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Abstract Stretching Surface Flows

Abstract

Extrusion flows are common in industry and have received considerable attention in the litera-

ture. Work in this area began with the experimental results of Trouton [111], who developed an

empirical formula relating the applied tension to the stretching rate. Trouton’s model has since

been validated by numerous authors through the application of asymptotic arguments based on

small thickness-to-length ratios in the sheet (or fibre) being drawn ([51],[84],[75],[98]).

In addition to the work on modelling the drawn sheet or fibre, the boundary layers induced

by such flows have also been extensively studied. A notable early contribution is the work of

Crane [23], who found exact analytical solutions of the steady Navier-Stokes equations under the

assumptions of a flat sheet undergoing a linear rate of stretching. Until recently, Crane’s flow has

been thought to be linearly stable. However, recent analysis by Griffiths et al. [39] shows that

this flow is actually susceptible to travelling wave instabilities in the form of Tollmien-Schlichting

(TS) waves, possibly leading to defects in industrial extrusion processes.

Despite these advances, a significant gap remains between the models used to describe the

induced boundary layer and the physics of the underlying industrial extrusion processes. In

this thesis, we address several of these issues by independently accounting for large temperature

gradients and the curvature of the sheet. We demonstrate that failing to incorporate these

additional physical effects leads to poor quantitative descriptions of the basic flow profiles in the

boundary layer.

We also explore the implications of temperature dependence on flow stability, using a highly accu-

rate numerical spectral method and complementary large Reynolds number asymptotic analysis.

Additionally, we show that in the isothermal case, non-modal instability mechanisms present

a more likely transition scenario, with significant energy amplification occurring at Reynolds

numbers that are orders of magnitude smaller than the critical values reported in [39]. This

was achieved using an adjoint based power iteration method, first introduced by Corbett and

Bottaro [22].

Preliminary numerical investigations using the parabolised stability equations (PSE) indicate

that non-parallel effects are destabilising in the isothermal case. While we have not performed

a full parametric analysis to account for non-parallel effects in Crane’s flow, such an approach

could be readily adapted to model the stability of our new basic flow solutions that account for

the curvature of the sheet.
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Introduction Stretching Surface Flows

Chapter 1

Introduction

1.1 Motivation

Throughout this thesis we will analyse flows induced by the motion of stretching surfaces. Such

flows are commonplace in industry for a range of different materials, with two primary examples

being polymer extrusion and glass sheet drawing. In polymer extrusion plastic resin is placed

in a heated barrel known as an extruder where it is heated and melts. The extruder contains a

rotating screw which pumps the molten polymer through a wide (∼ 1−10 m), narrow (∼ 1mm)

slit called a die which determines the shape of the final product which typically has a large aspect

ratio. Upon exiting the die, the molten polymer rapidly cools, and uniform cooling is essential

to prevent deformities. This is accomplished by winding the sheet around a series of cooled

rollers, which can also be used to control the final dimensions of the polymer by adjusting their

respective speeds. Furthermore, these rollers serve to apply a finish to the sheet, as the polymer

is often soft enough upon exiting the die to mirror the surface of the rollers, which can have both

aesthetic and functional purposes. The surface’s roughness can be controlled by using different

grades and patterns of roughness on the rollers, as illustrated in Figure 1.1. Coextrusion is an

extension of this process where multi-layered films are drawn simultaneously allowing desirable

traits of the constituent polymers to be combined. This can both enhance structural properties

and reduce manufacturing costs. The ultimate use of the finished product depends on its gauge

with thinner sheets being thermoformed for use in packaging and thicker sheets often used as

protective layer or liner for the storage and transportation of goods. A similar type of extrusion

is evident in glass sheet drawing, where molten glass is fed through a die, falling under the

influence of gravity onto a sequence of rollers where it is stretched as it cools and solidifies.

Different approaches are sometimes taken based on the thickness or properties of the required

glass. For instance, float glass is used in manufacturing plate glass for doors and windows. This

process involves floating a thin sheet of molten glass on a bed of denser molten tin. The glass

N.Hanevy, PhD Thesis, Aston University 2024 1



Stretching Surface Flows Introduction

Figure 1.1: Industrial examples of stretching surface flows. In a) we have a Schematic of the
glass sheet redraw process, reproduced with permission from O’Kiely [82] and b) is a simple
schematic of polymer extrusion. This thesis aims to more accurately model the flow induced by
the production of these thin sheets of glass and plastic.

then spreads due to gravity until it reaches an equilibrium thickness of ∼ 5mm when surface

tension balances with the force of gravity. Further thickness reduction is achieved by stretching

the glass using rollers, resulting in smooth, transparent sheets that can be bent after production

for use in windshields and curved mirrors. Alternatively, the glass can be redrawn to produce

longer, thinner sheets used in applications such as fingerprint sensors and mobile phone screens.

This involves feeding the plate glass, now referred to as a preform, into a furnace, where the

glass is stretched via the application of a uniform axial tension at a fixed distance downstream,

as depicted in Figure 1.1.

Fibre drawing is a process where a cylindrical material is stretched in the axial direction to

create a longer, thinner cylinder of material. In industry, this process is employed to produce

glass fibre optic cables used in telecommunications and nylon or terylene fibres for textiles. The

process follows a similar fashion to sheet extrusion or glass sheet redraw, as discussed earlier,

with the primary difference lying in the geometry of the die and preform. These processes can be

adapted to produce holey fibres with internal air pressure, often used to control the structure of

the fibre. They are constructed by stacking multiple preforms together or by drilling holes in a

preform, leading to the creation of complex structures with a range of applications. For example

in Martelli et al. [74], it is found that fractal fibre optic cables significantly reduce signal loss

when travelling around a bend.

The majority of studies in the literature consider either the dynamics of the sheet or fibre, or on

simplified models for the flow of the ambient fluid which is driven by the motion of the sheet.

In the remainder of this Chapter we will briefly highlight some results relevant to the analyses

N.Hanevy, PhD Thesis, Aston University 2024 2



Introduction Stretching Surface Flows

which follows before outlining the contents of each Chapter in the remainder of this thesis.

1.2 Basic Flow Solutions

The drawing of a thin sheet or fibre is an example of an extensional flow problem. Analysis of

these flows dates back to the experimental work of Trouton [111], where an empirical formula

was derived for the stretching of viscous fibre using a tensile force. This Trouton model estimates

both the velocity and thickness of the sheet/fibre. This work has since been extended by

numerous authors. Asymptotic analyses of such flows is predicated on the assumption of small

thickness to length scales for both sheets, as seen in Howell [51], and fibres, as explored by

Matovich and Pearson [75] and Schultz and Davis [98]. In the isothermal viscous case this

leads to a reduced system of governing equations, in which simple analytic approximations

can be attained at leading order. It is found that the velocity in the direction of drawing is

independent of the vertical y-coordinate in sheets and the radial coordinate for fibres. The

implications of this for the induced boundary layer is depicted in Figure 1.2. Matovich and

Pearson [75] considered the effects of inertia, gravity and surface tension in their analysis of

the steady state drawing of an isothermal, axisymmetric viscous fibre obtaining leading order

solutions. Schultz and Davis [98] proposed corrections to the leading order solutions of order

aspect ratio squared. However, recent analysis by Hanevy and O’Kiely [44] suggests that the

size of the correction terms depends on whether stress or plug boundary conditions are imposed

at the ends of the fibre. Given that a materials properties such as viscosity in glass are highly

temperature dependent, further investigations have sought to explain the effect of temperature

in the drawing process. In Taroni et al. [103] conduction, convection and radiative heating are

incorporated within their model allowing for analytic solutions in limiting cases of the relevant

dimensionless parameters. This enables the authors to predict the observed characteristics of

the flow profile such as the sharp reduction in fibre thickness and the temperature profile within

the fibre.

Similarly, extensive work has been carried out to model the drawing of thin sheets in various

industrial contexts. A model for the drawing of two-dimensional, viscous sheets in the absence

of inertial forces was developed in Buckmaster et al. [13]. This model enabled the authors

to predict the stretching of a sheet under tension, as well as the straightening and buckling

of slightly curved sheets under tension and compression, respectively. In Howell [50], it was

observed that this model broke down when inertia was introduced, even for small values of the

sheet Reynolds number. However, this issue was addressed by introducing new length and time

scales, resulting in a well-posed problem. Sheets, unlike fibres, do not maintain their shape

during the drawing process. O’Kiely et al. [84] demonstrated that edge thickening occurs, where

an initially rectangular sheet is redrawn to a nonuniform sheet which is thinner near the centre

N.Hanevy, PhD Thesis, Aston University 2024 3



Stretching Surface Flows Introduction

Figure 1.2: Schematic of the flow induced by a two-dimensional stretching sheet. The flow of
the outer fluid is driven by the shape s and stretching velocity Uw of the sheet.

and thicker at the edges. Corrections to the leading-order solution previously obtained account

for this behaviour and provide a means to model the production of thin glass sheets with as

uniform a cross-section as possible. Surface tension was found to have a quantitative effect on

the edge-thickening behaviour and was also included in the model.

Boundary layer theory has provided insight into the flow induced by the motion of stretching

sheets. However, many of the studies in the literature treat the sheet as a flat solid object and

prescribe the velocity within the sheet as a function of position in the streamwise direction.

The first study of this type was that of Sakiadis [94], in which similarity solutions for viscous

flow over a flat surface of constant velocity were discovered. This analysis has been extended

and modified by numerous authors to incorporate different velocity profiles at the surface of the

sheet. For example, in Vleggaar [114] a power law type sheet velocity was imposed and Magyari

and Keller [72] used an exponential sheet velocity profile. Other authors have considered non-

Newtonian effects such as Rajagopal et al. [89] which studied the flow of a power law fluid

and Chakrabarti and Gupta [20] considered magnetohydrodynamic effects. Later in this thesis

we will expand upon the analysis of Crane [23] who investigated the flow over a flat sheet with

velocity proportional to distance along the stretching axis, and found an exact analytical solution

to the full Navier Stokes equations.

In an analogous study Crane [24] models the flow induced by the linear stretching of a fibre

whose radius decreases in the streamwise direction. The fibre’s dynamics are determined using
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a conservation of mass argument, enabling the discovery of similarity solutions that remain

valid at large axial distances from the inlet. While this accounts for the deformation observed

in industrial processes, it overlooks the dynamics of the fibre itself. In Al-Housseiny and Stone

[2] an attempt is made to couple the dynamics of both the sheet and ambient fluid for viscous

and elastic sheets. While the problem is not non-dimensionalised, it is assumed that both the

sheet’s thickness varies slowly and the velocity within the sheet is independent of the vertical y-

coordinate. These assumptions allow the authors to couple the respective momentum equations.

While they obtain similarity solutions that match the velocities at the interface, the stresses at

the free surface do not align. Moreover, the velocity profiles within the sheet deviate from those

obtained using the Trouton model in the Newtonian case. Although we have been unable to

modify the analysis to address these shortcomings, as using Trouton’s solutions for the sheet

still result in a stress discontinuity, a proper asymptotic expansion may enable the derivation of

higher-order correction terms to match the stresses in each fluid. This topic is discussed further

in Chapter 8 and likley involves the introduction of a thin layer near the surface of the sheet

whose thickness equals to viscosity ratio between the sheet and boundary layer to match the

stresses in the respective fluid mediums.

Brady and Acrivos [11] examined the flow of a viscous fluid inside a tube and channel with

linearly stretching walls, and they discovered exact similarity solutions to the Navier-Stokes

equations. The primary difference in their analysis is the presence of an axial pressure gradient.

The authors identify multiple solutions for different ranges of the Reynolds number and axial

pressure gradient, applicable to both tubes and channels. Some of these solutions exhibit in-

triguing behaviour, such as flow reversal, where the sign of the streamwise velocity component

changes as one moves from the core to the surface of the tube or channel.

Despite the limitations of some studies in this Section, they will serve as a foundation for us

develop improved basic solutions in future Chapters which take both the deformation of the

sheet and influence of temperature on the viscothermal behaviour of the ambient fluid. This in

turn should yield results which are more relevant to the underlying industrial processes.

1.3 Flow Stability

Both fibres and sheets are susceptible to draw resonance, which manifests as a periodic variation

in the cross-sectional thickness of a sheet or fibre. Draw resonance occurs when the ratio of inlet

and outlet velocities exceeds a critical threshold, known as the draw ratio. Pearson and Matovich

[87] predicted this ratio to be approximately 20.2 for a long, thin viscous fibre in the absence of

inertia, surface tension and gravity. Subsequent work has extended these predictions to include

the effects of temperature variation. In Shah and Pearson [99] the cooling of a fibre as it is being

drawn was found to increase the draw ratio required to induce the instability. Additionally,
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Myers [80] demonstrated that radiative heat transfer between the fibre and the furnace also acts

to stabilise the flow. More recently, Scheid et al. [96] conducted an analysis of the stability of

coupled temperature and fluid flow in the downdraw of viscous sheets. Qualitatively different

behaviours are observed in regimes dominated by advection and heat transfer. Cooling is found

to be stabilizing in advective regimes, whereas when the heat transfer coefficient is sufficiently

large, the critical draw ratio is reduced. However, such high values of the heat transfer coefficient

are not typically observed in industrial settings, which partly explains why draw resonance is

not commonly observed in industry despite draw ratios in the range of 20− 100 being common.

Less is known about the stability of the ambient fluid in such regimes and its impact on the sheet

or fibre during drawing. This lack of knowledge is partly due to the difficulty in coupling the flow

in the sheet/fibre and the surrounding fluid. One approach has been to take simplified models,

such as Crane’s flow, discussed earlier, and examine its linear stability. In Bhattacharyya and

Gupta [7], Crane’s flow was found to be stable to infinitesimal periodic perturbations normal

to the stretching surface (Görtler disturbances). While the authors acknowledged that the flow

may be unstable to other types of disturbances, it was not until Griffiths et al. (2021) that

the flow was found to be unstable to travelling wave disturbances (Tollmien–Schlichting waves).

However, incorporating curvature, interfacial, and additional physical effects may give rise to

previously unconsidered instabilities. This is the central question which shapes the analysis that

follows.

1.4 Thesis Outline

The main objective of this thesis is to revise the models presented in this Chapter to more

accurately model flows induced by stretching surfaces and examine their stability using a combi-

nation of numerical and asymptotic approaches. This will enable the implementation of control

flow techniques to suppress the onset of these instabilities and prevent defects from forming in

an industrial setting.

In Chapter 2, we introduce two such new formulations. The first being the imposition of a

temperature gradient between the sheet and the free stream, where the energy and momentum

equations are coupled via a temperature-dependent viscosity. The stretching sheet is fixed at

a temperature greater than that of the free stream. While this neglects streamwise variations

in temperature, it is consistent with the local linear analysis in Griffiths et al. [39], allowing us

to quantify temperature effects by comparison. In this formulation we are also assuming the

sheet is flat and stretched at a rate proportional to the distance from the inlet. As such this

assumption, according to Vleggaar [114], is valid only with about half a meter from the inlet,

provided of course the magnitude of the reduction of cross-sectional thickness remains small.

Beyond this point significant cooling occurs at a rate which increases as the sheet accelerates
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further. This does not contradict the predictions of the Trouton model which state that the

sheet accelerates exponentially, rather it can be thought of as a near inlet expansion of the sheet

velocity profile.

The second novel formulation enables the modelling of flows induced by deforming surfaces. This

approach is warranted in situations where the reduction in thickness of the sheet is proportional

to the boundary layer length scale so that our flat sheet assumption is no longer applicable. In

addition, this formulation has the added advantage of being able to describe a greater proportion

of the drawing region. It would be straightforward to impose a temperature gradient between

the sheet and the freestream with either a fixed sheet temperature or a sheet temperature which

decreases as the sheet moves downstream. However, here our goal is to quantify the errors

incurred from neglecting the curvature of the sheet. This is readily accomplished by focusing on

the isothermal case and treating the sheet as a boundary condition, similar to the approach in

Crane [23], with its velocity and shape prescribed in a manner that permits the existence of self-

similar solutions. In both cases, self-similarity implies that the downstream basic flow solutions

are scaled by the velocity of the sheet under some suitable transformation of the associated

boundary layer equations. These are refered to as self-similar solutions of the first kind.

Basic flow solutions for the two new cases are presented in Chapter 3. For both the temperature

dependent and deforming extension of Crane’s problem we show that self similar solutions may

be obtained. For the flat, heated sheet, this involves the numerical solution of an ordinary differ-

ential boundary layer equation, although near wall, weakly temperature-dependent, analytical

solutions are also presented. These are validated by the numerical solution of the parabolic,

boundary layer PDE’s using a Keller-Box scheme where excellent agreement is found. In the

deforming case we demonstrate that for particular sheet shapes and velocities, analytical ap-

proximations may be derived which mimic the exact solutions found by Crane. This allows us to

quantify errors associated with neglecting surface deformation and is validated by the numerical

solution of the full Navier-Stokes equations using the finite element software FEniCS. Note that

the deforming analysis presented in Section 3.3 appears in the publication Hanevy et al. [45].

Chapters 4 and 5 contain the complimentary numerical and asymptotic analysis of the modal

stability of the temperature dependent extension of Crane’s problem respectively. The numerical

analysis is performed at a local Reynolds number equivalent to the dimensionless streamwise

location. This allows us to parallelise the flow in a similar manner as for both the isothermal

problem [39], and the rotating disk [67], by removing the streamwise dependence of our basic

flow solutions replacing the x terms in our linear stability equations with their definition in

terms of the local Reynolds number. Although the flow is not strictly homogeneous in the

streamwise direction it is reasonable to make this parallel-flow-type approximation given that

we expect the onset of linear instability to occur sufficiently far enough downstream. As a result
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of our parallelisation, a number of higher order basic flow terms appear in our linearised Navier-

Stokes equations. The relative importance of these terms is assessed using an integral energy

analysis, as well as through comparison to a standard Orr-Sommerfeld formulation. Numerical

solutions are subsequently validated by a large Reynolds number, lower branch asymptotic

stability analysis. Using only the leading order term in our expansion, excellent agreement

between the two approaches is shown. Sections 3.2, 4.2, 4.3 and 5.2 have been submitted as

Hanevy et al. [46] and are currently under review.

In Chapter 6, we conclude by seeking alternative energy growth mechanisms in the form of

optimal perturbations. This analysis aims to determine initial disturbances which produce the

greatest transient increase in perturbation kinetic energy over much shorter time scales than the

modal analysis of Chapters 4 and 5. This is motivated by the large critical Reynolds numbers

for Crane’s flow, particularly in the isothermal case, which raises the question of whether the

flow would remain laminar at such high Reynolds numbers in practice. Here we demonstrate,

in contrast to the modal analysis, that the higher order basic flow terms lead to fundamentally

different behaviour and act to stabilise the system. This is also observed in the rotating disk,

where the inclusion of higher order basic flow terms associated with streamline curvature and

Coriolis forces, increases the critical Reynolds number in the modal analysis and improves the

agreement between theory and experiment [73]. Whether this is the case for the non-modal

stability of the stretching case remains an open question and warrants further investigation.

We summarise our findings in Chapter 7 and outline ways in which our analysis may be extended

in Chapter 8. In particular we demonstrate the promise of the parabolised stability equations

(PSE), as a means to quantify not only non-parallel effects for Crane’s flow, but also the impact

of surface curvature on convective instabilities induced by extrusion processes. Furthermore,

we comment on several existing studies which have addressed the coupled sheet-fluid system.

These studies have typically focused on regimes which are not relevant to extrusion flows which

are the focus of this thesis. However, many of the ideas used show promise and we suggest a

number of ways in which they may be adapted to model the boundary layer flow induced by the

stretching of a highly viscous sheet.
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Chapter 2

Problem Formulation

In this Chapter we introduce two new formulations which extend previously proposed models of

the flow induced by the motion of stretching sheets. As stated in the previous Chapter, many

of the existing models have considered simplified versions of the sheets dynamics by assuming

that the sheet is flat and that temperature variations do not affect the material properties of the

ambient fluid. Here we address these shortcomings to explore the influence of these additional

physical effects. The formulations presented in this Chapter are general in that we don’t impose

a particular shape or temperature dependent viscosity function. This will be addressed in the

following Chapter where we present basic flow solutions for a range of specific cases.

2.1 Motivation

The goal of any drawing process is to produce a sheet with a narrow cross-sectional area.

Regardless of the material being used, two key phenomena typically occur to achieve this. First,

the sheet must accelerate. Due to the conservation of mass, this acceleration will cause the

sheet to deform and reduce its cross-sectional area in the drawing direction. Secondly, the sheet

typically undergoes a change in state. For polymer extrusion, this means that molten polymer

is stretched as it cools before solidifying at the outlet. For glass sheet redrawing, a solid sheet

of glass is fed into a heater or furnace where it melts and is stretched before solidifying at the

outlet. These are the effects that we will account for in the following analysis. Note that while

one or more changes of state are typically observed during drawing processes, many polymers

can undergo plastic deformation, whereby the material may permanently deform when subjected

to sufficient forces. As a result, we will independently consider the roles of both temperature

variations and the sheet’s deformation.
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Temperature effects are accounted for by coupling the Navier Stokes equations to an energy

equation. In modelling the behaviour of the fluid, we follow the analysis of Miller et al. [77], who

examined the stability of the Blasius boundary layer over a heated flat plate. We assume that the

sheet is at a constant temperature which is greater than the free-stream ambient temperature.

This constant temperature approximation aligns with observations regarding polymer extrusion,

wherein the majority of the stretching occurs near the vicinity of the die before the molten

polymer has significantly cooled [114]. The Navier Stokes and energy equations are then coupled

by imposing a temperature dependent viscosity. The motion of the sheet is prescribed in the

same manner as Crane [23], where the sheet is assumed to accelerate at a rate proportional to

the distance from the inlet. As stated in the previous Chapter, the way we have incorporated

temperature dependence into our model assumes that we are within half a meter of the inlet

and that the overall reduction in cross-sectional area of the sheet is small. While this represents

a simplification of the physics underlying such processes, it allows us in subsequent Chapters to

directly compare our results to those in Griffiths et al. [39], regarding the role of temperature

in the stability of the system. The implications of these assumptions, as regards to the stability

results we obtain in subsequent Chapters will be revisited in due course. Additionally, we further

investigate the role of viscous dissipation, which is the energy lost to heat via viscosity. While

dissipative effects are typically only observed for compressible flows, we include them here due

to the action of the stretching sheet.

When considering surface deformation, we treat the sheet as a solid object and prescribe its

shape. The curved geometry is handled by performing a coordinate system transformation

to “flatten” the sheet. A simplified system of boundary layer equations is then derived by

using the usual large Reynolds number based boundary layer approximation. This allows us to

explore a wider range of extrusion processes by covering both cases where the reduction in cross-

sectional area of the sheet is large, and by allowing us to more realistically model the boundary

layer further downstream from the inlet. The sheet itself would usually be modelled as a low

Reynolds number fluid, whereas the large Reynolds number approximation in the boundary layer

is easily justified by considering the large discrepancy in the viscosities between the sheet and

the surrounding air. This significant difference in Reynolds numbers between the two phases

provides a challenge in properly coupling the two fluids. This is discussed further in Chapter 8.

2.2 General Formulation

Consider the steady flow of an incompressible, Newtonian fluid over an impermeable, semi-

infinite plate with velocity U∗ = (u∗, v∗). The streamwise coordinate is x∗, and the wall-normal

coordinate is y∗ with asterisks denoting dimensional quantities. The temperature of the fluid is

T ∗ and the sheet it held fixed at a temperature T ∗
w. This flow is governed by the continuity and
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the Navier-Stokes and heat equations,

∇∗ ·U∗ = 0, (2.1a)

ρ∗
DU∗

Dt∗
= −∇∗p∗ +∇∗ · τ ∗, (2.1b)

ρ∗c∗ν
DT ∗

Dt∗
= κ∗∇∗2T ∗ +Φ∗. (2.1c)

The fluid density is ρ∗, thermal conductivity κ∗, and specific heat capacity c∗ν . The Newtonian

viscous stress tensor is given by τ ∗ = µ∗(T ∗)γ̇∗, where γ̇∗ = ∇∗U∗ + (∇∗U∗)T is the rate of

strain tensor and µ∗(T ∗) is the dynamic viscosity. The viscous dissipation function Φ∗ is defined

as such

Φ∗ = µ∗

{︄
2

[︄(︃
∂u∗

∂x∗

)︃2

+

(︃
∂v∗

∂y∗

)︃2
]︄
+

(︃
∂v∗

∂x∗
+
∂u∗

∂y∗

)︃2
}︄
,

and the boundary conditions are as follows

U∗ · t̂− U∗
w(x

∗) = U∗ · n̂ = T ∗ − T ∗
w = 0 at y∗ = s∗(x∗), (2.1d)

u∗ → T ∗ − T ∗
∞ → 0 as y∗ → ∞, (2.1e)

with T ∗
∞ being the free stream temperature, U∗

w being the velocity of the sheet, and n̂, and t̂

being unit vectors normal and tangential to the surface of the sheet whose shape is defined by

the function s∗(x∗). Here we have retained the time-dependant form of the equations so as to

maintain generality. This is since the unsteady, non-dimensional temperature dependant equa-

tions are required for the associated lineear stabilty analysis. In the remainder of this Chapter

we will look at different combinations of shapes, wall velocities and viscosity distributions to

more accurately describe flows observed in extrusion processes.

2.2.1 Temperature Dependence

To model a temperature gradient between the sheet and the free stream, we follow the isothermal

analysis of Crane and prescribe the sheet to be flat, such that s∗(x∗) = 0. We further assume

that the sheet stretches at a rate a∗x∗ so that the dimensional boundary conditions become

u∗ − a∗x∗ = v∗ = T ∗ − T ∗
w = 0 at y∗ = 0,

u∗ → T ∗ − T ∗
∞ → 0 as y∗ → ∞.
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To nondimensionlise the system (2.1) we consider the following set of scales

U∗ = a∗l∗U, (x∗, y∗) = l∗(x, y) t∗ =
t

a∗
,

p∗ = ρ∗a∗2l∗2p, µ∗ = µ∗∞µ, T ∗ − T ∗
∞ = T∆T ∗,

where the non-dimensionalising length scale is l∗, µ∗∞ is the free stream value of the dynamic

viscosity and ∆T ∗ = T ∗
w − T ∗

∞. This leads to the following dimensionless system of equations

∇ ·U = 0, (2.2a)

DU

Dt
= −∇p+R−1∇ · τ , (2.2b)

DT

Dt
= R−1 Pr−1∇2T +R−1 EcΦ, (2.2c)

where R = ρ∗a∗l∗2/µ∗∞ is the Reynolds number, Pr = c∗νµ
∗
∞/κ

∗ is the Prandtl number and

Ec = (a∗l∗)2/c∗ν∆T
∗ is the Eckert number. The boundary conditions are now

u = x, v = 0, T = 1 at y = 0, (2.2d)

u→ 0, T → 0 as y → ∞. (2.2e)

2.2.2 Surface Deformation

The widespread use of flat Cartesian boundary layers in the literature is primarily due to their

mathematical convenience. This, however, obscures the importance of curvature in the flow

domain for a number of instabilities observed in practice. One such example in boundary layer

flows is the development of Görtler vortices over concave surfaces. The classical description

of this instability is found by examining the stability of a Blasius flow past a concave sheet

of constant curvature. The instability is governed by a system of boundary layer equations in

which an additional centrifugal forcing term arises due to the change in geometry, as described

by Saric et al. [95]. The instability can be qualitatively described by using the standard parallel

flow type arguments as used for the Tollmein-Schlichting instability. However Hall [43] shows

that this leads to quantitatively poor predictions and that a streamwise marching solution of

the full system of boundary layer equations is required to accurately capture to disturbance

evolution.

In the classical treatment of the Görtler problem, the basic flow is assumed not to change to

leading order as a result of the curvature, (i.e. the curvature is assumed to be small). Here

we derive a modified system of boundary layer equations for the basic flow that fully account

for streamwise variations in both shape and sheet velocity. The implications of this change in
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geometry with respect to the Görtler instability is revisited in Chapter 8.

In what follows we consider boundary-layer flows over non-flat surfaces for x∗ ∈ [0,∞). As such,

it proves useful to introduce a change in coordinate system with ξ∗ = x∗, and η∗ = y∗ − s∗.

We further simplify our analysis by focussing on the steady state solutions as we have yet

to analyse the stability of our new basic flow solutions. Note that here we impose that the

viscosity is constant in order to simplify the derivation that follows. However, the influence of

a temperature dependent viscosity distribution could easily be incorporated. The transformed

governing equations are then

∂u∗

∂ξ∗
+
∂ṽ∗

∂η∗
= 0, (2.3a)

u∗
∂u∗

∂ξ∗
+ ṽ∗

∂u∗

∂η∗
= − 1

ρ∗
∂p∗

∂ξ∗
+ ν∗L∗

1u
∗ +

1

ρ∗
ds∗

dξ∗
∂p∗

∂η∗
, (2.3b)

u∗
∂ṽ∗

∂ξ∗
+ ṽ∗

∂ṽ∗

∂η∗
+

d2s∗

dξ∗2
u∗2 = −σ

∗2

ρ∗
∂p∗

∂η∗
+ ν∗L∗

1ṽ
∗ +

1

ρ∗
ds∗

dξ∗
∂p∗

∂ξ∗
+ ν∗L∗

2u
∗, (2.3c)

where ν∗ = µ∗/ρ∗ is the kinematic viscosity, and the differential operators are

L∗
1 =

∂2

∂ξ∗2
− d2s∗

dξ∗2
∂

∂η∗
− 2

ds∗

dξ∗
∂2

∂ξ∗∂η∗
+ σ∗2

∂2

∂η∗2
, (2.3d)

L∗
2 = 2

d2s∗

dξ∗2

(︃
∂

∂ξ∗
− ds∗

dξ∗
∂

∂η∗

)︃
+

d3s∗

dξ∗3
. (2.3e)

In the ξ − η coordinate system the wall-normal velocity is defined as such

ṽ∗ = v∗ − ds∗

dξ∗
u∗, (2.3f)

and the function σ∗, which represents a measure of the surface curvature, is expressed like so

σ∗2 = 1 +

(︃
ds∗

dξ∗

)︃2

. (2.3g)

System (2.3) is solved subject to the wall conditions u∗ · t̂ = U∗
w(ξ

∗), and u∗ · n̂ = 0, where

U∗
w ≥ 0, is the dimensional wall velocity. In this transformed coordinate system, in the absence

of any oncoming flow, the relevant boundary conditions for this problem are then

u∗(η∗ = 0) = U∗
w(ξ

∗)/σ∗(ξ∗), ṽ∗(η∗ = 0) = 0, u∗(η∗ → ∞) → 0. (2.4)

These conditions ensure that there is always no flow normal to the surface (no penetration), and

that the surface moves tangentially to itself with velocity U∗
w. We consider the development of a

boundary-layer due to the non-constant wall velocity (U∗
w = U∗

w(ξ
∗)) of the plate. For example,

the case when U∗
w = C∗ξ∗, corresponds to linear stretching of the surface with the constant C∗
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having units s−1. This problem, in the non-deformed frame of reference, has been well studied

and was first considered by Crane [23]. The problem is non-dimensionalised like so

(ξ, Y, s) =
(ξ∗, η∗, s∗)

L∗ , (u, ṽ, Uw) =
(u∗, ṽ∗, U∗

w)

U∗ , p =
p∗

ρ∗U∗2 ,

where U∗, and L∗, are reference velocity and length scales, respectively. Note that the reference

velocity and length scales in the deforming case differ from the flat, temperature dependent

case and are not explicitly defined as they depend on the exact shape and velocity of the sheet.

