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Abstract

We consider the linear stability of steady boundary layer flows induced by the translation of a

moving wavy surface of infinite length. The wavy surface has a sinusoidal profile and is consid-

ered here as a model for surface roughness. Previous studies have used similar surface rough-

ness models when analysing roughness effects on three-dimensional axisymmetric boundary-

layer flows. In these instances, surface roughness has been shown to stabilise convective modes

of instability. The motivation for this study is to ascertain if qualitatively similar results are

predicted for two-dimensional boundary-layer flows where Tollmien–Schlichting waves are the

dominant mode of instability. Combining results from two separate numerical analyses with a

large Reynolds number asymptotic analysis we show that these types of flow configurations are

indeed stabilised by the presence of surface roughness. We validate our numerical analyses by

employing an alternative approach, where the modified mean flow is determined by solving the

Reynolds-averaged boundary layer equations. Once again, our results demonstrate that these

types of flow configurations are stabilised by the presence of surface roughness.
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Chapter 1

Introduction

1.1 Motivation

The aim of this study is to add to the growing body of literature focusing on small amplitude

roughness effects in steady boundary layer flows. Our focus will be on the development of

Tollmien-Schlichting (TS) waves in two-dimensional flows with the goal being to establish if

and how periodic roughness affects the known mechanisms for the onset of linear instability.

The long-held view that surface roughness always acts to increase skin-friction drag has been

shown to be a misnomer (CarpenterCarpenter (19971997); ChoiChoi (20062006)) and, as such, researchers in recent

years have invested a great deal of effort into the determination of roughness-based drag reduc-

tion strategies. Indeed, there is a growing community of researchers exploring the utilisation

of surface roughness to reduce the high shear stresses encountered in turbulent boundary layers

(see, for example, Cardillo et al.Cardillo et al. (20132013), and Wu & PiomelliWu & Piomelli (20182018)). However, the focus of this

study is on the role surface roughness plays in the laminar to turbulent transition process. With

this objective in mind, we will analyse the linear stability of a boundary layer flow generated by

the motion of a rough surface.
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1.2 Basic Flow Solutions

The boundary layer, first hypothesized by PrandtlPrandtl (19051905), is a thin region adjacent to a surface

where fluid (like air or water) is in contact with the surface and exhibits distinctive flow be-

haviour due to viscosity. The interaction between the surface and the fluid induces a no-slip

boundary condition where the velocity is zero at the surface. The flow velocity then monotoni-

cally increases above the surface until it returns to the bulk flow velocity. The thin layer consist-

ing of fluid whose velocity has not yet returned to the bulk flow velocity is called the boundary

layer. By using an order of magnitude analysis Prandtl was able to simplify the Navier-Stokes

equations to what are now known as the boundary layer equations. BlasiusBlasius (19071907) examined

the boundary layer that forms on a semi-infinite plate which is held parallel to a constant uni-

directional flow. He was able to solve the boundary layer equations and obtained a self-similar

solution. He was able to convert the governing partial differential equations into a third-order

ordinary differential equation which is referred to as the ‘Blasius equation’.

The boundary layer that develops on a continuously moving surface—such as a flat belt, con-

veyor, or extruding sheet—was first investigated by Sakiadis in his pioneering work (SakiadisSakiadis

(1961a1961a), SakiadisSakiadis (1961b1961b)). This flow configuration, now widely known as ‘Sakiadis flow’, has

numerous practical applications, including the aerodynamic extrusion of plastic sheets and the

cooling of an infinitely extending metallic plate in a cooling bath. A schematic representation of

this flow is provided in Figure 1 of SakiadisSakiadis (1961b1961b), illustrating a continuously moving plane

sheet emerging from a slot and advancing steadily through a quiescent fluid. Due to viscos-

ity, Sakiadis demonstrated that the boundary layer thickness increases along the direction of

motion. Additionally, the velocity component perpendicular to the plate is negative, indicating

fluid entrainment from the surrounding medium into the boundary layer. By applying an appro-

priate transformation to the governing boundary-layer equations, Sakiadis derived the classical

BlasiusBlasius (19071907) equation. However, the boundary conditions in Sakiadis flow differ fundamen-
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tally from those in Blasius flow. In the former, an infinitely extending surface emerges from a

slot and moves at a constant velocity through a stationary fluid, whereas in the latter, a fixed sur-

face is subjected to an oncoming unidirectional stream. This fundamental distinction prevents

the two flows from being mathematically transformed into one another, as further demonstrated

by AbdelhafezAbdelhafez (19851985). Moreover, Sakiadis showed that the skin friction coefficient for a con-

tinuously moving surface is approximately 30% higher than that in Blasius flow, underscoring

the unique characteristics of this boundary-layer phenomenon. In fact, Sakiadis explicitly high-

lights the key differences between these two flow configurations in his works (SakiadisSakiadis (1961a1961a),

SakiadisSakiadis (1961b1961b)). In this thesis, we focus on the boundary layer that develops on an infinitely

extending moving surface, with particular attention to the effects of surface roughness.

Tsou et al.Tsou et al. (19671967) later extended the work of SakiadisSakiadis (1961b1961b) by conducting both an an-

alytical and experimental study of the velocity and temperature fields for the flow that forms

on a continuously moving surface. The authors were able to derive the basic flow solutions for

the boundary layer that formed on a continuous moving surface which agreed with the results

presented by SakiadisSakiadis (1961b1961b). Tsou et al.Tsou et al. (19671967) also obtained solutions for the temperature

distribution by solving the boundary layer energy equations and considered two cases. In the

first instance, the authors considered a uniform wall temperature and observed a sharp decrease

in the thermal boundary layer thickness with increasing Prandtl number, where the Prandtl num-

ber is defined as the ratio of momentum diffusivity to thermal diffusivity. They also determined

the thermal boundary layer to be thinner than the velocity boundary layer when the Prandtl

number was large. For the second case, Tsou et al.Tsou et al. (19671967) considered a uniform wall heat flux

and obtained similar results.

In the experimental work conducted by Tsou et al.Tsou et al. (19671967), measurements of the laminar

velocity field were obtained (see Figure 1.11.1). These measurements showed good agreement

with their analytical predictions. Consequently, Tsou et al.Tsou et al. (19671967) were able to verify Sakiadis’

theoretical results experimentally and demonstrate that this type of flow is physically realiz-
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Figure 1.1: Experimental results for the continuous moving surface taken from Tsou et al.Tsou et al.
(19671967)

.

able. More recently, HattoriHattori (20232023) conducted numerical simulations of the boundary layer

that forms over a continuously moving surface using OpenFOAM. Their results showed strong

agreement with the theoretical predictions of SakiadisSakiadis (1961b1961b), except near the leading edge,

where the boundary layer approximation is no longer valid. This discrepancy arises because

the boundary layer approximation assumes the presence of a thin viscous layer near the moving

surface, where viscosity is significant. However, at the leading edge—where the semi-infinite

sheet first emerges from the slot—the flow has not yet had sufficient time or distance to de-

velop into a thin boundary layer. In fact, when deriving the boundary layer equations, PrandtlPrandtl

(19051905) assumed that the streamwise velocity component is significantly greater than the veloc-

ity component perpendicular to the surface. However, as demonstrated by HattoriHattori (20232023), both

velocity components are of comparable magnitude near the leading edge, violating a fundamen-
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tal assumption of boundary layer theory. Despite this, HattoriHattori (20232023) showed that at a suitable

distance downstream from the leading edge, results from direct numerical simulations closely

align with theoretical predictions, confirming the validity of the boundary layer approximation

in the fully developed region.

In addition to these studies, Erickson et al.Erickson et al. (19661966) studied both the heat and mass trans-

fer on a continuous moving surface with the addition of injection and investigated the thermal

and concentration boundary layers in the case of constant temperature and concentration at the

surface. The authors obtained numerical solutions for the boundary layer momentum, energy,

and diffusion equations across a wide range of injection rates. These solutions were evaluated

for Prandtl and Schmidt numbers of 1, 10, and 100, where the Schmidt number represents the

ratio of momentum diffusivity to mass diffusivity. The authors observed a decrease in the ther-

mal boundary layer thickness with increasing Prandtl number, consistent with the findings of

Tsou et al.Tsou et al. (19671967). For a Prandtl number of unity, they demonstrated that the thermal boundary

layer coincides with the momentum boundary layer. However, for Prandtl numbers greater than

1, the thermal boundary layer was found to be contained within the momentum boundary layer.

Erickson et al.Erickson et al. (19661966) demonstrated that for small injection rates, both the local heat transfer

coefficient and the local mass transfer coefficient increase with increasing Prandtl or Schmidt

numbers. However, for large injection rates, the trend reverses, showing a rapid decrease in

these coefficients with increasing Prandtl or Schmidt numbers.

Soundalgekar & Ramana MurtySoundalgekar & Ramana Murty (19801980) investigated heat transfer in the flow past a contin-

uously moving surface with a variable temperature profile, where the temperature varies with

the streamwise coordinate as Axn. Here, A is a constant, and x is the distance from the leading

edge of the plate. By applying an appropriate transformation to the governing equations, they

derived similarity solutions. Their analysis concluded that increasing the Prandtl number or the

exponent n results in an increase in the Nusselt number. The Nusselt number, a dimensionless

measure, represents the ratio of convective to conductive heat transfer across the boundary layer.
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Soundalgekar & MurtySoundalgekar & Murty (19891989) extended this investigation by examining the effects of vis-

cous dissipation on heat transfer over a continuously moving surface. They derived self-similar

solutions and solved the resulting equations numerically. Their findings indicated that increased

viscous dissipation leads to a rise in the fluid temperature and a corresponding decrease in the

rate of heat transfer. Several other studies have further increased the complexity of this prob-

lem by incorporating the effects of variable viscosity (see Pop et al.Pop et al. (19921992), Soundalgekar et al.Soundalgekar et al.

(20042004), Elbashbeshy & BazidElbashbeshy & Bazid (20042004)) and radiation effects as per Ishak et al.Ishak et al. (20112011).

The determination of basic flow states induced by the translation of a moving wavy surface

has been considered a number of times. Of particular note is the study of Rees & PopRees & Pop (19951995)

who focus their attention on heated wavy surfaces, determining the streamwise development

of both the skin friction and local rate of heat transfer. Their results were determined using

a suitably adapted Keller-Box scheme. The authors analysed two cases: one with a constant

wall temperature (CWT) and the other with a prescribed constant heat flux (CHF). Rees & PopRees & Pop

(19951995) found that an increase in wave amplitude results in a decrease in both the skin friction

coefficient and the Nusselt number for both CWT and CHF conditions. Additionally, the skin

friction was observed to vary periodically in space. They also observed that both the local rate

of heat transfer and wall temperature increase with rising wave amplitude. Furthermore, these

quantities exhibit a periodic component that decays over time. In the constant wall temperature

(CWT) case, the decay is slow, while in the constant heat flux (CHF) case, the decay occurs

more rapidly.

Hossain & PopHossain & Pop (19961996) studied the boundary layer flow over a moving wavy surface in the

presence of an electrically conducting fluid subjected to a constant transverse magnetic field.

Their investigation focused on the combined effects of surface waviness and magnetohydrody-

namics (MHD) on the flow and heat transfer characteristics. The authors conducted a similar

analysis to that of Rees & PopRees & Pop (19951995). However, the governing equations in their study differed

due to the presence of an electrically conducting fluid influenced by a constant transverse mag-
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netic field. Focusing on a Prandtl number of 0.7, they obtained both the velocity and tempera-

ture profiles using an implicit finite-difference method coupled with the Keller-box elimination

technique.

The authors analysed the effect of the magnetic field parameter—a dimensionless measure

of the strength of the applied transverse magnetic field, where higher values indicate stronger

magnetic effects—at two streamwise locations: the trough and the crest positions. Since the

behaviour of the profiles at these locations is similar, results were presented for both positions

to illustrate the overall trends. It was observed that both the velocity and temperature profiles

increase with an increase in the magnetic field parameter M. However, for small wave ampli-

tudes and in the absence of a magnetic field, the velocity and temperature profiles at both the

trough and crest positions are nearly identical. But for larger wave amplitudes, such as a = 0.5,

there is a significant difference in the velocity and temperature profiles between the trough and

crest positions when M = 0. Additionally, as the wave amplitude increases, the velocity profiles

decrease due to the enhanced undulations of the wavy surface, which introduce greater surface

resistance and disrupt the smooth flow of the fluid. These undulations cause an increase in

drag effectively slowing down the fluid motion near the surface. In contrast, the temperature

profiles increase because the disturbed flow promotes greater mixing and thermal convection,

enhancing the heat transfer process. The authors proceeded by presenting the variations of the

wave amplitude, the magnetic field parameter, and the streamwise coordinate for both the skin

friction coefficient and the local Nusselt number. They observed that these quantities exhibit

periodic variation along the streamwise direction. Additionally, the skin friction coefficient was

found to be less than or equal to that of a flat plate, which can be attributed to the effects of the

surface waviness and the presence of the magnetic field.

The boundary layer that forms on a continuous moving wavy surface has also been in-

vestigated in the context of entropy generation as per Mehmood et al.Mehmood et al. (2019a2019a). This study

shows how factors such as surface waviness, fluid viscosity, heat transfer, and the presence of
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a magnetic field influence the rate of entropy production within the boundary layer. Entropy

generation is crucial for assessing the thermodynamic efficiency of such systems, where sur-

face irregularities and external forces like magnetic fields can affect irreversibilities due to heat

transfer and fluid friction.

1.3 Linear Stability

The purpose of this research is to investigate the stability characteristics of a continuously mov-

ing surface with the addition of surface roughness. Our findings aim to enhance the broader

understanding of hydrodynamic stability in Newtonian fluids, especially in situations where

surface irregularities affect flow behaviour and stability. The theory of hydrodynamic stability

is a fundamental area of fluid mechanics, with classical problems first identified by Reynolds,

Rayleigh, Kelvin, and Helmholtz toward the end of the 19th century. These classical problems

are extensively covered in various introductory textbooks; for example, Drazin & ReidDrazin & Reid (20042004).

Hydrodynamic stability theory predicts if and when a specific flow configuration will tran-

sition from a laminar to a turbulent state. It also describes how the flow evolves through the

transition region, providing insight into the mechanisms that trigger instability and the subse-

quent development of turbulence. In most applications, laminar flows are preferable because

they result in less energy loss due to friction. In contrast, turbulent flows lead to greater energy

consumption, reduced efficiency, and higher operational costs. However, turbulence can be ben-

eficial in specific engineering systems, such as combustion processes. In these cases, turbulence

enhances the mixing of fuel and air, which increases the reaction rate per unit volume, thereby

improving the efficiency and performance of combustors.

The first person to study the stability of fluid flow was ReynoldsReynolds (18831883). He conducted a se-

ries of experiments involving fluid flow through pipes to investigate this phenomenon. Reynolds

analysed the behaviour of dye streaks in the fluid as it flowed through three different pipes at

varying velocities. This allowed him to identify the conditions under which the flow transitioned
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from laminar to turbulent, laying the foundation for the theory of hydrodynamic stability. In the

case of laminar flow, Reynolds observed that the dye streaks extended in a straight line through

the tube, indicating smooth and orderly fluid motion. In the second case, corresponding to tur-

bulent flow, the dye mixed chaotically with the fluid. To study this turbulent scenario in greater

detail, Reynolds used an electric spark to illuminate the fluid, revealing the dye as a mass of

curls and eddies during the transition to turbulence. This visualization provided key insights

into the chaotic nature of turbulent flow and the process of transition from laminar to turbulent

states.

Through these experiments, Reynolds demonstrated that the stability characteristics of fluid

flow depend on three key quantities: V , the velocity of the fluid; r, the radius of the pipe;

and ν , the kinematic viscosity of the fluid. His most significant finding was that laminar flow

began to break down when the ratio V r/ν exceeded a certain threshold. This ratio is now

known as the Reynolds number Re, a dimensionless quantity that characterises the nature of the

flow. ‘Reynolds’ work introduced the concept of a critical Reynolds number Recrit, representing

the threshold beyond which the flow transitions from a laminar to a turbulent state. Stability

analysis can be broadly categorised into various types, including linear or non-linear analysis,

and local or global analysis. To fully understand the stability characteristics of a particular flow

configuration, it is essential to consider all these methods.

Linear Stability Analysis (LSA) is typically the first approach used and serves as a starting

point for understanding the stability of complex flows. Linear theory predicts the behaviour of

small disturbances, while weakly non-linear theory extends this by predicting the subsequent

stages of disturbance evolution when the growth rates are small but not infinitesimal.

In local analyses, disturbances are separated into Fourier-type traveling waves, allowing for

the examination of instability mechanisms at specific locations within the flow. In contrast,

global analyses involves time-dependent simulations of the full Navier-Stokes equations, cap-

turing the overall flow behaviour and interactions between disturbances throughout the entire
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domain. This combined approach provides a comprehensive understanding of the flow stabil-

ity and the transition to turbulence. To analyse the stability characteristics of a continuously

moving wavy surface, we perform a linear stability analysis. In this method, we examine the

evolution of small perturbations superimposed on a two-dimensional parallel basic flow. This

approach allows us to determine how these small disturbances grow or decay, providing insight

into the stability characteristics of the flow configuration and identifying conditions that may

lead to instability and transition to turbulence.

The parallel-flow approximation has been widely used in theoretical studies of flow stability.

This approximation assumes that the basic flow profile does not change in the streamwise di-

rection, simplifying the analysis by reducing the complexity of the governing equations. While

it may not capture all aspects of real-world flow configurations, the parallel-flow approximation

provides valuable insights into the fundamental mechanisms of an instability and serves as a

useful starting point for understanding the transition from laminar to turbulent flow. TollmienTollmien

(19301930) and SchlichtingSchlichting (19331933) utilised the parallel-flow approximation to analyse the Blasius

boundary layer. In this context, the boundary layer flow can be considered an effective approx-

imation of parallel flow because the variation of the main flow in the streamwise direction is

much smaller than its variation in the wall-normal direction. Using this approach, the partial

differential equations governing small disturbances to the basic flow can be simplified to an

ordinary differential equation. This reduction is achieved by assuming a normal mode solution

in the form of traveling waves, known as Tollmien-Schlichting (TS) waves. These waves rep-

resent the primary instability mechanism in boundary layer flows, playing a crucial role in the

transition from laminar to turbulent flow.

The resulting ordinary differential equation derived from the parallel-flow approximation is

known as the Orr-Sommerfeld equation, independently attributed to OrrOrr (19071907) and SommerfieldSommerfield

(19081908). The Orr-Sommerfeld equation is central to the theory of flow stability because analysing

its eigenvalues for a given Reynolds number provides critical insights into the linear stability
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properties of the flow. Specifically, the nature of the eigenvalues helps determine whether small

disturbances will grow or decay, indicating whether the flow remains stable or transitions toward

turbulence.

TollmienTollmien (19301930) and SchlichtingSchlichting (19331933) used the parallel-flow approximation along with

approximate solutions of the Orr-Sommerfeld equation to theoretically establish the linear sta-

bility characteristics of the Blasius boundary layer. They demonstrated that the flow becomes

linearly unstable above a critical Reynolds number of Recrit = 520. The experimental work

of Schubauer & SkramstadSchubauer & Skramstad (19481948) provided empirical evidence supporting the theoretical pre-

dictions made by Tollmien and Schlichting. Their experiments confirmed the existence of an

instability and the transition to turbulence at Reynolds numbers consistent with the theoretical

findings.

The first to investigate the linear stability of the boundary layer formed on a continuous mov-

ing surface were Tsou et al.Tsou et al. (19661966). In this pioneering study the authors showed these flows are

susceptible to Tollmien–Schlichting (TS) waves but that the onset of linear instability occurs at

a much higher Reynolds number when compared to, for example a traditional Blasius boundary

layer. Tsou et al.Tsou et al. (19661966) argue that these findings are connected with the fact that the transverse

velocity in the main flow is inward for the continuous surface problem and outward for the Bla-

sius boundary layer. It is believed that the effect of the inflow is to move the disturbances nearer

to the wall where they are more readily damped. Using a similar approach to that of Tsou et al.Tsou et al.

(19661966), Watanabe et al.Watanabe et al. (19951995) analysed the linear stability of an electrically conducting fluid

in the presence of a transverse magnetic field. Their study demonstrated that an increase in the

magnetic parameter leads to an increase in the critical Reynolds number. This indicates that

the magnetic field has a stabilising effect on the flow, delaying the onset of instability and the

transition from laminar to turbulent flow.

The linear stability characteristics of boundary layer flows induced by the translation of a

rough surface have not been systematically analysed. To that end, the focus of this thesis will
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be to consider the linear stability characteristics of boundary layer flows induced by the transla-

tion of a rough surface. The study of this two-dimensional flow is similar in some sense, to the

three-dimensional rotating disk flow studies conducted by Cooper et al.Cooper et al. (20152015) and Garrett et al.Garrett et al.

(20162016). Having said that the convective mode of instability that dominates in these rotational

flows is different in nature to the TS waves that one expects to encounter in flat plate boundary

layer flows. Although the linear stability characteristics of boundary layer flows induced by the

translation of rough surfaces have not been systematically analysed, a number of previous stud-

ies have reported on the linear stability associated with boundary-layer flows that are generated

by an external free stream interacting with a fixed plate.

Levchenko & Solov’evLevchenko & Solov’ev (19721972) predicted that small amplitude surface waviness reduces the

critical Reynolds number for the onset of linear instability when compared to the Blasius bound-

ary layer result. In order to arrive at this conclusion the authors employed a ‘frozen flow’

methodology whereby snapshots of the spatially periodic flow were analysed using an ap-

proach adopted from Floquet theory. We will employ similar approaches in this thesis in order

to analyse our base flows which we find also to vary periodically in space. The findings of

Levchenko & Solov’evLevchenko & Solov’ev (19721972) were then qualitatively supported by the experimental study of

Kachanov et al.Kachanov et al. (19741974) who showed that the growth of the TS waves increases with increasing

surface waviness.

In addition to these studies Lessen & GangwaniLessen & Gangwani (19761976) applied a suitable averaging proce-

dure, over one streamwise wavelength of a small amplitude roughness profile, to show, using

parallel flow theory, that these types of periodic roughness profiles do indeed result in a pre-

diction for the destabilisation of boundary layer flows generated by an oncoming free stream.

Applying similar methods to that of Lessen & GangwaniLessen & Gangwani (19761976), GasterGaster (20162016) observed in-

creased amplification rates of the T-S waves with increasing levels of roughness.

These findings of boundary layer destabilisation due to surface roughness effects are in di-

rect contrast to the results presented by Cooper et al.Cooper et al. (20152015) and Garrett et al.Garrett et al. (20162016). In these
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studies the authors show how the type I mode, a mode associated with convective instability

is significantly stabilised in the presence of small amplitude surface waviness. Cooper et al.Cooper et al.

(20152015) arrive at this conclusion having applied, to the calculation of the base flow quantities

only, partial slip boundary conditions at the wall to mimic the effects of surface roughness.

These findings were then supported by the results presented by Garrett et al.Garrett et al. (20162016) who, having

directly accounted for the surface variation in the derivation of their governing equations, then

go on to employ an averaging technique, not to dissimilar to that of Lessen & GangwaniLessen & Gangwani (19761976),

to analyse the linear stability characteristics of these flow profiles. More recently Thomas et al.Thomas et al.

(20232023) revisited the problem first considered by Cooper et al.Cooper et al. (20152015). In this study the authors

presented an argument for the adoption of the partial slip boundary conditions to be applied

to the calculation of both base flow and perturbation quantities. The conclusion that periodic

small amplitude roughness proves to be a stabilising feature remains the case when one con-

siders isotropic roughness (a combination of partial-slip in both the radial and azimuthal di-

rections). However, the predicted boundary layer stabilisation was significantly reduced when

compared to the findings of Cooper et al.Cooper et al. (20152015). Furthermore, in the presence of purely radial

partial-slip, the type I mode is instead predicted to be destabilised, a result opposed to the orig-

inal findings of Garrett et al.Garrett et al. (20162016). In addition to these studies Morgan & DaviesMorgan & Davies (2020a2020a) and

Morgan et al.Morgan et al. (2021a2021a) studied the control of stationary convective instabilities in the rotating

disk boundary layer via a time-periodic modulation of the disk rotation rate by employing a

technique not to dissimilar to that of Levchenko & Solov’evLevchenko & Solov’ev (19721972). The nature of this problem

led the authors to arrive at base flow solutions that were periodic in time. The standard practice

when one determines base flow solutions in this form is to conduct a Floquet analysis in order

to determine the linear stability characteristics of the system. Morgan et al.Morgan et al. (2021a2021a) do this suc-

cessfully, and, importantly for our study, show that the results owing from such an analysis can

be very well approximated by a quasi-steady approach. In essence, they find that by conducting

a standard LSA at numerous instances in time over one periodic cycle of the base flow, the
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equivalent Floquet theory result can be almost exactly reproduced simply by taking an average

of these distinct eigenvalue calculations. The relationship between the quasi-steady approach

and Floquet theory is well explained by Luo & WuLuo & Wu (20102010) in their study of the Stokes layer.

This approach is sometimes referred to as a ‘frozen flow’ analysis as one essentially freezes

the flow in time, removing the time dependence from the problem, allowing for steady LSA

approaches to be employed. Motivated by the above findings our aim is to add to the growing

body of literature focusing on small amplitude roughness effects in steady boundary layer flows.

1.4 Thesis Outline

The objective of this thesis is to analyse how sinusoidal surface roughness influences the onset

of linear instability for a specific class of boundary-layer flows, those induced by translation.

By using both numerical and asymptotic approaches, we aim to determine if surface roughness

could be exploited for flow control purposes.

