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Abstract
A greedy pursuit strategy which finds a common basis for approximating a set of similar
signals is proposed. The strategy extends the Optimized Orthogonal Matching Pursuit
approach to selecting the subspace containing the approximation of all the signals in the
set. The method, called Simultaneous Optimized Orthogonal Matching Pursuit, is step-
wise optimal in the sense of minimizing at each iteration the mean square error norm of
the signals in the set. When applied to compression of electrocardiograms, significant
gains over other transformation based compression techniques are demonstrated on the
MIT-BIH Arrhythmia dataset.

1 Introduction
Important signals in everyday life such as natural images, audio, and electrocardiogram
records, are in general highly compressible. This implies that the original signal, available as
a large set of numerical values, can be transformed into a set of much smaller cardinality or a
set containing a large proportion of zero values. The transformation, which should not com-
promise the informational content of the data, is frequently called sparse representation. Tra-
ditional methods for sparse representation of signals are realized by applying an orthogonal
transformation and disregarding the least relevant points in the transformed domain. Subse-
quently the signal is recovered by means of the inverse transformation. However, alternative
transformations, which are not orthogonal but adapted to a signal at hand, have been shown
to render high level of sparsity. Such transformations aim at representing a signal as a super-
position of elements, which are called ‘atoms’ and are selected from a large set called ‘dictio-
nary’. The superposition is said to be sparse if it involves a number of atoms much smaller
than the number of numerical values representing the original signal.

Given a dictionary, the problem of finding the sparsest approximation of a signal, up to
some acceptable error, is an NP-hard problem [1]. In practice it is addressed by tractable
methodologies known as Pursuit Strategies. Such methodologies can be grouped for the most
part in two broad categories. Namely, Basis Pursuit and Greedy Pursuit Strategies. The Basis
Pursuit (BP) approach endeavors to obtain a tractable sparse solution by minimization of
the 1-norm [2]. Greedy algorithms seek for a sparse solution by stepwise selection of dictio-
nary’s atoms. When dealing with real data the latter are in general more convenient. From the
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seminal Matching Pursuit (MP) [3] and Orthogonal Matching Pursuit (OMP) [4] methods, a
number of Greedy Pursuit Strategies have been developed to improve the process of sparsely
representing single signals [5–16]. Due to complexity issues and memory requirements, most
of these techniques are to be applied by segmenting the signal and approximating each seg-
ment independently of the others. Nonetheless, when the segments bear similarity with each
other, for some applications it is convenient to look for the dictionary’s atoms suitable to rep-
resent all the segments simultaneously. The greedy Pursuit Strategy which has been dedi-
cated to simultaneously approximate a set of signal is based on OMP [4] and has been termed
Simultaneous Orthogonal Matching Pursuit (SOMP) [17]. Since in this work we extend the
Optimized Orthogonal Matching Pursuit method [6] to simultaneously approximate a set of
signals, we term the new approach Simultaneous Optimized Orthogonal Matching Pursuit
(SOOMP).

The difference between SOMP and the SOOMP approach introduced in this work is equiv-
alent to the difference between OMP and OOMP methods, both for approximating single sig-
nals. OOMP is stepwise optimal in the sense of minimizing at each iteration the norm of the
residual error. Whilst OMP minimizes the norm of the error only with respect to the coef-
ficients of the atomic superposition, OOMP minimizes the norm of the error with respect
to those coefficients and the selection of a new atom. In the case of multiple signals SOOMP
is designed to minimize the mean value of the error norm squared. An additional advan-
tage arises from the proposed implementation. Based on adaptive biorthogonalization, the
SOOMP method produces at each iteration the common dual basis to the basis of selected
atoms. This allows to calculate the coefficients of the representation of each signal in the set
simply by computation of inner products. We implement the previous SOMP method in an
equivalent manner and compare the two approaches for the approximation of stereo music,
by selecting atoms from a highly coherent trigonometric dictionary. The practical relevance of
the SOOMP approach is further illustrated by using it for compression of electrocardiogram
(ECG) records.

An ECG signal represents a sequence of heartbeats which, if properly segmented and
aligned, are suitable to be simultaneously approximated. This property is shown to benefit
compression. Reliable comparison with other compression techniques is made possible by
recuse to an adaptive quantization procedure that facilitates to reconstruct the whole ECG
record at the required quality. The compression results are shown to significantly improve
upon results produced by different transformation based approaches.

The paper is organized as follows: Sect 2 introduces the problem and the mathematical
notation. Sect 3 establishes the proposed SOOMP approach for simultaneous approxima-
tion of a set of similar signals. Sect 4 compares the SOOMP and SOMP approaches for the
simultaneous approximation of stereo music. Sect 5 applies the proposed SOOMP method for
compressing digital ECG records and produces reliable comparisons with previously reported
results. The conclusions are presented in Sect 6.

2 Mathematical introduction of the problem
In order to pose in mathematical terms the problem to be addressed we need to introduce the
notation used throughout the paper as well as some preliminary background.

The sets of real, integer, and natural numbers are indicated byℝ,ℤ, and ℕ, respectively.
Boldface letters are used to indicate Euclidean vectors or matrices whilst standard mathemat-
ical fonts indicate components, e.g., f∈ℝN, N∈ℕ is a vector of components f(i), i = 1,… ,N
and C∈ℝQ×k is a matrix of elements C(i, j), i = 1,… ,Q, j = 1,… , k which when not leaving
room for ambiguity will also be represented as C(∶, j), j = 1,… , k. A set of Q signals of equal
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length N, to be simultaneously approximated in a common subspace, is represented as a set
of vectors {f{q}∈ℝN, q = 1,… ,Q}. The inner product is indicated as ⟨⋅, ⋅⟩, e.g. for f{1}∈ℝN

and f{2}∈ℝN

⟨f{1}, f{2}⟩ =
N
∑
i=1

f{1}(i)f{2}(i).

