcyp® uses a permeability-limited model for the foetoplacental compartment in Simcyp®. 

The model described the compound flux between the maternal, placental, and foetal clearance 

values with respect to the maternal-placental Cotyledon clearance values (CLPDM and CLPDF) 

(Figure S 2-1).  

Given the paucity of data on fluvoxamine’s transplacental permeability, an in vitro–in vivo 

extrapolation (IVIVE) method reported by Winiwarter et al. (1998) [55] was used, which utilises 

hydrogen bond donors (HBD), polar surface area (PSA), and correction for placental villous 

surface area to yield both CLPDM and CLPDF (Table 2.1). The placental villous surface area was 

derived from a meta-analysis of reported values and calculated using Equation (2.2) as follows: 

Placental villous surface area (m2) =  
 
(0.135 x GW) – ( 0.023 x GW2) + (0.0015 x GW3) – (0.00002 x GW4) 

 
 

(2.2) 

 
The umbilical cord concentration in the full-term pregnant population was simulated with a 

design consisting of 10 trials × 10 subjects. Then, the predicted umbilical cord concentrations 

were validated with three observed umbilical cord concentrations from three different studies 

[217-219]. 

 

2.2.4 Step 4: Influence of CYP2D6 phenotype and dose adjustment during 

gestation 

Considering that CYP2D6 is the main CYP enzyme involved in fluvoxamine metabolism, the 

fluvoxamine PBPK model was validated based on the ultra-rapid metaboliser (UM), EM, and 

PM CYP2D6 status in healthy subjects. In addition, the various CYP2D6 metabolisers in the 

pregnant population in Simcyp® have been validated by Almurjan et al. (2020) [186] for the 

paroxetine compound. Thus, the fluvoxamine plasma concentration profiles in UM, EM, and 

PM CYP2D6 populations were predicted to assess the impact of CYP2D6 phenotype on 

plasma concentrations throughout gestation. Simulation with a 10 × 10 trial design was 

predicted throughout the entire gestational period, with pharmacokinetic data samples 

collected during the last 24 hours of every 5th GW from a population of entirely UM, EM, or PM 

CYP2D6 phenotypes. 
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The predictions covered a range of fluvoxamine doses from 50 mg daily to a maximum of 300 

mg daily, with increments of 25 mg daily and doses above 150 mg daily administered in two 

divided doses. 

The influence of the CYP2D6 phenotype on pregnant women and its transference to the foetus 

were assessed at the starting dose of 50 mg daily, as well as the minimum and maximum 

maintenance doses of 100 mg and 300 mg daily, respectively. Regarding dose adjustment, 

the percentage of (maternal) subjects with a peak concentration above 230 ng/mL and trough 

concentration below 60 ng/mL were assessed for every 5th GW and each phenotype for every 

dose starting from 50 mg daily up to the maximum dose of 300 mg daily. 

 

2.2.5 Predictive performance 

All the pharmacokinetics predictions made in the simulations that fell within two-fold (0.5 – 2-

fold) of published data were considered ‘optimal’ predictive performance unless otherwise 

stated [144, 147, 220]. In addition, the simulations were verified visually using the visual 

predictive checking (VPC) strategy [221]. This strategy was used to view all the simulated 

concentration-time profiles in steps 1, 2 and 3 with the observed/published data. The 

simulations were considered acceptable when the published profile overlapped and fell within 

the 5th and 95th percentile of the predicted mean concentration-time profile. 

 

2.2.6 Data and statistical analysis 

The data used for development and validation were extracted using WebPlotDigitizer version 

4.5 (https://apps.automeris.io/wpd/). In step 1, statistical analysis was conducted using a 

nonparametric, unpaired Student’s t-test to compare the observed and predicted data. In steps 

2 and 4, the nonparametric one-way ANOVA with a Dunnett’s multiple comparisons post hoc 

test was used to compare the 5-weekly-simulated plasma concentration with the baseline (0) 

for maternal prediction and GW 20 for umbilical cord simulation. For the comparison between 

UM, EM, and PM CYP2D6 phenotypes for every 5-weekly-simulated plasma concentration in 

maternal and umbilical cord concentration, nonparametric one-way ANOVA with Tukey’s 

multiple comparisons post hoc test was utilised. The significance test was performed with p < 

0.05 for steps 1, 2, and 4. Statistical analysis was run using GraphPad Prism Version 8 for 

Windows (GraphPad Software, La Jolla, CA, USA). 

  

https://apps.automeris.io/wpd/
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2.3 Results 

2.3.1 Step 1: Development and validation of fluvoxamine model in a healthy 

population 

The fluvoxamine model was adapted and validated using clinical studies, which included both 

single- and multiple-dose studies with various dosing regimens (Table 2.2). The predicted 

pharmacokinetic parameters, including maximum concentration (Cmax), time to maximum 

concentration (Tmax), area-under-the-curve to the last time point (AUC0-t), and area-under-the-

curve to infinity (AUCinf), were within 0.5 to 2-fold of the reported clinical data (Table 2.3). 

Moreover, the observed profiles agree with the simulated profile for single and multiple-dose 

studies based on the VPC, wherein the published profiles are within the 5th and 95th percentiles 

of the predicted plasma concentration profile, thereby confirming the successful development 

and validation of the fluvoxamine model in the healthy population. 

The simulated plasma concentration for all single-dose studies used during model 

development and validation were presented in Figure 2.2, Figure 2.3, and Figure 2.4. For the 

comparison of the pharmacokinetic parameters in the single-dose studies, the AUCinf was not 

within the limit, particularly with the study by Orlando et al. (2010) [206] and USFDA (2008) 

[208]. A similar pattern was observed for AUCinf data when the single-dose 50 mg and 100 mg 

trials conducted by De Vries et al. (1993) [201] were compared with the spread of individual 

data from the simulated profiles during the model development, as shown in Figure 2.2. 

However, the results showed no statistical significance difference (p > 0.05) for all three doses 

of Cmax and the AUCinf of the single-dose 25 mg. 

Regarding the multiple-dose study, only the Cmax and AUCinf for the study by Spigset et al. 

(1998) [209] were not within the two-fold range, and this was when fluvoxamine was 

administered at the lowest dose at week 1 (12.5 mg twice daily for seven days). The simulated 

plasma concentration profiles and the published concentration data used during the 

development and verification of the multiple-dose studies are shown in Figure 2.5. 

The validation of the predicted values overlaid with the observed plasma concentrations for 

the graphs of the CYP2D6 EM and PM populations are presented in Figure 2.6 and Figure 

2.7. Regarding the comparison of the pharmacokinetics parameters, a few parameters that 

were not within the two-fold range were only seen in the single-dose 50 mg study by Spigest 

et al. (1997) [211] concerning the AUCinf in both the EM and PM and the AUC0-t for the PM, as 

well as the Cmax for PM CYP2D6 for the single-dose 50 mg study by Carrilo et al. (1996) [210].  
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Table 2.3 Pharmacokinetics of single- and multiple-dose studies (predicted and observed) 

References Dosing PK Parameters Observed Predicted Predicted/ 
Observed 

Model Development 
   

Geometric Mean (Range) 
 

De Vries et al. 
(1993) [201]  

Single dose 25 mg Cmax (ng/mL) 8.80 (4.70 - 13.00) 7.77 (3.19 - 20.49) 0.88 

AUCinf (ng/mL.h) 209.00 (117.00 - 425.00) 230.67 (97.76 - 571.74) 1.10 

Tmax (h)1 5.00 (1.00 - 8.00) 5.66 (3.40 - 13.35) 1.13 

Single dose 50 mg Cmax (ng/mL) 17.00 (8.40 - 28.00) 16.00 (6.39 - 40.97) 0.94 

AUCinf (ng/mL.h) 448.00 (166.00 - 1115.00) 719.24 (254.16 - 3113.83) 1.61 

Tmax (h)1 4.80 (2.00 - 8.00) 5.67 (3.40 - 13.40) 1.03 

Single dose 100 mg Cmax (ng/mL) 36.00 (21.00 - 60.00) 32.01 (12.78 - 81.95) 0.89 

AUCinf (ng/mL.h) 927.00 (325.00 - 2146.00) 1693.24 (585.86 - 10825.67) 1.83 

Tmax (h)1 4.50 (3.00 - 6.00) 5.68 (3.40 - 13.35) 1.04 

Van Harten et al. 
(1991) [202]   

Single dose 50 mg - Fast Cmax (ng/mL) 15.40 (7.50 - 27.00) 16.00 (6.39 - 40.97) 1.04 

AUC0-32h (ng/mL.h) 237.00 (102.00 - 571.00) 324.19 (139.89 - 710.72) 1.37 

Tmax (h)1 6.00 (3.00 - 12.00) 5.67 (3.40 - 13.35) 0.95 

Single dose 50 mg - Fed Cmax (ng/mL) 15.50 (10.00 - 32.00) 16.00 (6.39 - 40.97) 1.03 

AUC0-32h (ng/mL.h) 223.00 (65.00 - 587.00) 324.19 (139.89 - 710.72) 1.45 

Tmax (h)1 7.00 (2.00 - 12.00) 5.67 (3.40 - 13.35) 0.81 

de Vries et al. 
(1992) [204] 

Single dose 50 mg - Day 1 Cmax (ng/mL) 30.00 (13.10) 17.82 (9.63) 0.59 

AUCinf (ng/mL.h) 652.00 (319.00) 882.08 (717.30) 1.35 

Tmax (h)1 6.00 (4.00 - 8.00) 5.63 (3.25 - 14.50) 0.94 

Multiple dose 50 mg twice daily 
from Day 4 to Day 31 

Cmax (ng/mL) 93.00 (96.16) 81.55 (60.34) 0.88 

AUC0-12h (ng/mL.h) 873.00 (782.44) 920.77 (707.31) 1.05 

Tmax (h)1 5.00 (1.00 - 10.00) 3.48 (2.65 - 4.20) 0.70 
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Arithmetic Mean (SD) 
 

Fleishaker et al. 
(1994) [205] 

Single dose 50 mg - Day 1 Cmax (ng/mL) 21.50 (4.89) 16.77 (6.70) 0.78 

AUC0-24h (ng/mL.h) 328.00 (84.60) 283.65 (107.45) 0.86 

Tmax (h) 5.70 (1.49) 5.67 (1.45) 0.99 

Multiple dose 50 mg daily for 3 
days followed by 100 mg daily 
for the 7 days 

Cmax (ng/mL) 99.30 (35.00) 80.32 (36.45) 0.81 

AUC0-24h (ng/mL.h) 1762.00 (737.00) 1614.20 (786.04) 0.92 

Tmax (h) 7.95 (4.91) 4.75 (0.78) 0.60 

Bahrami et al. 
(2007) [203] 
 
 
  

Single dose 100 mg – Test  Cmax (ng/mL) 46.20 (29.00) 34.65 (13.94) 0.75 

AUC0-48h (ng/mL.h) 866.20 (480.00) 872.88 (351.91) 1.01 

AUCinf (ng/mL.h) 1308.00 (781.00) 1641.58 (902.86) 1.26 

Tmax (h) 5.30 (2.00) 5.68 (1.45) 1.07 

Single dose 100 mg - Reference Cmax (ng/mL) 48.50 (28.00) 34.65 (13.94) 0.71 

AUC0-48h (ng/mL.h) 802.20 (360.00) 872.88 (351.91) 1.09 

AUCinf (ng/mL.h) 1224.90 (430.00) 1641.58 (902.86) 1.34 

Tmax (h) 5.60 (2.10) 5.68 (1.45) 1.01 

Model Validation 
   

Arithmetic Mean (SD) 
 

Orlando et al. 
(2010) [206] 

Single dose 50 mg Cmax (ng/mL) 15.00 (3.00) 17.32 (6.97) 1.15 

AUCinf (ng/ml.h) 304.00 (84.00) 820.98 (452.53) 2.70 

Tmax (h)2 5.00 (4.00 - 8.00) 5.47 (3.40 - 13.40) 1.08 

   Geometric Mean (SD)  

Debree et al. 
(1983) [207]  

Single dose 100 mg Cmax (ng/mL) 49.30 (17.00) 32.01 (13.94) 0.65 

AUC0-24h (ng/mL.h) 523.90 (122.90) 545.44 (228.11) 1.04 

AUCinf (ng/mL.h) 817.00 (194.30) 958.18 (472.25) 1.17 

Tmax (h)1 5.00 (2.00 - 8.00) 5.68 (3.40 - 13.40) 1.14 
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Arithmetic Mean (SD) 
 

USFDA (2008) 
[208] 

Single dose 100 mg Cmax (ng/mL) 41.88 (18.99) 34.65 (13.94) 0.83 

AUCinf (ng/ml.h) 959.33 (520.71) 2071.01 (1435.11) 2.16 

Tmax (h)1 6.00 (4 .00 - 16.00) 5.68 (3.40 - 13.35) 0.95 

Spigset et al. 
(1998) [209] 

Week 1 – 12.5 mg twice daily 
for 7 days 

Cmax (nmol/L) 25.10 (9.40) 57.96 (29.62) 2.31 

AUC12h (nmol.h/L) 236.00 (95.00) 652.00 (339.68) 2.76 

Week 1 – 25 mg twice daily for 
7 days 

Cmax (nmol/L) 76.30 (22.10) 107.53 (60.63) 1.41 

AUC12h (nmol.h/L) 745.00 (258.00) 1457.38 (795.37) 1.96 

Week 1 – 50 mg twice daily for 
7 days 

Cmax (nmol/L) 244.00 (97.90) 261.50 (141.94) 1.07 

AUC12h (nmol/L.h) 2391.00 (949.00) 2960.86 (1643.50) 1.24 

Week 1 – 100 mg twice daily for 
7 days 

Cmax (nmol/L) 738.00 (314.00) 439.88 (254.36) 0.60 

AUC12h (nmol.h/L) 7545.00 (3239.00) 5943.80 (3317.30) 0.79 

USFDA (2008) 
[208]  

Multiple dose 100 mg daily for 
10 days (Prot. C)  

Cmax (ng/mL) 107.00 (73.52) 79.41 (31.39) 0.74 

AUC0-24h (ng/mL.h) 1738.55 (1392.42) 1587.74 (669.76) 0.91 

Multiple dose 100 mg daily for 
10 days (Prot. D) 

Cmax (ng/mL) 129.59 (62.86) 85.97 (42.84) 0.66 

AUC0-24h (ng/mL.h) 2109.30 (1085.63) 1677.97 (905.71) 0.80 

Model validation for EM and PM CYP2D6 Phenotype population 

Carrillo et al. 
(1996) [210] 

Single dose 50 mg 
-EM CYP2D6 

Cmax (nmol/L) 85.90 (42.50) 61.03 (28.98) 0.71 

AUC0-32h (nmol/L.h)3 1097.90 (180.35) 1220.62 (55.36) 1.11 

AUCinf (nmol/L.h) 1352.00 (733.00) 2065.41 (1033.85) 1.53 

Tmax (h) 4.4 (2.1) 5.57 (1.52) 1.27 

Single dose 50 mg 
-PM CYP2D6 

Cmax (nmol/L) 178.10 (27.50) 78.81 (33.53) 0.44 

AUC0-72h (nmol/L.h)3 4648.59 (237.46) 2889.62 (118.60) 0.62 

AUCinf (nmol/L.h) 5290.00 (332.00) 6287.38 (2990.77) 1.19 

Tmax (h) 4.60 (2.30) 7.01 (1.82) 1.52 
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Spigset et al. 
(1997) [211] 

Single dose 50 mg 
-EM CYP2D6 

Cmax (nmol/L) 44.50 (12.30) 61.03 (28.98) 1.37 

AUC0-48h (nmol/L.h)3 870.00 (110.00) 1530.00 (70.00) 1.76 

AUCinf (nmol/L.h) 1000.00 (410.00) 2610.00 (1280.00) 2.61 

Tmax (h) 7.80 (2.40) 5.57 (1.52) 0.71 

Single dose 50 mg 
-PM CYP2D6 

Cmax (nmol/L) 50.40 (17.80) 78.81 (33.53) 1.56 

AUC0-48h (nmol/L.h)3 1090.00 (160.00) 2280.00 (90.00) 2.09 

AUCinf (nmol/L.h) 1310.00 (670.00) 4950.00 (2220.00) 3.78 

Tmax (h) 6.60 (2.10) 7.01 (1.82) 1.06 

Hartter et al. 
(2000) [212] 

Single dose 50 mg 
-EM CYP2D6 

Cmax (ng/mL) 13.00 (3.7) 19.43 (9.22) 1.49 

AUC0-28h (μg/L.h) 185.50 (33.60) 360.58 (163.21) 1.94 

Single dose 50 mg 
-PM CYP2D64 

Cmax (ng/mL) 48.00 25.09 (10.67) 0.52 

AUC0-28h (μg/L.h) 612.00 512.06 (206.59) 0.84 

Chtistensen et al. 
(2002) [213] 

Single dose 50 mg  
-EM CYP2D6 

Cmax (nmol/L) 58.14 (37.90) 61.03 (28.98) 1.05 

Single dose 25 mg  
-PM CYP2D6 

Cmax (nmol/L) 23.20 (2.28) 39.41 (16.76) 1.70 

AUCinf, area-under-the-curve to infinity; AUC0-t, area-under-the-curve to the last time point; AUCt, area-under-the-curve for the total hour at steady-state; Cmax, 
maximum plasma concentration; Tmax, time to reach maximum plasma concentration; 1Arithmetic Mean (Range); 2Median; 3the AUC0-t was calculated from the 
published graph; 4only 1 subject, thus, no standard deviation was reported. 
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Figure 2.2 Comparison between simulated trial and observed data.  

(A) Cmax and (B) AUCinf from De Vries et al. (1993) [201]. Coloured data points arranged vertically 
represent the predicted and observed data for each dose; horizontal lines on the coloured data points 
represent the mean and standard deviation (SD). * p < 0.05.  
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Figure 2.3 Simulated single-dose studies in model development.  

(A) Single-dose 25 mg [201]; (B) Single-dose 50 mg [201, 202]; (C) Single-dose 100 mg [201, 203]. 
Solid lines represent the mean predicted concentration-time profile, with dotted lines representing the 
5th and 95th percentile ranges. Solid circles represent observed clinical data from each study. Van Harten 
et al. (1991)a represents the 50 mg fed study [202]; Van Harten et al. (1991)b represents the 50 mg fast 
study [202]. Bahrami and Mohammadi (2007)a represents the 100 mg test formulation study [203]; 
Bahrami and Mohammadi (2007)b represents the 100 mg reference formulation study [203]. 
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Figure 2.4 Single-dose studies simulated in the model validation stage.  

(A) Single-dose 50 mg [206]; (B) Single-dose 100 mg [207, 208]. Solid lines represent the mean 
predicted concentration-time profile, with dotted lines representing the 5th and 95th percentile ranges. 
Solid circles represent observed clinical data from each study. 
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Figure 2.5 Multiple-dose studies simulated in model development and validation.  

(A) Multiple-dose 50 mg twice daily from day 4 to day 31 [204]; (B) Multiple-dose 50 mg daily for 3 days followed by 100 mg daily for 7 days [205]; (C) Multiple-
dose 12.5 mg twice daily for week 1, 25 mg twice daily for week 2, 50 mg twice daily for week 3, and 100 mg twice daily for week 4 [209]; (D) Multiple-dose 100 
mg daily for 10 days [208]. Solid lines represent the mean predicted concentration-time profile, with dotted lines representing the 5th and 95th percentile ranges. 
Solid circles represent observed clinical data from each study, with error bars indicating SD. USFDA (2008)a represents a bioavailability study with prototype D 
[208]; USFDA (2008)b represents a bioavailability study with prototype C [208].  
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Figure 2.6 Simulated single-dose studies in model validation for CYP2D6 phenotype.  

(A) Single-dose 50 mg in EM CYP2D6 population [210-213]; (B) Single-dose 50 mg in PM CYP2D6 
population [210-212]; (C) single-dose 25 mg in PM CYP2D6 population [213]; solid lines represent the 
mean predicted concentration-time profile, with dotted lines representing the 5th and 95th percentile 
ranges. Solid circles represent observed clinical data from each study, with error bars indicating SD. 
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Figure 2.7 Predicted maximum concentration and steady-state concentration for single-dose and 
multiple-dose studies.  

(A) EM CYP2D6 phenotype population; (B) PM CYP2D6 phenotype population; solid circles arranged 
vertically represent the predicted values for each dose. Horizontal lines on the coloured data points 
represent the mean and SD. Red, open circles represent the observed individual data from Christensen 
et al. (2002) [213]. Cmax, maximum concentration for single-dose; Css, average trough concentration at 
steady-state for Day 6 and Day 7. 
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2.3.2 Step 2: Verification of fluvoxamine model in pregnancy and the impact of 

pregnancy on fluvoxamine level  

In order to verify the applicability of the model throughout gestation, the predicted fluvoxamine 

steady-state trough plasma concentrations (Cmin) following a daily 100 mg dose throughout 

pregnancy was validated with the reported TDM trough concentrations data throughout 

gestation reported by Westin et al. (2017) [184] (Figure 2.8). The model predictions were within 

the range reported by Westin et al. (2017) [184], with mean plasma concentrations showing a 

reducing trend from GW 10 towards term (Table 4).  

 

Figure 2.8 Predicted steady-state Cmin fluvoxamine maternal concentration.  

Green, open circles represent the post-dose trough concentration sampled at 24 h post-dose and 
assembled every 5 GWs throughout the maternity period. Red, open circles represent reported plasma 
concentrations collected from 3 pregnant women from Westin et al. (2017) [184]. ‘0’ refers to the 
baseline predicted in the non-pregnant female population. The grey shaded region represents the 
fluvoxamine therapeutic window (TW). 

 

When compared to the baseline, Cmin and Cmax started to decrease from GW 10 by −5.13% 

and −5.69%, and −48.46% and −49.37% in GW 40, respectively. Furthermore, the decrease 

was statistically significant compared to the baseline commencing from GW 25 and 20 

onwards for the Cmin and Cmax, respectively. The trend showed that the mean of Cmin falls below 

the therapeutic window at GW 25 onwards. The percentage of subjects with Cmin below 60 

ng/mL increased at the early stage of the 3rd trimester (GW 30) and up to 85% at GW 40. A 

similar trend was noted for Cmax. As for the mean, the Cmin started to fall below the therapeutic 

concentration at GW 20 with 59.84 ± 51.76 ng/mL. 
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Table 2.4 Predicted fluvoxamine plasma concentration across the maternity period 

 Gestational Week (GW) 

 0 
(Baseline) 

5 10 15 20 25 30 35 
40 
(Full term) 

Steady-state Cmin (ng/mL)  75.23 
(52.73) 

76.34 
(56.97) 

71.37 
(55.5) 

65.72 
(53.73) 

59.84 
(51.76) 

54.04 
(49.62) 

48.52 
(47.31) 

43.32 
(44.8) 

38.4 
(42.05) 

% change from baseline 0 1.48 -5.13 -12.64 -20.46 -28.17 -35.50 -42.42 -48.96 

p-value* 
 

0.9998 0.9966 0.6707 0.1718 0.0215 0.0016 <0.0001 <0.0001 

% Cmin < 60 ng/mL# (%) 46 48 54 58 66 68 74 80 85 

Steady-state Cmax (ng/mL) 112.5 
(64.17) 

113.1 
(67.3) 

106.1 
(65.56) 

97.87 
(63.45) 

89.09 
(61.06) 

80.29 
(58.43) 

71.85 
(55.61) 

64.03 
(52.63) 

56.96 
(49.53) 

% change from baseline 0 0.53 -5.69 -13.00 -20.81 -28.63 -36.13 -43.08 -49.37 

p-value* 
 

>0.9999 0.9739 0.3875 0.0385 0.0012 <0.0001 <0.0001 <0.0001 

% Cmax > 230 ng/mL# (%) 17 20 23 29 38 45 56 60 67 

Cmin, trough plasma concentration; Cmax, maximum plasma concentration; *p-value: statistical significance test between each GW with baseline; p < 0.05, 
statistically significant difference; #Efficacy threshold (60 ng/mL – 230 ng/mL) as recommended in Consensus Guidelines for Therapeutic Drug Monitoring in 
Neuropsychopharmacology: Update 2017 [172]; Mean (SD). 
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2.3.3 Step 3: Validation of fluvoxamine foetoplacental PBPK model 

Since there is a higher risk of congenital disabilities for newborns of women treated with SSRIs, 

a fluvoxamine foetoplacental PBPK model was validated to review the trend regarding the 

fluvoxamine levels in the umbilical cord. The model was validated only by the VPC with the 

reported values by Hostetter et al. (2000) [217], Sit et al. (2011) [218], and Rampono et al. 

(2009) [219]. Even though the individual observed values are sparse, the values fall within the 

range of the predicted cord concentrations (Figure 2.9).  

 

Figure 2.9 Simulated fluvoxamine foetal (umbilical cord) concentrations.  

Doses were administered to steady-state with sampling on the final 30-h period of GW 40. Solid circles 
represent individual predicted cord concentrations. Coloured open circles represent the observed 
umbilical cord concentrations from Hostetter et al. (2000) [217], Sit et al. (2011) [218], and Rampono et 
al. (2009) [219]. Horizontal lines on the coloured data points represent the mean and SD. 

 

2.3.4 Step 4: Impact of CYP2D6 phenotype and dose adjustment during 

gestation 

Given the several-fold increase in the Cmax, AUC, and t½ in PM CYP2D6 compared to the EM 

CYP2D6 [222], the impact of the CYP2D6 phenotype on the fluvoxamine levels in the pregnant 

population was explored. The plasma concentration levels for both the mother (GW 0 – 40) 

and umbilical cord (GW 20 – 40) were compared across the UM, EM, and PM CYP2D6 

phenotypes (Figure 2.10 and Figure 2.11) and the changes as compared to the baseline (0) 

for the mother (Table 2.5), while the percentage changes regarding the umbilical cord 

concentration from GW 20 are reported in Table 2.6. 
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Figure 2.10 Simulated fluvoxamine maternal concentrations in CYP2D6 phenotype population.  

(A) 50 mg daily; (B) 100 mg daily; (C) 300 mg daily. Coloured solid circles represent individual, predicted 
maternal concentrations. Cmax, maximum concentration; Cmin, minimum concentration. Horizontal lines 
on the coloured solid circles represent mean and standard deviations. The shaded region represents 
the fluvoxamine TW. Comparison between each CYP2D6 phenotype for every 5 GWs showed 
statistically significant difference except between UM and EM at GW labelled as ‘ns’, p > 0.05. 
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Table 2.5 Summary of predicted fluvoxamine plasma concentrations during gestation 

   
Gestational Week (GW) 

Daily 
dose 

Phenotype 

 
0 
(Baseline) 

5 10 15 20↓ 25 30 35 
40  
(Full term) 

50 mg UM 
CYP2D6 

Steady-state Cmin (ng/mL) 20.34 
(11.28) 

20.19 
(13.18) 

18.19 
(12.16) 

16.04 
(10.99) 

15.90  
(11.52) 

13.43  
(9.68) 

11.40  
(8.40) 

9.61  
(7.21) 

8.05  
(6.15) 

% change from baseline 
 

-0.72 -10.55 -21.13 -21.82 -33.94 -43.93 -52.75 -60.40 

p-value* 
 

0.9999 0.5661 0.0229 0.0171 <0.0001 <0.0001 <0.0001 <0.0001 

% Cmin < 60 ng/mL# 100 98 98 99 100 100 100 100 100 

Steady-state Cmax (ng/mL) 35.82 
(16.28) 

35.09 
(17.59) 

31.98 
(16.38) 

28.49 
(14.99) 

28.57 
(16.75) 

24.98 
(14.64) 

21.80 
(13.08) 

18.86 
(11.57) 

16.20  
(10.16) 

% change from baseline 
 

-2.04 -10.72 -20.47 -20.24 -30.27 -39.15 -47.34 -54.77 

p-value* 
 

0.9995 0.3221 0.0037 0.0043 <0.0001 <0.0001 <0.0001 <0.0001 

% Cmax > 230 ng/mL# 0 0 0 0 0 0 0 0 0 
 

EM 
CYP2D6 

Steady-state Cmin (ng/mL) 30.14 
(19.33) 

28.07 
(16.06) 

25.80 
(15.07) 

23.27 
(13.90) 

22.36 
(14.29) 

19.69 
(12.66) 

17.00 
(11.05) 

14.54 
(9.56) 

12.36 
(8.20) 

% change from baseline 
 

-6.87 -14.40 -22.80 -25.82 -34.67 -43.61 -51.75 -59.01 

p-value* 
 

0.8536 0.1452 0.0033 0.0006 <0.0001 <0.0001 <0.0001 <0.0001 

% Cmin < 60 ng/mL# 93 95 98 98 97 98 99 100 100 

Steady-state Cmax (ng/mL) 46.99 
(23.79) 

44.73 
(20.46) 

41.44 
(19.29) 

37.65 
(17.91) 

36.64 
(18.90) 

32.91 
(17.07) 

29.11 
(15.27) 

25.53 
(13.55) 

22.20 
(11.94) 

% change from baseline 
 

-4.81 -11.80 -19.89 -22.02 -29.96 -38.04 -45.68 -52.76 

p-value* 
 

0.9358 0.1602 0.0019 0.0004 <0.0001 <0.0001 <0.0001 <0.0001 

% Cmax > 230 ng/mL# 0 0 0 0 0 0 0 0 0 
 

PM 
CYP2D6 

Steady-state Cmin (ng/mL) 68.51 
(36.54) 

67.54 
(32.65) 

66.21 
(31.92) 

64.58 
(30.97) 

60.80 
(29.7) 

57.69 
(26.25) 

55.29 
(25.09) 

52.68 
(23.83) 

49.88 
(22.49) 

  
% change from baseline 

 
-1.43 -3.37 -5.75 -11.26 -15.80 -19.30 -23.10 -27.19 

  
p-value* 

 
0.9997 0.9944 0.9102 0.302 0.0564 0.0102 0.0011 <0.0001 

  
% Cmin < 60 ng/mL# 44 45 48 50 58 60 65 65 69 
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Steady-state Cmax (ng/mL) 90.43 
(40.94) 

89.40 
(37.15) 

87.17 
(36.23) 

84.38 
(35.04) 

80.17 
(34.19) 

76.21 
(30.35) 

73.03 
(29.04) 

69.54 
(27.62) 

65.77 
(26.08) 

  
% change from baseline 

 
-1.14 -3.60 -6.68 -11.34 -15.72 -19.24 -23.10 -27.27 

  
p-value* 

 
0.9997 0.9848 0.7071 0.164 0.0184 0.0018 <0.0001 <0.0001 

  
% Cmax > 230 ng/mL# 2 1 1 1 1 0 0 0 0 

100 mg UM 
CYP2D6 

Steady-state Cmin (ng/mL) 40.70 
(22.58) 

40.41 
(26.40) 

36.41 
(24.34) 

32.11 
(22.01) 

31.82 
(23.08) 

26.89 
(19.39) 

22.82 
(16.82) 

19.23 
(14.45) 

16.11 
(12.31) 

% change from baseline 
 

-0.72 -10.55 -21.13 -21.82 -33.94 -43.93 -52.75 -60.41 

p-value* 
 

0.9999 0.5666 0.023 0.0172 <0.0001 <0.0001 <0.0001 <0.0001 

% Cmin < 60 ng/mL# 78 78 84 92 90 94 94 97 99 

Steady-state Cmax (ng/mL) 71.70 
(32.59) 

70.23 
(35.22) 

64.01 
(32.80) 

57.02 
(30.01) 

57.18 
(33.54) 

49.99 
(29.32) 

43.63 
(26.19) 

37.75 
(23.18) 

32.42 
(20.34) 

