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Abstract. Objective: Upper-limb gesture identification is an important
problem in the advancement of robotic prostheses. Prevailing research into
classifying electromyographic (EMG) muscular data or electroencephalographic
(EEG) brain data for this purpose is often limited in methodological rigour, the
extent to which generalisation is demonstrated, and the granularity of gestures
classified. This work evaluates three architectures for multimodal fusion of EMG
& EEG data in gesture classification, including a novel Hierarchical strategy, in
both subject-specific and subject-independent settings.
Approach: We propose an unbiased methodology for designing classifiers centred
on Automated Machine Learning through Combined Algorithm Selection &
Hyperparameter Optimisation (CASH); the first application of this technique
to the biosignal domain. Using CASH, we introduce an end-to-end pipeline for
data handling, algorithm development, modelling, and fair comparison, addressing
established weaknesses among biosignal literature.
Main results: EMG-EEG fusion is shown to provide significantly higher
subject-independent accuracy in same-hand multi-gesture classification than an
equivalent EMG classifier. Our CASH-based design methodology produces a more
accurate subject-specific classifier design than recommended by literature. Our
novel Hierarchical ensemble of classical models outperforms a domain-standard
CNN architecture. We achieve a subject-independent EEG multiclass accuracy
competitive with many subject-specific approaches used for similar, or more easily
separable, problems.
Significance: To our knowledge, this is the first work to establish a systematic
framework for automatic, unbiased designing and testing of fusion architectures in
the context of multimodal biosignal classification. We demonstrate a robust end-
to-end modelling pipeline for biosignal classification problems which if adopted
in future research can help address the risk of bias common in multimodal BCI
studies, enabling more reliable and rigorous comparison of proposed classifiers
than is usual in the domain. We apply the approach to a more complex task than
typical of EMG-EEG fusion research, surpassing literature-recommended designs
and verifying the efficacy of a novel Hierarchical fusion architecture.

Keywords: Biosignal Fusion, Multimodal Gesture Classification, Brain-Computer-
Interface, Automated Machine Learning
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1. Introduction

Much of society and the built environment are designed
for an imagined “typical” individual and inaccessible
to those falling outside this narrow definition. At
least 1 in 190 of the U.S. population [1], a proportion
believed similar worldwide, are believed to have
experienced the loss of a limb. For many upper-
limb amputees, accessibility support comes in the
form of prostheses. While Electromyography (EMG)-
controlled prosthetic arms are now widely available
– in the United Kingdom, for example, the National
Health Service offers such prostheses as standard [2]
– many prostheses are limited in the control they
allow. For instance, the OpenBionics Hero Arm,
which is generally recognised as state-of-the-art among
affordable, accessible, commercially available robotic
prostheses, operates through Direct Control. Users
can select from a set of pre-defined gestures, and
the amplitude of their measured residual limb EMG
activity acts as the control signal for actuation of the
selected gesture [3].

Pattern Recognition systems – those employing
machine learning algorithms to classify between
defined gestures from measured biological data –
have been the focus of extensive research but rarely
seen deployment in the “real world”. This is
despite much research indicating their suitability [4,
5]. One barrier to their adoption is the need for
data upon which to train the underlying models.
The majority of research considers subject-specific
classification, training “Bespoke” models using only
a given individual’s data. Less studied are subject-
independent paradigms, wherein a “Generalist” model
has no access to the target user’s data before
prediction.

In either setting, existing studies suffer from
several problems. Firstly, the majority work
solely with EMG data, whereas amputees may not
have the same amount or type of EMG data
available. One potential solution is to draw on
Electroencephalography (EEG) alongside EMG in a
multimodal system but, while this has been tried in
literature, there is no established technique for fusing
these data and fair like-for-like comparisons between
proposed fusion methods, and against non-fusion
“unimodal” approaches, are often lacking, leading
to questions over the extent of the merit of such
strategies. Studies (both unimodal and multimodal)
also often make assumptions about modelling choices
based on literature precedent, which may not have
strong empirical justification. Frequently, studies give
insufficient detail over their design processes to rule out
the potential of biased comparisons [6]. Further, many
studies fail to clearly articulate their data handling
strategy. It is easy to mishandle biosignal data, leading

to data leakage and invalid results [7,8]. Although this
has been discussed in the literature [9], there is still no
standard strategy in the domain. Finally, datasets used
in biosignal studies, and especially in works on EMG-
EEG fusion, are often simple, based on gestures which
are easily differentiable, e.g. hand vs foot movement
[10]. This is not representative of potential real-world
applications [11].

There is clearly a need for a more thorough
evaluation of biosignal fusion techniques for upper-limb
gesture classification. To do so requires establishing
a robust methodology for unbiased determination of
classifier design, enabling fair comparison between
competing strategies, and the application of a data
handling protocol which minimises the risk of data
leakage undermining validity.

In this paper we address the issues described above
through several main contributions, which together
present a more reliable process for developing and
evaluating biosignal-based classifiers, including those
based on multimodal biosignal fusion, than is typical
of the domain. We provide an extensive evaluation
of EMG–EEG fusion strategies, for both bespoke and
generalist settings, which includes the development and
validation of new architectures for fusing multimodal
data which can outperform unimodal EMG. To enable
this evaluation, we propose an unbiased methodology
for designing and comparing classification approaches
which is novel to the domain. We use this approach
to confirm the efficacy of some literature-precedented
approaches to the problem, and show that literature
inferences do not provide performant designs in certain
important cases. Through the application of this
methodology, we also demonstrate an end-to-end data
handling strategy that addresses issues of bias and
leakage identified in the literature. Notably, we present
these in the context of a dataset more complex than
those used in most other studies in the field of EMG-
EEG fusion, having multiple participants and gestures
which are not trivially distinguishable.

2. Related Work

There is no clear consensus in the literature about
which machine learning algorithms are best suited for
classifying EMG and EEG data. This choice can be
highly dependent on characteristics of the dataset and
of the features used, the ultimate predictive goal, and
the preprocessing steps deployed. Despite this, there
are some trends in the published literature. For EMG
data, SVMs are one of the leading choices [12–15]
but other algorithms such as LDA [16, 17], Random
Forests [18, 19], Näıve Bayes [20, 21], k-NN [22, 23]
and QDA [24] are also commonly used. For EEG
data, the use of LDA-based classifiers is a long-standing
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preference [6], but many of the algorithms listed above
are also commonly applied, notably RFs [25] and SVMs
[26–28]. Studies on joint EMG-EEG classification also
use a wide range of ML algorithms including both LDA
and QDA [29,30], RF [18,19], and kNN [18,30].

Not only does algorithm choice vary much among
biosignal research, but their configuration does also.
Among SVMs the Radial Basis Function (RBF) kernel
is the de facto standard [31], although some studies
also use a linear kernel [12, 13]. There is a large
heterogeneity of approaches used to adjust the SVM
regularisation and scale parameters, including manual
tuning, automated optimisation, and derivation from
dataset properties, with a consequent diversity of
results [12,14,26,27]. Similarly varied hyperparameter
determination approaches and results are reported
in works deploying kNN classifiers [12, 22, 23, 32] or
Random Forests [25, 32], and works using LDAs or
QDAs frequently omit any such details [16, 30, 33, 34].
It is even not uncommon for key implementation
details such as hyperparameter values to go unspecified
[13,18,19,35].

Deep learning has also seen successful use in
biosignal research [36]. However, literature does
not indicate that deep learning models consistently
outperform alternative, lower-cost options. In
reviewing EEG classification, Lotte et al. [11] note
that while popular, Deep Learning architectures do
not appear to present notable benefit over alternatives,
and can be hindered by excessively long training times.
For EMG, Phinyomark et al. [37] highlight their need
for very large datasets to avoid overfit, which may not
be always available. Dolopikos et al. [38] corroborate
this, finding a voting ensemble of classical models, and
indeed individual RFs and SVMs, to outperform a
Deep Neural Network. Shallower architectures have
similarly been found not to notably outperform SVMs
and LDA models in both EMG and EEG [17, 39], and
to face speed issues [12] and a sensitivity to electrode
repositioning [40].