This is discussed further in the next Chapter when specific case studies are examined. In order

to then arrive at the relevant boundary-layer equations the following scalings are introduced

η = Re1/2 Y , and v = Re1/2 ṽ, where Re = U∗L∗/ν∗. This change in notation for the definition

of the Reynolds number is chosen to highlight the difference in scaling between the deforming

and temperature dependent cases. As a result of this scaling system (2.3) reduces to

∂u

∂ξ
+
∂v

∂η
= 0, (2.5a)

u
∂u

∂ξ
+ v

∂u

∂η
= s′ξ Re

1/2 ∂p

∂η
− ∂p

∂ξ
+ σ2

∂2u

∂η2

− 1

Re1/2

(︃
s′′ξξ

∂u

∂η
+ 2s′ξ

∂2u

∂ξ∂η

)︃
+

1

Re

∂2u

∂ξ2
, (2.5b)

1

Re

(︃
u
∂v

∂ξ
+ v

∂v

∂η

)︃
+
s′′ξξu

2

Re1/2
=

s′ξ

Re1/2
∂p

∂ξ
− σ2

∂p

∂η
+
σ2

Re

∂2v

∂η2

− 1

Re3/2

(︃
s′′ξξ

∂v

∂η
+ 2s′ξ

∂2v

∂ξ∂η

)︃
+

1

Re2
∂2v

∂ξ2

+
1

Re

[︃
2s′′ξξ

(︃
1

Re1/2
∂u

∂ξ
− s′ξ

∂u

∂η

)︃
+
s′′′ξξξu

Re1/2

]︃
, (2.5c)

where the primes with associated subscripts denote differentiation with respect to the subscript

variable and σ2 = 1+(s′ξ)
2. In order to determine the correct leading order balance the following

expansions are introduced

u(ξ, η) =u0(ξ, η) + Re−1/2 u1(ξ, η) + · · · ,

v(ξ, η) =v0(ξ, η) + Re−1/2 v1(ξ, η) + · · · ,

p(ξ, η) =p0(ξ) + Re−1/2 p1(ξ, η) + · · · ,

where, to leading order, the pressure is a function of ξ only (this can be directly inferred from

(2.5c)). Thus, the leading order boundary-layer equations for these classes of problems are as
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follows

∂u0
∂ξ

+
∂v0
∂η

= 0, (2.6a)

u0
∂u0
∂ξ

+ v0
∂u0
∂η

+ σ−1σ′ξu
2
0 = −σ−2(p0)

′
ξ + σ2

∂2u0
∂η2

. (2.6b)

This system is the Newtonian equivalent of the non-Newtonian equations derived, for example,

by Pop and Nakamura [88]. In the case when the plate is flat, i.e. s is constant, the above reduces

to the familiar 2D boundary-layer equations. Outside the boundary layer the flow must match

with the far-field stationary flow, U∞ = 0. By considering the behaviour of equation (2.6b) at a

large distance from the surface of the plate the pressure, to leading order, is determined to be

constant. Thus

∂u0
∂ξ

+
∂v0
∂η

= 0, (2.7a)

u0
∂u0
∂ξ

+ v0
∂u0
∂η

+ σ−1σ′ξu
2
0 = σ2

∂2u0
∂η2

. (2.7b)

The above system is then closed subject to the following conditions

u0(η = 0) = Uw(ξ)/σ(ξ), v0(η = 0) = 0, u0(η → ∞) → 0. (2.7c)

This system of boundary-layer equations is general in the sense that one is not restricted by any

of the dynamics of the deforming surface. In what follows we seek to extend previous analyses

and wish to determine self-similar solutions of (2.7) without a priori knowledge of either the

deforming surface profile or the wall velocity.
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Chapter 3

Basic Flow Solutions

In this Chapter we derive basic flow solutions for the flat temperature dependent and deforming

sheet cases outlined in the previous Chapter using a combination of analytical and numerical

approaches. Our analytical solutions exploit the self similarity of the respective boundary layers,

while our numerical schemes include a Keller-Box method, which utilises the parabolic nature

of the boundary layer equations in the flat temperature dependent case to iteratively march

downstream in the coupled nonlinear case, as well as a finite element solution of the full Navier-

Stokes equations when considering the role of deformation. In doing so we will show that failing

to account for these additional physical effects leads to quantitatively incorrect predictions for

a number of flow variables of interest. Note that the analysis in Section 3.3 appears in the

publication Hanevy et al. [45], while 3.2 has been submitted as part of the publication Hanevy

et al. [46], which is under review.

3.1 Introduction

To determine the most important physical effects in determining the linear stability of the

flow induced by a stretching sheet which were omitted in Griffiths et al. [39], we first have to

evaluate the basic flow solutions in these more physically realistic regimes. There are a number

of features of Crane’s basic flow profile which makes it an attractive model to perform a linear

stability analysis about. First is the fact that we have analytical basic flow solutions. Given that

eigenvalue calculations in a hydrodynamic stability context are very sensitive to the accuracy

of the basic flow, this removes a potential source of error from their calculation. Second is

the fact that the wall velocity accelerates at a constant rate, proportional to distance along

the stretching axis. One would assume that the stretching of the sheet would cause issues for

stability calculations, however the constant rate of acceleration allows one to make a parallel
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flow approximation similar to that employed in the rotating disk boundary layer. As such the

majority of the solutions that are presented in the remainder of this Chapter will be chosen to

mimic those of Crane to facilitate the comparison of both the basic flow and the flow stability

in the Chapters which follow.

The objective therefore, is to identify the mechanisms which contribute to the overall stability

of the systems under consideration. The models we propose are intended to improve models

which have appeared in the literature, while also being amenable to analysis using the tools of

hydrodynamic stability theory. In this sense our approach mirrors the use of the rotating disk

boundary layer to model crossflow instabilities on a swept wing. This approach has resulted

in a number of control flow strategies being proposed such as surface compliance, suction and

porosity ([21],[76],[17]).

Here we are extending the near inlet, small deformation, constant sheet temperature analysis

of Vleggaar [114]. Vleggaar’s work focused on quantifying the additional heat transferred from

the sheet to the boundary layer due to the sheet’s acceleration, assuming constant viscosity. He

demonstrated that heat transfer increases with the sheet’s acceleration, aligning qualitatively

with experimental results. In this study, we allow the viscosity of the induced boundary layer

to vary with temperature, providing a more realistic model of the near-inlet, small-deformation

regime. To broaden the range of scenarios considered, we also examine the role of sheet defor-

mation. This approach enables us to investigate both the character of the basic flow further

from the inlet and cases where the sheet’s thickness varies significantly.

The remainder of this Chapter is structured as follows. In Section 3.2 we evaluate the basic flow

profiles for Crane’s flow with a temperature gradient. We start by looking at the temperature

independent case where the viscosity is constant to validate the secant shooting scheme used in

the remainder of this Chapter. We then assess the role of a varying viscosity distribution, firstly

by comparing two different viscosity distributions in the absence of viscous dissipation, before

including dissipation using a pseudo self-similar approach. Finally in Section 3.2.3 we solve the

governing boundary layer PDEs using a Keller-Box scheme, where we show that the effects of

viscous dissipation prevent the basic flow profiles from being self similar in this regime.

In Section 3.3 we look at particular combinations of surface shapes and wall velocities. While

we are primarily interested in the thinning profiles observed in extrusion processes, we also

demonstrate how our formulation may be adapted to model thickening processes, such as those

observed in textile compaction. Such a process is essentially the converse of the sheet-thinning

processes discussed previously, whereby a material is fed into a compactor at a greater speed

than it is extracted. These types of processes exploit the fact that fibrous materials exhibit

viscoelastic behaviour [8]. Here this is manifested as an increase in stress within the fibre after

N.Hanevy, PhD Thesis, Aston University 2024 17



Stretching Surface Flows Basic Flow Solutions

a compaction-relaxation cycle which prevents the fibre from recovering to its initial volume.

There is a wealth of literature attempting to explain this phenomenon and an overview of

different modelling approaches is provided in Kelly [62]. We show that, under certain limiting

assumptions, analytical boundary-layer solutions may be derived. As one would expect, these

results depend on the physics of the system being considered, specifically the exact profile

of the deforming surface and the wall velocity of said surface. The analysis we present is

generalised. However, all the solutions can be tailored to model flows observed in practice, given

sufficient knowledge of the aforementioned physical constraints. In Section 3.3.2 we validate

our analytical approximations by using the finite element software FEniCs [68], where we find

excellent agreement between both approaches.

3.2 Temperature Dependence

In this Section we investigate the flow induced by a linearly stretched flat surface by extending

the analysis of Crane [23], adding both a temperature gradient and viscous dissipation to Crane’s

model. Although the model presented has its limitations as it does not consider the deformation

of the sheet during stretching, the flat surface approximation remains valid when assuming a

small rate of deformation. Furthermore, the availability of simple analytic solutions for the basic

flow equations has made the flat surface approximation a prominent feature in the literature.

This enables us to validate our extended analysis by comparing it with existing results in the

literature. We will demonstrate that due to the accelerating nature of the flow, the role of

viscous dissipation becomes more pronounced near the surface of the plate as we progress in the

streamwise direction.

3.2.1 Similarity Solutions

To solve the steady, coupled momentum and energy equations (2.2), we proceed by introducing

the following similarity transformation

u = xuB = xf ′(η), v = vB = −R− 1
2 f(η), p = p0 +R−1 pB(η), (3.1a)

TB = T (η), µB = µ(η), η = R
1
2 y, (3.1b)
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where η is our boundary layer coordinate. Gathering the leading order terms, the governing

boundary layer equation become

µf ′′′ + µ′f ′′ + ff ′′ − f ′2 = 0, (3.2a)

−ff ′ − µf ′′ − 2µ′f ′ = p′, (3.2b)

T ′′ + Pr(fT ′ + Ecx2µ(f ′′)2) = 0. (3.2c)

The largest term in Φ for R ≫ 1 is
(︂
∂u
∂y

)︂2
. This leads to the x2 term in equation (3.2c) which

means that our self similar approach is no longer valid. This will be discussed below when we

compare numerical solutions of the full governing system of PDEs to a self similar approximation

where we treat Ec x2 as a parameter and solve the ODEs above at different values of x. Such an

approach may be justified provided that the Eckert number is sufficiently small leading to the

variation in x being much slower than the variation in y. The boundary conditions are

f = f ′ − 1 = T − 1 = 0 at η = 0, (3.2d)

f ′ → 0, T → 0 as η → ∞. (3.2e)

3.2.2 Constant Viscosity, No Dissipation

The Eckert phenomena in the context of extrusion processes would be the heating of the stretch-

ing sheet in spite of the temperature of the sheet being significantly greater than the heat of

the ambient fluid. It was first proposed by Geropp [36] in the context of a boundary layer in-

duced by a rotating cylinder. This effect was predicted to occur with an Eckert number of order

one, which required a rotational Reynolds number of approximately 6.9 × 106. This rotational

Reynolds number is an order of magnitude larger than the critical Reynolds number observed for

the isothermal stretching sheet. Therefore, as an initial approximation we will assume Ec = 0

and ignore the role of viscous dissipation. Setting µ = 1 uncouples the momentum and energy

equations and allows us to attain analytic solutions for the boundary layer equations (3.2), where

we find

f = 1− e−η, uB = e−η, (3.3)

pB = p0 +
1

2
(1− e−2η), vB = e−η − 1, (3.4)

as originally found in Crane [23]. Using our solutions for f above (3.2c) simplifies

Pr(e−η − 1)T ′ = T ′′, (3.5)
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which can be solved using the upper incomplete gamma function defined Γ(s, x) =
∫︁∞
x ts−1e−t dt,

so that

TB =
Γ(Pr,Pr e−η)− Γ(Pr, 0)

Γ(Pr,Pr)− Γ(Pr, 0)
(3.6)

or

TB =
e

1− e

(︂
e−e−η − 1

)︂
(3.7)

when Pr = 1. The boundary layer equations were solved numerically using a shooting method

where the boundary value problem is solved as an initial value problem. The missing initial

conditions f ′′(0) and T ′(0) are guessed, and the problem is solved using a fourth order Runga-

Kutta method. Newtons method is then used to find the initial conditions which satisfy the

free stream conditions f ′ → T → 0, as η → ∞ where the domain is truncated at ηmax =

40 to facilitate the numerical solution. This relatively large value of ηmax was chosen as the

spectral method used in the numerical solution of the linear disturbance equations (4.5) requires

highly accurate basic flow solutions for convergence. Full details of the calculation are provided

in Appendix A.1.1. The availability of analytic solutions allows us to validate our numerical

solution for the constant viscosity case before solving the coupled problem. In Figure 3.1 we see

that the numerical and analytic solutions are indistinguishable on the scale of the plot. Though

we could have imposed the analytic initial conditions, they were perturbed to ensure that the

numerical scheme converged. Note that we used Pr = 1 in Figure 3.1 to validate our numerical

scheme since we have closed form solutions for the basic flow profiles in this case. For the

remainder of this thesis we use Pr = 0.72, which models heat transfer in air, the ambient fluid

medium in extrusion processes. This value has been used in a number of related studies ([77],

[92],[78]).

3.2.3 Viscothermal Flow

For the case of temperature dependent viscosity we chose to compare two different viscosity

distributions commonly seen in the literature; an inverse distribution µ1 = (1+m1T )
−1, and an

exponential viscosity distribution µ2 = e−m2T , used in Miller et al. [77] and Wall and Wilson

[116], respectively. Both µ1 and µ2 have the important property that µ → 1 in the free stream

owing to the boundary conditions for T . First, we examine the behaviour of the flow for different

values of the sensitivity parametermi, taking the inverse viscosity distribution µ1. The boundary

layer equations (3.2), were solved using the shooting method outlined above for m1 = −0.4 to

0.4 in steps of 0.2 and can be seen in Figure 3.2. Here we observe entrainment of the streamwise

velocity profiles as the value of the sensitivity parameter increases. This is interpreted as a
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Figure 3.1: Comparison of numerical and analytical solutions of Crane’s problem for the case of
constant viscosity, with Pr = 1. a) shows u, b) shows v, c) shows T and d) shows the difference
between the numerical and analyticl solutions. Note that the pressure was ommitted as it is a
derived quantity and does not effect the performance of our numerical scheme.
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Figure 3.2: Numerical Solution of Crane’s problem (3.2) for the inverse viscosity distribution µ1
for a range of values of the sensitivity parameter m1 from −0.4 to 0.4 in steps of 0.2.

reduction in the boundary layer thickness and has important implications for the numerical

linear stability analysis in the Chapter which follows. As can be seen, increasing m1 reduces

the viscosity at the wall, reducing the wall shear stress and therefore causing a less impactful

viscous interaction between the sheet and the fluid. The thermal boundary layer on the other

hand thickens with increasing values of m1. This implies that increasing the value of m1 leads

to greater heat transfer between the sheet and the ambient fluid allowing the sheet to be more

rapidly cooled.

While it is clear that both µ1 and µ2 exhibit similar behaviour for |mi| ≪ 1, we will show that

the use of either distribution can result in similar base flow solutions. There are a number of

ways in which these flows could be compared. The simplest way to compare the flows would

be to use one of the initial conditions determined for the other case (f ′′(0) or T ′(0)) and use

the sensitivity parameter and the other initial condition as shooting parameters to satisfy the

boundary conditions. Alternatively the solution to the second problem could be found by im-

posing that f(∞) be the same for both flows. The addition of this constraint means that the

three parameters f ′′(0), T ′(0) and mi have to be adjusted in the shooting method to match the
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Figure 3.3: Numerical Solution of Crane’s problem (3.2) comparing inverse and exponential
viscosity distributions µ1 and µ2 for m1 = −0.75, m2 = −1.06437. a) shows the difference in the
streamwise velocity, b) the wall normal velocity, c) the pressure and d) the temperature profiles.

solutions as shown in Table 3.1. This result of this calculation is shown in Figure 3.3 where the

velocity and temperature profiles are almost identical while the pressure, which does not affect

the flow since f is determined independently of p, varies substantially. These values are given in

Table 3.1. Where m1 = −0.75 was initially chosen for the inverse case as the two distributions

are similar for |mi| ≪ 1. While the plots do look similar in both cases the initial condition for

f ′′(0) and the sensitivity parameter had to be significantly adjusted to satisfy all of the imposed

conditions.

The inclusion of the dissipation term for Ec ̸= 0, does not change the solution scheme outlined

previously provided we treat x as a parameter since the coupled system of nonlinear ordinary

differential equations (ODE’s) depend only on x and not its derivatives. In this case the unknown

initial conditions are a function of x but can be solved for in the same manner for any value of

x for x ∈ [0,∞). The solution of which is shown using Ec = 0.01, µ1(T,m1 = 0.25) in Figure

3.4. It can be clearly seen that the sign of the initial condition T ′(0) changes from positive to

negative as x grows. Despite the smallness of the Eckert number, the acceleration of the sheet
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Table 3.1: The change in boundary conditions and the sensitivity parameter required in order
for f∞ match for the inverse and exponential viscosity distributions.

Inverse Exponential

f ′′(0) -0.384654 -0.513757

T ′(0) -0.539522 -0.533796

m -0.75 -1.06437

as it stretched causes more energy to be lost to heat. This effect is especially pronounced at the

surface of the sheet where the streamwise velocity gradient reaches its maximum value. However,

we shall see that this approximation does not quantitatively model the numerical solution of the

full partial differential equation (2.2).

Near Wall Approximation

A reasonable approximation of the near wall behaviour of the nonlinear coupled system of

boundary layer ODE’s can be made by taking a first order Taylor expansion of the viscosity in

equation (3.1) for |m| ≪ 1. For the remainder of this thesis we set µB(T ) = (1 +mT )−1 where

we drop the subscript ‘1’ for convienince. If we further set µB = µB(T )|η=0 = µB0 = (1+m)−1,

and taking inspiration from the isothermal case look for solutions of the form

ūB ≈ e−βη, v̄B ≈ 1

β

(︂
e−βη − 1

)︂
,

using bars to denote our approximate solutions, where β is a constant to be determined. Note

that these approximations ensure that both the continuity and velocity boundary conditions are

satisfied. From the x-momentum equation (3.2a) we have µB0β
2 = 1, using the y momentum

and energy equations we recover the following approximations for the pressure and temperature

p̄B ≈ − 1

2β
e−2βη + p∞, (3.8)

T̄B ≈
Γ
(︂
Pr
β2 ,

Pr
β2 e

−βη
)︂
− Γ

(︂
Pr
β2 , 0

)︂
Γ
(︂
Pr
β2 ,

Pr
β2

)︂
− Γ

(︂
Pr
β2 , 0

)︂ . (3.9)

Note that as m → 0 we recover the isothermal solutions of Crane. With our approximate

solutions we are able to predict a number of flow quantities of interest for the stability analysis
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Figure 3.4: Numerical Solution of the Crane’s Problem (3.2) for a range of x values for Ec = 0.01
using a pseudo similarity approach whereby Ec x2 is treated as a parameter and the boundary
layer equations are solved at different x locations.
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Figure 3.5: Absolute value of the difference between our numerical and approximate, near wall
stream wise velocity solutions in a) and b) the absolute value of the errors for the wall shear
stress and boundary layer thickness

which follows, namely the wall shear stress and the boundary layer thickness

σxy = µB0
∂u

∂y

⃓⃓⃓⃓
⃓
y=0

, σxy ≈ σ̄xy = (1 +m)−1/2

δ = −
∫︂ ∞

0
uB dy = δ∗

√︁
ρ∗a∗/µ∗∞, δ ≈ δ̄ = (1 +m)−1/2 .

Plots showing |uB− ūB|, |σxy− σ̄xy| and |δ− δ̄| are shown in Figure 3.5. This simple approxima-

tion breaks down as |1− µB0| increases as the further the wall viscosity is from the free stream

viscosity the less appropriate it is to approximate the viscosity as being constant. In principle

the approximation could be improved by taking more terms in the Taylor series expansion of µ,

using T̄B to compute the derivatives of µ in the expansion. However, inclusion of polynomial

terms in y leads to a system of equations which is not analytically solvable.

Numerical Validation

In Figure 3.7 b) we compare our shooting method solutions for Ec = 0.01 to the solution of the

PDEs (2.2). Here we see that although the pseudo similarity approximation does qualitatively

predict the increase in temperature at the wall due to viscous dissipation, it significantly over-

estimates this effect. This is verified by comparing the approximation to a numerical solution

using a Keller-Box scheme and a finite difference scheme for m = 0. Details of the numerical

schemes are provided in Appendix A. The two schemes were used to verify that the discrepancy

is due to the pseudo similarity approach and that the PDE schemes are in fact correct since

each corroborates the others results. The finite difference scheme uses the TDMA algorithm
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Figure 3.6: KellerBox solution at different streamwise locations compared to the self similar
solution in the nondissipative regime, Ec = 0, m = −0.4. a) Shows the streamwise solutions
scaled by the sheets’ speed, b) the wall normal and c) the temperature profiles.

and is incapable of handling the nonlinearity introduced when the temperature and velocities

are coupled. When m = 0, this is not the case, and it verifies the results of the Keller-Box

scheme which agrees with our similarity solutions for all values of m when Ec = 0. This can

be seen in Figure 3.6, where a value m = −0.4 was taken as an example. Lastly, we compare

the shear at the wall predicted by the Keller-Box method and the pseudo similarity solutions

for Ec = 0.01 and a range of values of the sensitivity parameter. While it is clear at this stage

that the shooting method solutions are incorrect, the value of the shear at the wall becomes

important in the asymptotic stability analysis which follows. In Figure 3.7 we see that for all

values of m the efficacy of this approximation deteriorates as the distance along the stretching

sheet is increased, showing that while this approximation procedure is convenient due to the

ease at which base flow solutions can be calculated, it fails to accurately capture the dynamics

of the system.
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Figure 3.7: a) The difference between the shear at the wall predicted by the Keller-Box and
psuedo similarity solutions and b) The overestimation of viscothermal heating for Ec = 0.01,
m = 0 of the similarity solutions. The subscripts FD, SH, and KB denote the finite difference,
shooting (pseudo-similarity), and Keller box results respectively.

3.3 Deforming Sheet

In this Section we attain similarity solutions for flow over a deforming surface by modifying

the analysis of Rees and Pop [92] who examined boundary layer flow and heat transfer over

a wavey moving surface. In the paper a sinusoidal surface profile was imposed with spatially

stationary surface waves. The resulting boundary layer equations were solved numerically and

physical quantities such as the local skin friction coefficient were reported for a range of different

amplitudes and frequencies. While we derive the same governing equations, our analysis differs in

that we consider flow over a monotonically thinning or thickening surface whose shape resembles

that of a glass sheet undergoing redraw. We then show that for particular sheet profiles, self

similar solutions can be obtained provided we impose appropriate velocity profiles within the

sheet. This analysis attempts to generalise the results of the previous Section, bridging the gap

between analysis of flows induced by flat stretching surfaces, such as Crane’s flow discussed in

the previous Chapter, and the coupled sheet fluid system proposed in Al-Housseiny and Stone

[2]. While we have been unable to resolve the discrepancy between the stresses at the sheet/fluid

interface for the coupled problem, we overcome this difficulty by effectively treating the sheet

as a solid object with both its shape and velocity being prescribed in a manner that permit the

existence of self similar flow profiles.
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3.3.1 Self-similar Flows

Assuming that (2.7) admits self-similar solutions we introduce the similarity coordinate

ζ =
η

g(ξ)

√︄
Uw

ξσ
,

and the streamfunction ψ = g(ξ)
√︁
Uwξ/σf(ζ), where g is a yet to be determined function of

ξ. These expressions for ζ and ψ are informed by standard boundary-layer scalings [112] and

also the need to ensure that u0 is proportional to both the wall velocity and the inverse of the

function σ. We note that in the case when the wall velocity is constant and the surface is flat the

unknown quantity g can be removed from these expressions and the analysis follows identically

that of Tsou et al. [112].

Given the preceding definitions it follows immediately that

u0 =
∂ψ

∂η
= (Uw/σ)f

′
ζ ,

v0 =− ∂ψ

∂ξ
= g
√︁
Uwξ/σ(ζf

′
ζX− − fX+),

where

X± =
g′ξ
g

+
1

2ξ
± 1

2

[︃
(Uw)

′
ξ

Uw
−
σ′ξ
σ

]︃
.

Therefore (2.7b) reduces to

ξg2[−X+ff
′′
ζζ + U−1

w (Uw)
′
ξ(f

′
ζ)

2] = σ2f ′′′ζζζ .

In order to be able to determine similarity solutions it must then be the case that

ξg2X+ = c1σ
2, (3.10a)

ξg2U−1
w (Uw)

′
ξ = c2σ

2, (3.10b)

where c1 and c2 are arbitrary constants that ensure self-similarity. The instances when one of

these constants is set equal to zero, with the other being non-zero, are considered in Appendix

B.1. Rearranging (3.10b) gives g2 = c2σ
2Uw[ξ(Uw)

′
ξ]
−1. Substituting this form for g2 into

(3.10a) one then removes the unknown function g from the problem and arrives at the following

second order ODE

Uw
d2Uw

dξ2
+ γ

(︃
dUw

dξ

)︃2

− SUw
dUw

dξ
= 0, (3.11)

where S = [ln(σ)]′ξ, and γ = 2(c1 − c2)/c2. We note that the above equation is identically
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satisfied when Uw = constant. However, (3.10b) would then imply that c2 = 0. This special

case is considered in Appendix B.1. Given the form of (3.11) there are two distinct cases to

consider, when γ = −1, and when γ ̸= −1. In the first case, the substitution R = [ln(Uw)]
′
ξ,

reduces the order of (3.11) such that

dR

dξ
− SR = 0.

Therefore R = Kσ, where K is a constant of integration, and it follows immediately that

(Uw)
′
ξ = KUwσ. (3.12)

In the second case, when γ ̸= −1, the substitution R = (1+ γ)U1+γ
w [ln(Uw)]

′
ξ, leads to the same

first order ODE. Therefore, in these cases

(Uw)
′
ξ =

Kσ

(1 + γ)Uγ
w
. (3.13)

This ODE can be rewritten as such

W ′
ξ = Kσ, (3.14)

whereW = U1+γ
w . Thus, irrespective of the value of γ, in order to be able to determine similarity

solutions, one may choose either to specify the wall velocity, Uw, and calculate the variation of

the height of the plate, s, or specify s and determine the required form for Uw. With s fixed

the determination of Uw transpires to be a relatively simple procedure. Integrating (3.12) and

(3.14) respectively we have that

Uw =

⎧⎨⎩C eKI when γ = −1,

(C +KI)
1

1+γ when γ ̸= −1,
(3.15)

where C is a constant of integration and I is simply the arc length of the surface,

I(ξ) =
∫︂
σ(ξ̄) dξ̄ =

∫︂ √︂
1 + (s′

ξ̄
)2 dξ̄. (3.16)

Therefore, for any fixed s it is possible to determine Uw, for any value of γ, simply by integrating

the function σ. It is clear from the above analysis that the value of the constant γ dictates the

form of the wall velocity. In cases when γ ≥ −1 the deforming surface will be accelerating whilst

the inverse is true when γ < −1. As an example, a deforming surface that is being thinned as

it is being stretched would, by mass conservation, have to be accelerating.

Now, by writing f̂(Z) =
√
c1f(ζ), where Z =

√
c1ζ, then f̂

′
Z = f ′ζ , and the ODE that governs
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Figure 3.8: Plots of the streamwise and wall-normal velocity components for the case when γ = 2
and Uw =

√︁
0U2

w + 2ξ/3 = σ. In this case both u0 and v0 are independent of ξ. Given that no

exact analytical solution for f̂ exists in the case when γ = 2, a shooting method that makes use of
a fourth-order Runge-Kutta integrator, twinned with a secant root finding scheme, was employed
to solve (3.17). As part of this solution process we determine that f̂ ′′ZZ(Z = 0) ≈ 0.8300, and

that f̂(Z → ∞) = f̂∞ ≈ 1.0625. In the limit as Z → ∞, then v0 → −
√︁
2/3f̂∞.

the base flow is then given by

f̂ ′′′ZZZ + f̂ f̂ ′′ZZ −
(︃

2

2 + γ

)︃
(f̂ ′Z)

2 = 0. (3.17a)

The case when γ = −2 is considered separately in Appendix B.2. The preceding ODE must be

solved subject to

f̂(Z = 0) = 0, f̂ ′Z(Z = 0) = 1, f̂ ′Z(Z → ∞) → 0. (3.17b)

It is worth noting that (3.17) admits exact analytical solutions for two specific γ values. In the

case when γ = 0, then f̂ = 1−e−Z , whilst when γ = −4, then f̂ =
√
2 tanh(Z/

√
2). A derivation

of these solutions using a similar approach to those employed in Ackroyd [1] and Sachdev et al.

[93] may be found in Appendix B.2. In what follows we will highlight three specific case studies

that make use of these exact solutions and a numerical solution of (3.17), although we note

that the choice of the value of the constant γ would, in practice, be informed by experimental

conditions.

In order to verify the previous analysis we consider Crane’s problem. Crane’s problem corre-

sponds to the linear stretching of a flat plate, as such, s is a constant and (3.14) reduces simply

to (Uw)
′
ξ = K. Thus when K = 1, and stipulating that Uw(ξ = 0) = 0Uw = 0, we recover the

expected linear stretching result; Uw = ξ. In order to be able to visualise the solutions for both
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u0 and v0 one needs to recall the unknown function g such that the similarity coordinate Z, and

streamfunction ψ, can be written in terms of known functions. Irrespective of the value of γ we

have that

g =

√︄
2c1ασU

1+γ
w

Kξ
,

where

α =

⎧⎨⎩1 when γ = −1,

(1 + γ)(2 + γ)−1 when γ ̸= −1.

In order to ensure that g is solely real then, given that c1 > 0, the constant K would have to

be negative in the cases when −2 < γ < −1. Given the form of (3.15), with γ in this range

and K being less than zero, one would then determine complex solutions for the wall velocity.

Therefore, physical solutions are derived only in the cases when γ < −2, and γ ≥ −1. For

convenience we now fix K equal to unity but note that the following analysis holds for any

K > 0. Having done so we determine that ψ = ςUwf̂(Z), where Z = η/(ςσ), and ς =
√︁

2αUγ
w.

Thus

u0 =
∂ψ

∂η
=

(︃
Uw

σ

)︃
f̂ ′Z ,

v0 = −∂ψ
∂ξ

=
ς

2

{︃[︃
2Uwσ

′
ξ

σ
+ γ(Uw)

′
ξ

]︃
Zf̂ ′Z − (2 + γ)(Uw)

′
ξ f̂

}︃
.

There is clearly a special case to consider when Uw is directly proportional to σ. In this case then

both u0, and v0/ς are functions of Z only. In addition to this, setting γ = 2, and fixing Uw = σ

ensures that u0 = f̂ ′Z , and v0 =
√︁
2/3(Zf̂ ′Z − f̂), i.e., the wall-normal velocity is then identically

independent of the streamwise coordinate ξ (see Fig. 3.8). Recalling (3.14) it must then transpire

that (Uw)
′
ξ = 1/(3Uw). Thus, imposing the condition that the initial wall velocity is equal to

0Uw, then Uw =
√︁

0U2
w + 2ξ/3 = σ. Given this form for σ, and stipulating that s(ξ = 0) = s0,

it must therefore be the case that s(ξ) = s0 − (0U
2
w − 1)3/2 + (0U

2
w − 1+ 2ξ/3)3/2. Practically, it

is perhaps unphysical to consider a case whereby the variation of the surface height of the plate

is increasing in such a manner. However, given the preceding analysis we are now in a position

to consider a number of cases that closely resemble physical boundary layer flows.

Surface Thinning

In order to capture the realistic thinning nature of a sheet that is being extruded from a cast

die we fix s such that

s∗(ξ∗) = a∗1 e
ξ∗−a∗2 .

N.Hanevy, PhD Thesis, Aston University 2024 32



Basic Flow Solutions Stretching Surface Flows

0 1 2 3 4 5
0

1

2

3

4

5
a)

0 1 2 3 4 5
0

1

2

3

4

5
b)

Figure 3.9: In (a) the wall velocity Uw, the approximate wall velocity Uapprox
w = ξ + 0.2260,

and the exponentially thinning sheet profile: s(ξ) = e−ξ, are plotted against ξ. In (b) the wall
velocity, given an identical thinning sheet profile, is plotted for a range of γ values. In both
plots the dashed black line corresponds to the wall velocity result for a sheet undergoing linear
stretching.

Given this form for s∗, we define our non-dimensionalising length scale L∗ as the inlet height

a∗1, so that s(ξ) = eaξ, where a = a∗1/a
∗
2, and σ =

√
1 + a2e−2aξ, and

I =
arcsinh(a−1eaξ)− σ

a
.

Thus an analytical expression for Uw can be determined directly from (3.15). In practice one

would choose the free constants (a, γ) such that the wall velocity profile matched closely with

physical observations. In the absence of experimental data we are free to choose mathematically

convenient values for these constants. If we set a1 = a2 = γ + 1 = 1, and stipulate that

Uw(ξ = 0) = 0Uw = 0, then it follows that

Uw = ξ + ln

(︃
1 + σ

1 + σ0

)︃
+ σ0 − σ,

where, in this case, σ0 = σ(ξ = 0) =
√
2. This expression for Uw is reasonably close to the result

owing from Crane’s linear stretching problem (Uw = ξ). Aside from the region close to ξ = 0,

we find that Uw can be approximated in the following fashion

Uapprox
w = ξ + ln

(︃
2

1 + σ0

)︃
+ σ0 − 1 ≈ ξ + 0.2260.