In Chapter 22, we formulate the problem by accounting for variations in the wall’s surface.

We proceed by introducing a set of transformations that leads to a parabolic partial differential

equation. Finally, we derive a Keller-Box scheme which allows us to solve the resulting PDE

numerically. In Chapter 33 we derive the basic flow solutions and analyse the results in the con-

text of other studies that have considered sinusoidal wall profiles. We start by considering the

translation of a smooth surface before proceeding to analyse the effect surface waviness has on

the basic flow. By exploiting the parabolic nature of the governing equations and utilising the

Keller-Box method we find that the basic flow is periodic in space provided we are sufficiently

far enough downstream of the leading edge. A suitable averaging procedure is adopted that re-

moves all dependence of the streamwise coordinate. Finally, we verify our Keller-Box solutions

by adopting a suitable similarity approach.

In Chapter 44 we analyse the linear stability of the averaged flow solutions numerically via

two different means. In the first instance, we adopt the standard Orr-Sommerfeld approach
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twinned with an integral energy analysis. For the second approach, we conduct what we term

a ‘quasi-spatial’ linear stability analysis and compare the two methodologies. In Chapter 55 we

attempt to verify our numerical solutions by conducting a large Reynolds number analysis and

solve the resulting eigenrelation for flows of this type. In Chapter 66 we conclude by seeking an

alternative method for analysing the onset of linear instability for boundary layer flows induced

by the translation of a wavy surface. By solving the steady Orr-Sommerfeld equation subject

to inhomogeneous boundary conditions, we use the information obtained from the solution to

evaluate the Reynolds stress, which in turn modifies the mean flow. We proceed by adopting the

Orr-Sommerfeld approach to analyse the growth rates for two specific cases. First we consider

the boundary-layer induced by an external oncoming flow and we conclude the chapter by

considering the flow induced by a translating surface. In Chapter 77, we summarise our findings

and propose extensions to our analysis that incorporate surface roughness, offering a closer

representation of surfaces encountered in natural environments or industrial applications. We

conclude by exploring alternative methods for analysing the onset of linear instability. Finally,

we briefly discuss potential modifications to the problem, including the incorporation of an

external oncoming flow or a reverse free stream.
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Chapter 2

The Governing Equations

In this chapter we formulate the problem and describe the governing equations that describe

boundary layer flows over non-flat surfaces. We start by considering the two-dimensional con-

tinuity and Navier-Stokes momentum equations. To account for the variation in the wall’s

surface we make use of Prandtl’s transposition theorem, for details, see YaoYao (19881988). Essen-

tially a change of coordinate system is introduced which leads to a more complex form of the

two-dimensional continuity and Navier-Stokes momentum equations. The problem is then non-

dimensionalised and we introduce the boundary layer scalings which leads to the equations that

govern boundary layer flows over non-flat surfaces. Lastly we apply a further transformation

that leads to a parabolic partial differential equation that we solve numerically using a Keller-

Box scheme. However, as we will show in Section §3.43.4, these solutions can been determined

via a suitable similarity solution approach.

2.1 Problem Formulation

To derive the governing boundary layer equations, we follow a similar analysis to that outlined

by Hanevy et al.Hanevy et al. (20242024). We begin by considering the flow of an incompressible Newtonian

fluid, over an impermeable, semi-infinite continuous moving wavy surface in an otherwise qui-
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escent fluid in the absence of body forces. The flow is governed by the continuity and the

two-dimensional Navier-Stokes momentum equations

∂u∗

∂x∗
+

∂v∗

∂y∗
= 0, (2.1.1a)

∂u∗

∂ t∗
+u∗

∂u∗

∂x∗
+ v∗

∂u∗

∂y∗
=− 1

ρ∗
∂ p∗

∂x∗
+ν

∗
(

∂ 2u∗

∂x∗2 +
∂ 2u∗

∂y∗2

)
, (2.1.1b)

∂v∗

∂ t∗
+u∗

∂v∗

∂x∗
+ v∗

∂v∗

∂y∗
=− 1

ρ∗
∂ p∗

∂y∗
+ν

∗
(

∂ 2v∗

∂x∗2 +
∂ 2v∗

∂y∗2

)
, (2.1.1c)

where ∗ indicates a dimensional quantity, time is denoted by t∗, the fluid density is ρ∗, the

pressure is p∗, the kinematic viscosity is ν∗, and u∗, and v∗ are the velocity components in the

streamwise (x∗) and wall-normal (y∗) directions, respectively.

System (2.1.12.1.1) is solved subject to the wall conditions (u∗,v∗) · n̂ = 0, and (u∗,v∗) · t̂ =U∗
w,

where n̂ and t̂ are the unit normal and tangent vectors to the wavy surface, respectively, and U∗
w

is the dimensional wall speed.

To describe the steady flow over a surface exhibiting variable curvature, it proves useful to

introduce the following transformation

X∗ = x∗, (2.1.2a)

Y ∗ = y∗− s∗(x∗), (2.1.2b)

where Y ∗ represents the vertical distance above the variable surface at a given streamwise loca-

tion x∗. In this study, in a similar fashion to Garrett et al.Garrett et al. (20162016), we consider the variation of

the rough surface to be described as follows

s∗(x∗) = A∗ cos
(

2πx∗

γ∗

)
, (2.1.3)

where the quantity A∗ represents the amplitude of the wavy surface, and γ∗ is the wavelength of
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x∗

s∗(x∗)

A∗

γ∗

Figure 2.1: Schematic diagram depicting the variation of the periodic rough surface, s∗(x∗), as
a function of the streamwise coordinate.

the surface variation, this profile is depicted schematically in Figure 2.12.1.

For a single valued surface of height s∗, the unit normal n̂, is uniquely defined by n̂ = n/|n|

where

n = ∇Y ∗ = (−(s∗)′X∗ ,1), (2.1.4)

where the ′ indicates differentiation with respect to the subscript variable. The unit tangent

vector t̂ is given by t̂ = t/|t| where t = (1,(s∗)′X∗). Using (2.1.22.1.2) we obtain the following

differential operators

∂

∂x∗
=

∂

∂X∗ − (s∗)′X∗
∂

∂Y ∗ ,

∂ 2

∂x∗2 =
∂ 2

∂X∗2 − (s∗)′′X∗X∗
∂

∂Y ∗ −2(s∗)′X∗
∂ 2

∂X∗∂Y ∗ +[(s∗)
′
X∗ ]2

∂ 2

∂Y ∗2 ,

∂

∂y∗
=

∂

∂Y ∗ ,

∂ 2

∂y∗2 =
∂ 2

∂Y ∗2 .

Applying the differential operators to (2.1.12.1.1) yields the following

∂u∗

∂X∗ − (s∗)′X∗
∂u∗

∂Y ∗ +
∂v∗

∂Y ∗ = 0, (2.1.6a)

u∗
∂u∗

∂X∗ −u∗(s∗)′X∗
∂u∗

∂Y ∗ + v∗
∂u∗

∂Y ∗ =− 1
ρ∗

∂ p∗

∂X∗ +(s∗)′X∗
1

ρ∗
∂ p∗

∂Y ∗
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+ν
∗
[

∂ 2u∗

∂X∗2 − (s∗)′′X∗X∗
∂u∗

∂Y ∗ −2(s∗)′X∗
∂ 2u∗

∂X∗∂Y ∗ +[(s∗)
′
X∗ ]2

∂ 2u∗

∂Y ∗2 +
∂ 2u∗

∂Y ∗2

]
, (2.1.6b)

u∗
∂v∗

∂X∗ −u∗(s∗)′X∗
∂v∗

∂Y ∗ + v∗
∂v∗

∂Y ∗ =− 1
ρ∗

∂ p∗

∂Y ∗

+ν
∗
[

∂ 2v∗

∂X∗2 − (s∗)′′X∗X∗
∂v∗

∂Y ∗ −2(s∗)′X∗
∂ 2v∗

∂X∗∂Y ∗ +[(s∗)
′
X∗ ]2

∂ 2v∗

∂Y ∗2 +
∂ 2v∗

∂Y ∗2

]
. (2.1.6c)

In the X∗-Y ∗ coordinate system, the velocity components (ũ∗, ṽ∗) are expressed as

ũ∗

ṽ∗

=

 1 0

−(s∗)′X∗ 1


︸ ︷︷ ︸

J∗

u∗

v∗

=

 u∗

−(s∗)′X∗u∗+ v∗

 ,

where J∗ is the Jacobian of the transformation which is given by

J∗ =
∂ (X∗,Y ∗)

∂ (x∗,y∗)
=

X∗
x∗ X∗

y∗

Y ∗
x∗ Y ∗

y∗

 .
Therefore we obtain the following transformed velocity components

ũ∗ = u∗, (2.1.7a)

ṽ∗ = v∗− (s∗)′X u∗. (2.1.7b)

In what follows and to simplify the notation we drop the tilde on ũ∗ and use u∗. Given the

above, we obtain the following set of governing equations

∂u∗

∂X∗ +
∂ ṽ∗

∂Y ∗ = 0, (2.1.8a)

u∗
∂u∗

∂X∗ + ṽ∗
∂u∗

∂Y ∗ =− 1
ρ∗

∂ p∗

∂X∗ +
(s∗)′X∗

ρ∗
∂ p∗

∂Y ∗ +ν
∗L ∗

1 u∗, (2.1.8b)

(s∗)′X∗

(
u∗

∂u∗

∂X∗ + ṽ∗
∂u∗

∂Y ∗

)
+u∗

∂ ṽ∗

∂X∗ + ṽ∗
∂ ṽ∗

∂Y ∗ =− 1
ρ∗

∂ p∗

∂Y ∗
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−u∗2(s∗)′′X∗X∗ +ν
∗L ∗

1 ṽ∗+ν
∗(s∗)′L ∗

1 u∗+ν
∗L ∗

2 u∗, (2.1.8c)

where we have introduced the following differential operators

L ∗
1 =

∂ 2

∂X∗2 − (s∗)′′X∗X∗
∂

∂Y ∗ −2(s∗)′X∗
∂ 2

∂X∗∂Y ∗ +(1+(s∗)
′2
X∗)

∂

∂Y ∗2 ,

L ∗
2 = 2(s∗)′′X∗X∗

(
∂

∂X∗ − (s∗)′X∗
∂

∂Y ∗

)
+(s∗)′′′X∗X∗X∗ .

Multiplying (2.1.8b2.1.8b) by (s∗)′X∗ and subtracting it from (2.1.8c2.1.8c) yields

∂u∗

∂X∗ +
∂ ṽ∗

∂Y ∗ = 0,

u∗
∂u∗

∂X∗ + ṽ∗
∂u∗

∂Y ∗ =− 1
ρ∗

∂ p∗

∂X∗ +ν
∗L ∗

1 u∗+
(s∗)′X

ρ∗
∂ p∗

∂Y ∗ ,

u∗
∂ ṽ∗

∂X∗ + ṽ∗
∂ ṽ∗

∂Y ∗ +(s∗)′′X∗X∗u∗2 =−(1+(s∗)
′2
X∗)

ρ∗
∂ p∗

∂Y ∗ +ν
∗L ∗

1 ṽ∗+
(s∗)′X∗

ρ∗
∂ p∗

∂X∗ +ν
∗L ∗

2 u∗.

The problem is non-dimensionalised by introducing the following scalings

(X ,Y,s) =
(X∗,Y ∗,s∗)

L∗ , (u, ṽ) =
(u∗, ṽ∗)

U∗
w

, p =
p∗

ρ∗U∗2
w

, (2.1.11)

where L∗ is a characteristic length-scale. Since we are considering a semi-infinite continuous

moving wavy surface we set the non-dimensionalising length scale L∗ equal to the wavelength

of the roughness γ∗. To arrive at the boundary layer equations we introduce the following

boundary layer scalings Ŷ = Re
1
2Y , and v = Re

1
2 ṽ, where the Reynolds number is defined as

such Re =U∗
wL∗/ν∗. The non-dimensional version of the equations are given as follows
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∂u
∂X

+
∂v
∂Ŷ

= 0, (2.1.12a)

u
∂u
∂X

+ v
∂u
∂Ŷ

= s′X Re
1
2

∂ p
∂Ŷ

− ∂ p
∂X

+σ
2 ∂ 2u

∂Ŷ 2

− 1

Re
1
2

(
s′′XX

∂u
∂Ŷ

+2s′X
∂ 2u

∂X∂Ŷ

)
+

1
Re

∂ 2u
∂X2 , (2.1.12b)

1
Re

(
u

∂v
∂X

+ v
∂v
∂Ŷ

)
+

s′′XX u2

Re
1
2

=
s′X

Re
1
2

∂ p
∂X

−σ
2 ∂ p

∂Ŷ
+

σ2

Re
∂ 2v
∂Ŷ 2

− 1

Re
3
2

(
s′′XX

∂v
∂Ŷ

+2s′X
∂ 2v

∂X∂Ŷ

)
+

1
Re2

∂ 2v
∂X2 +

1
Re

[
2s′′XX

(
1

Re
1
2

∂u
∂X

− s′X
∂u
∂Ŷ

)
+

s′′′XXX u

Re
1
2

]
,

(2.1.12c)

where σ2 = (1+(s′)2
X). We note that the function σ is directly related to the curvature of the

surface, κ = (s′X)
−1σ−2σ ′

X . To determine the leading order balance we introduce the following

u(X ,Ŷ ) = u0(X ,Ŷ )+Re−
1
2 u1(X ,Ŷ )+ · · ·

v(X ,Ŷ ) = v0(X ,Ŷ )+Re−
1
2 v1(X ,Ŷ )+ · · ·

p(X ,Ŷ ) = p0(X)+Re−
1
2 p1(X ,Ŷ )+ · · ·

For boundary layer flows, as Re → ∞, the O(1) term in equation (2.1.12c2.1.12c) yields

∂ p0

∂Ŷ
= 0.

Therefore to leading order the pressure is a function of X alone. The O(1) terms in equation

(2.1.12b2.1.12b) yields

u0
∂u0

∂X
+ v0

∂u0

∂Ŷ
=−∂ p0

∂X
+ s′X

∂ p1

∂Ŷ
+σ

2 ∂ 2u0

∂Ŷ 2
. (2.1.13)

Now the O(Re−
1
2 ) terms in equation (2.1.12c2.1.12c) yields

s′′XX u2
0 = s′X

∂ p0

∂X
−σ

2 ∂ p1

∂Ŷ
.
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Rearranging this for ∂ p1
∂Ŷ

, yields

∂ p1

∂Ŷ
=

1
σ2

(
s′X

∂ p0

∂X
− s′′XX u2

0

)
. (2.1.14)

Substitution of (2.1.142.1.14) into (2.1.132.1.13) allows us to obtain the leading order governing equations,

namely

∂u0

∂X
+

∂v0

∂Ŷ
= 0, (2.1.15a)

u0
∂u0

∂X
+ v0

∂u0

∂Ŷ
+

σ ′
X

σ
u2

0 =− 1
σ2

dp0

dX
+σ

2 ∂ 2u0

∂Ŷ 2
. (2.1.15b)

We now match the flow within the boundary-layer to the far-field flow, which, for this problem,

is stationary. Therefore as Ŷ → ∞, u0 → 0 therefore

− 1
σ2

dp0

dX
= 0,

which implies that p0 is constant and (2.1.152.1.15) reduces to

∂u0

∂X
+

∂v0

∂Ŷ
= 0, (2.1.16a)

u0
∂u0

∂X
+ v0

∂u0

∂Ŷ
+

σ ′
X

σ
u2

0 = σ
2 ∂ 2u0

∂Ŷ 2
. (2.1.16b)

This set of PDEs has been derived by others, i.e., Hanevy et al.Hanevy et al. (20242024). The non-dimensional

variation of the surface height is given by

s(X) = acos(2πX). (2.1.17)

Since we have defined the non-dimensionalising length-scale L∗ as the wavelength of the sur-

face roughness γ∗, and to maintain consistency with the analysis of Yoon et al.Yoon et al. (20072007), the
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dimensionless parameter a = A∗/γ∗ is referred to as the roughness parameter. As noted by

other studies that have made use of sinusoidal wall profiles to model surface roughness, the

roughness parameter must be kept small in order for the boundary-layer approximation to re-

main valid and to ensure that flow separation does not occur. In their experimental study over

a rotating disk, Le Palec et al.Le Palec et al. (19901990) argue that this theory is limited to the cases when the

amplitude/wavelength ratio is much less than one (a ≤ 0.2). These experimental findings were

verified theoretically by Mehmood et al.Mehmood et al. (2019b2019b) with results being presented for cases when

a ≤ 0.1. Given these results, amongst others in the literature (see, for example, Yoon et al.Yoon et al.

(20072007) and Garrett et al.Garrett et al. (20162016)), we will restrict our analysis to consider only cases where the

ratio of the amplitude to the wavelength is less than or equal to one-fifth. System (2.1.162.1.16) is

solved subject to the wall conditions

(u0,v0 + s′X u0) · t̂ = 1, (2.1.18a)

(u0,v0 + s′X u0) · n̂ = 0, (2.1.18b)

where t̂ = (1/σ ,s′X/σ), is the unit tangent vector to the wavy surface and n̂ = (−s′X/σ ,1/σ),

is the unit normal vector to the wavy surface. Combining the above conditions, and matching

the boundary-layer flow with the inviscid flow above, we arrive at the following conditions that

system (2.1.162.1.16) must be solved subject to

u0(Ŷ = 0) =
1
σ
, (2.1.19a)

v0(Ŷ = 0) = 0, (2.1.19b)

u0(Ŷ → ∞)→ 0. (2.1.19c)

If the methods described above are applied to analyse the effects of surface roughness on bound-

ary layer flows induced by an external free stream, the resulting boundary conditions will differ.
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To ensure proper matching between the boundary-layer flow and the far-field flow, it is nec-

essary to examine the inviscid flow outside the boundary layer, taking the wavy surface into

account, to determine the correct matching conditions. Additionally, p0 will no longer remain

constant; refer to Appendix BB for more details.

In what follows we will introduce a pseudo-similarity approach in order to solve (2.1.162.1.16)

subject to (2.1.192.1.19). However, before we introduce our approach we revisit a similar analy-

sis conducted by Rees & PopRees & Pop (19951995). In their study, focusing on boundary layer flow and

heat transfer on a continuous moving wavy surface, Rees & PopRees & Pop (19951995) introduce a pseudo-

similarity variable (based on the notation used here) of the following form: η = Ŷ/(σ
√

X).

Having done so, they reduce the system of PDEs that govern the calculation of the boundary-

layer flow using a streamfunction approach twinned with the introduction of this pseudo-similarity

variable. The approach is entirely valid and, after having applied a suitable numerical scheme

to solve the governing equation, yields insightful results. We choose not to adopt the same

pseudo-similarity transformation here for the reason being that this form of η is dependent on

the function σ . As such, as the value of the roughness parameter a varies, the pseudo-similarity

variable itself varies, given that σ is directly dependent on the value of the roughness parame-

ter. It is, therefore, difficult to draw conclusions with regards to how the boundary-layer flow

is changing with increased levels of surface roughness when the variable the flow is dependent

upon (the pseudo-similarity variable) is itself changing. This argument motivates us to consider

the following transformation

ξ = X , (2.1.20a)

η =
Ŷ√
X
, (2.1.20b)
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where ψ =
√

X f (ξ ,η), is not explicitly dependent on σ . Introducing the streamfunction

u0 =
∂ψ

∂Ŷ
, v0 =−∂ψ

∂X
, (2.1.21)

the continuity equation is automatically satisfied and the momentum equation is now given by

∂ψ

∂Ŷ
∂ 2ψ

∂X∂Ŷ
− ∂ψ

∂X
∂ 2ψ

∂Ŷ 2
+

σ ′
X

σ

[(
∂ψ

∂Ŷ

)2
]
= σ

2 ∂ 3ψ

∂Ŷ 3
. (2.1.22)

Although the concept of the stream function originates from potential flow theory—where the

flow is assumed to be inviscid, incompressible, and irrotational—its application extends beyond

these idealised conditions. In potential theory, the stream function simplifies analysis by ensur-

ing mass conservation and allowing the flow to be described without accounting for viscous

effects. However, in boundary layer theory, where viscosity and shear stresses become signif-

icant near solid surfaces, the stream function remains valuable but serves a different purpose.

It effectively describes the flow within the boundary layer, capturing viscous effects while still

satisfying the incompressibility condition. While it could be referred to as a pseudo-stream

function due to the breakdown of irrotational assumptions, we follow the standard convention

of referring to it simply as the stream function. This approach aligns with the seminal work

of BlasiusBlasius (19071907), who was the first to formally apply the stream function in boundary layer

theory, providing an analytical solution for laminar flow over a flat plate—a result that remains

foundational in modern fluid mechanics. Using the transformation given by (2.1.202.1.20) we obtain

the following differential operators

∂

∂Ŷ
= ξ

− 1
2

∂

∂η
, (2.1.23a)

∂ 2

∂Ŷ 2
= ξ

−1 ∂ 2

∂η2 , (2.1.23b)

∂

∂X
=

∂

∂ξ
− η

2ξ

∂

∂η
. (2.1.23c)
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Given the definition of ψ we have that

∂ψ

∂Ŷ
=

∂ f
∂η

, (2.1.24a)

∂ 2ψ

∂Ŷ 2
= ξ

− 1
2

∂ 2 f
∂η2 , (2.1.24b)

∂ 3ψ

∂Ŷ 3
= ξ

−1 ∂ 3 f
∂η3 , (2.1.24c)

∂ψ

∂X
=

1
2

ξ
− 1

2 f +ξ
1
2

∂ f
∂ξ

− η

2
ξ
− 1

2
∂ f
∂η

, (2.1.24d)

∂ 2ψ

∂X∂Ŷ
=

∂ 2 f
∂ξ ∂η

− η

2ξ

∂ 2 f
∂η2 . (2.1.24e)

Substituting (2.1.242.1.24) in to (2.1.222.1.22) gives the following governing PDE for f

σ
2 ∂ 3 f

∂η3 +
f
2

∂ 2 f
∂η2 −ξ

σ ′
ξ

σ

(
∂ f
∂η

)2

= ξ

(
∂ f
∂η

∂ 2 f
∂ξ ∂η

− ∂ f
∂ξ

∂ 2 f
∂η2

)
. (2.1.25)

Note that the equation above differs to the one derived by Rees & PopRees & Pop (19951995) which is a direct

consequence of the transformation given by (2.1.202.1.20). We can readily see using (2.1.182.1.18) and

(2.1.212.1.21) that ∂ψ

∂X = 0, when Ŷ = 0, therefore

1
2

ξ
− 1

2 f +ξ
1
2

∂ f
∂ξ

= 0,

on η = 0, which we can rewrite as follows

∂ f
∂ξ

+
1

2ξ
f = 0,

where the solution is given by f =C1ξ− 1
2 which implies that C1 = 0 since we need f to be finite

at ξ = 0. Therefore system (2.1.252.1.25) is solved subject to

f (ξ ,η = 0) = 0, (2.1.26a)
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∂ f (ξ ,η = 0)
∂η

=
1
σ
, (2.1.26b)

∂ f (ξ ,η → ∞)

∂η
→ 0. (2.1.26c)

The initial flow profile is determined at the location ξ = 0 from the following ODE

d3 f
dη3 +

f
2σ2

0

d2 f
dη2 = 0, (2.1.27)

where σ0 = σ(ξ = 0) = 1. Equation (2.1.272.1.27) describes the flow induced by the translation

of a smooth, non-rough, surface. The flow configuration was first investigated analytically by

SakiadisSakiadis (1961a1961a) and is often now referred to as ‘Sakiadis flow’.

2.2 Local Skin Friction Coefficient

An important physical quantity is the local skin friction which is directly related to the shear

stress exerted by the fluid on the surface. It plays a crucial role in determining the drag force

experienced by an object and is essential for understanding the behavior of the boundary layer.

Accurate knowledge of the local skin friction coefficient helps in predicting flow separation

points and optimizing surface designs to reduce drag. The local skin friction coefficient is

defined as follows

C∗
f =

τ∗w|y∗=0
1
2ρ∗U∗2

w
, (2.2.1)

where τw is given by

τ
∗
w = µ

∗
(

∂u∗

∂y∗
+

∂v∗

∂x∗

)∣∣∣∣
y∗=s∗(x∗)

. (2.2.2)

Making use of both (2.1.22.1.2) and (2.1.72.1.7), we obtain

τ
∗
w = µ

∗
(
(1− [(s∗)′X∗ ]2)

∂u∗

∂Y ∗ +
∂ ṽ∗

∂X∗ +(s∗)′′X∗X∗u∗+(s∗)′X∗
∂u∗

∂X∗ − (s∗)′X∗
∂ ṽ∗

∂Y ∗

)∣∣∣∣
Y ∗=0

.
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Using the scales given by (2.1.112.1.11), and the boundary layer scalings, we obtain the following

τ∗w
ρ∗U∗2

w
= 2Re−1

(
Re

1
2 (1− (s′X)

2)
∂u
∂Ŷ

+Re−
1
2

∂v
∂X

+ s′′XX u+ s′X
∂u
∂X

− s′X
∂v
∂Ŷ

)
,

where τ∗w is evaluated at Ŷ = 0. Multiplying both sides by Re
1
2 yields

Re
1
2C∗

f = 2
(
(1− (s′X)

2)
∂u
∂Ŷ

+Re−1 ∂v
∂X

+Re−
1
2 s′′XX u+Re−

1
2 s′X

∂u
∂X

−Re−
1
2 s′X

∂v
∂Ŷ

)
,

Thus to leading order

C∗
f ≈ 2Re−

1
2 (1− (s′X)

2)
∂u0

∂Ŷ
.