With no clear consensus as to the most suitable
modelling options, researchers and developers must
make choices. This however introduces a number
of challenges. Even within a given domain such as
biosignal gesture classification, no single model could
be expected to prove consistently the most suitable
over the totality of all possible unique problems
and datasets [41], and over-reliance on literature
trends risks underexploration of potential performant
approaches. Transparency and the avoidance of bias
in designing and comparing candidate classification
systems has been noted as lacking among biosignal
literature [6, 11]. Such “biased comparisons, with [...]
unjustified choices of parameters [which prevent] us
from ruling out manual tuning of these parameters with

knowledge of the test set” [11] highlight the need for
fair, unbiased explorations of candidate classification
approaches.

The approaches by which multimodal data are
used in a Hybrid Brain-Computer Interface also vary
significantly among published works [42]. They are
rarely directly compared against one another or with
unimodal approaches, further highlighting the need
for more thorough approaches to the design and
assessment of biosignal fusion systems. In reviewing
the literature, we identified four major approaches that
are commonly used for biosignal fusion: sequential
contribution, decoupled contribution, feature-level
fusion and decision-level fusion.

Signals are sometimes utilised on a sequential
basis – a “gated” paradigm wherein some data
modalities contribute only when certain characteristics
have been observed in others. Commonly, movement
intention is predicted from EEG data, and downstream
system components either characterise movement
properties [43, 44] or modify the kinematics of robotic
actuation [45, 46]. Others extend this principle to
a “cascaded” design for multi-gesture classification:
one datatype places samples in broad categories and,
conditional on these decisions, different downstream
models predict specific classes with data of the other
modality [47,48].

In certain studies multiple sensor modalities used
in parallel serve separate roles, with their data being
used for wholly decoupled tasks. In some the
different modalities’ tasks are unrelated, e.g. control of
different robotic joints [49] or providing distinct control
mechanism options which can be cycled between [50].
Others use data of one modality to monitor or error-
correct a classifier based on the other, measuring
physical resistance against exoskeletal movement [51]
or the error-related potential (ErrP) neural signal [52]
to identify erroneous predictions.

Feature-Level fusion, a type of early fusion [53],
is the combining of data modalities after informative
features have been extracted but prior to model fitting.
This fusion strategy has been applied to a variety of
problems including with amputee data, with studies
reporting improvements in model accuracy [29] or
competitive results with EMG-only models [54]. Other
studies of early fusion systems show promising results
but do not compare the resulting systems’ performance
with unimodal EEG based classifiers [18, 30], making
it difficult to ascertain the extent to which the early
fusion itself contributed to performance.

Finally, Decision-Level fusion, also known as
late fusion [53], involves the processing and parallel
classification of each data modality by independent
models, with the resulting predictions combined in an
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ensemble. Strategies for this can be categorised into
two broad groups: those which implement a static
rule or formula for combining predictions, and those
wherein an additional ML algorithm is stacked onto
the end of the classification process as a meta-model.

In multiclass problems, predictions of different
data modalities’ classifiers are best combined in the
form of classwise probability estimates, providing
richer data than simply a class label. Distributions
can be fused with simple rules [19], but more common
is for a system-level probability distribution to be
calculated, through averaging those predicted by the
constituent classifiers. Leeb et al. [55]’s seminal work
on biosignal fusion found taking the arithmetic mean
of EMG and EEG models’ probability estimates could
significantly outperform those single-mode classifiers
individually. Other studies have experimented
with weighting the distributions resulting from each
modality either through predefined weights [54, 56]
or based on estimates of the respective unimodal
classifiers’ reliability [32,57].

The work of Cui et al. [19] is as far as we are
aware the only prior investigation comparing a range
of biosignal fusion strategies for the classification of dis-
tinct movements: walking, cycling, and repeated step-
ping up to and down from a raised surface (it should
be noted that Tryon et al. [54, 56] do assess multiple
strategies, but to classify variations in force of the same
fundamental motion, not distinct movements). Their
work is a rare example among biosignal fusion litera-
ture of a stacked meta-model being used. Under this
strategy a single classification algorithm received the
classwise probability estimates returned by the con-
stituent EMG, EEG, and Magnetomyography (MMG)
models and trained to combine those to predict the
movement class. This classification-based fusion strat-
egy outperformed rule-based methods near-universally
and, particularly with an SVM meta-model, was fre-
quently more accurate than unimodal systems [19].

3. Methodology

As Section 2 demonstrates the recommendations of
biosignal classification literature are diverse and often
inconsistent. There is no consensus on best practice
for the design of EMG or EEG classifiers nor is there
an established optimal technique for their combination
in a multimodal system. Where popular approaches
emerge the strength of evidence for their adoption can
fall short due to various methodological limitations.
While many studies make efforts to employ some
measures for ensuring the quality of results, the
requisite standards are neither found consistently nor
together. We present a strategy which addresses these
flaws in methodology. It applies and extends a number

of techniques for sound classifier design & comparison
which, taken together, establish new standards for
research in the field. These are detailed further
throughout this section but summarised as follows.
Measures which aim to ensure unbiased, valid
results:

• Avoiding bias or favouritism in algorithm selec-
tion, and demonstrating transparently that hy-
perparameters were not tuned with knowledge of
test data, by designing classifiers with Automated
Machine Learning

• Validating findings on data of wholly unseen
“Holdout” subjects to avoid “over-hyping” [9] in
optimisation, and transparently reporting where
intermediary results are derived from data seen in
optimisation

• Avoiding “temporal” leakage between time-
correlated datapoints [8] by grouping data belong-
ing to a given execution of a physical gesture to-
gether in any random data splitting

• Avoiding temporal leakage in the embedding of
data by avoiding signal processing techniques
which require advance knowledge of an entire
waveform, such as non-causal filters, wherever
possible

• Ensuring train/test separation is not violated
by using only training data for standardisation
& selection of features, and applying identified
transformations näıvely to testing data.

Measures which aim to ensure transparency and
reproducibility:

• Reporting in detail hyperparameter values and op-
timisation ranges for machine learning algorithms,
and justifying their choice with respect to prevail-
ing literature

• Comparing novel models/architectures to those
typical of current literature directly (i.e. applying
both to the same problem, on the same dataset)

• Reporting all relevant results, including those
of small effect size, and testing for statistical
significance where appropriate.

We start this section by fully specifying the problem we
are addressing, then proceed to describe the candidate
fusion architectures and classifiers tested. To avoid
making modelling choices without sufficient evidence
for their suitability we consider a range of options
with literature precedent for fusion architectures, ML
algorithms, and hyperparameters. We then detail
the data preprocessing and feature engineering steps
employed, and the approach we used to guarantee
fairness in the assessment and comparison of the
candidate approaches.
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3.1. Problem specification

The public biosignal dataset used in this research was
collected by Jeong et al. [34]. It comprises Electro-
myographic, Electroencephalographic, and Electroocu-
lographic signals recorded from 25 participants,
all right-handed and all inexperienced with Brain-
Computer-Interfaces, performing a range of upper-limb
activities. Subjects were instructed to pick up one of
three common objects with their right hand and in do-
ing so performed one of the following three grasp types:
Cylindrical grasp to pick up a glass cup, Lateral
grasp to pick up a credit card, and Spherical grasp
to pick up a cricket ball. Full details of the gestures
and data collection procedures are provided in the orig-
inal source [34] and will not be reproduced here, but a
summary is provided below.