This result, presented graphically in Fig. 3.9, is perhaps not surprising given that the sheet

is thinning exponentially. As such, we would expect to recover a result for the wall velocity

similar to that of Crane [23] in all regions where the plate is locally flat. However, we note
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Figure 3.10: Plots of the streamwise (a), and wall-normal (b), velocity components for a range
of ξ values. In this case the sheet is thinning exponentially: s(ξ) = e−ξ. Crane’s flat plate
solutions are given by the dashed black curves.

that the analysis presented here is general enough that one could consider a plethora of different

thinning sheet profiles dependent on the values of the constants a1 and a2, or the rate of sheet

acceleration depending on the value of γ.

The results presented in Fig. 3.10 show the discrepancy between the solutions obtained under

the assumption of a flat stretching sheet when compared to those obtained under the correct

assumption that the sheet will thin as it is accelerated and stretched. We observe that the

streamwise velocity component is always under-predicted by Crane’s model. Furthermore, near

to the point where the sheet is being extruded, when ξ = 0, we observe that the gradient of

the wall-normal velocity component is significantly shallower under assumption that the surface

does not deform as it stretches. The disparity of these results at the surface of the sheet leads

to a significant under-prediction of the magnitude of the flow that, via mass conservation, is

directed towards the stretching surface. We note that these effects are exacerbated when the

constant a1 is held fixed and a2 decreases in value, or, conversely, the constant a2 is held fixed

and a1 increases in value. Similar qualitative results are obtained if one assumes that the sheet

deforms in either a polynomial or a logarithmic manner.

Surface Thickening

Theoretical studies of textile compaction processes [61] have sought to model the stress within

a fibre over a compaction relaxation-cycle. Here our aim is to propose a shape which captures

the resulting reduction in volume fraction and hence determine a sheet velocity profile which

facilitates a self-similar boundary layer solution for the ambient fluid. While this approach

N.Hanevy, PhD Thesis, Aston University 2024 34



Basic Flow Solutions Stretching Surface Flows

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5
a)

Figure 3.11: In (a) the wall velocity Uw, the approximate wall velocity Uapprox
w = (ξ+1.1819)−

1
3 ,

and the logarithmically thickening sheet profile: s(ξ) = ln(e + ξ), are plotted against ξ. In (b)
& (c), respectively, solutions for the streamwise velocity u0, and wall-normal velocity v0 + s′ξu0,
are mapped back to the unscaled boundary-layer coordinate system (ξ, η + s). The solid black
line indicates the surface of the thickening decelerating sheet.
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represents a simplification of the underlying physics governing such processes, it is warranted

by the observed tendency of compaction-induced defects to manifest in textile manufacturing.

These defects are commonly ascribed to micro-mechanical phenomena arising from the closure

of interstitial gaps between individual fibres in a composite sheet, as described in Thompson

et al. [106]. However, an examination of the stability characteristics of the induced boundary

layer might provide insights into the potential mitigation of such defects.

If we consider a deforming surface with a profile defined as such, s∗(ξ∗) = b∗1 ln(e+ ξ
∗/b∗2), where

e is the exponential constant chosen such that s∗(ξ∗ = 0) = b∗1, then such a profile could be used

to a thickening, decelerating surface such as those observed in compaction processes. We again

set L∗ = b∗1, the initial sheet thickness, so that s(ξ) = ln(e + bξ), with b = b∗1/b
∗
2. Irrespective of

the value of b, in order to determine similarity solutions we first compute

I =
(e + bξ)

b
σ − arcsinh(s′ξ).

Here we choose the convenient parameter values b = 1, such that via (3.15) we have, for γ ̸= −1,

that

Uw = [C + (e + ξ)σ − arcsinh(s′ξ)]
1

1+γ .

Setting γ = −4, to ensure that the sheet is decelerating, and fixing the value of C such that

0Uw = 1, we have that

Uw =

[︃
ξσ + ln

(︃
1 + eσ0
s′ξ + σ

)︃
+ e (σ − σ0)

]︃− 1
3

,

where, in this case, σ0 = σ(ξ = 0) =
√
1 + e−2. At first inspection, this expression for the wall

velocity appears to be reasonably intricate. However, away from the region of the sheet inlet,

this expression can be well approximated as follows

Uapprox
w = [ξ + ln(1 + eσ0) + e (1− σ0)]

− 1
3 ≈ (ξ + 1.1819)−

1
3 .

Given that, in the case when γ = −4, we have an analytical solution for (3.17), with Uw

calculated as above, we are then able to use our stream function definitions for u0 and v0 to

visualise the flow in terms of the unscaled boundary-layer coordinate, ςσZ + s = η + s. These

results are depicted in Fig. 3.11 where we observe that both the streamwise and wall-normal

fluid velocities are at a maximum in the vicinity of the inlet (ξ = 0). As one would expect, as

both the curvature of the sheet and the velocity of the sheet decrease, the magnitude of these

velocities also decreases.
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3.3.2 Numerical Validation

The primary motivation for this study is the determination of boundary-layer flows induced by

stretching surfaces, as presented in Section 3.3.1. As such, we chose to validate the analytical

solutions presented in Figure 3.10 for the case of an exponentially thinning sheet against a

suitable numerical scheme. To solve the governing system of PDEs numerically we use the finite

element software FEniCS (Logg et al. [68]). It is convenient to rewrite our equations in terms

of the divergence of the stress tensor τ ∗, such that

∇∗ · u∗ = 0, (3.18a)

ρ∗(u∗ · ∇∗)u∗ = ∇∗ · τ ∗. (3.18b)

We apply the same coordinate system transformation and nondimensionalisation as before, with

the exception that we scale the pressure by a factor of Re1/2. This difference in the pressure

scale can be attained by referring to (2.5c), where it is seen that the pressure term is O(Re1/2)

larger than the next largest term in the η-momentum equation. This fact, twinned with the

free stream boundary condition, U∞ = 0, allowed us to deduce that pressure in the boundary

layer was constant to leading order. However, rescaling our pressure as p ∼ Re−1/2, allows the

pressure to vary and results in us being able to numerically determine the non-constant pressure

correction. Note that this is in contrast to the corresponding flat stretching sheet analysis of

Crane [23] where p ∼ Re−1, which would be the case in (2.5c) if s′ξ = 0. Thus, we have that

∂u

∂ξ
+
∂v

∂η
= 0, (3.19a)

u
∂u

∂ξ
+ v

∂u

∂η
=

{︃
∂

∂ξ
− Re1/2 s′ξ

∂

∂η

}︃
τξξ +Re1/2

∂

∂η
τξη, (3.19b)

Re−1/2

(︃
u
∂v

∂ξ
+ v

∂v

∂η

)︃
= −s′ξ

(︃
u
∂u

∂ξ
+ v

∂u

∂η

)︃
− s′′ξξu

2

+Re−1

{︃
∂

∂ξ
− Re1/2 s′ξ

∂

∂η

}︃
τξη +Re1/2

∂

∂η
τηη, (3.19c)

where the components of the stress tensor are given by

τξξ = −Re−1/2 p+ 2Re−1

(︃
∂u

∂ξ
− Re1/2 s′ξ

∂u

∂η

)︃
, (3.19d)

τξη = +Re−1

{︃
Re1/2[1− (s′ξ)

2]
∂u

∂η
+Re−1/2 ∂v

∂ξ
+ s′ξ

(︃
∂u

∂ξ
− ∂v

∂η

)︃
+ s′′ξξu

}︃
, (3.19e)

τηη = −Re−1/2 p+ 2Re−1

(︃
∂v

∂η
+Re1/2 s′ξ

∂u

∂η

)︃
. (3.19f)
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Figure 3.12: In (a) we plot the absolute value of the difference between the numerical solutions for
the streamwise velocity component at ξ = 2.5, with the corresponding boundary-layer solution
at the same point, for a range of values of the small parameter Re−1/2. In (b) we plot an identical
comparison for the wall-normal velocity component.

System (3.19) is then solved subject to the following boundary conditions

u = u0|ξ=0, ξ∞ , v = v0|ξ=0, ξ∞ , at ξ = 0 and ξ = ξ∞, (3.20a)

u = Uw/σ, v = 0, at η = 0, (3.20b)

u = 0, τ · n = 0, at η = η∞. (3.20c)

We apply our normal and tangential velocity conditions at the wall and the condition that the

streamwise velocity component decays in the far field, as per the solution of our boundary layer

equations (2.7). In solving the full Navier-Stokes equations we need to impose additional con-

straints on the system. Here we use our boundary-layer solutions as inlet and outlet conditions.

We also impose a no stress condition at the outlet. This choice of free stream condition allows

us to measure convergence by means of evaluation of the wall-normal velocity component at the

far-field, v0|η=η∞ , for any fixed ξ, since we have not explicitly forced this value. Indeed, this can

be seen in Figure 3.12, where the difference in the absolute value between the boundary-layer

and numerical wall-normal velocity solutions decrease as the Reynolds number grows larger. In

the transformed coordinates our boundary-layer solutions are given by

u0 =
Uw

σ
e−η/σ,

v0 =
Uwσ

′
ξ

σ2
η e−η/σ − (Uw)

′
ξ(1− e−η/σ).

It is these solutions that we compare, respectively, to the numerical results for u and v. The

domain [ξ, η] ∈ [0, 5] × [0, 10] was triangulated using a 200 × 200 mesh with the originally
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uniformly spaced mesh mapped via

ηnew = η
exp (η/η∞)− 1

exp(1)− 1
,

to accurately resolve the boundary layer near the surface of the sheet. To ensure the mesh was

properly resolved the problem was also solved on a 100×100 and 50×50 mesh, with |v−v0|η=η∞ ,

at ξ = 2.5, being used to measure the errors for a range of different mesh densities and Reynolds

numbers. The errors were determined to be a function of the size of the Reynolds number with

the mesh density playing almost no role at all, giving us confidence that our mesh is sufficiently

refined.

The choice of η∞ was further validated by solving the problem on incrementally larger domains,

where it was found that η∞ = 10, was appropriate provided the Reynolds number was sufficiently

large. Plots comparing the difference between our self-similar and finite element solutions are

presented in Figure 3.12 for a range of Reynolds numbers. Given that our boundary-layer

analysis hinges on an asymptotic expansion with small parameter Re−1/2, it is logical for us to

present results for a range of values of this small quantity. As expected we observe that the

difference between the large Reynolds number analytical solutions and the numerical solutions

decreases as the Reynolds number increases.

In Figure 3.13 we present a comparison of the boundary-layer and finite element solution for the

streamwise velocity component across the entire (ξ, η+s) domain. It is clear that our analytical

boundary-layer solutions provide an excellent approximation to the full numerical solutions.

Indeed, upon decreasing our small parameter Re−1/2, one observes a notable decrease in the

absolute difference between the two sets of solutions. These values correpond to Re = 400, 625

respectively which is roughly 1.5 times increase in Reynolds number. This allows us to view

errors on the same scale so that improved agreement could be readily observed without being

”too small” as would be the case in the Re → ∞ limit.

3.4 Discussion and Conclusions

We have shown that the inclusion of the effects of a temperature gradient between the sheet

and the free stream changes the dynamics for Crane’s flow. The most prominent change being

that we no longer have exact analytical solutions for the basic flow profiles. For the remainder

of this thesis we use the inverse viscosity distribution described above. This is done for two

reasons. First it allows us to more readily compare with the stability results of Miller et al. [77],

and since we can easily interpret the role of the sensitivity parameter m, with positive values

of m describing the viscothermal behaviour of a liquid and negative value that of a gas. Here

we observed the entrainment of the boundary layer as the value of the sensitivity parameter
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Figure 3.13: Comparison between the finite element and boundary-layer solutions across the
computational domain for (a) Re−1/2 = 0.05, and (b) Re−1/2 = 0.04. The same colourbar scale
is used in both instances so that the reduction in error may be easily observed.

m was increased. In this case we were also able to attain reasonable near wall approximation

of the flow quantities of interest for weak temperature dependence (m ≪ 1). Though similar

approximation could be derived for other viscosity distributions. In the stability analysis which

follows we will show that this is the most important region for describing the dispersion relation

on the lower branch at leading order.

Dissipative effects on the other hand, lead to a change in the structure of the basic flow solutions,

wherein we can no longer assume that the temperature field is independent of the streamwise

location, and requires a full solution of the system of boundary layer PDEs to be properly

resolved. This has important implication for the stability analysis which follows as it prohibits

the use of our parallelisation approach when the momentum and energy equations are coupled.

We have also shown that it is possible to obtain self-similar boundary-layer solutions over deform-

ing surfaces and have investigated a number of specific case studies. Our analysis is primarily

focused on flows that are generated from extrusion-type processes, whereby surfaces accelerate

and thin as they are extruded. The vast majority of studies in the literature fail to account for

this surface curvature and instead assume that the sheet is flat, following the analysis of Crane

[23]. We show that in order to accurately describe boundary layer flows over stretching sur-

faces one needs to account for the curvature of the surface. Failing to do so results in incorrect

predictions for both the streamwise and wall-normal velocity components. Most notably, near

to the extrusion inlet, we find that the magnitude of the wall-normal velocity at the far-field

is significantly increased when compared to the corresponding flat-plate results. Our analytical

results have been verified numerically using an appropriate finite element scheme and we observe

excellent agreement between the two sets of solutions.
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Our formulation has been shown to be general enough that it can be extended to consider both

flows over thickening, decelerating surfaces and also the development of boundary-layer flows

over periodic rough surfaces, (see [45]). Our analysis stipulates that the exact form of the wall

velocity is dictated by the shape of the deforming surface. However, we have shown that, at

least for the case studies considered here, these expressions for the wall velocity can be very well

approximated by simple expressions involving only the streamwise coordinate ξ. In practice,

one would measure the velocity of the deforming sheet and stipulate the value of the constant

γ to ensure that the predicted wall velocity closely matched experimental observations, and,

indeed, our analysis allows for exactly this procedure. This would involve finding the value of

γ, along with the integration constants which minimised differenced between experimental data

(obtained from say PIV) and the basic flow profiles predicted by our model. Our analysis could

easily be extended to consider other types of flows generated from extrusion processes including

those over bounded domains. In these cases, one would replace the analytical calculation of the

arc length of the surface, I, with a numerical integration scheme with the limits of integration

dictated by the bounds of the domain.

In a sense our deforming analysis is somewhat related that of Crane [24], where similarity

solutions for the boundary-layer flow induced by a stretching cylinder were derived. However,

these solutions are only valid when the ratio of cross-sectional areas of the boundary layer to

the cylinder is large. Both the velocity and shape of the cylinder are prescribed in a manner

that ensures that mass is conserved within the cylinder i.e. the density is constant. In much the

same way as the corresponding flat plate study of Crane [23] the cylinder wall is not treated as a

deformable quantity. The approach we have presented here would be capable of describing more

general boundary-layer solutions in other such non-Cartesian geometries, and, as such, could

remove the limitations of the studies relating to flows induced by stretching cylinders.
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Chapter 4

Numerical Linear Stability Analysis

In this Chapter, we present solutions to the quadratic eigenvalue problem that arises from the lin-

earised Navier-Stokes and energy equations for the temperature-dependent extension of Crane’s

problem. We demonstrate that the dependence of viscosity on temperature can significantly

alter the stability characteristics of the flow. In the most extreme case considered, the Reynolds

number at which instabilities occur is approximately halved compared to the isothermal case.

This analysis is complemented by both an integral energy analysis and an Orr-Sommerfeld com-

parison, where we evaluate the relative importance of the terms arising from surface stretching

and the additional terms due to the temperature dependence of viscosity. Note that the analysis

in Sections 4.2 and 4.3 has been submitted in the publication Hanevy et al. [46], which is under

review.

4.1 Introduction

The classical approach in hydrodynamic stability has been to consider the evolution of small

perturbations to a two-dimensional parallel basic flow of the form u = (uB(y), 0), where u is the

streamwise velocity component and y the wall normal spatial coordinate. The two-dimensional

problem is chosen as according to Squire’s theorem any unstable three-dimensional mode, may

be recast as a two-dimensional mode at a lower Reynolds number. Flow quantities are then

perturbed assuming a normal mode form for the perturbations such that the streamwise velocity

component U , for example may be written as follows

U = uB + ϵũ, ũ = û(y)ei(αx−ωt),

where α, ω and û are in general complex and ϵ ≪ 1. Substituting the above Fourier ansatz

into the Navier-Stokes equations, and gathering terms of O(ϵ) results in an eigenvalue problem
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where typically the Reynolds number R, and either the streamwise wavenumber α or temporal

wavenumber ω are fixed and assumed to be real. The stability of the flow is determined by the

complex eigenvalues of the system. The flow is said to be temporally stable if α is fixed to be

real and ωi > 0 and spatially unstable if ω is fixed to be real and αi < 0. Where the subscripts

‘r’ and ‘i’ are used to denote the real and complex part of the wavenumber and frequency, so

that α = αr + iαi for example. From a physical standpoint, the disticnction between temporal

and spatial instabilities comes down to whether the perturbations are imposed through initial or

boundary conditions. Temporal instabilities arise when the initial state of the sytem is perturbed

whereas spatial instabilities are forced by the imposition of approriate boundary conditions. For

instance blowing and suction boundary conditions are often used in numerical simulations and

experiments to induce the Tollmein-Schlichting instabilities considered later in this Chapter. In

imposing the normal mode form for the perturbations we are assuming that the perturbations

are periodic either in space or in time. This means that depending on the flow regime in question,

either the spatial or temporal formulation may be more physcially relevant. It should be noted

that this approach is intended to describe only the early stages of transition and breaks down

as the perturbations grow sufficiently large and cause distortion of the mean flow.

For parallel flows such as plane Poiseuille or Couette flow, the temporal stability problem has

been found to be most relevant as disturbances tend to grow in time and are spatially periodic.

In this case we need to solve a generalised eigenvalue problem, for the disturbance frequency ω

of the form

(A− ωB)q̂ = 0.

Here A and B are the operators which arise through discretisation of the linearised Navier-

Stokes equations and q̂ is a vector of the disturbance velocities and pressure. In our case we are

interested in a boundary layer problem. Boundary layers emerge in a high Reynolds number

flow in the presence of a solid boundary, where viscous effects are required to satisfy no slip

conditions on the solid boundary and match with the outer inviscid flow. Boundary layer flows

are not parallel and need to be parallelised by exploiting the fact that the flow varies much more

rapidly in the wall normal, rather than the streamwise direction to perform the analysis. A

consequence of the inhomogeneity in the streamwise direction is that the spatial rather that the

temporal problem is more relevant to boundary layer flow since disturbances are found to grow

as they are convected downstream. Here we solve a quadratic eigenvalue for the streamwise

wavenumber α

(α2A2 + αA1 +A0)q̂ = 0.

Here too, Ai are operators of the discrete linearised Navier-Stokes equations. Regardless of

whether the temporal or spatial eigenvalue problem is solved, the goal is to locate the neutral

stability curve. That is the curve in the (R, α) or (R, ω) plane, where perturbations neither grow

nor decay, i.e. αi = ωi = 0. Doing so provides an estimate of regions of instability which can be
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validated through asymptotic, numerical or experimental means.

For the flow under consideration, namely the temperature dependent extension of Crane’s flow,

our analysis lies somewhere between the analysis of a flat plate boundary layer discussed in [77]

and the stability of a rotating disk boundary layer as explored in [78]. It resembles the flat plate

boundary layer since we are dealing with a two-dimensional Cartesian boundary layer problem,

and the rotating disk, as parallelisation is achieved by defining a local Reynolds number R which

is equivalent to the dimensionless streamwise location. In the rotating disk problem, the use of

this parallel flow approximation results in a system of equations where terms associated with

Coriolis forces and streamline curvature are O(R−1). Initially these terms were neglected as they

do not appear in the standard Orr-Sommerfeld equation. An example of this is found in the

calculations of Cebeci and Stewartson [19], where a critical Reynolds number of approximately

180 was reported. Inclusion of these higher order terms acts to stabilise the flow as evidenced

by the calculations in Malik et al. [73] and validated by the hot wire experiments of Kobayashi

et al. [64], both reporting a critical Reynolds number of approximately 290. These “extra” terms

which arise through the parallelisation of the base flow also qualitatively change the structure

of the neutral curve, introducing a kink appearing on the lower branch when they are accounted

for. Due to improved agreement with experimental results in the rotating disk case, we also

choose to include them in the analysis of the stretching sheet.

4.2 Numerical Formulation

In this Section, we assess the stability of the boundary layer flow discussed above through the

numerical solution of the linearised Navier-Stokes equations. Due to the variations in base

flow resulting from changes in the sensitivity parameter, the analysis differs somewhat from the

isothermal analysis by Griffiths et al. [39]. The primary difference is that the boundary layer

thickness is not constant and varies with the sensitivity parameter m. To account for this, we

adopt an alternative set of scales compared to the previous Chapter. The outcome of our new

set of scales is that the wall-normal coordinate is scaled by the boundary layer thickness. This

adjustment will need to be considered in the asymptotic analysis in the next Chapter when

comparing our asymptotic and numerical results.

4.2.1 Numerical Linear Disturbance Equations

To derive the linear stability equations we start by taking the dimensional extension of Crane’s

model (2.1) in the absence of viscous dissipation. Here we non-dimensionalise by introducing
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the following set of scales

U∗ = a∗x∗sU, t∗ =
δ∗

x∗sa
∗ t, (4.1)

p∗ = ρ∗a∗2x∗2s p (x∗, y∗) = δ∗(x, y). (4.2)

Where the temperature and viscosity scales are as before. The stability analysis is performed

at streamwise location x∗s. This leads to the definition of a local Reynolds number R =

ρ∗x∗sa
∗δ∗/µ∗∞ = x∗s/δ

∗ = xs which is equivalent to the dimensionless streamwise location. As-

suming two-dimensional disturbances, mean flow quantities are then perturbed as follows

u =
xs
R
uB(y) + ū(x, y, t), (4.3a)

v =
1

R
vB(y) + v̄(x, y, t), (4.3b)

p =
1

R2 pB(y) + p̄(x, y, t), (4.3c)

T = TB(y) + T̄ (x, y, t), (4.3d)

M = MB + M̄, (4.3e)

where the perturbations are assumed to be small and have normal mode form

(ū, v̄, w̄, p̄, T̄ ) = [û(y), v̂(y), p̂(y), T̂ (y)]ei(αx−ωt),

and the wall normal coordinate is scaled to account for the variation of the boundary layer

thickness such that y ∼ δ−1. The basic solutions satisfy (3.2) for a given value of the sensitivity

parameter m. Our viscosity function is perturbed using a binomial expansion as follows

M =
[︁
1 +m(TB + T̄ )

]︁−1
,

=
1

1 +mTB

(︃
1 +

mT̄

1 +mTB

)︃−1

,

=⇒ MB =
1

1 +mTB
, M̄ = − mT̄

(1 +mTB)
2 .
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The linear perturbation equations are

iαû+ v̂′ = 0, (4.4a)

i (αuB − ω) û+
1

R

(︁
uBû+ vBû

′)︁+ u′B v̂ + iαp̂− 2iα

R2 uBM̂, (4.4b)

− 1

R

[︄
MB

(︁
û′′ − α2û

)︁
+
(︂
M̂u′B

)︂′
+M ′

B

(︁
iαv̂ + û′

)︁ ]︄
= 0,

i (αuB − ω) v̂ +
1

R
(vB v̂)

′ + p̂′ − 2

R

(︃
M ′

B v̂
′ +

1

R
v′BM̂

′
)︃

− 1

R

[︄
MB

(︁
v̂′′ − α2v̂

)︁
+

1

R
v′′BM̂ + iαu′BM̂

]︄
, (4.4c)

i(αuB − ω)T̂ +
1

R
vBT̂

′ + T ′
B v̂ −

1

PrR

(︂
T̂ ′′ − α2T̂

)︂
= 0. (4.4d)

The above system of coupled ODE’s can be written as follows

(︁
α2A2 + αA1 +A0

)︁
Q = 0, (4.5a)

where Q = (u, v, T, p)T and is solved subject to the following boundary conditions

û = v̂ = v̂′ = T̂ = 0 at y = 0, (4.5b)

û→ v̂ → p̂→ T̂ → 0 as y → ∞. (4.5c)

These boundary conditions ensure that perturbations are zero at the solid boundaries and decay

as the free stream is approached as indicated bu the arrow notation. The Neumann condition on

the wall normal perturbation velocity arises through the continuity equation, while we only have

a single boundary condition on the perturbation pressure as it only appears to first order. The

system (4.5), was discretised using a chebychev collocation scheme and the associated quadratic

eigenvalue problem was solved using Matlab’s polyeig function. Details of the numerical scheme

are given in the appendix C. The definition of the operators in (4.5) is as follows

A2 =
1

R

⎡⎢⎢⎢⎢⎣
MB 0 0 0

0 MB 0 0

0 0 Pr−1 0

0 0 0 0

⎤⎥⎥⎥⎥⎦ A1 = i

⎡⎢⎢⎢⎢⎣
uB −M ′

B
R − 2

R2uBM̂ 1

0 uB − 1
Ru

′
BM̂ 0

0 0 uB 0

1 0 0 0

⎤⎥⎥⎥⎥⎦ A0 =

⎡⎢⎢⎢⎢⎣
A011 u′B A013 0

0 A022 A023 D
0 T ′

B A033 0

0 D 0 0

⎤⎥⎥⎥⎥⎦
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where D denotes differentiation with respect to y and the non zero coefficients of A0 are

A011 = −iω +
1

R

(︁
uB + vBD −MBD2 −M ′

BD
)︁
,

A013 = − 1

R

(︂
u′BM̂

)︂′
,

A022 = −iω +
1

R

(︁
v′B + vBD − 2M ′

BD −MBD2
)︁
,

A023 = − 1

R2

(︂
2v′BM̂

′ + v′′BM̂
)︂
,

A033 = −iω +
1

R
vBD − 1

RPr
D2.

The results are shown in Figure 4.1. From the plots we can see that reducing the value of

the sensitivity parameter reduces the Reynolds number and destabilises the flow. Although

the Reynolds numbers remain high, this still suggests potential impacts on industrially relevant

flows, as negative values of the sensitivity parameter are characteristic of gas-type viscothermal

behaviour. The critical values found at the range of sensitivity values tested are presented in

table 4.1. As can be seen from the table, and also in Figure 4.1 c), there is a narrow range of

positive values of m which stabilise the flow before the critical Reynolds number again decreases.

In d) we plot the growth rates bounded by the upper and lower branches of the neutral stability

curves at Rcrit+5000. The energy analysis of the following Section is performed at the value of ω

which maximises this growth rates from this plot. As seen in the plots the maximum growth rates

for the m = −0.4 is triple that of the other cases. This occurs since our increment represents a

larger proportion of the critical Reynolds in this particular case. We could alternatively analyse

the energy equations at some multiple of the critical Reynolds number. However, as will be

seen, our choice of increment does not effect our energy analysis and allows us to uncover the

cause of the destabilisation of the flow for m > 0.34.

In an industrial setting our critical Reynolds number would correspond to distance along the

stretching axis before instabilities arise. If such instabilities were to lead to manufacturing de-

fects, through coupling with the constitutive equations of the sheet, then any intervention which

delays the onset of these instabilities could reduce manufacturing costs. Given the largeness of

the Reynolds numbers and the simplicity of the model used, our results are unlikely to directly

correspond to any physical system. It is however probable that should additional physical ef-

fects be incorporated, the stabilising role of gaseous viscosity distributions could be exploited

to suppress instabilities.

In order to validate our numerical scheme we compare our solutions in the uncoupled m = 0 case

to the isothermal analysis in [39]. These results are shown in the last row of table 4.1. While

there is a discrepancy between the two results, there are a number of differences between our
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Table 4.1: Critical values for Crane’s viscothermal extension

m Rcrit αcrit ωcrit

-0.4 18342 0.17976 0.14161
-0.2 39160 0.16021 0.13299
0 48494 0.1602 0.13541
0.2 49788 0.16424 0.1399
0.4 47681 0.1681 0.14374

Griffiths et al. [39] 48499.1 0.1614 0.1364
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Figure 4.1: a) Neutral stability curve plotted against the frequency ω and b) the corresponding
plot for the real part of the streamwise wavenumber α, for a range of values of the sensitivity
parameter m. In c) the variation of the critical Reynolds number with m is shown. The shaded
region indicates the range of values of m for which the flow is stabilised. d) shows the growth
rates for each value of m at Rcrit+5000.
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calculations. The first being that we are using numerical approximations instead of the exact

analytical solutions for the isothermal problem. This is done so that our scheme is consistent

when m ̸= 0. The second being the inclusion of the energy equation. This should not impact

the stability of the system since the equations are not coupled. The other key difference is the

algorithm used to compute the neutral curves. In Griffiths et al. [39], the neutral point is found

by locating the lowest Reynolds number for which αi < 0. In contrast the current calculations

adopt an arclength continuation scheme as detailed in Morgan [79], whereby a point is deemed

to be neutrally stable if |αi| < 10−7. This change in stability criterion explains why we predict

a slightly smaller critical Reynolds number.

There are also differences in the type of Chebychev scheme employed. In Griffiths et al. [39],

the scheme was set up to solve for expansion coefficients, whereas the current analysis solves for

values at the collocation points. In addition, an algebraic rather than an exponential map was

employed to map the Chebychev domain to the physical domain. Full details of the discretisation

scheme may be found in Appendix C. The reason the new scheme was adopted is that the

eigenvectors calculated for the energy analysis are better behaved. The expansion coefficient

scheme led to oscillations in the appearing in the eigenfunctions. With those differences noted,

the fact that our critical values are in broad agreement indicates that the our current scheme is

properly resolved. This will be further validated by the asymptotic analysis in the next Chapter.

Given the number of assumptions made in deriving these results, any critical Reynolds number

quoted is unlikely to directly correlate with a fully nonlinear regime either numerically or ex-

perimentally. Therefore the goal of our numerical analysis is to predict trends induced by the

variance of the sensitivity parameter rather than indicate the exact location at which transition

would be observed. With that goal achieved we now seek to understand cause of these trends

via the integral energy analysis.

4.3 Energy Analysis

The aim of this Section is to understand how the addition of temperature effects impacts the

stability of the system by considering the system’s energy balance. We will also use this analysis

to explain the narrow range of stabilising values of the sensitivity parameter. This type of

analysis has been used extensively in the literature for a range of different “parallel” boundary

layer flows (see ([17],[21],[77])). It is based on the Reynolds-Orr equation for the disturbance

kinetic energy as discussed by Schmid and Henningson [97]. The advantage of this analysis

is that it allows for a physical interpretation of the role of the various terms in the linearised

momentum equations to understand how disturbances may be damped or amplified.