Making use of the expression (2.1.24b2.1.24b), we have that

C∗
f = 2Re

− 1
2

X∗ (1− (s′
ξ
)2) f ′′(ξ ,0), (2.2.3)

where the local Reynolds number is defined like so ReX∗ =U∗
wX∗/ν∗ where we note that ξ ∗ =

X∗ = x∗, thus ReX∗ = Reξ ∗ = Rex∗ . This is the Newtonian equivalent of the non-Newtonian

expression derived by Pop & NakamuraPop & Nakamura (19961996). When the surface is flat, the local skin friction

coefficient can be expressed as:

C∗
f = 2Re

− 1
2

X∗ f ′′(ξ ,0), (2.2.4)

as shown in Tsou et al.Tsou et al. (19671967). In this case, there is no variation in the streamwise coordinate.

In §3.23.2, we present the variation of f ′′(ξ ,0), which is directly related to the local skin friction

coefficient. By analysing this variation, we can gain insights into the behavior of the local skin

friction coefficient.
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2.3 Numerical Method

In this section we derive the Keller-Box scheme used to solve (2.1.252.1.25) subject to (2.1.262.1.26) for a

range of values of the roughness parameter a. The Keller-Box method has been used to solve

a variety of boundary-layer problems, (see for example Rees & PopRees & Pop (19951995)) and the details of

these types of schemes are well explained by KellerKeller (19781978). In all of our computations a step

size of 0.001 is taken in the ξ direction where 0 ≤ ξ ≤ 1.5. Further extending the domain in the

streamwise direction increases the time it takes to compute the base flow profiles which we will

show to be completely periodic in nature. First we define a set of uniformly distributed points

in the vertical direction between 0 and ηmax with the jth point denoted by η̃ j. In the present

analysis we have used ηmax = 100. Then we introduce the mapping

η j = η̃ j exp
(

η̃ j −ηmax

ηmax

)
,

so that the corresponding jth point η j form a set of non-uniformly distributed points between

0 and ηmax which are more concentrated near the wall where the interesting behaviour, with

respect to the effects of surface roughness, are most prominent. To simplify the notation we

will rewrite (2.1.252.1.25) as follows

σ
2 f ′′′ηηη +

1
2

f f ′′ηη −ξ

σ ′
ξ

σ
( f ′η)

2 = ξ ( f ′η f ′
ξ η

− fξ f ′′ηη). (2.3.1)

We start by rewriting (2.3.12.3.1) as a system of ODES. Let

a = f , (2.3.2a)

b = f ′η , (2.3.2b)

c = f ′′ηη . (2.3.2c)
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Therefore

a′η −b = 0, (2.3.3a)

b′η − c = 0, (2.3.3b)

σ
2c′η +

1
2

ac−ξ

σ ′
ξ

σ
b2 −ξ (bbξ −aξ c) = 0. (2.3.3c)

To initialise the solution we set the initial velocity profile at ξ = 0 equal to the similarity so-

lution. We solve for the initial solution using a fourth order Runga Kutta scheme combined

with the secant searching method. This initial solution is our initial guess for the profile at

ξ i = ξ i−1 +∆ξ for 1 ≤ i ≤ N. The PDE is evaluated at (ξ i− 1
2 ,η j− 1

2
) where i represents the

current position in the ξ direction and j represents the current position in the η direction and

η j = η j−1 +∆η for 1 ≤ j ≤ N. The following differences are used and will aid in simplifying

notation,

∆ηai
j =

1
2∆η

(ai
j +ai−1

j −ai
j−1 −ai−1

j−1), (2.3.4a)

∆ξ ai
j =

1
2∆ξ

(ai
j −ai−1

j +ai
j−1 −ai−1

j−1), (2.3.4b)

a
i− 1

2
j− 1

2
=

1
4
(ai

j +ai−1
j +ai

j−1 +ai−1
j−1). (2.3.4c)

On substituting (2.3.42.3.4) into (2.3.32.3.3) we obtain the following

∆ηai
j −b

i− 1
2

j− 1
2
= 0, (2.3.5a)

∆ηbi
j − c

i− 1
2

j− 1
2
= 0, (2.3.5b)

(σ2)i− 1
2 ∆ηci

j +
1
2

a
i− 1

2
j− 1

2
c

i− 1
2

j− 1
2
−

σ ′
ξ

σ
ξ

i− 1
2

(
b

i− 1
2

j− 1
2

)2

−ξ
i− 1

2

(
b

i− 1
2

j− 1
2
∆ξ bi

j − c
i− 1

2
j− 1

2
∆ξ ai

j

)
= 0,

(2.3.5c)
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which is solved subject to the boundary conditions ai
1 = 0, bi

1 −1/σ(ξi) = 0, and bi
N = 0. We

solve the above using a Newton-Raphson iteration. To do this we let ai
j = ai(n)

j +ε âi
j and define

the latest guess i.e. the nth iterate where ε denotes a correction to our current guess, assumed to

be small. We obtain similar equations for both b and c. Applying the Newton-Raphson iteration

to (2.3.52.3.5) and neglecting all appearances of powers of ε greater than the first power yields the

following

1
2∆η

(ai(n)
j +ε âi

j+ai−1
j −ai(n)

j−1−ε âi
j−1−ai−1

j−1)−
1
4
(bi(n)

j +ε b̂i
j+bi−1

j +bi(n)
j−1+ε b̂i

j−1+bi−1
j−1)= 0.

Therefore we have that

1
∆η

(ε âi
j − ε âi

j−1)−
1
2
(ε b̂i

j + ε b̂i
j−1) = ri

1 j
,

where

(r1)
i
j =− 1

∆η
(ai(n)

j +ai−1
j −ai(n)

j−1 −ai−1
j−1)+

1
2
(bi(n)

j +bi−1
j +bi(n)

j−1 +bi−1
j−1).

Similarly we obtain

1
2∆η

(bi(n)
j +ε b̂i

j+bi−1
j −bi(n)

j−1−ε b̂i
j−1−bi−1

j−1)−
1
4
(ci(n)

j +ε ĉi
j+ci−1

j +ci(n)
j−1+ε ĉi

j−1+ci−1
j−1)= 0.

Therefore
1

∆η
(ε b̂i

j − ε b̂i
j−1)−

1
2
(ε ĉi

j + ε ĉi
j−1) = ri

2 j
,

where

(r2)
i
j =− 1

∆η
(bi(n)

j +bi−1
j −bi(n)

j−1 −bi−1
j−1)+

1
2
(ci(n)

j + ci−1
j + ci(n)

j−1 + ci−1
j−1).
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For the momentum equation we have that

(σ2)i− 1
2

2∆η
(ci(n)

j + ε ĉi
j + ci−1

j − ci(n)
j−1 − ε ĉi

j−1 − ci−1
j−1)

+
1
32

(ai(n)
j + ε âi

j +ai−1
j +ai(n)

j−1 + ε âi
j−1 +ai−1

j−1)(c
i(n)
j + ε ĉi

j + ci−1
j + ci(n)

j−1 + ε ĉi
j−1 + ci−1

j−1)

−

(
ξ

σ ′
ξ

σ

)i− 1
2 1

16
(bi(n)

j + ε b̂i
j +bi−1

j +bi(n)
j−1 + ε b̂i

j−1 +bi−1
j−1)

2

− ξ i− 1
2

8∆ξ
(bi(n)

j + ε b̂i
j +bi−1

j +bi(n)
j−1 + ε b̂i

j−1 +bi−1
j−1)(b

i(n)
j + ε b̂i

j −bi−1
j +bi(n)

j−1 + ε b̂i
j−1 −bi−1

j−1)

+
ξ i− 1

2

8∆ξ
(ci(n)

j + ε ĉi
j + ci−1

j + ci(n)
j−1 + ε ĉi

j−1 + ci−1
j−1)(a

i(n)
j + ε âi

j −ai−1
j +ai(n)

j−1 + ε âi
j−1 −ai−1

j−1) = 0.

(2.3.6)

Now

(σ2)i− 1
2

2∆η
(ε ĉi

j − ε ĉi
j−1)+

1
32

(ai(n)
j +ai−1

j +ai(n)
j−1 +ai−1

j−1)(ε ĉi
j + ε ĉi

j−1)

+
1

32
(ci(n)

j + ci−1
j + ci(n)

j−1 + ci−1
j−1)(ε âi

j + ε âi
j−1)

−

(
ξ

σ ′
ξ

σ

)i− 1
2 1

8
(bi(n)

j +bi−1
j +bi(n)

j−1 +bi−1
j−1)(ε b̂ j + ε b̂i

j−1) (2.3.7)

−ξ
i− 1

2
1

8∆ξ
(ε b̂i

j + ε b̂i
j−1)(b

i(n)
j −bi−1

j +bi(n)
j−1 −bi−1

j−1)

−ξ
i− 1

2
1

8∆ξ
(ε b̂i

j + ε b̂i
j−1)(b

i(n)
j +bi−1

j +bi(n)
j−1 +bi−1

j−1)

+ξ
i− 1

2
1

8∆ξ
(ε ĉi

j + ε ĉi
j−1)(a

i(n)
j −ai−1

j +ai(n)
j−1 −ai−1

j−1)

+ξ
i− 1

2
1

8∆ξ
(ε âi

j + ε âi
j−1)(c

i(n)
j + ci−1

j + ci(n)
j−1 + ci−1

j−1) = ri
3 j
,

37



J. Ferguson, PhD Thesis, Aston University, December 2024

where r3 is given by

(r3)
i
j =−(σ2)i− 1

2 ∆ηci
j−

1
2

a
i− 1

2
j− 1

2
c

i− 1
2

j− 1
2
−

(
σ ′

ξ

σ
ξ

)i− 1
2 (

b
i− 1

2
j− 1

2

)2

+ξ
i− 1

2

(
b

i− 1
2

j− 1
2
∆ξ bi

j − c
i− 1

2
j− 1

2
∆ξ ai

j

)
.

The difference equations have the form

1
∆η

(ε âi
j − ε âi

j−1)−
1
2
(ε b̂i

j + ε b̂i
j−1) = (r1)

i
j, (2.3.8a)

1
∆η

(ε b̂i
j − ε b̂i

j−1)−
1
2
(ε ĉi

j + ε ĉi
j−1) = (r2)

i
j, (2.3.8b)

(α1)
i
jε âi

j +(α2)
i
jε âi

j−1 +(α3)
i
jε b̂i

j +(α4)
i
jε b̂i

j−1 +(α5)
i
jε ĉi

j +(α6)
i
jε ĉi

j−1 = (r3)
i
j, (2.3.8c)

where the coefficients of the momentum equation are given by

(α1)
i
j = c

i− 1
2

j− 1
2

(
1
8
+(ξ )i− 1

2
1

2∆ξ

)
, (2.3.9a)

(α2)
i
j = (α1)

i
j, (2.3.9b)

(α3)
i
j =−

(
σ ′

ξ

σ
ξ

)i− 1
2 1

2
b

i− 1
2

j− 1
2
−ξ

i− 1
2

(
1

4∆ξ
(bi(n)

j +bi(n)
j−1)

)
, (2.3.9c)

(α4)
i
j = (α3)

i
j (2.3.9d)

(α5)
i
j =

(σ2)i− 1
2

2∆η
+

1
8

a
i− 1

2
j− 1

2
+

1
4

ξ
i− 1

2 ∆ξ ai
j, (2.3.9e)

(α6)
i
j =−(σ2)i− 1

2

2∆η
+

1
8

a
i− 1

2
j− 1

2
+

1
4

ξ
i− 1

2 ∆ξ ai
j. (2.3.9f)

We have only imposed that the perturbations satisfy the ordinary differential equations in (2.3.8a2.3.8a)

and (2.3.8b2.3.8b) as this prevented oscillations from developing in the corrections. By preventing

these oscillations in the corrections our numerical scheme was able to converge successfully.

To understand the structure of (2.3.82.3.8) we consider only two grid points and obtain the following

38



J. Ferguson, PhD Thesis, Aston University, December 2024

matrix equation



1 0 0 0 0 0

0 1 0 0 0 0

− 1
∆η

−1
2 0 1

∆η
−1

2 0

0 − 1
∆η

−1
2 0 1

∆η
−1

2

(α2)
i
2 (α4)

i
2 (α6)

i
2 (α1)

i
2 (α3)

i
2 (α5)

i
2

0 0 0 0 1 0





ε âi
1

ε b̂i
1

ε ĉi
1

ε âi
2

ε b̂i
2

ε ĉi
2


=



−ai(n)
1

1
σ i

1
−bi(n)

1

(r1)
i
2

(r2)
i
2

(r3)
i
2

−bi(n)
2


. (2.3.10)

The above matrix falls into a block diagonal structure where the individual sub matrix blocks

are 3× 3 matrices, which is readily seen if we choose an arbitrary number of grid points. The

above system takes the following form where the Ai, Bi, and Ci, are defined below



Bi
1 Ci

1 0 · · · 0 0 0

Ai
2 Bi

2 Ci
2 · · · 0 0 0

...
...

... . . . ...
...

...

0 0 0 · · · 0 Ai
N Bi

N





ε i
1

ε i
2
...

ε i
N


=



Ri
1

Ri
2
...

Ri
N


. (2.3.11)

Note that in system (2.3.102.3.10) the leading block on the diagonal, B1 is singular, therefore we

interchange rows three and four and obtain the following



1 0 0 0 0 0

0 1 0 0 0 0

0 − 1
∆η

−1
2 0 1

∆η
−1

2

− 1
∆η

−1
2 0 1

∆η
−1

2 0

(α2)
i
2 (α4)

i
2 (α6)

i
2 (α1)

i
2 (α3)

i
2 (α5)

i
2

0 0 0 0 1 0





ε âi
1

ε b̂i
1

ε ĉi
1

ε âi
2

ε b̂i
2

ε ĉi
2


=



−ai(n)
1

1
σ i

1
−bi(n)

1

(r2)
i
2

(r1)
i
2

(r3)
i
2

−bi(n)
2


. (2.3.12)
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The general form of (2.3.112.3.11) is given as follows,

Bi
j =


1

∆η
−1

2 0

(α1)
i
j (α3)

i
j (α6)

i
j

0 − 1
∆η

−1
2

 , (2.3.13)

Ai
j =


− 1

∆η
−1

2 0

(α2)
i
j (α4)

i
j (α6)

i
j

0 0 0

 , (2.3.14)

Ci
j =


0 0 0

0 0 0

0 1
∆η

−1
2

 , (2.3.15)

and

Ri
j =


(r1)

i
j

(r2)
i
j

(r3)
i
j

 . (2.3.16)

At the surface we have that

Bi
1 =


1 0 0

0 1 0

0 − 1
∆η

−1
2

 , (2.3.17)

and

Ri
1 =


−ai(n)

1

1
σ1

−bi(n)
1

(r2)
i
2

 . (2.3.18)
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At the free stream we have that

Bi
N =


1

∆η
−1

2 0

(α1)
i
N (α3)

i
N (α5)

i
N

0 1 0

 , (2.3.19)

and

Ri
N =


(r1)

i
N

(r3)
i
N

−bi
N

 . (2.3.20)

The form of the matrices has a block diagonal structure therefore the solution is obtained us-

ing a block diagonal version of the ‘well known’ tridiagonal matrix algorithm. The technique

involves inverting the ‘sub matrix’ blocks on the diagonal.
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Chapter 3

Basic Flow Solutions

In this Chapter we derive the basic flow solutions via two means. In the first instance we ob-

tain the solutions numerically via the Keller-Box approach discussed in §2.32.3. This method

utilities the parabolic nature of the boundary layer equations. For the second case we verify

our Keller-Box solutions by exploiting the periodicity of the basic flow and adopting a suitable

similarity approach. The study of this two-dimensional flow is similar in some sense, to the

three-dimensional rotating disk flow studies conducted by Cooper et al.Cooper et al. (20152015) and Garrett et al.Garrett et al.

(20162016). In their analysis, Garrett et al.Garrett et al. (20162016) argued that, given that the radial, azimuthal, and

wall-normal flows are radially periodic, and that a similarity-type solution at a large spatial scale

is observed, it is a reasonable approximation to take a radial average of the flow field over any

complete period of the roughness profile. Having done so, this leads them to arrive at modified

von Kármán mean flow profiles that vary only with the wall-normal coordinate. This process

is advantageous with respect to the associated stability analysis as it allows for the reduction

of both the complexity and dimensionality of the governing system of linear disturbance equa-

tions. In essence, having made the assumption of base flow self-similarity, the surface variation

is ‘averaged away’ so that one needs only to solve the ordinary differential equations that de-

fine the linear stability characteristics of flows over smooth rotating disks (see, for example,
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LingwoodLingwood (19951995)). We present a similar argument here.

In §3.13.1 we analyse the boundary layer formed on a continuously moving flat surface and

derive the basic flow solutions. In §3.23.2 we derive the basic flow solutions induced by a contin-

uously moving wavy surface via the Keller-Box method and examine how the base state varies

in the streamwise direction. In §3.33.3 we follow the work of Garrett et al.Garrett et al. (20162016) and derive the

averaged flow solutions for various values of the roughness parameter. Finally in §3.43.4 we verify

our solutions obtained via the Keller-Box method by exploiting the self-similar periodicity in

the base flow.

3.1 The Sakiadis Solution

We begin by analysing the boundary layer that develops on a continuously moving flat surface,

a problem first studied analytically by SakiadisSakiadis (1961b1961b). Specifically, we consider a steady,

two-dimensional, incompressible flow over a flat surface moving at a constant velocity within

a stationary fluid, where body forces are absent. The boundary layer equations governing this

configuration are as follows:

∂u0

∂X
+

∂v0

∂Ŷ
= 0, (3.1.1a)

u0
∂u0

∂X
+ v0

∂u0

∂Ŷ
=

∂ 2u0

∂Ŷ 2
, (3.1.1b)

where the system is solved subject to the following boundary conditions

u0(Ŷ = 0) = 1, v0(Ŷ = 0) = 0, u0(Ŷ → ∞)→ 0. (3.1.2)

We note that the boundary layer equations that describe a non-flat surface reduce to (3.1.13.1.1) when

the boundary is flat. By introducing the stream function (2.1.212.1.21) where ψ =
√

X f (η), and the
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similarity variable

η =
Ŷ√
X
,

the continuity equation is automatically satisfied and the velocity components become

u0 = f ′η , (3.1.3a)

v0 =
1

2
√

X
(η f ′η − f ), (3.1.3b)

where the ′ indicates differentiation with respect η . This leads to the following equation

f ′′′ηηη +
1
2

f f ′′ηη = 0, (3.1.4)

which is solved subject to the conditions

f (η = 0) = 0, f ′η(η = 0) = 1, f ′η(η → ∞)→ 0. (3.1.5)

This is the Blasius equation. However, the boundary conditions that must be satisfied are not the

same and will result in a different solution to the one obtained by Blasius. This difference is due

to the surface translating in the streamwise direction at a constant velocity in a quiescent fluid,

whereas for Blasius flow, the surface is at rest and is subjected to an oncoming unidirectional

flow. A comparison of the two flow configurations is well explained in the works of Sakiadis (

SakiadisSakiadis (1961a1961a), SakiadisSakiadis (1961b1961b) ) and AbdelhafezAbdelhafez (19851985). The solution to (3.1.43.1.4) is readily

accomplished using numerical methods and we solve (3.1.43.1.4) using a fourth order Runga-Kutta

scheme combined together with a secant searching method.
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Figure 3.1: The streamwise profile u0 = f ′η versus the similarity variable η is presented in (a).
The wall-normal flow component −

√
Xv0 versus η is presented in (b). The shear, f ′′ηη versus

η is presented in (c).

From Figure 3.13.1 we can readily see that the boundary layer grows in a direction that the

surface is moving. At the outer edge of the boundary layer we have that
√

Xv0 = −0.8081

where the negative sign indicates an influx of fluid across the limit of the boundary layer. We

also find that f ′′ηη(0) =−0.4437 in agreement with Tsou et al.Tsou et al. (19671967) and Rees & PopRees & Pop (19951995).

The boundary layer thickness for flows of this type is defined as the distance from the moving

surface at which u∗ = 0.01U∗
w. We determine that the boundary layer thickness is as follows

δ (x∗)≈ 6.375

√
ν∗x∗

U∗
w

= 6.375
x∗√
Rex∗

.

An alternative measure of the thickness of the boundary layer flow is the displacement thickness.
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This quantity is defined for this problem like so

δ
∗ =

∫
∞

0

u∗

U∗
w

dy∗ =
x∗√
Rex∗

∫
∞

0
f ′η(η)dη =

x∗√
Rex∗

δ ,

where δ = f (η = ηmax) = 1.6161, which corresponds to the wall-normal flow component
√

Xv0 in the limit as η → ∞. We find that our results for the smooth boundary are in excellent

agreement with SakiadisSakiadis (1961b1961b) and other authors such as Tsou et al.Tsou et al. (19671967) and Rees & PopRees & Pop

(19951995).

3.2 The Boundary Layer Flow Induced by a Continuously

Moving Rough Surface

We now consider a surface that is translating at a constant velocity in an otherwise quiescent

fluid where the surface is described by the function given in (2.1.172.1.17), and the governing equation

describing such a flow is given by (2.1.252.1.25).
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Figure 3.2: (a) Shows a range of streamwise velocity profiles at varying ξ locations when
a = 0.1. (b) Shows profiles at identical streamwise locations to (a) but with a = 0.2 . Here we

illustrate the initial profile along with solutions at the peaks and troughs of the translating
wavy surface where a is the roughness parameter.
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Figure 3.3: In (a) we illustrate a range of streamwise velocity profiles at varying ξ locations in
the instance when a = 0.1. In (b) we illustrate profiles at identical streamwise locations but

with a = 0.2. Here we show the initial profile along with solutions at the zeros of the
translating wavy surface where a is the roughness parameter.

From Figure 3.23.2, it can be observed that the streamwise velocity profiles are identical at the

peaks and troughs of the wavy surface (ξ = n
2 for n ∈ Z+). More importantly, the velocity pro-

files at these locations are distinct from the initial solution at ξ = 0. While this distinction may

not be immediately apparent, a closer examination—such as zooming into Figure 3.23.2—reveals

the difference between the initial solution at ξ = 0 and the profiles at ξ = n
2 .

In Figure 3.33.3 we present solutions for the streamwise velocity profile at the locations where

ξ = 2n−1
4 for n ∈ Z+, these being the locations at which s = 0, the ‘zeros’ of the wavy surface.

Once again, we observe that the solution at ξ = 0 differs from these periodic solutions, as

previously discussed. We note that streamwise velocity profiles are obtained for all values of ξ ;

however, by focusing on the specific locations discussed above, we effectively emphasise the

streamwise periodicity of the base flow while maintaining clarity in the presentation. For values

of ξ around 0.5 or greater we observe a cyclical variation in the basic flow solutions which is

best visualised via the streamwise variation of the shear at the wall, see Figure 3.43.4.
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Figure 3.4: The variation of the shear at the wall, f ′′ηη at the wall, illustrated as a function of
the streamwise coordinate ξ , for a range of values of the roughness parameter.

Our results agree qualitatively with the theoretical results presented by Rees & PopRees & Pop (19951995)

and the experimental findings of Le Palec et al.Le Palec et al. (19901990). In accordance with those studies, we

find that as the roughness parameter increases from zero the minimum absolute value of the

shear at the wall decreases. From Figure 3.43.4, we can infer that as a increases beyond moderate

values (e.g., a > 0), the boundary-layer flow undergoes separation. When this occurs, the fun-

damental assumptions of classical boundary-layer theory are no longer valid, giving rise to a

different flow regime. In an attached boundary layer, the streamwise velocity remains predom-

inantly parallel to the surface, allowing the boundary-layer equations to accurately describe the

flow. However, upon separation, the flow detaches from the surface, leading to the formation

of a recirculating region where the boundary-layer approximation breaks down. In this regime,

the full Navier-Stokes equations must be employed to capture complex flow phenomena such as

reverse flow, vortex shedding, and pressure-driven separation. The transition from an attached

to a separated boundary layer marks a shift from a viscous-dominated problem to one where in-

ertial, turbulent, and unsteady effects become significant. We notice the flow is doubly periodic

(with respect to the period of the roughness profile itself). However the flow is not immediately

periodic and the initial flow profile must be allowed to develop downstream from the leading
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edge before periodicity is first observed.

3.3 Averaged Flow Profiles

In this section, we compute the ensemble average of the base flow quantities at 1000 equally

spaced locations along the semi-infinite plate, spanning the interval [ξ0,ξ1] = [0.5,1.5]. This

range corresponds to a full wavelength of the wavy surface, ensuring a comprehensive repre-

sentation of its periodic characteristics. This process produces base flow profiles that have no

dependence on the streamwise variable ξ . Having computed these spatial averages we have that

s(ξ ) = 0, where the overbar represents an averaged quantity. Physically, as was first argued by

HarrisHarris (20132013), this averaging procedure makes sense as the scale associated with the amplitude

of the rough surface is small compared to the thickness of the boundary layer. Thus, for the en-

suing linear stability analyses the flow field varies in a self-similar manner with profiles being

defined as follows

u0 = f ′η(η) = uB,

v0 =
f (η)−η f ′η(η)

2
√

ξ
= vB,

where uB and vB represent the averaged velocity components in the streamwise and wall normal

directions respectively. We also note that the averaging procedure removes the variation of Ŷ

(and thus η) with ξ , given that s(ξ ) = 0.