Twenty-five subjects performed each of these three
gestures 50 times for 4 seconds each, in a randomised
order. Each subject took part in three such data
collection sessions, each separated by a one week
interval. A total of 450 gesture performances, 150
of each grasp type, were thus collected from each
participant. EEG data were sampled at 2500Hz
from 50 electrodes arranged in accordance with the
International 10-10 system [58]. In this work, as is
well-precedented in BCI studies [59–61], the EEG were
trimmed to 20 channels situated near brain regions
relevant to the planning, execution, and sensation
of movements: Electrodes FC1-6, Cz-6, and CPz-
6 were retained as highlighted in Figure 1. For
EMG collection, six electrodes were positioned over the
extensor digitorum, extensor carpi ulnaris, flexor carpi
radialis, flexor carpi ulnaris, triceps brachii, and biceps
brachii muscles of the right forearm (shown in Figure
4 of [34]).

Figure 1. Electroencephalography (EEG) electrode channels
used (shaded purple) according to International 10-10 system
[62]. Adapted from [63]; originally published under CC0 1.0.

We investigated classifiers considering two use
cases. The first is subject-independent: we assume no

access to our intended user during development, thus
requiring a system which an unseen user could use out-
of-the-box. We simulate this use case by allowing only
the use of non-subject data (i.e. data from subjects
other than the one on whom we test a system) to train
and configure our classifier. We call systems developed
in this way “Generalist” systems. In our second use
case we assume that we have access to our intended
user to train and configure a subject-specific system.
We model this by allowing 67% of each subject’s
data to be used to develop a system in addition to
the non-subject data allowed for “generalist” systems.
Specifically we use non-subject data to help configure
our system, and exclusively subject data to train it.
We then tested such systems on the remaining 33% of
the subject’s data. We call systems developed in this
way “Bespoke” systems.

3.2. Candidate Fusion Architectures

3.2.1. Feature-Level Fusion In the Feature-Level
Fusion architecture, illustrated in Figure 2, features
derived from EEG and EMG data are merged
prior to their classification by a single model, as
explored in works including [29, 30, 56]. Data of
the two modalities are first processed, and statistical
features are extracted, independently. The method
of feature selection then defines two subtypes of
this architecture. In the separate-selection variant,
informative features are selected from EMG and EEG
featuresets independently, then joined into a single
set for model training. This ensures the final feature
ensemble exploits both data modalities. However,
should EMG features be included which are highly
correlated with selected EEG features or vice versa,
it may risk a reduction in the overall information
captured. In joint-selection, the features of both data
types are firstly merged, and features selected from
this combined set. This approach can avoid including
highly correlated features, so can reduce duplication
of information, but may select different numbers of
features from each data modality and thus might
unduly exploit one less than the other.

Figure 2. Feature-Level Fusion Architecture
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3.2.2. Decision-Level Fusion The Decision-Level
Fusion architecture, shown in Figure 3, encompasses
a range of methods which use predictions made by
parallel independent EMG and EEG classifiers to
arrive at a final decision. Following the approaches
discussed in section 2 we consider both rule-based and
metaclassifier-based late fusion approaches.

Here, after Tryon et al. [54] among others, we
trialled the mean alongside fixed weightings in
favour of each data type: EMG predictions being
weighted at wEMG=0.75 and EEG at wEEG=0.25, and
vice versa. A “tunable” weighted average variant
was included wherein the distribution of weights
over data modalities was itself a hyperparameter
that could be optimised. We also included the
maximum rule seen in works such as [19], which
selects the distribution with the highest probability
in its respective highest-scoring class, favouring the
predictions of confident models.

For the stacking approach we trialled two linear
meta-model candidates (linear SVM and LDA)
and one nonlinear model (Random Forest). To
train these meta-models we employed a 3-fold cross
validation procedure with the system’s training data.
The classwise probabilities returned by the base EMG
and EEG classifiers in this cross validation were used
to train the meta-model, and the base component
classifiers subsequently retrained on all 3 folds of their
respective training data.

Figure 3. Decision-Level Fusion Architecture

3.2.3. Hierarchical Fusion The two-stage classifi-
cation architecture described as Hierarchical is be-
lieved novel, at least in this domain, though it takes
inspiration in part from the principles of cascaded ap-
proaches in literature (see Section 2) wherein data
modalities serve distinct consecutive roles. Here by
contrast we make predictions with data of one modal-
ity, and it is these predictions we combine with the
featureset of the other data modality. We thus incor-
porate principles of stacked generalisation, though con-
trary to conventional stacking wherein a meta-model
learns from multiple base classifiers’ outputs, we in-
ject the outputs of one model to a “higher-ranking”
model before the latter makes its prediction. This is
performed on a probabilistic basis. The lower-level
model is used to predict the probability distribution

of any given sample over the four classes. This distri-
bution is then used to supplement that sample’s entry
in the higher-level model’s (post-feature-selection) fea-
tureset. Higher-ranking classifiers were trained using
an equivalent K-fold cross-validation to that used for
meta-models in Decision-Level Fusion (Section 3.2.2).

Figure 4. Novel Hierarchical Fusion Architecture

We trialled both possible arrangements of data
modalities in this Hierarchical architecture, illustrated
in Fig. 4. The case wherein class probabilities
predicted by an EEG model were used to supple-
ment EMG data is referred to hereafter simply as
Hierarchical. Domain precedent indicates EMG-based
gesture classification to be a comparatively easier prob-
lem than that which is EEG-based, suggesting a high
likelihood of an EMG model outperforming an EEG
one. This orientation, wherein the model considering
primarily EMG data outranks its EEG counterpart,
is thus considered the architecture’s default configura-
tion. The opposite, wherein probability distributions
obtained from an EMG model are joined with EEG
data is hence named Inverse Hierarchical.

3.3. Candidate Classifiers and Hyperparameters

The candidate classifiers for use on the EMG and
EEG data (or joint dataset in Feature-Level fusion)
were selected from those with precedent in literature.
For each classifier we also considered a number of
hyperparameters and associated tuning ranges which
were conditional on their associated model being
constituent in a system. The overall modelling
space is presented in Table 1; the full rationale of
our hyperparameter ranges and other implementation
details is provided in the Supplementary Material,
Section 1.

Table 1. Joint algorithm-hyperparameter space for a single
classifier.

Algorithm Hyperparameter Tuning Range
RF # Trees 10 - 100 (steps of 5)
KNN k 1 - 25
LDA Solver SVD; Eigen; LSQR

Shrinkage 0.0 - 1.0
QDA Regularisation 0.0 - 1.0
GNB Smoothing 1e-9 - 1.0 (log scaled)
SVM‡ C 0.1 - 100.0 (log scaled)

γ 0.01 - 1.0 (log scaled)
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In Decision-Level and Hierarchical fusion, separate
classifiers are used for EMG and EEG data. Because
hyperparameters well-suited for EMG classification
may not be well-suited for EEG data and vice versa,
we allow these separate classifiers to be configured
independently. The configuration space for these fusion
architectures thus comprises two instances of the space
described in Table 1, as separate axes. In Decision-
Level fusion the search space additionally contained
a subsection defining hyperparameters used to choose
and configure the Decision-Level algorithm, presented
in Table 2.

Table 2. Joint algorithm-hyperparameter space for Decision-
Level Fusion algorithms

Decision-Level
Algorithm

Hyper-
parameter

Tuning Range

Mean - (Static Hyperparameters)
EMG-Weighted - (Static Hyperparameters)
EEG-Weighted - (Static Hyperparameters)
Tunable
Weighting

wEEG 0.0 - 100.0

Maximum Rule - (No Hyperparameters)
Stacked Linear
SVM

C 0.01 - 100.0 (log scaled)

Stacked LDA Solver SVD; Eigen; LSQR
Shrinkage 0.0 - 1.0

Stacked RF # Trees 10 - 100 (steps of 5)

3.4. Data Preprocessing and Feature Extraction

Data were preprocessed in Mathworks MATLAB
R2020a [64] with a script adapted from those provided
by Jeong et al. [65]. EEG signals were bandpass
filtered from 2 - 30 Hz with a 4th-order Butterworth
filter, and EMG were rectified and filtered from 10
- 500 Hz using a 5th-order Butterworth filter. We
used the MATLAB filter() function here, rather than
the zero-phase filtfilt(), since the latter is non-causal
and requires advance knowledge of an entire waveform.
This would risk information from later points in
time leaking into earlier datapoints, and would also
be impossible in a real-time system. Though our
experiments were performed offline, we strived to
avoid techniques which would be unviable for real-time
classification. For the same reason, no specific steps
were taken to remove any EEG artefacts associated
with participants blinking. Conventional methods for
this involve offline Independent Component Analysis
[66] and related techniques; while real-time strategies
have been proposed they can often introduce significant
delay [67] or require advance knowledge of artefact
characteristics [68].