% change from baseline 
 

-2.04 -10.72 -20.46 -20.24 -30.27 -39.15 -47.34 -54.77 

p-value* 
 

0.9995 0.3225 0.0038 0.0043 <0.0001 <0.0001 <0.0001 <0.0001 

% Cmax > 230 ng/mL# 0 0 0 0 0 0 0 0 0 

EM 
CYP2D6 

Steady-state Cmin (ng/mL) 60.33 
(38.70) 

56.19 
(32.17) 

51.64 
(30.17) 

46.57 
(27.84) 

44.76 
(28.65) 

39.42 
(25.37) 

34.03 
(22.14) 

29.11 
(19.15) 

24.73 
(16.43) 

% change from baseline 
 

-6.87 -14.40 -22.81 -25.82 -34.66 -43.60 -51.75 -59.01 

p-value* 
 

0.8538 0.1455 0.0033 0.0006 <0.0001 <0.0001 <0.0001 <0.0001 

% Cmin < 60 ng/mL# 60 62 72 78 78 83 89 96 97 

Steady-state Cmax (ng/mL) 94.04 
(47.64) 

89.52 
(40.96) 

82.95 
(38.62) 

75.34 
(35.85) 

73.35 
(37.87) 

65.87 
(34.20) 

58.27 
(30.60) 

51.09 
(27.15) 

44.43 
(23.91) 

% change from baseline 
 

-4.81 -11.80 -19.89 -22.01 -29.96 -38.04 -45.67 -52.75 

p-value* 
 

0.9359 0.1607 0.0019 0.0004 <0.0001 <0.0001 <0.0001 <0.0001 

% Cmax > 230 ng/mL# 2 1 1 1 1 0 0 0 0 
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PM 
CYP2D6 

Steady-state Cmin (ng/mL) 137.03 
(73.09) 

135.07 
(65.31) 

132.41 
(63.84) 

129.15 
(61.95) 

121.60 
(59.40) 

115.38 
(52.50) 

110.58 
(50.17) 

105.37 
(47.66) 

99.77 
(44.98) 

% change from baseline 
 

-1.43 -3.37 -5.75 -11.26 -15.80 -19.30 -23.10 -27.19 

p-value* 
 

0.9997 0.9944 0.9103 0.302 0.0565 0.0102 0.0011 <0.0001 

% Cmin < 60 ng/mL# 7 7 7 7 11 11 13 17 19 

Steady-state Cmax (ng/mL) 180.86 
(81.88) 

178.80 
(74.3) 

174.34 
(72.45) 

168.77 
(70.08) 

160.34 
(68.38) 

152.43 
(60.71) 

146.05 
(58.08) 

139.08 
(55.23) 

131.54 
(52.17) 

% change from baseline 
 

-1.14 -3.60 -6.69 -11.34 -15.72 -19.24 -23.10 -27.27 

p-value* 
 

0.9997 0.9848 0.707 0.1641 0.0184 0.0018 <0.0001 <0.0001 

% Cmax > 230 ng/mL# 22 18 15 13 16 7 4 4 4 

300 mg UM 
CYP2D6 

Steady-state Cmin (ng/mL) 146.24 
(76.37) 

144.43 
(87.69) 

130.69 
(81.21) 

115.76 
(73.81) 

114.73 
(77.53) 

97.84 
(65.77) 

83.65 
(57.51) 

70.98 
(49.80) 

59.88 
(42.77) 

% change from baseline 
 

-1.24 -10.63 -20.84 -21.55 -33.09 -42.80 -51.46 -59.06 

p-value* 
 

0.9997 0.4863 0.0144 0.0103 <0.0001 <0.0001 <0.0001 <0.0001 

% Cmin < 60 ng/mL# 9 13 15 21 28 32 38 51 65 

Steady-state Cmax (ng/mL) 184.13 
(87.29) 

180.98 
(97.07) 

164.56 
(90.20) 

146.38 
(82.30) 

146.20 
(89.44) 

126.68 
(77.14) 

109.74 
(68.24) 

94.32 
(59.82) 

80.52 
(52.01) 

% change from baseline 
 

-1.72 -10.63 -20.50 -20.60 -31.20 -40.40 -48.78 -56.27 

p-value* 
 

0.9996 0.378 0.0062 0.0058 <0.0001 <0.0001 <0.0001 <0.0001 

% Cmax > 230 ng/mL# 28 31 22 13 15 10 6 6 2 

EM 
CYP2D6 

Steady-state Cmin (ng/mL) 209.09 
(124.25) 

196.46 
(103.95) 

181.21 
(97.8) 

164.03 
(90.56) 

157.89 
(95.00) 

139.86 
(84.78) 

121.61 
(74.65) 

104.83 
(65.14) 

89.70 
(56.41) 

 
% change from baseline 

 
-6.04 -13.33 -21.55 -24.48 -33.11 -41.84 -49.86 -57.10 

 
p-value* 

 
0.8938 0.1619 0.0034 0.0006 <0.0001 <0.0001 <0.0001 <0.0001 

 
% Cmin < 60 ng/mL# 5 3 4 5 11 13 20 25 38 
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Steady-state Cmax (ng/mL) 249.43 
(134.54) 

236.20 
(114.15) 

218.50 
(107.52) 

198.28 
(99.70) 

192.26 
(105.20) 

171.75 
(94.46) 

150.93 
(83.85) 

131.50 
(73.82) 

113.68 
(64.51) 

 
% change from baseline 

 
-5.30 -12.40 -20.51 -22.92 -31.14 -39.49 -47.28 -54.42 

 
p-value* 

 
0.917 0.1583 0.0023 0.0005 <0.0001 <0.0001 <0.0001 <0.0001 

 
% Cmax > 230 ng/mL# 50 47 37 27 25 21 16 9 3 

PM 
CYP2D6 

Steady-state Cmin (ng/mL) 446.83 
(223.35) 

441.25 
(200.60) 

432.13 
(196.01) 

420.84 
(190.08) 

396.98 
(182.97) 

377.01 
(161.66) 

361.44 
(154.58) 

344.51 
(146.93) 

326.3 
(138.77) 

% change from baseline 
 

-1.25 -3.29 -5.82 -11.16 -15.63 -19.11 -22.90 -26.97 

p-value* 
 

0.9997 0.9936 0.8757 0.2526 0.0398 0.006 0.0005 <0.0001 

% Cmin < 60 ng/mL# 0 0 0 0 0 0 0 0 0 

Steady-state Cmax (ng/mL) 500.13 
(236.64) 

494.14 
(213.61) 

482.70 
(208.5) 

468.46 
(201.93) 

443.69 
(195.69) 

421.55 
(173.34) 

403.91 
(165.78) 

384.70 
(157.60) 

363.99 
(148.84) 

% change from baseline 
 

-1.20 -3.49 -6.33 -11.28 -15.71 -19.24 -23.08 -27.22 

p-value* 
 

0.9997 0.9902 0.7867 0.1985 0.0257 0.0031 0.0002 <0.0001 

% Cmax > 230 ng/mL# 94 93 93 93 90 89 87 86 81 

Cmin, trough plasma concentration; Cmax, maximum plasma concentration; *p-value: statistical significance test between each GW with baseline; p < 0.05, 
statistically significant difference; #Efficacy threshold (60 ng/mL – 230 ng/mL) as recommended in Consensus Guidelines for Therapeutic Drug Monitoring in 
Neuropsychopharmacology: Update 2017 [172]; Mean (SD); ↓, initiation of foetoplacental PBPK model.  
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Figure 2.11 Simulated fluvoxamine umbilical cord concentrations in CYP2D6 phenotype population.  

(A) 50 mg daily; (B) 100 mg daily; (C) 300 mg daily. Coloured solid circles represent individual, predicted 
umbilical cord concentrations. Cmax, maximum concentration; Cmin, minimum concentration. Horizontal 
lines on the coloured solid circles represent mean and standard deviations. Comparing each CYP2D6 
phenotype for every 5 GWs starting from GW 20 showed a statistically significant difference when 
compared with PM and a non-statistically significant difference between UM and EM at GW 25 for 300 
mg daily labelled as ‘*’; p < 0.05. 
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Table 2.6 Summary of simulated fluvoxamine umbilical cord concentrations during gestation 
  

 Gestational Week (GW) 

Daily 
dose 

Phenotype 
 

20 25 30 35 
40  
(Full term) 

50 mg UM 
CYP2D6 

Steady-state 
Cmin (ng/mL) 

8.60 
(6.46) 

9.61 
(7.34) 

9.84 
(7.70) 

9.54 
(7.63) 

8.98  
(7.31) 

% change 
from GW-20 

 11.69 14.40 10.96 4.43 

p-value*  0.7359 0.5769 0.7761 0.9888 

Steady-state 
Cmax (ng/mL) 

15.36 
(9.22) 

17.65 
(10.80) 

18.35 
(11.55) 

17.88 
(11.56) 

16.8  
(11.13) 

% change 
from GW-20 

 14.91 19.48 16.42 9.39 

p-value*  0.3882 0.1715 0.3036 0.7637 

EM 
CYP2D6 

Steady-state 
Cmin (ng/mL) 

11.90 
(8.25) 

13.76 
(9.60) 

14.28 
(10.08) 

14.02 
(9.99) 

13.34 
(9.58) 

% change 
from GW-20 

 15.71 20.08 17.88 12.13 

p-value*  0.4456 0.2287 0.3151 0.6341 

Steady-state 
Cmax (ng/mL) 

19.37 
(10.81) 

22.79 
(12.78) 

24 
(13.63) 

23.71 
(13.64) 

22.58 
(13.16) 

% change 
from GW-20 

 17.67 23.92 22.42 16.58 

p-value*  0.1931 0.041 0.0594 0.2244 

PM 
CYP2D6 

Steady-state 
Cmin (ng/mL) 

33.00 
(16.85) 

40.91 
(19.52) 

47.10 
(22.46) 

51.39 
(24.44) 

54.31 
(25.74) 

% change 
from GW-20 

 23.95 42.72 55.71 64.58 

p-value*  0.0424 <0.0001 <0.0001 <0.0001 

Steady-state 
Cmax (ng/mL) 

43.22 
(19.21) 

53.59 
(22.26) 

61.42 
(25.56) 

66.47 
(27.65) 

69.54 
(28.91) 

% change 
from GW-20 

 23.98 42.11 53.78 60.88 

p-value*  0.0139 <0.0001 <0.0001 <0.0001 

100 
mg 

UM 
CYP2D6 

Steady-state 
Cmin (ng/mL) 

17.22 
(12.94) 

19.23 
(14.69) 

19.69 
(15.43) 

19.10 
(15.28) 

17.98 
(14.63) 

% change 
from GW-20 

 11.68 14.39 10.95 4.41 

p-value*  0.7365 0.5781 0.777 0.9889 

Steady-state 
Cmax (ng/mL) 

30.75 
(18.46) 

35.33 
(21.62) 

36.73 
(23.13) 

35.8 
(23.15) 

33.63 
(22.29) 

% change 
from GW-20 

 14.90 19.47 16.42 9.38 

p-value*  0.3889 0.1721 0.3042 0.7647 

EM 
CYP2D6 

Steady-state 
Cmin (ng/mL) 

23.81 
(16.54) 

27.55 
(19.23) 

28.59 
(20.2) 

28.07 
(20.02) 

26.70 
(19.20) 

% change 
from GW-20 

 15.71 20.07 17.86 12.11 

p-value*  0.4463 0.2297 0.3164 0.6357 
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Steady-state 
Cmax (ng/mL) 

38.77 
(21.65) 

45.63 
(25.60) 

48.05 
(27.31) 

47.47 
(27.33) 

45.20 
(26.36) 

% change 
from GW-20 

 17.67 23.92 22.42 16.58 

p-value*  0.1935 0.0412 0.0598 0.2253 

PM 
CYP2D6 

Steady-state 
Cmin (ng/mL) 

66.00 
(33.70) 

81.81 
(39.04) 

94.20 
(44.93) 

102.77 
(48.89) 

108.63 
(51.48) 

% change 
from GW-20 

 23.95 42.72 55.71 64.58 

p-value*  0.0425 <0.0001 <0.0001 <0.0001 

Steady-state 
Cmax (ng/mL) 

86.44 
(38.42) 

107.18 
(44.52) 

122.84 
(51.12) 

132.93 
(55.31) 

139.06 
(57.81) 

% change 
from GW-20 

 23.98 42.11 53.78 60.87 

p-value*  0.0139 <0.0001 <0.0001 <0.0001 

300 
mg 

UM 
CYP2D6 

Steady-state 
Cmin (ng/mL) 

62.05 
(43.4) 

69.96 
(49.76) 

72.27 
(52.72) 

70.72 
(52.68) 

67.06 
(50.82) 

% change 
from GW-20 

 12.75 16.48 13.98 8.08 

p-value*  0.6345 0.4114 0.5583 0.892 

Steady-state 
Cmax (ng/mL) 

78.68 
(49.54) 

89.65 
(57.41) 

92.71 
(61.00) 

90.21 
(60.84) 

84.94 
(58.56) 

% change 
from GW-20 

 13.95 17.84 14.66 7.96 

p-value*  0.4771 0.2612 0.4329 0.8636 

EM 
CYP2D6 

Steady-state 
Cmin (ng/mL) 

83.97 
(54.74) 

97.78 
(64.14) 

102.33 
(67.94) 

101.33 
(67.89) 

97.10 
(65.53) 

% change 
from GW-20 

 16.45 21.87 20.67 15.63 

p-value*  0.3650 0.1401 0.1708 0.3843 

Steady-state 
Cmax (ng/mL) 

101.77 
(60.36) 

119.11 
(70.95) 

124.76 
(75.21) 

123.01 
(75.01) 

117.28 
(72.28) 

% change 
from GW-20 

 17.04 22.59 20.87 15.24 

p-value*  0.2577 0.0774 0.112 0.3306 

PM 
CYP2D6 

Steady-state 
Cmin (ng/mL) 

215.23 
(103.83) 

267.09 
(120.31) 

307.70 
(138.54) 

335.79 
(150.74) 

354.74 
(158.57) 

% change 
from GW-20 

 24.09 42.96 56.01 64.82 

p-value*  0.0274 <0.0001 <0.0001 <0.0001 

Steady-state 
Cmax (ng/mL) 

239.62 
(110.43) 

296.94 
(127.87) 

340.49 
(146.82) 

369.09 
(159.08) 

387.32 
(166.69) 

% change 
from GW-20 

 23.92 42.10 54.03 61.64 

p-value*   0.0194 <0.0001 <0.0001 <0.0001 

Cmin, trough umbilical cord concentration; Cmax, maximum umbilical cord concentration; *p-value: 
statistical significance test between each GW with GW-20; p < 0.05, statistically significant difference; 
Mean (SD). 
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A statistically significant difference between the UM and EM with respect to the PM CYP2D6 

phenotype population for each 5th GW were noted across all three doses (Figure 2.10). A 

similar pattern was seen between the UM and EM CYP2D6 populations with few exceptions, 

particularly in GW 20 regarding the Cmax and Cmin when the foetoplacental PBPK model was 

initiated (Figure 2.10). However, the significant difference is minimal as compared to the PM. 

As for the cord concentration, the difference was significant with the PM but not between the 

UM and EM CYP2D6 populations across all five GWs (Figure 2.11). Since statistically 

significant differences were seen between the UM and EM CYP2D6 populations, the dosing 

regimens for each of the CYP2D6 phenotype populations were explored. 

Looking at the concentration trend (Table 2.5), the same pattern was identified for both the 

UM and EM populations, with the concentration significantly decreasing across all three doses 

starting from GW 15 in both the peak and trough. Whereas for the PM population, the 

concentration began to drop significantly from GW 25 for the peak and GW 30 for the trough, 

except at the 300 mg daily dose, where the decrease started to be statistically significant at 

GW 25. These patterns concur with the concentration trend in the general pregnant population 

reported in Step 2. 

Moreover, for the 50 mg daily dose at GW 40, both the trough and peak levels demonstrated 

60.40% and 54.77% decreases for the UM population and 59.01% and 52.76% decreases for 

the EM population when compared to the baseline. Whereas for the PM population, 27.19% 

and 27.27% falls were noted for the trough and peak, respectively. This pattern is comparable 

across the 100 mg and 300 mg daily doses (Table 2.5). 

Regarding the foetal cord level, both the trough and peak concentrations increased at full term 

compared to GW 20, and this transpired at all three-dose levels and CYP2D6 phenotype 

populations (Table 2.6). The PM CYP2D6 population demonstrated a significant increase 

across all GWs at the 50 mg daily dose (trough, 23.95% at GW 25 vs. 64.58% at full term; 

peak, 23.98% at GW 25 vs 60.88% at full term), 100 mg daily dose (trough, 23.95% at GW 25 

vs. 64.58% at full term; peak, 23.98% at GW 25 vs. 60.87% at full term), and 300 mg daily 

dose (trough, 24.09% at GW 25 vs 64.82% at full term; peak, 23.92% at GW 25 vs. 61.64% 

at full term). Unlike the PM population, UM and EM have the same trend, in which the cord 

level increases until GW 30 and decreases back until the full term, with a significant difference 

only seen between GW 30 and GW 20 for the peak of the EM CYP2D6 population in the 50 

mg daily and 100 mg daily doses (Table 2.6). 

The percentage of subjects where the trough level falls below 60 ng/mL is more than 50% for 

both the UM and EM populations at doses of 50 mg daily and 100 mg daily. In contrast, with 

respect to the 300 mg daily dose for the UM population, this trend started from GW 35 when 
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the Cmin fell below 60 ng/mL for more than 50% of the subjects and did not reach 40% of the 

subjects for the EM population. As for the PM population, the percentage of subjects for whom 

the peak level rose above 230 ng/mL is more than 90% for the 300 mg daily dose; for 50 mg 

daily dose, more than 40% of the subjects, the peak level falls below 60 ng/mL (Table 2.5). 

Since the percentage of subjects where the peak and trough levels fall outside the therapeutic 

windows varies between the different phenotypes of the CYP2D6 populations, the threshold 

of 20% outside of the therapeutic windows was used to determine the suitable dose for the 

pregnant population according to their phenotype (Figure S 2-2, Figure S 2-3, Figure S 2-4, 

Figure S 2-5, Figure S 2-6, and Figure S 2-7) [186, 188, 189]. 

For the UM CYP2D6 population, a fluvoxamine dose of 250 mg or 275 mg daily in the first 

trimester, followed by a maximum dose of 300 mg daily until the full term, is suggested to be 

optimum, as it corresponds to a point at which the maternal concentrations are within the 

therapeutic windows for most of the subjects (Table 2.7). Nevertheless, for the maximum dose 

of 300 mg daily, the percentage of subjects with a Cmin below 60 ng/mL is between 21% in GW 

15 to 65% in the full term, but none of the peak concentrations are above 230 ng/mL (Table 

2.7, Figure S 2-2, and Figure S 2-3). 

For EM, a fluvoxamine dose of 175 mg daily is suitable up to GW 10, a 200 mg daily dose is 

ideal up to GW 15, and a 225 mg daily dose is advisable between GW 5 to 20, which covers 

the first trimester and the early second trimester. A 250 mg daily dose can be used for GW 10 

to 25, while a 275 mg daily dose is effective between GW 15 to 30, covering the second 

trimester. As for GW 30 to full term, a maximum dose of 300 mg daily is considered the most 

effective, since it had the most subjects where the Cmin and Cmax fell within the therapeutic 

range (Table 2.7, Table 2.8, Figure S 2-4, and Figure S 2-5). 
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Table 2.7 Percentage of subjects with trough and peak outside the therapeutic window 

   Gestational Week 

Phenotype Dose  0 5 10 15 20 25 30 35 40 

UM 
CYP2D6 

50 mg Cmin < 60 
ng/mL 

100 98 98 99 100 100 100 100 100 

Cmax > 230 
ng/mL 

0 0 0 0 0 0 0 0 0 

75 mg Cmin < 60 
ng/mL 

94 94 96 97 93 97 98 100 100 

Cmax > 230 
ng/mL 

0 0 0 0 0 0 0 0 0 

100 mg Cmin < 60 
ng/mL 

78 78 84 92 90 94 94 97 99 

Cmax > 230 
ng/mL 

0 0 0 0 0 0 0 0 0 

125 mg Cmin < 60 
ng/mL 

67 67 72 79 81 89 94 94 95 

Cmax > 230 
ng/mL 

0 2 1 0 1 0 0 0 0 

150 mg Cmin < 60 
ng/mL 

55 61 66 70 72 82 89 94 94 

Cmax > 230 
ng/mL 

1 2 2 2 1 1 1 0 0 

175 mg Cmin < 60 
ng/mL 

40 46 50 58 55 67 74 80 88 

Cmax > 230 
ng/mL 

1 2 2 2 2 1 0 0 0 

200 mg Cmin < 60 
ng/mL 

29 32 37 49 40 53 67 74 80 

Cmax > 230 
ng/mL 

7 5 3 2 5 2 1 0 0 

225 mg Cmin < 60 
ng/mL 

27 27 32 43 37 49 58 68 77 

Cmax > 230 
ng/mL 

8 8 6 3 7 4 2 1 0 

250 mg Cmin < 60 
ng/mL 

15 16 25 32 33 38 51 64 72 

Cmax > 230 
ng/mL 

15 14 8 7 9 6 2 2 1 

275 mg Cmin < 60 
ng/mL 

11 15 20 28 30 37 43 55 68 

Cmax > 230 
ng/mL 

24 22 14 8 11 6 6 2 1 

300 mg Cmin < 60 
ng/mL 

9 13 15 21 28 32 38 51 65 

Cmax > 230 
ng/mL 

28 31 22 13 15 10 6 6 2 
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EM 
CYP2D6 

50 mg Cmin < 60 
ng/mL 

93 95 98 98 97 98 99 100 100 

Cmax > 230 
ng/mL 

0 0 0 0 0 0 0 0 0 

75 mg Cmin < 60 
ng/mL 

80 86 90 92 91 96 97 97 98 

Cmax > 230 
ng/mL 

1 0 0 0 0 0 0 0 0 

100 mg Cmin < 60 
ng/mL 

60 62 72 78 78 83 89 96 97 

Cmax > 230 
ng/mL 

2 1 1 1 1 0 0 0 0 

125 mg Cmin < 60 
ng/mL 

40 46 53 61 61 74 80 84 93 

Cmax > 230 
ng/mL 

4 3 3 2 3 2 0 0 0 

150 mg Cmin < 60 
ng/mL 

32 34 41 48 50 58 73 79 83 

Cmax > 230 
ng/mL 

8 4 4 3 3 3 3 1 0 

175 mg Cmin < 60 
ng/mL 

19 13 19 24 35 41 46 55 74 

Cmax > 230 
ng/mL 

9 6 5 4 3 3 3 2 0 

200 mg Cmin < 60 
ng/mL 

12 7 10 16 22 34 42 46 55 

Cmax > 230 
ng/mL 

16 12 8 6 5 3 3 3 2 

225 mg Cmin < 60 
ng/mL 

10 5 7 10 20 24 36 42 48 

Cmax > 230 
ng/mL 

22 15 12 9 10 5 3 3 3 

250 mg Cmin < 60 
ng/mL 

7 5 5 7 15 20 25 39 43 

Cmax > 230 
ng/mL 

34 24 17 14 17 13 5 3 3 

275 mg Cmin < 60 
ng/mL 

6 4 5 5 12 16 22 36 42 

Cmax > 230 
ng/mL 

45 34 26 17 21 15 11 3 3 

300 mg Cmin < 60 
ng/mL 

5 3 4 5 11 13 20 25 38 

Cmax > 230 
ng/mL 

50 47 37 27 25 21 16 9 3 
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PM 
CYP2D6 

50 mg Cmin < 60 
ng/mL 

44 45 48 50 58 60 65 65 69 

Cmax > 230 
ng/mL 

2 1 1 1 1 0 0 0 0 

75 mg Cmin < 60 
ng/mL 

18 19 20 21 23 26 30 33 37 

Cmax > 230 
ng/mL 

4 4 4 4 3 3 3 3 2 

100 mg Cmin < 60 
ng/mL 

7 7 7 7 11 11 13 17 19 

Cmax > 230 
ng/mL 

22 18 15 13 16 7 4 4 4 

125 mg Cmin < 60 
ng/mL 

2 2 2 3 4 5 6 8 9 

Cmax > 230 
ng/mL 

45 47 44 43 29 24 21 19 16 

150 mg Cmin < 60 
ng/mL 

1 2 2 2 2 2 2 3 4 

Cmax > 230 
ng/mL 

64 65 59 57 46 45 44 36 28 

175 mg Cmin < 60 
ng/mL 

0 0 0 0 0 0 0 1 1 

Cmax > 230 
ng/mL 

65 68 68 65 56 47 45 41 37 

200 mg Cmin < 60 
ng/mL 

0 0 0 0 0 0 0 0 0 

Cmax > 230 
ng/mL 

76 73 72 72 67 65 60 57 47 

225 mg Cmin < 60 
ng/mL 

0 0 0 0 0 0 0 0 0 

Cmax > 230 
ng/mL 

81 78 77 76 73 69 69 66 61 

250 mg Cmin < 60 
ng/mL 

0 0 0 0 0 0 0 0 0 

Cmax > 230 
ng/mL 

85 87 86 82 81 79 76 72 69 

275 mg Cmin < 60 
ng/mL 

0 0 0 0 0 0 0 0 0 

Cmax > 230 
ng/mL 

91 93 91 89 86 86 82 79 74 

300 mg Cmin < 60 
ng/mL 

0 0 0 0 0 0 0 0 0 

Cmax > 230 
ng/mL 

94 93 93 93 90 89 87 86 81 

The red column indicated that the percentage of subjects with trough and peak outside the therapeutic 
window (60 ng/mL – 230 ng/mL) is more than 20% 
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Table 2.8 Summary of recommended daily dose, predicted clearance, AUC, and umbilical cord concentrations based on the recommended doses 

   
Gestational Week (GW) 

Phenotype 
  

0 (Baseline) 5 10 15 20↓ 25 30 35 40  
(Full term) 

UM 
CYP2D6 

Recommended 
daily dose (mg) 

250 250 275 300 300 300 300 300 300 

CL (L/h) 95.69 
(51.51) 

101.60 
(59.00) 

104.50 
(62.05) 

128.70 
(77.43) 

144.40 
(113.00) 

166.70 
(131.00) 

196.90 
(157.80) 

234.20 
(190.80) 

279.90 
(231.30) 

AUC (ng/mL.h) 1691.00 
(836.10) 

1665.00 
(944.40) 

1640.00 
(958.40) 

1611.00 
(959.20) 

1603.00 
(1025.00) 

1380.00 
(877.50) 

1189.00 
(772.30) 

1017.00 
(673.40) 

863.70 
(582.30) 

Cord 
conc. 

Cmin 
(ng/mL) 

    
61.49 
(43.49) 

69.33 
(49.85) 

71.62 
(52.80) 

70.08 
(52.74) 

66.45 
(50.88) 

Cmax 
(ng/mL) 

    
77.97 
(49.70) 

88.84 
(57.58) 

91.86 
(61.15) 

89.38 
(60.98) 

84.16 
(58.68) 

EM 
CYP2D6 

Recommended 
daily dose (mg) 

175, 200 175, 200, 
225 

175, 200, 
225, 250 

200, 225, 
250, 275 

225, 250, 
275 

250, 275 275, 300 300 300 

CL (L/h) 66.97 
(41.10) 

74.37 
(43.17) 

72.33 
(39.38) 

81.45 
(45.32) 

91.63 
(72.31) 

106.60 
(86.12) 

123.40 
(101.50) 

149.60 
(124.70) 

175.90 
(148.80) 

AUC (ng/mL.h) 1743.00 
(994.60) 

1751.00 
(905.60) 

1724.00 
(922.30) 

1749.00 
(944.70) 

1776.00 
(1029.00) 

1664.00 
(960.70) 

1595.00 
(933.00) 

1453.00 
(855.50) 

1251.00 
(744.90) 

Cord 
conc. 

Cmin 
(ng/mL) 

    
69.28 
(46.30) 

84.98 
(56.66) 

97.57 
(65.93) 

101.50 
(68.97) 

97.40 
(66.77) 

Cmax 
(ng/mL) 

    
83.83 
(51.01) 

103.40 
(62.61) 

118.80 
(72.98) 

123.10 
(76.28) 

117.50 
(73.72) 
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PM 
CYP2D6 

Recommended 
daily dose (mg) 

75, 100 75, 100 75, 100 100, 100 100 100 100, 125 100, 125 

CL (L/h) 31.44 
(14.72) 

31.77 
(15.88) 

32.48 
(16.22) 

33.39 
(16.68) 

35.11 
(16.04) 

36.57 
(16.46) 

38.12 
(17.11) 

39.97 
(17.85) 

42.18 
(18.78) 

AUC (ng/mL.h) 3373.00 
(1723.00) 

3331.00 
(1564.00) 

3257.00 
(1527.00) 

3618.00 
(1598.00) 

3422.00 
(1545.00) 

3251.00 
(1367.00) 

3116.00 
(1308.00) 

3340.00 
(1452.00) 

3162.00 
(1372.00) 

Cord 
conc. 

Cmin 
(ng/mL) 

    
65.60 
(33.83) 

81.33 
(39.24) 

93.67 
(45.16) 

115.00 
(56.94) 

121.50 
(59.97) 

Cmax 
(ng/mL) 

    
86.10 
(38.67) 

106.80 
(44.91) 

122.40 
(51.55) 

149.00 
(65.13) 

155.90 
(68.07) 

Mean (SD); Cmin, trough concentration; Cmax, maximum concentration; CL, clearance; AUC, Area-under-the-curve; ↓, initiation of foetoplacental PBPK model; 
Cord conc., cord concentration. 
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With regard to PM, this approach revealed that a dose of 75 mg daily is suitable for GW 10, 

while a 100 mg daily dose is effective throughout pregnancy. It is also possible to increase the 

dose to 125 mg daily at GW 35 until labour, as the percentage of subjects for which the trough 

and peak fall within the therapeutic window is 8% and 9% for the trough and 19% and 16% for 

the peak for GW 35 and 40, respectively (Table 2.7, Figure S 2-6, and Figure S 2-7). 

A gradual increase in the clearance from GW 5 to GW 30 was observed for both the UM and 

EM CYP2D6 populations, while the clearance is constant throughout pregnancy for the PM 

population (Figure 2.12 and Table 2.8). Likewise, the AUC remained steady throughout 

pregnancy for the PM population, while the AUC slightly decreased starting from GW 25 to full 

term for the UM and EM populations (Figure 2.12 and Table 2.8). This trend is expected since 

the suggested doses are higher as the pregnancy is near the full term for both UM and EM, 

but for PM, the recommended dose is maintained throughout the gestational period. 

Based on the recommended dose, the range of the expected fluvoxamine concentration that 

crosses the placenta is between 5.84 ng/mL to 496.10 ng/mL across the gestational period 

and the CYP2D6 phenotype (Figure 2.12). A similar trend was seen in both the UM and EM 

populations, wherein the foetal concentration increased until GW 30 and then became 

stagnant until labour. Whereas the cord concentrations steadily increase for the PM population 

until full term (Table 2.8).  
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Figure 2.12 Predicted clearance, area-under-the-curve, and cord concentration based on the 
recommended doses.  

(A) Clearance; (B) area-under-the-curve; (C) umbilical cord concentration. Top and bottom horizontal 
lines in (A, B) represent standard deviations. Coloured, closed circles in (C) are the predicted individual 
cord concentrations. Horizontal lines on the coloured, solid circles in (C) represent the mean. Dashed 
horizontal lines in (C) represent the range of simulated cord concentrations throughout gestational 
periods and all three CYP2D6 phenotypes (5 ng/mL to 500 ng/mL).  
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2.4 Discussion 

Several observational studies have demonstrated that SSRIs, including fluvoxamine, are safe 

to use during pregnancy, even given the possible risk of persistent pulmonary hypertension 

(PPHN), for which the benefit of controlling major depression may outweigh the risk depending 

on the patient’s situation [223-229]. However, the efficacy and impact of antidepressants in 

the pregnant population, particularly for fluvoxamine, are still lacking because no controlled 

trials have been conducted on the pregnant population. 