From Figure 3.53.5 it is evident that as the roughness parameter increases from zero the value

of the streamwise velocity component at the wall decreases, this being a direct consequence of

the boundary condition (2.1.262.1.26). This is a physically sensible result as an increase in roughness

would essentially result in an increase of fluid ‘slip’ at the wall. We also observe that the

flow converges to the free-stream further from the wall indicating that the boundary-layer is

thickened in the presence of surface roughness. We illustrate the scaled wall-normal velocity,
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Figure 3.5: In (a) and (b) we illustrate the averaged streamwise and scaled wall-normal
velocity profiles, respectively, for a range of values of the roughness parameter. In (c) we

illustrate the variation of the averaged shear profiles with the boundary-layer coordinate for the
same range of values of a.

√
ξ vB. Upon increasing a we find that the constant large-η value of this flow component

increases in value, this result being intrinsically linked with the slow decay of the streamwise

velocity profile to the far-field. Lastly, we observe that the absolute value of the shear at the

wall decreases in the presence of increasing levels of surface roughness. We also find that the

boundary layer thickness increases as the value of a increases. For the case when a = 0.2, we

determine that the boundary layer thickness is as follows

δ
0.2(x∗)≈ 9.294

√
ν∗x∗

U∗
w

= 9.294
x∗√
Rex∗

,

which is nearly a 46% increase in boundary layer thickness (here we have introduced the nota-

tion δ a(x∗), where a is the roughness parameter). The displacement thickness for the averaged
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Table 3.1: Numerical values of the basic flow parameters for a range of values of the roughness
parameter a.

a f ′η(0) | f ′′ηη(0)| δ

0 1 0.4437 1.6161
0.05 0.9766 0.4183 1.6354
0.1 0.9187 0.3597 1.6885

0.15 0.8479 0.2960 1.7651
0.2 0.7784 0.2413 1.8553

flow profiles is defined as follows

δ
∗ =

∫
∞

0

u∗

U∗
w

dy∗ =
x∗√
Rex∗

∫
∞

0
f ′η(η)dη =

x∗√
Rex∗

δ ,

where δ = f (η = ηmax). We summarise a range of important base flow quantities in Table 3.13.1,

and make use of these numerical values in the ensuing linear stability analyses, see Chapter 44.

Consistent with the results presented in Figure 3.43.4 we see that the average value of the shear

at the wall decreases in absolute value as a increases. Indeed, these results give justification

for our restriction that a ≤ 0.2. As the value of the roughness parameter increases further

we determine that | f ′′ηη(0)| becomes vanishingly small, an indication that the flow has indeed

separated.

Within both this section and the previous section we have detailed how the flow over a

translating wavy surface becomes periodic at a suitable distance downstream from the point

where ξ = 0. As such, it would be incorrect to apply a base flow averaging procedure over

any roughness wavelength. Rather, one must ensure that the flow has developed sufficiently far

enough downstream from the initial non-periodic flow determined from the solution of (2.1.272.1.27).

Failure to do so will result in the determination of flow fields that are not in fact identical

after application of a spatial averaging process, and instead are skewed by the results near to

the point where ξ = 0. Therefore, for the problem we are considering here, we computed a

spatial average of the mean flow fields over one period of the roughness profile (the cosine
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wave) between the locations ξ0 = 0.5 and ξ1 = 1.5. We arrive at an identical set of results

if we compute these averaged flows over any complete cycle of the roughness profile given

that ξ0 ≥ 0.5. In fact, given that this flow is doubly periodic, completing this computation

over one complete cycle of the roughness profile is, in reality, unnecessary as one arrives at

the same results averaging over just one-half cycle. In an attempt to reproduce the rotating

disk base flow results presented by Garrett et al.Garrett et al. (20162016) we applied an averaging procedure as

outlined above. Given that the disk flow is periodic in exactly the same way as the flow we

are considering here, we believe, is a reasonable thing to do. We find that our results disagree

somewhat with those of Garrett et al.Garrett et al. (20162016) and that this disagreement increases as the value of

the roughness parameter increases. From this we infer that Garrett et al.Garrett et al. (20162016) likely applied

their averaging procedure over one complete roughness cycle starting from the initial radial

location. Our results show clearly that this process cannot simply be applied over any roughness

wavelength and postulate that the results regarding the linear stability characteristics of the flows

considered by Garrett et al.Garrett et al. (20162016) are somewhat affected by the inaccuracies associated with

the computation of their averaged mean flow profiles.

3.4 Self Similar Periodicity

In §3.23.2 we observed cyclical variation in the basic flow solutions using the Keller-Box approach.

This motivates us to attempt to reproduce such results analytically using a suitable similarity

approach. To do this we now analyse system (2.1.162.1.16) without prior knowledge of the shape of

the surface profile in the case of constant wall velocity. For the interested reader, flows where

the wall velocity is not constant are discussed in Appendix AA. Assuming system (2.1.162.1.16) admits

self similar solutions we introduce the following similarity coordinate

τ =
Ŷ

g
√

Xσ
,
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and the streamfunction φ = g
√

X/σ f (τ), where g is a function of X to be determined. Given

the definition of η and φ we can rewrite the Ŷ derivative as follows

∂

∂Ŷ
=

∂τ

∂Ŷ
∂

∂τ
= g−1X− 1

2 σ
− 1

2
∂

∂τ
.

Therefore, the streamwise flow component is given by

u0 =
∂φ

∂Ŷ
= (g−1X− 1

2 σ
− 1

2 )(gX
1
2 σ

− 1
2 )

∂ f
∂τ

=
f ′τ
σ
. (3.4.1)

Now
∂τ

∂X
=−Ŷ

g
g′X
g

1

σ
1
2 X

1
2
− Ŷ

2g
σ ′

X

σ
3
2 X

1
2
− Ŷ

2g
1

X
3
2 σ

1
2
.

Thus, for the X derivative we have that

∂

∂X
=

∂τ

∂X
∂

∂τ
= τ

(
−g′X

g
− σ ′

X
2σ

− 1
2X

)
∂

∂τ
.

Now
∂φ

∂X
=

(
∂

∂X
gX

1
2 σ

− 1
2

)
f +(gX

1
2 σ

− 1
2 )

∂ f
∂X

.

Therefore the wall-normal flow component becomes

v0 =−∂φ

∂X
= g

√
X
σ
(τ f ′τH−− f H+), (3.4.2)

where

H± =
g′X
g

+
1

2X
± 1

2

(
−σ ′

X
σ

)
.

Given the above we have that

∂u0

∂X
=−σ

−2
σ
′
X f ′τ −σ

−1
τH− f ′′ττ , (3.4.3a)
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∂u0

∂Ŷ
= g−1X− 1

2 σ
− 3

2 f ′′ττ , (3.4.3b)

∂ 2u0

∂Ŷ 2
= g−2X−1

σ
−2 f ′′′τττ . (3.4.3c)

Substituting (3.4.33.4.3) into (2.1.162.1.16) yields

−Xg2H+ f f ′′ττ = σ
2 f ′′′τττ . (3.4.4)

In order to be able to determine a similarity solution it must then be the case that

Xg2H+ = c1σ
2. (3.4.5)

As consequence of equation (3.4.53.4.5), we have that

−c1 f f ′′ττ = f ′′′τττ , (3.4.6)

where c1 is an arbitrary constant that ensures self-similarity. On rearranging (3.4.53.4.5) we obtain

Xg2
(

g′X
g

+
1

2X
− σ ′

X
2σ

)
= c1σ

2.

Now

gg′X +
g2

2X
− g2σX

2σ
=

c1σ2

X
.

By letting G = g2 we have G′
X = 2gg′X , and we obtain the following ODE

G′
X +G

(
1
X
− σ ′

X
σ

)
=

k2σ2

X
,
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where 2c1 = k2. The above equation is of the form

G′
X +GP(X) = Q(X).

In order to solve the above we make use of an integrating factor. Now

K(X) = exp
(∫

P(X)dX
)
=

X
σ
.

Given this form of K(X), we obtain

d
dX

[
X
σ

G
]
=

k2σ2

X
X
σ

= k2
σ .

Integrating both sides yields
X
σ

G = k2I ,

where

I =
∫

σ(X)dX ,

is the arc length of the wavy surface, Y = s(X). Therefore we have obtained g = k
√

X−1Iσ .

From (3.4.63.4.6) we have that

−k2

2
f f ′′ττ = f ′′′τττ .

By writing F(ζ ) = k f (τ), where ζ = kτ , we have that F ′
ζ
= f ′τ , kF ′′

ζ ζ
= f ′′ττ , and k2F ′′′

ζ ζ ζ
= f ′′′τττ .

Therefore

−k2

2
F
k

kF ′′
ζ ζ

= k2F ′′′
ζ ζ ζ

.

Therefore the flow at all streamwise locations is determined from the solution of

F ′′′
ζ ζ ζ

+
FF ′′

ζ ζ

2
= 0, (3.4.7)
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solved subject to the conditions F(ζ = 0) = F ′
ζ
(ζ = 0)−1 = 0 and F ′

ζ
(ζ → ∞)→ 0. The ODE

given by (3.4.73.4.7) is identical to one that describes the flow induced by the translation of a purely

smooth surface. As detailed in Hanevy et al.Hanevy et al. (20242024), the transformations derived in this Section

acts to scale out any surface deformations with regards to the calculation of the basic state.

Therefore in all cases when the wall velocity is constant, the boundary layer flow induced by a

non-flat surface can be determined from the solutions associated with the flow over a smooth

boundary. To determine the velocity components we note that

ζ = kτ =
kŶ

g
√

Xσ
=

1

k
√

X−1Iσ

kŶ√
Xσ

=
Ŷ

σ
√
I
. (3.4.8)

Given we know the form of g, φ becomes

φ = g

√
X
σ

f (τ) = k
√

X−1Iσ

√
X
σ

F
k
=
√
IF. (3.4.9)

The streamwise flow component is given as follows

u0 =
∂φ

∂Ŷ
=

∂ζ

∂Ŷ
∂φ

∂ζ
= σ

−1
√
I−1

√
IF ′

ζ
=

F ′
ζ

σ
.

For the wall-normal flow component we have that

v0 =−∂φ

∂X
=− ∂

∂X
(
√
IF).

Thus

v0 =−
(

1
2
I− 1

2 σF +I 1
2

∂F
∂X

)
=

σ

2
√
I

(
−2I

σ

∂F
∂X

−F
)
.

We also have that

∂F
∂X

=
∂ζ

∂X
∂F
∂ζ

=

(
−σ

−2
σ
′
XI− 1

2 Ŷ − 1
2

σ
−1ŶI− 3

2 σ

)
F ′

ζ
.
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Therefore
∂F
∂X

=

(
−σ

−1
σ
′
X ζ − 1

2
I−1

σζ

)
F ′

ζ
.

We have obtained the following expressions for u0 and v0

u0 =
F ′

ζ

σ
, (3.4.10a)

v0 =
σ

2
√
I

[(
2Iσ ′

X
σ2 +1

)
ζ F ′

ζ
−F

]
. (3.4.10b)

Given the above it is clear to see that the solution for u0 exhibits periodicity in the streamwise

direction. Therefore the problem we are considering here indeed admits self similar solutions

given that

ξ = X , u0 =
∂φ

∂Ŷ
, v0 =−∂φ

∂X
, φ =

√
IF(ζ ), ζ =

Ŷ

σ
√
I
.

In order to compare our Keller-Box solutions with the self similar solution, the streamwise

velocities must match, thus

∂ f
(

X , Ŷ√
X

)
∂η

=
1
σ

dF
(

Ŷ
σ
√
I

)
dζ

. (3.4.11)

Hence
∂ 2 f

(
X , Ŷ√

X

)
∂η2 =

1
σ

∂

∂η

dF
(

Ŷ
σ
√
I

)
dζ

 . (3.4.12)

Now ζ = η
√

X/(σ
√
I), therefore

∂

∂η
=

∂

∂ζ

∂ζ

∂η
=

√
X

σ
√
I

∂

∂ζ
.

It transpires that
∂ 2 f (ξ ,0)

∂η2 =
F ′′

ZZ(0)
σ2

√
X
I =−0.4437

σ2

√
X
I , (3.4.13)
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Figure 3.6: Comparison between the exact and approximate values of I .

where the value of F ′′
ζ ζ
(0) has been determined numerically in §3.13.1. In the instance when I ∝ X ,

the shear at the wall will vary in a purely sinusoidal fashion. Given the definition of the wavy

surface we are analysing here, one finds that

I =
E(2πX |− (2aπ)2)

2π
,

where E(x|m) is the incomplete integral of the second kind, where integrals of this type can be

found in Abromowitz & StegunAbromowitz & Stegun (19721972). In the cases when a ≪ 1, this integral can be very well

approximated in the following manner

I ≈
(

1+
max(σ)−min(σ)

4

)2

X = (1+ϑ)2X ,

where ϑ = [
√

1+(2aπ)2 −1]/4, see Figure 3.63.6.

Thus, we are able to predict analytically the sinusoidal variation of the shear at the wall as

follows
∂ 2 f (ξ ,0)

∂η2 ≈− 0.4437
(1+ϑ)σ2 . (3.4.14)
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Figure 3.7: In (a) the shear at the wall, f ′′ηη(ξ ,0), is illustrated as a function of the streamwise
coordinate ξ , for a range of values of the roughness parameter. In (b) we compare our
approximate result given in (3.4.143.4.14) with the exact result arising from our numerical

calculations.

Once again it is evident from Figure 3.73.7 that the flow is not immediately periodic as pre-

dicted by our self similar analysis. The initial flow profile must be allowed to develop down-

stream from the point where ξ = 0 before periodicity is first observed. This result is a direct

consequence of the ratio σζ/η =
√

X/I , tending to a limiting constant away from the leading

edge. We have also compared our approximate expression for the shear at the wall with the

exact solution which gives us an indication of how far away one needs to be from the leading

edge before periodicity is established. To further support the validity of our Keller box solutions

equation (3.4.113.4.11) implies that the results presented in Figures 3.23.2 and 3.33.3 will be reproduced

when σ−1F ′
ζ

is plotted against ζ = η
√

X/(σ
√
I). By solving (3.4.73.4.7) numerically subject to the

appropriate boundary conditions we demonstrate this exactly in Figure 3.83.8 for the case when

a = 0.2. Not only that we can directly reproduce the averaged profiles presented in Section §3.33.3

by taking the average of the velocity components given by (3.4.103.4.10).
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Figure 3.8: Comparison of Keller-box solutions with our self-similar analysis. Solutions are
presented at the peaks and troughs of s (ξ = n

2 for n ∈ Z+), where the Keller-box solution in
(a) corresponds to the self-similar solution in (c). Similarly, solutions at ξ = 1

4 +
n
2 for n ∈ Z+,

which represent the zeros of the wavy surface, are shown in (b) and are equivalent to the
self-similar solution in (d).

In this section, we have demonstrated that the basic flow solutions presented in §3.23.2 are, in

fact, completely periodic by adapting a suitable similarity approach. However, the initial flow

profile must be allowed to develop from the point ξ = 0 before periodicity becomes evident.

Furthermore, by employing this self-similar approach, we have successfully reproduced the

basic flow solutions from §3.23.2 and §3.33.3.
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Chapter 4

Linear Stability Analysis

In this Chapter we analyse the onset of linear instability of the boundary layer flow induced by

a wavy surface via two means. In the first instance we follow the work of Garrett et al.Garrett et al. (20162016)

and adopt a standard Orr-Sommerfeld approach to analyse the linear stability of our averaged

flow solutions. To do this we calculate the base flows for a range of streamwise values and

take the average, we proceed by determining the most dangerous eigenvalue associated with

this single profile in order to determine the linear stability characteristics of the flow. In the

second case we introduce what we refer to as a ‘quasi-spatial’ approach motivated by the studies

of Morgan & DaviesMorgan & Davies (2020a2020a) and, Morgan et al.Morgan et al. (2021a2021a). Essentially the flow field is frozen

in space whereby snapshots of the spatially periodic flow are analysed via the standard LSA

approach. To this end we calculate the base flows for a range of streamwise values, determine

the most dangerous eigenvalue associated with these single profiles and take an average of these

eigenvalue results in order to determine the linear stability characteristics of the flow.

This chapter is structured as follows, in §4.14.1 we derive the governing perturbation equations

that allow us to analyse the averaged flow profiles presented in Chapter 33 for various values of

a. The resulting perturbation equations are solved utilising a Chebyshev spectral scheme which

we discuss in §4.24.2. In §4.34.3 we derive the appropriate energy balance for problems of this type.
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In §4.44.4 we present linear stability results for two-dimensional disturbances and also results

from our integral energy analysis, which provides insights as to the mechanisms responsible for

instability. In §4.54.5 we conduct a quasi-spatial linear stability analysis and compare the results

owing from this methodology to those presented in §4.44.4.

4.1 Derivation Of The Linear Stability Equations

To derive the governing perturbation equations we make use of the 3-dimensional, time-dependent

Navier-Stokes equations for an incompressible fluid in the absence of body forces which are

given by

∂u∗

∂x∗
+

∂v∗

∂y∗
+

∂w∗

∂ z∗
= 0, (4.1.1a)

∂u∗

∂ t∗
+u∗

∂u∗

∂x∗
+ v∗

∂u∗

∂y∗
+w∗∂u∗

∂ z∗
=− 1

ρ∗
∂ p∗

∂x∗
+ν

∗
(

∂ 2u∗

∂x∗2 +
∂ 2u∗

∂y∗2 +
∂ 2u∗

∂ z∗2

)
, (4.1.1b)

∂v∗

∂ t∗
+u∗

∂v∗

∂x∗
+ v∗

∂v∗

∂y∗
+w∗∂v∗

∂ z∗
=− 1

ρ∗
∂ p∗

∂y∗
+ν

∗
(

∂ 2v∗

∂x∗2 +
∂ 2v∗

∂y∗2 +
∂ 2v∗

∂ z∗2

)
, (4.1.1c)

∂w∗

∂ t∗
+u∗

∂w∗

∂x∗
+ v∗

∂w∗

∂y∗
+w∗∂w∗

∂ z∗
=− 1

ρ∗
∂ p∗

∂ z∗
+ν

∗
(

∂ 2w∗

∂x∗2 +
∂ 2w∗

∂y∗2 +
∂ 2w∗

∂ z∗2

)
. (4.1.1d)

To numerically analyse the linear stability of the mean flow profiles discussed in§3.33.3 we non-

dimensionlise with the following length, velocity, pressure, and time rescalings

(x,y,z) =
(x∗,y∗,z∗)

δ ∗ , (u,v,w) =
(u∗,v∗,w∗)

U∗
w

, p =
p∗

ρ∗U∗2
w

, t =
U∗

w
δ ∗ t∗,

where the length and time scales are now expressed in terms of the displacement thickness.

After non-dimensionalisation we obtain the following
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∂u
∂x

+
∂v
∂y

+
∂w
∂ z

= 0, (4.1.2a)

∂u
∂ t

+u
∂u
∂x

+ v
∂u
∂y

+w
∂u
∂ z

=−∂ p
∂x

+
1
R

(
∂ 2u
∂x2 +

∂ 2u
∂y2 +

∂ 2u
∂ z2

)
, (4.1.2b)

∂v
∂ t

+u
∂v
∂x

+ v
∂v
∂y

+w
∂v
∂ z

=−∂ p
∂y

+
1
R

(
∂ 2v
∂x2 +

∂ 2v
∂y2 +

∂ 2v
∂ z2

)
, (4.1.2c)

∂w
∂ t

+u
∂w
∂x

+ v
∂w
∂y

+w
∂w
∂ z

=−∂ p
∂ z

+
1
R

(
∂ 2w
∂x2 +

∂ 2w
∂y2 +

∂ 2w
∂ z2

)
. (4.1.2d)

Where R = δ ∗U∗
w/ν∗ is the Reynolds number based on the displacement thickness. As is stan-

dard for these types of problems, we now apply Squire’s theorem, which states that if a growing

three-dimensional disturbance exists, then a corresponding growing two-dimensional distur-

bance will exist at a lower Reynolds number. Therefore, we reduce the dimensionality of

equation (4.1.24.1.2), obtaining the two-dimensional equivalent of the previously discussed three-

dimensional system. For readers interested in further details and a formal proof of Squire’s

theorem, we refer to Ruban et al.Ruban et al. (20232023).

∂u
∂x

+
∂v
∂y

= 0, (4.1.3a)

∂u
∂ t

+u
∂u
∂x

+ v
∂u
∂y

=−∂ p
∂x

+
1
R

(
∂ 2u
∂x2 +

∂ 2u
∂y2

)
, (4.1.3b)

∂v
∂ t

+u
∂v
∂x

+ v
∂v
∂y

=−∂ p
∂y

+
1
R

(
∂ 2v
∂x2 +

∂ 2v
∂y2

)
. (4.1.3c)
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The mean flow quantities are now perturbed as follows

u(x,y, t) = uB(x,y)+ ũ(x,y, t), (4.1.4a)

v(x,y, t) = R−1/2vB(x,y)+ ṽ(x,y, t), (4.1.4b)

p(x,y, t) = pB + p̃(x,y, t), (4.1.4c)

where the perturbation quantities (ũ, ṽ, p̃) are assumed to be small. Therefore we obtain the

following linearized equations

∂ ũ
∂x

+
∂ ṽ
∂y

= 0 (4.1.5a)

∂ ũ
∂ t

+uB
∂ ũ
∂x

+ ũ
∂uB

∂x
+ ṽ

∂uB

∂y
+R− 1

2 vB
∂ ũ
∂y

=−∂ p̃
∂x

+
1
R

(
∂ 2ũ
∂x2 +

∂ 2ũ
∂y2

)
, (4.1.5b)

∂ ṽ
∂ t

+uB
∂ ṽ
∂x

+ ũR− 1
2

∂vB

∂x
+ vBR− 1

2
∂ ṽ
∂y

+ ṽR− 1
2

∂vB

∂y
=−∂ p̃

∂y
+

1
R

(
∂ 2ṽ
∂x2 +

∂ 2ṽ
∂y2

)
. (4.1.5c)

We now employ the standard parallel flow approximation. Having made the assumption that

sufficiently far enough downstream (x ≫ 1) the streamwise boundary layer growth is marginal,

we consider uB to be a function of y only, and vB to be negligible. Therefore we obtain the

following

∂ ũ
∂x

+
∂ ṽ
∂y

= 0, (4.1.6a)

∂ ũ
∂ t

+uB
∂ ũ
∂x

+ ṽ
duB

dy
=−∂ p̃

∂x
+

1
R

(
∂ 2ũ
∂x2 +

∂ 2ũ
∂y2

)
, (4.1.6b)

∂ ṽ
∂ t

+uB
∂ ṽ
∂x

=−∂ p̃
∂y

+
1
R

(
∂ 2ṽ
∂x2 +

∂ 2ṽ
∂y2

)
. (4.1.6c)
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Utilising the parallel flow approximation makes the solution to (4.1.64.1.6) separable and we now

express the perturbations in terms of normal modes and write

[ũ(x,y, t), ṽ(x,y, t), p̃(x,y, t)] = [û(y), v̂(y), p̂(y)]ei(αx−ωt),

where α is the wavenumber in the x-direction and ω is the disturbance frequency. Here we will

be conducting a spatial analysis by fixing ω to be real, allowing us to determine the complex

quantity α . The disturbances are periodic in time and grow or decay exponentially with x. By

letting α = αr+ iαi the disturbances will grow exponentially in space if αi < 0. On substitution

of the normal modes into the linear disturbance equations we obtain the following

iα û+ v̂′y = 0, (4.1.7a)

1
R

α
2û+ i(αuB −ω)û− 1

R
û′′yy + iα p̂+(uB)

′
yv̂ = 0, (4.1.7b)

1
R

α
2v̂+ i(αuB −ω)v̂− 1

R
v̂′′yy + p̂′y = 0. (4.1.7c)

Combining the above equations we arrive at the Orr-Sommerfeld equation

{(D2 −α
2)2 − iαR[(uB − c)(D2 −α

2)− (uB)
′′
yy]}v̂ = 0, (4.1.8)

where D = d/dy and c = ω/α . The Orr-Sommerfeld equation is a fourth order differential

equation, which upon solving would admit four linearly independent solutions. Given that the

perturbation velocities are subject to the no-slip condition at the wall, and that all perturbations

must decay to zero far from the surface, (4.1.74.1.7) is solved subject to

û(y = 0) = v̂(y = 0) = v̂′(y = 0) = 0, (4.1.9a)

û(y → ∞)→ v̂(y → ∞)→ p̂(y → ∞)→ 0, (4.1.9b)
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where the condition on v̂′ is a direct consequence of the continuity equation. For more details

regarding the Orr-Sommerfeld equation see Ruban et al.Ruban et al. (20232023). The derivation of the Orr-

Sommerfeld equation can be found in many introductory textbooks so the details are omitted.

In order to analyse the linear stability of the averaged mean flow solutions we write y = δη , and

uB(y) = f ′η(δη) where f ′η represents the averaged basic flow solution and δ is the associated av-

erage displacement thickness. Non-trivial solutions can be found for only specific combinations

of the wavenumber α , the disturbance frequency ω , and the Reynolds number R.

4.2 Numerical Solution To The Perturbation Equations

In this section we derive the numerical scheme used to solve (4.1.74.1.7) subject to the conditions

(4.1.94.1.9) using a spectral method that utilises Chebyshev polynomials. We follow the methods

outlined in Griffiths et al.Griffiths et al. (20212021). The Chebyshev polynomials are defined recursively below

T0(y) = 1, (4.2.1a)

T1(y) = y, (4.2.1b)

Tk+1(y) = 2yTk(y)−Tk−1(y). (4.2.1c)

Assuming that a function f (y j) is decomposed by Chebyshev expansions we have that

f (y j)≈
N

∑
n=0

anTn(y j).