Individual three-second gesture performances and
subsequent rest periods were then extracted from

‡ SVMs were included only in Bespoke systems for computa-
tional feasibility

the processed EMG and EEG. This demarcated the
50 performances of each grasp type and 150 rest
periods; a pseudorandom sample of 50 rests was
retained to balance the classes. The resultant dataset
thus comprised a total of 200 gesture performances
(including rests) per participant per session; 600
gestures per subject in total.

We extracted features from 1 second windows
overlapped by 50%. After [69], features from each
window were joined with those of its immediate
successor to form datapoints corresponding to 1.5s.
Thus from each 3s gesture performance four datapoints
were extracted, of which each except the first shared
one window with its predecessor and introduced 500ms
of new data, resulting in 2400 observations per subject.

The specific ensemble of features used in this
work is given in Supplementary Table 2 and includes
time-domain, frequency-domain, and correlation-based
features. It been used successfully in previous work
classifying both EEG [69] and EMG [38, 70] data.
These features were extracted from each time window
of both EMG and EEG data§. Feature extraction
was performed independently on the EMG and EEG
datasets, enabling the two modalities to be handled
separately throughout the modelling pipeline until
merged per the fusion strategies outlined in section 3.2.

EMG featuresets were reduced to the 15% with
the highest ANOVA F-values, identified from only
the training data of a given modelling process, for a
resultant 88 features. In EEG however, the greater
number of sensors from which features were derived
meant that a reduction by the same proportion would
be insufficient to avoid overfit, and vastly outnumber
EMG features. Instead, L1-norm based selection
(using a linear SVM with C = 0.005) was used
to retain a fixed number of features. In bespoke
systems 40 attributes, the approximate square root of
a subject’s 1600 training samples, were retained. The
square root of generalist datasets’ length, being much
larger, would be unsuitably high; these were instead
reduced to 88 features for a consistent width with
EMG. For parity the merged featuresets of Feature-
Level fusion systems werethe same width as the total
number of features available to other architectures:
128 in a bespoke case and 176 in a generalist. In
the separate-selection subtype these were selected from
the modalities independently as described; in joint-
selection, they were selected from the combined set of
all EMG and EEG features with the above L1-norm
method.

Finally, the training data were standardised such
that features had zero mean and unitary standard

§ Using a script adapted from https://github.com/fcampelo/

EEG_Classification_, itself adapted from that of [69].

https://github.com/fcampelo/EEG_Classification_
https://github.com/fcampelo/EEG_Classification_
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deviation, and the learned transformation used to map
test data to the same space.

3.5. Combined Algorithm Selection And
Hyperparameter (CASH) Optimisation

A suitable classifier design must be determined to
develop gesture identification system, whether that be
a pretrained generalist or a bespoke system trained
on individual user data. By using a data-driven
approach to determine modelling choices, we can
avoid potential biases resulting from an arbitrary or
unjustified selecting of models and hyperparameter
values. Specifically, we use Automated Machine
Learning [41] to find suitable configurations for each
fusion architecture. That is, rather than select models
solely on the bases of a priori assumptions or their
dominance among literature, we optimise over the
range of candidate models and hyperparameter values
introduced in Section 3.3 to identify configurations
resulting in the highest classification accuracy. Our
architectures typically comprise multiple classifiers in
an ensemble; we need to both select ML models for
these components and set their hyperparameter values.
We thus modelled the determination of classifiers and
the tuning of hyperparameters together as a Combined
Algorithm Selection and Hyperparameter (CASH) [71]
optimisation problem. CASH (also known as Full
Model Selection - FMS) is a specific problem within
AutoML in which model choice and hyperparameters
are optimised simultaneously. Distinct from a typical
paradigm of hyperparameter optimisation wherein a
range of values for one or more hyperparameters are
considered for one specific model, in CASH the choice
of the classifier algorithm is itself tunable in the
configuration space. This represents to our knowledge
the first application of CASH to the field of biosignal
classification.

Of the available AutoML frameworks, we chose hy-
peropt [72] for its particular suitability to our architec-
tures. Crucially, in an ensemble architecture like ours,
the choice of algorithm for each classifier is effectively
a separate axis in the search space. This allows for
a better chance of discovering algorithm combinations
which might not be investigated if components were
optimised separately. Hyperparameters defining the
properties of these different algorithm choices are con-
ditional, being well-defined only when the applicable
classifier is selected (i.e. when the “model choice” pa-
rameter has a certain categorical value). This tree-like
structure of the optimisation space makes hyperopt ’s
use of Tree-Structured Parzen Estimators (TPE) [73]
particularly well suited to the problem we are investi-
gating in this paper.

TPE is a form of Bayesian optimisation in which,
initially, a set of configurations D = {x1, ...,xN} are

sampled at random from the configuration space; each
xn = {xn,1, ..., xn,D} is a complete set of model choices
and hyperparameter values. These configurations are
evaluated based on an objective function f . In this
study, the objective function will be based on the
quality of models trained using a given configuration
as described in Section 3.8.

The configurations D are split into two subsets
based on a quality threshold, y∗, and the probability
densities of the parameters in the resulting sets are
modelled independently:

p(x) =

{
l(x), f(x) < y∗
g(x), f(x) ≥ y∗

Assuming that we are attempting to minimize f then,
within hyperopt, y∗ is chosen such that the best k
observations fall below the threshold for some fixed
value of k.

For their respective subsets of D, the models l and
g are formed by independently modelling the densities
in each dimension within the configuration space using
kernel density estimation [74]. Given a set of samples
{xn}Nn=1 to model, a joint distribution is defined as
follows:

p(x|{xn}Nn=1) =
1

N

D∏
d=1

N∑
n=1

kd(xd, xn,d)

where xn,d is the d-th dimension of the n-th sample
and kd is the kernel function for the d-th dimension.
Kernels may be chosen per dimension based on the
type of hyperparameter to be modelled, with truncated
Gaussian kernels being used within hyperopt [73].
Treating the dimensions of the configuration space
independently in this way allows the modelling of the
density in the context of conditional hyperparameters.

A new set of configurations is sampled from the
distribution of the better group, S = {xs}Ss=1 ∼ l(x)S .
Because evaluating a configuration can be expensive (in
this study requiring the training and testing of multiple
models) we choose only the most promising candidate
configuration x∗ from the set:

x∗ = argmaxx∈S
l(x)

g(x)

Intuitively, the configuration selected as a result of this
should have a high chance of being a member of the
“better” group and a low chance of being a member
of the “worse” one. This x∗ is evaluated using the
objective function and added to the set of observations
D := D ∪ x∗. The process repeats until termination.