To derive a set of energy balance equations we begin by multiplying our streamwise and wall
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normal perturbation equations by ū and v̄ respectively and sum the result to obtain(︃
∂

∂t
+ uB

∂

∂x

)︃
ē+ u′Būv̄ +

1

R

[︁
uB(ū

2 − v̄2) + vB(ūū
′ + v̄v̄′)

]︁
+

∂

∂x
(ūp̄) +

∂

∂y
(v̄p̄)− µB

R

(︃
∂

∂x
(v̄q̄)− ∂

∂y
(ūq̄)− q̄2

)︃
− 1

R

{︂
µ′B[

∂

∂x
(ūv̄) +

∂

∂y
(ē+ v̄2)] + u′B[

∂

∂y
(µ̄ū) +

∂

∂x
(µ̄v̄)− µ̄s̄] + u′′Bµ̄ū

}︂
− 2

uB
R2

[ū
∂µ̄

∂x
− v̄µ̄′] = 0. (4.6)

where ē = (ū2 + v̄2)/2 is the kinetic energy, q̄ = ∂v̄
∂x − ∂ū

∂y , is the disturbance vorticity and

s̄ = ∂v̄
∂x + ∂ū

∂y , is defined for convenience. Using the normal mode form of the perturbations, the

above equations are averaged over a single time period and integrated through the boundary

layer to attain

− 2αi

∫︂ ∞

0
uB⟨ê⟩+ ⟨ûp̂⟩ dy

= −
{︂∫︂ ∞

0
u′B⟨ûv̂⟩ dy

}︂
⏞ ⏟⏟ ⏞

I

− 1

R

{︃∫︂ ∞

0
2αiµB⟨v̂q̂⟩+ µB⟨q̂2⟩ dy

}︃
⏞ ⏟⏟ ⏞

II

+
1

R

{︃∫︂ ∞

0
µ′B⟨ûq̂⟩ − µ′′B⟨ê+ v̂2⟩ − u′B⟨µ̂ŝ⟩ dy − 2αi

∫︂ ∞

0
µ′B⟨ûv̂⟩+ u′B⟨µ̂v̂⟩ dy

}︃
⏞ ⏟⏟ ⏞

III

+
{︂ 1

R2

∫︂ ∞

0
2uB

(︁
⟨αûµ̂⟩ − ⟨v̂µ̂′⟩

)︁
dy − 1

R

∫︂ ∞

0
uB
(︁
2⟨û2⟩ − ⟨ê⟩

)︁
dy
}︂

⏞ ⏟⏟ ⏞
IV

. (4.7)

The terms labelled above represent energy production due to Reynolds stresses (EPRS-I), energy

dissipation due to viscosity (EDV-II), additional terms due to variable viscosity (AVV-III), and

extra terms due to surface stretching (ESS-IV) respectively. The above energy formulation

may be compared with that presented in Miller et al. [77] for temperature dependent Blasius

flow, with the only difference being the additional terms from the surface stretching. Numerical

investigations, as demonstrated in Table 4.2 where we integrate the overall energy balance of

the system, reveals that the above integral energy equation may be approximated as follows

−2αi = I ≈ −
∫︂ ∞

0
⟨ûv̂⟩u′B dy⏞ ⏟⏟ ⏞

I

− 1

R

∫︂ ∞

0
uB
(︁
2⟨û2⟩ − ⟨ê⟩

)︁
dy⏞ ⏟⏟ ⏞

IVa

− 1

R

∫︂ ∞

0
µB⟨q̂2⟩ dy⏞ ⏟⏟ ⏞
IIa

+
1

R

∫︂ ∞

0
µ′B⟨ûq̂⟩ − µ′′B⟨ê+ v̂2⟩ − u′B⟨µ̂ŝ⟩ dy⏞ ⏟⏟ ⏞

IIIa

, (4.8)

N.Hanevy, PhD Thesis, Aston University 2024 50



Numerical LSA Stretching Surface Flows

Table 4.2: Check for energy analysis. Column 3 showing the difference in absolute errors from
approximating terms II− IV in (4.7) using equation (4.8)

m |−2αi
I − 1| × 10−3 |−2αi

Ia − 1| × 10−3

−0.4 0.1191 0.1189
−0.2 0.2100 0.2093
0 0.0047 0.0047
0.2 0.2122 0.2120
0.4 0.3439 0.3437

where the right hand side of (4.8) has been normalised by the integral of the combination of

the energy flux and the work done by pressure. The subscripts ‘a’ denote that terms II-IV have

been approximated by the ommission of terms whose absolute value is negligabely small in each

of the cases considered. The energy analysis is performed at Rc+5000 from table 4.1, which is

roughly 10% the critical Reynolds number in the isothermal case, and at the value of ω which

maximises the growth rate −αi as seen in Figure 4.1 d). We can easily validate our formulation

checking that the total mechanical energy of the system −2αi balances with the energy integral.

This is shown in table 4.2 where we also show the ratio of the total mechanical energy to the

right had side of (4.7) is approximately one. The approximate integral equations were derived

by noting that this ratio remained largely ratio unchanged by the omission of terms for each of

the cases studied.

Before examining the role of each of the energy production terms for various values of m, we first

examine the corresponding eigenfunctions. These are shown in Figure 4.2, where we plot the

absolute value of the streamwise, wall normal and temperature eigenfunctions for various values

of m. We see that the maximum absolute value of û increases monotonically with increasing

values of m, while the opposite is true of the T̂ . The maximum absolute value of v̂ appears to be

minimised for m ≈ −0.2 and increases for both increasing and decreasing m. While it is difficult

to draw conclusions regarding the flow stability directly from the shape of the eigenfunctions

alone, their overall contributions become clearer when we isolate the relative terms in our energy

balance equations.

In Figure 4.3 a), we show the relative contribution to the overall energy of the system of each

of the terms in equation (4.8). While some of the additional stretching and viscosity terms (

ESS - IVa and AVV - IIIa ) were required to quantitatively improve the overall energy balance

of the system, it is clear from this Figure that their contribution is far less pronounced than

that of the terms found in the standard analysis (EPRS - I and EDV - IIa). This is consistent

with the energy analysis of the temperature dependent Blasius problem in Miller et al. [77].

To understand the role of viscosity variations we follow [77] and decompose the EDV term as
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Figure 4.2: Plots of the eigenfunctions of (4.5), evaluated at R = Rcrit+5000 and min
ω

(αi). Each

of the eigenfunctions have been scaled such that max |Q|m=0 = 1, where Q = Q = (u, v, T, p)T
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Figure 4.3: a) Plots of the energy contributions for each of the integrals on the right hand side
of in equation (4.8). In b) we separate the energy dissipation due to viscosity term IIIa into
Newtonian and temperature dependent contributions.

follows

IIa =

∫︂ ∞

0
⟨q̂2⟩ dy⏞ ⏟⏟ ⏞
IINa

+

∫︂ ∞

0
(µB − 1)⟨q̂2⟩ dy⏞ ⏟⏟ ⏞

IITD
a

.

The overall role of the change in viscosity may be observed in Figure 4.3 b). Here we see that

although formally an energy dissipation term, for positive values of m this terms adds energy

to the system. This energy production is balanced by increased dissipation from the Newtonian

component leading to the asymptotic behaviour for as m → 0.4. The energy analysis suggests

that the overall energy balance is governed largely by the standard energy production and

dissipation terms. This will be further investigated in Section 4.4 for the isothermal problem.

Before doing so, we will first explain the small range of stabilising values of m ∈ [0, 0.34] observed

in Figure 4.1 c). This is achieved by considering the EPRS and EDV terms from Figure 4.3

a). While in the plot it appears that these two curves are tending to a constant value as m

increases, this is not the case. This is made clear in Figure 4.4 where we plot the derivative

of these integrals with respect to m. Here we see that the EPRS term increases with m until

m ≈ 0.36. This roughly corresponds to the location found by tracking the critical Reynolds

numbers on the neutral curves in Figure 4.1 c). This is then followed by an increase in energy

dissipation. The fact that this increase occurs after the increase in energy production, and

appears to have a smaller slope drives the increase in critical Reynolds number beyond this

range.
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Figure 4.4: Plots derivative of I and IIa with respect tom. From the inset we see that the increase
in EPRS occurs before the corresponding increase in EDV, causing the flow to be destabilised
for m > 0.34.

4.4 Orr-Sommerfeld Comparison

The Orr-Sommerfeld equation has been extensively used to model instabilities of parallel flows.

It was traditionally favoured over the primitive variables approach used above, as it reduces the

continuity and momentum equations to a single fourth order ODE. This in turn reduces the size

of the discretised operator by a factor of three for two-dimensional flows and a factor of four

for three-dimensional flows. Given the widespread adoption of Chebychev spectral schemes to

discretise the governing ordinary differential equations, where the m-th order derivative matrices

are calculated by raising the first order derivate matrix to the m-th power, a trade-off exists.

The repeated matrix multiplications required to calculate higher order derivatives can lead to

floating point errors and a loss in accuracy. However, storage requirements for one dimensional

problem with ∼ 100 collocation points are not an issue for most modern laptops and so the

primitive variables approach has been used due to its increased accuracy. While this leads to

modest storage requirements compared to three-dimensional direct numerical simulations, it is

more than sufficient given the exponential convergence of the spectral schemes utilised and the

relative smoothness of the dominant eigenmodes of the Orr-Sommerfeld operator. This can be

contrasted to the results of Weideman and Reddy [118], who validated Orszag’s results [83]

for the dominant eigenvalue in Plane Poiseuille flow to full machine precission for N > 50.

That being said, we will compare our results in the uncoupled (m = 0) case, to the standard

Orr-Sommerfeld formulation. In doing so we will show that in contrast to the rotating disk,

the additional O(R−1) basic flow terms do not affect the overall flow stability. This is further

validated by solving the biglobal eigenvalue problem, which arises from explicitly applying the

assumptions of the Orr-Sommerfeld approach using the spectral element software Nektar++ [15].
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The relative importance of the additional basic flow terms will be revisited in Chapter 6, where

we look for alternative mechanisms for energy growth for the isothermal problem.

4.4.1 Orr-Sommerfeld Formulation

Here we outline the formulation of the standard Orr-Sommerfeld equation in two spatial dimen-

sions. A more detailed derivation is given for the three dimensional problem with the addition of

the Squire equation is given in Chapter 6. We choose to use the two-dimensional formulation for

comparison with our previous results. This is in contrast to the non-modal analysis in Chapter

6 where three dimensional effects become significant.

The derivation of the Orr-Sommerfeld equations starts by taking a (dimensionless) basic flow of

the form U = (U(y), 0), that is a streamwise oriented flow that depends only on the wall normal

coordinate y. As before this basic flow state is perturbed such that u = (U(y), 0) + (u, v)) and

a system of linearised perturbation equations are found

∂u

∂x
+
∂v

∂y
= 0,

∂u

∂t
+ U

∂u

∂x
+ vU ′ = −∂p

∂x
+

1

R
∇2u,

∂v

∂t
+ U

∂v

∂x
= −∂p

∂y
+

1

R
∇2v.

Where ∇2 = ∂2

∂x2 +
∂2

∂y2
is the Laplacian. Differentiating the x momentum with respect to y and

the y momentum equation with respect to x and using the continuity equation, we can write the

linearised perturbation equations as a single equation in terms of the wall normal perturbation

velocity v [︃(︃
∂

∂t
+ U

∂

∂x

)︃
∇2 − U ′′ ∂

∂x
− 1

Re
∇4

]︃
v = 0, (4.9)

which is solved subject to the boundary conditions

v = v′ = 0 at y = 0 and y = ∞. (4.10)

The Orr-Sommerfeld equation is derived by making the same normal mode assumption as before

such that v = v̂(y)ei(αx−ωt). This results in an equation of the form[︃
(−iω + iαU) (D2 − α2) + iαU ′′ − 1

R

(︁
D2 − α2

)︁2]︃
v̂ = 0. (4.11)

It is this equation which we compare to the linearised Navier Stokes equations for Crane’s flow
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by setting U = e−y. To facilitate comparison with Nektar++, we solve the temporal problem by

fixing α ∈ ℜ and R to solve for the complex frequency ω via a generalised eigenvalue problem

of the form

(A− ωB)v̂ = 0,

where

A = iαU
(︁
D2 − α2

)︁
+ iαU ′′ − 1

R

(︁
D2 − α2

)︁2
, B = i(D2 − α2).

4.4.2 Nektar++

Nektar++ is an open source spectral element solver. Spectral element methods aim to com-

bine the high order accuracy of spectral methods and the geometric flexibility of finite element

schemes and were first used for fluid dynamic simulations by Patera [86]. Traditional finite

element schemes for fluid flow problems typically use Taylor-Hood elements, which discretise

the pressure with linear basis functions and the velocities with quadratic basis functions on

each element. Refinement is achieved either by increasing the mesh density or by raising the

order of the polynomial expansion. Spectral elements too typically use high order expansions

on each element, however rather than using polynomials of order P defined on P + 1 equidis-

tant nodes on each element, they use Lagrange polynomials defined through the zeros of the

Gauss-Lobatto-Legendre quadrature points [15]. Thus the minimisation of interpolation errors

achieved by classical spectral schemes is retained within each element.

Nektar++ contains a global flow stability solver, which solves the eigenvalue problem correspond-

ing the linearised Navier-Stokes equations of the form

∂u

∂t
+ (u · ∇)U+ (U · ∇)u = −∇p+ ν∇2u, (4.12a)

∇ · u = 0. (4.12b)

in 2 − 3 spatial dimensions, where U is the basic flow and u is the perturbation. In set-

ting up the problem to correspond to the Orr-Sommerfeld approach we fix our domain to be

[x, y] ∈ [0, 2π/α]× [0, ymax], and impose that the perturbations are periodic in x, consistent with

the normal mode assumption. The linearised Navier-Stokes equations are solved using a time

stepper method as described in Tuckerman and Barkley [113], where the evolution of the linear

perturbation equations (4.12a) is expressed as

q(t) = A(t)q(0),

so that given some initial perturbation q(0) and for some arbitrary time τ , we find the dominant
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eigenvalues and eigenvectors of the operator A(τ). These are found as a solution of the equation

A(τ)q̃j = µjq̃,

where µj = e(σ+iγ)τ and may be related to the growth rate and frequency of the temporal

Orr-Sommerfeld problem via

µj = e(σ+iγ)τ = |µj |eiθ,

ωi =
ln |µj |
τ

, ωr =
θ

τ
.

Comparison of Results

To compare the different approaches we calculate the dominant eigenvalues along the line defined

by Re = 104 that is bounded by the upper and lower branches of the neutral stability curve as

shown in Figure 4.5. While there is a small difference between the Orr-Sommerfeld approach

and the full linearised Navier Stokes, this difference is not as pronounced as in the rotating disk

case. This is likely due to the fact that these additional base flow terms are O(R−1) and the

Reynolds numbers are orders of magnitude larger than in the rotating disk case. Note that we

have also included the results for a modified Orr-Sommerfeld Squire equation which is derived

in Chapter 6 equation (6.3a). This retains the higher order basic flow terms in the formulation

and is labelled OS ST (Orr-Sommerfeld stretching terms) in the Figure. Unsurprisingly, this

agrees with the linearised Navier-Stokes equations, as it includes all of the same terms.

Using the assumptions of the Orr-Sommerfeld approach also yields the same solutions when

compared to the solutions of the linearised Navier-Stokes equations in Nektar++. Note that

the additional basic flow terms could not be retained using the Nektar’s incompressible Navier

stokes solver as it stands. However, given the agreement between the two approaches we can

easily use the Nektar++ solutions to qualitatively visualise a single wavelength of the periodic

two-dimensional eigenmode. This is shown in Figure 4.6, where we can see the emergence of

the TS wave. Under the assumptions of linear theory, this structure is expected to grow as it

is convected downstream until the perturbations become sufficiently large and interact with the

basic flow, eventually leading to the flow becoming turbulent.

4.5 Discussions and Conclusions

In this Chapter we have numerically investigated the temperature dependent extension of Crane’s

flow. There are a number of features of interest in this analysis which have significant impli-
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Figure 4.5: Comparison of the frequency and growth rates in b) calculated along the red curve
marked on the neutral stability curve in a), for the isothermal stretching sheet. c) shows the
corresponding plot of wavenumber versus temporal growth rate.

N.Hanevy, PhD Thesis, Aston University 2024 58



Numerical LSA Stretching Surface Flows

0 /2 / 3 /2 2 /
0

10

20

30

40
a)

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0 /2 / 3 /2 2 /
0

10

20

30

40
b)

-1.5

-1

-0.5

0

0.5

1

1.5

10
-3

0 10 20 30 40
0

10

20

30

40
c)

-2

-1

0

1

2

3

4
10

-3

Figure 4.6: Two dimensional structure of the dominant TS eigenmodes for the streamwise, wall
normal and pressure perturbations for α = 0.14 and Re = 104, computed using Nektar++.
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cations for the remainder of this thesis. Firstly, the critical Reynolds number is very large in

comparison to other boundary layers such as Blasius flow, approximately 100 times larger in

the isothermal case. However, this discrepancy is less pronounced when compared to boundary

layers with exponential base flow solutions such as the asymptotic suction boundary layer stud-

ied by Dempsey and Walton [29], who reported a critical Reynolds number of 54370. This will

prove useful in the asymptotic analysis in the following Chapter where our asymptotic expansion

is predicated on the Reynolds number being large. This means that we will only have to take

the leading order term in our expansion to validate our numerical results. Additionally, this

observation raises the question of whether such a high Reynolds number would be required to

observe transition in practice. This question has led us to investigate alternative mechanisms

for energy growth in the non-modal analysis presented in Chapter 6.

Another notable feature is the additional terms that arise from the parallelisation of the basic

flow. As discussed in the introduction, retaining these terms is crucial for improving the compar-

ison with experiments in the rotating disk case. While the difference is less pronounced for the

stretching sheet, these additional terms also appear to be stabilising, consistent with the findings

for the rotating disk. This has been validated using both the Orr-Sommerfeld approach and a

biglobal approach, with both methods showing excellent quantitative agreement. Whether this

small difference is merely a consequence of the large Reynolds numbers involved will be revisited

in Chapter 6, where we investigate energy growth mechanisms at Reynolds numbers that are

orders of magnitude smaller.

Regarding transition prediction, there is a small range of values of m ∈ [0, 0.34] (see Figure 4.1

c)), where the flow is stabilised. Values outside of this range lead to a reduction in the critical

Reynolds number when compared to the isothermal case. This is in qualitative agreement with

the results for the Blasius boundary layer [77], although the range of stabilising values of m is

much narrower for the stretching sheet. The flow is strongly destabilised for negative values

of m. This is particularly relevant from an industrial standpoint, as this regime represents the

viscothermal behaviour of gases. The fact that the critical Reynolds number was halved for

m = −0.4, coupled with the prominence of large temperature gradients in many extrusion flows,

implies that viscothermal effects should be incorporated into any model of the full system as it

destabilies the flow industrially relevant regimes.

The energy analysis suggests that instabilities could be suppressed through modification of the

shear of the basic flow as this term drives EPRS. We will return to this idea after we conduct

our asymptotic analysis in the next Chapter, as this will provide us with a richer understanding

of the mechanisms driving the instability, allowing us to suggest control flow techniques for

extrusion processes.
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Nevertheless, regardless of the value of the sensitivity parameter our numerical linear stability

analysis predicts a critical Reynolds number of order ten thousand, with our analysis performed

at a local Reynolds number defined as a dimensionless distance from the inlet. However, Vleggaar

[114] suggests that the flat, constant sheet temperature approach, with sheet speed proportional

to the distance from the inlet may only be valid within half a meter from the inlet. Recalling the

definition of our local Reynolds nuber R = x∗/δ∗ where δ∗ = δ
√︁
v∗/a∗. If we take the following

values from Vleggaar x∗ = 0.5m, ν∗ = 3.59× 10−5m2s−1, a∗ = 20s−1, and δ ∼ O(1), we attain a

value of R ∼ 400. Using these figures it suggests that you would need to be approximately fifty

meters from the inlet before the linear instability mechanism could be observed, which is far

beyond the region at which our current model may be applied. Given these results, the question

remains as to whether the linear modal mechanism is responsible for the destabilisation of such

flows or whether an alternative mechanism may be responsible. We shall return to this question

in Chapter 6, however first we shall validate our numerical results by comparing them to the

asymptotic results for the same flow regime.
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Chapter 5

Asymptotic Linear Stability Analysis

Prior to the widespread availability of modern computational tools in the late twentieth century,

questions regarding the stability of a given flow regime had to be addressed using analytical ap-

proximations. As computational resources have become more readily available, the trend has

increasingly shifted towards computational approaches, leading to many significant recent dis-

coveries in the field of hydrodynamic stability. However, analytical approximations can explicitly

reveal the essential physics driving a given instability and suggest methods for its suppression.

They also serve as a means of validating computational results. For these reasons, we perform

a lower branch asymptotic linear stability analysis of the temperature-dependent extension of

Crane’s flow in the absence of viscous dissipation. We focus on the lower branch because it

is near this branch that the travelling wave disturbances we are investigating are most am-

plified. We concentrate on the non-dissipative regime as it allows for easier validation of our

solutions through a parallel flow type approximation in the numerical analysis presented in the

previous Chapter. As will be demonstrated, the inclusion of a temperature-dependent viscosity

distribution quantitatively alters the stability characteristics of the flow, thereby justifying its

consideration as a physically meaningful flow variable of interest. The analysis of Section 5.2

has been submitted as part of the publication Hanevy et al. [46].

5.1 Introduction

Asymptotic approximations to the stability of boundary layer flows are predicated on the large-

ness of the Reynolds number, with the earliest calculations taking the inviscid limit. Ignoring

the effects of viscosity lead to a reduction of the fourth order Orr-Sommerfeld equation to the
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second order Rayleigh equation, where no slip conditions can no longer be satisfied at the bound-

aries. This immediately implies that if viscous effects are to be accounted for at some large but

finite value of the Reynolds number, then any consistent correction to the inviscid solutions must

comprise a near wall layer where the governing equations are appropriately scaled to include the

effects of viscosity. The next key observation arises through consideration the Rayleigh equation

(U − c)
(︁
D2 − α2

)︁
v̂ − U ′′v̂ = 0,

where c is the ratio of the temporal and streamwise wavenumbers ω/α and represents the

wave speed. The Rayleigh equation contains a regular singular point when y = yc such that

U(yc) = c. Solutions in the vicinity of this singular point were first obtained in Tollmien [107]

via a Frobenius series expansion. It is the relative location and interactions between the viscous

wall layer and the inviscid critical layer that determine the asymptotic structure on the upper

and lower branches of the neutral stability curves respectively. The asymptotic structure of the

lower branch analysis for Crane’s flow closely resembles that of the Blasius boundary layer, as

seen in Griffiths et al. [39]. Given that the Blasius boundary layer is the canonical boundary

layer flow and is much more prominent in the literature, we will discuss developments in the

analytical approaches to understanding its stability.

The approach taken in the remainder of this Chapter follows largely that of Smith [100], where

the goal was to consider non-parallel effects on the lower branch of the Blasius boundary layer

by including the slow streamwise variation of the basic flow profile in the asymptotic expansion.

The perturbations were found to be governed by a triple deck structure due to the coalescence of

the critical layer and the viscous wall layer. This led to a five term expansion where the linearised

continuity and Navier-Stokes momentum equations in each of the decks were solved and matched

at each order of approximation. The first four terms in Smith’s expansion represented a parallel

flow approximation with non-parallel terms coming in at the next order.

While it had originally been posited that an alternative five deck scaling was required to de-

termine the upper branch instability [9], it was shown by Hultgren [53] that Smith’s parallel

flow solutions could be modified to describe both branches provided an additional normalisation

term was retained in the dispersion relation. This normalisation term arises due to a loop in

the Tietjens function which manifests as a kink on the upper branch for large Reynolds num-

bers. The five deck approach in Bodonyi and Smith [9] is valid above this kink on the upper

branch. This is described in detail in the review of Healey [47], where the change in asymptotic

structure from three to five decks can be observed by tracking the turning points in the phase of

the numerically computed eigenfunctions along the upper branch as well as the location of the

critical point. The critical point is shown to rise through the viscous wall layer with increasing

Reynolds number before splitting from the wall layer causing the five deck structure to emerge.

N.Hanevy, PhD Thesis, Aston University 2024 63



Stretching Surface Flows Asymptotic LSA

This can be seen in Figure 6 (a) of [47].

As stated, the flow due to a flat stretching sheet has the same structure as the Blasius problem.

However since the critical Reynolds number for Crane’s flow is orders of magnitude larger than

that of the Blasius problem, we will only consider the leading order in our expansion. As we

will demonstrate, the leading order approximation will still provide excellent agreement and is

sufficient to validate our numerical solutions of the previous Chapter.

5.2 Asymptotic Analysis

The lower branch asymptotic analysis follows largely from the isothermal analysis presented in

Griffiths et al. [39]. In this Section we briefly highlight where the analysis differs. The first

of these differences comes from the fact that the boundary layer thickness is not constant and

varies with the sensitivity parameter m. This is accounted for in the numerical analysis by using

δ∗ as a non dimensionalising length scale so that the relationship between the asymptotic (Re)

and numerical (R) Reynolds numbers is as follows

R = δxsRe
1/2 .

Note that the choice of nondimensionalising scales for the asymptotic analysis is the same as

in Chapter 3 and [39], however the change in numerical scaling has to be accounted for when

comparing the two different solutions. As in the isothermal analysis, we only calculate the

leading order term in the dispersion relation. The key parameter driving the instability at this

order is the wall shear stress. Here the wall shear stress now depends on the viscosity parameter

m such that

σxy|y=0 = µBu
′
B|y=0.

Before proceeding with our asymptotic analysis, we first demonstrate the origin of the scalings

used on the lower branch by utilising order of magnitude estimates based on the dominant

balance of terms in the respective layers, as well as evidence provided by numerical simulations

of neutral curves along the lower branch.

5.2.1 Derivation of the Scaling on the Lower Branch

As noted the scaling for the temperature dependant problem follows largely from the isothermal

prolem. As such our analysis begins by examining the Orr-Sommerfeld system for Crane’s flow

N.Hanevy, PhD Thesis, Aston University 2024 64



Asymptotic LSA Stretching Surface Flows

in the absence of a temperature dependent viscosity. The relevant equation is as follows[︂(︃
−iω + iαU − 1

R
∆

)︃
∆− iαU ′′ +

1

R

(︃
V∆

∂

∂y
+ V ′∆+

∂

∂y

(︃
U
∂

∂y

)︃)︃]︂
v̂ = 0, (5.1)

where ∆ = d2

dy2
− α2 A detailed derivation of this equation is provided in Section 6.2. Here

however, we are interested in the case of two-dimensional disturbances so that the spanwise

wavenumber β = 0. This is in contrast to the non-modal analysis in the following Chapter.

Note also that we have highlighted the additional stretching terms which do not appear in the

standard Orr-Sommerfeld equations (4.11) in blue.

Large Reynolds number limit

Taking the limit as R → ∞ in (5.1), we recover Rayleighs equation which is given as follows

(U − ω

α
)∆v̂ − U ′′v̂ = 0. (5.2)

This equation governs the perturbations away from the sheet and away from the critical layer

where U = ω/α. In both instances, viscosity is required to satisfy no-slip boundary conditions

and to smooth out the singularity which arises in the critical layer. We know from related

boundary layer flows such as the Blasius boundary layer [100], that the viscous wall layer and

the critical layer coalesce on the lower branch. Thus, we consider the dominant balance for each

of these respective cases and compare them in order to estimate the magnitude of the lower

deck. Once this quantity is obtained the scalings for the main and upper decks immediately

follow.

Wall Layer

Close to the wall we have U = e−y ≈ 1 − y + · · · . Here the dominant balance is between the

viscous and inertial terms and is given as follows

d4v̂

dy4
∼ iαR(1− ω

α
− y)

∂2v̂

∂y2
.

If we let the thickness of the wall layer be O(ι) and write y = ιȳ. Thus, we find

ι ∼
[︂
αR

(︂
1− ω

α
− ιȳ

)︂]︂−1/2

Note that from our numerical solutions we have 0 < ω/α < 1.
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Critical Layer

The critical layer is located at y = yc where U(yc) = ω/α. This gives

e−yc =
ω

α
=⇒ yc = ln

(︂ω
α

)︂
.

The Taylor expansion of our basic flow about the critical point yields

U(y) ≈ ω

α
+ (y − yc)U

′(yc) + · · · = ω

α
− (y − yc)

ω

α
+ · · ·

Therefore the dominant terms of (5.1) in the vicinity of the critical point are

d4v̂

dy4
∼ iαR(−(y − yc)

ω

α
)
∂2v̂

∂y2
.

If we write y = yc + ιȳ, then it immediately follows that ι ∼ (Rω)−1/3.

Merging the Wall and Critical Layers

It remains to compare the scales that we have derived for both the wall and critical layers

to make sure that they merge to provide the appropriate scaling for the lower deck. Taylor

exapnsion of our basic flow about the sheet yields U ≈ 1 − y. If U = ω/α at the critical layer,

this gives y = 1− ω/α. Balancing this y with the wall layer thickness, ignoring the ιȳ term for

the moment we find

1− ω

α
∼
(︂
αR

(︂
1− ω

α

)︂)︂−1/2
=⇒ 1− ω

α
∼ (αR)−1/3.

Thus, if ω ∼ α, the wall layer and critical layer have the same thickness and merge at the wall.

The thickness of the wall layer is O(1− ω/α), so the ιȳ term is the same size as 1− ω/α in the

wall layer.

Numerical solutions suggest along the lower branch of the neutral curve suggest that ω ∼ α for

R ≫ 1. We can use our numerical solutions to give an indication of the scaling along the lower

branch. To do this, we plot ln(1 − ω/α) and ln(R) as shown in Figure 5.1. We can deduce

our scaling by observing firstly that the there appears to be a linear relationship between the

logarithm of both quantities. The slope of this line is approximately −0.25. This suggests that

1 − ω/α ∼ R−1/4 and that the thickness of the wall layer is O(R)−1/4. In addition, we further

have 1− ω/α ∼ (αR)−1/3, which gives α ∼ ω ∼ R−1/4. For the analysis that follows, we simply

have to consider these scalings in terms of our asymptotic Reynolds number Re.
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Figure 5.1: Plot of ln(1 − ω/α) against lnR. The numerical solutions are the neutral solutions
along the lower branch. These compared to a fitted line y = mx+ c, with slope m = −0.25 and
intercept c ≈ 1.

If we continue to ignore viscothermal effects, the different non-dimensionalisations used in the

two formulations lead to R = Re1/2 x. So that 1 − ω/α ∼ Re−1/8 and α ∼ ω ∼ Re−1/8. The

ratio of the length scales is Re1/2 and the ratio of the time scales is R = Re1/2 x. Letting αn and

ωn denote the wavenumber and frequency for our numerical formulation and αa and ωa denote

the corresponding terms for the asymptotic formulation then αa is the ratio of the length scales

times αn giving αa ∼ Re1/2Re−1/8 = Re3/8. Similarly, we can deduce that ωa = Re3/8, and

the thickness of the wall layer O(Re−1/2Re−1/8) = O(Re−5/8). The main deck which covers the

extent of the boundary layer scales as O(Re−4/8) and the upper deck, which is required to ensure

the perturbations decay in the free stream, scales as O(Re−3/8). Although these scalings have

been derived for the isothermal problem they may be utilised for the temperature dependent case

provided the modification of the mean flow as a result of changes in viscosity remains sufficiently

small.

5.2.2 Triple Deck Structure

In order to conduct our lower branch analysis we assume that the Reynolds number is large.

For convenience, we define the small parameter ϵ = Re−1/8. As with the isothermal analysis,

we find that the disturbances are governed by a triple deck structure with the lower, main and

upper decks of thickness O(ϵ5), O(ϵ4) and O(ϵ3) respectively, as depicted in Figure 5.2. The

stability analysis is performed at a local stream wise location xs with a stream wise length scale

and time scale of O(ϵ3). This leads to the introduction of the following scales

x− xs = ϵ3X, t = ϵ3τ.
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Figure 5.2: Schematic depicting the triple deck scaling used for the asymptotic analysis, with
small parameter ϵ = R−1/8. Note that this Figure is not to scale.

So that our flow variables are expanded as

u = xuB(η) + ũ(x, y, t), (5.3a)

v = Re−1/2 vB(η) + ṽ(x, y, t), (5.3b)

p = Re−1 pB(η) + p̃(x, y, t), (5.3c)

T = TB(η) + T̃ (x, y, t), (5.3d)

µ = µB(η) + µ̃(x, y, t), (5.3e)

where η = Re−1/2 y. Our linear perturbation equations become

∂ũ

∂x
+
∂ṽ

∂y
= 0, (5.4a)

∂ũ

∂t
+ uB

∂ũ

∂x
+
∂uB
∂x

ũ+Re−
1
2 vB

∂ũ

∂y
+ ṽ

∂uB
∂y

+
∂p̃

∂x
=

+
µB
Re

(︃
∂2ũ

∂x2
+
∂2ũ

∂y2

)︃
+Re−1

[︄
∂µB
∂y

(︃
∂ũ

∂y
+
∂ṽ

∂x

)︃
+
∂µ̃

∂y

∂uB
∂y

+ 2
∂µ̃

∂x

∂uB
∂x

]︄
, (5.4b)

∂ṽ

∂t
+ uB

∂ṽ

∂x
+Re−

1
2

(︃
vB
∂ṽ

∂y
+
∂vB
∂y

ṽ

)︃
+
∂p̃

∂y
=

+Re−1

[︄
2
∂µB
∂y

∂ṽ

∂y
+ 2Re−

1
2
∂µ̃

∂y

∂vB
∂y

+ µB

(︃
∂2ṽ

∂x2
+
∂2ṽ

∂y2

)︃
+Re−

1
2 µ̃

∂2vB
∂y2

+
∂µ̃

∂x

∂uB
∂y

]︄
, (5.4c)

∂T̃

∂t
+ uB

∂T̃

∂x
+Re−

1
2 vB

∂T̃

∂y
+ ṽ

∂TB
∂y

=
1

RePr

(︄
∂2T̃

∂x2
+
∂2T̃

∂y2

)︄
. (5.4d)
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We assume that the perturbations have normal form and are proportional to E = exp (iθ(X)− iωτ),

where the frequency is constant and is expanded as ω̄ = ω0 + ϵω1 + · · · . The wavenumber θ is

taken to be a slowly varying function of x̄ and is expanded as

dθ

dX
= α = α0(x) + ϵα1(x) + · · · .