Therapeutic drug monitoring (TDM) is one approach that can offer dose adjustment throughout 

gestation; however, this is often not considered viable or necessary for many drugs. However, 

the use of robust and validated mechanistic pharmacokinetic modelling allows for an 

assessment of any changes that occur in a drug’s PK properties during the gestational period, 

one which considers the physiological changes during pregnancy and offers a pragmatic 

solution to the following question: “what is the correct dose during gestation?” [51, 103, 172, 

186, 188-191]. Although the concept has been utilised for other compounds, this is the first 

time it has been used to develop a fluvoxamine PBPK pregnancy model to support maternal 

dosing and foetal exposure. 

 

2.4.1 Step 1: Validation of fluvoxamine model in healthy subjects 

2.4.1.1 PBPK model parameters 

The modification from a minimal-PBPK model to a full-body PBPK distribution model was 

essential to ensure that physiological changes that occurred throughout the gestational period 

were considered for the PBPK pregnancy model [186, 188-191]. Furthermore, the estimation 

of Kp made for predicting Vss using the Rodgers and Rowland approach [60, 196] resulted in 

a Vss within two-fold of the published Vd [197, 198]. In addition, the ka, fa and B/P were 

amended based on published data and Simcyp® prediction [199, 200]. Finally, the 

modifications were guided by three single-dose and two multiple-dose studies, which were 

further validated through another three single-dose and three multiple-dose studies 

incorporating healthy subjects and four single-dose and one multiple-dose studies in CYP2D6 

phenotype populations. 
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2.4.1.2 Validation in healthy subjects and CYP2D6 phenotype populations 

The predicted PK parameters were within two-fold of the published PK studies, except for 

AUCinf, (Table 2.3). Furthermore, a similar pattern was seen for the individual AUCinf 

comparison between the observed data by De Vries et al. (1993) [201] and the prediction, 

which showed a statistically significant difference for 50 mg and 100 mg formulation but not 

for 25 mg formulation, the overlaid PK profile, and other PK parameters including AUC0-t. The 

AUCinf is not commonly used for comparison among PK parameters, particularly in the 

regulatory setting, due to its reliability, specifically when the percentage differences between 

AUCinf and AUC0-t are more than 20%, as is the case here where the difference was not 

reported for observed data, and the difference for the prediction is more than 20% [31]. 

Furthermore, the total number of sampling points used is crucial for an accurate estimation of 

AUCinf; in this situation, the number of samples used for estimation was notably different 

between observed and predicted (3 to 15 samples vs >100 samples), possibly overestimating 

the value in one over another [230]. 

The imperfect prediction of the lowest dose (12.5 mg twice daily) compared to the observed 

Spigset et al. (1998) [209] study is compensated by a reliable prediction at the other three 

higher doses (25 mg twice daily, 50 mg twice daily and 100 mg twice daily) (Table 2.3 and 

Figure 2.5). This result may be due to the dose being lower than the minimum daily dose 

recommended for adults, which is 50 mg administered once daily [222]. The prediction for the 

PM CYP2D6 population is not ideal when weighed individually with each published study. 

However, an assessment of the plasma concentration profile showed that the simulated profile 

matched all three published studies because of the wide variation between the studies (Figure 

2.6). A similar phenomenon can be seen for the prediction of multiple-dose study at the lowest 

dose (25 mg and 10 mg daily) when compared to the observed data by Christensen et al. 

(2002) [213], particularly for the PM population. The observed data fall in the lower range of 

the predicted data, which agrees with the prediction made by Britz et al. (2019) [231] for the 

fluvoxamine model (Figure 2.7). 

Broader acceptance criteria, as discussed by Abduljalil et al. (2014) [232], may be considered, 

specifically for the PM population, since the comparisons were made between small subject 

samples from published works with 100 virtual patients for each simulated study and as the 

observed trials showed a wide variation of results. Nevertheless, the VPC strategy showed 

that the simulated PK profiles fall within the 5th and 95th percentile of all the 14 studies. 

Therefore, these results validate the fluvoxamine PBPK model in the healthy population. 
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2.4.2 Step 2: Verification of fluvoxamine pregnancy model and the impact of 

pregnancy on fluvoxamine concentration  

2.4.2.1 Verification of fluvoxamine pregnancy model 

Based on the literature review, Westin et al. (2017) [184] is the only publication (to date) 

containing fluvoxamine plasma concentration throughout the 40-week gestational period. 

Thus, these were the only data used to validate the fluvoxamine PBPK pregnancy model. 

Using the VPC strategy, the predicted fluvoxamine plasma concentrations followed the pattern 

of published data throughout the gestational period. Furthermore, the results showed that the 

difference compared to the baseline was significant from GW 20 and GW 25 for Cmax and Cmin, 

respectively, which is consistent with the published data reported by Westin et al. (2017) [184]. 

 

2.4.2.2 The impact of pregnancy on fluvoxamine concentration 

The simulation demonstrated that out of 100 pregnancies, the Cmin for more than 50% of the 

pregnant women falls below the minimum effective concentration of 60 ng/mL recommended 

by Hiemke et al. (2018) [172] for the treatment of major depression. The trend showed that 

the number significantly increased, particularly after GW 25 in both Cmin and Cmax, suggesting 

the need for fluvoxamine dose adjustment to maintain the same efficacy as prepartum. 

The possible main factor influencing the fluvoxamine concentration during the gestational 

period is hepatic enzyme metabolism, specifically CYP2D6. This is because fluvoxamine is 

extensively metabolised in the liver, predominantly by CYP2D6, with minimal influence by 

CYP1A2 [185, 209, 222, 233]. Thus, the reduction in fluvoxamine plasma concentration 

concurs with increasing CYP2D6 activities throughout pregnancy by 25.6% ± 58.3% at GW 

14-18 to 47.8% ± 24.7% at GW 36-40 compared to the postpartum period [234]. The same 

has been reported by Wadelius et al. (1997) [235], but the study only performed the 

phenotyping at GW 36 instead of at every trimester. Furthermore, the increasing trend of 

CYP2D6 enzyme’s activities throughout pregnancy has also been incorporated in Simcyp® 

and validated based on pregnancy PBPK modelling for several compounds, namely, 

metoprolol and paroxetine, which are reflected in this study as well [103, 186]. 

On the other hand, the decreasing trend in the fluvoxamine plasma concentration throughout 

the gestational period further supports the findings of several publications that show the 

contribution of the CYP1A2 enzyme on fluvoxamine metabolism is not significant compared 

to the CYP2D6 enzyme [185, 209, 210, 236]. The explanation behind this is that the opposite 

trend between CYP2D6 and CYP1A2 activities throughout pregnancy is supposed to cancel 

out the impact on drug plasma concentration during pregnancy if the fractional metabolism of 
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a drug is equal between the two enzymes, which has not been seen in this study and study 

by Westin et al. (2017) [184] [103, 105, 234, 237]. 

Since fluvoxamine is a lipophilic drug, other physiological changes may contribute to the 

reduction of fluvoxamine levels, such as the expansion of intravascular and extravascular 

volume as well as the increase in body fat throughout the gestational period [105, 238]. In 

contrast, although fluvoxamine is a basic drug, the influence of changes in gastric pH and 

gastrointestinal motility on fluvoxamine absorption may be minimal compared to the hepatic 

metabolism, since fluvoxamine is highly absorbed from the gastrointestinal tract with 

approximately 50% bioavailability [222]. 

Renal changes may have minimal influence, since fluvoxamine is primarily eliminated through 

hepatic biotransformation with no known active metabolites, and a negligible amount of 

fluvoxamine is excreted unchanged in the urine [185]. Moreover, studies have shown that dose 

adjustment is needed for hepatic but not renal impairment patients [239-242]. 

 

2.4.3 Step 3: Validation of fluvoxamine foetoplacental PBPK model 

The sparse data obtained in this study were expected, since another fluvoxamine 

foetoplacental model developed by Matsuoka et al. (2017) [243] was validated with data solely 

taken from Hostetter et al. (2000) [217]. The limited information on when the samples were 

taken after the last dose provides a challenge in simulating optimal timing to offer a fair 

comparison. Nevertheless, the fluvoxamine foetoplacental model was validated based on 

three published studies, which showed that all observed data fit within the standard deviation 

of the predicted concentration. In addition, the predicted concentrations are comparable to the 

Matsuoka et al. (2017) [243] predictions, particularly for the 150 mg daily doses. The 

fluvoxamine foetoplacental model was developed without including any specific active 

transport mechanism other than passive diffusion, similar to the Matsuoka et al. (2017) [243] 

model. Thus, the CYP2D6 activity in the mother is the main factor influencing the fluvoxamine 

level in the foetus. 
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2.4.4 Step 4: Impact of CYP2D6 phenotype and dose adjustment during 

gestation 

2.4.4.1 Impact of CYP2D6 phenotype in the pregnant population 

A notable difference was seen between the EM and PM CYP2D6 populations regarding the 

validation of the healthy subject models and intrinsic hepatic clearance from the verification 

stage in the general pregnant population. Similar information was described in the fluvoxamine 

prescribing information, wherein there was a several-fold increase in the Cmax, AUC, and t½ in 

PM CYP2D6 compared to the EM CYP2D6 [222]. Given the paucity of published data on 

fluvoxamine pharmacokinetics during pregnancy stratified according to CYP2D6 phenotypes, 

the validated fluvoxamine model in healthy CYP2D6 subjects was used to support the 

exploration made regarding the pregnant population according to the CYP2D6 phenotype 

status, in addition to the validation of CYP2D6 abundance in pregnancy performed by Almurjan 

et al. (2020) [186] for the paroxetine. 

 

2.4.4.2 Maternal plasma concentration changes throughout pregnancy 

The significant difference in both the trough and peak concentrations between the EM and PM 

phenotypes in healthy subjects is comparable to the pregnant population, as demonstrated in 

this study (Figure 2.10) [210, 211]. The difference between UM and EM is significant for most 

of the GWs across three doses but with reduced magnitude when compared with the PM. Due 

to this difference, the fluvoxamine dosage regimen for the UM population in pregnant women 

was explored. This information can also be used to investigate the difference between the UM 

and EM CYP2D6 phenotypes in healthy subjects, because the two guidance on dose selection 

for the CYP2D6 phenotypes published by the Clinical Pharmacogenetics Implementation 

Consortium (CPIC) and the Dutch Pharmacogenetics Working Group (DPWG) only provide 

dose recommendation for the EM and PM populations but not for UM CYP2D6 population due 

to limited information [244, 245]. 

Regarding the plasma concentration trend throughout the gestational period within each 

CYP2D6 phenotype, it is comparable to the general pregnant population. The distinction 

between each phenotype is mainly corresponded to when the difference became significant, 

which was earlier for both the UM and EM populations as it occurred at GW 5, whereas for 

PM, it happened at GW 30. The percentage changes compared to baseline also showed the 

same pattern, which was higher in UM and EM at more than 50%, whereas for PM, this change 

was only around 25%. These results were anticipated since there is no functional allele in the 

PM CYP2D6 population, and the physiological and alternative clearance changes occurring 
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throughout the gestational period constitute the primary factor that influences the 

concentration levels in the PM phenotype population [106, 246, 247]. As for the UM and EM 

populations, the trends are consistent with other drugs metabolised by the CYP2D6 enzyme, 

such as paroxetine, metoprolol, and codeine, because the abundance of the CYP2D6 enzyme 

increases throughout the gestational week up to the full term for both the UM and EM 

phenotypes [103, 186, 246, 248]. 

 

2.4.4.3 Umbilical cord concentration changes throughout pregnancy 

No reported information (to date) is available to investigate the fluvoxamine foetal 

concentration based on the CYP2D6 phenotype. Thus, simulation of the foetal concentration 

of fluvoxamine was based on the limited data used to validate the general fluvoxamine 

foetoplacental model. Since the foetoplacental model only focuses on the passive diffusion 

transfer mechanism through the placenta, the main potentiating factor in comparison between 

the UM, EM, and PM CYP2D6 phenotypes constitute the CYP2D6 activities and physiological 

changes that occur throughout the gestational period. Generally, the factors that influence the 

crossing of a compound through the placenta are the physicochemical properties of the drug, 

physiological changes in the placenta such as blood flow, the involvement of active transport, 

and enzyme metabolism [249-251]. 

In the case of fluvoxamine, passive diffusion through lipid-soluble barriers of placental tissue 

membrane, cotyledons become the primary transfer pathway since fluvoxamine is a small 

molecule drug with base characteristics [249, 250, 252]. However, these characteristics did 

not differ between different CYP2D6 phenotypes. In addition, no data showed that fluvoxamine 

is transported by P-glycoproteins (P-gp), the major active efflux proteins for compound 

transport in the placenta [251]. Therefore, physiological changes and metabolism enzymes 

are the two main factors influencing fluvoxamine cord concentration. 

The increasing trend in the fluvoxamine foetal concentrations in the PM population is solely 

due to the increase in placental blood flow throughout the gestational period, since there are 

no active alleles of CYP2D6 [247, 253]. In contrast, the cord concentration is consistent from 

GW 20 to full term for both the UM and EM populations, except for GW 30 for the peak of the 

EM population in all three doses. The consistent trend may be due to the counteractive effect 

between an increase of CYP2D6 metabolism enzymes in the mother and an increase in 

placenta blood flow towards full term [234, 253]. The small but significant changes in the EM 

population for GW 30 may not be clinically significant, since no evidence showed a direct 

correlation between foetal concentrations and the adverse reaction to the foetus [250, 254]. 
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Nevertheless, close monitoring may be needed, particularly when a high foetal concentration 

is expected. 

 

2.4.4.4 Fluvoxamine dosing during pregnancy 

This study identified that a dose increment is needed for the UM and EM populations to 

maintain a fluvoxamine maternal concentration within the therapeutic area (60 ng/mL – 230 

ng/mL). As for the PM population, a stable dose of 100 mg daily with an optional increase to 

125 mg daily at GW 35 is sufficient to maintain a patient’s fluvoxamine concentration at the 

optimum level. The dosing recommendation is in line with the increasing CYP2D6 activity 

throughout the gestational period, which is the primary enzyme metabolising fluvoxamine [185, 

211, 236]. Moreover, the 0.75 to 2-fold difference in suggested dosage between PM and UM, 

as well as EM was anticipated since a dose reduction of 25 – 50% is recommended by the 

CPIC Guideline for CYP2D6 and CYP2C19 Genotypes and Dosing of Selective Serotonin 

Reuptake Inhibitors, 2015 [244] for normal subjects. The widening of the dosage gap when 

approaching full term aligns with the increase in CYP2D6 activity throughout the gestational 

period [234]. 

The recommended dose for the UM and EM populations reached a maximum dose at GW 15 

and GW 35, respectively (Table 2.8). The recommendation for a maximum dose in the UM 

population as early as GW 15 signalled the need for close monitoring, particularly with respect 

to TDM and clinical effects, in order to ensure that fluvoxamine is still effective in treating major 

depression, while a switch of antidepressant may also be considered, which is in line with the 

recommendations by the CPIC Guideline for CYP2D6 and CYP2C19 Genotypes and Dosing 

of Selective Serotonin Reuptake Inhibitors, 2015 [244], DPWG Guideline for the Gene-drug 

Interaction between CYP2C19 and CYP2D6 and SSRIs, (2016) [245], and Consensus 

Guidelines for Therapeutic Drug Monitoring in Neuropsychopharmacology: Update 2017 [172]. 

In addition, the results align with the finding by Mulder et al. (2005) [255], in which a switch of 

antidepressants is more often needed in the UM than in the EM CYP2D6 population, but not 

a change of dosing regimen. The need for increments up to the maximum dose in the UM/EM 

populations reflects the finding uncovered by Berard et al. (2017) [256], wherein the proportion 

of pregnant women with depression symptoms is higher in the UM/EM than in the PM CYP2D6 

population even when treated with antidepressants. 

Even though the recommended dose is lower in the PM population, the AUC is approximately 

twice that of the UM and EM populations, which is in stark contrast to the clearance value, 

where an increasing trend was seen in the UM and EM populations (Figure 2.12). Therefore, 

the risk for adverse events is higher in the PM population for both the mother and foetus, since 
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fluvoxamine accumulates in the body longer due to low clearance [257]. Dose adjustment, 

switching, and the discontinuation of antidepressants are frequently seen in the PM population 

due to adverse events, as it is difficult for pregnant women who may have already suffered 

from morning sickness to endure further adverse drug reactions [255-258]. 

A similar pattern was seen in the foetal concentration, which was higher in the PM population 

than in both the UM and EM populations, although with a lower recommended dose. The 

results from six studies showed that the rate of major congenital malformations and other 

adverse pregnancy outcomes did not differ significantly compared to the control groups [224-

229]. Nevertheless, the number of subjects was still considered too small for any informed 

conclusions regarding usage during pregnancy to be made [259, 260]. Moreover, the safety 

concern regarding the use of fluvoxamine as an SSRI is the potential risk of PPHN in newborns 

[223, 261]. Matsuoka et al. (2017) [243] have suggested dose tapering of 25 mg a week 

starting from GW 36 to reduce the risk of neonatal withdrawal syndrome, especially when the 

mother instantaneously discontinues the drug during pregnancy. 

  



K. B. Burhanuddin, PhD thesis, Aston University, 2024 

 

109 
 

2.5 Conclusion 

It is always a dilemma for a prescriber to decide between prescribing or withdrawing 

antidepressants during the perinatal period with respect to the health of both the mother and 

foetus. The prescriber’s main challenge is to find a balance between the treatment benefit 

throughout pregnancy and the risk of drug toxicity, particularly to the embryo and foetus. The 

physiological changes and those related to the biotransformation of metabolic enzymes during 

the gestational period are crucial factors in determining future actions regarding depression 

treatment in pregnant women. For fluvoxamine, the primary elimination route is through the 

CYP2D6 metabolism enzyme, which is highly polymorphic and, thus, further complicates the 

dosing strategies in pregnant women. The developed models suggest that dose increments 

of fluvoxamine are needed among pregnant women, particularly for the UM and EM CYP2D6 

populations. Although the fluvoxamine PBPK model developed in this study demonstrated a 

pragmatic method for determining a suitable dose in the perinatal setting, a confirmatory 

clinical trial is required to verify this study’s recommendations. 

Despite the fact that TDM is not commonly implemented with patients presenting with 

polymorphisms, this study highlighted the opportunity of using PBPK modelling for precision 

dosing, particularly in special populations such as pregnant women. The application of PBPK 

modelling combined with pre-emptive phenotyping may bring precision dosing closer to clinical 

settings, thereby improving the treatment of depression in the pregnant population. 
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2.6 Supplementary materials 

 

 

 

Figure S 2-1 Foetoplacental compartment permeability-limited model 

CLPDM, maternal–placental permeability clearance; CLPDF, placental–foetal permeability clearance; 𝐶𝐿𝑝𝑙
𝑡 , tissue–placenta permeability clearance; 𝑄𝑝𝑙

𝑚, maternal 

blood flow rate; 𝑄𝑝𝑙
𝑓

 , foetal blood flow rate; 𝐶𝑝𝑙
𝑚 , maternal–placental concentration; 𝐶𝑝𝑙

𝑓
 , foetal–placental concentration; 𝑉𝑝𝑙

𝑚 , maternal–placental volume; 𝑉𝑝𝑙
𝑓
 , 

foetal–placental volume 
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Figure S 2-2 Percentage of Ultrarapid Metaboliser (UM) population with trough concentration below 60 ng/mL 

The dashed horizontal line represents the threshold of 20% of subjects. 
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Figure S 2-3 Percentage of UM population with peak concentration above 230 ng/mL 

The dashed horizontal line represents the threshold of 20% of subjects.  
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Figure S 2-4 Percentage of Extensive Metaboliser (EM) population with trough concentration below 60 ng/mL 

The dashed horizontal line represents the threshold of 20% of subjects. 
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Figure S 2-5 Percentage of EM population with peak concentration above 230 ng/mL 

The dashed horizontal line represents the threshold of 20% of subjects. 
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Figure S 2-6 Percentage of Poor Metaboliser (PM) population with trough concentration below 60 ng/mL 

The dashed horizontal line represents the threshold of 20% of subjects. 
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Figure S 2-7 Percentage of PM population with peak concentration above 230 ng/mL 

The dashed horizontal line represents the threshold of 20% of subjects. 
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CHAPTER 3 - The application of physiologically based 

pharmacokinetic (PBPK) modelling to dose optimising of 

imatinib pharmacokinetics in obese cancer populations 
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3.1 Introduction 

Obesity is recognised as a global health epidemic, with a prevalence of over 2.6 billion in 2020 

and estimated to increase to over 4 billion by 2035 [112]. Furthermore, obesity is linked with 

an increased risk of cancer and is associated with higher cancer-related mortality [262-264]. 

Thus, the intertwining of obesity and cancer introduces a complex mesh of physiological 

changes, such as metabolism enzyme activities, altered tissue composition, change in plasma 

protein proportions, and renal function that can significantly influence drug absorption, 

distribution, metabolism and excretion [118, 123-125, 265]. 

Navigating the dosing approach in obese cancer patients is a conundrum and necessitates 

careful consideration of how the physiological changes may impact the drug's 

pharmacokinetics [10]. Research indicates various physiological alterations in obese cancer 

patients can influence the pharmacokinetic parameters. Among them is the increase of 

adipose tissue composition in obese cancer patients affecting a drug with high lipophilicity, 

thus increasing the volume of distribution and reducing plasma concentrations [266]; and the 

decrease in CYP3A4 metabolism enzyme abundances reported in both obese and cancer 

patients impact a majority of drugs cleared through the liver [124, 134]. 

The advent of tyrosine kinase inhibitors (TKIs), notably imatinib, a breakthrough in targeted 

therapy for chronic myeloid leukaemia (CML) and gastrointestinal stromal tumour (GIST) 

patients with an oral standard fixed-dose regimen, also poses a challenge in optimising the 

dose for the obese cancer population [267, 268]. Existing literature reveals a lower rate of 

major molecular response (MMR) and a longer time to achieve complete cytogenic response 

(CCyR) in CML patients with a high body-mass index (BMI) > 25 g/m2 treated with imatinib, 

and a higher dose might be needed in morbidly obese cancer patients [268-270]. Furthermore, 

a recent study demonstrates a negative correlation between body weight and imatinib trough 

plasma concentrations [271]. Nonetheless, information on the imatinib pharmacokinetic 

differences between lean, overweight, and obese cancer populations is still lacking. 

Data from multiple studies indicate that the use of imatinib trough concentration is an excellent 

surrogate marker in predicting the clinical response of CML and GIST patients [272-274]. The 

robust correlation between the imatinib plasma concentrations and the pharmacological effect 

combined with significant inter-patient (47% – 75%) and intra-patient variabilities (19% – 30%) 

suited the criteria as a candidate for therapeutic drug monitoring (TDM) approach with a 

dynamic and patient-centred dosing optimisation strategy to maximise the therapeutic efficacy 

and minimise the side effects [275, 276]. 

A multitude of studies have affirmed the benefit of TDM in guiding dose adjustment for imatinib 

and an evident cost-effectiveness compared to the standard fixed-dose therapy, specifically 
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after the accessibility of generic imatinib [277-280]. Moreover, several hospitals in the 

European region have implemented the TDM approach for imatinib in their clinical practice, 

and a consensus TDM guideline for imatinib therapy has been established by the International 

Association of Therapeutic Drug Monitoring and Clinical Toxicology (IATDMCT) [275, 276].  

Physiologically based pharmacokinetic (PBPK) modelling capabilities to consider the 

physiological changes in a population to elucidate and predict a drug disposition and plasma 

concentrations, even with limited concentration data, serve as a valuable tool to assess the 

imatinib pharmacokinetics in special populations such as obese cancer patients. The 

mechanistic modelling concept has been utilised to predict plasma concentrations for various 

drugs, either obese or cancer populations, individually but not as obese cancer populations 

[124, 125]. Furthermore, the concept has also been implemented to assess the impact of 

TDM-guided dose adjustment for imatinib in a Chinese cancer population [281]. 

Given the paucity of imatinib pharmacokinetics data on obese cancer populations, for the first 

time, this study has applied the PBPK concept in describing and assessing the physiological 

and imatinib pharmacokinetic differences between the lean, overweight, and obese cancer 

populations. Additionally, the effectiveness of the TDM-guided imatinib dose titration approach 

adapted from Gotta et al. (2014) [277] clinical studies in the obese cancer population was 

evaluated. The insight gained in this study may contribute to the evolving landscape of 

precision medicine from the personalised therapeutic intervention perspective.  

The objectives of this study are to utilise the principle of PBPK modelling and virtual clinical 

trials to: (1) delineate the differences in physiological parameters between lean, overweight 

and obese cancer populations, (2) evaluate the influence of obesity on imatinib 

pharmacokinetics in adult cancer populations, and (3) assess the ability for TDM-guided dose 

adjustment for imatinib to regain the sub- and supra-therapeutic trough concentrations into the 

target concentration level. 
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3.2 Methodology 

The simulations of imatinib plasma profiles on adult cancer populations for validation and TDM 

were performed using Simcyp® Version 21 (Simcyp Ltd., a Certara company, Sheffield, UK). 

This study applied the four-step workflow for validation and virtual TDM of imatinib in obese 

cancer populations (Figure 3.1). 

 

 

Figure 3.1 Four-step workflow model for Imatinib model verification, TDM and exploration 
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3.2.1 Step 1: Verification of the imatinib model in healthy, cancer and Caucasian 

populations 

The imatinib compound model that was previously developed, validated and utilised was used 

without adaptation (Table 3.1) [281-283]. Since an updated version of the Simcyp Simulator 

software was utilised, verification of the imatinib model was re-performed with published data 

in three different population groups from 10 studies:  

Healthy adults: 
i. Imatinib 400 mg single-dose, 12 adults (40 – 58 years old) [284],  

ii. Imatinib 400 mg single-dose, 33 adults (19 – 60 years old) [285], 

iii. Imatinib 400 mg single-dose, 26 adults (21 – 27 years old) [286],  

Adult cancer patients: 

iv. Imatinib 400 mg daily, 34 GIST patients (28 – 84 years old) [287],  

v. Imatinib 400 mg daily, 50 GIST cancer subjects (39 – 82 years old) [288],  

vi. Imatinib 400 mg daily, 103 pulmonary arterial hypertension (PAH) patients (18 – 77 years 

old) [289],  

vii. Imatinib 400 mg daily, 2,478 CML patients (18.3 – 91.5 years old) [290], 

viii. Imatinib 25 mg to 600 mg daily, 64 CML patients (53.8 ± 12.7 years old) [291], 

Caucasian adults: 

ix. Imatinib 400 mg daily, 59 CML and GIST Caucasian patients (20 – 79 years old) [292], 

x. Imatinib 400 mg daily, 49 GIST Caucasian patients (24 – 88 years old) [293]. 

The healthy population in Simcyp® was used for simulation to verify the observed data in (i) to 

(iii), the cancer population in Simcyp® was utilised for verification of published data from (iv) 

to (viii), while the Simcyp® North European Caucasian (NEurCaucasian) population was used 

to verify clinical data in (ix) and (x) above. The population models selected for validation were 

based on the patients recruited in the published data and the population model used by the 

imatinib model developer [283]. Furthermore, simulations were made with 10 trials x 10 

patients design with an age range and male percentages matching the published studies. 

Three populations used to validate the imatinib compound are default populations available in 

the Simcyp® in-house population library: healthy adult, cancer population, and NEurCaucasian. 

The difference between the healthy adult and NEurCaucasian populations is that the 

NEurCaucasian population is considered a general population established from a sizeable 

Europen health survey, including a population with medical conditions [283]. As for the cancer 

population with both healthy and NEurCaucasian, the main difference influencing imatinib 

pharmacokinetics is the plasma AGP level, which is higher in the cancer population [125, 283].  
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The re-verification of the imatinib model focused on reproducing pharmacokinetic parameters 

and plasma concentration profiles, as the model has been validated in multiple studies across 

diverse ethnic groups and age ranges, particularly in predicting Cmin with significant inter-

subject variability [281-283, 294]. 

 Table 3.1 Imatinib compound parameter values validated and used for simulation 

Parameters Values Notes 

Physical chemistry and blood binding 

Compound type Diprotic base  

Molecular weight (g/mol) 493.6 Drug Bank [252] 

Log P 1.99 Peng et al. (2005) [139] 

pKa 1;2 8.07; 3.73  

B/P 0.73 Kretz et al. (2004) [295] 

fu 0.05 Smith et al. (2004) [296] 

Plasma binding component α1-acid glycoprotein  

   

Absorption 

Model ADAM   

fuGut 1.00  

QGut (L/h) 6.04  

Peff in man (10-4 cm/s) 0.92  

   

Distribution 

Model Full PBPK  

Vss (L/kg) 1.80 
Predicted using Method 2 by 
Rodgers and Rowland approach 
[60]  

Kp scalar   

   

Elimination 

Model Enzyme kinetics  

Pathway 1 CYP3A4 N-desmethyl imatinib formation 

Vmax (pmol/min/pmol isoform) 3.00  

Km (µmol/L) 10.54  

fumic 0.96  

Pathway 2 CYP2C8 N-desmethyl imatinib formation 

Vmax (pmol/min/pmol - isoform) 56.40  

Km (µmol/L) 7.49  

fumic 0.97  

Pathway 3 CYP3A4 Other metabolites 

CLint (µl/min/mg - protein) 33.40  

fumic 1.00  

   

Pathway 4 CYP2C8 Other metabolites 
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CLint (µl/min/mg - protein) 24.20  

fumic 1.00  

HLM CLint (µL/min/mg - protein) 31.00  

CLR (L/h) 0.50 Bornhauser et al. (2005) [297] 

   

Drug transport – hepatobiliary transporter 

Pathway 1 ABCB1  

CLint,T (µl/min/million - cells) 1.50  

RAF 1.00  

Pathway 2 ABCG2  

Jmax (pmol/min/million – cells) 89.40  

Km (µmol/L) 4.37  

RAF 0.38  

CLPD (ml/min/million – 
hepatocytes) 

0.20  

   

Drug interactions  

CYP3A4   

Competitive inhibition   

Ki (µmol/L) 14.30  

fumic  0.80  

Mechanism-based inhibition   

kinact (1/h) 4.29  

fumic  0.80  

The compound data was adopted from Adiwidjaja et al. (2019) [282]; Log P, partition coefficient; B/P, 
blood-to-plasma ratio; fu, unbound fraction; ADAM, Advance dissolution, absorption and metabolism; 
Peff, human jejunum effective permeability; PSA, polar surface area; HBD, number of hydrogen bond 
donors; fuGut, unbound fraction of drug in enterocytes; Vss, steady-state volume of distribution; Kp 
scalar, tissue partition coefficient; HLM CLint, human liver microsomes invitro intrinsic clearance; CLR, 
renal clearance; Vmax, maximum rate of metabolism; Km, Michaelis-Menten constant; fumic, fraction of 
unbound drug in the in vitro microsomal incubation; CLint, in vitro intrinsic clearance; CLPD, passive 
diffusion clearance; CLint,T, in vitro transporter-mediated intrinsic clearance; Jmax, in vitro maximum rate 
of transporter-mediated efflux or uptake; RAF, relativity activity factor; Ki, the concentration of inhibitor 
that supports half-maximal inhibition; kinact, inactivation rate of the enzyme.  

 

3.2.2 Step 2: Validation of lean, overweight and obese cancer population with 

imatinib compound model  

Before assessing the differences in imatinib pharmacokinetics between lean, overweight and 

obese oncologic populations, the imatinib compound model was further verified with the 

Simcyp® cancer population categorised according to the BMI, lean for < 25 kg/m2, overweight 

for 25 kg/m2 to < 30 kg/m2 and obese for > 30 kg/m2 [152].  