The candidate fusion architectures described in 3.2
are diverse, and it cannot be assumed that the same
modelling choices would be optimal for all. CASH
optimisation was thus performed independently for
each fusion architecture, to enable fair comparison
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between them on the basis of their respective “best-in-
class” configurations.Likewise, bespoke and generalist
settings of each architecture were optimised separately
on the grounds of their distinct natures. For
consistency and to enable fair comparison, in all cases
optimisation processes were afforded a budget of 100
iterations. This figure is somewhat arbitrary, but
exploratory experiments suggested it as capable of
ensuring sufficiency while maintaining computational
feasibility, typically completing a CASH optimisation
routine within 2 hours for a Bespoke system and
20 for a Generalist (wherein training data are much
larger). The cost of this computation while not
negligible must be weighed against the costs in time
and expertise required to design a suitable equivalent
system manually – without the aid of an automated
methodology such as ours.Though beyond the scope
of this work to quantify, these cannot be dismissed.
Nor can the challenges inherent to such manual design,
both in the risk of experimenter bias previously
mentioned, and the extent to which useful inferences
can be drawn from a diverse and often limited
literature base — as the following section highlights.

3.6. Benchmark Classifiers

We have motivated the use of CASH with reference to
potential issues resulting from simply assuming that
common modelling choices from the literature will be
performant on new problems. To test the utility of this
approach, we compared our CASH-derived classifiers
to two benchmarks representing common trends in the
biosignal literature. The first is based on classical
ML models and uses modelling decisions inferred
solely from synthesising literature on biosignal fusion.
The second is a Deep Learning-based unimodal EMG
classifier, representative of popular domain trends.

The rarity of direct comparisons between different
fusion architectures in the biosignal classification
literature makes evidence for such inferences scarce.
From [19], unique in comparing fusion methods for
multi-gesture classification, we derive our classical
ML bespoke benchmark fusion algorithm. We
draw on both [19] & [56] in the choice of its
EMG component classifier, though in the absence
of hyperparameter valueswe defer to their default
values in scikit-learn 0.24.2 (while [19] states that
some hyperparameters were determined through cross-
validation, neither optimisation ranges nor resultant
values are provided). From [54], perhaps the only prior
subject-independent comparison of fusion strategies,
we derive our classical ML generalist benchmark
fusion algorithm and EMG model. Again we must
fall back on library defaults for hyperparameters,
though as [54] notes implementation in MATLAB we
refer to its documentation [75] to determine the SVM

kernel. Though not ubiquitous in fusion, to dismiss
the dominance of LDAs [6] in EEG classification would
be to disregard literature from which we seek to draw
inferences; these are hence chosen for both bespoke
and generalist EEG component models, each using the
scikit-learn default solver.

Table 3. Literature-Derived Baseline Systems
Design
Element

Implementation Source

Bespoke

Fusion
Algorithm

SVM metamodel [19]
RBF Kernel [19]
C = 1.0 scikit-learn 0.24.2 default
γ = 1

n features
scikit-learn 0.24.2 default

Component
EMG

SVM [19,56]
RBF Kernel [19,56]
C = 1.0 scikit-learn 0.24.2 default
γ = 1

n features
scikit-learn 0.24.2 default

Component
EEG

LDA [6]
SVD Solver scikit-learn 0.24.2 default

Generalist
Fusion
Algorithm

Mean [54]

Component
EMG

SVM [54]
Linear Kernel MATLAB Statistics and

Machine Learning Tool-
box default [75]

C = 1.0 scikit-learn 0.24.2 default
Component
EEG

LDA [6]
SVD Solver scikit-learn 0.24.2 default

Notwithstanding the discussion in section 2 of
the limitations of Deep Learning architectures for
biosignal classification problems, they remain the focus
of many studies, particularly in the EMG domain. Our
work is motivated more strongly by efforts to explore
and evaluate methodologies for multimodal fusion and
classifier development than it is by any attempt to
definitively claim superiority of a given model over
those of prior research. Nevertheless, it is useful to
compare the predictive abilities of the systems we
develop to that of an established architecture of the
type popular among recent research. Unimodal EMG
systems being dominant among literature (and indeed
state-of-the-art prostheses) serve as an appropriate
standard against which to assess our systems. We
use the Convolutional Neural Network architecture
of Lehmler et al. [76] as our deep learning based
benchmark, chosen because they test both subject-
specific and subject-independent settings comparable
to our bespoke and generalist paradigms.

To ensure a fair comparison, the experimental
conditions of the EMG-CNN comparators were the
same as those of our multimodal systems. They
were tested on the same problem with the same
dataset, using the same signal preprocessing steps and
applying the same stringent data handling strategy
outlined below in defense against leakage. Signals
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were windowed in the same manner described in
section 3.4, though to exploit the CNN’s feature
extraction capabilities the data were provided raw.
The model architectures were exactly as described
in [76], extracted from their code repository. The
sole exception is that early stopping criteria for
CNN training were removed in our Bespoke case.
Our datasets for subject-specific modelling are much
smaller than those of [76]; early stopping led training to
end prematurely, which would give an unfair portrayal
of the CNNs’ performance.

3.7. Data Handling

We take particular care in our experiments to minimise
modelling and assessment issues caused by mishandling
of data, which would compromise the validity of
our findings. We implemented more stringent data
handling standards than commonly found in the
related literature, including the strict preservation of
train/test data separation at the exploratory data
analysis, data preparation and feature engineering
stages [7]. We also go beyond usual good practice in
two important areas.

3.7.1. Avoiding leakage through model selection or
over-optimisation Optimising a set of classifiers over,
and selecting the highest-performing classifier on the
basis of its performance on, a given dataset is itself a
learning process. To draw conclusions from systems’
ability to classify data upon which they were selected
would introduce leakage by undermining train/test
separation [7,77]. This would risk reporting artificially
inflated performance measures and compromising the
generalisability of inferences drawn from the results.
Hosseini, Powell, et al. discuss the prevalence of
such over-optimisation among biosignal literature [9],
and highlight the need for findings to be verified on
data wholly unseen by any modelling or optimisation
procedures.

Here we go beyond these recommendations by
splitting the data at the participant level: data from
five participants were withheld throughout experimen-
tation, excluded from all parts of exploration, prepro-
cessing, modelling, and testing, and not accessed un-
til such time as they were used exclusively to verify
observations and test specific hypotheses. The data
from these held-out participants (IDs 1, 6, 11, 16,
and 21) is referred to hereafter as the Holdout set∥;
the remaining 20 subjects are denoted the Develop-
ment set upon which modelling decisions can be
made. These subjects were selected, without any sight
of their biosignal data, to preserve a consistent mean

∥ Described by Hosseini, Powell, et al. as “Lock-Box” [9]

age (27.8 years) and proportion of female participants
(40%) across both Development and Holdout sets.

3.7.2. Avoiding leakage through temporal dependencies
To protect against temporal data leakage [8], wherever
data were further split this was done at the level of
gesture performances - i.e., all datapoints from any
given execution of a gesture were grouped together.
Data collected at consecutive time intervals of the
same gesture performance were not distributed among
the training and testing splits, thereby preventing
time-series correlations in the data from violating the
train/test independence requirement.

3.8. Experimental Procedure

Figure 5 illustrates our procedure for CASH-based
development of a gesture classification system; Bespoke
and Generalist versions of every architecture being
each afforded an optimisation budget of 100 iterations.
Our Bespoke systems were designed to be “portable” -
every candidate set of modelling choices was trained
and tested on a subject-specific basis for all 20
Development Set subjects, and the configuration which
maximised the mean per-participant accuracy was
selected. We developed our Generalist systems using
leave-one-subject-out cross-evaluation: a candidate
configuration was trained on 19 subjects and tested on
the remaining one, for each Development Set subject
in turn. Again the mean per-participant accuracy was
the optimisation target.

For a fair assessment of the merit of EMG-EEG
fusion, performant multimodal systems were compared
with equivalent single-mode systems, to test the null
hypothesis that a multimodal system’s performance
will be no greater than a comparable unimodal one
versus the one-sided alternative, i.e.:

H0 : µfusion − µunimodal ≤ 0 (1)

H1 : µfusion − µunimodal > 0 (2)

To ensure fairness in this comparison, we designed
single-classifier EMG and EEG models with the
same CASH procedure used for Fusion systems, each
afforded the same optimisation budget and search
space (Table 1).