Equation (4.1.74.1.7) only involves second order ODEs and as a result we only require the first and

second derivatives of the Chebyshev polynomials which are given as follows

T ′
0(y) = T ′′

0 (y) = 0, (4.2.2a)

T ′
1(y) = 1, (4.2.2b)
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T ′′
1 (y) = 0, (4.2.2c)

T ′
2(y) = 4T1(y), (4.2.2d)

T ′′
2 (y) = 4T ′

1(y), (4.2.2e)

T ′
k (y) = 2Tk−1(y)+2yT ′

k−1(y)−T ′
k−2(y), (4.2.2f)

T ′′
k (y) = 4T ′

k−1 +2yT ′′
k−1(y)−T ′′

k−2(y). (4.2.2g)

In order to solve (4.1.74.1.7) with the aim of obtaining the eigenvalue of the streamwise wavenum-

ber α , and the corresponding eigenfunctions of the perturbation quantities (û, v̂, p̂), the Cheby-

shev expansions are introduced at a number of points in the physical domain called collocation

points. To determine those points we utilise the transformation of the Gauss-Lobatto collocation

points y j which is defined like so

y j =−cos
(

jπ
N

)
, (4.2.3)

for j = 0,1, ...,N, so there are N + 1 number of points in the interval [−1,1]. An exponential

map is used to transform the Gauss–Lobatto collocation points into the physical domain. The

mapping is used to distribute 100 collocation points between the surface of the plate η = 0, to

the top of the domain ηmax = 100. This mapping allows us to capture the the exponential nature

of the base flow for a range of different φ values and is defined like so

η j =− 1
φ

ln
(

1+ y j +A
A

)
, (4.2.4)

where A = 2(exp−φηmax −1)−1 and φ is a free constant. Other mappings have been used in

the literature, for example, Appelquist & ImayamaAppelquist & Imayama (20172017) employed a linear mapping when

analysing the linear stability characteristics of the flow over a rotating disk. Unless otherwise

stated we set N = 100 and φ = 1/5. Various values of φ were tested and we found that for
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values of φ ≥ 1/5 the solutions were assured to converge. The Chebyshev polynomials and

their derivatives are obtained using the chain rule and are given as follows

Sk(η) = Tk(y), (4.2.5a)

S′k(η) =
dTk(y)

dη
= T ′

k (y)
dy
dη

, (4.2.5b)

S′′k =
d2Tk(y)

dη2 = T ′′
k (y)

(
dy
dη

)2

+T ′
k (y)

d2y
dη2 . (4.2.5c)

We note that the polynomials are orthogonal functions in the domain [−1,1] with respect to

their defining inner product. The truncated series of the perturbation quantities (û, v̂, p̂) and

their derivatives at the collocation points η j, are therefore given by

û(η j) =
N

∑
k=0

âû
kSk(η j), (4.2.6a)

û′(η j) =
N

∑
k=0

âû
kS′k(η j), (4.2.6b)

û′′(η j) =
N

∑
k=0

âû
kS′′k (η j). (4.2.6c)

We obtain similar expressions for v̂ and p̂. We require that the perturbation quantities are zero

at the surface to ensure the no slip condition is satisfied and the perturbations are equal to

zero at the far end of the physical domain as disturbances vanish. Substituting the Chebyshev

expansions of the perturbation quantities along with the boundary conditions into (4.1.74.1.7) leads

to the generalised eigenvalue problem which is of the form
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(A2α
2 +A1α +A0)V = 0, (4.2.7)

where the matrices A2, A1 and A0 are of the size 3(N + 1)× 3(N + 1) where the 3 is the num-

ber of unknowns and V is the matrix of eigenfunctions. It is important to note that eigenvalue

solution methods are often prone to spurious eigenvalues, those that are not true eigenvalues

of the perturbation equations. These eigenvalues are well explained by MorganMorgan (20182018) who

states that such eigenvalues may be attributed to the solution method of the problem and may be

either stable or unstable. MorganMorgan (20182018) highlights that stable spurious eigenvalues are of lit-

tle importance, however spurious unstable eigenvalues are highly undesirable since they could

incorrectly predict the onset of linear instability. There are two types of spurious eigenval-

ues, physically spurious eigenvalues and numerically spurious eigenvalues. Physically spurious

eigenvalues are computed numerically in error because of misapplication of boundary condi-

tions or some other misrepresentation of the physics. Numerically spurious eigenvalues are

poor approximations to exact eigenvalues because the mode may be oscillating too rapidly to

be resolved using a given discretisation but can always be computed accurately using a suffi-

ciently large degree Chebyshev approximation. The matrices that constitute equation (4.2.74.2.7)

are defined below, where Sm
j = S j(ηm).
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A2 =



S0
0

R 0 0 · · · S0
j

R 0 0 · · · S0
N
R 0 0

0 S0
0

R 0 · · · 0
S0

j
R 0 · · · 0 S0

N
R 0

0 0 0 · · · 0 0 0 · · · 0 0 0
...

...
... . . . ...

...
... . . . ...

...
...

Sk
0

R 0 0 · · · Sk
j

R 0 0 · · · Sk
N
R 0 0

0 Sk
0

R 0 · · · 0
Sk

j
R 0 · · · 0 Sk

N
R 0

0 0 0 · · · 0 0 0 · · · 0 0 0
...

...
... . . . ...

...
... . . . ...

...
...

SN
0
R 0 0 · · · SN

j
R 0 0 · · · SN

N
R 0 0

0 SN
0
R 0 · · · 0

SN
j

R 0 · · · 0 SN
N
R 0

0 0 0 · · · 0 0 0 · · · 0 0 0


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A
1
=

                               

iu
B
S0 0

0
iS

0 0
··
·

iu
B
S0 j

0
iS

0 j
··
·

iu
B
S0 N

0
iS

0 N

−
iω

S0 0
−

S′
′0 0 R

u′ B
S0 0

0
··
·

−
iω

S0 j
−

S′
′0 j R

u′ B
S0 j

0
··
·

−
iω

S0 N
−

S′
′0 N R

u′ B
S0 N

0

iS
0 0

0
0

··
·

iS
0 j

0
0

··
·

iS
0 N

0
0

. . .
. . .

. . .
. .

.
. . .

. . .
. . .

. .
.

. . .
. . .

. . .

iu
B
Sk 0

0
iS

k 0
··
·

iu
B
Sk j

0
iS

k j
··
·

iu
B
Sk N

0
iS

k N

−
iω

Sk 0
−

S′
′k 0 R

u′ B
Sk 0

0
··
·

−
iω

Sk j−
S′
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and

V =
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â p̂
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âû
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âv̂
j

â p̂
j

...

âû
N

âv̂
N

â p̂
N



.

The eigenvalue problem was solved using Matlab’s polyeig function using our known averaged

basic flow solutions by prescribing R and ω . Our numerical scheme was verified against the

familiar neutral stability results of the Blasius boundary-layer problem. It was found that the

critical values were Rcrit = 519.1, αcrit = 0.3044, and ωcrit = 0.1208, which are in excellent

agreement with the results of Schmid & HenningsonSchmid & Henningson (20012001), for example.

4.3 Derivation Of Energy Balance Equations

In an attempt to better understand the mechanisms of the instability we consider the energy bal-

ance of the system. In order to derive an appropriate integral energy analysis for this problem we

multiply the streamwise and wall-normal perturbation equations (4.1.64.1.6) by ũ and ṽ, respectively

and take the sum which yields

(
∂

∂ t
+uB

∂

∂x

)
q̃+ ũṽ

duB

dy
=−∂ (ũp̃)

∂x
− ∂ (ṽ p̃)

∂y
+

1
R

(
ũ

∂ 2ũ
∂x2 + ṽ

∂ 2ṽ
∂x2 + ũ

∂ 2ũ
∂y2 + ṽ

∂ 2ṽ
∂y2

)
. (4.3.1)
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Equation (4.3.14.3.1) represents the energy transfer processes of the system where q̃ = (ũ2 + ṽ2)/2

is the kinetic energy of the two disturbances. We can rewrite (4.3.14.3.1) as follows

(
∂

∂ t
+uB

∂

∂x

)
q̃+ ũṽ

duB

dy
=−∂ (ũp̃)

∂x
− (ṽ p̃)

∂y
+

1
R

(
∂ (ṽΩ̃)

∂x
− ∂ (ũΩ̃)

∂y
− Ω̃

2
)
, (4.3.2)

where

Ω̃ =
∂ ṽ
∂x

− ∂ ũ
∂y

,

represents the disturbance vorticity perpendicular to the plane of motion. To see that the final

term in (4.3.24.3.2) is correct let

C =
∂ (ṽΩ̃)

∂x
− ∂ (ũΩ̃)

∂y
− Ω̃

2.

Given the definition of Ω̃ we obtain

C = ũ
∂ 2ũ
∂y2 + ṽ

∂ 2ṽ
∂x2 − ṽ

∂ 2ũ
∂x∂y

− ũ
∂ 2ṽ

∂x∂y
.

From the continuity equation we have that

∂ ũ
∂x

=−∂ ṽ
∂y

. (4.3.3)

Differentiating (4.3.34.3.3) with respect to x and multiplying by ũ yields

ũ
∂ 2ũ
∂x2 =−ũ

∂ 2ṽ
∂x∂y

.

Differentiating (4.3.34.3.3) with respect to y and multiplying by ṽ yields

ṽ
∂ 2ṽ
∂y2 =−ṽ

∂ 2ũ
∂x∂y

.
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Therefore C becomes

C = ũ
∂ 2ũ
∂x2 + ṽ

∂ 2ṽ
∂x2 + ũ

∂ 2ũ
∂y2 + ṽ

∂ 2ṽ
∂y2 .

Which verifies the final term in equation (4.3.24.3.2). On returning to equation (4.3.24.3.2) we average

over one time period, and integrate across the boundary layer. Having done so we arrive at the

governing integral energy equation for flows of this nature

∂

∂x

[∫
∞

0
(uBq̃)dy+

∫
∞

0
(ũp̃)dy− 1

R

∫
∞

0
(ṽΩ̃)dy

]
=−(ṽ p̃)|y=0 −

∫
∞

0

duB

dy
(ũṽ)dy (4.3.4)

−
(ũΩ̃)|y=0

R
− 1

R

∫
∞

0
Ω̃

2dy,

On numerical investigation one finds that the term R−1ṽΩ̃ is negligible and that this result is

independent of the roughness parameter a. In terms of the normal modes one finds that

∂

∂x

[
e2i(αx−ωt)

(∫
∞

0
(uBq̂)dy+

∫
∞

0
(ûp̂)dy

)]
=−e2i(αx−ωt)

∫
∞

0

duB

dy
(ûv̂)dy

− 1
R

e2i(αx−ωt)
∫

∞

0
Ω̂

2dy,

where Ω̂ = iα v̂− û′. Now

2iα
[∫

∞

0
(uBq̂)dy+

∫
∞

0
(ûp̂)dy

]
=−

∫
∞

0

duB

dy
(ûv̂)dy− 1

R

∫
∞

0
Ω̂

2dy.

Given that α = αr + iαi we obtain

2i(αr + iαi)

[∫
∞

0
(uBq̂)dy+

∫
∞

0
(ûp̂)dy

]
=−

∫
∞

0

duB

dy
(ûv̂)dy− 1

R

∫
∞

0
Ω̂

2dy.
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Taking the real part yields

2αi

[∫
∞

0
uB⟨q̂⟩dy+

∫
∞

0
⟨ûp̂⟩dy

]
=
∫

∞

0

duB

dy
⟨ûv̂⟩dy+

1
R

∫
∞

0
⟨Ω̂2⟩dy.

Thus

2αi ∼
∫

∞

0
duB
dy ⟨ûv̂⟩dy+ 1

R
∫

∞

0 ⟨Ω̂2⟩dy∫
∞

0 (uB⟨q̂⟩+ ⟨ûp̂⟩)dy
. (4.3.5)

Normalising the above by the integral of the combination of energy flux and the work done by

pressure yields

2αi︸︷︷︸
TME

∼
∫

∞

0

duB

dy
⟨ûv̂⟩dy︸ ︷︷ ︸

EPRS

+
1
R

∫
∞

0
⟨Ω̂2⟩dy︸ ︷︷ ︸

EDAV

, (4.3.6)

where ⟨âb̂⟩ = âb̂⋆+ â⋆b̂ and ⋆ denotes the complex conjugate. Here TME relates to the Total

Mechanical Energy of a given disturbance. The term EPRS represents the Energy Production

due to Reynolds Stresses and will always be positive. The Energy Dissipation due to the Action

of Viscosity is denoted EDAV and will always be negative. When the value of the term EPRS

is greater than the absolute value of the EDAV term the right-hand side of the above is positive

which implies that αi < 0 which is consistent with our definition of the criterion for linear

instability.

4.4 Linear Stability Analysis - Numerical Solutions

We begin by solving (4.1.74.1.7) subject to the boundary conditions (4.1.94.1.9) for various values of the

roughness parameter a. To visualise our results we cycle through a range of values of ω and

R in order to determine points where αi ≤ 0. The points where αi = 0 are the neutrally stable

points. In the first instance we aim to reproduce the results presented by Tsou et al.Tsou et al. (19661966) who

analysed the linear stability of a continuous moving surface in the case of a smooth boundary.

Those authors showed that the flow is linearly unstable above a critical Reynolds number Rcrit =

3600. Here we determine that the critical Reynolds number for the smooth boundary, i.e., in
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Figure 4.1: In (a) the growth rate, defined as −αi, is illustrated against αr for a range of values
of the roughness parameter a at a fixed value of the Reynolds number R = Rcrit×1.5. In (b) the
neutral stability curves, all the points where αi = 0, are illustrated for a range of values of the

roughness parameter a.

the case when a = 0, is Rcrit = 3564.01 (see Table 4.14.1). We argue that the numerical scheme

used in the present analysis is far more accurate than the finite difference scheme used by

Tsou et al.Tsou et al. (19661966) which explains the discrepancy in the results. For example, in their study

Tsou et al.Tsou et al. (19661966) quote the critical Reynolds number for the Blasius boundary layer problem to

be Rcrit = 530, this is again an overprediction of the classical result. We expect that these slight

inaccuracies are simply a function of the computing resources that were available at the time that

Tsou, Sparrow and Kurtz’s calculations were performed. We note here that the critical Reynolds

number associated with a boundary layer flow that is developing as a result of the translation

of a smooth surface is considerably larger than that of the Blasius flow problem. Tsou et al.Tsou et al.

(19661966) argue that this increase in the value of Rcrit is a consequence of the critical layer for

these types of problems being much closer to the wall when compared to the equivalent Blasius

result. Increasing the value of the parameter a we find that the addition of surface roughness has

a stabilising effect on the boundary layer flow both in terms of the onset of linear instability and

the growth rates of the associated disturbances. In Figure 4.14.1 we present the growth rates for a

range of values of the roughness parameter a at a fixed Reynolds number R = Rcrit × 1.5. We

find that the amplitude of the growth rate is significantly reduced which suggests stabilisation.

This stabilisation is also observed as the area encompassed by the neutral curve is noticeably
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Figure 4.2: Plots of the streamwise and wall-normal eigenfuncions for a range of values of the
roughness parameter a at a fixed value of the Reynolds number, R = Rcrit ×1.5. In each case

the most unstable eigenmode (αi = max(αi)) is selected. All the results have been normalised
with respect to the maximum value at a = 0.

Table 4.1: Critical values for the onset of linear instability for various values of the roughness
parameter.

a Rcrit αcrit ωcrit
0 3564.01 0.2367 0.1736

0.05 3571.43 0.2311 0.1655
0.1 3640.48 0.2173 0.1466

0.15 3836.58 0.2007 0.1255
0.2 4177.80 0.1846 0.1066

reduced upon increasing a. Essentially, this means there are fewer wavenumbers susceptible

to linear stability as the level of surface roughness is increased. Before discussing the results

associated with the integral energy analysis it proves useful to first determine the form of the

eigenfunctions. In Figure 4.24.2 we illustrate |û|, and |v̂| for a range of values of the roughness

parameter. We observe that the peak of the wall-normal eigenfunction is reduced as a increases

and similarly for the streamwise eigenfunction, which provides supporting evidence for the

observed stabilisation. In Figure 4.34.3 we present the three energy contribution terms highlighted

in (4.3.64.3.6). We observe that the energy production decreases with increasing a. The absolute

value of the energy dissipation due to viscosity follows a similar trend and, as such, the total

mechanical energy of the system decreases with increasing a. This result is entirely consistent
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with the conclusions drawn from our neutral stability curve predictions.
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Figure 4.3: In (a) we plot the variation of the energy production due to Reynolds stresses
versus a. In (b) we plot the variation of the energy dissipation due to the action of viscosity. In
(c) we plot the variation of the total mechanical energy. The integrals as defined in (4.3.64.3.6) are
computed at a fixed Reynolds number R = Rcrit ×1.5 where the most unstable eigenmode is

selected.

4.5 Linear Stability Analysis - Quasi-Spatial Approach

Given the problem we are considering here has many analogies with the aforementioned stud-

ies of Morgan and coworkers we now conduct a quasi-spatial analysis. As we have already

shown, the flow profiles we determined in Chapter 33 are periodic in space, not time. As such,

we choose to employ a frozen flow-type analysis whereby we freeze the flow in space, remov-

ing the spatial dependence from the problem. By treating the base flow to be quasi-steady

Morgan & DaviesMorgan & Davies (2020b2020b) were able to determine that the temporal variation of the complex-

valued radial wavenumber, calculated over a full cycle of the base state oscillation, forms a

closed loop. Taking the average of each of these solutions that forms the loop then gives a sin-
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Figure 4.4: The spatial evolution of the streamwise wavenumber over a one-half cycle of the
roughness wavelength. In this instance the disturbance frequency and Reynolds number are set

equal to ω = 0.02, and R = 10000, respectively. The roughness parameter is fixed such that
a = 0.1. The black marker indicates an average of all the quasi-spatial points given in blue. As

a point of reference the equivalent LSA result is indicated by the yellow marker.

gle eigenvalue that determines the growth or decay of a perturbation for a given combination of

disturbance frequency and value of the Reynolds number. Fascinatingly, Morgan et al.Morgan et al. (2021b2021b)

show that this procedure reproduces the results one would obtain from a much more computa-

tionally expensive Floquet analysis (see Figure 8(a) of Morgan et al.Morgan et al. (2021b2021b) for a presentation

of this result) almost exactly.

We present in Figure 4.44.4 evidence that over one-half cycle of the wavelength period (since

the flow is doubly periodic) we obtain a very similar closed-loop structure for the variation of the

complex-valued streamwise wavenumber α . Indeed, for the same fixed combination of ω and

R, we find that an identical closed-loop structure is evident for any choice of streamwise values

given that, at least one half-cycle of the wavelength has been traversed, and that the calculation

begins sufficiently far enough downstream from the initial point where ξ = 0. These restrictions

are consistent with the arguments we present in Chapter 33.

If the analysis we present in §4.44.4. can be summarised as; ‘calculate base flows over a range

of streamwise values, average these flow profiles and then calculate the most dangerous eigen-

value associated with this single profile in order to determine the linear stability characteristics
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Figure 4.5: The growth rate plotted against αr using both the LSA approach and quasi-spatial
approach for a = 0.1. In both cases the Reynolds number is fixed at R = 20000. The smooth

surface LSA result has been included as a point of reference.
.

of the flow’, the analysis we present here is summarised as follows; ‘calculate base flows over

a range of streamwise values, determine the most dangerous eigenvalue associated with each

flow profile and then average these results to determine the linear stability characteristics of

the flow’. This procedure is essentially identical to the quasi-steady methodology presented by

Morgan & DaviesMorgan & Davies (2020b2020b) with the expectation that our problem is quasi-spatial in nature.

In the limit as a → 0 the aforementioned processes produce identical results given that the

base flow is, in this instance, purely self-similar. However, as we increase the value of the

roughness parameter from zero we observe a marginal difference between the results predicted

by our previous LSA and the results owing from this quasi-spatial (QS) approach. In order to

characterise the quasi-spatial results we determine growth rates and neutral stability curves thus

allowing for comparisons to be made with the LSA results presented in §4.44.4. In Figure 4.54.5 we

plot, from both approaches, the disturbance growth rate at a fixed value of the Reynolds number

for a non-zero value of the roughness parameter. One can readily observe the fact that the

maximum growth rate is marginally reduced when comparing the QS results with our previous

LSA results. Importantly, the overall trend that increasing the value of a diminishes the growth
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Figure 4.6: Neutral stability curves owing from both the LSA and quasi-spatial approaches. In
(a) we plot the results for the case when a = 0.1, and in (b) for the case when a = 0.2. The

smooth surface LSA result has been included as a point of reference.

of the disturbances remains a consistent conclusion across both analyses. In Figure 4.64.6 we

present curves of neutral stability for both the LSA and QS approaches for two fixed values of

the roughness parameter. In both cases we observe that the prediction for the lower branch of the

neutral stability curve is largely unaffected. As expected, we see that as the value of a increases

so the difference between the results of the two approaches becomes more apparent. For all

cases considered here, we find that the QS method always predicts a larger critical Reynolds

number when compared to the equivalent LSA results and that the area encompassed by the

neutral stability curve effectively decreases. This reduction in area is primarily associated with

a downward shift of the upper branch of the neutral stability curve. Most importantly, the results

from the QS analysis support our LSA findings. Indeed, one can readily conclude that the QS

findings predict an even greater level of boundary-layer stabilisation when compared to our

initial LSA results.
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Chapter 5

Linear Stability Analysis - Large Reynolds

Number Asymptotics

Having established that averaged surface roughness has a stabilising effect on the flow we are

now in a position to verify our numerical findings. To do this we proceed by conducting a large

Reynolds number asymptotic analysis. An analysis of this nature has been performed for vari-

ous flow configurations. For instance, SmithSmith (19791979) conducted an asymptotic analysis at large

Reynolds numbers for the Blasius boundary layer, incorporating non-parallel effects. SmithSmith

(19791979) successfully identified the lower branch of the neutral curve, demonstrating improved

alignment with the experimental observations reported by Schubauer & SkramstadSchubauer & Skramstad (19481948). HallHall

(19861986) performed a large Reynolds number asymptotic analysis to study the stationary modes of

instability in the boundary layer on a rotating disk, demonstrating satisfactory agreement with

the numerical results of MalikMalik (19861986), who used the standard LSA approach. Our approach

aligns closely with the methodology presented by Griffiths et al.Griffiths et al. (20212021), which investigated the

boundary layer flow induced by a linear stretching sheet. In their work, the authors found ex-

cellent agreement between the asymptotic results and numerical solutions. In this chapter, we

compare our asymptotic approximations with our previous numerical solutions obtained using
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the standard Linear Stability Analysis (LSA), as discussed in §4.44.4. Notably, an asymptotic

analysis for flows of this type has not been undertaken, even for the case of a smooth boundary.

Our primary focus is on examining the structure of Tollmien-Schlichting (TS) waves within the

near-wall viscous layer. Since the most amplified TS disturbances occur near the lower branch

of the neutral curve, this motivates us to validate our numerical findings through a lower branch

asymptotic analysis rather than focusing on the upper branch. We begin by analysing the Orr-

Sommerfeld equation (4.1.84.1.8) in the limit as R → ∞ for neutrally stable solutions. In the limit as

R → ∞ we obtain Rayleigh’s equation

(uB − c)(D2v̂−α
2v̂)− (uB)

′′
yyv̂ = 0,

where c = ω/α . The above equation holds away from the fixed wall and the critical layer

where uB = c. However, in these two regions viscous effects cannot be ignored and, when

R ≫ 1, (4.1.84.1.8) is approximated as follows

D4v̂ ≈ iαR(uB − c)D2v̂. (5.0.1)

Close to the wall we can rewrite the basic flow uB as follows

uB = f ′(0)+ f ′′(0)η +
f ′′′(0)

2
η

2 + · · · ,

where we have applied a Taylor series expansion around the point η = 0. Therefore the base

flow can be approximated like so

uB ≈ f ′(0)−λ (X)Ŷ , (5.0.2)
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where λ (X) =− f ′′(0)X− 1
2 . Applying a similar approach for the wall normal velocity we obtain

vB ≈ λ
′
X(X)Ŷ 2/2.

To determine the thickness of the wall layer we substitute (5.0.25.0.2) into (5.0.15.0.1) which yields

D4v̂ ∼ iαR
(

f ′(0)− c−λŶ
)

D2v̂.

By letting the thickness of the wall layer be of O(δ̂ ) and writing Ŷ = δ̂Y we have that

1

δ̂ 4
∼ iαR

(
f ′(0)− c−λ δ̂Y

) 1

δ̂ 2
.

Rearranging for δ̂ at leading order we obtain

δ̂ ∼
(
αR
(

f ′(0)− c
))− 1

2 ,

therefore the thickness of the wall layer is O
(
αR
(

f ′(0)− c
))− 1

2 , where we note that f ′η(0)≤ 1.

The critical layer is located at Y = Yc where uB(Yc) = c. Expanding uB about Y = Yc using a

Taylor series gives

uB ≈ c+(Y −Yc)u′B + · · · ,

making use of (5.0.15.0.1) yields the following

D4v̂ ∼ iαR((Y −Yc)u′B)D
2v̂.

By writing Y = Yc + δ̂Y we obtain

1

δ̂ 4
∼ αRδ̂Y u′B

1

δ̂ 2
,
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where u′B is of O(1). Therefore we determine the thickness of the critical layer to be O((αR)−1/3).

On the lower branch of the stability curve, the wall layer and the critical layer merge. Here, close

to the wall, uB ≈ f ′(0)−λŶ . If uB = c this gives

Ŷ =
1
λ

(
f ′(0)− c

)
.

Balancing this Ŷ with the wall layer thickness and ignoring the higher order term δ̂Y yields

1
λ

(
f ′(0)− c

)
∼
(
αR
(

f ′(0)− c
))− 1

2 .