The cancer population in Simcyp® was developed based on data from patients with advanced 

solid tumours and generated virtual patients with a range of BMI from 16 kg/m2 up to 46 kg/m2 

[125, 134, 298]. Within the Simcyp® population library, the obese and morbidly obese 
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populations were also available, but both were not derived based on data from cancer patients, 

which is one of the primary reasons for selecting the cancer population instead of the obese 

population [124]. The fundamental physiological differences between cancer and obese 

populations in Simcyp® are the plasma AGP level, CYP3A4 abundances, human serum 

albumin, serum creatinine, and haematocrit [124, 125]. 

Validation was performed with imatinib steady-state trough concentrations (Cmin) of lean, 

overweight, and obese cancer populations reported by Lin et al. (2023) [271] from 201 subjects 

aged between 24 and 88 years old: 87 patients in the lean category, 83 in the overweight 

category and 31 in the obese category. For verification with the reported Cmin, a virtual clinical 

trial simulating 1,000 cancer population dosed with 400 mg daily for 28 days matches the 

demographic population described by Lin et al. (2023) [271], followed by stratification of the 

virtual subjects according to their BMI categories. 

 

3.2.3 Step 3: Comparison of physiological parameters and imatinib 

pharmacokinetics parameters between lean, overweight, and obese cancer 

populations 

For the physiological parameters comparison between lean, overweight, and obese cancer 

populations, 10,000 virtual cancer subjects were simulated with a 1:1 male-to-female ratio and 

20 – 88 years of age. Subsequently, the virtual subjects were stratified according to their BMI 

and made the physiological parameters comparison, which includes height, weight, body 

surface area (BSA), liver weight, cardiac output, human serum albumin (HSA), haematocrit, 

α1-acid glycoprotein (AGP), serum creatinine, glomerular filtration rate (GFR), CYP3A4 liver 

enzyme abundance, CYP2C8 liver enzyme abundance, ABCB1 (P-gp/MDR1) transporter 

activity and ABCG2 (BCRP) transporter activity. 

The virtual subjects were not stratified according to age, as the PBPK model accounts for 

physiological variations associated with ageing, such as changes in renal function, enzyme 

activity, and body composition [125]. In addition, studies have shown no clinically significant 

impact of age on imatinib pharmacokinetics [272, 290]. 

In order to identify the differences in imatinib rate and extent of absorption between the BMI 

categories, four virtual clinical trials were simulated with 1,000 virtual cancer populations. For 

each trial, the virtual subjects with similar demographic characteristics were dosed with 

imatinib either at 200 mg, 400 mg, 600 mg or 800 mg daily for 28 days. The simulations were 

conducted with the age range of 20 to 60 years and 0.5 male-to-female ratio.  
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The pharmacokinetic parameters that were compared include area-under-the-curve (AUC), 

maximum concentration (Cmax), and Cmin, all at steady-state. Additionally, the percentages of 

Cmin fell outside the target range, specifically below 1,100 ng/mL and 750 ng/mL, as well as 

above 1,500 ng/mL, were reported for each BMI classification. The primary target range of 

750-1,500 ng/mL aligns with Gotta et al. (2014) [277], while the sub-criterion of 1,100 ng/mL 

suggested by Bouchet et al. (2016) [299], was included to highlight specific therapeutic levels 

adopted by Lin et al. (2023) [271], whose data validated the imatinib model.  

 

3.2.4 Step 4: Imatinib therapeutic drug monitoring (TDM) in lean, overweight and 

obese cancer populations 

Imatinib dose adjustment guided by TDM has been reported to improve its efficacy and 

implemented in clinical settings in numerous hospitals worldwide [290, 300, 301]. Additionally, 

the concept of PBPK has been utilised as virtual TDM to assess the pharmacokinetic 

variabilities of imatinib in the Chinese cancer population [281]. Hence, the TDM-guided 

imatinib dose adjustment approach executed by Gotta et al. (2014) [277] (Figure 3.2) was 

adapted in a randomised trial to evaluate the difference in imatinib pharmacokinetics between 

lean, overweight and obese cancer populations using the virtual clinical trials and PBPK 

framework. 

 

Figure 3.2 Imatinib dose adjustment guided by TDM process 
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Virtual clinical trials of 1,000 adult cancer subjects (20 to 60 years old, 1:1 male-to-female 

ratio) were simulated and dosed with imatinib 400 mg daily for 26 days, followed by dose 

adjustment based on the Cmin scheme specified in Figure 3.2 for an additional 30 days. The 

Cmin threshold window of 750 ng/mL to 1,500 ng/mL recommended by Gotta et al. (2014) [277] 

and Buclin et al. (2020) [276] was fixed in this study. For each virtual trial, subjects were then 

categorised according to their BMI: lean, overweight, and obese. This was followed by 

stratification of the virtual subjects for each BMI class according to the Cmin after being dosed 

on Day-26 (before dose adjustment). Subsequently, the ability of dose adjustment to 

recapitulate the subjects whose Cmin were outside the threshold back into the target window 

was quantified. The demographic of virtual subjects was constant for each dose adjustment 

cohort. 

 

3.2.5 Prediction performance 

Verification of the imatinib compound model with observed clinical data in step 1 was 

determined by visual predictive check (VPC) and predicted/observed ratio within a two-fold 

(0.5 – 2-fold) range as the acceptance criteria unless otherwise explained [144, 220, 221, 302]. 

As for step 2, the VPC method was used as only the imatinib Cmin observed data reported by 

Lin et al. (2023) [271] was used to validate the imatinib model with overweight and obese 

cancer patients. The acceptance range for VPC is when the overlaid observed plasma 

concentrations match with the 5th and 95th percentiles of the mean simulated plasma 

concentration profiles [281, 282, 303].  

 

3.2.6 Data and statistical analysis 

All the observed plasma concentration data used for validation, particularly in steps 1 and 2, 

were extracted from published studies using WebPlotDigitizer version 4.5 

(https://apps.automeris.io/wpd/). One-way ANOVA with Tukey's multiple comparison tests was 

performed to compare the physiological and pharmacokinetic parameters between lean, 

overweight and obese cancer populations in steps 2 and 3. Statistical significance was set at 

p < 0.05. In addition, Spearman's correlation test was implemented to test the correlation 

between Cmin versus body weight in step 2. All the statistical analysis was ran with GraphPad 

Prism Version 8 for Windows (GraphPad Software, La Jolla, CA, USA). 

  

https://apps.automeris.io/wpd/
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3.3 Results 

3.3.1 Step 1: Imatinib model validation in healthy, cancer and caucasian 

populations 

The imatinib model was validated with three single-dose studies in healthy adults and seven 

multiple-dose studies in the adult cancer population. The pharmacokinetics parameters 

prediction-to-observed ratio, including Cmax, AUC0-inf, AUC0-t, and time to maximum 

concentration (Tmax), when compared with observed data from healthy adults, was between 

0.72 to 1.04, which was within the acceptance criteria (Table 3.2). Furthermore, all the imatinib 

observed plasma profiles overlaid within the 5th and 95th percentiles of simulated profiles 

(Figure 3.3A), thus verifying the imatinib compound model's prediction of imatinib 

concentration in healthy adults. 

Table 3.2 Observed and predicted pharmacokinetic parameters of imatinib for healthy subjects 

Reference Age, no. 
of subject 

Dosing 
regimen 

PK 
parameter 

Observed  Predicted Predicted/ 
Observed 

Peng et al. 
(2004) [284] 

40 – 58,  
n: 12 

400 mg 
single-
dose 

Cmax 
(ng/mL) 

1,822 ± 1,193 1,669 ± 465 0.92 

AUC0-inf 
(ng.h/mL) 

32,640 ± 
16,501 

23,645 ± 
10,099 

0.72 

Tmax (h) 2.5 (1.0 – 6.0) 2.3 (1.1 – 3.7) 0.92 

Nikolova et 
al. (2004) 
[285] 

19 – 60,  
n: 33 

400 mg 
single-
dose 

Cmax 
(ng/mL) 

1,606 ± 647 1,669 ± 465 1.04 

AUC0-24 
(ng.h/mL) 

18,658 ± 8,016 19,547 ± 6,994  1.04 

AUC0-96 
(ng.h/mL) 

25,150 ± 
11,611 

23,578 ± 
10,002 

0.94 

AUC0-inf 
(ng.h/mL) 

25,464 ± 
11,846 

23,645 ± 
10,099 

0.93 

Tmax (h) 2.5 (1.5 – 6.0) 2.3 (1.1 – 3.7) 0.92 

Pena et al. 
(2020) [286] 

21 – 27,  
n: 26 

400 mg 
single-
dose 

Cmax 
(ng/mL) 

2,029 ± 551 1,669 ± 465 0.82 

AUC0-72 
(ng.h/mL) 

32,378 ± 9,152 23,406 ± 9,805 0.72 

n, number of subjects; Cmax, maximum concentration; AUC0-t, area-under-the-curve to the last time 
point; AUC0-inf, area-under-the-curve extrapolated to infinity; Tmax, time to maximum concentration.  

 

As for the adult cancer population, verification was conducted with seven published studies, 

where a study by Peng et al. (2004) [291] compared with both pharmacokinetic parameters 

(Table 3.3) and observed plasma profiles (Figure 3.4), while all other six studies compared 

with the observed plasma profiles only (Figure 3.3).  
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The study by Peng et al. (2004) [291] was conducted on 14 different doses from 25 mg to 

1,000 mg, with published profiles at steady-state on six doses: 25 mg daily, 50 mg daily, 85 

mg daily, 350 mg daily, 400 mg daily and 600 mg daily. Pharmacokinetic parameters 

comparison for the six doses generally adhered to the 0.5 – 2-fold rule except for AUC0-24ss 

and tmax at 25 mg daily dose as well as Cmax and AUC0-24ss at 350 mg daily dose, where the 

differences were more than two-fold but less than three-fold (Table 3.3).  

Table 3.3 Observed and predicted pharmacokinetic parameters of imatinib for cancer subjects 

Reference Age, no. of 
subject 

Dosing 
regimen 

PK 
parameter 

Observed  Predicted Predicted/ 
Observed 

Peng et al. 
(2004) [291] 

53.8 ± 12.7, 
n: 3 

25 mg at 
steady-
state 

Cmax 
(ng/mL) 

179.9 ± 89.2 237.9 ± 84.6 1.32 

AUC0-24ss 
(µg.h/mL) 

1.9 ± 0.9 4.0 ± 1.8 2.10 

Tmax (h) 1.0 ± 0.5 2.4 ± 0.4 2.40 

n: 3 50 mg at 
steady-
state 

Cmax 
(ng/mL) 

365.7 ± 75.6 475.8 ± 169.2 1.30 

AUC0-24ss 
(µg.h/mL) 

4.6 ± 0.4 8.0 ± 3.7 1.74 

Tmax (h) 3.8 ± 3.6 2.4 ± 0.4 0.63 

n: 3 85 mg at 
steady-
state 

Cmax 
(ng/mL) 

799.6 ± 463.1 809.0 ± 287.8 1.01 

AUC0-24ss 
(µg.h/mL) 

9.8 ± 3.3 13.7 ± 6.3 1.40 

Tmax (h) 2.2 ± 1.4 2.4 ± 0.4 1.09 

n: 5 350 mg 
at 
steady-
state 

Cmax 
(ng/mL) 

1,407.0 ± 
710.7 

3,335.1 ± 
1,186.5 

2.37 

AUC0-24ss 
(µg.h/mL) 

20.0 ± 10.6 56.2 ± 25.8 2.81 

Tmax (h) 3.1 ± 1.0 2.4 ± 0.4 0.77 

n: 5 400 mg 
at 
steady-
state 

Cmax 
(ng/mL) 

2,596.0 ± 
786.7 

3,812.2 ± 
1,356.4 

1.47 

AUC0-24ss 
(µg.h/mL) 

40.1 ± 15.7 64.2 ± 29.6 1.60 

Tmax (h) 3.3 ± 1.1 2.4 ± 0.4 0.73 

n: 9 600 mg 
at 
steady-
state 

Cmax 
(ng/mL) 

3,508.9 ± 
1,649.3 

5,722.6 ± 
2,036.5 

1.63 

AUC0-24ss 
(µg.h/mL) 

51.7 ± 26.7 96.5 ± 44.4 1.87 

Tmax (h) 3.1 ± 1.1 2.4 ± 0.4 0.77 

n, number of subjects; Cmax, maximum concentration; AUC0-24ss, area-under-the-curve for 24 hours at 
steady-state; Tmax, time to maximum concentration.  
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A similar trend was seen in the plasma profile comparison, where only the 350 mg daily dose 

fell outside the simulated 5th and 95th percentile profile (Figure 3.4D). Notably, the simulated 

profiles were overpredicted compared to observed profiles, particularly for 25 mg daily dose, 

50 mg daily dose, 350 mg daily dose and 600 mg daily dose (Figure 3.4). Nevertheless, the 

profiles were still within the acceptance profile threshold (Figure 3.4).  

The predicted profiles in adult cancer populations were consistent with the sparse imatinib 

plasma concentration data published by Petain et al. (2008) [287] (Figure 3.3B and Figure 

3.3C), Eechoute et al. (2012) [288] (Figure 3.3D and Figure 3.3E), Renard et al. (2015) [289] 

(Figure 3.3F), and Gotta et al. (2014) [290] (Figure 3.3G). In general, a wider distribution was 

noticed in observed data from all four publications compared to the 5th and 95th percentile 

simulated profiles (Figure 3.3). Overprediction was seen when a comparison was made with 

the steady-state observed data from Petain et al. (2008) [287] (Figure 3.3C); still, the observed 

data was within the acceptance range of simulated profiles. 

As for the observed imatinib concentrations reported by Widmer et al. (2006) [292] (Figure 

3.3H) and Haouala et al. (2013) [293] (Figure 3.3I), the comparison was made with the 

simulated profiles made based on the NEurCaucasian population in Simcyp®. The main 

reason is to match the validation method implemented by the developer of the imatinib 

compound model [282, 283]. The predicted profiles, including the 5th and 95th percentiles, 

overlaid within both the publication’s broad imatinib observed data (Figure 3.3H and Figure 

3.3I). Generally, the inter-individual variability in observed concentrations was broader than 

predicted, particularly in Figure 3.3B, Figure 3.3D, and Figure 3.3E, reflecting a potential 

limitation in the model's ability to capture variability fully. 
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Figure 3.3 Comparison of model-predicted vs. observed concentration data of imatinib in healthy adults (A), adult cancer (B – G) and European adults (H-I).  

(A) 400 mg single-dose in healthy adults [284], [285], [286]; (B) 400 mg day-1 and (C) 400 mg at steady-state in cancer populations compared to Petain et al. 
(2008) [287] observed data; (D) 400 mg day 1 and (E) 400 mg daily at steady-state in cancer populations compared with published data by Eechoute et al. 
(2012) [288]; (F) 400 mg daily at steady-state in pulmonary arterial hypertension populations compared with Renard et al. (2015) [289] observed data; (G) 400 
mg daily at steady-state in cancer populations compared with Gotta et al. (2014) [290] observed data; 400 mg daily at steady-state in European populations 
compared with observed data by Widmer et al. (2006) [292] (H) and Haouala et al. (2013) [293] (I). Solid lines represent the mean predicted concentration-time 
profile, with dotted lines representing the 5th and 95th percentile ranges. Solid circles represent observed clinical data from each study. 
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Figure 3.4 Comparison of imatinib simulated profiles with observed plasma profiles at steady-state in cancer populations  

Virtual cancer patients were administered 25 mg once daily (A), 50 mg once daily (B), 85 mg once daily (C), 350 mg once daily (D), 400 mg once daily (E), and 
600 mg once daily (F). Observed profiles were published by Peng et al. (2004) [291]. Solid lines represent the mean predicted concentration-time profile, with 
dotted lines representing the 5th and 95th percentile ranges. Solid circles represent observed clinical data from each study.   
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3.3.2 Step 2: Validation of lean, overweight, and obese cancer population with 

imatinib compound model 

The applicability of the imatinib model in predicting pharmacokinetic parameters of overweight 

and obese adult cancer populations was validated with observed Cmin at steady-state when 

cancer patients have been dosed with imatinib 400 mg per day, as Lin et al. (2023) [271] 

reported. The reported Cmin superimposed within the distribution of simulated Cmin for all three 

populations: lean (Figure 3.5D), overweight (Figure 3.5E) and obese (Figure 3.5F) adult 

cancer, as well as the integrated graph of all three populations (Figure 3.5C).  

Furthermore, the correlation test results for Cmin versus body weight were comparable (rs:-0.24, 

p < 0.001 vs rs:-0.13, p < 0.0001) between the observed (Figure 3.5A) and simulated data 

(Figure 3.5B). Besides, the results showed that correlations between body weight and trough 

levels were significant in both simulated and observed imatinib concentrations. The primary 

difference between observed and simulated populations was the maximum body weight, with 

125 kilograms (kg) for the virtual population and 180 kg for the actual patient. 
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Figure 3.5 Predicted and observed imatinib trough concentrations (Cmin) in cancer populations were stratified according to the body mass index (BMI) 
classification.  

(A) Correlation and regression line based on the observed imatinib Cmin by Lin et al. (2023) [271]. (B) Correlation and regression based on the simulated imatinib 
Cmin. (C) Predicted versus observed imatinib Cmin stratified according to BMI classifications. (D) Lean BMI < 25 kg/m2. (E) Overweight BMI 25 kg/m2 - <30 kg/m2. 
(F) Obese BMI > 30 kg/m2. Close-coloured circles, predicted Cmin; open-coloured circles, observed Cmin. 
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3.3.3 Step 3: Comparison of physiological parameters and imatinib 

pharmacokinetics parameters between lean, overweight and obese cancer 

populations 

Since all three BMI categories of cancer populations and imatinib models had been verified in 

Step 2, and the trend showed a significant correlation between body weight and Cmin, the 

differences between all three BMI categories were then investigated from the simulation 

perspective in terms of the physiological parameters and pharmacokinetic parameters. 

 

3.3.3.1 Comparison of physiological parameters between lean, overweight and 

obese cancer populations 

The comparison focused on 14 physiological parameters generated from 10,000 virtual cancer 

subjects. A radar chart (Figure 3.6) pictures the approximate differences between lean, 

overweight, and obese adult cancer populations. A substantial difference was seen in weight, 

BSA, liver weight, cardiac output, serum creatinine, GFR and CYP3A4 abundance. Excluding 

the height, haematocrit, AGP, serum albumin, and serum creatinine, the physiological 

parameters were higher in the obese adult cancer population as opposed to the lean adult 

cancer population (Figure 3.6). 

Furthermore, a statistical comparison test between lean, overweight and obese adult cancer 

populations was performed for each physiological parameter (Figure 3.7). Significant 

differences (p < 0.001 for HSA and p < 0.0001 for other parameters) were noticed between 

lean and obese populations in all physiological parameters except for haematocrit (Figure 

3.7G) and AGP (Figure 3.7H). The differences between lean and overweight were insignificant 

in five out of 14 parameters, namely, height, HSA, haematocrit, AGP, and serum creatinine. In 

the comparison between overweight and obese populations, only haematocrit, AGP and 

CYP2C8 abundance showed no significant difference, whereas the remaining parameters 

displayed substantial differences. 
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Figure 3.6 Radar graph comparing the mean of lean, overweight and obese adult cancer physiological 
parameters.   

Each colour line represents the mean for each physiological parameter, with the red line as ‘obese 
cancer population’, the green line as ‘lean cancer population’ and the blue line as ‘overweight cancer 
population’. The length of each axis represents the maximum value of the parameters, and the 
connected point for each line represents the mean of each population.      
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Figure 3.7 Comparison between normal, overweight and obese adult cancer physiological parameters.  

Middle horizontal lines represent the mean, with upper and lower horizontal lines representing the 
standard deviations; *, p < 0.05; ***, p < 0.001; ****, p < 0.0001; ns, not significant.   
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3.3.3.2 Comparison of imatinib pharmacokinetic parameters between lean, 

overweight and obese adult cancer populations 

When compared, lower values for AUC, Cmax, and Cmin were observed in obese adult cancer 

populations compared to lean adult cancer, with statistically significant differences noted for 

the AUC and Cmax but not for the Cmin (Table 3.4). The same trend was seen across all four 

doses (200-800 mg daily). Multiple comparisons between lean, overweight, and obese adult 

cancer populations revealed that the differences were significant between each population for 

the Cmax parameter, while for AUC, a notable difference was displayed only between lean and 

obese populations (Figure 3.8). With respect to the Cmin, the difference between each 

population was not statistically significant (Figure 3.8).  

In relation to the lower value of Cmin in the obese population, the percentage of subjects with 

Cmin below 1,100 ng/mL and 750 ng/mL threshold was higher in the obese population 

compared to the overweight and lean populations (Table 3.4). On the other hand, the 

percentage was lower for the number of subjects with Cmin above the 1,500 ng/mL threshold 

in the obese adult cancer population (Table 3.4). When the virtual subjects were dosed with a 

standard starting dose of 400 mg daily, approximately 50% of subjects with Cmin below 1,100 

ng/mL in all three BMI categories with differences between 0.4% and 3.4%. Meanwhile, the 

percentage difference of subjects with Cmin below 750 ng/mL across lean, overweight, and 

obese populations was broader, between 0.66% and 6.67%. Similar to the comparison of the 

pharmacokinetic parameters above, the pattern was akin across all four doses. 
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Table 3.4 Comparison of simulated imatinib pharmacokinetic parameters at steady-state between lean, overweight, and obese cancer population 

Dose 
Body mass index 
(BMI) status 

PK parameters Percentage of subjects with Cmin 

AUC0-24 (ng/mL.h) Cmax (ng/mL) Cmin (ng/mL) 
< 1,100 
ng/mL 

< 750 
ng/mL 

> 1,500 
ng/mL 

200 mg 
daily 

Normal (n=474)  27,050.45 ± 13,070.92 1,726.66 ± 597.63  663.17 ± 472.46 84.81 66.46 6.12 

Overweight (n=359) 25,677.83 ± 12,706.12 1,585.76 ± 579.84 647.58 ± 460.43 85.24 69.36 6.13 

Obese (n=167) 23,266.19 ± 11,103.62 1,441.88 ± 505.74 573.96 ± 393.50 91.02 6.13 3.59 

p-value 0.004 <0.0001 0.09    

400 mg 
daily 

Normal (n=474)  54,112.87 ± 26,166.38 3,455.19 ± 1,195.81 1,326.01 ± 945.59  51.69 31.65 33.54 

Overweight (n=359) 51,378.04 ± 25,429.22 3,173.40 ± 1,160.88  1,295.36 ± 921.61 52.09 32.31 30.92 

Obese (n=167) 46,537.47 ± 22,225.62 2,885.32 ± 1,011.40 1,147.28 ± 787.42 55.09 38.32 25.75 

p-value 0.004 <0.0001 0.09    

600 mg 
daily 

Normal (n=474)  81,217.85 ± 39,271.51  5,187.34 ± 1,795.56   1,989.59 ± 1,419.27  31.22 15.61 53.16 

Overweight (n=359) 77,100.91 ± 38,162.84  4,763.74 ± 1,741.37   1,943.34 ± 1,382.84  31.75 17.55 53.48 

Obese (n=167) 69,842.12 ± 33,352.38  4,330.59 ± 1,518.87   1,721.86 ± 1,182.03  35.93 21.56 50.30 

p-value 0.004 <0.0001 0.09    

800 mg 
daily 

Normal (n=474)  108,336.71 ± 52,396.87 6,921.25 ± 2,395.50 2,653.12 ± 1,893.45 17.72 10.13 68.35 

Overweight (n=359) 102,844.67 ± 50,911.82 6,355.48 ± 2,322.86 2,591.45 ± 1,844.72 21.45 11.14 67.69 

Obese (n=167) 93,158.16 ± 44,494.66 5,777.57 ± 2,026.19 2,295.98 ± 1,576.86 26.35 14.37 61.68 

p-value 0.004 <0.0001 0.09    

Mean ± SD; PK, pharmacokinetic; AUC0-24, area-under-the-curve from 0 to 24 hours; Cmax, maximum concentration; Cmin, trough concentration; p < 0.05, 
statistically significant difference; Cmin < 1,100 ng/mL is the Cmin threshold proposed by Bouchet et al. (2016) [299]; Cmin < 750 ng/mL and > 1,500 ng/mL are 
the lower and upper threshold for Cmin suggested by Buclin et al. (2020) [276]. 
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Figure 3.8 Comparison of predicted imatinib pharmacokinetic parameters at steady-state between lean, 
overweight and obese cancer populations.  

(A) Area-under-the-curve (AUC). (B) Maximum concentrations (Cmax). (C) Trough concentrations (Cmin). 
*, p < 0.05; **, p < 0.005; ****, p < 0.0001; The coloured symbol represents the mean, with upper and 
lower horizontal lines representing the SD. The absence of a comparison bracket (horizontal bracket) 
on top of each mean and SD graph indicates the differences are not statistically significant.  
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3.3.4 Virtual therapeutic drug monitoring (TDM) of imatinib in lean, overweight 

and obese cancer populations  

Despite the fact that the difference in the Cmin between lean, overweight, and obese adult 

cancer populations was not statistically significant, the percentage of virtual subjects with Cmin 

below the lower threshold of 750 ng/mL applied by Gotta et al. (2014) [277] was lower across 

all four doses (Table 3.4). Thus, the TDM-guided dose adjustment was further investigated in 

all three populations to recapitulate the out-of-range Cmin into the target window of 750 ng/ml 

to 1,500 ng/mL.  

After the stratification of subjects according to their Cmin level, there was no significant 

difference between the mean of Cmin for the lean, overweight and obese populations (p > 0.05) 

across all six levels (Table 3.5), complementing the results when comparison was made 

without stratification as reported above.  

From another perspective, the percentage of subjects with Cmin below 550 ng/mL was highest 

in the obese cancer population, followed by overweight and lean (25.75%, 21.17% and 

17.72%). Nevertheless, for virtual subjects with Cmin less than 450 ng/mL, despite a two-fold 

increase in dose, only approximately 20% of subjects achieved the target threshold of 750 

ng/mL (Table 3.5), while the mean Cmin did not reach the target window (Figure 3.9) for all three 

populations. On the other hand, for the group with Cmin between 450 ng/mL and 549 ng/mL, 

an increment of 1.75-fold (700 mg daily) or two-fold (800 mg daily), all the trough were raised 

to the target level for all three populations (Figure 3.9). However, with a 1.5-fold dose increase 

(600 mg daily), the Cmin of approximately 55% of overweight and obese populations ascend to 

the target window, but only 43.48% for the lean population. 

A more comprehensive dose increment option is available to raise the trough to the target 

concentration for subjects with Cmin between 650 ng/mL and 750 ng/mL compared to 550 

ng/mL and 649 ng/mL. In general, any increment between 1.25-fold (500 mg daily) to two-fold 

(800 mg daily) raised all the subjects with a trough between 650 ng/mL and 750 ng/mL up to 

above 750 ng/mL, while only a 1.5-fold (600 mg daily) to two-fold (800 mg daily) increase in 

dose was needed to bring up all the troughs between 550 ng/mL and 649 ng/mL, beyond the 

750 ng/mL target level (Table 3.5). For the 550 ng/mL to 649 ng/mL stratified group, an 

increment of 100 mg daily only raised 33.33% to 55% of the trough for all three populations 

above the target of 750 ng/mL. 

Virtual subjects with a trough concentration above 1,500 ng/mL were simulated with a dose 

reduction of 0.25-fold (100 mg daily) to 0.75-fold (300 mg daily). A 50% dose reduction across 

all three populations managed to lower the trough concentration within the aimed level of 750 

ng/mL to 1,500 ng/mL (Figure 3.9). In terms of percentages, by reducing the standard dose 
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by 50%, trough concentrations were reduced to within 750 ng/mL and 1,500 ng/mL for 

approximately 80% of subjects with Cmin above 1,500 ng/mL, with the obese population 

reaching up to 86.05% (Table 3.5). For a dose reduction of 0.75-fold, the trough mean for all 

three populations was still above 1,500 ng/mL. Contrarily, with a 0.25-fold dose lowering, the 

mean of Cmin for all the populations falls below the 750 ng/mL threshold. 

 

 

Figure 3.9 Comparison of predicted imatinib pharmacokinetic parameters at steady-state between lean, 
overweight and obese cancer populations.  

(A) Area-under-the-curve (AUC). (B) Maximum concentrations (Cmax). (C) Trough concentrations (Cmin). 
*, p < 0.05; **, p < 0.005; ****, p < 0.0001; The coloured symbol represents the mean, with upper and 
lower horizontal lines representing the SD. The absence of a comparison bracket (horizontal bracket) 
on top of each mean and SD graph indicates the differences are not statistically significant.  
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Table 3.5 Predicted imatinib trough plasma concentrations at different doses in cancer subjects following the application of therapeutic drug monitoring (TDM) 

Pre-adjustment Post-adjustment 

Cmin level 
(ng/mL) 

BMI Status Cmin (ng/mL) 
Subjects within Cmin 
level (% (proportion)) 

Dose 
adjustment 

Adjusted 
Dose (mg) 

Cmin (ng/mL) 
Subjects within target 
Cmin (% (proportion)) 

<450 Lean 292.79 ± 94.93 12.87 (61/474) x 1.75 700 510.65 ± 165.03 4.91 (3/61) 
    x 2 800 583.68 ± 188.84 21.31 (13/61) 
 Overweight 290.63 ± 98.39 14.21 (51/359) x 1.75 700 506.15 ± 171.81 3.92 (2/51) 
    x 2 800 578.36 ± 196.32 21.57 (11/51) 
 Obese 274.79 ± 108.82 18.56 (31/167) x 1.75 700 478.63 ± 190.18 9.68 (3/31) 
    x 2 800 546.85 ± 217.31 22.58 (7/31) 

450 -549 Lean 491.47 ± 30.15 4.85 (23/474) x 1.5 600 736.58 ± 45.64 43.48 (10/23) 
    x 1.75 700 859.05 ± 53.13 100 (23/23) 
    x 2 800 981.51 ± 60.61 100 (23/23) 
 Overweight 502.82 ± 19.69 6.96 (25/359) x 1.5 600 751.61 ± 29.24 56.00 (14/25) 
    x 1.75 700 876.72 ± 34.18 100 (25/25) 
    x 2 800 1,001.80 ± 39.13 100 (25/25) 
 Obese 506.76 ± 31.42 7.19 (12/167) x 1.5 600 756.76 ± 47.98 58.33 (7/12) 
    x 1.75 700 882.83 ± 55.95 100 (12/12) 
    x 2 800 1,008.89 ± 63.93 100 (12/12) 

550 - 649 Lean 592.90 ± 25.11 6.12 (29/474) x 1.25 500 738.27 ± 30.94 34.48 (10/29) 
    x 1.5 600 885.70 ± 37.14 100 (29/29) 
    x 1.75 700 1,033.21 ± 43.33 100 (29/29) 
    x 2 800 1,180.65 ± 49.58 100 (29/29) 
 Overweight 602.03 ± 30.39 5.57 (20/359) x 1.25 500 750.71 ± 37.71 55 (11/20) 
    x 1.5 600 900.76 ± 45.37 100 (20/20) 
    x 1.75 700 1,050.79 ± 53.04 100 (20/20) 
    x 2 800 1,200.78 ± 60.77 100 (20/20) 
 Obese 589.15 ± 30.01 5.39 (9/167) x 1.25 500 734.25 ± 41.31 33.33 (3/9) 
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    x 1.5 600 881.00 ± 49.69 100 (9/9) 
    x 1.75 700 1,027.73 ± 58.07 100 (9/9) 
    x 2 800 1,174.40 ± 66.49 100 (9/9) 

650 - 749 Lean 695.11 ± 28.87 7.81 (37/474) x 1.25 500 867.20 ± 35.70 100 (37/37) 
    x 1.5 600 1,040.55 ± 42.73 100 (37/37) 
    x 1.75 700 1,213.90 ± 49.93 100 (37/37) 
    x 2 800 1,387.05 ± 56.99 100 (37/37) 
 Overweight 691.57 ± 25.07 5.29 (19/359) x 1.25 500 862.38 ± 28.92 100 (19/19) 
    x 1.5 600 1,034.65 ± 34.73 100 (19/19) 
    x 1.75 700 1,206.87 ± 40.56 100 (19/19) 
    x 2 800 1,379.05 ± 46.37 100 (19/19) 
 Obese 699.23 ± 31.97 6.59 (11/167) x 1.25 500 875.70 ± 40.74 100 (11/11) 
    x 1.5 600 1,050.03 ± 48.34 100 (11/11) 
    x 1.75 700 1,224.37 ± 56.03 100 (11/11) 
    x 2 800 1,398.72 ± 63.81 100 (11/11) 

750 - 
1,500 

Lean 1,071.18 ± 205.68 34.39 (163/474) 

None 400 

  

Overweight 1,094.25 ± 209.29 37.05 (133/359)   

Obese 1,127.23 ± 225.99 36.53 (61/167)   

> 1,500 Lean 2,382.12 ± 847.35 33.97 (161/474) x 0.75 300 1,783.48 ± 635.32 44.10 (71/161) 
    x 0.5 200 1,188.79 ± 423.38 80.75 (130/161) 
    x 0.25 100 594.30 ± 211.61 18.01 (29/161) 
 Overweight 2,415.57 ± 798.15 30.92 (111/359) x 0.75 300 1,808.56 ± 597.80 37.84 (42/111) 
    x 0.5 200 1,205.51 ± 398.41 79.28 (88/111) 
    x 0.25 100 602.65 ± 199.13 19.82 (22/111) 
 Obese 2,227.00 ± 616.96 25.75 (43/167) x 0.75 300 1,667.83 ± 462.73 53.49 (23/43) 
    x 0.5 200 1,111.72 ± 308.34 86.05 (37/43) 
    x 0.25 100 555.81 ± 154.09 13.95 (6/43) 

TDM, therapeutic drug monitoring; BMI, body mass index; Cmin, trough concentration; Shaded row represent the target Cmin; target Cmin, 750 ng/mL – 1,500 
ng/mL. 
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3.4 Discussion 

Several studies have suggested that overweight and obese patients treated with imatinib have 

lower responses compared with lean patients from the pharmacodynamic perspectives, such 

as time to achieve the MMR, CCyR, overall objective benefit rate (OOBR), and time to 

progression (TTP) [269, 270, 273]. Additionally, a case study reported that a higher imatinib 

dose might be needed in a morbidly obese patient in order to achieve an MMR at the same 

time as a patient with a lean BMI [268].  