The 2-norm induced by the inner product is denoted as ∥ ⋅ ∥, e.g. for f{q}∈ℝN

∥f{q}∥ =
√
⟨f{q}, f{q}⟩ =

¿
ÁÁÀ

N
∑
i=1
(f{q}(i))2.

A set ofM vectors

D = {dn ∈ℝN ; ∥dn∥ = 1}
M
n=1 ,

such that span (D) =ℝN and N <M, is called a redundant dictionary forℝN and its elements
are called atoms.

In our context a signal f∈ℝN is assumed to be well approximated by an element, say fk,
belonging to a finite dimensional subspace Vk ⊂ℝN. This assumption implies that, within a
tolerance 𝜌much larger than the numerical errors in the calculations, fk ∈Vk is accepted to
be a good approximation of f∈ℝN if ∥f – fk∥ < 𝜌. Examples of signals fulfilling this definition
are, amongst others, audio signals, and electrocardiograms. These are all signals with accept-
able approximations which, without affecting their informational content, do not necessarily
produce a highly accurate point-wise reproduction of the signals. These type of signals are
suitable for lossy compression.

Since this work concerns approximation of similar signals we need to make an assumption
on the signals that will be considered. We say that a finite set of Q signals {f{q}∈ℝN}Qq=1 are
similar if they can be well approximated in a subspace Vk of dimension k, with k significantly
smaller than N. This is equivalent to assuming that there exists a common basis {dℓn}kn=1 for
Vk such that each signal f{q} is approximated as

̃f{q} =
k
∑
n=1

c{q}(n)dℓn , q = 1,… ,Q.

The quality of the approximated set will be assessed in mean value

E =
Q

∑
q=1

p(q)∥f{q} – ̃f{q}∥2,

where p(q) ≥ 0 with∑Q
q=1 p(q) = 1.

3 Strategy for simultaneous approximation of a set of signals
Given a set of similar signals {f{q}∈ℝN}Qq=1 and a dictionary, the aim is to simultane-
ously approximate all the signals in the set {f{q}∈ℝN}Qq=1 within a common subspace Vk =
span ({dℓn}kn=1). In other words, each signal f{q}∈ℝN is to be approximated as a k-term
atomic superposition

f{q}k =
k
∑
n=1

c{q}(n)dℓn , q = 1,… ,Q, (1)
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where the atoms dℓn , n = 1,… , k in (1) are selected from the given dictionary according to the
criterion of optimality that will be established by Proposition 1 in the next subsection. Let us
suppose for the moment that these atoms are known. Assigning a weight p(q) ≥ 0 to the signal
f{q}, with∑Q

q=1 p(q) = 1, the coefficients c{q}∈ℝk in (1) are required to minimize the mean
value of the square norm of the errors in the approximation of the set of signals, i.e.

c{q},… , c{Q} = argmin
c′{q},…,c′{Q}

Q

∑
q=1

p(q)∥f{q} –
k
∑
n=1

c′{q}(n)dℓn∥2. (2)

Since p(q) ≥ 0 the above minimization is equivalent to finding the components
c{q}(n), n = 1,… , k of each vector c{q} such that

c{q}(1),… , c{q}(n) = argmin
c′{q}(1),…,c′{q}(n)

∥f{q} –
k
∑
n=1

c′{q}(n)dℓn∥2 q = 1… ,Q. (3)

Accordingly, the minimization with respect to the coefficients in (1) can be implemented
by adaptive biorthogonalization [18], as proposed within the OOMP algorithm for a single
signal [6],

c{q}(n) = ⟨𝛽k
n, f{q}⟩ , q = 1,… ,Q, (4)

with vectors 𝛽k
n calculated as will be described in the next section.

The selection of the atoms dℓn , n = 1… , k in the decomposition (1) such that

Q

∑
q=1

p(q)∥f{q} –
k
∑
n=1

c{q}(n)dℓn∥2 is minimized

poses an intractable problem (for a dictionary ofM atoms there are M!
(M–k)!k! possibilities to be

checked). We address the selection in a tractable manner by extending the OOMP strategy
to simultaneously approximate a set of similar signals. The extended strategy is refereed to as
SOOMP (Simultaneous OOMP).

3.1 SOOMP algorithm
The algorithm is initialized by setting: r{q}0 = f{q}, f{q}0 = 0, Γ =∅ and k = 0. The first atom
is selected as the one corresponding to the index ℓ1 such that

ℓ1 = argmax
n=1,…,M

Q

∑
q=1

p(q) ∣⟨dn, r{q}0⟩∣
2
. (5)

This first atom is used to assign w1 = 𝛽1 = dℓ1 , calculate r{q}
1 = f{q} – dℓ1 ⟨dℓ1 , f{q}⟩ and

iterate as prescribed below.