Candidate fusion and unimodal architectures were
selected according to their predictive power over the
Development Set. To avoid over-optimisation, our
formal tests were subsequently based on their ability to
predict the wholly unseen Holdout Set. In the Bespoke
case, Holdout tests were conducted as the mean of
100 trials, to mitigate the random effect of the 67/33
train/test splitting of Holdout subjects’ data. This was
not necessary for Generalist candidates, which were
modelled using all 20 Development subjects’ data and
tested once on all the data of each Holdout in turn.
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(a) Bespoke

(b) Generalist

Figure 5. Data flow within Combined Algorithm Selection &
Hyperparameter (CASH) optimisation procedures for Bespoke
& Generalist settings

The code used to run our experiments is found at
https://github.com/mgpritchard/emg-eeg-CASH.

4. Results

4.1. Determining candidate models

Table 4 presents the peak accuracies achieved in CASH
optimisation of each architecture¶.

¶ Note that both the Hierarchical and Inverse Hierarchical
systems reporting a mean Generalist accuracy of 71.68% is not

Table 4. Peak mean Development Set accuracies achieved in
CASH optimisation of Multimodal & Unimodal architectures.

Architecture
Mean ±SD Accuracy (%)

Bespoke Generalist

Decision-Level 87.83 ±4.286 71.67 ±7.381

Feature-Level
86.13 ±4.682 72.03 ±7.224

(Separate selection)

Feature-Level
86.48 ±4.836 72.30 ±7.329

(Joint selection)

Hierarchical 88.98 ±4.519 71.68 ±7.196

Inverse Hierarchical 83.68 ±6.956 71.68 ±7.222

Unimodal EMG 87.78 ±4.263 68.90 ±6.780

Unimodal EEG 54.80 ±8.242 49.11 ±6.330

In Bespoke Fusion, the highest accuracy was
reached by the novel Hierarchical architecture. In its
winning configuration the lower-ranking EEG model
was a QDA with a Regularisation value of 0.4559,
and the higher-ranking supplemented EMG model was
an SVM with C = 19.4037 and γ = 0.0138. It
is noted here that the degree of difference between
this architecture’s performance and that of the next
best-performing system (the Decision-Level fusion),
and indeed the Unimodal EMG, was quite small in
these experiments. A small effect size such as this
could be caused by an uncontrolled covariate, such
as the presence of blinks in the EEG data+ being
indicative of movement, though we did not observe
notable differences in error distribution between the
various systems. In a case like this where one
data modality is generally a better predictor of the
class than the other, a Hierarchical system may be
better able to down-weight the worse modality than in
conventional Decision-Level fusion; this is a property of
our architecture worthy of further investigation. Such
an apparently small performance difference between
our chosen fusion system and its unimodal counterpart
may well indicate fusion as insufficiently beneficial in
some applications if a simpler EMG based system
can suffice. That decision would be both problem-
and context-dependent and thus not one for which
we can be prescriptive. That our methodological
framework can identify and measure this difference
however, given the rarity of such direct comparisons
among pre-existing literature, is evidence of its utility.
The best-performing Generalist architecture was the
Joint Selection subtype of Feature-Level Fusion, using
a single LDA with the Least Squares Solution solver
and a Shrinkage value of 0.1871.

Among Unimodal classifiers, the optimised EMG
models were superior to the EEG in both Bespoke
and Generalist paradigms. An EMG-SVM with C =

a typographical error.
+ These will have been partially suppressed by the bandpass
filter but as described in 3.4 were not specifically removed.

https://github.com/mgpritchard/emg-eeg-CASH
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Table 5. Classification accuracies (%) of CASH-derived candidate Multimodal and Unimodal systems, and Literature-informed
Benchmarks, in predicting unseen Holdout dataset, in Bespoke and Generalist settings.

Bespoke (means ±std dev of 100 trials)

Subject ID
Literature-derived:

SVM fusion
Comparator:
EMG CNN

CASH: Unimodal EMG CASH: Hierarchical fusion

1 75.51 ±2.180 53.31 ±2.679 80.32 ±1.418 82.93 ±1.577
6 80.72 ±2.277 61.02 ±3.030 82.49 ±1.492 83.45 ±1.524
11 92.80 ±1.070 70.31 ±3.258 94.55 ±0.939 94.67 ±0.838
16 79.96 ±2.565 61.16 ±2.495 83.76 ±1.424 83.24 ±1.597
21 80.71 ±2.008 64.53 ±2.133 86.50 ±1.452 86.97 ±1.295

Mean 81.94 ±6.446 62.07 ±6.177 85.52 ±5.519 86.25 ±4.983

Generalist

Subject ID
Literature-derived:

Mean fusion
Comparator:
EMG CNN

CASH: Unimodal EMG
CASH: Feat.-level fusion

(joint selection)
1 68.29 57.17 59.33 66.33
6 73.38 68.08 70.88 74.75
11 83.17 74.71 79.33 82.33
16 69.83 68.29 69.71 72.46
21 70.38 67.96 66.38 71.21

Mean 73.01 ±5.972 67.24 ±6.315 69.13 ±7.264 73.42 ±5.857

4.1725 and γ = 0.0126 was selected in the Bespoke
case, and for the Generalist an EMG-LDA using
the Eigenvalue Decomposition solver with Shrinkage
equal to 0.0744. That the selected unimodal systems
represent algorithm choices popular among literature is
fortunate. It means our candidate EMG-EEG fusion
architectures can be compared with domain-standard
approaches to gesture classification, while maintaining
the fairness of the design of these competitors which
our CASH-based methodology enables.

Though we leave detailed analyses of the stability
of choices made by CASH in optimising biosignal
classifiers for future work to investigate in depth,
we note here that in all four of these selected
candidate architectures, the same ML algorithms were
used (albeit with varying hyperparameter values) in
the 10 highest-scoring observations made throughout
their respective CASH optimisation routines. The
only exception was the Bespoke Hierarchical system’s
lower-ranking EEG model, for which a QDA was
indeed chosen in the top 5 optimisation iterations
but the next most accurate 5, while still using SVMs
for their top-level EMG models, included KNNs, a
QDA, and a GNB. The CASH-identified configurations
of non-winning architectures are provided in the
Supplementary Material, Section 3.

Though not the primary focus of investigation,
the subject-independent EEG accuracy achieved here
should be highlighted. At 49% it is well above the
chance level — which for a Generalist, wherein all
150 of a subject’s gesture performances were used for
testing, has an upper confidence interval of 29% at
the α=0.05 confidence level [78] — and remarkably
is competitive with many subject-specific attempts at
multi-gesture EEG classification: 51% in [79], 44%
in [33], 50% in [34], though in 2-grasp classification
[60] reports 76%. Fazli et al.’s comparable leave-

one-subject-out approach did exceed our Generalist
accuracy at 73% [80], but on a simpler left-vs-right-
hand task than the four same-hand gestures of this
work. This is a strong indicator of the potential
of CASH as a design methodology for EEG-BCI
development.

4.2. Comparative tests with Holdout Data

The selected candidate multimodal and unimodal
systems’ accuracies over the 5 Holdout Subjects are
shown in in Table 5 for both Bespoke and Generalist
cases. Also in Table 5 are the accuracies of our
two literature-derived benchmarks (see Section 3.6):
multimodal systems using classical ML algorithms
designed by manual synthesis of the EMG-EEG
fusion literature, and a unimodal deep-learning-based
competitor representing popular trends in the wider
body of work on biosignal classification.

The latter enriches the scope of comparison
between our multimodal systems and domain-leading
unimodal classification approaches. Our Unimodal
EMG CASH procedures identified the SVM and LDA,
both popular choices in literature, as performant
models for comparison. The inclusion of this deep-
learning-based competitor accounts for a family of
algorithms which, due to the reservations we outline in
Section 2, were excluded from consideration and could
not have been generated by our CASH approach.