When considering the pharmacokinetic perspective, a study by Lin et al. (2023) [271] revealed 

a negative correlation between body weight and the trough concentration, where higher body 

weight is associated with lower Cmin. Nevertheless, the difference was insignificant when 

comparing the percentage of subjects with Cmin below 1,100 ng/mL between lean, overweight, 

and obese patients [271]. Therefore, the PBPK concept was utilised to investigate the 

pharmacokinetic difference between lean, overweight and obese adult cancer populations and 

explore the TDM approach in establishing the dose adjustment scheme for effective imatinib 

treatment outcomes within the pharmacokinetic aspect.  

 

3.4.1 Step 1: Imatinib model validation in healthy, cancer and Caucasian 

populations 

The utilised imatinib compound model was obtained from literature and has been verified in 

diverse population models, including healthy subjects, cancer patients, Chinese cancer 

patients, paediatric cancer patients, and subjects of various ethnicities [281-283]. To bolster 

confidence in utilising the imatinib model in the Simcyp® version 21, the model was validated 

with healthy, cancer and Caucasian populations, including using the observed data from the 

latest publications for healthy and cancer populations, which was in 2020 and 2015, 

respectively.  

Verification with healthy subjects showed that the imatinib model predicted comparable 

plasma profiles and pharmacokinetic parameters within the acceptable margins of the 

observed data from three single-dose studies. The results were consistent with all the other 

publications that applied the imatinib models [281-283, 294, 304].  

Concerning the cancer patient population, verification was focused on five multiple-dose 

studies involving GIST and CML patients. Since imatinib exhibits high inter-individual (47% – 

75%) and intra-individual variability (19% – 30%) concerning its pharmacokinetic parameters 

and exposure, the predicted profiles align within the range of imatinib's observed plasma 
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samples for all the studies, particularly when the comparison was made to those studies that 

reported sparse samples [288, 290-292, 299, 301, 305, 306].  

Overprediction was noticeable when the predicted profiles were superimposed with the 

observed data from Peng et al. (2004) [291], specifically for the 350 mg daily dose and the 

elimination section of the 25 mg daily dose. Likewise, the Cmax and AUC0-24ss of 350 mg daily 

dose and AUC0-24ss and tmax of 25 mg daily dose were not within the 2-fold criteria. The lower 

number of patients (three for 25 mg daily dose and five for 350 mg daily dose) in the reported 

data alongside the large inter- and intra-individual of imatinib exposure might be the reason 

for the overprediction [291, 301]. Nevertheless, the prediction aligned for the other four doses 

from the same study, and sparse samples from another four studies boosted the verification 

of the imatinib compound model to predict imatinib pharmacokinetic parameters in the adult 

cancer population. 

For verification with published data by Widmer et al. (2006) [292] and Haouala et al. (2013) 

[293], the prediction of imatinib profiles in the NEurCaucasian population aligned with the 

spread of observed data with both publications. The utilisation of the Caucasian population is 

in line with the validation performed by the imatinib compound model developer [283]. Since 

imatinib binds extensively to AGP, the AGP level highly influences the imatinib plasma level. 

Lower plasma AGP was seen in the Caucasian population (0.79 g/L – 0.81 g/L) compared to 

the cancer population (1.35 g/L – 1.49 g/L), which was the primary justification for the use of 

the Caucasian population in the verification with data from the two publications [283]. 

Although the imatinib model demonstrated adequate performance under the predefined 

validation criteria, certain limitations warrant consideration. For example, broader variability in 

observed data and overestimation in some outcome simulations suggest potential areas for 

refinement. Importantly, model parameters were not re-estimated to maintain alignment with 

previous validations across diverse populations and ethnicities  [281-283]. Nevertheless, 

further refinements may focus on incorporating additional mechanistic insights, such as 

hepatic enzyme activity and transporter expression, to address the variability while 

maintaining alignment with the existing model. 

 

3.4.2 Step 2: Validation of lean, overweight and obese cancer population model 

with imatinib compound model 

According to existing literature, data published by Lin et al. (2023) [271] was the only study (to 

date) that reported the imatinib plasma concentration, specifically trough concentrations in 

lean, overweight and obese patients with GIST (n=200) and dermatofibrosarcoma (n=1). 
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Based on the VPC approach, the correlation between body weight and Cmin and the spread of 

Cmin for predicted imatinib concentration produced the same pattern as observed data, which 

verified the capability of the imatinib model to predict the plasma concentration in the lean, 

overweight, and obese adult cancer population.  

A slight deviation in the regression line trends noted between observed and predicted Cmin 

across the body weight in terms of the on-target concentrations was potentially due to the 

limited number of observed data points for the overweight and obese patients. Moreover, the 

Simcyp® cancer population model used for simulations was limited to a maximum weight of 

125 kg, whereas the observed data included patients weighing up to 180 kg. Extending 

simulations to higher weights could improve predictive accuracy, particularly on the 

correlations, though challenges remain due to the lack of validated physiological data for 

morbidly obese cancer populations. 

 

3.4.3 Step 3: Comparison of physiological parameters and imatinib 

pharmacokinetics parameters between lean, overweight, and obese cancer 

populations 

3.4.3.1 Analysis of physiological parameters across lean, overweight, and 

obese cancer populations 

The virtual population simulated in this study originated from the default cancer population in 

Simcyp®, which was established based on patients with advanced solid tumours [125, 134, 

298]. Since the Simcyp® simulator simulated the virtual cancer subjects across the whole BMI 

range, the virtual cancer subjects were arranged conforming to their BMI classes and analysed 

the differences in their physiological parameters. Significant differences were revealed in all 

the physiological parameters except for haematocrit and AGP when comparing between lean 

and obese cancer populations.  

Differences observed between obese and lean in most parameters are expected, as larger 

body weight in obese patients relates to an increase in mass-to-height ratio and is further 

linked to higher BSA [124, 307]. The differences for most parameters were also seen between 

lean and overweight, as well as overweight and obese cancer populations. Liver size and 

cardiac output were predicted based on the BSA, hence the distinctive difference between 

lean, overweight and obese populations [308]. Besides, higher cardiac output is attributed to 

elevated heart rate and higher stroke volume in the obese population [155].  
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The prevalence of impaired renal function is higher in cancer patients, as represented by GFR 

measurement and estimated from the serum creatinine, which has an inverse relationship 

between serum creatinine and GFR [132, 309]. From the BMI perspective, higher GFR was 

seen in higher BMI patients, further explaining the significant differences between all three 

populations [124, 141]. Since imatinib and its metabolites are mainly excreted via the faeces, 

with approximately 68% and 13% via the urine, the variation in renal function between the 

three groups may not influence the imatinib pharmacokinetics [139]. 

The cytochrome P450 (CYP) enzymes and transporters that play a major contribution in 

imatinib metabolism and efflux include CYP3A4, CYP2C8, ABCB1 (P-gp/MDR1) and ABCG2 

(BCRP) [310, 311]. Due to this fact, the related enzymes and transporter abundances were 

compared between the three populations.  

On the basis of per microgram microsomal proteins, no differences were seen in both CYP3A4 

and CYP2C8 enzymes. Thus, significant differences between all three populations for the 

CYP3A4 enzyme abundance are related to the liver size, as larger liver volumes are seen for 

virtual subjects with higher BMI values [308]. Additionally, studies have reported a reduction 

of 30% and 10% to 40% of CYP3A4 activities in both cancer and obese populations, which 

further suggests the differences between all three populations [124, 134, 312]. There is no 

specific explanation for the results of no difference between overweight and obese cancer 

populations for the CYP2C8 enzyme abundance as the lack of information on the CYP2C8 

enzyme abundance compared to the CYP3A4 in both cancer and obese populations [124, 

134]. The relation between liver weight and transporter abundance for the in vitro-in vivo 

extrapolation (IVIVE) in the PBPK concept addresses the significant differences noted 

between all three populations [313]. 

For the plasma proteins, studies reported lower HSA and higher variability in cancer patients 

compared to healthy volunteers while unaltered compared to obese subjects [124, 125, 314]. 

Besides, the positive correlation graph between albumin and BMI in cancer patients published 

by Cheeti et al. (2013) [125] relates to the notable differences between lean and obese as well 

as obese and overweight. 

The AGP, another plasma protein component, has been reported to be higher in cancer 

patients by up to 5-fold compared to the healthy population [125, 315]. Likewise, the AGP level 

is higher in the obese population than in the healthy population by up to 2.5-fold [124, 316, 

317]. However, limited information was available for obese cancer patients. Considering AGP 

is significantly higher in both cancer and obese populations, no difference in the AGP value is 

anticipated in obese, overweight, and lean cancer patients. 
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Haematocrit levels in cancer patients are lower than in healthy volunteers but constant 

throughout the BMI range, clarifying the consistent level between all three populations [124, 

125]. 

 

3.4.3.2 Assessment of imatinib pharmacokinetic parameters between lean, 

overweight and obese adult cancer populations 

The significant differences illustrated in the imatinib peak concentration between lean, 

overweight and obese cancer populations are consistent with the considerable differences in 

the BSA, CYP enzymes and transporters that regulate the imatinib uptake, efflux and 

metabolism pathway [270]. Additionally, the lipophilic nature of imatinib leads to a higher 

volume of distribution in the obese cancer population, further contributing to the significantly 

lower Cmax compared to overweight and lean groups [138]. Besides, high clearance in the 

obese population also influences the differences in Cmax.  

On the contrary, although the pattern of trough concentration across all the doses illustrated 

lower Cmin in the obese cancer group, the difference is not statistically significant. The subtle 

differences in the elimination rate resulting from the difference in volume of distribution and 

clearance potentially explained the Cmin result. Accordingly, the significant difference in AUC 

seen only between lean and obese cancer populations is anticipated, because substantial 

differences across all three populations are only seen in the peak concentration but not the 

trough concentrations since AUC estimation derived from each measured concentration and 

time, which includes the Cmax and Cmin.  

Additionally, a broad intersubject variability in all three pharmacokinetic parameters seen in all 

three population groups (Figure 3.8) has also been previously documented by other 

researchers [291, 318, 319]. The high variability is potentially due to the variabilities in the 

plasma protein binding component, the AGP where imatinib is highly bound, the CYP3A4 

metabolism enzymes and transporter expression. Besides, a sensitivity analysis was 

performed to assess the influence of both AGP and CYP3A4 on imatinib's pharmacokinetic 

parameters, as described in the subsequent section. 

Trough concentration is pivotal in predicting the imatinib therapeutic response and has been 

used as a target in imatinib TDM practice to attain an optimum treatment response [276, 277, 

280]. There are several Cmin target levels reported either as a range of values, such as 750 

ng/mL to 1,500 ng/mL by Buclin et al. (2020) [276] and 1,000 ng/mL to 1,500 ng/mL by Garcia-

Ferrer et al. (2019) [300] or cut-off levels like 1,100 ng/mL, 1,000 ng/mL and 760 ng/mL as 

implemented by various studies [271, 299, 320-322]. In this study, the Cmin target range of 750 
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ng/mL to 1,500 ng/mL and the threshold of 1,100 ng/mL was used for comparison between 

lean, overweight and obese on the percentages of virtual subjects where their Cmin fall below 

the lower threshold and above the target level.  

The number of subjects with Cmin below the threshold of both 1,100 ng/mL and 750 ng/mL was 

higher in the obese, followed by overweight and then lean cancer populations. The hierarchy 

and percentage difference between each population are similar across all doses and 

comparable with the results presented by Lin et al. (2023) [271]. Moreover, the percentage 

differences are more significant with the 750 ng/mL cut-off level, aligning with the median and 

the lower 25th percentile, which is lower in the obese group compared to overweight and lean 

populations. On the contrary, the percentage of subjects with Cmin above the upper threshold 

is higher in the lean population, followed by overweight and then obese. 

  



K. B. Burhanuddin, PhD thesis, Aston University, 2024 

 

150 
 

3.4.4 Step 4: Virtual therapeutic drug monitoring (TDM) of imatinib in the lean, 

overweight, and obese cancer population 

Achievement of MMR with the percentage of the BCR-ABL gene is less than 0.01%, and CCyR 

with no Philadelphia chromosome are the goal for imatinib therapy, particularly for the 

treatment of CML [323]. The correlation between low trough concentrations with the MMR and 

the CCyR, in addition to the significant between-subject pharmacokinetic variability, meets the 

requirement for the need to personalise dosing using the TDM approach, and the benefit has 

been demonstrated in various studies [280, 290, 300, 321, 322]. 

Considering the differences in imatinib plasma concentration perceived between the lean, 

overweight and obese cancer populations, added with the ability of the imatinib model to 

simulate the plasma concentration profiles, the TDM-guided imatinib dose strategy adapted 

from Gotta et al. (2014) [277] study was implemented by simulating the dose adjustment from 

a starting dose of 400 mg once daily, spanning to a range of 100 mg to 800 mg daily based 

on their trough concentration (Figure 3.2).  

The difference in mean Cmin seen in all six stratified levels (>1,500 ng/mL, 1,500 ng/mL – 750 

ng/mL, <750 ng/mL – 650 ng/mL, <650 ng/mL – 550 ng/mL, <550 ng/mL – 450 ng/mL and 

<450 ng/mL) between the lean, overweight, and obese cancer populations were not significant. 

Aligning with the result in Step 4 and publication by Lin et al. (2023) [271]. However, the 

percentage of subjects in the two lowest Cmin (<550 ng/mL) groups is higher in the obese. In 

contrast, for the <750 ng/mL to 550 ng/mL range, the lean population has the highest 

percentages. The result is consistent with the comparison made in step 3, where the median 

and 25th percentile are lower in obese compared to the lean cancer population.  

The TDM-guided dose adjustment with the 750 ng/mL - 1,500 ng/mL target Cmin managed to 

recover all the subjects with the trough concentrations between 450 ng/mL – 750 ng/mL for all 

three groups. Moreover, it is noteworthy that the dose adjustment options are consistent 

across all three population groups. Although the simulations showed no difference in terms of 

dose adjustment options between the lean, overweight and obese populations, the result 

aligns with the approach to monitor the imatinib trough concentration to optimise the imatinib 

treatment outcome in the obese cancer population, as proposed in several studies [268, 324]. 

Imatinib dose adjustments assisted by the TDM approach have also been shown to recover 

and maintain more than 90% of the patient's trough concentrations with subtherapeutic range 

back to the target level [306]. 

In addition, simulations showed that when the imatinib trough concentration falls below 450 

ng/mL, only 20% of the subjects can be recuperated to the target Cmin across all three groups, 

even with the imatinib maximum daily dose (800 mg daily). Based on this data and the 
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correlation between imatinib trough concentration with MMR and CCR, a suboptimal response, 

as proposed by European LeukemiaNet (ELN), may be expected in this group of subjects due 

to the inability to achieve the minimum threshold of Cmin even with the maximum dose of 

imatinib [325, 326]. Imatinib resistance, either due to BCR-ABL dependence or independence, 

can be speculated to be the reason for the treatment failure [327]. Therefore, switching to an 

alternative therapy, such as other TKIs, at the early stage of treatment can potentially offer 

therapeutic advantages to the patients [326, 328, 329]. 

For all three population groups in the simulation, a dose reduction by half recovered 

approximately 80% of the virtual subjects with trough levels beyond the upper threshold and 

into the target range. A dose titration of 0.75-fold and 0.25-fold from a standard dose of 400 

mg daily resulted in a mean above 1,600 ng/mL and below 650 ng/mL, respectively. 

Nevertheless, the percentage of subjects with Cmin recapitulated into the target window was 

35% and above, with a 0.75-fold dose reduction compared to less than 20% with a 0.25-fold 

dose reduction across all three populations. Aligned with several other studies, a dose 

reduction due to adverse events from 400 mg daily to 200 mg – 300 mg daily has also 

demonstrated effective clinical outcomes [322, 330]. 

For the upper trough concentration threshold of 1,500 ng/mL, no specific stratification based 

on the Cmin range was made, as the primary reason for dose reduction during the imatinib 

treatment course or treatment discontinuation is the occurrence of intolerable adverse events 

commonly related to haematological and musculoskeletal systems [277, 306, 322, 330]. 

Besides, other side effects, such as nausea, vomiting, diarrhoea, oedema, insomnia, 

depression, and gastrointestinal symptoms, may potentially influence the patient's tolerability, 

compliance and possibly the treatment efficacy [331].  

The trough concentration target window of 750 ng/mL – 1,500 ng/mL proposed by Buclin et al. 

(2020) [276] was derived based on a specific target Cmin of 1,000 ng/mL established by Larson 

et al. (2008) [272]. Thus, when considering higher Cmin threshold levels, particularly the > 1,000 

ng/mL as advocated by Larson et al. (2008) [272] for CML patients and >1,100 ng/mL as 

suggested by Bouchet et al. (2016) [299] for GIST patients, together with the simulated mean 

of Cmin based on the stratified group, the imatinib dose titration guided by trough concentration 

remain consistent across the lean, overweight, and obese cancer populations (Figure 3.10).  
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Figure 3.10 TDM-guided dose adjustment according to the target trough concentrations.  

Dose adjustments are compiled based on the simulated data following a 400 mg once daily at steady-
state and adjustments to be made according to their trough plasma concentration level at steady-state. 

 

The advocacy of using the TDM approach for imatinib for a better clinical outcome has been 

demonstrated in several studies [275, 276, 300, 301]. Furthermore, cost analysis revealed that 

TDM-guided doses for imatinib are economically viable and cost-effective in terms of quality-

adjusted life-years for the treatment of CML and GIST conditions [278, 279].  

Currently, the TDM approach for imatinib is accessible to patients in several hospitals in 

European regions [276]. Nevertheless, the obstacles to widely implementing the TDM 

approach for imatinib persist, ranging from constraints associated with precise sampling time 

points, the hesitancy of prescribers to deviate from existing dosing approaches, lack of experts 

and supports to interpret and translate the measured concentration to dosing recommendation 

and limitations on the bioanalytical technique to measure the imatinib plasma concentration 

[276, 332].  

The progress made by researchers worldwide in terms of advancement in bioanalytical 

methods such as dried blood spot sampling and analysis, development and accessibility of 

various user-friendly software with artificial intelligence and the trend towards precision 

medicines is believed to revolutionise the TDM practice and captivate the interest of 

prescribers [333, 334]. 
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3.4.5 Sensitivity analysis for α1-acid glycoprotein (AGP) and CYP3A4 hepatic 

abundances 

In light of the significant influence of CYP3A4 enzyme and AGP level on the metabolism, 

distribution and elimination of imatinib and the scarcity of information on the CYP3A4 

abundance as well as AGP level in obese adult cancer, a sensitivity analysis was performed 

to explore their impact on the key pharmacokinetic parameters, specifically the Cmax, Cmin and 

AUC. Moreover, the results from physiological parameters comparison between the virtual 

lean, overweight and obese adult cancer populations disclose no difference in both CYP3A4 

abundance per microgram microsomal protein and AGP level, reinforcing the necessity for a 

sensitivity analysis. 

The analysis revealed that both the AGP plasma protein binding component and CYP3A4 

metabolism enzyme significantly influence all three pharmacokinetic parameters, with the AGP 

protein exhibiting a more pronounced effect than the CYP3A4 (Figure 3.11). Notably, the 

results showed a positive correlation between AGP level and imatinib plasma level 

concentrations, in contrast to the relationship between CYP3A4 and imatinib concentrations, 

which aligns with findings in other studies [335-337]. 

The result aligns with the fact that imatinib is primarily bound to AGP with high affinity and has 

been reported to influence imatinib pharmacokinetics substantially [292, 335]. Furthermore, 

AGP has been linked to imatinib resistance, where studies have shown that AGP plasma 

concentrations are higher in resistant CML patients and are categorised as one of the resistant 

mechanisms that are independent of the BCR-ABL gene [327, 338, 339]. Nonetheless, at the 

same time, the CYP3A4, as the primary isoenzyme involved in imatinib metabolism, contribute 

considerably to altering the imatinib pharmacokinetics [291].  

A decrease in CYP3A4 activities and an increase in AGP level seen in the obese population 

is anticipated to increase the imatinib concentrations significantly in the obese cancer 

population compared to the lean cancer populations [124]. On the contrary, the imatinib 

concentration was lower in the obese cancer population (Figure 3.8) [271]. The opposite 

pattern may be attributed to the similar changes in CYP3A4 isoenzyme and AGP levels 

observed in the cancer patient populations, compounded with the high variabilities of both 

physiological parameters [125, 134]. Thus, the difference in body weight and BSA is potentially 

the main contributor to the lower imatinib plasma concentration seen in the obese cancer 

population [271, 340-342]. 
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Figure 3.11 Impact of the CYP3A4 hepatic enzyme abundances and α1-acid glycoprotein (AGP) 
changes on the maximum concentration (Cmax) (A), trough concentration (Cmin) (B), and area-under-the-
curve (AUC) (C). 

(A) 

(B) 

(C) 
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3.5 Conclusion 

The application of the PBPK concept in this study addresses the physiological parameters 

distinctness between lean, overweight, and obese cancer populations and highlights the 

significant variations in imatinib pharmacokinetics between the populations, particularly for the 

Cmax and AUC. Furthermore, this study took a pragmatic approach by implementing the virtual 

TDM using the PBPK concept to assess the optimal TDM-guided dosing titration for imatinib. 

Results showed that the TDM-guided dosing strategy for imatinib effectively attained the target 

trough concentrations in all three population groups, particularly for subjects with trough 

concentrations above 450 ng/mL. Thus, it reiterates the feasibility of TDM for imatinib in 

recovering the trough concentrations and further improves the likelihood of treatment efficacy 

and safety. Nevertheless, future research should focus on validating the TDM-guided dosing 

strategy using real-world data, particularly from obese cancer patients and correlating the 

outcomes with clinical endpoints to establish robust dosing recommendations.   

In brief, the outcomes highlight the capabilities of PBPK modelling to elucidate the 

pharmacokinetic differences and refine the TDM dosing strategy in lean, overweight and 

obese cancer populations. Continuous improvement of the virtual overweight and obese 

cancer populations with the latest information is imperative, with a specific focus on the 

physiological data that significantly influence the imatinib absorption, distribution, metabolism 

and excretion, such as CYP3A4 metabolism enzyme abundances, AGP levels, and 

transporters. 
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4.1 Introduction 

The prevalence of paediatric obesity worldwide has risen by approximately 20% over the past 

few decades, and the latest reports predict that this number would double globally by 2035, 

affecting 208 million boys and 175 million girls [112]. This trend can be seen in developed 

countries, such as the United Kingdom, where obesity among children aged 4 to 6 years 

increased by 4.5% between 2019-2020 and 2020-2021, though it declined by 2.1% to 4.3% 

between 2020-2021 and 2021-2022, with children living in the most deprived areas still 

experiencing obesity rates twice as high as those in the least deprived areas [343, 344]. In 

addition, the pattern has been stagnant in some parts of Europe and high-income English-

speaking countries. However, the rise in childhood obesity phenomenon has accelerated in 

East, South and Southeast Asia [345]. 

Obesity is known to cause physiological alteration in drug distribution and elimination, among 

others, increased tissue volume, altered tissue composition, change in blood protein 

proportions, metabolism enzyme activity, and glomerular filtration rate (GFR) [123, 156, 160, 

265, 316, 317, 346]. The complexity becomes even more intricate in paediatric populations 

due to the interplay of age-related ontogeny and obesity-related factors. The Centre for 

Disease Control and Prevention (CDC) defined childhood obesity as children with body mass 

index (BMI) above the 95th percentile, while the World Health Organisation (WHO) set obesity 

at +3 standard deviation (SD) and +2 SDs from the median line for 0 to 5 years old and 5 to 

18 years old, respectively [152, 153]. 

The primary physiological changes observed in obese children are the physical attributes, 

namely, weight and height, which are the foundation of BMI classification for obesity. The 

increase in body weight relates mainly to the rise in total body fat and, to some extent, lean 

body mass, which impacts the volume of distribution (Vd) of drugs, depending on their 

lipophilicity and hydrophilicity [154]. Additionally, the composition of plasma components like 

serum albumin and α1-acid glycoprotein (AGP), essential for drugs' protein binding, also 

affects the Vd. Notably, it has been reported that there is no difference in these plasma 

components between obese and non-obese children [156, 157].  

Drug clearance relates mainly to hepatic metabolism and renal functions. Information 

regarding the difference in metabolism enzyme abundance between paediatric with and 

without obesity is scarce [156]. Nevertheless, the presence of larger liver size and higher blood 

flow to the liver in obese children is expected to impact hepatic clearance [156]. As for renal 

function, the paediatric obesity population tend to have an elevated GFR, which can alter the 

clearance of drugs, particularly drugs that are predominantly eliminated through renal 

pathways [160, 347]. 
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Dosing guidelines for obese paediatrics are typically derived from obese adults, and 

complexities in weight-dosing methodologies can contribute to non-optimal doses. Current 

dosing approaches in paediatric obesity have highlighted that over 60 % of drugs administered 

to obese children elicit plasma concentrations outside of the therapeutic range and display 

clinically significant alterations in pharmacokinetics [162]. 

An aspect of this non-optimal dosing stems from the appropriate use of body weight and the 

correct use of body weight in anthropometrics-based dosing approaches. Typically, this 

involves the use of total body weight (TBW) and other methods, such as an allometric scale 

and dosing recommendation, which are derived from pharmacokinetic data in non-obese 

adults or children [348]. Other approaches proposed utilising body surface area (BSA), ideal 

body weight (IBW), and lean body weight (LBW) methods. However, given that these 

calculations typically invoke the use of a height component, obesity presents challenges given 

the normal linear growth of children can be affected [348-350]. 

Given the various physiological changes occurring longitudinally with ageing across the 

paediatric spectrum, in addition to the differences in physiologies specific to obese vs non-

obese children, dosing approaches based on the holistic consideration of these physiological 

changes in the drug pharmacokinetics have gained some traction in adults and, more recently 

children. Physiologically based pharmacokinetic (PBPK) modelling, an advanced quantitative 

approach, helps to understand drug disposition even with the lack of concentration data and 

offers a promising avenue for determining optimal dosing regimens in the paediatric obesity 

population, and the concept has been implemented for compounds such as metformin, 

midazolam, clindamycin, trimethoprim, sulfamethoxazole, fentanyl and methadone [156, 165, 

166]. 

Childhood obesity contributes to various metabolic and cardiovascular complications and has 

profoundly changed the frequency of primary hypertension in children, with only 15% in 1988 

rising to 90% in 2010 [150]. Calcium channel blockers (CCB), such as amlodipine, felodipine, 

and nifedipine, are among other antihypertensive agents recommended as first-line therapy 

[351, 352]. A study by Hanafy et al. (2009) [353] reported that obese children exhibit a 

significantly lower response to CCBs, including amlodipine, in terms of reducing systolic blood 

pressure and response rate compared to non-obese children.  

Using amlodipine as a case study, this study describes the approach to develop a 

physiological obesity model to support pharmacokinetic-based dose optimisation, for the first 

time in paediatric obesity populations. By utilising PBPK advancement, a robust paediatric 

obesity population model and amlodipine pharmacokinetic model were established, 

significantly impacting paediatric pharmacotherapy, filling the knowledge gap of drug 
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disposition in this unique population, and facilitating the design of personalised dosing 

strategies. Moreover, the insights gained may serve as a model for pharmacokinetic studies 

in other medications used in paediatric obesity. 

The primary objectives of this study are to use the principle of mechanistic pharmacokinetic 

modelling and virtual clinical trials to (1) develop and validate a paediatric obesity population 

model, (2) address the impact of obesity on amlodipine pharmacokinetics in paediatrics, and 

(3) determine the dose adjustment needed for amlodipine in the obese paediatric population. 
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4.2 Methodology 

The PBPK modelling software, Simcyp® (Simcyp Ltd., a Certara company, Sheffield, UK, 

Version 21) was used to develop a paediatric obesity population group and to assess the 

optimum dose of amlodipine in the paediatric obesity population using virtual pharmacokinetic 

studies. A workflow model with four stages was applied for this study (Figure 4.1). 

 

 

Figure 4.1 A 4-stage workflow was implemented to develop, verify, and explore the amlodipine dose in 
the paediatric population [156]. AGP, α1-acid glycoprotein; GFR, glomerular filtration rate. 
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4.2.1 Step 1: Development of the paediatric obesity population 

For the development of the model, this study focused on six physiological parameters that 

have been reported to change in obese children when compared to non-obese children, 

namely: (1) weight, (2) height, (3) haematocrit, (4) serum albumin, (5) AGP, and (6) estimated 

glomerular filtration rate (eGFR). Published data shared by the Gerhart group was used as 

the primary reference to develop the population group, particularly the simulated age, weight, 

and height [156]. 

 

4.2.1.1 Age, weight and height relationship  

The weight, height, and age correlations for paediatric obesity published by the WHO [152] 

and CDC [153] were the primary guidance in constructing the weight-age, height-age, and 

weight-height relationship for the paediatric obesity population. The definition by the WHO and 

CDC was used to develop weight curves. Furthermore, the curve based on the paediatric 

obesity population developed by Gerhart et al. (2022) [156] was refined. 