(1) Upgrade the set Γ←Γ ∪ ℓk+1, increase k← k + 1, and select the index of a new atom for the
approximation as

ℓk+1 = argmax
n=1,…,M
n∉Γ

Q

∑
q=1

p(q)
∣⟨dn, r{q}k⟩∣

2

1 –∑k
i=1 | ⟨dn, �̃�i⟩ |2

, with �̃�i =
wi

∥wi∥
. (6)
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(2) Compute the corresponding new vector wk+1 as

wk+1 = dℓk+1 –
k
∑
i=1

wi

∥wi∥2
⟨wi,dℓk+1⟩ , (7)

including for numerical accuracy the re-orthogonalization step:

wk+1 ←wk+1 –
k
∑
i=1

wi

∥wi∥2
⟨wi,wk+1⟩ . (8)

(3) Upgrade vectors 𝛽k
n as

𝛽k+1
k+1 =

wk+1

∥wk+1∥2
, 𝛽k+1

n = 𝛽k
n – 𝛽k+1

k+1 ⟨dℓk+1 ,𝛽
k
n⟩ , n = 1,… , k. (9)

(4) Update r{q}k as

r{q}k+1 = r{q}k – ⟨wk+1, f{q}⟩
wk+1

∥wk+1∥2
. (10)

(5) If the stopping criterion is met finish the iterations. Otherwise repeat steps (1)–(5).

Note: given a tolerance 𝜌, as stopping criterion we set:

Q

∑
q=1

p(q)∥r{q}k+1∥2 < 𝜌 (11)

or
Q

∑
q=1

p(q)∥r{q}k+1∥ < 𝜌, (12)

depending on convenience for the particular application.
Once the iterations have finished calculate the coefficients for the decomposition (1) as

c{q}(n) = ⟨𝛽k
n, f{q}⟩ , n = 1,… , k, q = 1,… ,Q.

For q = 1,… ,Q calculate the final approximation of each signal f{q} as

f{q}k = f{q} – r{q}k.

Remark 1.The set of vectors 𝛽k
n, n = 1,… , k, q = 1,… ,Q as given in (9) fulfills that

f{q}k =
k
∑
n=1
⟨𝛽k

n, f{q}⟩dℓn = P̂Vk f{q}, q = 1,… ,Q,

where P̂Vk f{q} is the orthogonal projector of f{q} onto Vk = span{dℓn}kn=1. Please find the proof
in [6], or as a particular case of the more general proof in [18].
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Proposition 1.The recursive selection of the indices ℓ1,… ,ℓk, as proposed in (6), is step-
wise optimal. It minimizes, at each iteration, the mean of the square distance between the set of
signals f{q}, q = 1,… ,Q and their corresponding approximations f{q}k, q = 1,… ,Q.

Proof : For k = 0 it is clear that ℓ1 selected as in (5) minimizes the mean of the square dis-
tance E1 as given by

E1 =
Q

∑
q=1

p(q)∥f{q} – f{q}1∥2 =
Q

∑
q=1

p(q)(∥f{q}∥2 – | ⟨dℓ1 , f{q}⟩ |2).

Let us assume that the indices ℓ1,… ,ℓk selected as proposed in (6) minimize, in the speci-
fied stepwise sense, the mean square distance

Ek =
Q

∑
q=1

p(q)∥f{q} – f{q}k∥2.

We shall prove by induction that if the atoms dℓ1 ,… ,dℓk are fixed, at iteration k + 1 the
atom dℓk+1 selected as in (6) minimizes Ek+1. The proof stems from the fact that at iteration
k the approximation f{q}k of each signal f{q} is the orthogonal projection of f{q} onto the
subspace Vk = span{dℓn}kn=1 (c.f. Remark 1).

Consider that Vk is augmented by one element, say dℓk+1 ∉Vk, so that Vk+1 =Vk ⊕ dℓk+1 ,
where⊕ indicates direct sum. The orthogonal projection of each signal f{q}, q = 1,… ,Q onto
Vk+1 can be expressed as

f{q}k+1 = P̂Vk+1 f{q} = P̂Vk f{q} +
wk+1

∥wk+1∥2
⟨wk+1, f{q}⟩ with wk+1 = dℓk+1 – P̂Vkdℓk+1 .

Thus

∥f{q} – f{q}k+1∥2 = ∥f{q} – P̂Vk+1 f{q}∥
2

= ∥f{q} – P̂Vk f{q} –
wk+1

∥wk+1∥2
⟨wk+1, f{q}⟩ ∥2

= ∥f{q} – P̂Vk f{q}∥
2 –

| ⟨wk+1, f{q}⟩ |2

∥wk+1∥2
.

Since ∥f{q} – P̂Vk f{q}∥
2 is optimized and fixed at iteration k, it is true that at iteration k + 1

the index of the atom which minimizes Ek+1 fulfils

ℓk+1 = argmax
n=1,…,M
n∉Γ

Q

∑
q=1

p(q) | ⟨wk+1, f{q}⟩ |2

∥wk+1∥2

= argmax
n=1,…,M
n∉Γ

Q

∑
q=1

p(q)
∣⟨dℓn – P̂Vkdℓn , f{q}⟩∣

2

∥dℓn – P̂Vkdℓn∥2
. (13)

The proof is concluded using the self-adjoint properties of P̂Vk to write:

∣⟨dℓn – P̂Vkdℓn , f{q}⟩∣ = ∣⟨dℓn , f{q}⟩ – ⟨P̂Vkdℓn , f{q}⟩∣
= ∣⟨dℓn , f{q} – P̂Vk f{q}⟩∣
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= ∣⟨dℓn , r{q}
k⟩∣ . (14)

Moreover, since all atoms are normalized and the set {�̃�i}ki=1 is an orthonormal basis for
Vk we have

P̂Vkdℓn =
k
∑
i=1
�̃�i ⟨�̃�i,dℓn⟩ ,

so that

∥dℓn – P̂Vkdℓn∥
2 = 1 – ∥P̂Vkdℓn∥

2 = 1 –
k
∑
i=1

| ⟨�̃�i,dℓn⟩ |2,

which shows the equivalence between (13) and (6). ◻

Corollary 1.The selection criterion (6) guaranties that, if for n = 1,… , k the right hand side
of (6) is not zero, the selected elements dℓn , n = 1,… , k are linearly independent.