Main Deck

We begin our analysis in the main deck which covers the extent of the boundary layer, and

where the disturbances are inviscid and rotational. The wall normal coordinate is ȳ = ϵ4y = η

and the disturbances are expanded as

ũ = (Um0 + ϵUm1 + · · · )E,

ṽ =
(︁
ϵVm0 + ϵ2Vm1 + · · ·

)︁
E,

p̃ =
(︁
ϵPm0 + ϵ2Pm1 + · · ·

)︁
E,

T̃ = (Tm0 + ϵTm1 + · · · )E,

where Um0, for example is a function of both x̄ and y. Substituting these expansions into our

linear perturbation equations (5.4) we have

iϵ−3 (α0 + ϵα1 + · · · )
[︂
Um0 + ϵUm1 + · · ·

]︂
+ ϵ−3

(︃
∂Vm0

∂η
+ ϵ

∂Vm1

∂η
+ · · ·

)︃
= 0, (5.5a)

− iϵ−3 (ω0 + ϵω1 + · · · )
[︂
Um0 + ϵUm1 + · · ·

]︂
+ iϵ−3uB (α0 + ϵα1 + · · · )

[︂
Um0 + ϵUm1 + · · ·

]︂
+ ϵ−3 (Vm0 + ϵVm1 + · · · ) ∂uB

∂η
+ iϵ−2 (α0 + ϵα1 + · · · )

[︂
Pm0 + ϵPm1 + · · ·

]︂
= µB

(︃
∂2Um0

∂η2
+ ϵ

∂2Um1

∂η2

)︃
+
∂µB
∂η

(︃
∂Um0

∂η
+ ϵ

∂Um1

∂η

)︃
+
∂uB
∂η

(︃
∂Mm0

∂η
+
∂Mm1

∂η

)︃
+O(ϵ2),

(5.5b)
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ϵ−2 (ω0 + ϵω1 + · · · )
[︂
Vm0 + ϵVm1 + · · ·

]︂
+ iϵ−2uB (α0 + ϵα1 + · · · )

[︂
Vm0 + ϵVm1 + · · ·

]︂
+ ϵ

(︃
vB

[︂∂Vm0

∂η
+ ϵ

∂Vm1

∂η
+ · · ·

]︂
+
∂vB
∂η

[︂
Vm0 + ϵVm1 + · · ·

]︂)︃
+ ϵ−3

[︂∂Pm0

∂η
+ ϵ

∂Pm1

∂η
+ · · ·

]︂
= ϵ−1

{︄
2
∂µB
∂η

[︂∂Vm0

∂η
+ ϵ

∂Vm1

∂η
+ · · ·

]︂
+ µB

[︂∂2Vm0

∂η2
+ ϵ

∂2Vm1

∂η2
+ · · ·

]︂
+ i

∂uB
∂η

(α0 + ϵα1 + · · · )
[︂
Mm0 + ϵMm1 + · · ·

]︂}︄
+O(ϵ2),

(5.5c)

− iϵ−3 (ω0 + ϵω1 + · · · )
[︂
Tm0 + ϵTm1 + · · ·

]︂
+ iϵ−3uB (α0 + ϵα1 + · · · )

[︂
Tm0 + ϵTm1 + · · ·

]︂
+ vB

[︂∂Tm0

∂η
+ ϵ

∂Tm1

∂η
+ · · ·

]︂
+ ϵ−3∂TB

∂η

[︂
Vm0 + ϵVm1 + · · ·

]︂
=

Pr−1
[︂∂2Tm0

∂η2
+ ϵ

∂2Tm1

∂η2
+ · · ·

]︂
+O(ϵ2), (5.5d)

where we have used

Mmi = − m

(1 +mTB)2
(Tm0 + Tm1 + · · · ) ,

as a shorthand for the asymptotic expansion of the disturbance viscosity. Note that we included

only the largest of the viscous terms in the expansion. The remaining terms are sufficiently small

that they do not contribute to the leading order dispersion relation. Gathering the leading order

terms we have

iα0Um0 +
∂Vm0

∂η
= 0, (5.6a)

−iω0Um0 + uBiα0Um0 + Vm0
∂uB
∂η

= 0, (5.6b)

∂Pm0

∂η
= 0, (5.6c)

−iω0Tm0 + uBiα0Tm0 + Vm0
∂TB
∂η

= 0. (5.6d)

From equation (5.6c) we see that Pm0 is a function of x. The remaining solutions are

Um0 = −B0(x)
∂uB
∂η

, (5.7a)

Vm0 = iB0(x) (α0uB − ω0) , (5.7b)

Tm0 = −B0(x)
∂TB
∂η

, (5.7c)
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where B0 and Pm0 are slowly varying amplitude functions, to be determined by matching with

the solutions in the other decks. As η → ∞ we have

Um0 → 0, Vm0 → −iω0B0, Tm0 → 0.

As η → 0 we have

Um0 → −B0
∂uB
∂η

⃓⃓⃓⃓
⃓
η=0

+O(η),

Vm0 → iB0(x)

⎛⎝α0xs − ω0 + α0η
∂uB
∂η

⃓⃓⃓⃓
⃓
η=0

+ · · ·

⎞⎠ ,

Tm0 → −B0
∂TB
∂η

⃓⃓⃓⃓
⃓
η=0

+O(η).

For these viscous modes we choose

α0xs = ω0 as η → 0,

corresponding to the critical layer where uB = ω/α.

Upper Deck

The upper deck is required to satisfy the homogeneous Dirichlet conditions in the free stream.

In the upper deck the base flow quantities behave as follows

uB → T → 0, vB → V∞,

pB → P∞, µB → 1.

Here the disturbances are inviscid and irrotational. The wall normal coordinate is scaled ȳ = ϵ3ỹ

and the perturbation variables are expanded as

ũ =
(︁
ϵŪ0 + ϵ2Ū1 + · · ·

)︁
E,

ṽ =
(︁
ϵV̄0 + ϵ2V̄1 + · · ·

)︁
E,

p̃ =
(︁
ϵP̄0 + ϵ2P̄1 + · · ·

)︁
E,

T̃ =
(︁
ϵT̄0 + ϵ2T̄1 + · · ·

)︁
E,
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to ensure matching between the upper and main decks. Again, we substitute these expansions

into our linear perturbation equations (5.4) to get we have

iϵ−2 (α0 + ϵα1 + · · · )
[︂
Ū0 + ϵŪ1 + · · ·

]︂
+ ϵ−2

(︃
∂V̄0
∂ȳ

+ ϵ
∂V̄1
∂ȳ

+ · · ·
)︃

= 0, (5.8a)

− iϵ−2 (ω0 + ϵω1 + · · · )
[︂
Ū0 + ϵŪ1 + · · ·

]︂
+ ϵ2V∞

[︂∂Ū0

∂ȳ
+ ϵ

∂Ū1

∂ȳ
+ · · ·

]︂
+ iϵ−2 (α0 + ϵα1 + · · · )

[︂
P̄0 + ϵP̄1 + · · ·

]︂
= O(ϵ2) (5.8b)

− iϵ−2 (ω0 + ϵω1 + · · · )
[︂
V̄0 + ϵV̄1 + · · ·

]︂
+ ϵ2V∞

[︂∂V̄0
∂ȳ

+ ϵ
∂V̄1
∂ȳ

+ · · ·
]︂

+ ϵ−2
[︂∂P̄0

∂ȳ
+ ϵ

∂P̄1

∂ȳ
+ · · ·

]︂
= O(ϵ2) (5.8c)

− iϵ−2 (ω0 + ϵω1 + · · · )
[︂
T̄0 + ϵT̄1 + · · ·

]︂
+ ϵ2V∞

[︂∂T̄0
∂ȳ

+ ϵ
∂T̄1
∂ȳ

+ · · ·
]︂
= O(ϵ2). (5.8d)

Where again we have not explicitly expanded the viscous terms as they are of a larger order and

do not contribute to the flow dynamics in this upper inviscid region as would be expected. The

governing equations in this deck are to leading order

iα0Ū0 +
∂V̄0
∂ȳ

+ iβ0W̄0 = 0, (5.9a)

−iω0Ū0 = −iα0P̄0, (5.9b)

−iω0V̄0 = −∂P̄0

∂ȳ
, (5.9c)

−iω0T̄0 = 0. (5.9d)

Equation (5.9d) tells us that T̄0 = 0. We can differentiate the x momentum equation with

respect to x, the y momentum equation with respect to ȳ and use the continuity equation to

attain a single equation for P̄0

∂P̄0

∂y
− α2

0P̄0 = 0.

The solution which satisfies the boundedness condition as ȳ → ∞ and matches with solution in

the main deck as ȳ → 0 is

P̄0 = Pm0(x)e
−α0ȳ.

N.Hanevy, PhD Thesis, Aston University 2024 72



Asymptotic LSA Stretching Surface Flows

The remaining solutions for the disturbance velocities are thus

Ū0 =
1

xs
Pm0e

−α0ȳ, (5.10)

V̄0 =
i

xs
Pm0(x̄)e

−α0ỹ, (5.11)

(5.12)

Matching V̄0 as ỹ → 0, with Vm0 as η → ∞ yields the following relation between the two

amplitude functions

B0 = − 1

α0x2s
Pm0.

Lower Deck

In order to obtain our dispersion relation we must match our solutions in the main deck with

those in the lower deck. This deck is required to satisfy the no slip conditions on the surface

of the stretching sheet. Here ȳ = ϵ5Ȳ and the basic flow quantities are Taylor expanded about

Ȳ = 0.

uB ≈ x+ u′B(x, 0)ϵȲ + · · · ,

vB ≈ v′B(x, 0)ϵȲ + · · · ,

TB ≈ 1 + T ′
B(x, 0)ϵȲ + · · · ,

µB ≈ 1

1 +m
+ µ′B(x, 0)ϵȲ + · · · .

The disturbances are expanded as follows

ũ = (U0 + ϵU1 + · · · )E,

ṽ =
(︁
ϵ2V0 + ϵ3V1 + · · ·

)︁
E,

p̃ =
(︁
ϵP0 + ϵ2P1 + · · ·

)︁
E,

T̃ =
(︁
T0 + ϵT̄1 + · · ·

)︁
E.

Applying the same procedure as for the other decks we find the governing equations in the lower

deck are as follows

ϵ−3 (α0 + ϵα1 + · · · )
[︂
U0 + ϵU1 + · · ·

]︂
+ ϵ−3

[︃
∂V0
∂Ȳ

+ ϵ
∂V1
∂Ȳ

+ · · ·
]︃
= 0, (5.13a)
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− iϵ−3 (ω0 + ϵω1 + · · · )
[︂
U0 + ϵU1 + · · ·

]︂
+ iϵ−3xs(1 + ϵȲ u′B0 + · · · ) (α0 + ϵα1 + · · · )

[︂
U0 + ϵU1 + · · ·

]︂
+ (1 + ϵȲ u′B0 + · · · )

[︂
U0 + ϵU1 + · · ·

]︂
+ (v′B0Ȳ + · · · )

[︃
∂U0

∂Ȳ
+ ϵ

∂U1

∂Ȳ
+ · · ·

]︃
+ ϵ−2(u′B0 + · · · ) [V0 + ϵV1 + · · · ] + iϵ−2 (α0 + ϵα1 + · · · )

[︂
P0 + ϵP1 + · · ·

]︂
= ϵ−2µB0

[︂∂2U0

∂Ȳ 2
+ ϵ

∂2U1

∂Ȳ 2
+ · · ·

]︂
+O(ϵ−1), (5.13b)

− iϵ−1 (ω0 + ϵω1 + · · · )
[︂
V0 + ϵV1 + · · ·

]︂
+ iϵ−1xs(1 + ϵȲ u′B0) (α0 + ϵα1 + · · · )

[︂
V0 + ϵV1 + · · ·

]︂
+ ϵ2

∂

∂Ȳ

[︂
(v′B0 + · · · ) (V0 + ϵV1 + · · · )

]︂
+ ϵ−4

[︃
∂P0

∂Ȳ
+
∂P1

∂Ȳ
· · ·
]︃
= O(ϵ−1) (5.13c)

− iϵ−3 (ω0 + ϵω1 + · · · )
[︂
T0 + ϵT1 + · · ·

]︂
+ iϵ−3xs(1 + ϵȲ u′B0 + · · · ) (α0 + ϵα1 + · · · )

[︂
T0 + ϵT1 + · · ·

]︂
+ (Ȳ v′B0 + · · · )

[︂∂T0
∂Ȳ

+ ϵ
∂T1
∂Ȳ

+ · · ·
]︂
+ ϵ−2(T ′

B0 + · · · )
[︂
V0 + ϵV1 + · · ·

]︂
= Pr−1 ϵ−2

[︂∂2T0
∂Ȳ 2

+ ϵ
∂2T1
∂Ȳ 2

+ · · ·
]︂
+O(ϵ2) (5.13d)

where u′B0 = u′B(x, 0), T
′
B0 = T ′

B(x, 0) and µB0 =
1

1+m . The leading order terms in the governing

equations are thus

iα0U0 +
∂V0
∂Ȳ

= 0, (5.14a)

−i(ω1 − xsα1)U0 + iα0u
′
B0Ȳ U0 + u′B0V0 = −iα0P0 + µB0

∂2U0

∂Ȳ 2
, (5.14b)

∂P0

∂Ȳ
= 0, (5.14c)

−i(ω1 − xsα1)T0 + iα0u
′
B0Ȳ T0 + T ′

B0V0 = Pr−1 ∂
2T0
∂Ȳ 2

. (5.14d)

Note that the largest non-zero terms in the x momentum and energy equations are O(ϵ−2),

since α0xs = ω0 from the definition of the critical layer. For convenience, we define λ = u′B0 and

χ = T ′
B0. Note that both λ and χ are negative for our flow. From (5.14c) we have P0 = P0(x)

and in order to match with the main deck we must have

P0 = Pm0.

Using this we can differentiate the x momentum equation with respect to Ȳ and use the conti-

nuity equation to attain the following Airy equation after multiplying by α0

α0
∂3U0

∂Ȳ 3
− i

µB0

(︁
(α1xs − ω1) + α0u

′
B0Ȳ

)︁(︃
α0
∂U0

∂Ȳ

)︃
= 0.
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This may be more easily seen after making the coordinate system transformation

ξ =

(︃
iα0u

′
B0

µB0

)︃1/3(︃
Ȳ +

α1xs − ω1

α0u′B0

)︃
,

so that the equation becomes

∂3

∂ξ3
(α0U0)− ξ

∂

∂ξ
(α0U0) = 0. (5.15)

The solution for U0 must satisfy

U0 = 0 at Ȳ = 0,

U0 →
u′B0

x2s
as Ȳ → ∞.

Therefore, U0 satisfies a homogeneous Airy equation and our solution is in terms of a Scorer

function. The solution to (5.15), which is bounded as ξ → ∞ is

α0
∂U0

∂ξ
= C0Ai(ξ).

Then

α0U0 = C0

∫︂ ξ

ξ0

Ai(ξ̄)dξ̄,

to satisfy the boundary condition U0 = 0 at ξ = ξ0 where

ξ0 = (iα0xs)
−2/3µ

−1/3
B0 i(α1xs − ω1).

Eigenrelation

Applying the boundary conditions U0 = 0 in the x momentum equation in the lower deck we

have

∂2U0

∂Ȳ 2
− i

α0

µB0
P0 = 0, at Ȳ = 0.

Therefore, we have (︃
iα0u

′
B0

µB0

)︃2/3

µB0α0
∂2U0

∂ξ2
= iα2

0Pm0 at ξ = ξ0,
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which allows us to relate C0 and Pm0 to get(︃
−iα0|u′B0|

µB0

)︃2/3

µB0C0Ai
′(ξ0) = iα2

0Pm0. (5.16)

Matching α0U0 between the main and lower decks yields a second relationship between C0 and

Pm0

C0

∫︂ ∞

ξ0

Ai(ξ) = −
|u′B0|
x2s

Pm0. (5.17)

Dividing (5.16) and (5.17) gives the eigenrelation

Ai′(ξ0) = κ (−iαxs)1/3
α0x

5/3
s

µ
1/3
B0 |ū′B0|5/3

, (5.18)

where κ =
∫︁∞
ξ0
Ai(ξ) dξ and ξ0 = (−iα0xs)

−2/3i(α1xs − ω1). We can scale x̄s from this eigenre-

lation by letting

α0 = x−1/4
s ᾱ0, α1xs − ω1 = x1/2s γ̄1, |u′B0| = xsū

′
B0,

Our scaled eigenrelation becomes

Ai′(ξ0) =
κe−iπ/6ᾱ

4/3
0

µ
1/3
B0 |u′B0|5/3

, (5.19)

where

ξ0 =
ei5π/6γ̄1(︁

ᾱ0ū′B0

)︁2/3
µ
1/3
B0

.

The remainder of the analysis follows that in Griffiths et al. [39] and involves numerically solving

(5.19) in terms of the Tjietens function to determine the neutral values of γ̄1 and ᾱ0. This can

be achieved by swapping the limits of integration of κ, dividing (5.19) by ξ0
∫︁ ξ0
∞ Ai(ξ)dξ

Ai′(ξ0)

ξ0
∫︁ ξ0
∞ Ai(ξ)dξ

=
ᾱ2
0

|ū′B0|γ̄1
,

If we take the complex conjugate of the equation, since we are only interested in neutral values

where the imaginary part is zero, and subtract from one we attain

1− Ai’(ξ)

ξ0
∫︁ ξ0
∞ Ai(ξ)dξ

=
|ū′B0|γ̄1 − ᾱ2

0

|ū′B0|
,
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using the notation in Healey [47]. The left-hand side is the Tjietens function F+(e−i5π/6z) and

ξ0 =
e−i5π/6(ᾱ0|ū′B0|)−2/3γ̄1

µ
1/3
B0

. (5.20)

It is known that the Tjietens function is real when evaluated at F+(e−i5π/62.297) = 0.564 [47].

From this we can evaluate the remaining parameters in our problem for neutral values of ᾱ0

2.297 ≈
(ᾱ0|ū′B0|)−2/3γ̄1

µ
1/3
B0

,

0.564 ≈
|ū′B0|γ̄1 − ᾱ2

0

|ū′B0|γ̄1
,

This gives

γ̄1 ≈ 2.297µ
1/3
B0 |ᾱ0ū

′
B0|2/3,

ᾱ0 ≈ (1.001)3/4µ
1/4
B0 |u

′
B0|5/4.

In order to compare our asymptotic approximation to the numerical solutions of the previous

Section, we consider an asymptotic expansion in terms of c = ω/α. We have that

1− ω

αxs
= 1− ω0 + ϵω1 + · · ·

xsα0(1 + ϵα1/α0 + · · · )
,

= ϵ
α1xs − ω1

α0xs
+ · · · .

Since ω0 = xsα0. Now ϵ = Re−1/8 and R = δxsRe
1/2, so we can express our dispersion relation

in terms of the numerical Reynolds number R as

1− ω

αxs
= δ1/4R−1/4 x1/4s

α1xs − ω1

α0xs
+ · · · ,

= R−1/4 γ̄1
ᾱ0
. (5.21)

So that for two-dimensional disturbances we obtain the following approximation

1− ω

αxs
=

2.297

(1.001)1/4
µ
1/4
B0 |ū

′
B0|1/4δ1/4R−1/4 . (5.22)

In Figure 5.3 we see that the numeric and asymptotic solutions are in excellent agreement for the

range of values of m tested. While it is unusual to see such good agreement between numeric

and asymptotic solutions in such stability problems with only the leading order term in the

expansion, it may be explained by the largeness of the Reynolds numbers under consideration

compared to other boundary layers. The same can also be said for the isothermal analysis in
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Figure 5.3: Comparison of the asymptotic prediction (5.22) and the numerical solution of (4.5)
of the neutral curves for different values of the sensitivity parameter m. In m = −0.4, −0.2, 0.2
and 0.4 in a), b), c) and d) respectively.
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Griffiths et al. [39] where the two curves are also in excellent agreement.

5.3 Discussions and Conclusions

In this Chapter, we have derived leading order solutions to the lower branch eigenrelation for

the temperature dependent extension of Crane’s problem. In doing so we have validated our

numerical solutions of the previous Chapter, as evidenced by the excellent agreement between

our asymptotic and numerical eigenvalue calculations, which is illustrated in Figure 5.3. Fur-

thermore, both methods independently highlight the significance of the wall normal derivative

of the basic streamwise velocity. In the energy analysis this appears in the EPRS term and

is responsible for the destabilisation of the flow for m > 0.34. According to our asymptotic

analysis, the primary effect on flow stability of imposing a temperature gradient and coupling

the temperature and flow fields is primarily a result of the distortion of the shear stress on the

surface on the sheet. This suggests that any flow control technique which alters the shear stress

is capable of changing the stability characteristics of the flow. This observation is common

among boundary layers and has led to the adoption of many active flow control strategies, such

as wall suction [76], as well as passive techniques such as wall porosity [17] and compliance [16].

From an industrial perspective, these strategies can be challenging to implement and are not

particularly suited for extrusion processes. However, alternative strategies, such as altering the

properties of the ambient fluid medium, may prove useful, as suggested by our analysis.

Here we chose to use an inverse relationship between viscosity and temperature to facilitate

comparison with other results in the literature [77], [78]. However, the asymptotic results derived

are general in the sense that regardless of the specific form of viscosity temperature relationship

imposed, the flow stability characteristics can be predicted provided the sheet shear stress can be

accurately calculated. Therefore, our analysis can be easily adapted to account for more realistic,

empirically derived viscosity functions, which would better match industrial or experimental

conditions.

A potential criticism of the stability analysis conducted thus far is that despite the sheet being

stretched, we have used parallelisation arguments based on a large Reynolds number to perform a

local analysis. Although this approach has been somewhat justified by its success in the rotating

disk case, as demonstrated in the work of Lingwood [67], it has not yet been validated for the

case of stretching sheets. It is important to emphasise that this is an idealised flow configuration

which fails to account for surface curvature, which would be required to conserve mass for any

stretching sheet. Consequently, the results presented are approximations that are only valid in

a high Reynolds number, small deformation regime. Nevertheless, this approach allows us to

predict regimes that are more susceptible to the TS disturbances considered thus far. While a

comprehensive analysis of the full system is beyond the scope of this thesis, questions regarding
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the implications of these additional physical effects will be revisited in Chapter 8.

As stated previously, the results of Vleggaar indicate that the model we have chosen to use is

capable of describing the behaviour of the boundary layer to within half a meter of the inlet.

Using parameters from Vleggaar’s study, this leads us to a maximum local Reynolds number

which is many orders of magnitude smaller than the critical Reynolds number predicted in the

previous Chapter. Whether this discrepancy is reduced when additional physical effects such

as streamwise variations in sheet thickness and temperature are included remains to be seen.

For this reason, the modal mechanism we have considered cannot be completely discarded, and

it may be the case that temperature still has a significant quantitative effect. However, in the

Chapter which follows we shall investigate, whether the simple models utilised for the stability

analysis thus far, offer any plausible transition scenarios without resorting to non-local analysis.
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Chapter 6

Non Modal Stability

The modal or eigenvalue based stability analysis of the previous two Chapters determines the

stability of a system subject to small perturbations in the asymptotic, large time limit. Non

modal stability theory on the other hand looks for transient energy amplification on a much

shorter timescale. It was originally proposed as a mechanism to resolve discrepancies between

linear stability theory and experiment in the case of Poiseuille flow. In plane Poiseuille flow,

instabilities are observed experimentally at Reynolds numbers much smaller than predicted by

modal linear stability analysis. While boundary layers are typically better described by modal

stability analysis, given the largeness of the critical Reynolds numbers that have been found for

the flow induced by a stretching sheet, it seems unreasonable that the flow would remain stable

at such large Reynolds numbers. It is this which has caused us to search for alternative energy

growth mechanisms for Crane’s flow.

6.1 Introduction

Reynolds number estimates for flows induced by extrusion processes will obviously vary widely

depending on the process under consideration. However, for cast film extrusion, draw speeds of

tens of meters per second are not uncommon [58]. If we further presume that the length scale of

the boundary layer to be of order millimetres, and take the approximate value of the kinematic

viscosity of air to be 1.5 × 10−5m2 s−1, this leaves us with an order of magnitude estimate

for the Reynolds number of approximately R ∼ O(500). This is clearly significantly smaller

than the critical Reynolds numbers reported in Chapter 4. However, it is still large enough

for the boundary layer approximation, upon which our analysis is based upon to be valid. In

addition, we will also show that it is large enough for non modal instability mechanisms, which

are introduced in this Chapter, to lead to the growth of energy in perturbations to Crane’s basic
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flow state. Mechanistically, this is an entirely different route to destabilisation than previously

considered. However, both modal and non modal mechanisms have been found to compete in

different regimes for certain flow regimes, as seen in Hack and Zaki [42], where the boundary layer

induced by spanwise wall oscillations is studied. Here modal mechanisms dominate when the

amplitude of wall oscillations is sufficiently large. For Crane’s flow in the absence of temperature

effects, we will show that the non-modal mechanism appears to dominate, however, this may not

be that case as additional physical effects such as temperature are incorporated into the model.

The linear stability theory approach adopted throughout this thesis has seen mixed success

when compared to experiments. For instance, it performs well in describing the stability of

Rayleigh-Bèrnard convection, that being the buoyancy driven instability of fluid between two

plates being heated from below [90]. For bounded shear flows such as plane Poiseuille flow,

linear stability theory predicts a critical Reynolds number of R = 5722 [83], but turbulence is

observed in experiments at R ≈ 1000 [25]. The same can be said for other related flows such as

pipe Poiseuille flow and Couette flow as outlined in the review in Trefethen et al. [110]. On the

surface it appears that the cases where the eigenvalue analysis of linear stability theory fails are

those to which the theory is most applicable in that the basic flows are exact and parallel. The

key factor which distinguishes Rayleigh Bèrnard convection from Poiseuille flow is the normality

of the linearised operators [110].

A matrix or operator is said to be normal if its eigenfunctions are mutually orthogonal [59].

While this is the case for Rayleigh Bèrnard convection, it is shown in Reddy et al. [91] that this

property does not hold true for Poiseuille or Couette flows. An implication of this non-normality

is the short term amplification of disturbance energy. While this does eventually decay, energy

can be amplified by a factor of thousands, despite eigenvalues indicating flow stability ([41],[14]).

One of the primary goals has been to identify the structure of the disturbances which maximise

this transient energy growth. This too will be the focus for the remainder of this Chapter. First

however, we will discuss the avenues from which this problem has been approached previously

to justify the analysis which follows.

Due to the disagreement between theory and experiment, most of the early focus on non-modal

stability has been on the bounded shear flows discussed above. These flows are characterised by

a discrete set of eigenvalues. This allows arbitrary perturbations to be expanded as a weighted

sum of eigenvectors and this property has been exploited for the majority of the early stud-

ies regarding this mechanism. For example in Schmid and Henningson [97], a formulation is

presented which determines maximum energy growth over a given time period in terms of the

matrix exponential of the discretised linear operator. The matrix exponential is computed by

performing a singular value decomposition which accounts for the most prominent eigenmodes

of the system. An issue with this scheme for boundary layers is that boundary layers are com-
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prised of both a discrete and continuous spectrum as shown by Grosch and Salwen [40]. While

it is possible to use a discrete approximation to the continuous spectrum as shown by Butler

and Farrell [14], the continuous part of the spectrum is sensitive to changes in the number of

collocation points and boundary layer mappings used [97]. To avoid these issues, we follow the

analysis of Corbett and Bottaro [22] and employ a power iteration scheme which iteratively

integrates the direct and adjoint equations. While we adopt the temporal formulation here, this

power iteration approach has been applied in a spatial formulation in Luchini [69] by integrating

the direct and adjoint linearised boundary layer equations.

Despite the variety of approaches adopted, common structures have been found to emerge. First

is the Reynolds number dependence of both the maximum energy growth and the time taken

for this growth to occur. The energy growth is found to scale with R2 and the time scales

with R across a variety of flow regimes in the temporal formulation. Another commonality

is the fact that the most amplified disturbances are found in the long wavelength (α → 0)

limit. This directly corresponds to experimental evidence of disturbances which manifest as

streamwise oriented streaks and had to be actively controlled in the vibrating ribbon experiments

of Klebanoff et al. [63]. Initially these streaks start out as streamwise oriented vortices which

move fluid from a region of high streamwise velocity to lower velocity or vice versa. This in

turn appears as a perturbation of the basic streamwise velocity which grows as it is advected

downstream.

The three dimensionality of these structures is in direct contrast to the vast majority of two

dimensional modal analyses which cite Squires theorem as a justification for ignoring three

dimensional effects. This is because Squires theorem states that if a flow has an unstable three

dimensional mode for some Reynolds number, then it has an unstable two dimensional eigenmode

at some lower value of the Reynolds number [101]. As we will see this is no longer valid for the

non modal instability mechanism.

6.2 Isothermal Stretching Sheet

In the modal analysis the additional terms appearing in the linearised Navier-Stokes equations

had minimal impact on the growth rates of the system. Here our aim is to investigate whether

or not these terms become important in the non-modal analysis. The idea being that non

modal growth mechanisms arise at Reynolds numbers which are orders of magnitude smaller

and perhaps these terms will have a greater influence. In the interest of clarity, we conduct this

analysis in the absence of temperature dependent viscosity. This will allow us to identify the

importance of this mechanism, while also facilitating comparison with results from the literature.
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Starting with the dimensional continuity and Navier-Stokes equations we have

∇ · u∗ = 0, (6.1a)

ρ∗
Du∗

Dt∗
= − 1

ρ∗
p∗ + ν∗∇2u∗. (6.1b)

The velocity, pressure and time scales are a∗x∗s, ρ
∗(a∗x∗s)

2 and L∗/a∗x∗s, where L
∗ =

√︁
ν∗/a∗

is the non-dimensionalising length scale. This is in contrast to the scaling for the temperature

dependent case as there the boundary layer thickness is not constant. The mean flow quantities

are perturbed as follows

u =
x

R
U(y) + ũ, (6.1c)

v =
1

R
V (y) + ṽ, (6.1d)

w = w̃, (6.1e)

p =
1

R2
P (y) + p̃, (6.1f)

where the basic flow terms are exact solutions to the Navier-Stokes equations and are given by

U = e−y, V = e−y − 1, P = P0 +
1− e−2y

2
.

The Reynolds number is defined as R = x∗sa
∗L∗/ν∗ = x∗s/L

∗ = xs and is equivalent to the

dimensionless streamwise location. Thus the stability analysis is performed at a local x location

where the variable x is replaced by the Reynolds number as for the temperature dependent

problem. Since we seek to evaluate the short term time growth of the disturbances we proceed

by expanding our perturbation variables as follows

q̃ = q̂(y, t)ei(αx+βz),

so that rather than assuming a disturbance frequency using Fourier transforms, the temporal

evolution of the disturbances are explicitly integrated. Our linearised Navier Stokes equations

become

iαû+ v̂′ + iβŵ = 0, (6.2a)

∂û

∂t
+ iαUû+

1

R
V û′ + U ′v̂ +

1

R
Uû+ iαp̂− 1

R
∆û = 0, (6.2b)

∂v̂

∂t
+ iαUv̂ +

1

R
V v̂′ +

1

R
V ′v̂ + p̂′ − 1

R
∆v̂ = 0, (6.2c)

∂ŵ

∂t
+ iαUŵ +

1

R
V ŵ′ + iβp̂− 1

R
∆ŵ = 0, (6.2d)
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where ∆ = D2− k2 is the Laplacian, with k2 = α2+β2. The equations above may be combined

to give an Orr-Sommerfeld Squire system of the form

[︂(︃ ∂

∂t
+ iαU − 1

R
∆

)︃
∆− iαU ′′ +

1

R

(︃
V∆

∂

∂y
+ V ′∆+

α2

k2
∂

∂y

(︃
U
∂

∂y

)︃)︃]︂
v̂

+
αβ

k2R

[︂
U ′ + U

∂

∂y

]︂
η̂ = 0,[︂

iβU ′ − αβ

k2R
U
∂

∂y

]︂
v̂ +

[︂ ∂
∂t

+ iαU − 1

R
∆+

1

R
V
∂

∂y
+

β2

k2R
U
]︂
η̂ = 0,

where we have written the additional stretching terms, highlighted in blue, in terms of the wall

normal and vorticity perturbations using the following relations

û =
1

k2
(︁
iαv̂′ − iβη̂

)︁
, ŵ =

1

k2
(︁
iβv̂′ + iαη̂

)︁
.