According to the WHO, the definition of obese for 0 to 5 years old is +3 of SDs from the median 

line of the BMI-for-age and weight-for-height curves, while for 5 to 18 years old, obese is 

defined as BMI above +2 of SDs from the median line of the BMI-for-age curve [152, 354, 355]. 

As for the CDC, child obesity is defined as a BMI range above the 95th percentile or greater 

based on the BMI-for-age curve [153, 356]. Additionally, the 95th percentile of weight-for-length 

data published by the CDC for 0 to 5 years old was used to validate the simulated weight-for-

height curve [357]. 

 

4.2.1.2 Haematocrit-Age relationship 

Reported changes in haematocrit are conflicting within the literature. Several publications 

reported no significant difference between healthy and obese children as well as between 

genders [156, 358-360], whilst others contradict these findings [361, 362]. Furthermore, a 

study by Belo et al. (2014) [363] reported significant differences between genders as well as 

obese and non-obese paediatric for males but not for females. Considering all these reports, 

no additional change was made to the haematocrit in paediatric obesity. 

 

4.2.1.3 Protein binding-to-age relationship 

No significant difference was reported in serum albumin value between paediatrics with and 

without obesity by several publications [156, 157, 364-366] except for two studies by 
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Marginean et al. published in 2014 and 2016 [367, 368]. Furthermore, no specific correlation 

has been reported in terms of the albumin-to-age relationship [156]. Similarly, a significant 

difference in AGP was reported between obese and non-obese children as well as between 

genders by Sobieska et al. (2013) [369], Gibson et al. (2014) [370], and Ferrari et al. (2015) 

[371], but not by Gerhart et al. (2022) [156]. Since conflicting results were reported in both 

albumin and AGP, the default equations in Simcyp® for both albumin and AGP in paediatric 

were utilised for simulation and compared to all published data. 

 

4.2.1.4 Glomerular filtration rate (GFR)-to-age relationship 

The GFR is an established measure of renal function. The GFR values for paediatric obesity 

were reported in three publications, namely, Duzova et al. (2013) [372], Goknar et al. (2015) 

[347], and Correia-Costa et al. (2016) [160], which were used to validate the predicted GFR 

from the model. 

 

4.2.2 Step 2: Validation of a paediatric obesity population with metformin and 

ceftazidime compound files 

4.2.2.1 Step 2.1: Validation with metformin 

A previously developed and fully validated metformin compound file has been reported in the 

literature and incorporated into the Simcyp® compound library [373]. The compound was 

utilised in the paediatric obesity model with some adaptions, namely the fraction of dose 

absorbed (fa) and Vss parameters (Table 4.1). A revised fa was fitted based on several 

publications [374, 375]. The Vss was estimated using the Rodgers and Rowland approach [60, 

196]. The estimated Vss value correlates with several published studies [374, 376]. 

Table 4.1 Metformin compound parameters used for validation studies 

Parameters Values Notes 

Physical chemistry and blood binding 

Compound type Monoprotic base  

Molecular weight (g/mol) 129.16  

Log P -1.43  

pKa 1 11.8  

fu 1  

B/P 1  

   

Absorption 

Model 1st order  
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fa 0.45 Fitted based on reported values 
[374, 375]. 

ka (1/h) 0.27  

Lag time (h) 0.29  

   

Distribution 

Model Full PBPK  

Vss(L/kg) 1.0172 Predicted using the Rodgers and 
Rowland method [60, 196]. 

Kp scalar 1 Fitted based on observed profiles 
[374, 377]. 

   

Elimination (Enzyme kinetics) 

Pathway 1 CYP3A4  

CLint (µL/min/pmol – isoform) 0.334  

fumic 1  

Renal clearance (L/h) 32.3  

   

Drug transport 

Pathway 1 (Liver) SLC22A1 (OCT1)  

CLint,T (µL/min/million – cells) 0.316  

fuinc 1  

RAF/REF 1.84  

CLPD (mL/min/million hepatocytes) 0.0000588  

Pathway 2 (Kidney) SLC22A2 (OCT2)  

CLint,T (µL/min/million – cells) 14.21  

Jmax 21084  

Km (µmol) 1483  

Pathway 3 (Kidney) SLC47As (MATEs)  

CLint,T (µL/min/million – cells) 16.64  

RAF/REF 0.128  

JOCT2 (pmol/min/millivolt/million cells) 1.155  

Log P, partition coefficient; B/P, blood-to-plasma ratio; fu, unbound fraction; Vss, steady-state volume of 
distribution; Kp scalar, tissue partition coefficient; ka, absorption rate constant; fa, extent of absorption; 
CLint, in vitro intrinsic clearance; fumic, fraction of unbound drug in the in vitro microsomal incubation; 
CLint,T, in vitro transporter-mediated intrinsic clearance; fuinc, fraction of unbound drug in the in vitro 
microsomal incubation; RAF/REF, relative activity factor or relative expression factor; CLPD, passive 
diffusion clearance; Jmax, in vitro maximum rate of trans-porter-mediated efflux or uptake; Km: Michaelis 
constant; JOCT2, in vitro OCT2 flux per unit of electrochemical gradient. 

 

Since several changes were made to the metformin compound file, the adapted metformin 

model was verified in healthy adults, obese adults, and paediatric populations, followed by 

validation of the paediatric obesity population model with the validated metformin model. All 

the validations were confirmed with observed data from seven studies (Table 4.2). All virtual 

clinical trial simulations were run with a 10 x 10 design (10 trials with 10 subjects per trial), 
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where the dosage regimen, age range, and male-to-female ratio were comparable to the 

published studies (Table 4.2). 

 

Table 4.2 Datasets of Metformin and Ceftazidime used for validation of the paediatric obesity population. 

Reference Subjects Age (years) Dose regimen PK sampling 

Metformin 

Healthy adult subjects 

Tucker et al. 
(1981) [374] 

4 males 30 – 36  Single-dose 500 mg - fed 
state (Oral) 

Up to 24 h post-
dose  

Gusler et al. 
(2001) [377] 

14 (7 males, 8 
females)  

37.0 ± 7.7 Single-dose 500 mg - fed 
state (Oral) 

Up to 24 h post-
dose 

 Timmins et al. 
(2005) [378] 

15 (9 males, 7 
females) 

19 – 40  1000 mg twice daily (Oral)  Up to 24 h post-
dose at steady-
state 

Obese adult 

Padwal et al. 
(2011) [379] 

16 (3 males, 
13 females) 
BMI: 40.5 ± 6.9 

43.5 ± 11.7 Single-dose 1000 mg - fast 
state (Oral) 

Up to 24 h post-
dose 

Paediatric subjects 

Sanchez-
Infantes et al. 
(2011) [380] 

4 females 9 850 mg once daily - fed 
state (Oral) 

Up to 24 h post-
dose at steady-
state 

Paediatric obesity subjects 

van Rongen et 
al. (2018) [381] 

22 (6 males, 
16 females)  
(5 overweight, 
17 obese) 

11.1 – 17.5  1000 mg twice daily (Oral) Up to 8 h post-
dose at steady-
state 

Sam et al. 
(2017) [382] 

28 obese 
paediatrics 

7.7 – 13.5 1000 mg twice daily (Oral) Up to 12 h post-
dose at steady-
state 

Ceftazidime 

Maharaj et al. 
(2021) [383] 

29 (17 males, 
12 females) 
(82.80% 
obese) 

2.3 – 20.6 Median: 33.8 mg/kg/dose,  
Lowest – Highest:  
16.5 – 92.9 mg/kg/dose,  
Maximum dose: 2 g/dose  
(Intravenous every 8 hours)  

Post-dose sparse 
sampling after at 
least 8 doses) 

(years – years), age range; Mean ± SD; BMI, body mass index; h, hour. 
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4.2.2.2 Step 2.2: Validation with ceftazidime 

A previously published ceftazidime compound (Table 4.3) was further used to validate the 

paediatric obesity population model [384]. Several publications have previously validated the 

ceftazidime compound file in healthy adult and paediatric populations [384-387]. Therefore, 

the validated ceftazidime compound file was used to validate the paediatric obesity population 

model using sparse ceftazidime concentration data reported by Maharaj et al. (2021) [383] 

(Table 4.2). 

Table 4.3 Ceftazidime compound parameters used for validation and simulation 

Parameters Values Notes 

Physical chemistry and blood binding 

Compound type Diprotic acid  

Molecular weight (g/mol) 546.58  

Log P -3.75  

pKa (1/2) 2.43, 2.89  

fu 0.85  

B/P 0.55  

   

Distribution (Full PBPK) 

Vss(L/kg) 0.22 
Predicted using the Rodgers and 
Rowland method [60, 196]. 

Kp scalar 1.03  

   

Elimination 

Renal clearance (L/h) 6  

Additional systemic clearance (L/h) 0.9  

Log P, partition coefficient; B/P, blood-to-plasma ratio; fu, unbound fraction; Vss, steady-state volume 
of distribution; Kp scalar, tissue partition coefficient 

 

Although the observed pharmacokinetic data did not differentiate between obese and non-

obese subjects, most subjects were classified as obese, which justified using the 

pharmacokinetic data for paediatric obesity population validation. Simulations were conducted 

on median, highest, and lowest doses with 10 patients x 10 trials study design. The age and 

male-to-female ratio corresponded to the published data. Virtual paediatric obese subjects 

administered with more than 2 g/dose in the simulation were excluded from the predicted 

mean concentration-time profile. 
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4.2.3 Step 3: Verification with amlodipine 

Physiochemical and pharmacokinetic parameters describing the amlodipine model utilised in 

this study were obtained and adapted from several publications [388-390] (Table 4.4). For the 

distribution model, a full-body PBPK model was utilised with the Vss, estimated using the 

Rodgers and Rowland approach based on the tissue partition coefficients (Kp) [60, 196]. The 

Kp value was predicted by fitting the simulated with the observed plasma concentrations, with 

the resulting Vss correlating with that published [391].  

Table 4.4 Amlodipine compound parameters used in validation and simulation 

Parameters Values Notes 

Physical chemistry and blood binding 

Compound type Diprotic base  

Molecular weight (g/mol) 408.88  

Log P 3.43 Zhou et al. (2016) [388] 

pKa 1 9.40 Zhou et al. (2016) [388] 

pKa 2 1.90 Zhou et al. (2016) [388] 

fu 0.07 Zhou et al. (2016) [388] 

B/P 0.71 Predicted by Simcyp®. 

   

Absorption 

Model ADAM  Permeability limited model 

fuGut 0.20 Mukherjee et al. (2018) [390] 

Peff in man (10-4 cm/s) 0.289 Predicted by Simcyp® from PSA/HBD. 

PSA (Å²) 105.50 Zhou et al. (2016) [388] 

HBD 3.00 Zhou et al. (2016) [388] 

   

Distribution 

Model Full PBPK  

Vss(L/kg) 36.12 
Predicted using the Rodgers and 
Rowland method [60, 196]. 

Kp scalar 22.70 
An estimate based on observed data 
[392]. 

   

Elimination (Enzyme kinetics) 

HLM CLint by CYP3A4 
(µL/min/mg - microsomal) 

42.40 Sun et al. (2012) [393] 

Additional HIMel CLint 
(µL/min/mg - microsomal) 

22.00 Kadono et al. (2010) [394] 

Renal clearance (L/h) 5.77 Rhee et al. (2018) [389] 

Log P, partition coefficient; B/P, blood-to-plasma ratio; fu, unbound fraction; ADAM, advance 
dissolution, absorption and metabolism; Peff, human jejunum effective permeability; PSA, polar surface 
area; HBD, number of hydrogen bond donors; fuGut, unbound fraction of drug in enterocytes; Vss, steady-
state volume of distribution; Kp scalar, tissue partition coefficient; HLM CL int, human liver microsomes 
in vitro intrinsic clearance; HIMel CLint, human intestinal microsomes in vitro intrinsic clearance. 
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The advance dissolution, absorption and metabolism (ADAM) model was used to describe the 

absorption kinetics of imatinib, as applied by Rhee et al. (2018) [389]. While the ADAM model 

accounts for formulation-dependent dissolution and absorption, the simulations did not 

differentiate between formulation types [27]. A single absorption model was applied across all 

conditions, assuming that formulation differences had minimal impact on systemic 

pharmacokinetics.  

Renal function was determined firstly by scaling kidney weight in adults (~317 g) based on 

correlations incorporating body weight [395] with glomerular filtration rate calculated using the 

Cockcroft and Gault equations [395]. Ghobadi et al. (2011) reported that kidney size showed 

a similar increase in relation to variations in BMI and BSA [124]. Hence, a separate model was 

not required to be developed for obesity populations, and therefore, paediatric GFR was 

simulated using the modification of diet in renal disease (MDRD) equation [124]. 

The intrinsic clearance by CYP3A4 liver enzymes [393] and human intestinal microsome [394], 

utilised within the model, and all the adapted parameters were validated with observed data 

from six studies involving healthy adults, one study with obese adults, one study with 

paediatrics, and one study involving paediatric both with and without obesity (Table 4.5). The 

virtual clinical trials were run with a design of 10 patients x 10 trials with the dosing regimen, 

male-to-female ratio, and age range corresponding to the published studies. For the obese 

adult population, simulations were performed with 200 subjects taking amlodipine 5 mg and 

10 mg daily for 28 days with a 1:1 ratio, given the publication reported the parameters with 

limited information on the dose taken by the obese subjects. 

For comparison with the observed trough concentration (Cmin) in the paediatric population 

[396], virtual trials in the paediatric population matching the demographic of observed data 

were run at three doses daily for 21 days, with the median (0.15 mg/kg/day), 1st interquartile 

(0.10 mg/kg/day) and 3rd interquartile (0.22 mg/kg/day). Additionally, the virtual paediatric 

subjects administered with more than 5 mg/day were filtered out following the maximum daily 

dose allowed, resulting in 99%, 85%, and 58% of the virtual subjects being included for 

verification for 0.10, 0.15, and 0.22 mg/kg/day doses, respectively.  

For verification in the paediatric obesity population, a study by Flynn et al. (2006) [397], who 

reported concentration profiles for paediatrics with 43.2% of the children categorised as obese, 

was utilised. The virtual trials were ran with 20 subjects x 10 trials design with a ratio of 50:50 

for the male-to-female and obese-to-non-obese paediatric subjects. The simulations were 

made with once- and twice-daily doses at three dose levels for 28 days, 0.03 mg/kg/day 

(minimum), 0.17 mg/kg/day (mean), and 0.77 mg/kg/day (maximum), with the absolute doses 

of 1.3 mg/day and 20 mg/day. With the cap, the percentage of simulated obese children 
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included for amlodipine model verification in once-daily and twice-daily dosing was 50.73% 

and 50.86%, respectively. 

Table 4.5 Validation datasets used for verification of the amlodipine model 

Reference Subjects Age (years) Dose regimen 
PK sampling 
duration 

Healthy subjects 

Faulkner et 
al. (1986) 
[398] 

Single-dose: 12 
healthy males  
Multiple-dose: 56 
healthy males 

Single-dose:  
25.8 ± 3.8, 
Multiple-
dose:  
26.1 ± 36 

Single-dose fasting: 10 
mg intravenous (1 
mg/min) in period 1, 34 
days washout period, 
10 mg oral dose (2 x 5 
mg capsule). 
Multiple-dose: 15 mg 
once daily (3 x 5 mg 
capsule) or placebo for 
14 days 

Single-dose: Up to 
144 h post-dose 
Multiple-dose: Day 
1 -up to 24 h post-
dose, Day 7: pre-
dose and up to 14 
h post-dose, Day 
14: up to 168 h 
post-dose  

Williams et al. 
(1998) [392] 

12 healthy males 23 – 34 2.5 mg single-dose 
5 mg single-dose 
10 mg single-dose 
With 14 days washout 
period between each 
dose 

Up to 144 h post-
dose 

Abernethy et 
al. (1990) 
[391] 

13 patients with 
hypertension (10 
males, 3 females) 

28 – 45 1st dose of 10 mg 
intravenously, after day 
4 of the intravenous 
dose followed by 2.5 
mg oral once daily for 
10 days  

After 10 days of 
amlodipine dose, 
up to 24 h post-
dose  

Bainbridge et 
al. (1993) 
[399] 

12 healthy 
subjects (7 males, 
5 females) 

46 – 76 5 mg oral once daily for 
14 days 

Up to 48 h post-
dose after the 1st 
dose and after the 
last dose at 14 
days 

Rausl et al. 
(2006) [400] 

24 healthy 
subjects 

Adult 10 mg oral once  Up to 72 h post-
dose 

Leenen et al. 
(2010) [401] 

28 patients with 
hypertension (10 
males, 18 females) 
BMI = 30.6 ± 1.3  

22 – 50 5 mg oral once daily for 
8 weeks 

After the 1st dose, 
up to 24 h post-
dose 
After the last dose, 
up to 240 h 

Obese subjects 

Varga et al. 
(2015) [402] 

22 hypertensive 
patients: 
- 4 normal 
- 6 overweight 
- 12 obese 
- 27.3% male 

16 adults 
(<65 years 
old with 
majority 50 – 
60 years old) 
6 elderly 
(≥65 years 
old) 

Fixed dose combination 
of telmisartan and 
amlodipine once daily: 
40/5 mg – 8 subjects 
80/5 mg – 6 subjects 
80/10 mg – 8 subjects 

Up to 72 h post-
dose at steady-
state 
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Paediatric subjects 

Van der 
Vossen et al. 
(2020) [396] 

9 (6 males, 3 
females) 

0.5 – 12 0.15 (0.10 – 0.22)a 
mg/kg/day (Oral 
solution) 

Sparse trough 
concentrations 

Mixture of paediatric with and without obesity 

Flynn et al. 
(2006) [397] 

73 (49 males, 24 
females) 
- 43.2% obese 
children 

1.0 – 17.7 0.17 ± 0.13 (0.03 – 
0.77) mg/kg/day  
- Absolute dose: 1.3 – 
20 mg/day 
-Administered either 
once or twice daily 
(Tablet and 
suspension) 

Sparse samples 

aMedian (range); IV, intravenous; h, hour. 

 

4.2.4 Step 4: Influence of obesity on amlodipine pharmacokinetic parameters 

and dose adjustment in the paediatric obesity population 

Following validation in the paediatric obesity population, the impact of obesity on the 

pharmacokinetic and plasma concentrations of amlodipine were explored. A design of 10 

patients x 10 trials at three different age groups in paediatrics, both with and without obesity 

populations, was set as follows: i) 2 to 6 years old, ii) 6.01 to 12 years old, and iii) 12.01 to 18 

years old.  

Each group was dosed with amlodipine at a dose of 2.5 mg, 5 mg, and 10 mg once daily for 

three weeks, except for group 1 (2 to 6 years old), in which the virtual subjects were simulated 

to be administered 0.20 mg/kg daily and 2.5 mg once daily for every three weeks. The dose 

selection for simulation was based on the recommended minimum and maximum dose for 

children based on age group. In the 2 to 6 years old group, the doses selected were the 

maximum starting dose for the weight-based dose and for the 6 years old and above group, it 

was the minimum dose for the fixed dose [403, 404].  

In order to assess the need for dose adjustment, the amlodipine therapeutic window of 1 ng/mL 

to 57.2 ng/mL and the toxic level of 67 ng/mL were used as a general guide to ensure the 

adjusted doses yield concentrations within the safe window [397, 405-407]. To simulate the 

amlodipine peak concentrations at a steady-state (Cmaxss), virtual clinical trials in paediatric 

obesity were performed with a 10 x 10 design for age groups: i) 2 to 4 years old, ii) 4.01 to 6 

years old, iii) 6.01 to 8 years old, iv) 8.01 to 10 years old, v) 10.01 to 12 years old, vi) 12.01 – 

14 years old, vii) 14.01 to 16 years old, and viii) 16.01 to 18 years old. 

In each virtual clinical trial, amlodipine was administered over two-week periods at varying 

fixed doses starting from 2.5 to 10 mg daily. In addition, for the age group from 2 to 12 years 
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old, simulated weight-based dosages ranging from 0.10 mg/kg to 0.40 mg/kg per day were 

performed. The primary objective was to attain a comparable simulated Cmax at steady-state 

in healthy paediatrics administered with fixed daily doses of 2.5 mg and 5 mg alongside 

weight-based doses of 0.10 mg/kg and 0.40 mg/kg. 

The simulated minimum and maximum dose ranges selected for the simulation were based 

on the British National Formulary for Children (BNFc) and amlodipine product insert [403, 404].  

 

4.2.5 Prediction performance 

For the validation of all the simulated physiological parameters, a visual predictive checking 

(VPC) strategy was adopted to validate the predicted values. The method was explained at 

the 2012 United States Food and Drug Administration Paediatric Advisory Committee [221] 

and was widely used to develop population models [408, 409]. Validation using the VPC 

approach was carried out by presenting the predicted and observed values with mean and SD 

graphically in the same graph. Most observed data points should overlap with the simulated 

values to be considered acceptable. As for the pharmacokinetics profile predictions, the VPC 

strategy and two-fold (0.5 – two-fold) predicted/observed ratio rules were used to represent 

the predictive performance as 'optimal' unless otherwise explained [144, 220, 302]. This 

strategy was used for validation in steps 2 and 3 when comparing the predicted and observed 

values. As for the VPC, the simulated profiles were considered acceptable when the reported 

profiles overlapped within the 5th and 95th percentiles of the predicted mean concentration 

profiles. 

 

4.2.6  Data and statistical analysis 

All the population validation and compound data were extracted using WebPlotDigitizer 

version 4.5 (https://apps.automeris.io/wpd/). Statistical analysis was performed using a 

nonparametric, unpaired Student's t-test to compare the simulated amlodipine 

pharmacokinetic parameters between healthy and obese children in step 4. The significance 

test was performed with p < 0.05. The statistical analysis was run using GraphPad Prism 

Version 8 for Windows (GraphPad Software, La Jolla, CA, USA). 

  

https://apps.automeris.io/wpd/
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4.3 Results 

4.3.1 Step 1: Development of the paediatric obesity population 

The relevant published data for all physiological parameters, including height, weight, 

haematocrit, serum albumin, AGP, and GFR, were within the range of individual prediction 

values, which validated the paediatric obesity population. The results are detailed in ‘4.6 

Supplementary materials’. 

 

4.3.2 Step 2: Validation of the paediatric obesity population 

4.3.2.1 Step 2.1: Validation with metformin 

All predicted pharmacokinetic parameters, namely, maximum concentration (Cmax), Cmaxss, 

area-under-the-curve-to-time (AUC0-t), area-under-the-curve-to-time-at-steady-state (AUC0-

tss), time to reach maximum concentration (Tmax), and oral clearance (CL/F), were within 0.75- 

to 1.5-fold of the observed parameters reported in publications (Table 4.6). In addition, the BMI 

(kg/m2) distribution for the simulated obese adult population was comparable with the 

observed study population (40.5 ± 6.9 vs 39.5 ± 5.13) [379]. 

Moreover, the observed profiles from all studies listed in Table 4.2 agree with the simulated 

profile based on the VPC acceptance criteria, where the published profiles fit within the 5th and 

95th percentiles of the predicted plasma-concentration profile, thereby confirming the 

adaptation of the metformin model (Figure 4.2A-D). As for the paediatric obesity plasma 

concentration profiles, the individual-reported plasma concentration profiles of metformin for 

both published multiple-dose studies were centred around the mean simulated metformin 

plasma concentration (Figure 4.2E-F). 
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Table 4.6 Observed versus predicted pharmacokinetic parameters for metformin 

Study Dosing 
PK 
parameters 

Observed Predicted 
Predicted/ 
Observed 

Healthy adults 

Tucker et al. 
(1981) [374] 
 

500 mg 
once  

Cmax (μg/L) 1.02 ± 0.34 0.78 ± 0.28 0.77 

AUC0-24 

(hr.μg/mL) 
6.71 ± 1.82 6.70 ± 2.16 1.00 

Tmax (h) 2.20 ± 0.30 2.62 ± 0.70 1.19 

Gusler et al. 
(2001) [377] 
 

500 mg 
once 

Cmax (ng/mL) 741.00 ± 175.00 782.22 ± 277.48 1.06 

AUC0-24 
(h.ng/mL) 

5330.00 ± 
1400.00 

6696.68 ± 
2158.24 

1.25 

Tmax (h) 3.50 ± 0.70 2.62 ± 0.70 0.75 

Timmins et al. 
(2005) [378] 

1000 mg 
twice daily 

Cmaxss (ng/mL) 1321.00 ± 234.00 1898.97 ± 630.13 1.44 

AUC0-24ss 

(h.ng/mL) 
20544.00 ± 
4445.00 

28806.57 ± 
9843.03 

1.40 

Tmax (h) 
3.00 (1.50 – 
6.00)  

2.32 (1.35 – 
3.45)  

0.77 

Obese adults 

Padwal et al. 
(2011) [379] 

1000 mg 
once 

Cmax (μg/mL) 1.80 ± 0.61  1.37 ± 0.49 0.76 

AUC0-24 

(h.μg/mL) 
11.10 ± 3.60 11.89 ± 4.15 

1.07 

Tmax (h) 3.00 (1.5 – 3.0)  2.75 (1.6 – 4.9) 1.16 

Paediatric subjects 

Sanchez-
Infantes et al. 
(2011) [380] 

850 mg 
once daily 

Cmaxss (mg/L) 3.10 ± 0.30  3.40 ± 1.12 1.10 

AUC0-12ss 

(h.mg/L) 
21.20 ± 1.50 24.18 ± 9.40 

1.14 

Tmax (h) 2.40 ± 0.20 2.78 ± 0.56 1.16 

Paediatric obesity subjects  

van Rongen et 
al. (2018) [381] 
 

1000 mg 
twice daily 

Cmaxss (mg/L) 2.80 ± 0.98 2.44 ± 1.06 0.87 

AUC0-12ss 

(h.mg/L) 
14.30 ± 5.00 18.64 ± 9.87 1.30 

CL/F (mL/min) 1007.00 ± 326.00 1108.83 ± 524.17 1.10 

Sam et al. 
(2017) [382] 

1000 mg 
twice daily 

Cmaxss (mg/L) 
1.80 (0.79 – 
3.45) 

1.64 (0.68 – 
4.95) 

0.91 

AUC0-8ss 
(hr.mg/L) 

10.06 (4.78 – 
18.66) 

10.13 (3.59 – 
33.83) 

1.01 

Tmax (h) 
2.00 (1.00 – 
4.00) 

2.50 (1.40 – 
3.55) 

1.25 

Mean ± SD; Median (range); Cmax, maximum concentration; AUC0-t, area-under-the-curve to the last 
time point; Tmax, time to maximum concentration; AUC0-tss, area-under-the-curve to time at steady-state; 
Cmaxss, maximum concentration at steady-state; CL/F, oral clearance; h, hour. 
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Figure 4.2 Simulated metformin plasma concentration in healthy adults (A-B), obese adults (C), 
paediatric (D), and paediatric obesity (E-F).  

(A) Single-dose 500 mg in healthy adults [374],[377]; (B) Multiple-dose 1000 mg twice daily in healthy 
adults [378]; (C) Single-dose 1000 mg in obese adults [379]; (D) Multiple-dose 850 mg once daily in 
paediatric population [380]; (E) Multiple-dose 1000 mg twice daily in paediatric obesity to match Sam 
et al. (2017) [382] subjects' demographic; (F) Multiple-dose 1000 mg twice daily in paediatric obesity to 
match Van Rongen et al. (2018) [381] subjects' demographic; Solid lines represent the predicted mean 
concentration-time profile, with dotted lines representing the 5th and 95th percentile ranges; Solid circles 
represent individual observed data from each study. Solid circles with error bars represent the mean 
and SD of the observed data from each study.   
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4.3.2.2 Step 2.2: Validation with ceftazidime  

Furthermore, the paediatric obesity population was validated with the ceftazidime compound 

model and plasma concentration data published by Maharaj et al. (2021) [383]. Following 

filtering virtual subjects administered with more than 2 g/dose, the percentages of virtual 

subjects used for the simulated mean concentration-time profile for 16.5 mg/kg q8h, 33.8 

mg/kg q8h, and 92.9mg/kg q8h are 100%, 53% and 4%, respectively.  

Considering only the sparse plasma concentration of ceftazidime available for validation of the 

paediatric obese population, only VPC method was used as acceptance criteria, where a 

majority (84%) of the observed concentration data fell within the 5th and 95th percentile of the 

simulated concentration profile (Figure 4.3). Furthermore, the percentage of concentrations 

within the acceptance limit was comparable with the number of obese subjects recruited in the 

study (84.00% vs. 82.80%), thus verifying the paediatric obesity population model. 

 

 

Figure 4.3 Simulated steady-state plasma concentration of ceftazidime for the paediatric population. 
Solid lines represent the predicted mean concentration-time profile, with dotted lines representing the 
5th and 95th percentile ranges. Solid circles represent the mean of the observed clinical data from 
Maharaj et al. (2021) [383].   
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4.3.3 Step 3: Verification of the amlodipine model  

Predicted pharmacokinetic parameters for adults and obese adults in single and multiple-dose 

studies, including Cmax, AUC0-t, AUC0-inf, Cmaxss, AUC0-tss, area-under-the-curve to infinity at 

steady-state (AUC0-infss), and Tmax, were within 0.5 – two-fold of the reported data except for 

AUC0-infss for multiple dose study by Bainbridge et al. (1993) [399] (Table 4.7). Since only 

pharmacokinetic parameters were revealed for the obese adult population, verification of the 

amlodipine model in obese adults was based on the comparison between predicted and 

observed parameters.  