Proof : For k = 1 the single atom dℓ1 is linearly independent. Let us assume that the first k
selected atoms dℓn , n = 1,… , k are linearly independent and prove that then the newly selected
atom dℓk+1 is also linearly independent. The proof is achieved by contradiction. Indeed, if
dℓk+1 is linearly dependent then dℓk+1 =∑

k
n=1 andℓn , for some scalers an, n = 1,… , k, so that

P̂Vkdℓk+1 =∑
k
n=1 anP̂Vkdℓn =∑

k
n=1 andℓn = dℓk+1 and from (14) we gather that the right hand

side of (6) is zero. This contradiction leads to conclude that the selected elements dℓn , n =
1,… , k by criterion (6) are linearly independent. ◻

Remark 2. If the dictionaryD = {dn ∈ℝN ; ∥dn∥ = 1}
M
n=1 is complete or over-complete, i.e.,

dim (span (D)) =N, then by selecting N atoms the method can reconstruct the exact signals
f{q}∈ℝN, q = 1,… ,Q. Otherwise if dim (span (D)) = S <N the selected atoms provide the
orthogonal projections P̂VS f{q}, q = 1,… ,Q, where VS = span (D). It should be stressed, though,
that with a suitable dictionary all the signals f{q}, q = 1,… ,Q are expected to be well approxi-
mated in a subspace Vk with k significantly smaller than N. Otherwise the representation would
not qualify to be sparse.

Remark 3.The complexity of the SOOMP algorithm, at each iteration, is O(NMQ). For equal
weights p(q) = 1

Q , q = 1,… ,Q the difference between the complexity of the SOOMP selection
criterion (13) and the SOMP one [17] is the denominator in the right hand side of (13). This
introduces extra computations of complexity O(NM) so that the order of complexity of both algo-
rithms is equivalent. However, as will be illustrated in the next section, due to the reduction in
the number of selected atoms, and hence the number of iterations, the approximation may run
faster if SOOMP rather than SOMP is used.

4 Numerical example
We illustrate here the algorithm’s implementation by simultaneously approximating stereo-
phonic music. This type of music, commonly called stereo music, is usually produced by using
two independent audio channels f{1}∈ℝN and f{2}∈ℝN. The example is dedicated to
showing the sparsity obtained with the proposed SOOMP method and the precursor SOMP
one, when simultaneously approximating both channels using a highly coherent trigonomet-
ric dictionary.

Since the signals structure varies with time, approximations with trigonometric dictio-
naries are carried out on a partition of the signal. In this example the partition consists of
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disjoint segments, called frames, which are assumed to be all of the same size L. The signal
representation is realized by independent approximation of each frame.

As shown in [15,16], for music representation the combination of a Redundant Discrete
Cosine DictionaryDc and a Redundant Discrete Sine DictionaryDs, defined below, renders
higher sparsity than when using pureDc orDs dictionaries of the same redundancy as the
combinationD =Dc ∪Ds.

• Dc = {wc(n) cos 𝜋(2i–1)(n–1)2M , i = 1,… ,L}Mn=1.
• Ds = {ws(n) sin 𝜋(2i–1)(n)

2M , i = 1,… ,L}Mn=1,

where wc(n) and ws(n), n = 1,… ,M are normalization factors.
The signal representation is realized by independent approximation of each frame. The

atoms dℓin , n = 1… , ki are selected for simultaneously representing both channels fi{1}∈ℝL

and fi{2}∈ℝL in the ith frame, for i = 1,… , I, with I the integral part of N/L. In the numerical
simulations the number of atoms in each dictionaryDc andDs is 2L so that the total number
of atoms inD =Dc ∪Ds is 4L.

As a metric of approximation quality we use the standard Signal to Noise Ratio (SNR)
calculate as

SNR = 10 log10
⎛
⎝

∑2
q=1

1
2∥f{q}∥

2

∑2
q=1

1
2∥f{q} – fa{q}∥2

⎞
⎠
,

where fa{q}∈ℝN, q = 1, 2 are the approximations of the channels f{q}∈ℝN, q = 1, 2. Since
the frames are disjoint the approximation of each channel fa{q} is obtained by the concate-
nation of the approximations fi{q}ki of the corresponding frames i.e., fa{q} = ̂JIi=1fi{q}ki , q =
1, 2, where ̂J indicates the concatenation operation. The numbers ki, i = 1,… , I of atoms for
approximating each i-frame are decided to meet the condition:

2
∑
q=1

1
2
∥fi{q} – fi{q}ki∥2 < 𝜌i i = 1,… , I. (15)

On defining

snri = 10 log10
⎛
⎝

∑2
q=1

1
2∥fi{q}∥

2

∑2
q=1

1
2∥fi{q} – fi{q}ki∥2

⎞
⎠
, i = 1,… , I

the parameters 𝜌i, i = 1,… , I in (15) are determined as

𝜌i = 10(–
snr0
10 )

2
∑
q=1

1
2
∥fi{q}∥2, i = 1,… , I,

where snr0 is fixed to the same value for each frame in oder to achieve the expected approxi-
mation quality.