The system is solved subject to the following boundary conditions

v̂ =
∂v̂

∂y
= η̂ = 0 at y = 0, v̂ → ∂v̂

∂y
→ η̂ → 0 as y → ∞.

Comparing the above system to Equation (2) in Corbett and Bottaro [22] we see a number of

additional terms which appear due to the action of the stretching sheet all of which are O(R−1).

Since the critical Reynolds number for the modal analysis is of the order of fity thousand,

removing these terms has minimal impact on the eigenvalues of the system. However, since

we expect transient energy amplification at Reynolds numbers which are orders of magnitude

smaller, we will include them in our analysis and compare the results to those obtained using the

standard Orr-Sommerfeld Squire system. This simply means omitting the terms in blue above.

As we will see this leads to a fundamental change in the structure of the optimisation problem

and the question remains as to which formulation leads more suitably describes the underlying

physics of the problem. Writing the system in matrix form we have

d

dt
Φv = Λv, (6.3a)

where

Λ =

[︄
Λ11 Λ12

Λ21 Λ22

]︄
, Φ =

[︄
Φ11 0

0 Φ22

]︄
. (6.3b)
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The block matrices are defined as follows

Φ11 = ∆, Φ22 = I,

Λ11 =

(︃
−iαU +

1

R
∆

)︃
∆+ iαU ′′ − 1

R

(︃
V∆

∂

∂y
+ V ′∆+

α2

k2
∂

∂y

(︃
U
∂

∂y

)︃)︃
,

Λ12 = − αβ

k2R

[︂
U ′ + U

∂

∂y

]︂
, Λ21 = −iβU ′ +

αβ

k2R
U
∂

∂y
,

Λ22 = −iαU +
1

R

(︂
∆− V

∂

∂y
− β2

k2
U
)︂
,

and v = [v̂, η̂]T . It is from this equation that the Orr-Sommerfeld-Squire solutions in Figure

4.5 were obtained. The generalised eigenvalue problem may simply be written (Λ+ iωΦ)v = 0.

Note that the additional terms which appear due to surface stretching have been highlighted in

blue. Note also that Λ12 is identically zero for non-stretching boundary layer flows.

6.3 Non-Model Analysis

Following Corbett and Bottaro [22], we seek the initial conditions to the initial value problem

defined in equation (6.3a), which maximise the growth in kinetic energy over the interval [0, τ ].

The kinetic energy, defined in primitive variables is proportional to

2E(t) = (u,u) =

∫︂ ∞

0
u†u dy

and is the inner product of the perturbation velocity with itself, with the superscript † denoting
the complex conjugate transpose. If scale by the perturbation kinetic energy by the initial energy

we attain

G(t) =
E(t)

E(0)
,

and it is this quantity that we seek to maximise. Note that an equivalent definition of kinetic

energy in terms of the wall normal velocity and vorticity is

E(t) =
1

k2

∫︂ ∞

0
−v†∆v + η†η dy.

We employ a power iteration scheme to maximise this quantity. This process can be broken into

four distinct steps

1. Integrate the direct equation forward in time from t = 0 to t = τ .

2. Convert from direct to adjoint variables.

3. Integrate the adjoint equations backwards in time from t = τ to t = 0.

4. Convert from adjoint variables back to direct variables.
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To proceed we must first determine the adjoint of (6.3a)

6.3.1 Derivation of the Adjoint

In order to derive the appropriate adjoint equations, we must perform integration by parts on

the direct Orr-Sommerfeld Squire system. As such it proves useful to first write the system in

the equivalent form

A0
∂v

∂t
+A1

∂3v

∂t∂y2
= B0v +B1

∂v

∂y
+B2

∂2v

∂y2
+B3

∂3v

∂y3
+B4

∂4v

∂y4
, (6.4)

where the components of the operators are easily recovered from the Orr-Sommerfeld Squire

system and are as follows

A0 =

[︄
−k2 0

0 1

]︄
A1 =

[︄
1 0

0 0

]︄

B0 =

[︄
iα(U ′′ + k2U) + k2

R (k2 + V ′) − αβ
k2 R

U ′

−iβU ′ −iαU − 1
R(k

2 + β2

k2
U)

]︄
B1 =

[︄
1
R(k

2V − α2

k2
U ′) − αβ

k2 R
U

αβ
k2 R

U − 1
RV

]︄

B2 =

[︄
−iαU − 1

R(2k
2 + V ′ + α2

k2
U) 0

0 1
R

]︄
B3 =

[︄
− 1

RV 0

0 0

]︄

B4 =

[︄
1
R 0

0 0

]︄

Next we introduce our adjoint variables ã = (ã, b̃)T . The adjoint equations are derived by scalar

multiplying equation (6.4) by ã and integrating over [0, τ ]× [0,∞), applying integration by parts

0 =

∫︂ ∞

0

∫︂ τ

0
ã†
[︃
A0

∂v

∂t
+A1

∂3v

∂t∂y2
−B0v −B1

∂v

∂y
−B2

∂2v

∂y2
−B3

∂3v

∂y3
−B4

∂4v

∂y4

]︃
dt dy (6.5)

=

∫︂ ∞

0

∫︂ τ

0
v†
[︃
−A†

0

∂ã

∂t
−A†

1

∂3ã

∂t∂y2
−B†

0ã+
∂

∂y
(B†

1ã)−
∂2

∂y2
(B†

2ã) +
∂3

∂y3
(B†

3ã)−
∂4

∂y4
(B†

4ã)

]︃
dt dy

+

∫︂ ∞

0

[︄
v†A†

0ã+ v†A†
1

∂2ã

∂y2
dy

]︄τ
t=0

+

[︄
∂v†

∂y
A†

1ã− v†A†
1

∂ã

∂y

]︄τ
t=0

⃓⃓⃓⃓
⃓
∞

y=0∫︂ τ

0
−v†B†

1a−
∂v†

∂y
B†

2ã+ v† ∂

∂y
(B†

2ã)−
∂2v†

∂y2
B†

3ã+
∂v†

∂y

∂

∂y
(B†

3ã)− v† ∂
2

∂y2
(B†

3ã)

− ∂3v†

∂y3
B†

4ã+
∂2v†

∂y2
∂

∂y
(B†

4ã)−
∂v†

∂y

∂2

∂y2
(B†

4ã) + v† ∂
3

∂y3
(B†

4ã) dt

⃓⃓⃓⃓
⃓
∞

y=0

. (6.6)

Boundary conditions for the adjoint equations may be derived by requiring that the boundary

terms (in y) are identically zero. Expanding these terms, taking into account the boundary
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conditions on the direct variables and base flows we have∫︂ τ

0
−∂v

†

∂y
B†

2ã− ∂2v†

∂y2
B†

3ã+
∂2v†

∂y2
∂

∂y
(B†

4ã)−
∂3v†

∂y3
B†

4ã dt

⃓⃓⃓⃓
⃓
∞

y=0

=

∫︂ τ

0
− 1

R

∂η̂†

∂y
b̃− 1

R
V
∂2v̂†

∂y2
ã+

1

R

∂2v̂†

∂y2
∂ã

∂y
− 1

R
V
∂3v̂†

∂y3
ã dτ

⃓⃓⃓⃓
⃓
∞

y=0

. (6.7)

It is clear that these terms are zero if we impose the same boundary conditions as for the direct

problem i.e.

ã =
∂ã

∂y
= b̃ = 0 at y = 0, ã→ ∂ã

∂y
→ b̃→ 0 as y → ∞.

Doing so ensures that each term in (6.7) is identically zero, both on the surface of the stretching

sheet, and in the free-stream. We require that ã satisfies the adjoint equation

−A†
0

∂ã

∂t
−A†

1

∂3ã

∂t∂y2
= B†

0ã− ∂

∂y
(B†

1ã) +
∂2

∂y2
(B†

2ã)−
∂3

∂y3
(B†

3ã) +
∂4

∂y4
(B†

4ã), (6.8)

which is given in terms of (ã, b̃) as follows

− ∂

∂t
(∆ã) =

[︂(︃
iαU +

1

R
∆

)︃
∆+ 2iαU ′ ∂

∂y
− α2

k2R

(︃
U ′ ∂

∂y
+ U

∂2

∂y2

)︃
+

1

R

(︃
V ′′ ∂

∂y
+ 2V ′ ∂

2

∂y2
+ V∆

)︃]︂
ã

+
[︂
iβU ′ − αβ

k2R

(︃
U ′ + U

∂

∂y

)︃]︂
b̃ (6.9a)

−∂b̃
∂t

=
[︂
− αβ

k2R
U
∂

∂y

]︂
ã

+
[︂
iαU +

1

R
∆− 1

R

(︃
1 +

β2

k2

)︃
U +

1

R
V
∂

∂y

]︂
b̃. (6.9b)

We can write equation (6.9) in a compact form, equivalent to equation (6.3a), which is more

convenient for numerical discretisation

d

dt
Φ+v = Λ+v, (6.10)

Φ+ =

[︄
Φ+

11 0

0 Φ+
22

]︄
, Λ+ =

[︄
Λ+

11 Λ+
12

Λ+
21 Λ+

22

]︄
, (6.11)
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with

Φ+
11 = ∆, Φ+

22 = I,

Λ+
11 = (−iαU − 1

R
∆)∆− 2iαU ′ ∂

∂y

+
1

R

[︂
− V∆

∂

∂y
+ (1 +

α2

k2
) U ′ ∂

∂y
+ (2 +

α2

k2
)U

∂2

∂y2

]︂
,

Λ+
12 = −iβU ′ +

αβ

k2R
(U

∂

∂y
+ U ′),

Λ+
21 = − αβ

k2R
U
∂

∂y

Λ+
22 = −iαU − 1

R

[︂
∆+ V

∂

∂y
− (

β2

k2
+ 1)U

]︂
.

Where we have again highlighted the additional terms due to surface stretching in blue.

6.3.2 Numerical Scheme

Both the direct and adjoint equations are discretised using a Chebyshev spectral scheme as in

Chapter 4. Time integration was performed using a second order backwards Euler scheme with

a first order scheme used for the initial integration step. This is written for the direct scheme as

e1
dt

(Φ− Λ)vj+1 = −e2
dt

Φvj −
e3
dt

Φvj−1, (6.12)

where the subscript j indicates the current time step. The Euler coefficients are given by

e1 =
3

2
, e2 = −2, e3 =

1

2
, for j > 1, (6.13)

e1 = 1, e2 = −1, e3 = 0, for j = 1. (6.14)

The time step was defined as follows

dt =
τ

⌈ τ
0.2 + 1⌉

≤ 0.2.

This was chosen so that our results would be consistent with those of Corbett and Bottaro

[22], although a smaller timestep would improve the accuracy of our simulations at the cost of

additional matrix inversions for each power iteration. Finally, in order to implement the scheme

we need to relate our direct and adjoint variables at each iteration. These relationships are
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defined as follows

ã(τ)k =
1

k2
[−v(τ)k, η(τ)k]T , v(0)k+1 = k2[−ã(0)k, b̃(0)k]T ,

and are given by Corbett and Bottaro [22]. With this we can now impose a wavenumber

pair (α, β) and the Reynolds number R, and integrate the Orr-Sommerfeld Squire system with

arbitrary initial conditions, over an arbitrary time interval (0, τ) to find the initial conditions

which maximises energy growth G(τ) over this time interval. This is defined to be a local optimal

σ(τ) ≡ max
∀v0(α,β)

G(τ).

A global optimal is defined as the maximum growth obtainable for given wavenumber pair. It

is the growth obtained at the time tγ , for which σ is maximised and is defined as follows

γ = max
∀t

σ(t),

Finally the largest transient growth possible for a given base Reynolds number is termed the

maximal optimal and is defined as follows

Γ = max
∀α,β

γ(tγ).

It is found by maximising γ over all possible wavenumber pairs. We are primarily interested in

determining this quantity. To clarify, calculating σ involves finding the inital conditions which

maximise energy growth for an arbitrary time interval and wavenumber pair. The calculation of

γ requires us to determine the time interval which maximises energy growth, given a wavenumber

pair. Finally Γ involves finding the wavenumber pair which maximise γ. An interesting property

of such problems is that Γ is consistently found to occur in the α → 0 limit ([34],[22],[14]).

Another property of note is that the spanwise wavenumber which attains the maximum optimal

remains constant when the boundary layer is scaled by the momentum thickness, rather than

the boundary layer thickness used in Chapter 4, for both the Falkner-Skan [22] and asymptotic

suction boundary layers [34]. This distinction is important for the isothermal stretching sheet as

due to the nature of our basic flow solutions, the momentum thickness is half the boundary layer

thickness. This is not generally the case and is due to the analytical, exponentially decaying

streamwise velocity profile for Crane’s flow. With these features noted, the procedure for finding

the maximal optimal Γ is as follows.

We begin by choosing an arbitrary value of the Reynolds number, typically R ∼ 100. Chosen

to be large enough to justify the boundary layer approximation, while not so large to slow the

power iteration scheme since τ ∼ R. Next, we employ our power iteration scheme for a range

of β values using Matlab’s fminbnd function to find the global optimal γ for each value of β.
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fminbnd uses a combination of golden Section search and parabolic interpolation to find the

time that maximises G. From this we can estimate a maximum optimal Γ, with corresponding

βΓ and tΓ. To more accurately resolve the maximum optimal we use Matlab’s fminsearch

which varies both β and t and uses a simplex search method to maximise the growth in kinetic

energy. These derivative-free methods are preferred over Newton-type optimisation schemes,

as to calculate derivatives using finite differences numerically, more calls to the original direct

adjoint scheme have to be called. This typically takes ∼ 5 − 6 iterations to converge. With a

time step of approximately 0.2, considering our validation test case in the next Section, we have

870/0.2× 2× 5 ≈ 43500

matrix inversions (i.e. equation (6.12)) to perform, for a single power iteration to converge. The

derivative-free schemes that we have implemented, reduce the number of iterations required to

maximise the energy causing significant reduction in overall computational time and effort.

6.4 Numerical Results

In this Section, we present the results of our calculations across several different cases. We

begin by validating our numerical solver through the computation of optimal perturbations for

the Blasius boundary layer, comparing our findings with those reported in [22]. Following the

validation, we shift our focus to Crane’s flow. Initially, we compute the optimal perturbations

by solving the standard Orr-Sommerfeld-Squire system (OSSQ) without the inclusion of the

additional terms that arise due to surface stretching. These OSSQ results provide a baseline for

comparison. We then incorporate the extra stretching terms (EST) into our calculations and

re-solve the system. The inclusion of these terms introduces significant changes to the behaviour

of the initial value problem (IVP) compared to the OSSQ formulation. We observe that the EST

fundamentally alters the dynamics of the system in ways that are not reflected in the traditional

modal analysis. This change in behaviour between the OSSQ and EST cases raises the question

of which formulation offers a more accurate description of the system’s dynamics? This question

will be revisited in our conclusions.

6.4.1 Validation

To validate the solver we chose to compare our results to those of Corbett and Bottaro [22] for

the Blasius boundary layer. This amounts to iteratively solving equations (6.3a) and (6.10),

while omitting the additional terms which appear due to surface stretching. The basic flow
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Table 6.1: Comparison of the maximum optimal computed for Blasius flow scaled by the mo-
mentum thickness to the results of Corbett and Bottaro [22].

βθ Γ tΓ
[22] 0.25114 280.7 870.8

Present analysis 0.25144 279.52 865.06
% error 0.12% 0.42% 0.66%

U(y) = f ′ is determined by the solution of the Blasius ODE

f ′′′ +
1

2
ff ′′ = 0,

subject to the boundary conditions

f(0) = f ′(0) = 0, f ′ → 1 as y → ∞,

and may be numerically solved using the shooting method scheme outlined in Chapter 3. The

wall normal coordinate is scaled using the momentum thickness, which is defined as

θ =

∫︂ ∞

0
U(1− U) dy ≈ 0.664.

With this basic flow and scaling we can implement our optimisation procedure to calculate the

maximum optimum for Rθ = 166. The Reynolds number is defined Rθ = U∗
∞L

∗/ν∗, where

U∗
∞ is the dimensional free-stream velocity, ν∗ the kinematic viscosity and L∗ = l∗θ is the non

dimensional length scale l∗, scaled by the momentum thickness. The particular value of the

Reynolds number is chosen to compare to results reported in by Corbett and Bottaro [22] in

table 6.1. Here we see that for each quantity predicted, the spanwise wavenumber, the energy

growth and the time at which this energy growth is achieved, our solver corroborates the results

of [22] with relative errors of < 1%. We also show the structure of the maximum optimums

in Figure 6.1. Here we see the substantial relative growth in magnitude of the streamwise

velocity perturbation compared to the spanwise and wall-normal components. Qualitatively

similar observations are made across a wide variety of flow regimes in which the basic flow is

two dimensional from boundary layers ([22],[14]), to the bounded shear flows discussed in this

Chapters introduction ([110],[41]).

6.4.2 Crane OSSQ

Having validated our optimisation scheme for the Blasius boundary layer, we now shift our

focus to Crane’s flow. Given the minimal differences observed when including the additional
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Figure 6.1: Maximum optimum for the Blasius boundary layer for Rθ = 166, βθ = 0.25144.
Initial conditions a) & b) and final perturbations c) & d). Note the wall normal coordinate is
scaled such that Y = y/θ.
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Table 6.2: Comparison of the maximum optimal computed for Crane’s flow, with and without
stretching terms to the results of Fransson and Corbett [34] for the asymptotic suction bound-
ary layer (ASBL). The substantial difference when the extra stretching terms are included is
discussed in the next Section.

β Γ× 103R2 tΓR

Crane OSSQ 0.51 0.95 1.25
Crane EST 0.79 0.55 0.51
ASBL [34] 0.53 0.99 1.48

stretching terms in the modal analysis, we begin by solving the standard Orr-Sommerfeld-Squire

system, replacing the Blasius basic flow with the exponentially decaying basic flow of Crane [23].

By applying the same optimisation procedure as for the Blasius boundary layer, we report the

Reynolds number dependence of the maximal optimal energy growth (Γ) and the time (tΓ) at

which it occurs. These Figures are provided in table 6.2, where they are compared to the results

of Fransson and Corbett [34] for the asymptotic suction boundary layer (ASBL). The ASBL is

an extension of the Blasius boundary layer and is obtained by applying uniform suction on the

surface of the plate downstream from the leading edge. Assuming that the wall-normal velocity

component V is constant and that V ∼ R−1, attained by applying the usual boundary layer

scaling arguments, the x momentum equation may be directly integrated to obtain

U = 1− e−y.

Considering the qualitative similarities in the basic flow profiles, particularly the exponentially

decay of the streamwise velocity component and a wall normal velocity of O(R−1), the max-

imal optima are largely in agreement with the additional stretching terms excluded. This is

also true for the critical Reynolds numbers reported in the modal analysis, both of which are

approximately 5× 104.

To visualise the structure of the optimal perturbations we plot the perturbations in real space

in Figure 6.2. Utilising the same scalings as for the Blasius case in Figure 6.1 for the streamwise

velocity perturbation, we can clearly see the lift-up effect going from the initial condition a)

to the maximum optimum in b). Here this manifests as an upwards shift of the centre of the

vortices with a corresponding increase in the magnitude of the streamwise velocity perturbation.

This perturbation structure was first noted by Landahl [65] in the context of inviscid algebraic

instabilities but is equally observed for the short-time stability of two-dimensional viscous flows.

Similar visualisations are presented for the ASBL [34]. Note that the arrows in the quiver plot

are not to scale and are intended for illustrative purposes only.

N.Hanevy, PhD Thesis, Aston University 2024 94



Non Modal Stability Stretching Surface Flows

- / - /2 0 /2 /
0

2

4

6

8

10
a)

-0.04

-0.02

0

0.02

0.04

- / - /2 0 /2 /
0

2

4

6

8

10
b)

-0.5

0

0.5

Figure 6.2: Quiver plot of the wall-normal and spanwise optimum perturbation for Crane’s
flow at R = 500, with colours indicating the magnitude of the streamwise velocity component.
Scalings correspond to those in Figure 6.1, with different colour schemes used to indicate the
different scalings used at the initial and final times. a) The initial condition and b) the maximum
optimum evaluated at t = tΓ.

6.4.3 Crane EST

In the previous Section we compared the results for Crane’s flow to those of the ASBL due to

the similarities between them. However, an important distinction between the two cases is that

the additional terms in the ASBL arise from the wall suction boundary condition imposed on

the basic flow. Consequently, all additional terms are constant, of O(R−1), and have minimal

impact, even on the non-modal stability of the system. In contrast, for Crane’s flow, the wall-

normal velocity terms depend on the wall-normal coordinate, and we also encounter non-zero

x-derivatives of the streamwise basic flow component due to the action of the stretching sheet.

The significance of these extra stretching terms, as evidenced by the large disparity in the

maxima reported in table 6.2, will be explored in this Section.

To understand these differences, it is instructive to evaluate the energy evolution of the local

optima determined via power iteration for different time domains for both the OSSQ and EST

cases. This evaluation is illustrated in Figure 6.3 where we observe that the standard OSSQ

system a) behaves as expected. Specifically, for different time integration lengths, the power

iteration converges to the initial condition which maximises energy growth over the given inter-

val. In contrast, when considering the EST case, we see the power iteration returns the same

initial conditions regardless of the length of time over which the equations are integrated. This

fundamental change in behaviour explains the disparity between the maxima reported in table

6.2. This observation suggests that the additional stretching terms in the EST case impose a

constraint on the optimisation process, leading to a uniform initial condition across various time
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Figure 6.3: Local optima of the OSSQ a) and EST b) systems determined via power iteration
for different time intervals. In both instances we fix R = 200, β = 0.51 and α=0.

domains. Consequently, the differences in energy growth characteristics between the OSSQ and

EST cases are not merely quantitative but also reflect a fundamental shift in the underlying

dynamics of the flow stability problem.

From an optimisation perspective, the fact that the IVP appears to have a unique solution

when the stretching terms are retained significantly reduces the computational complexity of

calculating the maximum optimum. In this scenario, the optimisation procedure is simplified

to determining the spanwise wavenumber β, only. Additionally, the direct-adjoint system only

needs to be solved once for each value of β. Despite the significant changes in the structure of

the solutions when the stretching terms are included, the Reynolds number scaling for both the

maximum energy growth Γ and the time taken to achieve this growth tΓ remains consistent.

This scaling is illustrated in Figure 6.4 for both the OSSQ and EST cases. It is important to

note that the differences in energy at t = 0 are due to the initial perturbation kinetic energy

being scaled to one for each calculation.

The inclusion of the extra stretching terms in the analysis raises the question of whether they

provide a more accurate description of the short-term instability dynamics for flows like Crane’s

flow. This remains an open question and warrants further investigation. One possible explana-

tion for the observed differences could be that Crane’s flow is an exact analytical solutions to

the full Navier-Stokes equations, which might justify the inclusion of these higher-order basic

flow terms in the stability analysis. To explore this further, a similar analysis could be con-

ducted with the inclusion of temperature-dependent viscosity, as was done in Chapters 4 and 5.

In the coupled, temperature-dependent scenario, where exact analytical solutions are no longer

available, it would be interesting to see if the IVP continues to exhibit a unique initial condition

over different time domains when using the power iteration method. This would help determine
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Figure 6.4: Maximum optima for different Reynolds numbers for a) OSSQ and b) EST. Param-
eter values correspond to those reported in table 6.2.

whether the unique behaviour observed with the stretching terms is due to the exact nature of

Crane’s flow or if it is a more general characteristic of such stretching flows. However, due to

time constraints, this line of investigation will not be pursued here.

6.5 Discussion and Conclusions

In this Chapter, we have explored the non-modal stability of isothermal flow driven by a stretch-

ing sheet, revealing significant potential for energy amplification at Reynolds numbers much

lower than the critical values identified in modal analyses. This finding suggests that short-term

energy growth presents a more realistic transition scenario for flows typically encountered in

extrusion processes. Indeed, throughout this Chapter we have seen significant energy amplifi-

cation occur within the domain of applicability of Crane’s model as per the work of Vleggaar

[114], who provides a rough upper bound of R ∼ 400 to be within half a meter of the inlet.

After this point, assuming a linear stretching rate becomes untenable as the sheet accelerates

exponentially.

Comparing our results to other boundary layers, the critical Reynolds number for the Blasius

boundary layer, scaled by the displacement thickness, is for instance 519.4 [97]. This is approx-

imately 100 times smaller than the critical Reynolds number for Crane’s flow both with and

without the additional stretching terms. Conversely, the maximum transient energy growth in

the Blasius boundary layer scales as 1.5 × 10−3R2 [14], whereas for Cranes flow it scales as

0.95× 10−3, and 0.55× 10−3R2, with and without the extra stretching terms respectively. De-

spite the reduction in potential energy amplification, the fact that the critical Reynolds number

is orders of magnitude larger for Crane’s flow means that the non-modal mechanism may develop

long before the modal results take effect. This also explains the relative success of linear stability
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theory in the Blasius case [47], compared to other bounded parallel flows such as Poiseuille flow

[110].

A key aspect of our analysis is the consideration of higher-order basic flow terms. We have

demonstrated that including these additional terms fundamentally changes the flow character-

istics when compared to the modal analysis discussed in Chapter 4. Despite these changes, the

observation that the extra stretching terms (EST) have a stabilizing effect on the maximum

energy amplification, as indicated in table 6.2, aligns with the results of both the modal analysis

of the stretching sheet in Chapter 4 and the findings of Malik et al. [73] for the rotating disk.

For the rotating disk, the inclusion of higher order basic flow terms was justified by improved

agreement with experimental results [64]. However, since Crane’s flow represents an idealised

flow regime, determining whether the EST are important requires a different means of valida-

tion, likely through the form of numerical simulations. The challenge lies in the fact that the

most amplified energy amplification occurs in the long wavelength (α→ 0) limit, and this regime

is inaccessible to traditional direct numerical simulations. Despite this limitation, small finite

values of the streamwise wavenumber could be investigated to assess the relevance and impact

of the EST in Crane’s flow. Such investigations would help determine whether these additional

terms offer a more accurate description of the flow dynamics.

In Chapter 4, we analysed the spatial, rather than temporal stability problem for Crane’s flow

as it is generally deemed to be more appropriate for boundary layers. Similar arguments have

been made for non-modal analysis, with two main approaches being adopted in the literature

([70],[5]). Both are based on the direct-adjoint integration of the linearised boundary layer equa-

tions. The approach of Luchini [70] is in a sense a simplification of the analysis of Andersson

et al. [5], which uses boundary layer scaling arguments to simplify the analysis and impose ad-

ditional inflow and outflow boundary conditions which reflect this scaling. The long wavelength

limit of the maximum optima raises additional concerns about the validity of using parallelisa-

tion arguments in our present analysis. This could also be addressed by the spatial analysis,

which could be adapted from these studies to account for the motion of the stretching sheet.

However, spatial results for the Blasius boundary layer produce qualitatively similar results as

the temporal analysis, indicating that the temporal approach effectively captures the key in-

stability mechanisms. Further exploration through spatial analysis could offer a more detailed

picture, but it is likely that the main conclusions regarding flow stability and transition would

remain consistent.

As with the analyses conducted in previous Chapters, there remain several additional flow

variables that have not yet been fully explored. Notably, temperature effects and the curvature

of the sheet have yet to be considered. Including these factors could potentially alter our results

particularly since the basic flow solutions are no longer exact analytical solutions. Despite these

N.Hanevy, PhD Thesis, Aston University 2024 98



Non Modal Stability Stretching Surface Flows

omissions, our investigations have demonstrated that traditional modal analysis is unlikely to

be the primary mechanism driving flow transition. Instead, the results suggest that non-modal

mechanisms may play a more crucial role in the early stages of the transition process.
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Chapter 7

Summary of Results

Throughout this thesis, we have proposed and analysed various models for flows induced by

extrusion processes, extending the model of Crane [23] for the flow induced by a linearly stretched

flat sheet. There are a number of features of Crane’s flow which make it amenable to analysis

using the tools of boundary layer theory. Under Crane’s assumptions, the flow admits an

exact analytical solution of the full Navier-Stokes equations via a similarity solution, where

the streamwise velocity component is proportional to distance along the stretching axis, and all

other variables depend solely on the wall-normal coordinate. Additionally, by assuming that

disturbances are amplified far from the inlet, parallelisation arguments–similar to those used in

the rotating disk–can be applied to the flow, thereby permitting the use of an ordinary, rather

than partial, differential eigenvalue problem to model the growth of disturbances. This approach

was originally applied to Crane’s flow by Griffiths et al. [39], where excellent agreement was

found between numerical and asymptotic results in the isothermal case. Encouraged by these

results, our goal was to extend this simple model, focussing on flows which mimic many of

the characteristics of Crane’s flow to allow us to determine the important physical mechanisms

driving the instability of these classes of flows.

In Chapters 2 and 3, we introduced two new formulations. The first of these involved the

inclusion of temperature effects. This entailed maintaining both the flat geometry and linear

stretching rate of Crane’s flow while imposing a temperature-dependent viscosity. This approach

has been commonly employed in other boundary layers, such as the rotating disk [78] and Blasius

boundary layer [77]. Temperature effects are clearly relevant to a variety of extrusion flows. In

polymer extrusion, for instance, the polymer undergoes thermally induced phase transitions,

behaving as a liquid while being drawn before solidifying at the outlet. Although the model we

proposed initially neglected streamwise variations in the temperature of the sheet, by assuming

the sheet was fixed at a constant temperature higher than that of the free-stream, it allowed us
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to make novel quantitative predictions regarding the behaviour of the basic flow.

For mathematical convenience, we chose to impose an inverse relationship between temperature

and viscosity for the majority of our calculations. This relationship is given in dimensionless

form as µ = (1+mT )−1, where m is a parameter determining the sensitivity of the viscosity to

changes in temperature. The momentum and energy equations are uncoupled when m = 0, in

this case we recover the exact solutions of Crane. In the coupled case, our extended model no

longer yields an exact analytical solution and the resulting boundary layer problem had to be

solved numerically using a shooting method. However, we were able to show that approximate,

near wall solutions could be attained under the assumption of weak temperature dependence,

i.e. |m| ≪ 1.

The inverse viscosity relationship has the advantage of being easily interpreted, with negative

values of the sensitivity parameter indicating gaseous-type flows and positive values correspond-

ing to liquids. From an industrial perspective, we are primarily interested in gaseous-type flows;

however, results were presented for both cases. For all calculations in this thesis, we fixed

Pr = 0.72, as this value is used to model the Prandtl number of air ([77],[78]). While this choice

was appropriate for m < 0, the parameter regime of interest, it should be noted that for m > 0,

this value would likely vary with temperature. With these caveats in mind, our main result was

that wall shear stress increases with increasing values of the sensitivity parameter, which has

important implications for the corresponding linear stability analysis.

For the purposes of this thesis, we were primarily interested in the constant wall temperature

case. However, we also examined the role of viscous dissipation. Dissipative effects are commonly

associated with compressible flow regimes at speeds far greater than those observed in extrusion

flows. However, by including viscous dissipation in our model, we showed that we can no longer

assume that temperature is invariant in the drawing direction, as the kinetic energy produced

by the stretching sheet leads to increases in temperature near the sheet. While this regime was

explored due to the interesting changes in the characteristics of the boundary layer equations,

the Keller-Box scheme developed to iteratively integrate the nonlinear boundary layer equations

could be easily adapted to account for streamwise variations in sheet temperature observed in

industrial extrusion processes.

Perhaps the most pertinent critique of Crane’s model is the omission of the sheet’s deformation.

Any incompressible material being accelerated by stretching must deform to conserve mass.

Although Crane’s model could be viewed as a small deformation approximation of such processes,

it is clear, when compared to models of stretching sheets ([82],[50]), that deformation should be

accounted for. In Chapter 2, this was achieved by performing a coordinate system transformation

to flatten curvature of the sheet, before applying standard boundary layer arguments to derive
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the leading order equations. Our formulation closely followed that of Rees and Pop [92], for

the flow induced by a wavy moving surface. However our formulation is generalised in that it

can be readily tailored to model a wide variety boundary layer flows. This was illustrated in

Chapter 3 by applying our formulation to surface thickening flows, such as those observed in

textile compaction. In Hanevy et al. [45], we also show how the formulation may be used to

model surface roughness.