Table 4.7 Observed and predicted amlodipine pharmacokinetic parameters in adult 

Study Dosing PK parameters Observed Predicted 
Predicted/ 
Observed 

Adult populations 

Faulkner 
et al. 
(1986) 
[398] 

Single-dose 10 
mg IV 

AUC0-inf (h.ng/mL) 371.00 ± 69.00 
668.60 ± 
197.38 

1.80 

Single-dose 10 
mg oral  

Cmax (ng/mL) 5.90 ± 1.20 6.10 ± 2.45 1.03 

AUC0-inf (h.ng/mL) 238.00 ± 53.00 
373.21 ± 
132.47 

1.57 

Tmax (h) 7.60 ± 1.80 5.06 ± 0.93 0.67 

15 mg oral 
daily for 14 
days 

Day 1: Cmax 
(ng/mL) 

6.90 ± 2.60 6.92 ± 1.60 1.00 

Day 1: Cmin 
(ng/mL) 

3.30 ± 1.20 3.36 ± 0.90 1.02 

Day 1: Tmax (h) 8.90 ± 3.70 5.50 ± 0.79 0.62 

Day 14: Cmax 
(ng/mL) 

18.10 ± 7.10 23.55 ± 7.09 1.30 

Day 14: Cmin 
(ng/mL) 

11.80 ± 5.30 8.17 ± 3.93 0.69 

Day 14: Tmax (h) 8.70 ± 1.90 4.92 ± 0.60 0.57 

Williams et 
al. (1998) 
[392] 
 
 

Single-dose 
2.5 mg 

Cmax (ng/mL) 1.20 1.52 ± 0.61 1.27 

AUC0-72 
(hr.ng/mL) 

41.00 46.51 ± 17.13 1.13 

Tmax (h) 5.40 5.06 ± 0.93 0.94 

Single-dose 5 
mg 

Cmax (ng/mL) 2.66 3.05 ± 1.23 1.15 

AUC0-72 (h.ng/mL) 94.00 93.10 ± 34.30 0.99 

Tmax (h) 6.30 5.06 ± 0.93 0.80 

Single-dose 10 
mg 

Cmax (ng/mL) 5.49 6.10 ± 2.45 1.11 

AUC0-72 (h.ng/mL) 200.00 186.52 ± 68.78 0.93 

Tmax (h) 6.4 5.06 ± 0.93 0.79 

Abernethy 
et al. 
(1990) 
[391] 

2.5 mg once 
daily  

Cmaxss (ng/mL) 4.20 ± 1.10 3.90 ± 1.32 0.93 

AUC0-24ss 
(h.ng/mL) 

81.00 ± 22.00 77.49 ± 26.36 0.96 

Tmaxss (h) 7.00 ± 2.00 4.54 ± 0.72 0.65 
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Bainbridge 
et al. 
(1993) 
[399] 

Single-dose 5 
mg 

Cmax (ng/mL) 3.50 ± 0.80 3.05 ± 1.23 0.87 

AUC0-inf (h.ng/mL) 169.00 ± 53.00 145.60 ± 55.19 0.86 

Tmax (h) 6.80 ± 1.80 5.06 ± 0.93 0.74 

5 mg once 
daily for 14 
days 

Cmaxss (ng/mL) 10.50 ± 4.40 8.51 ± 2.82 0.81 

AUC0-infss 
(h.ng/mL) 

214.00 ± 78.00 
885.10 ± 
462.87 

4.14 

Tmaxss (h) 7.00 ± 1.00 4.53 ± 0.71 0.65 

Rausl et 
al. (2006) 
[400] 

Single-dose 10 
mg 

Cmax (ng/mL) 4.30 ± 0.90 6.10 ± 2.45 1.42 

AUC0-72 (h.ng/mL) 163.00 186.52 ± 68.78 1.14 

Tmax (h)a 
7.00 (5.00 – 
12.00) 

4.98 (2.85 – 
7.40) 

0.71 

Leenen et 
al. (2010) 
[401] 

Single-dose 5 
mg  

Cmax (ng/mL) 2.40 ± 0.20 3.05 ± 1.23 1.27 

AUC0-24 (h.ng/mL) 42.00 ± 3.40 49.54 ± 18.60 1.18 

Tmax (h) 6.90 ± 0.60 5.06 ± 0.93 0.73 

5 mg once 
daily for 8 
weeks 

Cmaxss (ng/mL) 8.10 ± 0.60 9.52 ± 3.25 1.18 

AUC0-24ss 
(h.ng/mL) 

162.90 ± 13.80 194.63 ± 71.84 1.20 

AUC0-240ss 
(h.ng/mL) 

594.50 ± 58.20 
949.43 ± 
519.01 

1.60 

Tmaxss (h) 6.40 ± 0.60 4.48 ± 0.69 0.70 

Obese adult 

Varga et 
al. (2015) 
[402] 

5 mg daily 
10 mg daily  

Cmaxss (ng/mL) 24.88 ± 13.87 14.75 ± 6.68 0.59 

AUC0-72ss 
(h.ng/mL) 

1176.38 ± 
704.86 

794.80 ± 
383.20 

0.68 

AUC0-infss 
(h.ng/mL) 

2387.34 ± 
1705.50 

2270.93 ± 
1474.58 

0.95 

Tmax (h) 5.33 ± 1.97 5.01 ± 0.76 0.94 
aMedian (range); IV, intravenous; Cmax, maximum concentration; AUC0-t, area-under-the-curve to the 
last time point; Tmax, time to maximum concentration; AUC0-tss, area-under-the-curve to time at steady-
state; Cmaxss, maximum concentration at steady-state; Tmaxss, time to maximum concentration at 
steady-state.  

 

Observed plasma concentrations for both single-dose and multiple-dose studies in adults 

concurred with the simulated profiles and fit within the 5th and 95th percentiles (Figure 4.4 and 

Figure 4.5). Among the 12 observed profiles, only two fell outside the defined acceptance 

range at the elimination phase, precisely the last three points. These instances were 

associated with amlodipine administered intravenously at 10 mg single dose (Figure 4.4A) and 

orally at 15 mg daily for 14 days (Figure 4.5C). In addition, the profiles at steady-state were 

under-predicted and over-predicted when simulated with once-daily doses of 5 mg and 15 mg 

for 14 days, respectively (Figure 4.5B and Figure 4.5C). 
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Figure 4.4 Simulated plasma concentration of amlodipine single-dose in healthy adults.  

(A) 10 mg intravenous single-dose [398]; (B) 2.5 mg oral single-dose [392]; (C) 5 mg oral single-dose [392], [399], [401]; (D) 10 mg oral single-dose [398], [392], 
[400]. Solid lines represent the predicted mean concentration-time profile, with dotted lines representing the 5th and 95th percentile ranges. Solid circles represent 
observed clinical data from each study. Solid circles with error bars represent the mean and range for Faulkner et al. (1986) [398] and the mean and SD of the 
observed clinical data for Rausl et al. (2006) [400].  
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Figure 4.5 Simulated plasma concentration of amlodipine multiple-dose in healthy adults.  

(A) 2.5 mg daily for 14 days [391]; (B) 5 mg daily for 14 days [399]; (C) 15 mg daily for 14 days [398]; (D) 5 mg daily for 8 weeks [401]. Solid lines represent the 
predicted mean concentration-time profile, with dotted lines representing the 5th and 95th percentile ranges. Solid circles represent observed clinical data from 
each study. 
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For simulations of paediatric Cmin, the predicted amlodipine residual concentrations are well 

within the range of observed amlodipine residual concentrations, with four observed samples 

above the highest predicted Cmin (Figure 4.6).  

 

 

Figure 4.6 Simulated steady-state trough concentration (Cmin) of amlodipine multiple-dose in the 
paediatric population.  

Solid red circles represent the observed trough concentration of amlodipine published by Van der 
Vossen et al. (2020) [396]. Coloured open circles represent predicted trough concentration for three 
doses: 0.15 mg/kg/day, 0.10 mg/kg/day and 0.22 mg/kg/day. 

 

Verification of the amlodipine model in the paediatric obesity populations showed that all the 

observed plasma concentrations overlapped within the 5th and 95th percentiles of the minimum 

and maximum daily doses, except for six observed concentrations in the once-daily dose 

profile (Figure 4.7). Moreover, most observed plasma concentrations spread around the 

simulated mean dose plasma concentration profiles (Figure 4.7), thus validating the 

amlodipine model in obese children.   
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Figure 4.7 Simulated plasma concentration of amlodipine in paediatric with and without obesity.  

(A) Once daily dose at steady-state; (B) Twice daily dose at steady-state; Solid lines represent the 
predicted mean concentration-time profile, with dotted lines representing the 5th and 95th percentile 
ranges. Solid circles represent observed plasma concentrations from Flynn et al. (2006) [397] 



K. B. Burhanuddin, PhD thesis, Aston University, 2024 

 

181 
 

4.3.4 Step 4: Impact of paediatric obesity on amlodipine pharmacokinetics 

4.3.4.1 Comparison of non-obese and obese paediatrics 

An approximately two-fold decrease was observed in the simulated steady-state plasma 

concentration profiles (Figure 4.8), AUC and Cmax (Figure 4.9) as the age group increased. 

Compared to the non-obese children, the AUC and Cmax of obese children decreased by 35.30% 

and 20.49%, respectively (Figure 4.9). Additionally, the comparison of AUC and Cmax showed 

a statistically significant difference between obese and non-obese paediatrics for all age 

groups when administered amlodipine as a fixed dose (Figure 4.9). In contrast, the difference 

was insignificant when amlodipine was dosed based on TBW in the 2 to 6 years old age group 

(Figure 4.9). For comparison of clearance and Vss, statistically significant differences were 

noted for both fixed and weight-based dose regimens as well as all age groups (Figure S 4-9).  

 

 

Figure 4.8 Simulated steady-state amlodipine plasma concentration profiles in healthy and obese 
children for age groups of 2 to 6 years old, 6.01 to 12 years old and 12.01 to 18 years old.  

(A) 0.20 mg/kg daily; (B) 2.5 mg once daily; (C) 5 mg once daily; (D) 10 mg once daily. In graph (A), 
different colours represent paediatric with and without obesity in the 2 to 6 age group. The dotted lines 
in the (B), (C), and (D) graphs represent obese paediatric populations. Different coloured lines in the 
(B), (C) and (D) profiles represent different age groups. 
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Figure 4.9 Predicted AUC (A) and Cmax (B) at steady-stated for healthy and obese paediatric for four doses and three different age groups.  

The coloured circles represent the mean, and the horizontal lines represent the standard deviations. 'ns', p > 0.05. 
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4.3.4.2 Dose adjustments in paediatric obesity 

Simulations showed that weight-based doses resulted in comparable predicted Cmax in 

children both with and without obesity populations except for ages 9.01 – 10 years (0.1 

mg/kg/day: p= 0.0453, 0.4 mg/kg/day: p= 0.0405) and 11.01 – 12 years (0.1 mg/kg/day: p= 

0.0380, 0.4 mg/kg/day: p= 0.0335), where the differences were statistically significant (Figure 

4.10A). None of the simulated Cmax values exceeded the maximum therapeutic concentration 

(57.2 ng/mL) and toxicity level (67 ng/mL) in both populations when dosed with a 0.10 mg/kg 

amlodipine starting dose (Figure 4.10A). The same was seen for the daily dose, not one 

simulated subject was administered above the maximum daily dose of 10 mg as 

recommended by BNFc [403]. 

In contrast, the maximum dose of 0.40 mg/kg resulted in 7.55% and 1.92% of healthy and 

obese paediatrics as early as 5.01 – 6 years and 3.01 – 4 years old being dosed above 10 mg 

daily, respectively. The proportion reached 100% for the age group 7.01 – 8 years old in the 

paediatric obesity group and more than 90% for the 10.01 – 11 years old group in the non-

obese children population (Figure S 4-13 and Figure S 4-14).  

For the predicted Cmax, the percentage that tops the toxicity level (67 ng/mL) was less than 

20% for obese children across the age range up to 12 years (Figure S 4-14). On the other 

hand, for non-obese paediatric, the percentage of Cmax that exceeded 67 ng/mL was more 

than 20% in the age group 2 – 4 years (Figure S 4-13). Generally, the number of predicted 

Cmax that falls above the maximum therapeutic concentration of 57.2 ng/mL was 28.30% to 

38.30% in obese paediatric and 19.15% to 37.50% in non-obese children, depending on the 

age group (Figure 4.10A).  

For fixed-dose simulations, an approximately 1.25 to 1.5 times higher dose is needed in obese 

children in order to achieve the same Cmax as non-obese children (Figure 4.10B). A significant 

difference in Cmax was seen in the younger age group (2 to 5 years old) even after a 1.5-fold 

increase in the starting dose in obese children compared to 2.5 mg daily in non-obese 

paediatric. Another notable difference at the starting dose was seen in the 16 to 17 years old 

group (Figure 4.10B). As for the maintenance dose of 5 mg daily, the 1.25 to 1.5-fold dose 

increase in obese paediatrics resulted in comparable Cmax to the non-obese paediatric 

populations (Figure 4.10B). A similar trend is seen with higher maintenance doses. The 

increment was set based on the dose in tablet form available in the market [403]. As for the 

Cmax, the lower age group was more at risk of concentrations above the therapeutic and toxicity 

range than the higher age group in both weight-based and fixed doses (Figure 4.10).  
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Figure 4.10 Predicted Cmax in obese and non-obese paediatric with weight-based dose (A) and fixed-
dose approaches for dose adjustment.  

The horizontal lines represent the mean and standard deviations. For fixed doses, 6.25 mg OD and 7.5 
mg OD are suitable in obese children, depending on the age range, to match the healthy children's 5 
mg dose, as shown in the purple lines under the x-axis. OD, once daily; ****, p < 0.0001; ***, p < 0.001; 
*, p < 0.05.  
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4.4 Discussion 

Physiological changes due to obesity, which influence the distribution and elimination process 

of drugs, might impact the pharmacokinetics and consequently affect the amlodipine response 

[158]. A study by Hanafy et al. (2009) [353] reported that the effect of CCBs, including 

amlodipine, in reducing systolic blood pressure and the percentage of response to CCB 

treatment was significantly lower in obese children when compared to non-obese children. 

However, the contribution from a pharmacokinetic perspective on the substantially lower 

efficacy in the paediatric obesity population is lacking due to the paucity of published 

amlodipine plasma concentration data in the population group.  

The application of robust and validated physiologically based pharmacokinetic modelling 

permits analysis of the influence of obesity on the drug's pharmacokinetics and exploration for 

a pragmatic recommendation of the optimum dose [165, 410]. Therefore, the PBPK concept 

was implemented with the development of virtual paediatric obesity population, and utilised it 

to explore the pharmacokinetic differences and find the optimum dosing strategy for 

amlodipine in children with obesity. 

 

4.4.1 Step 1: Development of the paediatric obesity population 

The development of the paediatric obesity population in Simcyp® software Version 21 was 

adapted from the paediatric population file with the weight and height parameters for obese 

children were modified and derived based on the defined obese growth charts published by 

the CDC in 2000 [153], the WHO in 2006 and 2007 [152], as well as Gerhart et al. (2022) [156]. 

The weight and height changes with age altered all other parameters, which include 

haematocrit, serum albumin, and AGP, as shown in equations (4.5), (4.6), (4.7), and (4.8) of 

the 4.6.1 Result section of ‘4.6 Supplementary materials’. In addition, age is also related to 

blood flow and tissue-water composition. As for the GFR, the changes are influenced by BSA 

as per equation (4.9) (4.6 Supplementary materials), which is directly related to weight and 

height changes. Additionally, weight and height have a direct relationship with organ size. All 

the equations to address the relationships were defaulted in Simcyp® except for age, weight 

and height (Equations (4.1), (4.2), (4.3), and (4.4) in the ‘4.6.1 Result’ section of ‘4.6 

Supplementary materials’). 

For the validation of the paediatric obesity population file, verification focused on the 

relationship between age and BMI, weight, height, protein binding, and GFR because of the 

availability of published data for obese children. As reported in the results section of ‘4.6 

Supplementary materials’, the predicted parameter distributions for all six parameters aligned 
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with the data reported by various publications involving paediatric obesity. Haematocrit, serum 

albumin, and AGP showed no specific trend across the age, which concurs with other 

simulations of paediatric obesity populations and agrees with various publications that report 

data for paediatrics with and without obesity [156, 358, 371, 411].  

For GFR, the BSA-adjusted GFR-to-age plot showed no specific trend, as the weight and 

height were annulled when plotting the chart (Figure S 4-8). However, an increasing trend can 

be seen when plotting the absolute GFR-to-age graph, which is in line with the increased 

kidney volume trend [156]. Additionally, reports showed no statistically significant difference in 

GFR between obese and normal children, which is in agreement with the equation (4.9) (4.6 

Supplementary materials) that used BSA to simulate the absolute GFR trend with age [160, 

347, 372]. 

Information on changes in metabolic enzymes and transporter abundance, which play an 

essential role in metabolism and elimination, is still limited for the paediatric obesity 

populations; thus, the default trend for the paediatric population was maintained. Information 

on the metabolic enzyme changes was only reported in obese adults, for example, the 

CYP3A4 activity was reduced by 40% in obese adults [265]. A study by van Rongen et al. 

(2018) [346] reported higher clearance for midazolam, a substrate of CYP3A4, in obese 

adolescents compared to obese adults, which is the opposite of what was noted in obese 

adults and may be due to comorbidities and other factors.  

 

4.4.2 Step 2: Validation of paediatric population with metformin and ceftazidime 

The paediatric obesity population was further validated with metformin and ceftazidime. For 

the metformin, the compound file available in Simcyp® was used with minor adjustments to fa 

and Vss. As standard practice in verifying modified and newly developed compound files, the 

adapted metformin file was verified in healthy and obese adults as well as obese and non-

obese paediatric populations [165, 199, 302, 412, 413]. All simulated pharmacokinetic 

parameters and plasma concentration profiles generated with metformin were within the 

acceptance criteria and hence demonstrated validation.  

Subsequently, ceftazidime has been previously developed/validated by Zhou et al. (2019) 

[384-387], and was used without any adaptation to verify the paediatric obesity population. 

The reported steady-state plasma concentration data of ceftazidime in obese children used 

for validation was sparse, with a summary of the median, minimum and maximum dosing 

information [383]. Acceptance of the result was based on VPC alone, as only the population 

pharmacokinetic parameter estimates were reported. Nonetheless, the median Cmax and 
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clearance estimates in the population pharmacokinetic study are comparable with this study 

(5.40 L/h vs. 6.25 L/h), which complements the VPC result on validating the paediatric obesity 

population file [383]. 

 

4.4.3 Step 3: Validation of the amlodipine model 

The amlodipine compound file that was developed based on compilations of information and 

parameter optimisation from several publications was verified in four populations, including 

non-obese adults, obese adults, paediatrics and obese paediatrics [388-390]. The simulated 

plasma concentrations and pharmacokinetic parameters for adults and obese adults met the 

acceptance criteria for the VPC and two-fold comparison with observed data except for three 

out of 54 comparisons.  

Firstly, the plasma profile comparison between the simulated single-dose intravenous study in 

healthy adults and the intravenous plasma profile published by Faulkner et al. (1986) [398], 

only three out of 16 points at the distal region of the elimination phase were outside the 5th 

and 95th percentiles. Nevertheless, the simulated AUCinf for intravenous was within the two-

fold ratio compared to the reported value.  

Secondly, the comparison of plasma concentration profiles between the simulated 15 mg daily 

for 14 days and the observed profile reported by Faulkner et al. (1986) [398], in which the 

three last points were not within the 5th and 95th percentile of the simulated profiles. However, 

all the simulated pharmacokinetic parameters for the same study are within two-fold of the 

reported parameters. Further, simulated amlodipine plasma concentration profiles at steady-

state were stable between the low and high doses due to the simulated plasma profile being 

overpredicted when administered with 15 mg per day (Figure 4.5C) and underpredicted when 

dosed with 5 mg daily (Figure 4.5B). 

Thirdly, the simulated AUCinfss of 5 mg daily for 14 days was not within two-fold compared to 

the reported AUCinfss by Bainbridge et al. (1993) [399]. However, all other parameters were 

within two-fold, and the published plasma concentration was within the 5th and 95th percentile 

of the simulated profile. Additionally, the AUCinfss is seldom utilised for pharmacokinetic 

parameter comparisons, especially within the regulatory contexts, due to its reliability, mainly 

when the percentage difference between AUCinf and AUC0-t is more than 20%, which is 

exemplified in this case, where the difference undisclosed and exceeded 20% for the reported 

and simulated, respectively [31]. In addition, the number of samples utilised for AUCinf 

extrapolation between observed and simulated profiles (6 vs 24) potentially overestimates the 

parameters of one over the other [230].  
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Acceptance of the simulation in paediatric populations with and without obesity was based 

solely on the VPC as only sparse data on amlodipine concentrations were available in 

paediatric populations to the search [396, 397]. Simulated plasma concentrations that 

mimicked the study design and dosing range of both studies fell in the middle of the reported 

plasma concentration data precisely when simulations were performed based on the mean 

and median doses [396, 397]. Additionally, the proportion of obese children in the simulated 

population was comparable to one reported by Flynn et al. (2006) [397] (50.73%–50.86% 

versus 43.2%). The results validated the amlodipine and paediatric obesity population files, 

which were then used to explore and optimise amlodipine dose in obese children. 

 

4.4.4 Step 4: Impact of obesity on amlodipine pharmacokinetics and dose 

optimisation in obese children population 

4.4.4.1 Influence of obesity on amlodipine pharmacokinetics 

The trend of plasma concentration profiles, Cmax, and AUC decreased as the age group 

increased when the dose was fixed (Figure 4.8 and Figure 4.9). Nevertheless, when the dose 

was fixed at 2.5 mg, the dose amount per kilogram body weight was higher in the lower age 

group compared to the higher age group in obese and non-obese populations, with a 0.07 to 

0.26 mg/kg dose in the 2 to 6 years old group, 0.03 to 0.18 mg/kg in the 6.01 to 12 years old 

group, and 0.02 to 0.10 mg/kg in the 12.01 to 18 years old group. The same pattern can be 

seen in other studies where younger patients required higher doses per kilogram of body 

weight than older children [397, 414, 415].  

Amlodipine is metabolised in the liver, particularly by the CYP3A4 [416]. Thus, the change in 

hepatic-to-body size ratio and expression of CYP3A4 enzymes from infancy to adolescence 

was speculated to be the reason [397, 416, 417]. Additionally, the weight-normalised clearance 

for the simulation showed an inverse trend with age, which aligns with the theory. Furthermore, 

the pattern is similar to carbamazepine, where the CYP3A4 enzyme influences the clearance 

of carbamazepine significantly, in which several studies showed that a higher weight-adjusted 

dose is required for children to achieve the same effect [418-420]. 

Significantly lower plasma concentration, Cmax, and AUC were noted in the obese compared 

to the non-obese paediatric populations within the same age group when a fixed dose was 

administered (Figure 4.9). The volume of distribution for obese children is higher than for non-

obese children, explaining the requirement for higher doses in the obese population (Figure S 

4-9) [138]. Generally, the volume of distribution has an inverse relationship with plasma 
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concentration, where a high volume of distribution drug is more inclined to be distributed into 

the tissues [138].  

Another factor is clearance, which is higher in obese children than non-obese children (Figure 

S 4-9). Since amlodipine is cleared through the liver, CYP3A4, liver size, and blood flow to the 

liver may be the factors that lead to higher clearance in obese children [158]. Simulation data 

presented that liver weight and blood flow to the liver are higher in the obese than in non-

obese paediatric populations. In contrast, the difference in CYP3A4 abundance between 

obese and non-obese children is subtle. Furthermore, the discovery is consistent with 

numerous studies involving midazolam, another CYP3A4 substrate, which have observed 

reduced plasma concentrations in obese compared to non-obese children [346, 421, 422].  

In addition, the result agrees with the finding reported by Hanafy et al. (2009) [353] that obese 

children demonstrate a considerably reduced response to amlodipine in lowering systolic 

blood pressure and response rate compared to non-obese children. Based on animal studies, 

plausible explanations speculated by Hanafy et al. (2008) include the downregulation of the 

L-type calcium channel receptor due to the inflammatory conditions in hypertension, 

exacerbated further by the obese state [423, 424]. Additionally, the same can be seen in 

verapamil, another CCB, where the effect of verapamil is reduced in obese adult patients, and 

another study involving rheumatoid arthritis patients showed that despite the increase in 

verapamil concentration, the response is diminished, aligning with the theory that increased 

in inflammation mediators possibly reduced the L-calcium channel receptor [425, 426].  

 

4.4.4.2 Dose adjustment in paediatric obesity 

From a pharmacokinetic perspective, this study shows that a weight-based dose is suitable 

for paediatric obesity to achieve the same concentration range as non-obese children, 

specifically those aged 2 to 12 years old (Figure 4.10). Considering obese paediatrics are 

heavier, a larger dose was administered based on the weight-based dosing scheme, 

compensating for the higher clearance and volume of distribution in obese children and 

leading to the same exposure as in the non-obese population. The finding aligns with the 

recommendation to use weight-based dosing for the same age group by the BNFc and the 

European Society for Hypertension in their 2016 clinical practice guideline [352, 403]. 

Additionally, oral solution and suspension availability in the market made weight-based dosing 

straightforward for children. Regarding the choice of body weight, the use of TBW in this 

simulation was appropriate for amlodipine, given its lipophilic nature [427]. 
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On the other hand, with a weight-based dosing regimen, a significant percentage of obese 

children are expected to reach the maximum daily dose. Therefore, close monitoring of 

possible side effects related to amlodipine, such as oedema, palpitations, abdominal pain, 

flushing, dizziness and others, is essential since a higher dose is likely to result in amlodipine 

concentrations above the suggested therapeutic upper limit (57.2 ng/mL) and toxicity range 

(67 ng/mL) [404, 414, 428]. 

Based on the amlodipine product insert and clinical practice guidelines by the American 

Academy of Pediatrics in 2017, for children 6 years old and older, a fixed-dose regimen starting 

at 2.5 mg daily with a maximum of 5 mg and 10 mg per day, respectively, is recommended 

[351, 404]. Simulations demonstrated that a 1.25 to 1.5-fold higher dose in obese children is 

required to achieve the same amlodipine concentration in non-obese paediatrics (Figure 4.10).  

Therefore, a higher initial dose of 3.75 mg daily may be considered in obese children across 

the 6 to 18 years age group to assist in maintaining blood pressure instantaneously, mainly 

when physicians opt for fixed-dose regimens. Although the result showed a significant 

difference in Cmax between obese and non-obese children for the starting dose in the 16 to 17 

years old age group, it may not be clinically significant as the amlodipine concentrations were 

still within the therapeutic limit.  

Following treatment initiation, the systolic and diastolic blood pressure readings and side 

effects are fundamental factors that drive the dose adjustment, which is practically made after 

1 to 2 weeks of the initial dose [351, 403]. Considering therapeutic drug monitoring for any 

antihypertensive agent is uncommon unless to evaluate medication compliance, the difference 

in amlodipine plasma concentrations between obese and non-obese children will have 

minimal influence as the deciding factor in making dose adjustments, specifically after the 

treatment has started [429].  

Amlodipine is available in both solid and liquid dosage forms. Thus, the fixed-dose regimen 

may be suitable for specific age groups, such as children above 13 years old, as a study 

showed approximately 30% of children aged 13 to 18 years old favoured tablet rather than 

liquid formulations (18.3%) [430].  

Based on the pharmacokinetic study of amlodipine in children by Flynn et al. (2006) [397], 

amlodipine concentrations between 1 – 57.2 ng/mL demonstrated no serious adverse events. 

Thus, this study showed that for children 6 years old and above, a fixed-dose regimen is 

expected to maintain the amlodipine concentrations within the therapeutic range and reduce 

the harm that potential adverse events may cause with higher doses. Since significant 

differences in amlodipine concentration between obese and non-obese were noted at 9 years 

old with weight-based doses, the fixed-dose can be considered at 9 years old and above. 
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Nevertheless, any dose below 0.35 mg/kg daily is unlikely to cause side effects as less than 

20% of the simulated Cmax surpasses the maximum therapeutic range.  
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4.5 Conclusion 

For the first time, mechanistic pharmacokinetic modelling is implemented in this study by 

establishing a virtual paediatric obesity population as a pragmatic approach to address the 

impact of obesity on drug pharmacokinetics.  

Findings highlight that a suitable dose adjustment is required to achieve the same amlodipine 

plasma concentration as in non-obese children. The physiological alteration in obese 

paediatrics led to a significant difference in amlodipine Cmax and AUC when administered as a 

fixed-dose regimen compared to non-obese children. Thus, when opting for a fixed-dose 

regimen, a 1.25 to 1.5-fold higher dose is needed in obese children to achieve a comparable 

amlodipine plasma concentration to non-obese children. While these recommendations 

provide valuable insights, further validation with more extensive real-world data is necessary 

to strengthen the accuracy and applicability of the model. In addition, clinical studies are 

needed to support these findings, particularly in evaluating dose adjustment guided by the 

clinical endpoints.     

This study highlights the potential of PBPK modelling and its application to addressing 

personalised dosing in the obese paediatric population. Further improvements can be made 

with the virtual paediatric obesity population group by refining the physiological information, 

such as changes in the metabolism enzymes specific to obese children as they evolve with 

age, and the findings from this study will inform medicines optimisation approaches in future 

studies. 
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4.6 Supplementary materials 

4.6.1 Results for Step 1: Development of the paediatric obesity population  

4.6.1.1 Age, weight and height relationship 

Polynomial mathematical correlations for gender-specific height-age and weight-age for the 

population are described in Equations (4.1), (4.2), (4.3) and (4.4) for ages 2 – 18: 

 

Male height (cm) = 61.463912 + (0.65513619 x age2) – (0.12642816 x age 2.5) + 

(17.3579 x age0.5)   

(4.1) 

 
 

Female height (cm) = 64.092976 + (10.720395 x age) - (0.29561165 x age2) (4.2) 
 

 
 

Male weight (kg) = 3.2737 + (0.5346053 x age2) – (0.015322545 x age3) (4.3) 
 

 
 

Female weight (kg) = 11.809275 + (0.64670616 x age2) – (0.022469269 x age3) (4.4) 
 

 

The WHO and CDC graphs, which are the cut-off lines for children's obesity overlaid at the 

lower part of the individual simulated BMI-for-age graph (2 – 18 years old) for males and 

females (Figure S 4-1), indicated that the predictions represent the BMI for the obese children 

population [152, 357]. For the mean BMI-for-age graph of paediatric obesity, the reference 

curves by Gerhart et al. (2022) [156] cover the predicted chart, thus validating the simulated 

BMI-to-age chart.  

Additionally, a similar pattern can be seen for the height-for-age curves (2 – 18 years old) for 

males and females (Figure S 4-2), as well as the weight-for-height curves (2 – 18 Years old) 

for males and females (Figure S 4-3). The reference graphs of mean height-for-age and mean 

weight-for-height of the paediatric obesity population published by Gerhart et al. (2022) [156] 

fit in the middle of the simulated graphs. Thus, it further verified the predicted weight and height 

of the paediatric obesity population.  

Furthermore, for ages 2 to 5, the reference weight-for-age curves published by WHO and CDC 

were overlaid on the spread of individual simulated weight-for-height graphs for males and 

females (Figure S 4-4), reinforcing the validation of simulated weight and height distribution of 

obese children population [152, 357]. 
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Figure S 4-1 Simulated BMI-for-age curves for paediatric obesity from 2 to 18 years old for males (A) 
and females (B).  

Gerhart et al. (2022) [156] generated the paediatric obesity BMI-for-age curve at the 95th percentile 
based on the National Health and Nutrition Examination Survey (NHANES) pooled data from 1999 to 
2016. The CDC (2000) BMI-for-age curve is at the 95th percentile, which defines the cut-off curve for 
obesity in paediatrics [357]. The WHO (2006) BMI-for-age curve is at 3 SD from the median for 2 to 5 
years old, while the WHO (2007) [152] is at 2 SD from the median of the BMI-for-age curve for 6 to 18 
years old [152]. 



K. B. Burhanuddin, PhD thesis, Aston University, 2024 

 

195 
 

 

Figure S 4-2 Simulated Height-for-age curve for paediatric obesity from 2 to 18 years old for males (A) 
and females (B).  

Gerhart et al. (2022) [156] generated the central tendency of paediatric obesity's height-for-age curve 
based on the NHANES pooled data from 1999 to 2016. 
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Figure S 4-3 Simulated Weight-for-height curves for paediatric obesity from 2 to 18 years old for males 
(A) and females (B).  

Gerhart et al. (2022) [156] generated the central tendency of paediatric obesity's weight-for-age curve 
based on the NHANES pooled data from 1999 to 2016. 
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Figure S 4-4 Simulated Weight-for-height curves for paediatric obesity from 2 to 5 years old for males 
(A) and females (B).  

The CDC (2000) (A) Weight-for-height curve is at the 97th  percentile [357]. The CDC (2000) (B) Weight-
for-height curve is at the 95th  percentile, which defines the cut-off curve for obesity in paediatrics [357]. 
The WHO (2006)  Weight-for-age curve is at 3 SD from the median for 2 to 5 years old, which defines 
the cut-off curve for obesity in paediatrics [152]. 
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4.6.1.2 Haematocrit-to-age relationship 

Haematocrit values correlation with age was predicted using gender-specific mathematical 

statements as described in Equations (4.5) and (4.6); 

Male (%) = 53 - ( (
43 × age1.12

0.05
1.12

 + age1.12
) × (1 + (

-0.93 × age.25

0.10
0.25

 + age0.25
) ))  

(4.5) 

  

Female (%) = 53 - ( (
37.4 × age1.12

0.05
1.12

 + age1.12
)  × (1 + (

-0.80 × age.25

0.10
0.25

 + age0.25
) )) (4.6) 

 

 
The distribution of simulated haematocrit values over age fitted within the range of reported 

values from 8 different references (Figure S 4-5). Besides, the predicted values for both males 

and females reflected all the published haematocrit values (Table S 4-1), which validated the 

paediatric obesity population file. 