The metric of sparsity is considered to account for the number of elements in the approxi-
mation of the whole signals. For this we define the Sparsity Ratio (SR) as

SR = 2N
K

,
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where K =∑I
i=1 ki is the total number of atoms in the signal representation and N the number

of samples in each of the channels. Thus, a large value of SR indicates a high level of sparsity.
The numerical example is realized using four stereo clips of melodic music: 1. Classic

Orchestra. 2. Classic Guitar. 3. Chopin Piano. 4. Piazzolla Tango. All four clips are of the same
length, N = 256000 samples in each channel (5.8 secs). The approximation is carried out on
frames of length L = 1024 and for qualities corresponding to SNR = 20 dB, SNR = 25 dB, and
SNR = 30 dB. The improvements in the values of SR obtained with SOOMP, with respect to
those obtained with SOMP, are noticeable from the comparison of the 3rd and 4th columns
in Table 1 for all four clips and all approximation qualities. The 5th column displays the gain
over SOMP yielded by SOOMP.The 6th and 8th columns show the approximation times (the
values are the average of five independent runs with MATLAB in a Laptop Core i7-1165G7).
The 7th and 9th columns give the corresponding standard deviations.

The left graphs in Fig 1 show 2000 samples in channel 1 of the original chips as well as
the corresponding approximation up to 25 dB. The right graphs have the same descrip-
tion but correspond to the 2000 samples in channel 2. As illustrated by the graphs in Fig 1,
SNR = 25 dB produces already very good pointwise approximation of the signals.

5 Application to compression of ECG records
A digital ECG signal represents a sequence of heartbeats. In a typical record each heartbeat
is characterized by a combination of three graphical deflections, known as QRS complex,
and two lateral and less visually noticeable P and T waves. A short segment of a typical ECG
record is illustrated in Fig 2.

In order to simultaneously approximate all the beats in a record we need to segment and
align the beats to meet the requirement of being similar. The procedure is discussed in the
next subsection.

5.1 Segmentation and alignment of heartbeats
The QRS complex is segmented once the central R peak is detected. This can be effectively
done by the Pan Tompkins method [19]. In our numerical examples we use the off-the-shelf
MATLAB implementation of this algorithm [20]. Since the distance between peaks in a

Table 1. Comparison of sparsity (SR values) for approximations of four clips of music up to the same SNR (20,
25 and 30 dB).The 5th column gives the gain in SR achieved by SOOMP (2) over SOMP (1).The 6th and 8th
columns give the approximation times in secs. (average of five independent runs). The 7th and 9th columns are
the corresponding standard deviations.
Clip SNR SOMP(1) SOOMP(2) Gain Time (1) std Time (2) std
1. 20 dB 43.3 48.4 11.8% 41.64 s 0.08 37.25 s 0.07
2. 20 dB 119.4 135.7 13.6% 15.67 s 0.11 13.88 s 0.07
3. 20 dB 67.3 74.5 10.7% 26.32 s 0.38 23.91 s 0.22
4. 20 dB 94.9 106.9 12.6% 18.42 s 0.08 16.41 s 0.02
1. 25 dB 28.0 31.3 11.8% 66.81 s 0.06 59.61 s 0.05
2. 25 dB 78.8 90.7 15.1% 24.13 s 0.13 20.93 s 0.23
3. 25 dB 45.7 51.3 12.2% 39.19 s 0.09 35.20 s 0.29
4. 25 dB 69.3 79.0 14.0% 25.53 s 0.04 22.34 s 0.03
1. 30 dB 17.9 19.8 10.6% 113.01 s 0.21 102.17 s 0.22
2. 30 dB 53.9 61.8 14.7% 35.79 s 0.27 31.02 s 0.08
3. 30 dB 32.3 36.3 12.4% 57.01 s 0.07 50.91 s 0.32
4. 30 dB 54.4 62.1 14.5% 33.06 s 0.29 28.73 s 0.06

https://doi.org/10.1371/journal.pone.0325555.t001
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Fig 1. 2000 samples in the Chips 1–4 (blue lines) and the corresponding approximations (red lines) up to SNR =
25 dB.The graphs on the left correspond to one of the channels and the graphs on the right to the other.

https://doi.org/10.1371/journal.pone.0325555.g001
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Fig 2. A short segment of an ECG record.

https://doi.org/10.1371/journal.pone.0325555.g002

Fig 3. Configuration resulting by segmentation and alignment of 80 heartbeats for illustration purposes.

https://doi.org/10.1371/journal.pone.0325555.g003

record is not uniform, the length of the segmented beats should be passed to the decoder.
The segmented peaks are placed in arrays f{q}, q = 1,… ,Q of equal length L by padding with
zeros. Fig 3 illustrates the resulting configuration with 80 heartbeats. Fig 4 shows the two
dimensional image of the segmented and aligned heartbeats corresponding to records 111 and
100 in the MIT-BIH Arrhythmia database [21].

For simultaneously approximating heartbeats we use a wavelet dictionary. Given a parti-
tion xi, i = 1,… ,N of the interval [c, d] the dictionary is constructed as follows [22,23].