However, here we are primarily interested in boundary layers induced by stretching sheets.

By imposing an exponentially thinning sheet profile, similar to those predicted empirically by

Trouton [111] and analytically in numerous studies for a variety of flow geometries ([82],[50],

[75]), we showed that analytical boundary layer solutions can be derived. These solutions were

validated by comparison to numerical solutions of the full Navier-Stokes equations using the

finite element software FEniCS [68] and were shown to be in excellent agreement. Our results

demonstrate that failing to account for the sheet’s deformation leads to quantitatively poor

predictions for the basic flow velocities, particularly near the inlet, where the role of deformation

is most pronounced. To derive these solutions, our analysis relied on being able to analytically

integrate σ =
√︂
1 + (s′ξ)

2, where s represents the shape of the sheet. This integral cannot

be evaluated analytically for general sheet profiles, and more complex sheet shapes could be

explored by implementing a suitable numerical integration scheme. In our formulation, there

were several “free” integration constants, which we selected to make our basic flow closely mimic

Crane’s flow profiles. This was done solely for comparative purposes; in practice, these constants

would be determined through experimental comparisons. In fact, the Trouton model predicts

an exponentially accelerating sheet profile, which could be readily modelled by our formulation.

Concerning flow stability, several approaches were taken. The first involved extending the modal

analysis of the isothermal problem performed by Griffiths et al. [39] to account for temperature

dependence. This consisted of a complimentary numerical and asymptotic analysis in Chapters

4 and 5 respectively. In the numerical analysis we showed that there exists a narrow range of

positive values of the sensitivity for which the flow is stabilised. This is consistent with the results

for the Blasius boundary layer presented by Miller et al. [77]. In our integral energy analysis we

demonstrated that the destabilisation observed for m > 0.36 is due to a relative increase in the

energy production from the Reynolds stress term, although it should be emphasised that we have

not accounted for variations in Prandtl number which would be expected in this regime. The

main finding of the numerical analysis is that negative values of the sensitivity parameter are

strongly destabilising. We found that the critical Reynolds number was approximately halved

when compared to the isothermal case for m = −0.4. This is of practical interest, as this

is the parameter regime that would be observed for such flows in industry and suggests that

temperature effects should be considered. Given that we defined our critical Reynolds number

in terms of the dimensionless distance from the inlet, this means that if modal instabilies are to
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be observed, they will occur further upstream in the presence of a large temperature gradient.

For the remainder of the numerical analysis, we evaluated the role of the additional basic flow

terms that arise due to the action of the stretching sheet. This was achieved by solving both the

Orr-Sommerfeld equations and a global flow solver in Nektar++ under the assumptions of the

normal mode analysis. Higher-order basic flow terms are typically neglected in similar numerical

studies of the Blasius boundary layer but are required to improve agreement with experiments

for the rotating disk. However, due to the large critical Reynolds number for Crane’s flow,

these terms were not found to significantly affect the quantitative results of our modal analysis.

Nevertheless, it is interesting to note that these terms are stabilising, as in the case of the

rotating disk.

The large critical Reynolds numbers reported in the numerical analysis had important implica-

tions for the asymptotic analysis in Chapter 5. Here we adopted the triple deck, lower branch

analysis as outlined by Smith [100] for the Blasius boundary layer. While Smith [100] included

five terms in his expansion to incorporate non-parallel effects, we found excellent agreement

between our asymptotic and numerical solutions using only the leading order term in the expan-

sion. This is a consequence of the large Reynolds numbers involved, as the asymptotic expansions

exploit the high Reynolds number. Although unusually large compared to the Blasius or ro-

tating disk boundary layers, a critical Reynolds number of a similar magnitude is reported by

Wall and Wilson [116] for the ASBL, which also exhibits an exponentially decaying streamwise

velocity profile. As in the isothermal analysis, the leading order asymptotic solutions are gov-

erned by the wall shear stress, which is modified to account for the non-constant viscosity. An

advantage of our asymptotic results is that they are easily adaptable; for example, our inverse

temperature-viscosity relationship could easily be replaced with a more accurate, empirically

derived viscosity distribution. Provided the wall shear stress could be accurately calculated, our

asymptotic dispersion relation could modified to determine the flow stability.

As we have shown, the large critical Reynolds numbers from the numerical analysis are advan-

tageous for asymptotically analysing flow stability. However, it raises the question of whether

laminar flow would be observed in practice at such high Reynolds numbers. To address this

question, we explored alternative energy growth mechanisms in the form of transient growth in

Chapter 6. Here we solved the temporal problem by adopting the direct-adjoint power iteration

scheme introduced by Corbett and Bottaro [22]. We demonstrated that significant energy am-

plification can occur at Reynolds numbers which are more than one hundred times smaller than

the critical Reynolds number from the modal analysis. While this does not allow us to specify

exactly where transition will occur, it does suggest that the modal analysis alone is inadequate

for describing this process.
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In contrast to the modal analysis, numerical non-modal investigations indicate that retaining

the additional stretching terms fundamentally changes the structure of the optimisation prob-

lem, with the initial conditions obtained through power iteration being independent of the time

domain over which they are integrated when stretching terms are included. The reason for this

phenomenon remains unclear and requires further investigation. While this problem is mathe-

matically interesting, given that the underlying model omits much of the essential physics for

such flows, it is unlikely to have major consequences for extrusion flows in practice. Our analysis

may be thought of as an initial step to identify alternative routes to transition. However, we

can conclude that the non-modal energy mechanism is likely a far more important factor driv-

ing the instability of extrusion-induced flows compared to the convective instabilities previously

considered.

As demonstrated, we have presented several additional models for the flows induced by the

motion of stretching sheets. This has enabled us to quantify how the omission of these additional

physical effects has resulted in poor predictions of both basic flow profiles and their stability. The

key takeaways from our analysis are as follows: firstly, neglecting the deformation of the sheet

leads to inaccurate predictions for the basic flow profiles in the vicinity of the inlet. Secondly,

large temperature gradients have significant implications for the linear stability results, halving

the critical Reynolds number even for moderate values of the sensitivity parameter. Finally,

non-modal mechanisms are likely the primary factors governing the stability of these simplified

models of such flows.

As with any thesis, there are several additional ways in which the models presented could be

adapted and improved. In the following Chapter, we briefly discuss some alternative approaches

that were considered, highlighting where challenges arose and suggesting future lines of investi-

gation.
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Chapter 8

Future Works

In this Chapter, we discuss alternative approaches used to analyse flows induced by stretching

sheets. In particular, we highlight why certain types of instabilities have not been reported in the

thesis thus far, and examine the challenges involved in implementing various non-local stability

schemes. Additionally, we briefly review several studies that have attempted to couple the

dynamics of the sheet with the induced boundary layer, emphasising the issues and challenges

associated with sharp viscosity gradients, transitioning from Stokes flow in the sheet (R ≪ 1)

to large Reynolds numbers in the boundary layer.

8.1 Alternative Flow Stability Approaches

Thus far, we have invoked parallel flow approximations to analyse the stability of the flow induced

by stretching sheets, both in the modal numerical analysis in Chapters 4, and the non-modal

analysis of Chapter 6. While this gives us an indication of the important physical factors for the

disturbances considered, there are several additional physical effects which warrant attention

for a comprehensive understanding of the full system. Initially, this was our intention after

deriving the basic flow solutions for the deforming sheet in Chapter 3. In the remainder of this

Section we will outline how we attempted to incorporate the effects of curvature by considering

non-local stability schemes as well as exploring different types of “local” instabilities, beyond

the Tollmien-Schlichting and non-modal instabilities previously considered.

N.Hanevy, PhD Thesis, Aston University 2024 105



Stretching Surface Flows Future Works

8.1.1 BiGlobal

The vast majority of studies in hydrodynamic stability theory have focused on parallel shear

flows, either by direct analysis of inherently parallel flows such as Poiseuille or Couette flows, or

by employing parallelisation arguments for boundary layers. This involves leveraging the slow

streamwise variation of the basic flow, as seen in the rotating disk, Blasius boundary layer, and,

in this thesis, the stretching sheet. This approach is favoured as it reduces a partial differential

eigenvalue problem to an ordinary differential eigenvalue problem, where modes only need to be

resolved in one spatial dimension. In using this approach it is explicitly assumed that

1. The basic flow depends on only one spatial dimension.

2. The perturbations are periodic in all other spatial dimensions and in time.

These assumptions become invalid when the deformation of the sheet is taken into account. Nev-

ertheless, these stability concepts are easily generalised to account for multiple inhomogeneous

spatial directions.

The term “BiGlobal” was first introduced in the review of Theofilis [104], to differentiate between

absolute instabilities (referred to as global instabilities in the review of Huerre and Monkewitz

[52] and discussed in the context of stretching sheets in Section 8.1.3 below), and the instabil-

ities of basic flows which vary in two spatial dimensions. BiGlobal stability analysis assumes

homogeneity in the third spatial dimension and assumes perturbations take the following form

q̃(x, t) = q̂(x, y) exp{i(βz − ωt)}.

Substituting these perturbations into the linearised Navier-Stokes equations results in a two-

dimensional eigenvalue problem. Computations are typically performed in the temporal frame-

work, with β and R prescribed. However, spatial simulations can be conducted, though at a

significantly higher computational cost, by constructing the corresponding companion matrix

[85]. This matrix factorisation converts the quadratic eigenvalue problem into a linear eigenvalue

problem, following the same scheme used by Matlab’s polyeig function, which we employed in

Chapter 4. The above formulation is easily extended for flows which vary in three spatial di-

mensions, commonly referred to as a TriGlobal stability analysis.

Progress in analysing such instabilities is inherently tied to the large increases in computational

resources over recent years. This is due to the sharp increase in storage requirements with the

number of discretised dimensions. Generalising the one-dimensional spectral schemes of Chapter

4, with a modest N = 64 collocation points, Theofilis [104] provides the following storage

estimates for the respective discretised matrices: approximately 17.6TB for three-dimensional

simulations, 4.3GB for two-dimensional simulations, and 1.0MB for one-dimensional simulations.
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This considerable demand for storage has driven the implementation of alternative approaches,

which construct sparse discretisations of the linearised Navier-Stokes equations using spectral/

finite elements ([56],[81],[15]), and finite volume schemes ([30],[3]). These methods have the

added advantage of being able to easily handle non-Cartesian geometries. The schemes used to

solve the resulting eigenvalue problem vary depending on several factors, each presenting its own

trade-offs and advantages. While it is beyond the scope of this thesis to explore these schemes

in depth, the reader is referred to Theofilis [105] for a comprehensive review. Instead, we will

focus on the specific challenges associated with the stretching sheet problem.

Crane’s flow, like many boundary layer flows, faces ambiguity when determining appropriate

boundary conditions at the outflow. In our “global” calculations using Nektar++ in Chapter 4,

we addressed this issue by parallelising the flow and enforcing periodic perturbations, consistent

with the assumptions of our normal mode analysis. While this approach is useful for validation,

it does not provide a comprehensive description of the perturbation dynamics. Other strategies

for imposing outflow boundary conditions face similar limitations. For example, Fasel et al.

[31] used a Robin outflow condition, derived via Gaster’s transformation [35], obtained from

consideration of the local results. However, this effectively forces BiGlobal results to align with

local results by imposing artificial, non-physical boundary conditions.

Alternative outflow boundary conditions have been explored for other flow regimes, such as

no-stress conditions obtained in deriving the weak form for finite element simulations [56], and

linearly extrapolated boundary conditions [104]. These approaches typically lead to the forma-

tion of spurious modes arising in the vicinity of the outlet which need to be discarded when post

processing results [105]. However, due to the action of the stretching sheet, it is unclear whether

such an approach is justifiable in this context. In the next Section we discuss the parabolised

stability equations (PSE), which eliminate the need to specify outflow conditions due to the

parabolic nature of the approximations made.

8.1.2 PSE

The parabolised stability equations (PSE) were developed to model convective instabilities by

simplifying the elliptic linearised Navier-Stokes equations. The idea of using parabolic equations

to model the evolution of boundary layer disturbances originated by Floryan and Saric [33] and

was further explored by Hall [43] in their studies of Görtler vortices. Itoh [55] was the first to

adapt theses ideas to follow the spatial development of Tollmien-Schlichting (T-S) waves. Over

time, the method has been extended by various authors to include compressible, non-linear, and

curvature effects, which are particularly relevant for stretching sheet flows ([48],[6],[49]).

N.Hanevy, PhD Thesis, Aston University 2024 107



Stretching Surface Flows Future Works

The appeal of the PSE lies in its computational efficiency compared to global schemes or direct

numerical simulation (DNS). This is achieved by decomposing perturbations into a slowly varying

amplitude function and an oscillatory part, expressed as:

q̃(x, t) = q̂(x, y) exp

{︃
i
(︂∫︂ x

x0

α(x̄) dx̄+ βz − ωt
)︂}︃

.

It is further assumed that the basic flow varies slowly in the streamwise direction, which implies

that the perturbation amplitude functions and the streamwise wavenumber α are also slowly

varying functions of x. This leads to the introduction of the following scales

V,
∂

∂x
∼ O(R−1), U,

∂

∂y
∼ O(1).

When substituted into the linearised Navier-Stokes equations, terms of up to O(R−1) are re-

tained, resulting in a system of “almost” parabolic stability equations. However, residual ellip-

ticity introduces step size restrictions, where oscillations may develop in the numerical solution

if the step size is too small. As a consequence, stabilisation schemes have been proposed. For

example, Li and Malik [66] suggest omitting the x-derivative of the pressure perturbation to

relax step size constraints, whereas Andersson et al. [4] propose the inclusion of an additional

stabilisation terms. However, as Towne et al. [108] demonstrate, the PSE can only capture

disturbances of a single wavelength at each frequency and that the imposition of stabilisation

techniques can lead to the improper evolution of disturbances.

The PSE approach treats a boundary value problem as an initial value problem, where the

streamwise marching scheme is initialised by solutions attained from local analysis. The qual-

ity of results for the PSE is therefore highly dependent on the quality and applicability of the

conditions used to initialise the scheme. Despite this limitation, the method has demonstrated

excellent performance in simulating boundary layers, particularly within the Falkner-Skan-Cooke

family, which includes the Blasius boundary layer. Evidence of this can be found in the compari-

son between PSE results and direct numerical simulation (DNS) in Bertolotti et al. [6] where the

two approaches show excellent agreement. Although it is difficult to know in advance whether

this agreement will hold for a given flow regime, the significant reduction in computational cost

compared to other non-local schemes makes PSE an attractive option when applicable.

Preliminary numerical experimentation indicates that non-parallel effects are destabilising for

the isothermal flat stretching sheet. Further details about our implementation may be found

in Appendix D. A comparison between the local and PSE solutions are shown in Figure 8.1,

where the streamwise marching scheme has been initialised from the critical values reported

by Griffiths et al. [39] and in table 4.1. The results show significant amplification occurs when

the development of the boundary layer is considered. This is in contrast to the studies of
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Figure 8.1: Comparison of local and PSE results for the isothermal stretching sheet. The scheme
is initialised using the eigenfunctions calculated from the spatial modal analysis for R = 48499.1,
ω = 0.1364.

Wang [117] and Malik et al. [73] for the rotating disk flow. However, it is well know that the

rotating disk boundary layer is susceptible to absolute instabilities [67], the presence of which

may contaminate the PSE results for the disk [108].

Although we have not yet conducted a full parametric analysis of Crane’s flow using PSE,

such an investigation would allow for a detailed quantification of the effects of curvature on

convective instabilities in extrusion flows. This approach has been widely applied in studies of

instabilities over swept wings, where the irregular wing geometry is accounted for by expressing

the Navier-Stokes equations in curvilinear coordinates [117].

8.1.3 Absolute Instability

In prior stability analyses throughout this thesis, we focused on either temporal or spatial

instabilities, referring to disturbances that grow either in time or space. In contrast, absolute

instabilities are disturbances that grow both in space and time, typically defined by the impulse

response or Green’s function. The rotating disk boundary layer, for instance, is known to be

susceptible to absolute instabilities [67]. In the previous Section, we proposed the use of the

PSE to evaluate the impact of curvature and non-parallel effects for Crane’s flow. Given the

qualitative similarities between Crane’s flow and the rotating disk—and the inability for the PSE

to capture absolute instabilities—in this Section, we present our reasoning for why we believe

that Crane’s flow is not absolutely unstable. This supports the continued use of PSE in future

investigations. To build this argument, we must first introduce several concepts and definitions
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that are specific to absolute instabilities.

We begin by taking a dispersion relation

D(α, ω; R) = 0,

where α, ω and R, as before, represent the streamwise wavenumber, frequency and Reynolds

numbers respectively. To analyse the system’s stability, we introduce the associated differential

operator that governs the fluctuations Ψ(x, t) in real space and time. This is expressed as

D
[︃
−i ∂
∂x
, i
∂

∂t
; R

]︃
Ψ(x, t) = 0.

To deduce the flow’s stability characteristics we are interested in the system’s response to im-

pulsive forcing. This is given by the Green’s function G(x, t) as follows

D
[︃
−i ∂
∂x
, i
∂

∂t
; R

]︃
G(x, t) = δ(x)δ(t), (8.1)

where δ denotes the Dirac delta function and the basic flow is perturbed at x = t = 0. Flow

stability can then be defined in terms of the Green’s function as follows [97]: The basic flow is

linearly stable if

lim
t→∞

G(x, t) = 0 along all rays
x

t
= constant.

The basic flow is linearly unstable if

lim
t→∞

G(x, t) → ∞ along at least one ray
x

t
= constant.

Unstable basic states are then further classified as being either convectively or absolutely. Con-

vective instability implies that

lim
t→∞

G(x, t) = 0 along the ray
x

t
= 0,

whereas absolute instability requires

lim
t→∞

G(x, t) → ∞ along the ray
x

t
= 0.

A schematic representation of these definitions, showing the distinction between convective and

absolute instabilities, is provided in Figure 8.2.

With these definitions noted, we will demonstrate how the method outlined in Briggs et al. [12],

may be used to assess whether a flow is absolutely unstable. In the process we will reproduce

results from Lingwood [67] for the rotating disk. Here the basic flow solutions are the well known

N.Hanevy, PhD Thesis, Aston University 2024 110



Future Works Stretching Surface Flows

Figure 8.2: Schematic depicting the impulse response of a) convective and b) absolute instabil-
ities in an x-t-plane diagram.

Von Kármán [115] solutions obtained for the steady, axisymmetric Navier-Stokes equations in a

frame of reference rotating with the disk. The associated linear stability equations are derived by

Malik et al. [73] (Equations (2.11)–(2.14)) and include higher order basic flow terms associated

with streamline curvature and Coriolis forces.

Our definition of the Green’s function (8.1), may be expressed as a double Fourier integral

G(x, t) =
1

4π2

∫︂
F

∫︂
L

exp [i(αx− ωt)]

D(α, ω)
dα dω,

where L and F denote inversion contours in the ω and α planes respectively. Given the defi-

nitions of convective and absolute instabilities, we are interested in calculating the large time

behaviour of the Fourier-Laplace integral. Briggs’ method involves “splitting” this integral, by

first considering the wave number integral

G̃(x, ω) =
1

2π

∫︂
L

exp [iαx]

D(α, ω)
dα,

followed by the frequency inversion

G(x, t) =
1

2π

∫︂
F
G̃(x, ω) exp [−iωt] dω.

In Figure 8.3, we begin by computing the numerical dispersion relation along the contours

labelled ωF and αL at Re = 515, β = 6, for the rotating disk. The contour F is chosen to lie

above all zeros of the dispersion relation, thereby satisfying the causality condition. This ensures

that all disturbances are zero for t < 0. Evaluating the spatial eigenvalue problem along this
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Figure 8.3: Diagram illustrating Briggs’ method for locating absolute instabilities in the rotating
disk. In each plot the direction of the markers indicate the direction of the evolution branch for
increases in the real part of the spanwise wavenumber and frequency.

contour leads to the two spatial branches in b). The subscripts 1 and 2, refer the mode type.

The type 1 or cross-flow mode was originally discovered by Gregory et al. [38]. It is inviscid

and is related to instabilities observed on swept wings. The type 2 mode is viscous and caused

by curvature and Coriolis effects. They were originally found in the calculations Malik et al.

[73], who retained higher-order basic flow terms when parallelising the linearised Navier-Stokes

equations.

Solving the temporal problem along the contour αL, leads to the curve ω(αL) in a). The essence

of Briggs’ method is to deform the contour ωF , so that the spatial contour αL is pinched between

the two spatial branches. This is shown in c) and d) for Re = 530, β = 67. Here the prime

superscripts indicate that the contours have been deformed. Note also that in d) one of the

spatial branches is now of type 3. These modes were initially found by Mack [71] and are

spatially damped but propagate energy towards the centre of the disk.

Using Briggs’ criterion we can conclude that an absolute instability has been found since a pinch
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point in the α plane has been found with branches which originate from different halves of the

α plane (±αi) and we have a corresponding branch point in the ω plane, where ωi > 0 at the

branch point. In contrast, for Crane’s flow, we have not found an equivalent to the type 3

mode in the disk, which opposes the direction of the mean flow. This indicates that absolute

instabilities are not present and that the PSE is a viable approach for evaluating non-parallel

effects in such flows. However, it is important to note that this may change if the momentum

equations in the sheet and boundary layer are coupled, potentially giving rise to different modes

of instability, such as interfacial instabilities, which could induce absolutely unstable behaviour.

8.1.4 Görtler Vortices

Görtler [37] was the first to examine steady instabilities for Blasius flow over a concave surface.

His analysis involved transforming the cylindrical Navier-Stokes equations into a Cartesian-

like system, by taking the large Reynolds number, small curvature limit. Assuming a two-

dimensional basic flow, one arrives at a system of linearised boundary layer equations with an

additional forcing term in terms of the Görtler number in the y momentum equation to account

for the curved geometry. The Görtler number is assumed to be finite and is defined using

G2 =
RL

R
,

where R is the Reynolds number, L is a characteristic length scale and R is the radius of

curvature. Following Görtler’s approach local results can be obtained, where it is found that

disturbances in the form of streamwise-oriented, counter rotating vortices develop. This is

similar to the non-modal instability mechanism studied in Chapter 6, the difference being that

the most amplified Görtler vortices are steady. From the local results, neutral stability curves

that separate the (β,G) plane—where β is the spanwise wavenumber—into regions of stability

and instability can be calculated. However, Hall [43] has shown that a unique neutral curve

cannot be found for all values of β and that the stability of the system can only be determined

by solving a parabolic system of equations, similar to the PSE, which depend on the choice of

initial condition. Nevertheless for G > 7, marching solutions are found to converge to local

solutions [10].

The Görtler instability belongs to a family of related but distinct instabilities induced by cen-

trifugal forces, all of which are governed by the Rayleigh circulation criterion [90]. The inviscid

mechanism for these instabilities was originally given for flows in a circular geometry (r, θ, z),

with a parallel basic flow of the form u = (0, U(r), 0). In such a scenario, Rayleigh’s circulation
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Figure 8.4: Schematic illustrating combinations of base flows and surface curvatures to induce
centrifugal instabilities. According to the Rayleigh circulation criterion a) and d) are stable,
whereas b) and c) are unstable. This Figure is reproduced from the review of Saric et al. [95].

criterion is a necessary and sufficient condition for the existence of instabilities, stating that if

d

dr
(rU(r)) < 0,

anywhere in the flow, then the flow is unstable. A schematic of different flow configurations and

surface curvatures is shown in Figure 8.4. While the diagrams depict linear velocity profiles,

Floryan [32] has shown that the criterion also holds for boundary layers. With the inclusion

of viscosity, Rayleigh’s criterion becomes a necessary condition. Rewriting Crane’s flow in an

equivalent form we have y = R− r, where R, is the radius of curvature of the surface, such that

U = er−R =⇒ d

dr
(rU(r)) > 0,

and the criterion is not satisfied. This corresponds to Figure 8.4 d). It should be noted that
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the same conclusions were reached by Davis and Pozrikidis [26] and Bhattacharyya and Gupta

[7] for the flat stretching sheet. For the concave surface profiles expected in extrusion flows,

the combination of basic flow and curvature is not conducive to inducing the Görtler instability.

However, this observation suggests that the surface thickening profiles examined in Chapter 3

may be susceptible to these instabilities.

8.2 The Coupled Sheet Fluid Problem

To fully describe the dynamics of the flow induced by a stretching sheet, it is necessary to couple

the dynamics of the sheet with those of the ambient fluid. Analytical approximations could be

constructed by modifying the Trouton-based analysis of Howell [50], imposing a stress condition

at the interface between the two fluid mediums to drive the boundary layer flow. Numerical

simulations however, present significant challenges given the rapid changes in viscosities between

the two phases. Nonetheless, interface tracking schemes such as volume of fluid or level-set

methods, may be applicable in less severe regimes in order to validate analytical approximations.

Both types of analysis in this case would require fixing the sheet to have finite length. While

the boundary layer approximation has proven useful thus far, this approach would yield more

industrially relevant results. In this Section, we highlight some approaches that have been taken

in the literature thus far and suggest means by which they could be adapted and improved.

Of particular interest is the experimental and numerical results of Tammisola et al. [102], who

examined the effects of surrounding air flow on the stability of a planar liquid sheet. In their

experiments, a sheet of water falling under the influence of gravity was surrounded on either

side by a channels of air flowing from pumps. Their aim was to prevent the break-up of the

liquid sheet by co-blowing air at a similar velocity, reducing the shear stress at the interface.

Experimental results were compared to a simple one-dimensional model. To derive this model,

the basic states were assumed with a uniform profile imposed in the sheet, based on experimental

results. In the boundary layer, two different profiles were employed. The first was the Sakiadas

profile [94], which is a solution to the boundary layer equations for a constant, non-accelerating

wall velocity. The second profile used was the analytical solution to Stokes’ first problem,

expressed in terms of the error function. To attain results, an Orr-Sommerfeld equation was

constructed by perturbing about the assumed basic states. The equations were supplemented

by five additional boundary conditions to capture the interface dynamics: velocity continuity (I

& II), continuity of shear stress (III), normal stress jump (IV), and the evolution equation (V)

at the interface.

While the co-blowing of air was shown to be stabilising, superior agreement between the ex-

perimental and theoretical results was found when the boundary layer was assumed to be fully

driven by the sheet. This discrepancy arises due to the increased uncertainty regarding the
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basic flows in the co-blowing scenario. However, given that the stagnant air case more closely

corresponds to extrusion type flows, this indicates that this approach could be used to model

the fully coupled dynamics, at least within some small deformation limit. It should be noted

that the analysis was presented to extend theoretical results attained for the breakup of inviscid

sheets, such as the analytical results of De Luca and Costa [27], who identified the presence of a

convective-absolute instability boundary in their weakly non-parallel analysis of an inviscid two-

dimensional sheet falling under gravity surrounded by a still gas. This is in contrast to the small

Reynolds number approach used to model extrusion flows as in Howell [51] and O’Kiely et al.

[84]. Whether the agreement between theory and experiment would persist in the viscous limit

is unclear. However, given the relative ease at which such an approach could be implemented,

it may prove beneficial to validate any numerical or experimental results in future. From [51],

we can model the basic flow of a stretching viscous sheet and our analytical boundary layer

approximations in Chapter 3 could easily be adapted for such an analysis.

The stability of the coupled sheet-fluid system was investigated numerically in the work of

Della Pia et al. [28], utilising the volume of fluid method. This approach involves solving the

continuity and Navier-Stokes equations over the entire domain, where material properties such

as density and viscosity are discontinuous across the interface. The Navier-Stokes equations

are supplemented with a volume fraction advection equation, which tracks the location of the

interface as the solution evolves in time. Global stability properties of the flow regime were

obtained by adding a small amplitude Gaussian bump to the steady solutions obtained for the

sheet, where it was found that the system was destabilised for large density ratios between the

sheet and ambient fluid.

This analysis is closer to the coupled problem found in extrusion flows since it reduces the

sheet Reynolds number from R = 3000 in Tammisola et al. [102], to R = 420. However,

the Reynolds number still remains far too large for conclusions regarding industrially relevant

extrusion regimes to be drawn from this study. For example in the modelling of glass sheet

drawing in O’Kiely [82], an upper bound of R = 10−4 within the sheet in provided. While the

Reynolds number of the sheet could be lowered further, such schemes are known to develop

interfacial spurious currents when sharp variations in fluid properties are observed across the

interface [54]. It is hoped that improvements in the development of these schemes, will make

these extrusion regimes accessible to numerical simulations in the future.

To conclude, we briefly comment on the work of Al-Housseiny and Stone [2], who derived

analytical basic flow solutions for the coupled sheet-fluid problem for both viscous and elastic

sheets. Rather than using asymptotic arguments to determine the dominant balance of the

system, a number of ad-hoc assumptions are made regarding the relative sizes of the respective

terms in the two phases. To construct a matching condition at the interface, it is assumed that
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the x-component of the normal stress in the sheet is a function of the streamwise sheet velocity,

while the shear stress term in the sheet is a function of the streamwise boundary layer velocity,

with no justification provided for why these approximations are made. These assumptions could

be better substantiated by non-dimensionalising the problem to exploit small aspect ratios in

the sheet [51].

While this analysis represents the first theoretical attempt to couple dynamics of the sheet

and the boundary layer, the authors themselves acknowledge that “these self-similar solutions

are valid under limiting conditions”. More general solutions may be obtained by modifying the

Trouton approach ([51],[84]), which imposes a no-stress condition at the interface, to incorporate

a thin shear layer near the interface which allows the Trouton solutions to match with deforming

boundary-layer solutions equivalent to those presented in Chapter 3. Given the large viscosity

ratios between the two phases, this inner boundary layer would likely be very thin. This property,

which makes the problem numerically very challenging, should be amenable to an asymptotic

analysis which could exploit this small length scale.
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Appendix A

Numerical Validation of Basic Flow

Solutions

A.1 Crane’s Flow

Here we give a detailed outline of the numerical schemes used to attain and validate the similarity

solutions obtained in Chapter 3. As previously shown the Keller-Box method [60] provided

accurate solutions in all cases. Due to a discrepancy between the Keller-Box solutions and our

locally self similar solutions in the dissipative regime, a linear finite difference scheme was also

used to ensure the that the Keller-Box solutions were behaving as expected. This comparison

was only possible when the energy and momentum equations were uncoupled.

A.1.1 Shooting Scheme

Recalling our governing boundary layer equations (3.2), where to illustrate our scheme, we focus

on the non-dissipative regime Ec = 0.