5. Discussion

5.1. Value of Fusion

In both Bespoke and Generalist settings, the observed
differences between our candidate fusion and unimodal
systems’ accuracies indicate the capability of our
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CASH-based methodology in identifying performant
multimodal designs. To test the hypotheses in
Equation 1 we performed paired samples t-tests,
which indicated that in the Bespoke case this
difference was not statistically significant (t = 1.3771,
p = 0.1203). Nevertheless to have attained an
equivalent accuracy to the “domain-standard” EMG-
SVM approach demonstrates the potential of the novel
Hierarchical Fusion architecture. In the Generalist
case however this difference is statistically significant
at the 95% confidence level (t = 5.5761, p =
0.0025). The optimised Generalist Feature-level
Fusion system offered a distinct improvement over
the equivalently-optimised Generalist Unimodal EMG
system in classifying the four same-hand gestures
in this task. EEG data, even if of somewhat
low reliability in isolation, is thus demonstrated as
meriting incorporation to hand-gesture classifiers in
zero-calibration contexts.

5.1.1. Exploring the impact in low-fidelity EMG
settings Considering the likelihood of reduced EMG
fidelity among amputee populations, it should be noted
this improvement may well be more distinct for that
group. Indeed while further investigation would be
needed to confirm as such, it appears plausible that the
observable difference in Bespoke accuracy, while not
found significant here, could in fact be so for amputees.

Amputee data, particularly multimodal data, is
scarce, and to gather sufficient data to fully investigate
this would be beyond the scope of the current study.
We can however artificially modify our EMG data to
carry less information. This will of course not be an
equivalent substitute for amputee data, but can enable
a provisional exploration of the impact of EMG-EEG
fusion in situations where EMG is less informative,
and whether our CASH-based methodology can be
effectively applied.

The characteristics of amputee EMG in the
residual limb are distinct from that of non-amputees
and though methods have been proposed [81] there is
not yet a domain-standard technique for transforming
able-bodied subjects’ EMG to emulate amputee data.
For the purposes of this small-scale experiment, we
opt degrade the able-bodied subjects’ EMG signals in
two ways: attenuation and noising, both precedented
for the artificial corruption of EMG data [82, 83].
We attenuated the filtered, rectified EMG by 50%,
and subsequently injected Gaussian white noise with
MATLAB’s awgn() function at a Signal-to-Noise Ratio
(SNR) of 5 decibels (dB). This SNR was an arbitrarily
chosen value below the 20dB typical of an able-bodied
subject but well above the extremes of <1.5dB seen in
paralysis [83, 84]. Figure 6 illustrates an example of
both original and degraded EMG signals.

Figure 6. Illustrative comparison of both original processed
EMG (yellow) and artificially corrupted EMG (blue).

We then re-performed our experimental procedure
using this degraded EMG alongside the original EEG
data. Only the Bespoke setting was considered as
it was here that the performance difference between
unimodal and multimodal systems was not found
significant. We used our CASH-based methodology to
determine classifier configurations for both Unimodal
EMG and Hierarchical Fusion (the best-performing
Bespoke fusion architecture), the result of which is seen
in Table 6.

Table 6. System configurations identified through CASH
optimisation with artificially degraded EMG and corresponding
peak mean Development Set accuracy (±SD)

System Configuration Accuracy (%)

Unimodal EMG
SVM
C: 7.5395
Gamma: 0.0129

86.59 ± 4.502

Hierarchical
Fusion

EEG: kNN
k: 24

EMG: SVM
C: 2.7866
Gamma: 0.0169

87.35 ± 4.942

We tested the identified configurations on every
subject in the reserved Holdout dataset, again
taking the mean of 100 trials each to account for
the randomness introduced in data splitting. We
also assessed the accuracy of the Literature-derived
Comparator fusion system when faced with this
degradation of EMG signal quality. The results in
Table 7 indicate that a Hierarchical fusion approach
continued to offer consistently more accurate gesture
classification than an EMG-based classifier when EMG
data were degraded. The effect size is generally low,
though it is notable that the greatest improvement was
found for the poorest-performing individual (Subject
1); the same trend can be observed in our main
results with unmodified EMG in Table 5. This may
suggest that the multimodal fusion of EMG & EEG
data is not of universal benefit in Bespoke systems
but has more potential value in subjects for whom
EMG-based performance alone is substandard. Of
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Table 7. Classification accuracies (%) of CASH-derived Bespoke Unimodal and Multimodal systems, and Literature-derived
Benchmark, in predicting unseen Holdout dataset with artificially degraded EMG.

Subject ID Unimodal EMG Hierarchical Fusion
Literature-derived:

SVM fusion
1 77.63 ± 1.934 79.96 ± 1.706 73.96 ± 1.992
6 79.96 ± 1.585 80.72 ± 1.625 79.00 ± 2.289
11 93.14 ± 0.989 93.28 ± 1.170 91.29 ± 1.437
16 81.72 ± 1.604 82.20 ± 1.561 78.80 ± 2.375
21 86.60 ± 1.286 86.63 ± 1.423 81.85 ± 1.927

Mean 83.81 ± 6.169 84.56 ± 5.518 80.98 ± 6.423

course, while the attenuation and noise injection we
performed here enabled this cursory investigation, they
do not reflect the genuine modifications to EMG
following amputation, and further confirmatory testing
with amputee subjects would be needed for a more
conclusive evaluation.

That the CASH-derived fusion system routinely
outperformed the comparator fusion system inferred
from literature reinforces the value of our methodology
for biosignal classifier design. Despite the poorer
data quality potentially diminishing the applicability
of literature-recommended modelling choices, our
approach enabled a performant classifier configuration
to be identified, evidencing its robustness.

5.1.2. Comparing Fusion Architectures To enable
comparison between Fusion architectures’ predictive
abilities, all architectures - not only the two identified
in Section 4.1 as best-performing on the Development
set - were deployed to predict the reserved Holdout
set, each using their respective CASH-optimised
configuration (see Supplementary Tables 5 & 6). We
performed all-vs-all pairwise comparisons between the
fusion architectures with Tukey’s Honest Significant
Difference test as implemented in the R package
multcomp version 1.4-26. Figure 7 presents the
simultaneous 95% confidence intervals of these pairwise
comparisons between architectures’ mean accuracy
values, for Bespoke and Generalist classification
respectively.

Among Bespoke systems, the Hierarchical and
Decision-Level architectures jointly outperformed all
other strategies, evidencing the capability of our
novel approach. In the Generalist case, though the
previously selected Feature-Level Fusion did attain
a higher Holdout Set accuracy than others by a
small magnitude, the performance differences between
architectures were not statistically significant.

5.2. Assessing Literature-derived System Designs

The use of CASH to create optimised fusion systems
allows us to assess the quality of systems designed
only on the basis of literature recommendations. Table
5 compares the accuracies achieved by the candidate

CASH-identified systems with the alternatives derived
solely from literature inferences in Section 3.6 above.
As discussed in Section 3.8, a fair test requires the
CASH-derived candidates here to be selected without
any knowledge of the Holdout data. They are
thus the same Hierarchical and Feature-Level systems
chosen based on their Development Set performance in
Section 4.1, i.e., ignoring our later assessment of other
architectures on the Holdout data.

In the Bespoke case, a paired one-sided t-test
between the CASH-determined Fusion system and that
derived from literature reports a t-statistic of 4.0222,
at a p-value of 0.0079, with the 95% confidence interval
on the mean of paired differences calculated as 0.0431±
0.0228. This result shows that a subject-specific
fusion system designed solely on the basis of inferences
from biosignal literature would underperform the best
identifiable system by a significant margin, evidencing
the limits of reliance on literature recommendations as
a design method.