D = V0 ∪W0 ∪W1 ∪W2 ∪W3 ∪W4, (16)
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Fig 4. Images of the magnitude of the aligned heartbeats in records 111 (left graph) and 100 (right graph).

https://doi.org/10.1371/journal.pone.0325555.g004

with

V0 = {𝜙(xi –
k
2
)|[c,d], k∈ℤ, i = 1,… ,N}, (17)

and

Wj = {2j/2𝜓(2jxi –
k
2
)|[c,d], k∈ℤ, i = 1,… ,N}, (18)

where 𝜓(2jxi – k
2)|[c,d] indicates the restriction of the function 𝜓(2jxi – k

2) to the interval [c, d].
Different families of wavelet basis and dictionaries for approximation of heartbeats have been
compared in [22], where the Cohen–Daubechies–Feauveau family was singled out as the most
effective one. We have confirmed the same outcome for simultaneous approximations and
adopted the Cohen–Daubechies–Feauveau CDF97 dictionary of redundancy approximately
two introduced in [22].

The prototype functions 𝜙(x) and 𝜓(x) are plotted in the left and right graphs of Fig 5
respectively. The MATLAB codes for producing numerically both functions and building the
dictionary (16) are described in [23]. The codes have been made available in [25] together
with of the complete MATLAB software for reproducing the numerical examples in this work.

The segmented and aligned heartbeats are simultaneously approximated using the SOOMP
approach by assigning the same weight to each heartbeat, i.e. p(q) = 1

Q , q = 1,… ,Q. In this
case the algorithm stops at iteration k if

Q

∑
q=1

1
Q
∥f{q} – f{q}k∥ < 𝜌,

with

𝜌 = PRDN0

100

Q

∑
q=1

1
Q
∥f{q} – f{q}∥, (19)

f{q} indicating the mean of f{q} and PRDN0 a fixed value of the metric of quality PRDN,
which is defined by

PRDN = ∥f – f
a∥

∥f – f∥
× 100%, (20)
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Fig 5. Cohen–Daubechies–Feauveau scaling and wavelet functions [24].

https://doi.org/10.1371/journal.pone.0325555.g005

Fig 6. Values of prdn from the simultaneous approximation of the aligned beats in records 111 (left graph) and 100 (right graph).

https://doi.org/10.1371/journal.pone.0325555.g006

where f is the whole ECG record, fa is the reconstructed record from the approximated heart-
beats and f is the mean of f.

Given a required value of PRDN, at the approximation step of the processing the parame-
ter PRDN0 is fixed as 0.8 ⋅ PRDN, in order to achieve the target value PRDN at the quantiza-
tion step described in Subsect 5.2.

Even if the approximation is realized to achieve the required PRDN0 by the whole record,
it is interesting to calculate the quality metric for each heartbeat in the array. To this end we
defined

prdn(q) = ∥f{q} – f
a{q}∥

∥f{q} – f{q}∥
× 100%, q = 1,… ,Q, (21)

where fa{q} is the approximation of the beat f{q} and f{q} its mean value. The values of
prdn(q) for the simultaneous approximation of records 111 and 100 are shown in the left
and right graphs of Fig 6 respectively. The total PRDN produced by the reconstruction of the
whole records is, in both cases, PRDN = 9.1. The mean value prdn for record 111 is 9.0 with
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Fig 7. The top left graph shows one of the heartbeats in records 111, and its approximation, which yields an outlier value of prdn.The right graph
corresponds to a beat yielding prdn close to the mean value prdn = 9. The bottom graphs have the same description but the heartbeats are from record 100.

https://doi.org/10.1371/journal.pone.0325555.g007

std=4 while for record 100 the mean prdn is 9.4 with std=1.4. However, as noticeable in the
figures, for some qs the prdn values are much higher than for others. This is a consequence of
the irregularities of the beats, which can be perceived in the left image of Fig 4.

The top left graph of Fig 7 depicts a heartbeat in records 111 and its approximation. This
heartbeat yields prdn = 46.5. As shown by the red line the figure, such high prdn value is pro-
duced by a smooth version of the noisy signal. On the contrary, for regular heartbeats the
prdn values are close to the PRDN of the whole record. The right graph of the figure shows
the approximation of one of those beats. The left bottom graph is the approximation of one of
the few beats in record 100 which yields the outlier value prdn = 20. The right bottom graph
shows the approximation of one of the other beats.

By the simultaneous approximation of the aligned heartbeats these are transformed into
a reduced set of numbers which allow to reconstruct the approximated heartbeats. This set
consists of a) the k indices ℓn, n = 1,… , k corresponding to the common atoms in the decom-
position of the heartbeats (c.f. (1)) b) the different coefficients c{q}(n), n = 1,… , k, q = 1,… ,Q
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in the decomposition of each heartbeat (c.f. (1)). These coefficients can be placed in a two
dimensional array C∈ℝQ×k as illustrated in Fig 8. The top image on the left in this figure
shows the magnitude of the array C∈ℝ2133×33 arising from the approximation up to PRDN =
9 of record. 111. The bottom left image corresponds to the approximation up to PRDN = 9 of
record 100.