µf ′′′ + µ′f ′′ + ff ′′ − f ′2 = 0, (A.1a)

T ′′ + Pr(fT ′ + Ecx2µ(f ′′)2) = 0. (A.1b)

Note also that we have ommitied the y momentum equation as it is simply integrated to attain

the pressure and has no bearing on the boundary conditions determined by the shooting scheme.
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The boundary condiions are

f = f ′ − 1 = T − 1 = 0 at η = 0, (A.1c)

f ′ → 0, T → 0 as η → ∞. (A.1d)

To proceed we write our goevening equations as a system of first order ODE’s as follows

f = y1, f ′ = y2, f
′′ = y3, T = y4, T ′ = y5.

so that

y′1 = y2, (A.2a)

y′2 = y3, (A.2b)

y′3 = 1/µ
(︁
y22 − µ′y3 − y1y3

)︁
, (A.2c)

y′4 = y5, (A.2d)

y′5 = −Pr y1y5 (A.2e)

Our goal is to reformulate this boundary value problem as an initial value problem and determine

the initial conditions y3(0) and y5(0) so that the free-stream conditions are satisfied. To proceed

we solve (A.2) subject to the “guessed” initial conditions

y1(0) = a, y5(0) = b, (A.3)

These guesses are iterated using Newtons method until the free stream conditions y2(η∞) and

y5(η∞) are sufficiently close to zero. This leads the following[︄
an+1

bn+1

]︄
=

[︄
an

bn

]︄
−

(︄[︄
∂y2
∂a

∂y2
∂b

∂y5
∂a

∂y5
∂b

]︄−1 [︄
y2

y5

]︄ ⃓⃓⃓⃓
⃓
η=η∞

where the Jacobian is calculated numerically using finite differences and the ODE’s are integrated

using a fourth order Rungga Kutta scheme. The value of η∞ is made progressively larger so as

to avoid convergence issues associated with poor initial guesses.
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A.1.2 Keller-Box Method

Recalling our governing boundary layer PDEs for Crane’s flow (2.2)

∂u

∂x
+
∂v

∂y
= 0, (A.4a)

u
∂u

∂x
+ v

∂u

∂y
=

∂

∂y

(︃
µ
∂u

∂y

)︃
, (A.4b)

u
∂T

∂x
+ v

∂T

∂y
= Pr−1 ∂

2T

∂y2
+ Ecµ

(︃
∂u

∂y

)︃2

, (A.4c)

and corresponding boundary conditions

u− x = v = T − 1 = 0 at y = 0, (A.4d)

u→ T → 0 as y → ∞. (A.4e)

To validate our similarity solutions we compared them to numerical solutions of the boundary

layer equations using the Keller-Box method [60]. The Keller-Box method is an implicit finite

difference scheme which has been used to solve a wide variety of nonlinear boundary layer prob-

lems. The method is described in detail by Cebeci and Bradshaw [18], however we will provide

an explanation of how the method was applied to our extension of Crane’s model including both

viscothermal and dissipative effects. To apply the Keller-Box method we define

a = v, b = u, c = u′,

d = T, e = T ′,

with primes being used to denote differentiation with respect to y. We write our system (3.2)

as

a′ + bx = 0, (A.5a)

b′ − c = 0, (A.5b)

µ(d)(c′ −mec)− bbx − ac = 0, (A.5c)

d′ − e = 0, (A.5d)

1

Pr
e′ − bdx − ae+ Ecµ(d)c2 = 0. (A.5e)

To initialise the scheme we set the initial temperature and velocity profiles at x = 0, equal to

the similarity solutions computed above for a given value of the sensitivity parameter. This is

then used as the initial guess for the profile at xi = xi−1 +∆x. The ODE’s are then evaluated
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Figure A.1: Diagram outlining how the Keller-Box scheme is discretised.

at (xi, yj−1/2) while the PDE’s are evaluated at (xi−1/2, yj−1/2). As such it is useful to define

the following quantities

∆ya
i
j =

1

2∆yj
(aij + ai−1

j − aij−1 − ai−1
j−1),

∆xa
i
j =

1

2∆xi
(aij − ai−1

j + aij−1 − ai−1
j−1),

a
i−1/2
j−1/2 =

1

4
(aij + ai−1

j + aij−1 + ai−1
j−1).

which will be used to simplify the notation in the explanation that follows. The next step is to

linearise (A.5). Since a, b, c, d, e are known at the previous step in x, xi−1, we use this as our

initial guess at xi by setting

aij = a
i(n)
j + δaij ,

where a
i(0)
j = ai−1

j and δ denotes a correction to our current guess, which is assumed to be small.

To simplify notation the superscripts on the perturbed quantities will be dropped since their x
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location is known. The viscosity term is written

µ(d
i−1/2
j−1/2) = e

−m
(︂
d
i−1/2
j−1/2

+
δdj+δdj−1

4

)︂
.

= e
−md

i−1/2
j−1/2e−

m
4
(δdj+δdj−1),

= e
−md

i−1/2
j−1/2(1− m

4
[δdj + δdj−1]) +O(δ2),

µ(d
i−1/2
j−1/2) =

[︂
1 +md

i−1/2
j−1/2 +

m

4
(δdj + δdj−1)

]︂−1
,

=
[︂
1 +md

i−1/2
j−1/2

]︂−1

⎡⎣1 + m

4

δdj + δdj−1

1 +md
i−1/2
j−1/2

⎤⎦−1

,

=
[︂
1 +md

i−1/2
j−1/2

]︂−1

⎛⎝1− m

4

δdj + δdj−1

1 +md
i−1/2
j−1/2

⎞⎠+O(δ2),

for the exponential and inverse distributions respectively. Substituting this into our first order

system yields

α1δaj + α2δaj−1 + α3δbj + α4δbj−1 = r1, (A.6a)

1

∆y
(δbj − δbj−1)−

1

2
(δcj + δcj−1) = r2 = 0, (A.6b)

β1δaj + β2δaj−1 + β3δbj + β4bj−1 + β5δcj + β6δcj−1

+β7δdj + β8δdj−1 + β9δej + β10δej−1 = r3, (A.6c)

1

∆y
(δdj − δdj−1)−

1

2
(δej + δej−1) = r4 = 0, (A.6d)

γ1δaj + γ2δaj−1 + γ3δbj + γ4δbj−1 + γ5δcj + γ6δcj−1

+γ7δdj + γ8δdj−1γ9δej + γ10δej−1 = r5, (A.6e)

where the coefficients of the corrections in the continuity, momentum, and energy equations are

outlined below. Note that we have only imposed that the perturbations satisfy the ordinary

differential equations in (A.6b) and (A.6d). While this is a nonstandard way of applying the

Keller-Box method, it prevented oscillations from developing in the corrections which in turn

prevented the scheme from converging at a sufficiently large distance downstream. Applying the

Keller-Box method as suggested in Cebeci and Bradshaw [18] would instead result in

r2 = − 1

∆y
(bij − bij−1) +

1

2
(cij − cij−1), (A.7)

r4 = − 1

∆y
(dij − dij−1) +

1

2
(eij − eij−1). (A.8)

However, we will show that our modified version of the method strongly agrees with our similarity

solutions for Ec = 0 and a finite difference scheme which can only be used when the temperature
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and fluid flow are uncoupled as it is unable to handle the nonlinear terms which arise in the

coupled case. The errors for the remaining equations are defined

r1 = −∆ya
i
j −∆xb

i
j , (A.9a)

r3 = −µi−1/2
j−1/2

(︂
∆yc

i
j −mµ

i−1/2
j−1/2c

i−1/2
j−1/2e

i−1/2
j−1/2

)︂
+ b

i−1/2
j−1/2∆xb

i
j + a

i−1/2
j−1/2c

i−1/2
j−1/2, (A.9b)

r5 = −Pr−1∆ye
i
j + b

i−1/2
j−1/2∆xd

i
j + a

i−1/2
j−1/2e

i−1/2
j−1/2 − Ecµ

i−1/2
j−1/2

(︂
c
i−1/2
j−1/2

)︂2
. (A.9c)

The coefficients of the continuity equation are

α1 = −α2 =
1

2∆y
, (A.10a)

α3 = α4 =
1

2∆x
. (A.10b)

For the momentum equation we have

β1 = β2 = −1

4
c
i−1/2
j−1/2, (A.11a)

β3 = β4 = −1

4
∆xb

i
j −

1

2∆x
b
i−1/2
j−1/2, (A.11b)

β5 = µ
i−1/2
j−1/2

[︃
1

2∆y
− m

4
µ
i−1/2
j−1/2e

i−1/2
j−1/2

]︃
+

1

4
a
i−1/2
j−1/2, (A.11c)

β6 = µ
i−1/2
j−1/2

[︃
− 1

2∆y
− m

4
µ
i−1/2
j−1/2e

i−1/2
j−1/2

]︃
+

1

4
a
i−1/2
j−1/2, (A.11d)

β7 = β8 = −m
4

(︂
µ
i−1/2
j−1/2

)︂2 (︂
∆yc

i
j − 2mµ

i−1/2
j−1/2c

i−1/2
j−1/2e

i−1/2
j−1/2

)︂
, (A.11e)

β9 = β10 = −m
4

(︂
µ
i−1/2
j−1/2

)︂2
c
i−1/2
j−1/2. (A.11f)

Finally, for the energy equation we have

γ1 = γ2 = −1

4
e
i−1/2
j−1/2, (A.12a)

γ3 = γ4 = −1

4
∆xd

i
j , (A.12b)

γ5 = γ6 =
Ec

2
µ
i−1/2
j−1/2c

i−1/2
j−1/2, (A.12c)

γ7 = γ8 = − 1

2∆x
b
i−1/2
j−1/2 −

Ec

4
m
(︂
µ
i−1/2
j−1/2c

i−1/2
j−1/2

)︂2
, (A.12d)

γ9 =
1

2Pr∆y
− 1

4
a
i−1/2
j−1/2, (A.12e)

γ10 = − 1

2Pr∆y
− 1

4
a
i−1/2
j−1/2, (A.12f)

Where we have used the inverse rather than the exponential viscosity distribution in our deriva-

tion of the numerical scheme. However, this could be easily interchanged. Now we write our
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system in block tridiagonal form such that

Ā∆̄ = R̄ (A.13)

=

⎡⎢⎢⎢⎢⎣
B1 C1 0 · · · 0 0 0

A2 B2 C2 · · · 0 0 0
...

...
...

. . .
. . .

. . .
...

0 0 0 · · · 0 AJ BJ

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
∆1

∆2

...

∆J

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
R1

R2

...

RJ

⎤⎥⎥⎥⎥⎦ . (A.14)

To determine the matrices and vectors in this block system we need only to consider a system

with two points in the y direction, from which the full system can be easily derived⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 − 1
∆y −1

2 0 0 0 1
∆y −1

2

0 − 1
∆y −1

2 0 0 0 1
∆y −1

2 0 0

β2 β4 β6 β8 β10 β1 β3 β5 β7 β9

α2 α4 0 0 0 α1 α3 0 0 0

γ2 γ4 γ6 γ8 γ10 γ1 γ3 γ5 γ7 γ9

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

δa1

δb1

δc1

δd1

δe1

δa2

δb2

δc2

δd2

δe2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−ai1
xi − bi1
1− di1

0

0

r3

r1

r5

−bi2
−di2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (A.15)

Here we have exchanged rows in order to ensure that the main diagonal sub matrix is non

singular. This required in order to be able to apply of block version of the TDMA algorithm.

Note that the ordering is not unique. At a general, internal point yj we have

Aj =

⎡⎢⎢⎢⎢⎢⎢⎣
β1 β3 β5 β7 β9

α1 α3 0 0 0

γ1 γ3 γ5 γ7 γ9

0 0 0 0 0

0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ , Bj =

⎡⎢⎢⎢⎢⎢⎢⎣
β2 β4 β6 β8 β10

α2 α4 0 0 0

γ2 γ4 γ6 γ8 γ10

0 0 0 − 1
∆y −1

2

0 − 1
∆y −1

2 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ , (A.16)

Cj =

⎡⎢⎢⎢⎢⎢⎢⎣
0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 − 1
∆y −1

2

0 − 1
∆y −1

2 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ , Rj =

⎡⎢⎢⎢⎢⎢⎢⎣
r3

r1

r5

r4

r2

⎤⎥⎥⎥⎥⎥⎥⎦ , (A.17)
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with the only changes occurring in B and R at either boundary. On the surface of the sheet we

have

B1 =

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0 0 0

0 1 0 0 0

0 0 0 1 0

0 0 0 − 1
∆y −1

2

0 − 1
∆y −1

2 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ , R1 =

⎡⎢⎢⎢⎢⎢⎢⎣
−ai1
xi − bi1
1− di1
r4

r2

⎤⎥⎥⎥⎥⎥⎥⎦ , (A.18)

while at the free stream we get

BJ =

⎡⎢⎢⎢⎢⎢⎢⎣
β2 β4 β6 β8 β10

α2 α4 0 0 0

γ2 γ4 γ6 γ8 γ10

0 1 0 0 0

0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎦ , RJ =

⎡⎢⎢⎢⎢⎢⎢⎣
r2

r1

r5

−biJ
−diJ

⎤⎥⎥⎥⎥⎥⎥⎦ , (A.19)

The problem was solved on for [x, y] ∈ [0, 0]× [10, 20] with a step size of 0.01 in the x direction.

To reduce the computational cost the y coordinate, which was originally linearly spaced, with

one quarter the density of the x mesh was transformed using

ŷ = y exp

(︃
y − Ymax

Ymax

)︃
to concentrate the density of the mesh near the surface of the sheet.

A.1.3 TDMA Scheme

Here we will provide a brief explanation of the finite difference scheme employed to validate the

Keller-Box code in the dissipative regime with constant viscosity. The objective is to construct a

linear system Ax = b, using the known solutions at xi to update the solutions at xi+1. Since the

momentum and energy equations are uncoupled we consider them separately. The continuity

and momentum equations are approximated as follows

1

∆y

[︂
vi+1
j − vi+1

j−1

]︂
= − 1

2∆x

[︂
ui+1
j − uij + ui+1

j−1 − ui+1
j−1

]︂
, (A.20)

uij
∆x

[︂
ui+1
j − uij

]︂
+

vij
2∆y

[︂
ui+1
j+1 − ui+1

j−1

]︂
=

1

(∆y)2

[︂
ui+1
j+1 − 2ui+1

j + ui+1
j−1

]︂
(A.21)

Where the finite difference approximations are chosen to ensure the system is linear in the

unknown ui+1
j terms. Since we know the free stream, wall and left boundary conditions we can

N.Hanevy, PhD Thesis, Aston University 2024 134



Numerical Validation of Basic Flow Solutions Bibliography

use the TDMA algorithm to iteratively solve successive u’s along the x direction and use the

continuity equation to update v. The xmomentum equation at some fixed xi may be represented

as the linear system Ax = b for j ∈ [2, n− 1]

A =

⎡⎢⎢⎢⎢⎢⎣
2

(∆y)2
+

ui
2

∆x − 1
(∆y)2

+
vi2
2∆y · · · 0 0

− 1
(∆y)2

− vi3
2∆y

2
(∆y)2

+
ui
3

∆x − 1
(∆y)2

+
vi3
2∆y 0 0

...
...

...
. . .

...

0 0 · · · − 1
(∆y)2

− vin−1

2∆y
2

(∆y)2
+

ui
n−1

∆x

⎤⎥⎥⎥⎥⎥⎦

x =

⎡⎢⎢⎢⎢⎣
ui+1
2

ui+1
3
...

ui+1
n−1

⎤⎥⎥⎥⎥⎦ , b =

⎡⎢⎢⎢⎢⎢⎣
(ui

2)
2

∆x − (− 1
(∆y)2

− vi2
2∆y )u

i+1
1

(ui
3)

2

∆x
...

(ui
n−1)

2

∆x − (− 1
(∆y)2

+
vin−1

2∆y )u
i+1
n

⎤⎥⎥⎥⎥⎥⎦ .

Which is solved using the TDMA algorithm. After updating u and solving for v, the temperature

equation is solved using the same approach before marching forward in the x direction.

uij
∆x

[︂
T i+1
j − T i

j

]︂
+

vij
2∆y

[︂
T i+1
j+1 − T i+1

j−1

]︂
=

1

Pr(∆y)2

[︂
T i+1
j+1 − 2T i+1

j + T i+1
j−1

]︂
+ Ec

(︄
ui+1
j − ui+1

j−1

(∆y)2

)︄2

. (A.22)

Or

A =

⎡⎢⎢⎢⎢⎢⎣
2

Pr(∆y)2
+

ui
2

∆x − 1
Pr(∆y)2

+
vi2
2∆y · · · 0 0

− 1
Pr(∆y)2

− vi3
2∆y

2
Pr(∆y)2

+
ui
3

∆x − 1
Pr(∆y)2

+
vi3
2∆y 0 0

...
...

...
. . .

...

0 0 · · · − 1
Pr(∆y)2

− vin−1

2∆y
2

Pr(∆y)2
+

ui
n−1

∆x

⎤⎥⎥⎥⎥⎥⎦ ,

x =

⎡⎢⎢⎢⎢⎣
T i+1
2

T i+1
3
...

T i+1
n−1

⎤⎥⎥⎥⎥⎦ , b =

⎡⎢⎢⎢⎢⎢⎣
ui
2T

i
2

∆x + Ec
Pr(∆y)2

(ui+1
2 − u1j )

2 − (− 1
Pr(∆y)2

− vi2
2∆y )u

i+1
1

ui
3T

i
3

∆x + Ec
Pr(∆y)2

(ui+1
3 − ui+1

2 )2

...
ui
n−1T

i
n−1

∆x + Ec
Pr(∆y)2

(ui+1
n − ui+1

n−1)
2 − (− 1

Pr(∆y)2
+

vin−1

2∆y )u
i+1
n

⎤⎥⎥⎥⎥⎥⎦ .
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Appendix B

Derivation of Deforming Boundary

Layer Solutions

B.1 Self-similar solutions in the limit as ci → 0

In the first instance we consider the case when c1 = 0. This is directly equivalent to the case when

γ = −2. From (3.10a) it is immediately apparent that if c1 = 0, then it must be the case that

X+ = 0. Solving this resulting ODE we determine that g = k
√︁
(ξUw)−1σ, where k is a constant

of integration. Thus from (3.10b) it follows that Uw = −c−1
2 k2I−1. Given that we consider only

cases where the wall velocity is positive we fix c2 = −k2. Now, by writing f̂(Z) = kf(ζ) = ψ,

where Z = kζ = σ−1ηUw, we have that u0 = σ−1Uwf̂
′
Z , and v0 = Zf̂ ′Z [σ

−1σ′ξ − U−1
w (Uw)

′
ξ]. The

ODE that governs the flow is then

f̂ ′′′ZZZ + (f̂ ′Z)
2 = 0,

which must be solved subject to

f̂(0) = 0, f̂ ′Z(0) = 1, f̂ ′Z(∞) = 0.

The ODE in question can be integrated to give

1

2
(f̂ ′′ZZ)

2 +
1

3
(f̂ ′Z)

3 = 0.
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The right-hand side of the above must be equal to zero to ensure that the far-field condition is

satisfied. In the limit as Z → 0 it then follows that

1

2
[f̂ ′′ZZ(0)]

2 = −1

3
.

Clearly, this cannot be true and, as such, we determine that no real solutions exist in the case

when γ = −2 (c1 = 0). This result is analogous to that associated with the Falkner-Skan

problem in the limit as m→ −1. In that case one is unable to determine the flow in a diverging

channel due to the very rapid deceleration of the free-stream velocity. We interpret our result

in much the same way, given that Uw is inversely proportional to I we conclude that the rapid

change of the wall velocity to zero is such that a boundary-layer cannot be accommodated by

this analysis.

In the second instance we consider the case when c2 = 0. This is directly equivalent to the case

when γ → ∞. From (3.10b) it is immediately apparent that if c2 = 0, then it must be the

case that Uw = constant. Given this result we determine, from (3.10a), that g = k
√︁
ξ−1J σ,

where k is a constant of integration fixed such that 2c1 = k2, and J = C + I. Now, by writing

f̂(Z) = kf(ζ) = ψ/
√
JUw, where Z = kζ = σ−1η

√
J −1Uw we have that u0 = σ−1Uwf̂

′
Z , and

v0 =
σ

2

√︃
Uw

J

{︃[︃
2J σ′ξ
σ2

+ 1

]︃
Zf̂ ′Z − f̂

}︃
.

The ODE that governs the flow is then

f̂ ′′′ZZZ +
f̂ f̂ ′′ZZ

2
= 0,

which must be solved subject to

f̂(0) = 0, f̂ ′Z(0) = 1, f̂ ′Z(∞) = 0.

The above ODE and boundary conditions are identical to those presented by Tsou et al. [112]

who considered purely the case when s(ξ) = 0. Thus, in all cases when the wall velocity is

constant, the boundary-layer flow over non-flat surfaces can be determined from the solutions

associated with the flow over a flat smooth boundary.

There is a special case to consider when σ/
√
J = d1 = constant. In this case v0 is a function of

Z only. It follows that

σ =
d1
2
(d2 + d1ξ),
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where C = d22/4. Stipulating that s0 = 0, and fixing d1/2 = d2 = 1, gives

s(ξ) =
σ
√
I

2
− 1

2
ln

(︃√︃
σ − 1

2
+

√︃
σ + 1

2

)︃
.

Then σu0/Uw = f̂ ′Z , and v0/
√
Uw = (2Zf̂ ′Z − f̂).

B.2 Derivation of the exact solutions

Consider equation (3.17). For convenience we define q = 2/(2+γ) so that now we seek solutions

to

f̂ ′′′ZZZ + f̂ f̂ ′′ZZ − q(f̂ ′Z)
2 = 0,

subject to

f̂(0) = 0, f̂ ′Z(0) = 1, f̂ ′Z(∞) = 0.

Following the same approach as Sachdev et al. [93] we suppose that

f̂(Z) = b+ b
∞∑︂
n=1

Anân e
−bnZ where A =

a1
b

and â1 = 1. (B.1)

The constants a1, ân and b need to be determined. Note f̂ ′Z(∞) = 0 is already satisfied.

Substituting this expression for f̂ into the ODE gives

∞∑︂
n=2

Ane−bnZ

⎛⎝−ânn2(n− 1) +

n−1∑︂
j=1

âj ân−j(n− j)[n− (q + 1)j]

⎞⎠ = 0.

To satisfy this we require that

ân =
1

n2(n− 1)

n−1∑︂
j=1

âj ân−j(n− j)[n− (q + 1)j] for n ≥ 2. (B.2)

The first few values are given by

â2 =
1− q

4
, â3 =

1− q

72
(5− 4q), â4 =

1− q

1728
(34− 53q + 21q2),

â5 =
1− q

172800
(968− 2235q + 1741q2 − 456q3), . . . .

Using f̂(0) = 0 we obtain
∞∑︂
n=1

Anân = −1, (B.3)
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which is a polynomial in the unknown A. By truncating this to a finite series we can numerically

obtain the value of A. The condition f̂ ′Z(0) = 1 yields

b =
1⌜⃓⃓⎷−

∞∑︂
n=1

nânA
n

. (B.4)

With A and b known, we can determine a1 using a1 = Ab.

Special case: q = 1

If q = 1, then ân = 0 for n ≥ 2 and therefore

f̂(Z) = b+ a1 e
−bZ .

Applying our boundary conditions yields a1 = b = 1. Hence

f̂(Z) = 1 + e−Z .

Special case: q = −1

If q = −1, then equation (B.2) reduces to

ân =
1

n(n− 1)

n−1∑︂
j=1

âj ân−j(n− j) for n ≥ 2.

With â1 = 1, the solution is given by ân = 21−n. Thus one finds that

f̂(Z) = b+ 2b

∞∑︂
n=1

(︃
A

2
e−bZ

)︃n

= b
2 +Ae−bZ

2−Ae−bZ
.

Substituting this solution into f̂(0) = 0 gives A = −2. Further f̂ ′Z(0) = 1 gives b2 = 2, hence

f̂(Z) =
√
2
1− e−

√
2Z

1 + e−
√
2Z

=
√
2 tanh

(︃
Z√
2

)︃
.
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Appendix C

Numerical Solution of Linear

Disturbance Equation

C.1 Chebychev Spectral Scheme

All of the stability calculations performed in this thesis have implemented a Chebychev spectral

scheme to discretise the linear disturbance equations. In contrast to the finite difference based

methods used to calculate the basic flows outlined in Appendix A, spectral schemes are global

since flow quantities are expanded as a linear combination of basis functions which span the

entire domain. This means that the derivative of a function depends on all its values across the

entire flow domain, and not just on neighbouring nodes. Such schemes are commonly employed

in the literature, since they provide the greatest resolution for a given number of nodes. However,

the global nature of the approximations made means that the resulting linear system is dense,

rather than sparse. The trade-off between storage requirements and accuracy poses a challenge

for naively applying spectral schemes for two and three dimensional problems. However, for the

one-dimensional problems considered here, storage requirements are modest, and global spectral

schemes can be readily applied.

Numerical discretisation is performed at the Chebychev-Gauss-Lobatto (CGL) points

ŷj = cos (jπ/N) , j = 0, 1, · · ·N.

This choice of collocation points, clusters grid points near the boundaries and minimises errors in

the form of oscillations near the endpoints observed when interpolating high order polynomials

over an equispaced grid. The CGL points are defined over the interval ŷ ∈ [−1, 1], however we

are interested in applying the scheme to solve boundary layer problems defined for y ∈ [0,∞),
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where the semi-infinite domain is truncated at y = ymax, to facilitate numerical computation.

As such we choose the following mapping to map our computational domain, to the physical

domain [97]

y = a
1 + ŷ

b− ŷ
,

where

a =
yiymax

ymax − 2yi
, b = 1 +

2a

ymax
.

This choice of mapping clusters half of the collocation points in the interval [0, yi], to ensure

accurate resolution in the near wall boundary layer. For all computations in the thesis the

following choice of parameter values

N = 100, ymax = 40, and yi = 4,

was found to provide fully converged numerical solutions. An arbitrary function f(y), defined

on the CGL points is expressed as the weighted sum of the first N Chebychev polynomials

Tn = cos (n arccos (y)) such that

f(ŷ) =
N∑︂

n=0

anTn(ŷ).

Differentiation is performed by multiplication of the derivative matrix D, which is defined as

follows [109]

D0,0 =
2N2 + 1

6
, DN,N = −2N2 + 1

6
,

Dj,j = − ŷj
2(1− ŷj)2

, j = 1, · · · , N − 1,

Di,j =
ci
cj

(−1)i+j

(ŷi − ŷj)2
, i ̸= j, i, j = 1, · · · , N − 1,

where

ci =

⎧⎨⎩2, if i = 0 or N

1, otherwise.

Higher order derivatives are obtained by repeated matrix multiplication. Due to our boundary

layer mapping, these derivatives have to be transformed using the chain rule

d

dy
=

dŷ

dy

d

dŷ
=
a(b+ 1)

a+ y

d

dŷ
,

d2

dy2
=

(︃
dŷ

dy

)︃2 d2

dŷ2
+

d2ŷ

dy2
d2

dŷ2
=

(︃
a(b+ 1)

a+ y

)︃2 d2

dŷ2
− 2a

1 + b

(a+ y)3
d

dŷ
,

and likewise for the higher order derivatives in the Orr-Sommerfeld formulation.
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Similarly, we can derive a spectrally accurate Chebychev integration matrix to evaluate the

perturbation kinetic energy. This is defined as follows

∫︂ 1

−1
f(ŷ) dŷ =

N∑︂
j=0

f(yj)W(yj),

here W(yj) is the Chebychev integration matrix. This may be derived by considering

f(ŷ) =
N∑︂

n=0

anTn(ŷ) =
N∑︂

n=0

cnTn(ŷ)
N∑︂
i=0

bi
N

Tn(ŷi), (C.1)

where we have used the discrete orthogonality conditions to determine the expansion coefficients

an such that

an =
cn
N

N∑︂
i=0

bif(ŷi)Tn(ŷi),

where b0 = bN = 1/2, bi = 1, and c0 = cN = 1, cn = 2. Integrating (C.1) with respect to ŷ we

have ∫︂ 1

−1
f(ŷ) dŷ =

1

N

N∑︂
j=0

bjf(ŷj)

N∑︂
n=0

cnTn(ŷj)
∫︂ 1

−1
Tn(ŷ) dŷ.

Now ∫︂ 1

−1
Tn(ŷ) dŷ =

⎧⎨⎩0, if n is odd,

2
1−n2 , if n is even.

Therefore we have

W(ŷj) =
bj
N

[︄
2 +

N∑︂
n=2

cn
1 + (−1)n

1− n2
cos

(︃
jπ

n

)︃]︄
,

where again we need to account for our boundary layer mapping in our integral such that

W(yj) =
bj
N

N∑︂
n=0

cn cos

(︃
jπ

n

)︃∫︂ 1

−1
Tn(ŷ)

dy

dŷ
dŷ,
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Appendix D

PSE

Here we present our formulation used for the preliminary analysis of non-parallel effects for

Crane’s flow using the PSE in Chapter 8, Section 8.1.2. We restrict our attention to the two-

dimensional development of disturbances although or scheme could be easily generalised to

account for a third homogenous spatial dimension. The beginning of our formulation follows the

derivation of the corresponding Orr-Sommerfeld-Squire system in Chapter 6 but is presented

here in full for clarity.

Starting with the dimensional continuity and Navier-Stokes equations we have

∇ · u∗ = 0, (D.1a)

ρ∗
Du∗

Dt∗
= − 1

ρ∗
p∗ + ν∗∇2u∗. (D.1b)

The velocity, pressure and time scales are a∗x∗s, ρ
∗(a∗x∗s)

2 and L∗/a∗x∗s, where L
∗ =

√︁
ν∗/a∗ is

the non-dimensionalising length scale. To initialise our PSE scheme, local solutions are obtained

at a dimensional location x∗s. This leads to the definition of a local Reynolds R = x∗sa
∗L∗/ν∗ =

x∗s/L
∗ = xs and is equivalent the dimensionless streamwise location. Thus the scheme is ini-

tialised at a local x location where the variable x is replaced by the Reynolds number as for

the temperature dependent problem. Both of these quantities are identical to those defined

in Chapter 6 for the isothermal, non-modal analysis. As before, the mean flow quantities are
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perturbed as follows

u =
x

R
U(y) + ũ, (D.1c)

v =
1

R
V (y) + ṽ, (D.1d)

p =
1

R2
P (y) + p̃, (D.1e)

where the basic flow terms are exact solutions to the Navier-Stokes equations and are given by

U = e−y, V = e−y − 1, P = P0 +
1− e−2y

2
.

It is from here that our analysis diverges from the local analysis of Chapters 4 and 6. Since

we seek to evaluate the non-parallel growth of the disturbances we proceed by expanding our

perturbation variables as follows

q̃(x, y, t) = q̂(x, y) exp

[︃
i

∫︂ x

xs

α(ξ) dξ − iωt

]︃
,

where q̃ = (ũ, ṽ, p̃). In order to parabolise the linearised Navier-Stokes equations, it is assumed

that the flow varies slowly in the streamwise direction. This assumption implies that

∂

∂x
, V ∼ O(R−1).

As a result, second order derivative terms in x are of O(R−2) and are neglected. First order

derivatives of the perturbations are expressed as follows

∂q̃

∂x
=

(︃
iαq̂+

∂q̂

∂x

)︃
exp

[︃
i

∫︂ x

xs

α(ξ) dξ − iωt

]︃
.

Substituting this into the Navier-Stokes equations we attain

∂û

∂x
+ iαû+

∂v̂

∂y
= 0, (D.2a)

− iωû+
x

R

(︃
U
∂û

∂x
+ iαUû+

∂U

∂y
v̂

)︃
+

1

R

(︃
Uû+ V

∂û

∂y

)︃
=

− ∂p̂

∂x
− iαp̂+

1

R

(︃
∂2û

∂y2
− α2û

)︃
, (D.2b)

− iωv̂ +
xU

R

(︃
∂v̂

∂x
+ iαv̂

)︃
+

1

R

(︃
V
∂v̂

∂y
+
∂V

∂y
v̂

)︃
=

− ∂p̂

∂y
+

1

R

(︃
∂2v̂

∂y2
− α2v̂

)︃
. (D.2c)
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The system is closed subject to the boundary conditions

û = v̂ = 0 aty = 0,∞. (D.2d)

For convenient numerical discretisation, the above system may be written in the equivalent form

Aq̂+ B∂q̂
∂y

+ C ∂q̂
∂y

+D∂q̂
∂x

= 0,

where the entries of the matrices are defined as follows [57]

A =

⎡⎢⎣ iα 0 0

ζ + U
R

x
R

∂U
∂y iα

0 ζ + 1
R

∂V
∂y 0

⎤⎥⎦ , B =

⎡⎢⎣ 0 1 0
V
R 0 0

0 V
R 1

⎤⎥⎦ ,

C =

⎡⎢⎣ 0 0 0

− 1
R 0 0

0 − 1
R 0

⎤⎥⎦ , D =

⎡⎢⎣ 1 0 0
xU
R 0 1

0 xU
R 0

⎤⎥⎦ ,
where

ζ = −iω +
1

R

(︁
iαxU + α2

)︁
.

Discretisation in the wall normal direction is performed using the Chebychev spectral scheme

outlined in Appendix C. Starting with a local solution obtained by solving the corresponding

quadratic eigenvalue problem for a given (R, ω), solutions are marched downstream using a first

order backwards Euler scheme. Given that both the phase and amplitude of the perturbation

evolve in the streamwise direction, at each step of the marching scheme the value of α is iterated

to satisfy the so-called auxiliary condition. While there are many ways this quantity can be

defined, here we choose ∫︂ ∞

0
q̂†∂q̂

∂x
dy = 0.

This condition ensures that the majority of the perturbations streamwise variation is attributed

to the phase function, thereby justifying the small scaling of the streamwise derivative terms. Fi-

nally, the growth rate σ is defined in terms of the disturbance kinetic energy E =
∫︁∞
0

(︁
|û|2 + |v̂|2

)︁
dy,

following Juniper et al. [57]

σ = −αi +
∂

∂x
ln(

√
E).
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