Therefore
1
λ

(
f ′(0)− c

)
∼ (αR)−

1
3 .

For the above to hold we approximate c like so

c ∼ f ′(0)+ ĉ,

were ĉ ∼ (αR)−
1
3 . Analysis of the Blasius boundary layer reveals that α ∼ R− 1

4 , where full

details can be found in Ruban et al.Ruban et al. (20232023). The analysis we present here is similar to work

presented by Griffiths et al.Griffiths et al. (20212021), where a large Reynolds number asymptotic analysis was

conducted for boundary layer flows induced by a linear stretching sheet where again one finds

that α ∼ R− 1
4 . Now

c =
ω

α
≈ f ′(0)+O(R− 1

4 ).

Which implies that ω ∼ R− 1
4 since c ∼ O(1), hence α ∼ ω ∼ R− 1

4 . In addition to this, our

numerical solutions exhibit the behaviour ( f ′η(0)− c) ∼ R−1/4. For the ensuing asymptotic

analysis, it is convenient to non-dimensionalise lengths with respect to the reference length-

scale L∗, thus meaning that the dimensionless parameter upon which this analysis is based is
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Re, not R. We perform a local stability analysis about the streamwise location x for Re ≫ 1.

The relationship between this Reynolds number and the local Reynolds number used in the

numerical analysis is then R = δ
√

xRe. To see this we note that

R = δx
1
2 Re

1
2 = δ

∗

√
ρ∗U∗

w
µ∗x∗

x
1
2

√
U∗

wρ∗L∗

µ∗ =
δ ∗U∗

w
ν∗ .

We note that the ratio of the different length scales is L∗/δ ∗=Re1/2, and the ratio of the different

time scales is (L∗t/U∗
w)/(δ

∗t/U∗
w) = L∗/δ ∗ = Re1/2. We let αn and ωn denote the wavenumber

and frequency of the numerical formulation and αa and ωa denote the corresponding terms in the

asymptotic formulation. We then have that αa = (L∗/δ ∗)αn, which gives αa ∼ Re1/2Re−1/8 =

Re3/8. Similarly we have that ωa ∼ Re3/8. Then, in terms of Re, the streamwise and spanwise

length scales and the timescale, are O(Re−3/8). Also, the thickness of the wall layer is then

O(Re−1/2Re−1/8) = O(Re−5/8). We introduce scaled coordinates and time to reflect these

scales. For convenience, we set ε = Re−1/8, and write

x = 1+ ε
3
χ, t = ε

3
τ.

Having carefully considered the appropriate asymptotic scales we are now in a position to anal-

yse the problem and compare our results with our numerical findings. Unlike the LSA approach

we do not make any assumptions about the parallel (or not) nature of the basic flow. As such,

and in order to ensure that the following analysis is more easily tractable, we present the linear

disturbance equations relevant to the asymptotic problem below

∂ ũ
∂x

+
∂ ṽ
∂y

= 0, (5.0.3a)(
∂

∂ t
+uB

∂

∂x

)
ũ+
(

ũ
∂

∂x
+ ṽ

∂

∂y

)
uB +Re−1/2vB

∂ ũ
∂y

=−∂ p̃
∂x
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+
1

Re

(
∂ 2ũ
∂x2 +

∂ 2ũ
∂y2

)
, (5.0.3b)(

∂

∂ t
+uB

∂

∂x

)
ṽ+Re−1/2

(
ũ

∂

∂x
+ ṽ

∂

∂y

)
vB +Re−1/2vB

∂ ṽ
∂y

=−∂ p̃
∂y

+
1

Re

(
∂ 2ṽ
∂x2 +

∂ 2ṽ
∂y2

)
. (5.0.3c)

5.1 Triple Deck Structure

Similar to the analysis presented by Griffiths et al.Griffiths et al. (20212021) we find that we have a triple deck

structure where the timescale that the disturbances develop over is equal to the streamwise

lengthscale. The main deck covers the full extent of the boundary layer. The upper deck is

inviscid and is required so that the disturbances tend to zero in the far field. The lower deck

is required to satisfy the viscous no-slip boundary conditions of the moving surface. We have

an upper deck of thickness O(Re−3/8), a main deck of thickness O(Re−1/2), and a lower deck

of thickness O(Re−5/8). We consider normal mode solutions and assume the perturbations are

proportional to

E = exp[i(θ(χ)−ωτ)].

The wavenumber θ is a slowly varying function of x that satisfies

dθ

dχ
= α = α1(x)+ εα2(x)+ · · · ,

whereas the frequency

ω = ω1 + εω2 + · · · ,

is constant. We begin our analysis in the main deck where y = ε4Ŷ , with Ŷ = O(1) and the

disturbances expand as

ũ = (u1 + εu2 + · · ·)E, (5.1.1a)
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ṽ = (εv1 + ε
2v2 + · · ·)E, (5.1.1b)

p̃ = (ε p1 + ε
2 p2 + · · ·)E. (5.1.1c)

Here ui, vi and pi are functions of Ŷ and the slow variable x. Taking the relevant asymptotic

scalings in the main deck and substituting those into the continuity equation (5.0.3a5.0.3a) we arrive

at
1
ε3

∂ ũ
∂ χ

+
∂ ũ
∂x

+
1
ε4

∂ ṽ
∂Ŷ

= 0.

Substitution of (5.1.15.1.1) into (5.0.3a5.0.3a) yields the following expansion

1
ε3 i(α1 + εα2 + · · ·)(u1 + εu2 + · · ·)+ ∂

∂x
(u1 + εu2 + · · ·)

+
1
ε4

∂

∂Ŷ
(εv1 + ε

2v2 + · · ·) = 0.

Now expanding the above we arrive at

1
ε3 i(α1u1 + εα1u2 + εα2u1 + ε

2
α2u2 + · · ·)+ ∂

∂x
(u1 + εu2 + · · ·)

+
1
ε4

∂

∂Ŷ
(εv1 + ε

2v2 + · · ·) = 0.

Collecting terms of O(ε−3) we obtain the following equation

iα1u1 +
∂v1

∂Ŷ
= 0.

Following the process outlined above for the x momentum equation. The relevant PDE in terms

of the asymptotic scales is given as follows

1
ε3

∂ ũ
∂τ

+
∂ ũ
∂ t

+uB

(
1
ε3

∂ ũ
∂ χ

+
∂ ũ
∂x

)
+ ũ

∂uB

∂x

+
ṽ
ε4

∂uB

∂Ŷ
+

ε4vB

ε4
∂ ũ
∂Ŷ

=− 1
ε3

∂ p̃
∂ χ

− ∂ p̃
∂x
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+ ε
8
(

1
ε6

∂ 2ũ
∂ χ2 +

2
ε3

∂ 2ũ
∂x∂ χ

+
∂ 2ũ
∂x2 +

1
ε8

∂ 2ũ
∂Ŷ 2

)
.

Substitution of (5.1.15.1.1) into (5.0.3b5.0.3b) we arrive at

1
ε3 (−iω1 − εiω2 −·· ·)(u1 + εu2 + · · ·)+ ∂

∂ t
(u1 + εu2 + · · ·)

+uB

[
1
ε3 i(α1 + εα2 + · · ·)(u1 + εu2 + · · ·)+ ∂

∂x
(u1 + εu2 + · · ·)

]
+(u1 + εu2 + · · ·)∂uB

∂x
+

(εv1 + ε2v2 + · · ·)
ε4

duB

dŶ
+ vB

∂

∂Ŷ
(u1 + εu2 + · · ·)

=− 1
ε3 i(α1 + εα2 + · · ·)(ε p1 + ε

2 p2 + · · ·)− ∂

∂x
(ε p1 + ε

2 p2 + · · ·)

− ε
2(α1 + εα2 + · · ·)2(u1 + εu2 + · · ·)+2ε

5 ∂

∂x
i(α1 + εα2 + · · ·)(u1 + εu2 + · · ·)

+ ε
8 ∂ 2

∂x2 (u1 + εu2 + · · ·)+ ∂ 2

∂Ŷ 2
(u1 + εu2 + · · ·).

Expanding the above we have that

1
ε3 (−iω1u1 − εiω1u2 − εiω2u1 − ε

2iω2u2 + · · ·)+ ∂

∂ t
(u1 + εu2 + · · ·)

+uB

[
1
ε3 i(α1u1 + εα1u2 + εα2u1 + ε

2
α2u2 + · · ·)+ ∂

∂x
(u1 + εu2 + · · ·)

]
+(u1 + εu2 + · · ·)∂uB

∂x
+

(εv1 + ε2v2 + · · ·)
ε4

duB

dŶ
+ vB

∂

∂Ŷ
(u1 + εu2 + · · ·)

=− 1
ε3 i(εα1 p1 + ε

2
α1 p2 + ε

2
α2 p1 + ε

3
α2 p2 + · · ·)

− ∂

∂x
(ε p1 + ε

2 p2 + · · ·)− ε
2(α1 + εα2 + · · ·)2(u1 + εu2 + · · ·)

+2ε
5i(α1 + εα2 + · · ·) ∂

∂x
(u1 + εu2 + · · ·)+ ε

8 ∂ 2

∂x2 (u1 + εu2 + · · ·)

+
∂ 2

∂Ŷ 2
(u1 + εu2 + · · ·).

Collecting terms of order O(ε−3) yields the following equation

−iω1u1 + iα1u1uB +
duB

dŶ
v1 = 0.

90



J. Ferguson, PhD Thesis, Aston University, December 2024

Following a similar process for the y momentum equation. The relevant PDE in terms of the

asymptotic scales is given as follows

1
ε3

∂ ṽ
∂τ

+
∂ ṽ
∂ t

+uB

(
1
ε3

∂ ṽ
∂ χ

+
∂ ṽ
∂x

)
+ ε

4 ∂vB

∂x
+

ε4vB

ε4
∂ ṽ
∂Ŷ

+
ε4ṽ
ε4

∂vB

∂Ŷ
=− 1

ε4
∂ p̃
∂Ŷ

+ ε
8
(

1
ε6

∂ 2ṽ
∂ χ2 +

2
ε3

∂ 2ṽ
∂x∂ χ

+
∂ 2ṽ
∂x2 +

1
ε8

∂ 2ṽ
∂Ŷ 2

)
.

Substitution of (5.1.15.1.1) into (5.0.3c5.0.3c) yields

1
ε3 (−iω1 − εiω2 + · · ·)(εv1 + ε

2v2 + · · ·)+ ∂

∂ t
(εv1 + ε

2v2 + · · ·)

+uB

[
1
ε3 i(α1 + εα2 + · · ·)(εv1 + ε

2v2 + · · ·)+ ∂

∂x
(εv1 + ε

2v2 + · · ·)
]

+ ε
4(u1 + εu2 + · · ·)∂vB

∂x
+ vB

∂

∂Ŷ
(εv1 + ε

2v2 + · · ·)+(εv1 + ε
2v2 + · · ·)∂vB

∂Ŷ

=− 1
ε4

∂

∂Ŷ
(ε p1 + ε

2 p2 + · · ·)− ε
2(α1 + εα2 + · · ·)2(εv1 + ε

2v2 + · · ·)

+2ε
5i(α1 + εα2 + · · ·) ∂

∂x
(εv1 + ε

2v2 + · · ·)

+ ε
8 ∂ 2

∂x2 (εv1 + ε
2v2 + · · ·)+ ∂ 2

∂Ŷ 2
(εv1 + ε

2v2 + · · ·).

Expanding the above yields

1
ε3 (−εiω1v1 − ε

2iω1v2 − ε
2iω2v1 − ε

3iω2v2 −·· ·)+ ∂

∂ t
(εv1 + ε

2v2 + · · ·)

+uB

[
1
ε3 i(εα1v1 + ε

2
α1v2 + ε

2
α2v1 + ε

3
α2v2 + · · ·)+ ∂

∂x
(εv1 + ε

2v2 + · · ·)
]

+ ε
4(u1 + εu2 + · · ·)∂vB

∂x
+ vB

∂

∂Ŷ
(εv1 + ε

2v2 + · · ·)+(εv1 + ε
2v2 + · · ·)∂vB

∂Ŷ

=− 1
ε4

∂

∂Ŷ
(ε p1 + ε

2 p2 + · · ·)− ε
2(α1 + εα2 + · · ·)(εv2 + ε

2v2 + · · ·)

+2ε
5i(α1 + εα2 + · · ·) ∂

∂x
(εv1 + ε

2v2 + · · ·)

+ ε
8 ∂ 2

∂x2 (εv1 + ε
2v2 + · · ·)+ ∂ 2

∂Ŷ 2
(εv1 + ε

2v2 + · · ·).
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The pressure term which is of O(ε−3) dominates all the terms in the above expression and we

obtain
∂ p1

∂Ŷ
= 0.

Therefore at leading order we obtain the following equations for the main deck

iα1u1 +
∂v1

∂Ŷ
= 0, (5.1.2a)

−iω1u1 + iα1u1uB +
duB

dŶ
v1 = 0, (5.1.2b)

∂ p1

∂Ŷ
= 0. (5.1.2c)

We can readily see that that p1 = p1(x). Rearranging (5.1.2a5.1.2a) for u1 and substituting into

(5.1.2b5.1.2b) yields (
ω1

α1
−uB

)
∂v1

∂Ŷ
+

duB

dŶ
v1 = 0.

On separating variables we obtain

1
v1

∂v1

∂Ŷ
=

duB
dŶ

uB − ω1
α1

.

Integrating both sides yields

lnv1 = ln
(

uB −
ω1

α1

)
+A(x),

where A(x) is an arbitrary integration function. Therefore we have that

v1 =

(
uB −

ω1

α1

)
eA(x).

For convenience let

eA(x) = iB0(x)α1.
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Therefore

v1 = iB0(x)(uBα1 −ω1). (5.1.3)

On making use of v1 and (5.1.2a5.1.2a) we obtain

u1 =−B0(x)
duB

dY
.

Therefore

v1 = iB0(x)(α1uB −ω1), (5.1.4a)

u1 =−B0(x)
duB

dŶ
, (5.1.4b)

p1 = p1(x), (5.1.4c)

where p1(x) and B0(x) are unknown slowly varying amplitude functions. Recalling the far-field

condition on uB, i.e., uB → 0, as Ŷ → ∞, we obtain

u1 → 0, v1 →−iω1B0.

Close to the wall we have that uB → ( f ′η(0)−λŶ ), as Ŷ → 0, therefore

u1 → λB0, v1 → iB0(α1 f ′(0)−ω1)− iB0α1λŶ .

From the scalings we have that α1 f ′η(0) = ω1. This choice stipulates that the critical layer,

where uB = ω/(α f ′η(0)), moves to the wall at leading order. This is analogous to the analysis

for the flow induced by a linear stretching sheet, see Griffiths et al.Griffiths et al. (20212021).

An upper deck is required to reduce the disturbances to zero as Ŷ → ∞. In the upper deck

y = ε3y, with y =O(1). Of interest here is the matching of the wall-normal velocities between
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the upper and the main deck. Here

ũ = (εu1 + ε
2u2 + · · ·)E, (5.1.5a)

ṽ = (εv1 + ε
2v2 + · · ·)E, (5.1.5b)

p̃ = (ε p1 + ε
2 p2 + · · ·)E. (5.1.5c)

Here the basic flow uB → 0 and at leading order vB is negligible. Following the process used

in the analysis of the main deck and taking the relevant asymptotic scalings we obtain the

following continuity equation

1
ε3

∂ ũ
∂ χ

+
∂ ũ
∂x

+
1
ε3

∂ ṽ
∂y

= 0.

Substitution of (5.1.55.1.5) into (5.0.3a5.0.3a) we arrive at

1
ε3 i(α1 + εα2 + · · ·)(εu1 + ε

2u2 + ...)+
∂

∂x
(εu1 + ε

2u2 + · · ·)

+
1
ε3

∂

∂y
(εv1 + ε

2v2 + · · ·) = 0.

Expanding the above yields

1
ε3 i(εα1u1 + ε

2
α1u2 + ε

2
α2u1 + ε

3
α2u2 + · · ·)+ ∂

∂x
(εu1 + ε

2u2 + · · ·)

+
1
ε3

∂

∂y
(εv1 + v2 + · · ·) = 0.

Collecting terms of O(ε−2) we arrive at

iα1u1 +
∂v1

∂y
= 0.

The relevant PDE for the x momentum equation in terms of the asymptotic scales is give as

94



J. Ferguson, PhD Thesis, Aston University, December 2024

follows

1
ε3

∂ ũ
∂τ

+
∂ ũ
∂ t

=− 1
ε3

∂ p̃
∂ χ

− ∂ p̃
∂x

+ ε
8
(

1
ε6

∂ 2ũ
∂ χ2 +

2
ε3

∂ 2ũ
∂x∂ χ

+
∂ 2ũ
∂x2 +

1
ε6

∂ 2ũ
∂y2

)
.

Substitution of (5.1.55.1.5) into (5.0.3b5.0.3b) yields

1
ε3 (−iω1 − εiω2 −·· ·)(εu1 + ε

2u2 + · · ·)+ ∂

∂ t
(εu1 + ε

2u2 + · · ·)

=− 1
ε3 i(α1 + εα2 + · · ·)(ε p1 + ε

2 p2 + · · ·)− ∂

∂x
(ε p1 + ε

2 p2 + · · ·)

− ε
2(α1 + εα2 + · · ·)2(εu1 + ε

2u2 + · · ·)+2ε
5i(α1 + εα2 + · · ·) ∂

∂x
(εu1 + ε

2u2 + · · ·)

+ ε
8 ∂ 2

∂x2 (εu1 + ε
2u2 + · · ·)+ ε

2 ∂ 2

∂y2 (εu1 + ε
2u2 + · · ·).

Expanding the above yields

1
ε3 (−εiω1u1 − ε

2iω1u2 − ε
2iω2u1 − ε

3iω2u1)+
∂

∂ t
(εu1 + ε

2u2 + ...)

=− 1
ε3 i(εα1 p1 + ε

2
α1 p2 + εα2 p1 + ε

3
α2 p2)−

∂

∂x
(ε p1 + ε

2 p2 + ...)

− ε
2(α1 + εα2 + · · ·)2(εu1 + ε

2u2 + · · ·)+2ε
5i(α1 + εα2 + · · ·) ∂

∂x
(εu1 + ε

2u2 + · · ·)

+ ε
8 ∂ 2

∂x2 (εu1 + ε
2u2 + · · ·)+ ε

2 ∂ 2

∂y2 (εu1 + ε
2u2 + · · ·).

Collecting terms of O(ε−2) we arrive at

−iω1u1 =−iα1 p1.

The y momentum equation in terms of asymptotic scales is given as follows

1
ε3

∂ ṽ
∂τ

+
∂ ṽ
∂ t

=− 1
ε3

∂ p̃
∂y

+ ε
8
(

1
ε6

∂ 2ṽ
∂ χ2 +

2
ε3

∂ 2ṽ
∂x∂ χ

+
∂ 2ṽ
∂x2 +

1
ε6

∂ 2ṽ
∂y2

)
.
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Substitution of (5.1.55.1.5) into (5.0.3c5.0.3c) yields

1
ε3 (−iω1 − ε − iω2 −·· ·)(εv1 + ε

2v2 + · · ·)+ ∂

∂ t
(εv1 + ε

2v2 + · · ·)

=− 1
ε3

∂

∂y
(ε p1 + ε

2 p2 + · · ·)− ε
2(α1 + εα2 + · · ·)2(εv1 + ε

2v2 + · · ·)

+2ε
5 − i(α1 + εα2 + · · ·) ∂

∂x
(εv1 + ε

2v2 + · · ·)

+ ε
8 ∂ 2

∂x2 (εv1 + ε
2v2 + · · ·)+ ε

2 ∂ 2

∂y2 (εv1 + ε
2v2 + · · ·).

Expanding the above yields

1
ε3 (−εiω1v1 − ε

2iω1v2 − ε
2iω2v1 − ε

3iω2v2)+
∂

∂ t
(εv1 + ε

2v2 + ...)

=− 1
ε3

∂

∂y
(ε p1 + ε

2 p2 + ...)+ ε
2 ∂ 2

∂ χ2 (εv1 + ε
2v2 + · · ·)

+2ε
5i(α1 + εα2 + · · ·) ∂

∂x
(εv1 + ε

2v2 + · · ·)

+ ε
8 ∂ 2

∂x2 (εv1 + ε
2v2 + · · ·)+ ε

2 ∂ 2

∂y2 (εv1 + ε
2v2 + · · ·).

Collecting terms of O(ε−2) we arrive at

−iω1v1 =−∂ p1
∂y

.

Therefore the equations for the upper deck are given by

iα1u1 +
∂v1

∂y
= 0, (5.1.6a)

−iω1u1 =−iα1 p1, (5.1.6b)

−iω1v1 =−∂ p1
∂y

. (5.1.6c)
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We will now eliminate u1 and v1. Differentiating (5.1.6c5.1.6c) with respect to y yields

−iω1
∂v1

∂y
=−∂ 2 p1

∂y2 .

Now

−iω1(−iα1u1) =−∂ 2 p1

∂y2 .

Therefore
∂ 2 p1

∂y2 −α
2
1 p1 = 0.

The solution satisfying boundedness as y → ∞ and matching with the solution in the main deck

is

p1 = p1(x)e−α1y,

where p1(x) is an arbitrary integration function. From (5.1.6b5.1.6b) we have that

u1 =
α1

ω1
p1 =

1
f ′(0)

p1(x)e−α1y.

From (5.1.6c5.1.6c) we have that

v1 =
i

f ′(0)
p1(x)e−α1y.

Matching v1 as y → 0 with v1 as Ŷ → ∞ yields

B0 =− p1(x)
α1( f ′(0))2

.

The desired dispersion relation is then obtained by matching the solutions in the main deck

with those in the lower deck. In the lower deck y = ε5Z, with Z = O(1). Close to the wall

uB ≈ f ′η(0)−λεZ + · · · , and vB ≈ −ε2λ ′
X Z2/2+ · · · . To match with the main deck solutions,
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the disturbance quantities expand as

ũ = (U1 + εU2 + · · ·)E, (5.1.7a)

ṽ = (ε2V1 + ε
3V2 + · · ·)E, (5.1.7b)

p̃ = (εP1 + ε
2P2 + · · ·)E, (5.1.7c)

where all of the above functions depend on both Z and x. Taking the relevant scalings we obtain

the following for the continuity equation

1
ε3

∂ ũ
∂X

+
∂ ũ
∂x

+
1
ε5

∂ ṽ
∂Z

= 0.

Substituting (5.1.75.1.7) into (5.0.3a5.0.3a) yields

1
ε3 i(α1 + εα2 + · · ·)(U1 + εU2 + · · ·)+ ∂

∂x
(U1 + εU2 + ...)+

1
ε5

∂

∂Z
(ε2V1 + ε

3V2 + · · ·) = 0.

Expanding the above yields

1
ε3 i(α1U1 + εα1U2 + εα2U1 + ε

2
α2U2 + · · ·)+ ∂

∂x
(U1 + εU2 + · · ·)

+
1
ε5

∂

∂Z
(ε2V1 + ε

3V2 + · · ·) = 0.

Collecting O(ε−3) terms we arrive at

iα1U1 +
∂V1

∂Z
= 0.

The relevant PDE for the x momentum equation in terms of the asymptotic scales is given as
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follows

1
ε3

∂ ũ
∂τ

+
∂ ũ
∂ t

+( f ′(0)−λεZ)
(

1
ε3

∂ ũ
∂ χ

+
∂ ũ
∂x

)
+ ũ

∂

∂x
( f ′(0)−λεZ)

+
ṽ
ε5

∂

∂Z
( f ′(0)−λεZ)− ελ ′

X Z2

2
∂ ũ
∂Z

=− 1
ε3

∂ p̃
∂ χ

− ∂ p̃
∂x

+ ε
8
(

1
ε6

∂ 2ũ
∂ χ2 +

2
ε3

∂ 2ũ
∂x∂ χ

+
∂ 2ũ
∂x2 +

1
ε10

∂ 2ũ
∂Z2

)
.

Substituting (5.1.75.1.7) into (5.0.3b5.0.3b) yields

1
ε3 (−iω1 − εiω2 −·· ·)(U1 + εU2 + · · ·)+ ∂

∂ t
(U1 + εU2 + · · ·)

+
f ′(0)
ε3 i(α1 + εα2 + · · ·)(U1 + εU2 + · · ·)+ f ′(0)

∂

∂x
(U1 + εU2 + · · ·)

− λZ
ε2 i(α1 + εα2 + · · ·)(U1 + εU2 + · · ·)−λεZ

∂

∂x
(U1 + εU2 + · · ·)

− λ

ε4 (ε
2V1 + ε

3V2 + · · ·)− ελ ′
X Z2

2
∂

∂Z
(U1 + εU2 + · · ·)

=− 1
ε3 i(α1 + εα2 + · · ·)(εP1 + ε

2P2 + · · ·)

− ∂

∂x
(εP1 + ε

2P2 + · · ·)− ε
2(α1 + εα2 + · · ·)2(U1 + εU2 + · · ·)

+2ε
5i(α1 + εα2 + · · ·) ∂

∂x
(U1 + εU2 + · · ·)

+ ε
8 ∂ 2

∂x2 (U1 + εU2 + · · ·)+ 1
ε2

∂ 2

∂Z2 (U1 + εU2 + · · ·).