It is clear from the location of the brightest pixels in the left images of Fig 8 that the coef-
ficients of largest magnitude are concentrated in vertical lines. This suggests that, to favor
compression for storing these values, it is convenient to apply an orthogonal transformation
to map the coefficients in the vertical direction to smaller values which eventually might be
quantized to zero. Consequently, by applying the discrete cosine transform on each column
of C, we create the transformed array B∈ℝQ×k with the following entries

B(∶,n) = d̂ctC(∶,n), n = 1,… , k, (22)

where d̂ctC(∶,n) indicates the one dimensional discrete cosine transform operating on the n-
th column of array C. The transformed points corresponding to the left images in Fig 8 are

Fig 8. The top image on the left depicts the magnitude of entries in the arrayC ∈ℝ2133×33 containing the coefficients in the
approximation of record 111.The bottom left image depicts the magnitude of entries in the arrays C∈ℝ2273×25 corresponding
to the approximation of records 100. The images on the right are the magnitude of the entries in the arrays B∈ℝ2133×33 (top) and
B∈ℝ2273×25 (bottom) arising by applying the discrete cosine transform on the columns of the arrays represented by the images on the
left.

https://doi.org/10.1371/journal.pone.0325555.g008
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represented in the right images of this figure. The introduction of this step to decorrelate the
vertical entries in the array C is key to boost the performance of the adopted encoding strat-
egy described below. The notorious change of intensity in the images on the right of Fig 8
indicates that after quantization some of the entries of the transformed arrays will be mapped
to zero. Within the encoding strategy described in the next section, this effect enhances com-
pression.

5.2 Encoding
At the encoding step the Q × k array B is expressed as a vector b = (b(1),… , b(K)) of K =Q ⋅ k
components, adopting the column-major order. The encoding of this vector follows the pro-
cedure outline in [26]. The components of b are converted to integer numbers by a mid-tread
uniform quantizer as follows:

bΔ(i) = ⌊b(i)Δ + 1
2
⌋ , i = 1,… ,K, (23)

where ⌊x⌋ indicates the largest integer smaller or equal to x and Δ is the quantization param-
eter. For comparison with results in other publications in the numerical examples the quanti-
zation parameter Δ is set to produce the required quality of the reconstructed signal.

The absolute value of the elements (23) are placed in a smaller vector, say b′ = (b′(1),… ,
b′(K′)), after the elimination of zeros. The signs are encoded separately in a vector s =
(s(1),… , s(K′)) using a binary alphabet: 1 for + and 0 for –.

Assuming that the nonzero values in (23) occur at the positions 𝚥i,… , 𝚥K′ , these indices
are re-ordered in ascending order 𝚥i → ̃𝚥i, i = 1,… ,K′, i.e. ̃𝚥i < ̃𝚥i+1, i = 1,… ,K′. This induces
new order in the coefficients, b′→ �̃�′ and in the corresponding signs s→ ̃𝐬. Defining 𝛿(i) = ̃𝚥i
– ̃𝚥i–1, i = 2,… ,K′ the array 𝜹 = ( ̃𝚥1,𝛿(2),… ,𝛿(K′)) stores the indices ̃𝚥1,… , ̃𝚥K′ with unique
recovery.

Finally the vectors �̃�′, ̃𝐬, 𝜹, as well as the length of the heartbeats h, are compressed using
adaptive Huffman coding implemented by the off-the-shelf MATLAB function Huff06 [27].
The additional numbers which have to be passed to the decoder are:

(i) The indices ℓi, i = 1,… , k of the selected dictionary’s atoms forming the common basis.
(ii) The quantization parameter Δ.
(iii) The mean value of the 1D ECG record (if not previously subtracted).
(iv) The number of rows and columns of C, i.e. Q and k.

5.3 1D ECG signal recovery
At the decoding stage, after reverting Huffman coding, the locations ̃𝚥1,… , ̃𝚥K of the nonzero
entries in the transformed array after quantization are readily obtained. This allows the recov-
ery of the array Br as follows.

(i) Set br(i) = 0, i = 1,… ,K and br( ̃𝚥i) = (2 ̃s(i) – 1)b̃′(i)Δ, i = 1,… ,K.
(ii) Reshape the vector br to produce a 2D array Br of size Q × k. The array Cr is recovered

from the Br one by inverting the d̂ct transformation (c.f. (22)).
(iii) Each row of the recovered array Cr gives the coefficients in the decomposition (1) of the

approximated heartbeats, i.e. fr{q} =∑k
i=1C

r(q, i)dℓi , q = 1,… ,Q.
(iv) Finally the reconstructed beats fr{q} are assembled in a 1D record using the distance

between heartbeats that was stored in the vector h.
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The achieved compression ratio CR, which is defined as

CR = Size of the uncompressed file
Size of the compressed file

, (24)

depends on the required quality of the recovered signal. In the numerical examples the quality
of the recovered records is assessed by the PRDN as defined in (20). It is pertinent to stress the
importance of adopting this normalized metric for comparison of reconstruction quality. The
subtraction of f avoids dependence on the signal baseline.

6 Numerical tests
For the numerical test we use the MIT-BIH Arrhythmia database [21]. Each of the records is
of 30 min length, consisting of N = 650000 11-bit samples at a frequency of 360 Hz.

For comparison purposes we compress the subset of records reported in [28], [29],
and [30] and reproduce the values of PRDN in those publications. This is achieved as fol-
lows: The SOOMP method is applied to approximate the set of heartbeats in each record up
to 80% the target PRDN.The quantization parameter Δ is automatically fixed, by a bisection
algorithm, in order to reproduce the target PRDN for the whole record within two decimal
places.

The first, second and third columns of Table 2 reproduce the results published in [28]. The
comparison is relevant because the approach [28] is also based on approximation of heart-
beats using a dictionary. The techniques are very different though. Whilst our dictionary does
not have to be stored because it is numerically generated, the dictionary in [28] is part of the
ECG record to be compressed. Moreover, the method for finding the sparse representation is
different and so is the procedure to store the parameters that should be passed to the decoder.