In the Generalist case however, though a positive
difference in means was observed the t-test does not
indicate a statistically significant difference between
the CASH-determined system and that based on
literature insights (t = 0.5032, p = 0.3207). This gives
confidence to the literature-precedented design choices
of Section 3.6 for subject-independent contexts.

The distinction in significance between the two
classification paradigms could be in part due to
inherent limitations in the usefulness of literature
recommendations for Bespoke classification. By
contrast to the “portable” nature of the Bespoke
CASH optimisation here, wherein a single design
was found which maximised mean subject-specific
accuracy over all Development Subjects, many works
optimising subject-specific models do so separately
on a per-subject basis. Such studies’ findings while
legitimate are thus liable to be over-optimised to the
particular individuals in their datasets. In the subject-
independent case such specialisation is precluded; any
recommendations arising are plausibly better able to
generalise to new studies and thus more competitive
here.

As demonstrated in Table 5, under both
paradigms our CASH-identified multimodal systems
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Figure 7. Simultaneous 95% Confidence Intervals & corrected p-values for the paired differences of accuracy for CASH-configured
Bespoke and Generalist systems of various fusion architectures on the Holdout set, with markers corresponding to differences for
individual Holdout subjects.

significantly outperformed the comparator CNNs (p ≪
0.01 in both Bespoke and Generalist). This is of course
not to posit that no Neural Network architecture exists
capable of greater accuracy than our CASH-derived de-
signs for this task, but to give a like-for-like benchmark
against a domain-popular architecture representing a
prevailing trend in literature sources.

5.3. Value of a CASH-based design pipeline

The proposed CASH-based methodology offers numer-
ous benefits, providing an unbiased design tool to a
field often lacking in sufficient transparency on how
design choices are reached; easing the burden of lit-
erature analysis for those designing gesture classifiers;
and giving confidence in the likelihood of identifying
adequate design choices where literature inferences are
limited.

As an investigative tool for researchers our
methodology allows a robust, unbiased assessment
of frequently used design and solution methodologies
within the domain. This has enabled us to show
that, while fusion-based systems outperform unimodal
systems in each of our use cases, the difference is only
significant in a Generalist setting. Given the additional
burden to users of gathering EEG data, it is valuable
for designers of such classifiers to have confidence that
a Bespoke unimodal system can achieve comparable
performance to a fusion-based system.

Our methodology has also allowed us to demon-

strate that design trends observed in the literature are
not always optimal. In the Bespoke case, a CASH-
derived system was able to significantly outperform
both a literature-derived fusion system and a compara-
tor CNN. In the Generalist case the literature-derived
system was competitive with the CASH-derived one.
The similarity in accuracies between the two systems
gives us strong evidence that the recommendations in
the literature are indeed optimal for this case given the
architectures considered.

As a tool for designing classifiers, our
CASH-based approach has shown consistently strong
performance, particularly in multimodal applications.
In each use case studied, a CASH-derived fusion
system achieved the highest average performance
on the unseen Holdout dataset. A CASH-derived
fusion system significantly outperformed each of
the alternative systems considered (literature-derived
fusion, EMG-based CNN, CASH-derived unimodal
classifier) in at least one of the two cases considered.
This demonstrates the suitability of CASH for
contexts wherein literature-based recommendations
have not been robustly justified. Our results highlight
the caution needed when deferring design decisions
to literature recommendations which may - due
to insufficiently detailed reporting, inherent limits
in generalisability across datasets, the inadvertent
overlooking of performant configurations in favour of
popular algorithms, or other limitations - fall short of
expected performance, and the merit of an unbiased
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design tool. That CASH-derived systems consistently
attained competitive accuracies to literature-based
ones even when not significantly superior also indicates
its suitability as a reliable strategy for contexts
in which system designers themselves do not have
intimate knowledge of prevailing literature.

We additionally note that the multi-gesture
accuracies achieved here, at 82% in the Bespoke case
and 73% in the Generalist, exceed those of Ruiz-
Olaya et al.’s recent work on the same dataset [85].
Though notably drawing on fewer EEG channels, in
[85] a move-vs-rest accuracy of 70% was obtained but
individual gestures could be distinguished with only
54% accuracy in binary grasp-vs-grasp classification,
and multiclass tasks were not attempted.

6. Conclusion

Our work demonstrates the efficacy of Combined Algo-
rithm Selection and Hyperparameter Optimisation as
the central aspect of a reliable, fair methodology for the
design of biosignal gesture classification systems, and
our approach’s ability to outperform traditional clas-
sifier design processes in important cases. To reduce
the issues of bias and insufficient rigour often observed
in the field, we recommend CASH as a means of in-
creasing transparency of model design, leading to more
fair and methodologically sound comparisons. We also
demonstrate an end-to-end development pipeline which
goes beyond domain standards of good data handling
practice to prevent data leakage, and by holding-out
a population subset for verification allows the benefits
of CASH to be leveraged without reporting inflated,
over-optimised results which fail to generalise.

We recognise that there are avenues for our
methodology to be refined further. While it reduces
the risk of bias in biosignal classifier design it may
still be susceptible to such bias if not applied carefully.
The joint algorithm-hyperparameter search space must
itself be well defined with a sufficient scope, and
not manipulated to favour practitioners’ preferred
modelling choices. It is for this reason we recommend
candidate algorithms and hyperparameter ranges
should be transparently detailed and justified. The
wide-ranging and often conflicting recommendations
of the literature may allow even highly suboptimal
configurations to be argued for however; future
extensions of our methods may seek to devise
more prescriptive guidelines for constructing such a
modelling search space. We also note that the
Tree-Structured Parzen Estimator, being a greedy
optimisation algorithm, can miss very narrow local
minima if attempting to optimise over a particularly
complex space. There could be benefit to exploring
the impact of modifying the total optimisation budget,

the size of the initial set of randomly sampled
configurations, and the number of candidates sampled
in each iteration, on not only the resultant accuracy of
a CASH-derived biosignal classifier but the time taken
for the optimisation to converge and the stability of its
path.

Nevertheless, our use of the CASH-based method-
ology allowed us to conduct a more extensive com-
parison of biosignal fusion strategies than has been
done before in the domain, in the context of a multi-
participant dataset more complex and less trivially sep-
arable than those frequently seen in gesture classifi-
cation research. We achieved a multi-gesture classifi-
cation accuracy of 73% in wholly subject-independent
EMG-EEG fusion, and our subject-independent Uni-
modal EEG accuracy at 49% was notably competitive
with those reached for simpler problems on subject-
specific bases by prior EEG studies.

Our novel Hierarchical fusion strategy reached
86% accuracy in a subject-specific multiclass (three
grasps & rest) paradigm, significantly outperforming a
state-of-the-art Deep Learning EMG architecture and
performing equivalently to a “domain-standard” Uni-
modal EMG model developed with the same CASH-
based procedure. This new approach also proved ca-
pable of greater accuracy than all but one of a diverse
range of competing fusion architectures, further evi-
dencing its capability and motivating its consideration
in future research on the topic. There would also be
merit in investigating the Hierarchical architecture’s ef-
fectiveness in other domains beyond that of biosignal
classification, and exploring further the distinctions in
behaviour between it and conventional Decision-Level
fusion. It could even in principle be extended to com-
bine more data sources in a hierarchy with a greater
number of “ranks”; this could be useful for embedding
priority in systems which fuse many input modalities.

Though much research is conducted on biosignal-
based gesture classification, methodological limitations
and a sparsity of robust like-for-like comparisons
between competing modelling choices means the
evidence base for designing such systems is low.
Our work not only offers a thorough, unbiased
comparison of a range of fusion strategies for a highly
application-relevant task, but also proposes a sound,
transparent, and robust methodology for end-to-end
development. By incorporating Automated Machine
Learning alongside a range of measures extending best
practice for data handling and classifier design &
comparison we present a framework with which we
hope to set new standards for biosignal fusion research
going forwards.
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