We have that

1
ε3 (−iω1U1 − εiω1U2 − εiω2U1 − ε

2iω2U2 −·· ·)+ ∂

∂ t
(U1 + εU2 + · · ·)

+
f ′(0)
ε3 i(α1U1 + εα1U2 + εα2U1 + ε

2
α2U2 + · · ·)+ f ′(0)

∂

∂x
(U1 + εU2 + · · ·)

− λZ
ε2 i(α1U1 + εα1U2 + εα2U1 + ε

2
α2U2 + · · ·)−λεZ

∂

∂x
(U1 + εU2 + · · ·)

− λ

ε4 (ε
2V1 + ε

3V2 + · · ·)− ελ ′
X Z2

2
∂

∂Z
(U1 + εU2 + · · ·)
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=− 1
ε3 i(εα1P1 + ε

2
α1P2 + ε

2
α2P1 + ε

3
α2P2 + · · ·)

− ∂

∂x
(εP1 + ε

2P2 + · · ·)− ε
2(α1 + εα2 + · · ·)2(U1 + εU2 + · · ·)

+2ε
5i(α1 + εα2 + · · ·) ∂

∂x
(U1 + εU2 + · · ·)

+ ε
8 ∂ 2

∂x2 (U1 + εU2 + · · ·)+ 1
ε2

∂ 2

∂Z2 (U1 + εU2 + · · ·).

Given that α1 f ′(0) = ω1 and collecting terms of O(ε−2) yields

−i(ω2 − f ′(0)α2)U1 − iα1λZU1 −λV1 =−iα1P1 +
∂ 2U1

∂Z2 .

The relevant PDE for the y momentum equation in terms of the asymptotic scales is given by

1
ε3

∂ ṽ
∂τ

+
∂ ṽ
∂ t

+( f ′(0)−λεZ)
(

1
ε3

∂ ṽ
∂ χ

+
∂ ṽ
∂x

)
− 1

2
ε

6
λ
′′
XX Z2ũ− εZλ

′
X ṽ− 1

2
λ
′
X Z2 ∂ ṽ

∂Z
=− 1

ε5
∂ p̃
∂Z

+ ε
8
(

1
ε6

∂ 2ṽ
∂ χ2 +

2
ε3

∂ 2ṽ
∂x∂ χ

+
∂ 2ṽ
∂x2 +

1
ε10

∂ 2ṽ
∂Z2

)
.

Substitution of (5.1.75.1.7) into (5.0.3c5.0.3c) yields

1
ε3 (−iω1 − εiω2 −·· ·)(ε2V1 + ε

3V2 + · · ·)+ ∂

∂ t
(ε2V1 + ε

3V2 + · · ·)

+
f ′(0)
ε3 i(α1 + εα2 + · · ·)(ε2V1 + ε

3V2 + · · ·)+ f ′(0)
∂

∂x
(ε2V1 + ε

3V2 + · · ·)

− λZ
ε2 i(α1 + εα2 + · · ·)(ε2V1 + ε

3V2 + · · ·)−λεZ
∂

∂x
(ε2V1 + ε

3V2 + · · ·)

− 1
2

ε
6
λ
′′
XX Z2(U1 + εU2 + · · ·)− εZλ

′
X(ε

2V1 + ε
3V2)−

1
2

ελ
′
X Z2 ∂

∂Z
(ε2V1 + ε

3V2 + · · ·)

=− 1
ε5

∂

∂Z
(εP1 + ε

2P2 + · · ·)− ε
2(α1 + εα2 + · · ·)2(ε2V1 + ε

3V2 + · · ·)

+2ε
5i(α1 + εα2 + · · ·) ∂

∂x
(ε2V1 + ε

3V2 + · · ·)

+ ε
8 ∂ 2

∂x2 (ε
2V1 + ε

3V2 + · · ·)+ 1
ε2

∂ 2

∂Z2 (ε
2V1 + ε

3V2 + · · ·).
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The pressure term dominates all other terms in the above expression therefore we obtain

∂P1

∂Z
= 0.

The governing equations at leading order are therefore given by

iα1U1 +
∂V1

∂Z
= 0, (5.1.8a)

−i(ω2 − f ′(0)α2)U1 − iα1λZU1 −λV1 =−iα1P1 +
∂ 2U1

∂Z2 , (5.1.8b)

∂P1

∂Z
= 0. (5.1.8c)

From equation (5.1.8c5.1.8c) we have that P1 = P1(x) and this matches with the pressure in the main

deck so

P1 = p1.

Differentiating (5.1.8b5.1.8b) with respect Z yields

−i(ω2 − f ′(0)α2)
∂U1

∂Z
− iα1λU1 − iα1λZ

∂U1

∂Z
−λ

∂V1

∂Z
=

∂ 3U1

∂Z3 .

Making use of the continuity equation (5.1.8a5.1.8a) yields

∂ 3U1

∂Z3 − [i(α2 f ′(0)−ω2)− iα1λZ]
∂U1

∂Z
= 0. (5.1.9)

By setting

ζ = (−iα1λ )
1
3

(
Z − α2 f ′(0)−ω2

α1λ

)
,

we can simplify (5.1.95.1.9) and by doing so we obtain the following

∂ 3U1

∂ζ 3 −ζ
∂U1

∂ζ
= 0.
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We note that the solution for U1 must satisfy U1 = 0 at Z = 0. As Ŷ → ∞ in the lower deck we

have that u1 → λB0. Matching v1 as y → 0 with v1 as Ŷ → ∞ we showed that

B0 =− p1(x)
α1( f ′(0))2

. (5.1.10)

Therefore

U1 →− p1λ

α1( f ′(0))2

as Z → ∞. The solution which is bounded as ζ → ∞ is

∂U1

∂ζ
=CAi(ζ ),

where Ai is the appropriately decaying Airy function. Integrating the previous expression we

have that

U1 =C
∫

ζ

ζ0

Ai(ζ̂ )dζ̂ .

To satisfy the boundary condition U1 = 0 at ζ = ζ0 we have that

ζ0 = (−iα1λ )−
2
3 i(α2 f ′(0)−ω2).

Applying the boundary conditions U1(Z = 0) =V1(Z = 0) = 0 to (5.1.8b5.1.8b) yields

∂ 2U1

∂Z2 = iα1P1,

at Z = 0. Therefore we obtain

(−iα1λ )
2
3

∂ 2U1

∂ζ 2 = iα1 p1,
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Thus we determine the following relation between C and p1

(−iα1λ )
2
3CAi′(ξ0) = iα1 p1. (5.1.11)

5.2 The Governing Eigenrelation

Matching between the main and lower decks gives us a second relationship between C and p1,

this being

C
∫

∞

ζ0

Ai(ζ )dζ =− λ p1

α1( f ′η(0))2
. (5.2.1)

Combining (5.1.115.1.11) and (5.2.15.2.1) gives

(−iα1λ )2/3 Ai′(ζ0)

κ
=−

iα2
1 ( f ′η(0))2

λ
, (5.2.2)

where

κ =
∫

∞

ζ0

Ai(ζ )dζ .

To solve (5.2.25.2.2) we start by rewriting ζ as follows

ζ = (α1λZ − (α2 f ′η(0)−ω2))
(−iα1λ )

1
3

α1λ
=

(
λZ −

(α2 f ′η(0)−ω2)

α1

)
(−iα1λ )

1
3

λ
.

By letting β = α2 f ′η(0)−ω2 we have that

ζ =
(λZ −α

−1
1 β )

q
,

where

q =

(
λ 3

−iα1λ

) 1
3

=

(
λ 2

−iα1

) 1
3

,
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and ζ0 =− β

α1q . On rearranging (5.2.25.2.2) we obtain the following expression for α1

α1 =− λ

iα1( f ′η(0)2
(−iα1λ )

2
3

Ai′(ζ0)

κ
= α

− 1
3

1 λ
2
3 (−i)−

1
3 λ ( f ′η(0))

−2 Ai′(ζ0)

κ
.

Therefore

α1 = qλ ( f ′η(0))
−2 Ai′(ζ0)

κ
.

Restricting our attention to neutrally stable solutions (α1 real) and following a similar analysis

to that outlined in Miller et al.Miller et al. (20182018) one finds that Ai′(ζ0)/κ = c2(−i)
1
3 where c2 ≈ 1.0003.

We also have that ζ0 = −c1(−i)
1
3 where c1 ≈ 2.2970. To see this we note that Ai′(ζ0)/κ is

related to the Tietjens function (see, for example, HealeyHealey (19951995)). Using the notation in HealeyHealey

(19951995), this function is given by

F+(ξ0) = 1− Ai′(ξ0)

ξ0
∫

ξ0
∞

Ai(ξ )dξ
.

A standard property of the Tietjens function is that it is real for z = z0 ≈ 2.2970, with

F+(e−
5πi
6 z0)≈ 0.564.

For the Blasius boundary layer z = z0 corresponds to the lower branch of the neutral curve,

while F+(ξ0)→ 0, as |ξ0| → ∞, where this limit corresponds to the upper branch, see HealeyHealey

(19951995). For the present problem F+(ζ0) is the complex conjugate of F+(ξ0), see Figure 5.15.1.
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Figure 5.1: The locus of the Tietjens function for ζ0, were z is real and varies between 2.2 and
12. The black marker represents the point F+(e

5πi
6 z0)≈ 0.564 were z = z0 ≈ 2.2970.

Now

α1 = qλ ( f ′η(0))
−2c2(−i)

1
3 ,

and given the definition of q we have that

α1 = λ
5
4 ( f ′η(0))

− 3
2 c

3
4
2 .

Therefore we obtain the following expression for β

β =−ζ0α1q =−(−c1(−i)
1
3 )α1

(
λ 2

−iα1

) 1
3

.

Now

β = c1( f ′η(0))
−1c

1
2
2 λ

3
2 . (5.2.3)

Given that α f ′η(0) = ω , we notice that

f ′η(0)− c = f ′η(0)−
ω1 + εω2 + ...

α1(1+ ε
α2
α1

+ · · ·)
.

Now

f ′η(0)− c = f ′η(0)−
ω1

α1
+ ε

(α2 f ′η(0)−ω2)

α1
+ · · ·
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Figure 5.2: A comparison between the asymptotic and numerical results in the case when
a = 0. The large Reynolds number asymptotic solution is given by the dashed curve.

using α1 f ′η(0) = ω1 we have that

f ′η(0)− c = ε
β

α1
+ · · ·

Recall that ε = Re−
1
8 and the relationship between Re and R is given by R = δ

√
Rex, this gives

ε = R− 1
4 δ

1
4 x

1
8 . Substituting into the above yields

f ′η(0)− c =
( f ′η(0))−1δ

1
4 c1c

1
2
2 λ

3
2 R− 1

4

λ
5
4 c

3
2
2 ( f ′η(0))−

3
2

,

where λ is of the form f ′′ηη(0)x−
1
2 . Therefore we obtain

f ′(0)− c ≈ 2.297
[

δ | f ′′ηη(0)|( f ′η(0))2

R

]1/4

. (5.2.4)

This expression gives a leading order approximation to the lower branch of the neutral stability

curve in the limit of large R. We are, therefore, able to make a comparison between the solutions

we determined numerically in §4.44.4 and this analytical expression.

In Figure 5.25.2 we present this comparison in the case of a smooth translating boundary, i.e.,
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Figure 5.3: In (a) a comparison between the asymptotic and numerical results in the case when
a = 0.1. In (b) a comparison between the asymptotic and numerical results in the case when

a = 0.2. The large Reynolds number asymptotic solution is given by the dashed curve.
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Figure 5.4: Asymptotic approximations for the quantity f ′η(0)− c on a log-log scale for
various values of the roughness paramter.

when the constant a is equal to zero. In this case the expression (5.2.45.2.4) reduces in complexity

given that f ′η(0) = 1. We observe an excellent agreement between the two sets of solutions,

with the lower branch of the neutral stability curve tending towards our asymptotic result in the

limit as R → ∞. Indeed, we find that this agreement is equally as good for the values a = 0.1

and a = 0.2, see Figure 5.35.3.

In Figure 5.45.4 we present the lower branch asymptotic results for various values of the rough-

ness parameter. We outlined in 4.14.1 that as the value of a increases there is a downward shift of

both the upper and lower branches of the neutral stability curves, with the overall result being a
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reduction in the area encompassed by the curves. This shifting of the lower branch is supported

by the asymptotic results we present here and is clearly evidenced in Figure 5.45.4. In conclusion,

we have demonstrated excellent agreement between the asymptotic predictions and the numeri-

cal solutions presented in Section §4.44.4. It is worth noting that this agreement has been achieved

using only the leading term in the asymptotic expansion. Given the strong alignment observed

between the numerical and asymptotic solutions, we argue that incorporating additional terms

in the expansion is unnecessary. However, including more terms would likely further enhance

the agreement between the two approaches.
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Chapter 6

Linear Stability - Effect of Small

Amplitude Waviness

In this chapter, we build upon the ideas presented by Lessen & GangwaniLessen & Gangwani (19761976), who investi-

gated how small-amplitude wall roughness influences the minimum critical Reynolds number of

a laminar boundary layer. Their analysis employed assumptions typical of parallel flow stability

problems. Specifically, Lessen & GangwaniLessen & Gangwani (19761976) examined the two-dimensional flow of an

inviscid incompressible fluid over a flat plate with a single Fourier component of roughness.

To explore this effect, they solved the steady Orr-Sommerfeld equation under inhomogeneous

boundary conditions, capturing the response of the boundary layer to the surface waviness. The

solution provided key information for evaluating the Reynolds stress, which alters the mean

flow. Subsequently, they derived the modified mean flow by solving the Reynolds-averaged

boundary layer equations. Through linear stability analysis of this adjusted mean flow, the

authors found that the minimum critical Reynolds number decreased by 10% for a surface

roughness amplitude of just 1% of the boundary layer thickness.

In §6.16.1, we derive the Reynolds-averaged boundary layer equations, followed by the for-

mulation of the inhomogeneous boundary conditions in §6.26.2. In §6.46.4, we aim to replicate the

109



J. Ferguson, PhD Thesis, Aston University, December 2024

findings of Lessen & GangwaniLessen & Gangwani (19761976) by investigating how increasing the amplitude influ-

ences the mean flow, employing the methods detailed in §6.36.3. Subsequently, we examine the

linear stability characteristics of the flow in §6.56.5 using the techniques described in Chapter

44. Finally, in §6.66.6 and §6.76.7, we extend the methods of Lessen & GangwaniLessen & Gangwani (19761976) to explore

the effects of a wavy wall on the boundary layer generated by a surface moving at a constant

velocity, followed by an analysis of the linear stability of this flow.

6.1 The Reynolds-Averaged Boundary Layer Equations

Our analysis here differs from our previous work as we now separate the flow into a mean com-

ponent and a perturbation component. This allows the analysis of small disturbances caused

by wall waviness while assuming that these disturbances do not significantly alter the mean

flow. The mean flow represents the primary, undisturbed laminar boundary layer flow, while

the fluctuating component captures the boundary layer’s response to small-amplitude waviness.

By applying this linear superposition, we arrive at the Reynolds-averaged boundary layer equa-

tions—essentially the standard boundary layer equations with the inclusion of the Reynolds

stress. Solving the steady Orr-Sommerfeld equation with inhomogeneous boundary conditions

yields the fluctuating components, allowing us to compute the Reynolds stress and quantify

how the perturbations impact the mean flow. Once the modified mean flow is obtained, the

techniques introduced in Chapter 44 can be used to analyse the onset of linear instability.

To solve for the mean distorted profile that results in the presence of the wavy wall we

begin by deriving the modified boundary layer equations. We start by considering the standard

boundary layer equations which are given by

∂u∗

∂x∗
+

∂v∗

∂y∗
= 0, (6.1.1a)

u∗
∂u∗

∂x∗
+ v∗

∂u∗

∂y∗
= ν

∗∂ 2u∗

∂y∗2 . (6.1.1b)
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Here the surface of the plate is described by

y∗ = h∗(x∗) = ς
∗eiα̃∗x∗ + c.c, (6.1.2)

where (ς∗α̃∗/2π)≪ 1 and c.c denotes complex conjugate. The term ς∗eiα̃∗x∗ represents a small

sinusoidal disturbance where ς∗ is the dimensional amplitude and α̃∗ is the wavenumber that

determines the periodicity of the wall waviness and is real , and it governs how frequently

the surface undulates along the streamwise direction. The condition (ς∗α̃∗/2π) ≪ 1, implies

that dh∗
dx∗ ≪ 1, ensuring that the amplitude is small compared to the wavelength. The complex

conjugate ensures the disturbance is real valued. The difference between A∗ used previously

and ς∗ lies in the way each is non-dimensionalised. The dimesnional amplitude A∗, introduced

in Section §2.12.1, is related to the roughness parameter a, which is defined as

a =
A∗

γ∗
,

where γ∗ is the wavelength of the surface waviness. In this case, the non-dimensionalising

length-scale L∗ is set equal to the wavelength. The dimensional amplitude ς∗, introduced here,

is expressed in terms of the displacement thickness δ ∗. This approach is necessary because

obtaining the modified mean flow requires evaluating the Reynolds stress, which is computed by

solving the steady Orr-Sommerfeld equation. In the derivation of the Orr-Sommerfeld equation,

all length scales are expressed in terms of the displacement thickness. Therefore, to maintain

consistency, ς∗ must also be expressed relative to δ ∗. System (6.1.16.1.1) is solved subject to the

following conditions

u∗(y∗ = h∗(x∗)) = v∗(y = h∗(x∗)) = 0, u∗(y∗ → ∞)→U∗
∞, (6.1.3)

where U∗
∞ is the dimensional free stream velocity. We now make the equations dimensionless
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by introducing the following scalings

(x,y,ς) =
(x∗,y∗,ς∗)

δ ∗ , (u,v) =
(u∗,v∗)

U∗
∞

, α̃ = α̃
∗
δ
∗.

Applying the above scalings yields the following

∂u
∂x

+
∂v
∂y

= 0, (6.1.4a)

u
∂u
∂x

+ v
∂u
∂y

=
1
R

∂ 2u
∂y2 , (6.1.4b)

where R =U∗
∞δ ∗/ν∗. System (6.1.46.1.4) is now solved subject to the conditions

u(y = h(x)) = v(y = h(x)) = 0, u(y → ∞)→ 1. (6.1.5)

We now decompose the flow components (u,v) into a mean part (Um,Vm), representing the

undisturbed laminar boundary layer flow, and a fluctuating part (ũ, ṽ),which captures the bound-

ary layer’s response to the small-amplitude wall waviness. This gives the following expressions

for the velocity components:

u =Um + ũ, v =Vm + ṽ. (6.1.6)

Given that the surface variation described by (6.1.26.1.2) is a steady, spatially periodic function —

meaning the surface waviness does not change with time — the resulting fluctuations in the

flow are also time-invariant. These fluctuations can be defined as:

ũ = û(y)eiα̃x + c.c, (6.1.7a)

ṽ = v̂(y)eiα̃x + c.c. (6.1.7b)

To simplify the subsequent analysis, we apply a spatial averaging procedure over one wave-
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length of the wavy surface. This averaging is defined by the following integral,

H =
α̃

2π

∫ x+ 2π

α̃

x
H dx.

Notably, taking the spatial average of the mean part leaves the mean flow Um unchanged, i.e.,

Um = Um. Additionally, due to the periodic nature of the fluctuations, the spatial averages of

the fluctuating components are zero: ũ = 0 and ṽ = 0. Substitution of (6.1.66.1.6) into the continuity

equation yields
∂Um

∂x
+

∂ ũ
∂x

+
∂Vm

∂y
+

∂ ṽ
∂y

= 0. (6.1.8)

Averaging over one wall wavelength yields the following

∂Um

∂x
+

∂ ũ
∂x

+
∂Vm

∂u
+

∂ ṽ
∂y

= 0.

Since the average of the mean flow remains unchanged and the average of the fluctuations

vanish, we obtain the following
∂Um

∂x
+

∂Vm

∂y
= 0. (6.1.9)

Substitution of (6.1.96.1.9) into (6.1.86.1.8) yields

∂ ũ
∂x

+
∂ ṽ
∂y

= 0. (6.1.10)

We proceed by substituting (6.1.66.1.6) into the momentum equation. Averaging the resulting ex-

pression over one wall wavelength yields

Um
∂Um

∂x
+Um

∂ ũ
∂x

+ ũ
∂Um

∂x
+ ũ

∂ ũ
∂x

+Vm
∂Um

∂y
+Vm

∂ ũ
∂y

+ ṽ
∂Um

∂y
+ ṽ

∂ ũ
∂y

=
1
R

(
∂ 2Um

∂y2 +
∂ 2ũ
∂y2

)
.
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Since the average of the mean flow remains unchanged and the average of the fluctuations is

zero, we obtain

Um
∂Um

∂x
+Vm

∂Um

∂y
=

1
R

∂ 2Um

∂y2 −

(
ũ

∂ ũ
∂x

+ ṽ
∂ ũ
∂y

)
.

We notice that

ũ
∂ ũ
∂x

+ ṽ
∂ ũ
∂y

=

(
2ũ

∂ ũ
∂x

− ũ
∂ ũ
∂x

)
+ ṽ

∂ ũ
∂y

+

(
ũ

∂ ṽ
∂y

− ũ
∂ ṽ
∂y

)
= 2ũ

∂ ũ
∂x

+ ṽ
∂ ũ
∂y

+ ũ
∂ ṽ
∂y

− ũ
(

∂ ũ
∂x

+
∂ ṽ
∂y

)
=

∂ (ũũ)
∂x

+
∂ (ũṽ)

∂y
− ũ
(

∂ ũ
∂x

+
∂ ṽ
∂y

)
.

Using (6.1.106.1.10) yields

ũ
∂ ũ
∂x

+ ṽ
∂ ũ
∂y

=
∂ (ũũ)

∂x
+

∂ (ũṽ)
∂y

.

Therefore

Um
∂Um

∂x
+Vm

∂Um

∂y
=

1
R

∂ 2Um

∂y2 − ∂ (ũũ)
∂x

− ∂ (ũṽ)
∂y

.

Now
∂ (ũũ)

∂x
=

α̃

2π

∫ x+ 2π

α̃

x

∂ (ũũ)
∂x

dx =
α

2π
[ũũ]

x+ 2π

α̃
x = 0.

Since (ũũ) is a periodic function, it returns to its original value after one wavelength, making

the net change over the period zero. Therefore we obtain the following system

∂Um

∂x
+

∂Vm

∂y
= 0, (6.1.11a)

Um
∂Um

∂x
+Vm

∂Um

∂y
=

1
R

∂ 2Um

∂y2 − ∂ (ũṽ)
∂y

. (6.1.11b)

The system above describes the mean flow of the boundary layer, modified to account for the

effects of small-amplitude wall waviness. The mean flow is influenced by the Reynolds stress,

which arises from perturbations induced by the wavy surface. This Reynolds stress term results
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directly from the averaging process and quantifies the impact of these perturbations on the mean

flow. Consequently, the Reynolds stress modifies the mean velocity profile and, therefore, the

stability characteristics of the boundary layer.

To solve this system, we need to evaluate the Reynolds stress. Given the form of the per-

turbations described by (6.1.76.1.7), this requires solving the steady Orr-Sommerfeld equation to

determine the velocity perturbations caused by the wall waviness. The steady Orr-Sommerfeld

equation is given by:

{(D2 − α̃
2)2 − iαR[Um(D2 − α̃

2)− (Um)
′′
yy]}v̂ = 0. (6.1.12)

These perturbations are steady, spatially periodic fluctuations that reflect the shape of the wavy

surface. Because the wall is not flat, solving this equation requires inhomogeneous boundary

conditions which we derive in §6.26.2 that incorporate the effect of the wall waviness. These

boundary conditions ensure that the velocity perturbations accurately represent the influence of

the wavy surface on the flow, specifically satisfying the no-slip and no-penetration conditions

imposed by the wall geometry.

The solution to the steady Orr-Sommerfeld equation captures how the boundary layer re-

sponds to these disturbances. The resulting velocity perturbations are then used to compute the

Reynolds stress term, which is essential for understanding how wall waviness alters the mean

flow and its stability properties. By solving (6.1.116.1.11) and (6.1.126.1.12) simultaneously, with the ap-

propriate boundary conditions, we obtain the modified mean flow in the presence of the wavy

surface. First, the system (6.1.116.1.11) can be reformulated into a more convenient form using a

similarity transformation. To determine the similarity variable we recall from Chapter 22 that

η = Ŷ/
√

X . Now

η =
Ŷ√
X

=
Re

1
2Y√
X

=
Re

1
2 (L∗)−1y∗√
(L∗)−1X∗

=
Re

1
2 y∗√

L∗x∗
=

(
U∗

∞

ν∗

) 1
2 y∗√

x∗
.
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As previously defined, the quantities are Y = y∗/L∗, X = x∗/L∗, Ŷ =Re1/2Y and Re=U∗
∞L∗/ν∗.

In this analysis, the length scales are expressed in terms of the displacement thickness, such that

y = y∗/δ ∗ and x = x∗/δ ∗. This yields the following similarity variable

η = y

√
R
x
.

We now introduce the following

Um =
∂Ψ

∂y
, Vm =−∂Ψ

∂x
, Ψ =

√
x/R f (η). (6.1.13)

Given the form of η , we can derive the following expressions for the relevant derivatives

∂η

∂y
=

√
R
x
,

∂η

∂x
=− η

2x
.

Making use of (6.1.136.1.13) we obtain the following

Um =
d f
dη

, (6.1.14a)

Vm =− 1

2x
1
2 R

1
2

f +
η

2x
1
2 R

1
2

d f
dη

, (6.1.14b)

∂Um

∂y
=

R
1
2

x
1
2

d2 f
dη2 , (6.1.14c)

∂Um

∂x
=− η

2x
d2 f
dη2 , (6.1.14d)

∂ 2Um

∂y2 =
R
x

d3 f
dη3 . (6.1.14e)

By applying (6.1.136.1.13), the continuity equation is inherently satisfied. Substituting (6.1.146.1.14) into

(6.1.116.1.11) results in the following

116



J. Ferguson, PhD Thesis, Aston University, December 2024

d3 f
dη3 +

f
2

d2 f
dη2 = x

d(ũṽ)
dy

. (6.1.15)

We note that x
1
2 R

1
2 = Re

1
2
x∗ , which we can rewrite as follows

Re
1
2
x∗ =

(
x∗

δ ∗

)
δ .