Our compression results are shown in the forth column of Table 2. These results demon-
strate a significant gain in CR for the same recovery quality. For further comparison we apply
the fast compression algorithm [26], which does not require peak segmentation or Huffman
coding. This method has been already shown to improve the average CR for the 48 records in
the MIT-BIH Arrhythmia dataset with respect to the results in [31], [32], and [33], for a broad
rage of average qualities. For comparison with [28] in Table 2 the compression is realized to
reproduce the PRDN listed in the second column for each record.

The first, second and third columns of Table 3 reproduce the results published in [29],
which are achieved with an approach based on the Singular Value Decomposition (SVD).

Our compression ratios (CRs) are shown in the the forth column of Table 3. The fifth
column shows the CRs produced by the fast compression algorithm [26].

The first, second and third columns of Table 4 reproduce the results published in [30],
which are also obtained with a Singular Value Decomposition based approach. Our CRs are
shown in the forth column of this table. The fifth column shows the CRs produced by the fast
compression algorithm [26].

Note: The MATLAB software for reproducing the tables is available on http://www.
nonlinear-approx.info/examples/node017.html

7 Conclusions
The Optimized Orthogonal Matching Pursuit approach has been extended with the purpose
of selecting a common basis for the simultaneous approximation of a set of similar signals.
The extended approach, termed Simultaneous Optimized Orthogonal Matching Pursuit, min-
imizes at each iteration the mean value square error norm of the joint approximation. The
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Table 2. Comparison with the results in [28]. The first collumn lists the records considered in [28]. The second
column displays the values of PRDN and the third collum their CRs. Our CRs for the same PRDN are shown in
the forth column.The fifth column shows the CRs obtained with the fast approach [26].
Record PRDN CR [28] CR prop. CR [26]
100 18.03 78.20 143.99 36.51
100 17.22 75.12 139.47 35.25
101 14.66 80.24 102.58 31.26
101 12.91 76.46 82.31 30.31
102 18.54 58.54 58.49 33.89
102 18.16 48.47 58.13 33.48
103 12.57 46.32 90.91 30.84
103 11.57 44.33 86.27 29.61
109 13.70 24.86 145.80 51.23
109 9.97 23.53 97.73 36.91
111 26.20 31.05 121.09 38.29
111 19.51 29.44 60.49 32.20
112 16.58 34.06 91.48 35.05
112 15.99 35.49 85.59 34.32
113 14.08 37.42 90.76 32.49
113 9.82 32.55 55.30 27.68
115 9.76 38.26 62.31 24.52
115 9.18 36.57 57.32 23.74
117 14.42 38.94 120.89 36.94
117 13.38 37.13 105.97 35.74
119 32.19 16.26 153.33 90.40
119 16.36 15.24 78.81 48.08
121 17.36 26.67 111.74 46.45
121 15.63 25.29 100.72 41.11
Average 17.33 41.9 107.78 40.65
Average 14.14 39.97 84.00 34.04

https://doi.org/10.1371/journal.pone.0325555.t002

Table 3. Same description as in Table 2 but the comparison is with the results of Table I in [29].
Record PRDN CR [29] CR prop. CR [26]
100 11.46 39.81 64.47 23.03
101 14.13 42.04 95.53 30.91
102 19.94 41.09 63.69 35.09
103 6.72 41.24 39.17 21.05
107 13.27 41.84 71.40 38.15
109 7.31 38.25 59.34 28.46
111 13.94 41.73 41.59 25.14
115 8.04 42.71 47.79 22.04
117 10.00 46.75 51.56 26.17
118 15.33 39.60 66.44 28.26
119 9.67 41.97 43.98 30.71
213 13.63 32.58 62.24 25.72
222 22.44 40.69 31.95 24.77
232 20.76 42.28 59.66 35.52
Average 13.33 40.90 57.09 28.22

https://doi.org/10.1371/journal.pone.0325555.t003

algorithm’s implementation was demonstrated by approximating stereophonic music using a
highly coherent trigonometric dictionary. The applicability of the method to ECG compres-
sion was illustrated on records taken from the MIT-BIH Arrhythmia database. The particular
records were selected for comparison purposes as in [28], [29], and [30]. The simultaneous
approximations of aligned heartbeats was used for compressing a whole record. The adopted
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Table 4. Same description as in Table 2 but the comparison is with the results of Table I in [30].
Record PRDN CR [30] CR prop. CR [26]
100 11.55 50.70 65.47 23.14
101 11.29 58.54 64.13 27.86
103 9.16 54.16 61.37 25.70
107 14.53 53.12 78.31 40.34
109 11.83 46.43 120.08 44.67
111 16.40 53.39 50.11 28.34
115 8.94 56.77 58.76 23.49
117 12.43 66.15 90.39 34.62
119 10.28 56.03 46.99 32.17
214 17.03 50.84 87.66 54.04
223 17.49 45.38 86.06 40.80
Average 12.81 53.77 73.57 34.11

https://doi.org/10.1371/journal.pone.0325555.t004

compression strategy was shown to improve upon compression results achieved by other
methods for the same reconstruction quality. The comparison was made possible by means of
an iterative quantization procedure which delivers the required quality.

While the proposed approach involves detection and alignment of R-peaks, it is the
approximation step which introduces the highest computational cost. In order to address this
matter as a line of future work, it would be interesting to investigate the possibility of selecting
a suitable subspace Vk from a whole data set (instead of a subspace for each single record as is
done here). Certainly approximating new records using previously selected atoms would sig-
nificantly speed the compression procedure. It is still to be discerned if the SOOMP approach
could pick out a common low dimension subspace to approximate, up to a given quality,
any new ECG record. We feel confident that the results presented in this work will motivate
further research in the topic.
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