 

Table S 4-1 Summarised results from literature search for haematocrit values in paediatric obesity 

Reference Age (years)a Number of 
subjects (n) 

Males 
(%) 

Haematocrit (L/L) 

Predicted values 2 - 18 10,000 100 0.40 (0.03)e 

Predicted values 2 - 18 10,000 0 0.38 (0.03)e 

Kilic et al. (2016) [358] 6 - 16 37 48.64 0.39 (0.33 – 0.43)b 

Panichsillaphakit et al. (2021) 
[359] 

5 – 15 63 66.78 0.40 (0.38 – 0.41)c 

Oni et al. (2021) [361] 6 – 19  2,818 53.40 0.40 (0.396 – 0.399)d 

Jeong et al. (2021) [362] 10 – 18  297 100 0.44 (0.03)e 

Jeong et al. (2021) [362] 10 – 18 234 0 0.40 (0.02)e 

Belo et al. (2014) [363] 4 – 18  168 100 0.42 (0.03)e 

Belo et al. (2014) [363] 4 – 18  182 0 0.40 (0.02)e 

Cacciari et al. (1988) [360] 5.17 – 15.58 43 65 0.38 (0.03)e 

Elhag et al. (2018) [411] 13 – 17 36 100 0.43 (0.03)e 

Elhag et al. (2018) [411] 13 - 17 43 0 0.39 (0.03)e 
a range; b median (min-max); c median (interquartile range); d mean (95% confidence interval); e mean 
(SD) 

 



K. B. Burhanuddin, PhD thesis, Aston University, 2024 

 

199 
 

 

Figure S 4-5 Simulated Haematocrit-to-age relationship for paediatric obesity from 2 to 8 years old 
(Grey circle).  

Gerhart et al. (2022) [156] reported individual haematocrit data for obese children from combined clinical 
trial data represented in the red circles [156]. Jeong et al. (2021) (A) represented data for girls [362]. 
Jeong et al. (2021) (B) represented data for boys [362]. Belo et al. (2014) (A) and Belo et al. (2014) (B) 
represented data for girls and boys, respectively [363]. Elhag et al. (2018) (A) represented data for girls 
[411]. Elhag et al. (2018) (B) represented data for boys [411]. The horizontal lines showed the age range 
reported for each published study. The coloured circles with the vertical lines are different for each study; 
Kilic et al. (2016), median with range; Panichsillaphakit et al. (2021), median with interquartile range; 
Oni et al. (2021), mean with 95% confidence interval; Jeong et al. (2021) mean with standard deviation 
(SD); Belo et al. (2014), mean with SD; Cacciari et al. (1988), mean with SD; Elhag et al. (2018), mean 
with SD. 
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4.6.1.3 Serum albumin-to-age relationship 

As no significant difference was reported in human serum albumin values between genders 

[156], the relationship for the range of age between 2 to 18 years old was predicted based on 

the general mathematical equation (4.7); 

 
Serum albumin (g/L) = 33.746 + (1.1287 x ln(365 x age)) (4.7) 

 

The spread of simulated serum albumin over age values was within the wide range of 

published values from seven references (Figure S 4-6). Additionally, the predicted values 

(27.62 – 58.19 g/L) are echoed with the published reference values (Table S 4-2) and 

simulated values by Gerhart et al. (2022) [156]. Therefore, it validated the simulated serum 

albumin values for the paediatric obesity population developed in this study. 

 

Table S 4-2 Summarised results from the literature search for serum albumin values in paediatric obesity 

Reference 
Age 
(years)a 

Number of 
subjects (n) 

Males (%) Serum Albumin (g/L) 

Predicted values 2 - 18 20,000 50 42.80 (4.27)b 

Yu et al. (2021) [364] 6 – 18 449 62.81 49.40 (2.80)b 

Elhag et al. (2018) [411] 13 – 17 79 45 41.14 (4.06)b 

Abitbol et al. (2009) [365] 1 – 21  22 50 40.00 (5.00)b 

Marginean et al. (2014) [367] 1 – 18  102 57.84 46.60 (4.70)b 

Marginean et al. (2016) [368] 1 – 18  121 53.72 47.20 (3.70)b 

Marginean et al. (2019) [366] 5 – 18  77 NR 48.92 (3.26)b 

Marginean et al. (2020) [157] 5 – 18  91 NR 48.48 (3.46)b 

NR, not reported; a range; b mean (SD) 
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Figure S 4-6 Predicted Serum albumin-to-age relationship for paediatric obesity from 2 to 18 years old 
(Grey circle).  

Gerhart et al. (2022) (A) reported individual serum albumin data for children with obesity from combined 
clinical trial data in red circles [156]. Gerhart et al. (2022) (B) reported individual data for paediatric 
obesity from the Paediatric Trial Network (PTN) data repository [156]. The horizontal lines showed the 
age range reported for each published study. The coloured squares with vertical lines represented the 
mean with SD. 
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4.6.1.4 Alpha-1-acid glycoprotein (AGP)-to-age relationship 

A similar pattern can be seen in AGP-to-age correlation as another protein-binding component 

in blood. One polynomial mathematical equation (4.8) to describe the correlation with age from 

2 to 18 years old;  

AGP (
g

L
) = 

0.887 ×(365 ×age)
0.38

 

(8.89
0.38

+(365 × age)
0.38

 
(4.8) 

 

The distribution of predicted AGP values was within the broad range of AGP values observed 

from four different studies (Figure S 4-7). Furthermore, the predicted values were comparable 

with the observed values, thus validating the obese children population file (Table S 4-3). 

 

Table S 4-3 Summarised results from the literature search for AGP values in paediatric obesity 

Reference Age (years)a 
Number of 
subjects (n) 

Males 
(%) 

AGP (g/L) 

Predicted values 2 - 18 20,000 50 0.80 (0.10)c 

Gerhart et al. (2022) [156]b 2 – 18 32,001 50 1.07 (0.40)c 

Sobieska et al. (2013) [369] 12 – 14 28 100 0.94 (0.25)c 

Sobieska et al. (2013) [369] 12 – 14 23 0 0.91 (0.25)c 

Sobieska et al. (2013) [369] 15 – 18  33 100 0.90 (0.26)c 

Sobieska et al. (2013) [369] 15 – 18  40 0 1.33 (0.28)c 

Gibson et al. (2014) [370] 3 – 6  49 NR 1.05 (0.90 – 1.30)d 

Ferrari et al. (2015) [371] 12.5 – 17.5 876 46 0.80 (0.60 – 1.10)d  

NR, not reported; a range; b Gerhart et al., 2022 AGP values are the simulated values for paediatric 
obesity; c mean (SD); d median (range) 
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Figure S 4-7 Predicted AGP-to-age relationship for paediatric obesity from 2 to 18 years old (Grey circle).  

Sobieska et al. (2013) (A) represented data for boys aged 12 to 14 [369]. Sobieska et al. (2013) (B) 
represented data for girls aged 12 to 14 [369]. Sobieska et al. (2013) (C) represented data for boys 15 
to 18 years old [369]. Sobieska et al. (2013) (D) represented data for girls 15 to 18 years old [369]. The 
horizontal lines showed the age range reported for each published study. The coloured squares with 
vertical lines represented the mean with SD for Gerhart et al. (2022) [156] and Sobieska et al. (2013) 
[369]. The coloured square with vertical lines represented the median with range for Gibson et al. (2014)  
[370] and Ferrari et al. (2015) [371]. 
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4.6.1.5 Glomerular filtration rate (GFR)-to-age relationship 

Since GFR is the function of body surface area (BSA) as described in mathematical equation 

(4.9), the GFR increases as age increases; 

GFR (
mL

min
) = -17.74 + 99.054(BSA) − 6.1604(BSA)

2
 

(4.9) 

 
The absolute GFR was comparable with the reported values by Correia-Costa et al. (2016) 

[160] for paediatric obesity ages 8 to 9 (Figure S 4-8 and Table S 4-4). Additionally, BSA-

adjusted GFR for obese children aged 4 – 18 years old was compared with values published 

by Duzova et al. (2013) [372] and Goknar et al. (2015) [347]. The predicted values in virtual 

obese children reflected the published values (Table S 4-4) despite a broader range at 16 to 

18 years old in the simulated values (Figure S 4-8). Considering that both predicted absolute 

and BSA-adjusted GFR were in line with observed values, it validated the paediatric obesity 

population file. 

 
Table S 4-4 Summarised results from the literature search for GFR values in paediatric obesity 

Reference Age (years)a 
Number of 
subjects (n) 

Males (%) GFR (mL/min) 

Predicted values 8 – 9  1,230 50 103.50 (18.19)b 

Correia-Costa et al. (2016) [160] 8 – 9 61 66 120.80 (21.50)b 

Predicted values 5 – 18 16,274 50 137.40 (24.72)c 

Duzova et al. (2013) [372] 5 – 18 318 NR 122.70 (21.60)c 

Predicted values 4 – 16 15,104 50 132.70 (20.44)c 

Goknar et al. (2015) [347] 4 – 16 84 54.76 152.22 (23.94)c 

NR, not reported; a range; b mean (SD); c unit of mL/min/1.73m2, presented as mean (SD). 
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Figure S 4-8 Absolute GFR (mL/min)-to-age relationship for paediatric obesity from 8 to 9 years old (A) 
and BSA-adjusted GFR (mL/min/1.73m2)-to-age correlation for paediatric obesity from 4 to 18 years old 
(B).  

Grey circles are the predicted value. The horizontal lines showed the age range reported for each 
published study. The coloured squares with vertical lines represented the mean with SD. 
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4.6.2 Supplementary figures 

 

Figure S 4-9 Comparison of predicted clearance (A) and volume of distribution (B) at steady-state for 
healthy and obese paediatric doses.  

The coloured circles represent the mean, and the horizontal lines represent the standard deviations. 
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Figure S 4-10 Predicted maximum concentrations (Cmax) versus daily doses for age group 2 to 6 years old.  

Solid lines represent the means, dotted lines represent the SD, and grey area is the therapeutic range for amlodipine (1 ng/mL – 57.2 ng/mL).    
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Figure S 4-11 Predicted Cmax versus daily doses for age group 6.01 to 12 years old.  

Solid lines represent the means, dotted lines represent the SD, and grey area is the therapeutic range 
for amlodipine (1 ng/mL – 57.2 ng/mL).    
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Figure S 4-12 Predicted Cmax versus daily doses for age group 12.01 to 18 years old.  

Solid lines represent the means, dotted lines represent the SD, and grey area is the therapeutic range 
for amlodipine (1 ng/mL – 57.2 ng/mL).    
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Figure S 4-13 Summary of pharmacokinetic parameters at steady-state in healthy paediatric from 2 to 18 years old.  

Cmax, maximum concentration; Cmin, minimum concentration; AUC0-24ss, area-under-the-curve at steady-state; 67 ng/mL, toxic level; 1 ng/mL to 57.2 ng/mL, 
therapeutic concentration.  
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Figure S 4-14 Summary of pharmacokinetic parameters at steady-state in paediatric obesity from 2 to 18 years old administered with weight-based dose.  

Cmax, maximum concentration; Cmin, minimum concentration; AUC0-24ss, area-under-the-curve at steady-state; 67 ng/mL, toxic level; 1 ng/mL to 57.2 ng/mL, 
therapeutic concentration.  
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Figure S 4-15 Summary of pharmacokinetic parameters at steady-state in paediatric obesity from 2 to 18 years old administered with fixed dose.  

Cmax, maximum concentration; Cmin, minimum concentration; AUC0-24ss, area-under-the-curve at steady-state; 67 ng/mL, toxic level; 1 ng/mL to 57.2 ng/mL, 
therapeutic concentration.  

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17       18

Cmax (ng/mL)
20.41 ± 

6.65

17.06 ± 

5.31

13.52 ± 

4.35

11.32 ± 

3.4
9.28 ± 3

8.02 ± 

2.37

6.83 ± 

2.21

6.09 ± 

1.82

5.32 ± 

1.71

4.87 ± 

1.47

4.36 ± 

1.38

4.08 ± 

1.28

3.72 ± 

1.17

3.61 ± 

1.16

3.26 ± 

0.91

3.32 ± 

1.07

Cmin (ng/mL)
14.06 ± 

5.84

11.02 ± 

4.02

9.39 ± 

3.85

7.46 ± 

2.63

6.51 ± 

2.67

5.35 ± 

1.89

4.82 ± 

1.97

4.09 ± 

1.45

3.77 ± 

1.53

3.29 ± 

1.17
3.1 ± 1.23 2.77 ± 1

2.64 ± 

1.04

2.45 ± 

0.91
2.29 ± 0.8

2.26 ± 

0.83

AUC0-24ss (ng/mL.h)
414.67 ± 

152.39

335.94 ± 

110.08

276.27 ± 

100.23

225.22 ± 

71.65

190.75 ± 

69.33

160.49 ± 

50.86

140.8 ± 

51.29

122.18 ± 

39.05

109.93 ± 

39.72

97.98 ± 

31.69

90.19 ± 

32.09

82.24 ± 

27.24

76.91 ± 

27.13

72.79 ± 

24.58

67.11 ± 

20.77

67 ± 

22.66

% Cmax > 67 ng/mL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 ng/mL < % Cmax < 57.2 ng/mL 100 97.92 100 100 100 100 100 100 100 100 100 100 100 100 100 100

Cmax (ng/mL)
31.32 ± 

10.22

26.11 ± 

8.18

20.61 ± 

6.64

17.23 ± 

5.2

14.08 ± 

4.56

12.16 ± 

3.61

10.33 ± 

3.35
9.2 ± 2.76

8.04 ± 

2.59

7.35 ± 

2.23

6.58 ± 

2.08

6.16 ± 

1.93
5.6 ± 1.76

5.44 ± 

1.75

4.91 ± 

1.38
5 ± 1.62

Cmin (ng/mL)
21.74 ± 

8.99

17.01 ± 

6.24

14.4 ± 

5.88

11.41 ± 

4.04

9.92 ± 

4.05

8.14 ± 

2.88

7.32 ± 

2.99
6.2 ± 2.2

5.71 ± 

2.31

4.98 ± 

1.78

4.68 ± 

1.86

4.18 ± 

1.51

3.99 ± 

1.57
3.7 ± 1.37 3.46 ± 1.2

3.41 ± 

1.26

AUC0-24ss (ng/mL.h)
639.06 ± 

234.63

516.44 ± 

170.6

422.5 ± 

153.11

343.7 ± 

110.07

290.11 ± 

105.41

243.79 ± 

77.63

213.42 ± 

77.74

185.06 ± 

59.37

166.27 ± 

60.09

148.15 ± 

48.07

136.22 ± 

48.48

124.19 ± 

41.24

116.05 ± 

40.94

109.81 ± 

37.13

101.19 ± 

31.32

101.03 ± 

34.21

% Cmax > 67 ng/mL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 ng/mL < % Cmax < 57.2 ng/mL 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

Cmax (ng/mL)
42.66 ± 

13.93

35.48 ± 

11.18

27.91 ± 

8.99

23.29 ± 

7.07

18.99 ± 

6.16

16.38 ± 

4.88

13.9 ± 

4.52

12.37 ± 

3.72

10.79 ± 

3.48
9.87 ± 3 8.82 ± 2.8 8.25 ± 2.6

7.51 ± 

2.36

7.29 ± 

2.34

6.57 ± 

1.84

6.69 ± 

2.17

Cmin (ng/mL)
29.83 ± 

12.25

23.31 ± 

8.6

19.6 ± 

7.98

15.51 ± 

5.52

13.43 ± 

5.47
11 ± 3.91

9.87 ± 

4.02

8.36 ± 

2.97
7.68 ± 3.1 6.7 ± 2.39 6.29 ± 2.5

5.62 ± 

2.03

5.35 ± 

2.11

4.97 ± 

1.85

4.64 ± 

1.61

4.58 ± 

1.69

AUC0-24ss (ng/mL.h)
873.77 ± 

320

704.83 ± 

234.49

573.83 ± 

207.59

465.96 ± 

150.18

392.04 ± 

142.34

329.09 ± 

105.29

287.49 ± 

104.69

249.14 ± 

80.22

223.52 ± 

80.77

199.09 ± 

64.8

182.86 ± 

65.08

166.68 ± 

55.49

155.65 ± 

54.93

147.25 ± 

49.86

135.62 ± 

41.98

135.42 ± 

45.92

% Cmax > 67 ng/mL 6.25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 ng/mL < % Cmax < 57.2 ng/mL 83.33 98.08 97.87 100 100 100 100 100 100 100 100 100 100 100 100 100

Cmax (ng/mL)
54.39 ± 

17.75

45.17 ± 

14.3

35.42 ± 

11.41

29.51 ± 

9.01

24.01 ± 

7.79

20.68 ± 

6.19

17.52 ± 

5.7

15.59 ± 

4.7

13.58 ± 

4.38

12.41 ± 

3.79

11.09 ± 

3.52

10.37 ± 

3.28

9.43 ± 

2.97

9.16 ± 

2.95

8.25 ± 

2.32
8.4 ± 2.73

Cmin (ng/mL)
38.28 ± 

15.62

29.9 ± 

11.09

25 ± 

10.12

19.75 ± 

7.07

17.03 ± 

6.92

13.95 ± 

4.97

12.47 ± 

5.08

10.56 ± 

3.77

9.69 ± 

3.91

8.45 ± 

3.03

7.92 ± 

3.14

7.07 ± 

2.57

6.74 ± 

2.65

6.25 ± 

2.32

5.83 ± 

2.02

5.76 ± 

2.13

AUC0-24ss (ng/mL.h)
1118 ± 

407.84

900.7 ± 

301.5

730.04 ± 

263.51

591.9 ± 

191.89

496.48 ± 

180.08

416.35 ± 

133.81

362.98 ± 

132.12

314.38 ± 

101.59

281.64 ± 

101.76

250.79 ± 

81.88

230.12 ± 

81.9

209.73 ± 

69.99

195.7 ± 

69.07

185.09 ± 

62.77

170.4 ± 

52.76

170.16 ± 

57.78

% Cmax > 67 ng/mL 16.67 5.77 2.13 0 0 0 0 0 0 0 0 0 0 0 0 0

1 ng/mL < % Cmax < 57.2 ng/mL 68.75 76.92 95.74 100 100 100 100 100 100 100 100 100 100 100 100 100

Cmax (ng/mL)
66.48 ± 

21.65

55.15 ± 

17.54

43.11 ± 

13.87

35.87 ± 

11

29.12 ± 

9.45

25.07 ± 

7.53
21.2 ± 6.9

18.85 ± 

5.7

16.41 ± 

5.29

14.99 ± 

4.59

13.39 ± 

4.25

12.52 ± 

3.96

11.37 ± 

3.58

11.04 ± 

3.56
9.94 ± 2.8

10.12 ± 

3.29

Cmin (ng/mL)
47.08 ± 

19.05

36.76 ± 

13.68

30.57 ± 

12.32

24.12 ± 

8.67

20.73 ± 

8.4

16.96 ± 

6.07

15.13 ± 

6.15

12.81 ± 

4.58

11.73 ± 

4.73

10.22 ± 

3.67
9.57 ± 3.8

8.55 ± 

3.11
8.13 ± 3.2

7.54 ± 

2.81

7.04 ± 

2.44

6.95 ± 

2.57

AUC0-24ss (ng/mL.h)
1370.97 ± 

497.56

1103.59 ± 

371.32

890.9 ± 

320.68

721.4 ± 

235.13

603.34 ± 

218.55

505.54 ± 

163.17

439.85 ± 

160.01

380.78 ± 

123.46

340.65 ± 

123.05

303.26 ± 

99.29

277.98 ± 

98.93

253.31 ± 

84.73

236.2 ± 

83.37

223.35 ± 

75.85

205.52 ± 

63.65

205.25 ± 

69.78

% Cmax > 67 ng/mL 35.42 30.77 6.38 0 0 0 0 0 0 0 0 0 0 0 0 0

1 ng/mL < % Cmax < 57.2 ng/mL 31.25 48.08 87.23 98.11 97.87 100 100 100 100 100 100 100 100 100 100 100

Cmax (ng/mL)
78.91 ± 

25.61

65.4 ± 

20.88

35.87 ± 

11

42.38 ± 

13.06

34.33 ± 

11.13

29.53 ± 

8.91

24.94 ± 

8.11

22.16 ± 

6.72

19.27 ± 

6.22
17.6 ± 5.4

15.7 ± 

4.99

14.68 ± 

4.66

13.33 ± 

4.2

12.94 ± 

4.18

11.65 ± 

3.28

11.86 ± 

3.86

Cmin (ng/mL)
56.2 ± 

22.54

43.87 ± 

16.38

24.12 ± 

8.67

28.63 ± 

10.33

24.52 ± 

9.9

20.05 ± 

7.19

17.84 ± 

7.24

15.1 ± 

5.41

13.8 ± 

5.56

12.03 ± 

4.33

11.25 ± 

4.46

10.05 ± 

3.66

9.55 ± 

3.75
8.85 ± 3.3

8.26 ± 

2.86

8.15 ± 

3.02

AUC0-24ss (ng/mL.h)
1631.94 ± 

588.67

1313.04 ± 

443.61

721.4 ± 

235.13

854.31 ± 

279.81

712.54 ± 

257.7

596.61 ± 

193.34

518.08 ± 

188.33

448.31 ± 

145.84

400.51 ± 

144.62

356.48 ± 

117.04

326.44 ± 

116.15

297.44 ± 

99.71

277.14 ± 

97.83

262 ± 

89.1

240.98 ± 

74.64

240.68 ± 

81.93

% Cmax > 67 ng/mL 70.83 51.92 14.77 1.89 2.13 0 0 0 0 0 0 0 0 0 0 0

1 ng/mL < % Cmax < 57.2 ng/mL 22.92 38.46 72.34 84.91 95.75 100 100 100 100 100 100 100 100 100 100 100

Cmax (ng/mL)
91.64 ± 

29.62

75.91 ± 

24.3

59.04 ± 

18.94

49.02 ± 

15.16

39.64 ± 

12.85

34.06 ± 

10.31

28.73 ± 

9.35

25.52 ± 

7.77

22.17 ± 

7.16

20.24 ± 

6.23

18.05 ± 

5.73

16.87 ± 

5.36

15.31 ± 

4.82

14.85 ± 

4.8

13.37 ± 

3.76

13.62 ± 

4.44

Cmin (ng/mL)
65.6 ± 

26.06

51.23 ± 

19.16

42.22 ± 

16.83

33.27 ± 

12.05

28.39 ± 

11.43

23.21 ± 

8.35

20.6 ± 

8.34

17.43 ± 

6.26

15.91 ± 

6.39
13.86 ± 5

12.95 ± 

5.13

11.56 ± 

4.22

10.98 ± 

4.31

10.18 ± 

3.79

9.49 ± 

3.28

9.37 ± 

3.47

AUC0-24ss (ng/mL.h)
1900.24 ± 

680.76

1528.62 ± 

518.06

1225.57 ± 

438.09

990.5 ± 

325.84

824.02 ± 

297.45

689.51 ± 

224.3

597.64 ± 

217.05

516.97 ± 

168.7

461.22 ± 

166.46

410.44 ± 

135.12

375.48 ± 

133.57

342.09 ± 

114.93

318.52 ± 

112.43

301.06 ± 

102.52

276.79 ± 

85.74

276.47 ± 

94.22

% Cmax > 67 ng/mL 77.08 61.54 25.53 13.21 4.26 0 0 0 0 0 0 0 0 0 0 0

1 ng/mL < % Cmax < 57.2 ng/mL 10.42 32.69 53.19 67.93 93.62 100 97.87 100 100 100 100 100 100 100 100 100
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CHAPTER 5 – Conclusion and future work 
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5.1 Conclusion 

Physiologically based pharmacokinetic (PBPK) modelling has been used as a dynamic 

modelling technique within this thesis to explore the optimum dosing strategy in special 

populations such as pregnant women, cancer adults with obesity, and paediatric obesity. 

The influence of physiological alterations in pregnant women as a special population with the 

CYP2D6 phenotypes in fluvoxamine concentration and dosing strategy was the focus of the 

first part of this thesis. Using the pragmatic approach of mechanistic modelling, the 

fluvoxamine model was successfully developed and validated to predict fluvoxamine exposure 

in the healthy adult and pregnant women population. Furthermore, the model was verified with 

the foetoplacental model for the simulation of fluvoxamine concentration that crosses the 

placental barrier. Moreover, the fluvoxamine model has been validated in the CYP2D6 

extensive metaboliser (EM) and poor metaboliser (PM) adult population and explored the 

impact of CYP2D6 phenotype on fluvoxamine concentration in pregnant women population 

and foetus model.  

The fluvoxamine pharmacokinetics prediction and plasma concentration profile simulation 

made based on the model were within the acceptance range when compared with the 

observed data from 11 studies in healthy subjects, four studies in CYP2D6 EM and PM 

populations, one study in pregnant women population and three studies in foetal placental 

subjects. The model was then applied to explore the influence of CYP2D6 phenotype on 

fluvoxamine concentration in pregnant women and foetus. The results revealed a significant 

difference between the ultra-rapid metaboliser (UM), EM, and PM pregnant women 

populations throughout the gestational period, with few exceptions. As for the foetus model, 

significant differences were seen when compared to the PM population but not between UM 

and EM. In addition, the decreased trend in pregnant women and elevated pattern in foetuses 

of fluvoxamine concentrations seen in all three populations was acknowledged for determining 

optimal fluvoxamine-dosing strategies based on the CYP2D6 phenotype.  

The fluvoxamine model indicated the necessity for dose increments in pregnant women, 

particularly with the UM and EM populations. In addition, the PBPK model demonstrates the 

advantages of phenotype testing prior to initiation of selective serotonin reuptake inhibitors 

(SSRI) such as fluvoxamine, potentially assisting the physician in deciding the appropriate 

dosing regimen throughout the gestational period for better mental health management in 

pregnant women. While the methodologically robust framework implemented in the 

development and validation of the models to predict the optimal perinatal dosing strategy for 

fluvoxamine, it is essential to validate the dosing recommendation in a confirmatory trial, thus 
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improving the confidence of utilising the mechanistic modelling approach in predicting a 

precise dose in pregnant women population considering the enzyme phenotype status. 

In the second part of this thesis, the focus shifted to the impact of the physiological changes 

in the adult cancer obese population on imatinib concentration and assessed the TDM-guided 

dosing adjustment strategy to recover the imatinib through concentration into the target level. 

Employing the PBPK modelling, the imatinib model was validated to predict the plasma 

concentration in healthy adults, adult cancer and Caucasian populations with observed data 

from 10 published studies. Moreover, the model was verified to simulate imatinib 

concentrations in lean, overweight and obese cancer populations with data from a study.  

Assessment in terms of physiological diversity between the three populations based on the 

simulated demographic cancer population revealed significant differences between obese and 

lean populations in 12 out of 14 physiological parameters reviewed in this chapter, including 

body weight, body surface area (BSA), liver weight, cardiac output, serum creatinine, GFR, 

CYP3A4 and CYP2C8 metabolism enzyme abundances as well as ABCB1 and ABCG2 

transporter abundances. The physiological differences led to substantial differences between 

obese and lean cancer populations, with respect to the pharmacokinetic parameters such as 

maximum concentration (Cmax) and area-under-the-curve (AUC) but not the trough 

concentrations (Cmin). Nevertheless, the percentage of subjects with Cmin below the lower 

threshold of 750 ng/mL was highest in the obese cancer population, followed by overweight, 

then lean. Therefore, the performance of the TDM-guided dose adjustment was assessed in 

recovering the subjects with Cmin outside the recommended Cmin level back into the target 

concentration of 750 ng/mL – 1,500 ng/mL.  

Simulated virtual clinical trials successfully demonstrated the ability of TDM-guided imatinib 

dose adjustment to recover the subjects with Cmin outside the target range back within the 

aimed concentration level for all three population groups, particularly in the case of virtual 

subjects exhibiting trough concentrations exceeding 450 ng/mL. Thus, the PBPK model was 

able to address the physiological and pharmacokinetic differences between the lean, 

overweight and obese cancer populations and revealed that the same TDM-guided imatinib 

dosage adjustment scheme was applicable to the lean, overweight, and obese cancer 

populations in order to attain the target concentration.  

The last part of this thesis deals with the paediatric obesity population as a special population 

and focuses on the impact of obesity on drug pharmacokinetics in paediatric patients, with a 

case study of optimising the amlodipine dose in the population. With the PBPK framework, the 

paediatric population model was successfully developed and validated, particularly the six 

relevant physiological parameters aligned with observed data from several publications. 
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Furthermore, the ability of the paediatric obesity model to simulate pharmacokinetic profiles 

was validated with the metformin, ceftazidime, and amlodipine compounds. Comparison of 

the predicted pharmacokinetic parameters and profiles were made with observed 

pharmacokinetic data from seven published studies for metformin consisting of healthy 

subjects, obese adults, paediatric subjects and paediatric obesity subjects, one study for 

ceftazidime involving both paediatric with and without obesity, and nine studies for amlodipine 

consisting of healthy adults, obese adults as well as paediatric with and without obesity 

subjects.  

With amlodipine as a case study, the model shows that the physiological changes in paediatric 

obesity led to significant differences in both Cmax and AUC between paediatric subjects with 

and without obesity across the age range of 2 to 18 years old when the subjects were dosed 

with a fixed dose regimen. However, no difference was observed when administered with the 

weight-based dosing regimen. Therefore, the obese children required a 1.25 – 1.5-fold higher 

dose in order to attain a comparable Cmax as non-obese paediatric when opting for a fixed-

dose regimen.  

This chapter highlights the capabilities of the paediatric obesity population model to reproduce 

the observed pharmacokinetic data for metformin, ceftazidime and amlodipine compounds. 

Moreover, the model was able to discriminate the amlodipine pharmacokinetic concentrations 

between obese and non-obese paediatrics and identified the optimum dose for the paediatric 

obesity population to achieve the same exposure as non-obese. 

In summary, this thesis effectively showcases the utilisation of PBPK modelling and simulation 

to address the influence of physiological changes in special populations on the 

pharmacokinetic parameters. In addition, this thesis further demonstrates the extent of the 

PBPK approach in exploring the optimal dose for special populations from the pharmacokinetic 

perspective.  
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5.2 Future work 

The effectiveness of PBPK modelling in comprehensively elucidating the influence of 

physiological changes in special populations on the drug pharmacokinetics, identifying the 

difference in terms of pharmacokinetics, and compensating it through dosage modification 

was demonstrated throughout these three novel projects. Nevertheless, specific dimensions 

of the population models can be further elaborated and refined. These parts include: 

• The influence of CYP metabolism enzyme polymorphism in pregnant women on 

drug pharmacokinetics was demonstrated in the first part of this thesis, combined 

with the changes in enzyme activities throughout the gestational period elevated 

the challenges to provide an informed decision regarding the efficacious dose. 

Therefore, future work can focus on generating robust and validated CYP 

metabolism enzyme polymorphism activities in the pregnant women population to 

be incorporated into the population model. 

 

• Physiological changes that occurred in obese cancer populations have been 

observed to alter the drug pharmacokinetics in Chapter 3 of this thesis. 

Nevertheless, information on the changes in CYP metabolism enzymes, 

transporters, and protein binding demands further in-depth investigation since the 

data on the changes in both cancer and obese populations was still limited. Thus, 

it warrants further research for the development of a specific population model for 

obese cancer. 

 

• The influence of obesity on the paediatric population was observed in Chapter 4, 

which necessitates a dose adjustment in order to attain the same exposure as non-

obese children. Thus, future research can focus on the changes in various CYP 

metabolism enzymes in obese children as they evolve over the age group, 

particularly the primary metabolism enzyme involved in drug metabolism and 

clearance.  
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