Therefore

x
1
2 R

1
2 = xδ .

We can rewrite (6.1.156.1.15) as follows

d3 f
dη3 +

f
2

d2 f
dη2 =

R
δ 2

d(ũṽ)
dy

. (6.1.16)

To determine the form of the right-hand side of (6.1.166.1.16), we utilise (6.1.76.1.7).

d(ũṽ)
dy

=
d
dy

[(û(y)eiα̃x + û⋆(y)e−iα̃x)(v̂(y)eiα̃x + v⋆(y)e−iα̃x)]

=
α̃

2π

d
dy

∫ x+ 2π

α̃

x
(ûv̂e2iα̃x + ûv̂⋆+ û⋆v̂+ û⋆v̂⋆e−2iα̃x)dx

=
d
dy

(ûv̂⋆+ û⋆v̂).

Therefore (6.1.166.1.16) now becomes

f
2

d2 f
dη2 +

d3 f
dη3 =

R
δ 2

(
dû
dy

v̂⋆+ û
dv̂⋆

dy
+

dû⋆

dy
v̂+ û⋆

dv̂
dy

)
. (6.1.17)

To express the right hand side of (6.1.176.1.17) in terms of v̂, we make use of equations (6.1.106.1.10) and
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(6.1.76.1.7) which yields

iα̃ û+
dv̂
dy

= 0, (6.1.18a)

−iα̃ û⋆+
dv̂⋆

dy
= 0. (6.1.18b)

By utilising (6.1.186.1.18) we obtain the following

f
2

d2 f
dη2 +

d3 f
dη3 =

iR
α̃δ 2

(
d2v̂
dy2 v̂⋆− d2v̂⋆

dy2 v̂
)
. (6.1.19)

To derive the terms on the right-hand side of (6.1.196.1.19), we solve the steady Orr-Sommerfeld

equation with inhomogeneous boundary conditions, which will be derived in the following

section.

6.2 Modified Boundary Conditions

To derive the inhomogeneous wall conditions used to solve (6.1.126.1.12), we recall that the no-slip

and no-penetration conditions at the wavy surface require

u(y = h(x)) = 0, v(y = h(x)) = 0.

By decomposing the flow into a mean part (representing the average over one wall wavelength)

and a fluctuating part induced by the wall waviness, we obtain:

u(y = h(x)) =Um(y = h(x))+ ũ(y = h(x)) = 0,

v(y = h(x)) =Vm(y = h(x))+ ṽ(y = h(x)) = 0.
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Since h is small we can apply a Taylor series about h = 0 which yields

Um(h) =Um(0)+
dUm(0)

dy
h+

d2Um(0)
dy2

h2

2
+ · · ·= 0,

ũ(h) = ũ(0)+
dũ(0)

dy
h+

d2ũ(0)
dy2

h2

2
+ · · ·= 0.

Therefore

Um(0)+h
dUm(0)

dy
+ ũ(0)+

dũ(0)
dy

h+ · · ·= 0.

Ignoring terms of O(ς2) or higher since the analysis is based on the assumption of small-

amplitude wall waviness we obtain

Um(0)+h
dUm(0)

dy
+ ũ(0) = 0,

Vm(0)+h
dVm(0)

dy
+ ṽ(0) = 0.

Where we note that ũ and ṽ are O(ς). Given the definition of h and ũ we obtain

Um(0)+ ς(eiα̃x + e−iα̃x)
dUm(0)

dy
+ û(0)eiα̃x + û⋆(0)e−iα̃x = 0.

Comparing the coefficients of eiα̃x leads to

ς
dUm(0)

dy
+ û(0) = 0. (6.2.1)

Making use of (6.1.186.1.18) we obtain the following wall conditions used to solve (6.1.126.1.12)

v̂(0) = 0,
dv̂(0)

dy
= iα̃ς

dUm(0)
dy

, (6.2.2)
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were Vm ≈ 0. Given the perturbations must decay to zero far from the surface we obtain the

following far field conditions used to solve (6.1.126.1.12)

v̂(y → ∞)→ 0,
dv̂(y → ∞)

dy
→ 0. (6.2.3)

To derive the wall conditions used to solve (6.1.196.1.19) recall that

Um(0)+h
dUm(0)

dy
+ ũ(0)+

dũ(0)
dy

h+ · · ·= 0,

Taking the average over one wall wavelength yields the following

Um(0)+h
dUm(0)

dy
+ ũ(0)+h

dũ(0)
dy

+ · · ·= 0.

Given that Um(0) =Um(0) and ũ(0) = 0, we obtain

Um(0)+h
dUm(0)

dy
+h

dũ(0)
dy

+ · · ·= 0.

Since h = 0 we obtain the following wall condition

Um(0) =−h
dũ(0)

dy
.

We obtain a similar expression for Vm(0)

Vm(0) =−h
dṽ(0)

dy
.

In terms of the similarity variables we obtain

d f (0)
dη

=−h
dũ(0)

dy
, f (0) = 2x

1
2 R

1
2 h

dṽ(0)
dy

,
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which we can rewrite as follows

d f (0)
dη

=−h
dũ(0)

dy
, f (0) =

2R
δ

h
dṽ(0)

dy
.

For the far field condition we obtain

d f (η → ∞)

dη
→ 1.

To determine the form of the right-hand sides of both f (0) and d f (0)/dη , we utilise (6.1.76.1.7).

Therefore,

h
dũ(0)

dy
= ς(eiα̃x + e−iα̃x)

(
dû(0)

dy
eiα̃x +

dû⋆(0)
dy

e−iα̃x

)
= ς

α̃

2π

∫ x+ 2π

α̃

x

(
dû(0)

dy
e2iα̃x +

dû⋆(0)
dy

+
dû(0)

dy
+

du⋆(0)
dy

e−2iα̃x
)

dx

= ς

(
dû⋆(0)

dy
+

dû(0)
dy

)
.

Similarly we obtain

h
dṽ(0)

dy
= ς

(
dv̂⋆(0)

dy
+

dv̂(0)
dy

)
.

Therefore system (6.1.196.1.19) is solved subject to

d f (η = 0)
dη

=−ς i
α̃

(
d2v̂(0)

dy2 − d2v̂⋆(0)
dy2

)
, f (0) =

2Rς

δ

(
dv̂⋆(0)

dy
+

dv̂(0)
dy

)
,

d f (η → ∞)

dη
→ 1. (6.2.4)

6.3 The Solution Process

To obtain the modified mean flow, we employ an iterative procedure. The process begins by

solving equation (6.1.126.1.12) with the boundary conditions (6.2.26.2.2) and (6.2.36.2.3), using the Blasius
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mean flow as an initial approximation. To solve (6.1.126.1.12), we rewrite it as a system of ODEs.

Let

z1 = v̂,

z2 =
dz1

dy
=

dv̂
dy

,

z3 =
dz2

dy
=

d2v̂
dy2 ,

z4 =
dz3

dy
=

d3v̂
dy3 .

We define the vector Z as

Z = [z1,z2,z3,z4]
T .

The system of ODEs becomes
dZ
dy

= [z2,z3,z4,W ]T , (6.3.1)

where

W = (2α̃
2 + iα̃RUm)z3 −

(
α̃

4 + iα̃3RUm + iα̃R
d2Um

dy2

)
z1.

The boundary conditions for this system are

z1(0) = 0, z2(0)− iα̃ς
dUm(0)

dy
= 0, z1(y → ∞)→ 0, z2(y → ∞)→ 0. (6.3.2)

We solve the system of ODEs using MATLAB’s BVP4C solver, which handles boundary value

problems effectively. The solution provides the necessary data to solve equation (6.1.196.1.19) with

the boundary condition (6.2.46.2.4). We now rewrite (6.1.196.1.19) as

f
2

d2 f
dη2 +

d3 f
dη3 =

iR
α̃δ 2 (z3z⋆1 − z⋆3z1), (6.3.3)
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with the boundary conditions

d f (η = 0)
dη

=− iς
α̃
(z3(0)− z⋆3(0)), f (0) =

2Rς

δ
(z⋆(0)+ z2(0)),

d f (η → ∞)

dη
→ 1. (6.3.4)

We solve this equation using MATLAB’s BVP4C solver to obtain the modified mean flow.

This solution is then used to update the initial mean flow approximation. The iterative process

continues until the solution converges to the desired level of accuracy. Specifically, convergence

is achieved when the difference between the current and previous displacement thicknesses is

on the order of 10−7. At this level of accuracy, the value of f ′′ηη(0) remains unchanged, ensuring

that the solution has reached a stable and accurate state.

6.4 Modified Basic Flow Solutions-Blasius

In this section, we present the basic flow solutions and analyse the modified mean flow for

various values of ς . To facilitate direct comparisons with the results of Lessen & GangwaniLessen & Gangwani

(19761976), we deviate from the analysis in Chapter 44 by setting δ = 1. With this choice, we obtain

a critical Reynolds number of Rcrit = 303.50 for the Blasius mean flow. For the analysis that

follows, we will use R= 300 as our reference Reynolds number. This selection is useful because

it allows us to determine whether an increase in wall wave amplitude leads to destabilisation by

starting with a flow that is initially stable. To extend the analysis to Reynolds numbers other

than R = 300 , we adopt the scalings introduced by Lessen & GangwaniLessen & Gangwani (19761976):

ςd = ς

(
300
R

)
, α̃d = α̃

(
R

300

)
. (6.4.1)

The scalings given by (6.4.16.4.1) indicate that as we move downstream (corresponding to an in-

crease in R), the influence of wall waviness on the linear stability of the boundary layer becomes

less significant. This implies that the boundary layer becomes less sensitive to wall irregularities

further downstream. Additionally, as R increases, the wavelength of the wall waviness becomes

123



J. Ferguson, PhD Thesis, Aston University, December 2024

0 2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

Figure 6.1: Comparison of the modified streamwise velocity profile with the Blasius solution.
The Blasius velocity profile corresponds to ς = 0, while the modified profiles are shown for

R = 300 and α̃ = 1 at (a) ς = 0.1 and (b) ς = 0.2.

shorter, meaning the flow encounters more frequent surface oscillations. These shorter wave-

lengths result in more rapid changes in surface geometry as we move downstream. Overall,

these scalings are valuable because they enable us to analyse the linear stability characteristics

of the boundary layer at various locations along the surface, providing a consistent framework

for understanding how wall waviness influences the flow stability at different Reynolds num-

bers.

From Figure 6.16.1, it is evident that the streamwise velocity at the wall, f ′η(0), becomes neg-

ative as ς increases. This behaviour is a direct consequence of the inhomogeneous boundary

conditions imposed by the wall waviness. Additionally, the modified velocity profile shifts to

the right, with the magnitude of the shift increasing as ς increases, indicating a thickening of the

boundary layer. These results are consistent with the findings presented by Lessen & GangwaniLessen & Gangwani

(19761976).

In Figure 6.26.2, we compare the curvature of the modified mean flow with the Blasius mean

flow. When ς is non-zero, a point of inflection appears in the modified mean flow, becom-

ing more pronounced as ς increases. The presence of an inflection point in the mean flow is

expected to influence the linear stability characteristics of the flow. Additionally, we observe

that the curvature at the wall is zero for all values of ς . This contrasts with the findings of

Lessen & GangwaniLessen & Gangwani (19761976), who predicted a point of inflection in the modified mean flow but
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also reported non-zero curvature at the wall. We argue that this is incorrect, as non-zero curva-

ture at the wall would violate the boundary conditions.
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Figure 6.2: Comparison of the curvature of the modified mean flow with the Blasius mean
flow. The Blasius mean flow corresponds to ς = 0, while the modified mean flow curvatures

are presented for R = 300 and α̃ = 1 at (a) ς = 0.1 and (b) ς = 0.2.

6.5 Linear Stability-Blasius

We proceed by analysing the linear stability of the modified mean flow for various values of

ς . This analysis is conducted using the numerical methods outlined in Chapter 44. We begin

by analysing how the sign of αi changes with increasing ς . The results of this analysis are

summarised in Table 6.16.1.

Table 6.1: The values of α for various values of ς were ω = 0.05, R = 300 and α̃ = 1.

ς α

0 0.1327+0.0022i
0.05 0.1341+0.0018i
0.1 0.1380+0.0008i

0.15 0.1436−0.0004i
0.2 0.1502−0.0011i

From Table 6.16.1, we observe that αi undergoes a sign change, becoming negative as ς in-

creases. This behaviour suggests that the flow is becoming destabilised. These findings are in

direct agreement with the results presented by Lessen & GangwaniLessen & Gangwani (19761976), who performed a

temporal stability analysis and showed that the wave speed c becomes positive with increasing
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ς , further indicating destabilisation. To further support our claim that surface waviness has

a destabilising influence on boundary layer flows induced by an external oncoming flow, we

present the growth rates for various values of ς at the reference Reynolds number R = 300.
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Figure 6.3: The growth rate, defined as −αi, is illustrated against αr for a range of values ς

were R = 300 and α̃ = 1.

We find that the amplitude of the growth rate increases significantly with increasing ς , in-

dicating destabilisation, as shown in Figure 6.36.3. Additionally, no positive growth rates are

observed when ς = 0, consistent with the flow being stable at this amplitude. Utilising the scal-

ings given by (6.4.16.4.1), we conducted a similar analysis for R = 600. As expected, we find that

the flow is unstable at all amplitudes, with αi < 0 for all values of ς . In Figure 6.46.4, we present

the growth rates for the two wavenumbers α̃ = 1 and α̃ = 1/2. In both cases, we observe a sig-

nificant increase in the amplitude of the growth rate, further supporting our claim that surface

waviness leads to flow destabilisation.
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Figure 6.4: The growth rate, defined as −αi, is illustrated against αr for a range of values ς

were R = 600 for (a) α̃ = 1 and (b) α̃ = 1/2.
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6.6 Modified Basic Flow Solutions-Sakiadis

Before analysing how surface waviness affects the boundary layer induced by a surface trans-

lating at a constant velocity, we first address the changes in the boundary conditions. Due to the

constant surface velocity, the system described by (6.1.16.1.1) is now solved subject to the following

conditions

u∗(y∗ = h∗(x∗)) =U∗
w, v∗(y∗ = h∗(x∗)) = 0, u∗(y∗ → ∞)→ 0.

We note that while the boundary conditions used to solve (6.1.126.1.12) remain unchanged, the con-

ditions for solving (6.1.196.1.19) are different, as discussed in §3.13.1. To derive these new conditions,

the Taylor expansion used in §6.26.2 now becomes:

Um(0)+h
dUm(0)

dy
+ ũ(0)+h

dũ(0)
dy

+ · · ·= 1.

Taking the average over one wall wavelength yields the following

Um(0) =−h
dũ(0)

dy
+1.

Similarly we obtain

Vm(0) =−h
dṽ(0)

dy
.

In terms of the similarity variables the boundary conditions used to solve (6.1.196.1.19) are now given

by
d f (0)

dη
=−h

dũ(0)
dy

+1, f (0) =
2R
δ

h
dṽ(0)

dy
,

d f (η → ∞)

dη
→ 0.

Therefore we obtain
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d f (η = 0)
dη

=−ς i
α̃

(
d2v̂(0)

dy2 − d2v̂⋆(0)
dy2

)
+1, f (0) =

2Rς

δ

(
dv̂⋆(0)

dy
+

dv̂(0)
dy

)
,

d f (η → ∞)

dη
→ 0. (6.6.1)

Therefore to obtain the modfied mean flow we solve (6.1.126.1.12) with the conditions (6.2.26.2.2) and

(6.2.36.2.3), using the Sakiadis mean flow. This provides the necessary information used to solve

(6.1.196.1.19) with the condition (6.6.16.6.1) where we solve the equations iteratively using the procedure

outlined in §6.36.3. On setting δ = 1, one finds that the critical Reynolds number for this flow

configuration is Rcrit = 2205.29. In Chapter 44, we demonstrated that an increase in the rough-

ness parameter leads to an increase in the critical Reynolds number, indicating stabilisation of

the flow. Therefore, we select R = 2300 as a reference point for the following analysis. This

choice allows us to determine whether an increase in ς leads to stabilisation, given that the flow

is unstable at R = 2300. We begin by analysing how surface waviness modifies the mean flow.
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Figure 6.5: A comparison of the modified streamwise velocity profile with the Sakiadis
velocity profile for R = 2300 and ˜α = 1, where the case ς = 0 corresponds to the Sakiadis

solution. Results are shown for (a) ς = 0.1 and (b) ς = 0.15.

In Figure 6.56.5, we compare the modified mean flow with the Sakiadis mean flow. It is evident

that increasing ς results in a decrease in the streamwise velocity component at the wall, f ′η(0).

This observation is consistent with the results discussed in §3.23.2 and §3.33.3.

We were unable to obtain solutions for ς = 0.2. This difficulty arises because ς is related

to the Reynolds number R as shown in equation (6.4.16.4.1), where ς∗ is expressed in terms of the
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displacement thickness δ ∗. As we move downstream (corresponding to an increase in R), the

boundary layer becomes less sensitive to wall irregularities. In contrast, at lower Reynolds

numbers the boundary layer is more sensitive to these irregularities. Furthermore, in Section

§3.33.3, we obtained | f ′′ηη(0)|= 0.2413 for a = 0.2 (see Table 3.13.1). Using the methods presented

here, we obtained a similar value of | f ′′ηη(0)|= 0.2487 for ς = 0.15. This suggests that | f ′′ηη(0)|

approaches zero for smaller values of the surface waviness amplitude when the amplitude is

expressed in terms of δ ∗. Based on these findings, it is reasonable to conclude that our analysis

is limited to the case of ς = 0.15 for this particular Reynolds number.

6.7 Linear Stability - Sakiadis

In this section, we analyse the linear stability of the modified mean flow solutions for the bound-

ary layer induced by the translation of a wavy surface for various values of ς . To determine the

onset of linear instability, we once again apply the numerical methods described in Chapter 44.

We begin by analysing the sign of αi to determine the stability characteristics at the reference

Reynolds number. The results of this analysis are summarised in Table 6.26.2.

Table 6.2: The values of α for various values of ς were ω = 0.1, R = 2300 and α̃ = 1.

ς α

0 0.1356−0.0001i
0.05 0.1462−0.0000i
0.1 0.1718+0.0011i

0.15 0.2035+0.0041i

We observe that αi changes sign and becomes positive as ς increases, indicating that the flow

has stabilised. Due to this stabilisation, we were unable to obtain positive growth rates for this

particular Reynolds number. To further investigate the linear stability characteristics of this flow

configuration, we analyse the growth rates for R = 3500 and for the two wavenumbers α̃ = 1

and α̃ = 1/2. In this analysis, we utilise the scalings given by (6.4.16.4.1). As discussed in §6.46.4, an

increase in R makes the boundary layer less sensitive to wall irregularities. Consequently, we
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were able to obtain solutions for ς = 0.2.
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Figure 6.6: The growth rate, defined as −αi, is illustrated against αr for a range of values ς

were R = 3500 for (a) α̃ = 1 and (b) α̃ = 1/2.

In Figure 6.66.6, we present the growth rates for various values of ς for the wavenumbers

α̃ = 1 and α̃ = 1/2. In both cases, we observe a reduction in the amplitude of the growth rate,

indicating stabilisation of the flow. These results agree qualitatively with those discussed in

§4.44.4, as shown in Figure 4.14.1. Based on the analysis conducted here, surface roughness can be

exploited for laminar flow control in boundary layers induced by surface translation. However,

the opposite behaviour is observed for boundary layers induced by an external oncoming flow

interacting with a fixed plate, where the presence of a wavy surface leads to destabilisation.

In this study, we solved the two-dimensional boundary layer equations in the presence of

small-amplitude surface waviness, considering two distinct cases. We first analysed how sur-

face roughness affects boundary layers induced by an external oncoming flow, aiming to re-

produce the results of Lessen & GangwaniLessen & Gangwani (19761976). To compute the response of these boundary

layers to surface waviness, we solved the steady Orr-Sommerfeld equation subject to inhomo-

geneous boundary conditions. The resulting perturbations were used to evaluate the Reynolds

stress, which modifies the mean flow. The modified mean flow was then obtained by solving

the Reynolds-averaged boundary layer equations numerically. In this case, we successfully

reproduced the basic flow solutions of Lessen & GangwaniLessen & Gangwani (19761976) and demonstrated that the

modified streamwise velocity at the wall becomes negative for ς > 0. This behavior arises
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directly from the inhomogeneous boundary conditions. Additionally, an increase in bound-

ary layer thickness is observed. We also examined the curvature of the modified mean flow

and observed a point of inflection, consistent with the findings of Lessen & GangwaniLessen & Gangwani (19761976).

However, we found their prediction of non-zero curvature at the wall for to be incorrect, as it

would violate the boundary conditions. Our linear stability analysis, using the methods from

Chapter 44, showed that the imaginary part of the disturbance wavenumber αi becomes negative

as ς increases for a Reynolds number of R = 300, suggesting destabilisation. This conclusion

was further supported by an increase in the amplitude of the growth rates. A similar trend was

observed for R = 600. We thus demonstrated that surface waviness has a destabilising effect

on boundary layers induced by an external oncoming flow, in agreement with the results of

Lessen & GangwaniLessen & Gangwani (19761976).

In the second case, we analysed how surface waviness affects the boundary layer induced by

a surface translating at a constant velocity in a quiescent fluid. We showed that an increase in ς

leads to a decrease in the streamwise velocity component at the wall, consistent with the results

presented in §3.23.2 and §3.33.3. Our linear stability analysis at a Reynolds number of R = 2300

revealed that αi becomes positive with increasing ς , indicating stabilisation. This conclusion

was reinforced by analysing the growth rates for R = 3500 and observing a decrease in the

growth rates for the two wavenumbers α̃ = 1 and α̃ = 1/2. These findings demonstrate that

surface waviness has a stabilising influence on boundary layers induced by a translating surface.

The results are in qualitative agreement with those presented in §4.44.4. These results provide

further evidence that surface roughness can be exploited for laminar flow control in boundary

layers induced by surface translation.
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Chapter 7

Discussions, Conclusions and Future

Directions

We have assessed the onset of instability of the flow induced by the translation of a rough

surface. This flow is susceptible to disturbances in the form of TS waves. Our analysis, both

numerical and analytical, reveals that this flow is stabilised in the presence of surface roughness.

In a similar fashion to Garrett et al.Garrett et al. (20162016), who considered an associated study concen-

trating on flows over rotating disks, we find that in the instances when the roughness profile is

sinusoidal in nature then the base flow profiles are periodic in the streamwise direction. En-

suring that our analysis is conducted sufficiently far enough downstream of the leading edge, a

suitable averaging procedure has been adopted to arrive at basic states that are then invariant in

the streamwise direction. This approach is analogous to that presented by Garrett et al.Garrett et al. (20162016)

although our findings suggest that there are, perhaps, some shortcomings in the base flow results

presented in that study.

We have considered the linear stability characteristics of our averaged base flow profiles

via three different means. In the first instance, we adopted a standard Orr-Sommerfeld, LSA,

approach. Our findings show that as the value of the surface roughness parameter increases,
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disturbance growth rates decrease, critical Reynolds numbers increase, and that the total me-

chanical energy of the system decreases. These findings support the conclusion that for flows

generated by the translation of a moving wall, surface roughness has the effect of delaying the

onset of instability.

Our second approach, the large Reynolds number asymptotic analysis presented in Chapter

55, produces excellent results when compared to our numerical findings. This lower branch

study supports the conclusion that the presence of surface roughness inhibits the growth of the

TS instability waves. Our analysis shows that the relevant asymptotic scalings for this problem

are different to those of the Blasius boundary layer problem. This finding is consistent with

the analysis of Tsou et al.Tsou et al. (19661966) who demonstrated that the critical layer for these surface

translation problems moves closer to the wall when compared to problems where the boundary-

layer has been generated by the presence of an oncoming flow.

In the third instance we adopted a quasi-spatial approach motivated by the quasi-steady

studies of Morgan & DaviesMorgan & Davies (2020b2020b). Our findings once again suggest that an increase in the

roughness parameter leads to flow stabilisation. In fact, the results from this quasi-spatial anal-

ysis show an even greater level of flow stabilisation, both in terms of growth rates and critical

Reynolds numbers, when compared to our LSA findings presented in §4.54.5. Although we have

not explored a Floquet-type (periodic in space, not time) analysis here we are confident, given

the results presented by Morgan and coworkers, that our quasi-spatial results would very closely

reproduce the findings owing from such an analysis.

In Chapter 66 we analysed the linear stability of the steady flow by considering an alternative

approach motivated by the study of Lessen & GangwaniLessen & Gangwani (19761976). Once again we adopt a suitable

averaging procedure, however the methods used to obtain the basic flow solutions differ. Our

findings reveal that an increase in the roughness parameter leads to a decrease in the disturbance

growth rates for selected values of the Reynolds number which suggests flow stabilisation.

Using this approach we also considered how surfaces roughness influences the boundary layer
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induced by an external oncoming flow. Our findings show that an increase in the roughness

parameter leads to an increase in the disturbance growth rates which suggests destabilisation in

agreement with the findings of Lessen & GangwaniLessen & Gangwani (19761976).

Our findings, that surface roughness acts to delay the onset of linear instability in boundary-

layer flows that are induced by surface motion, are qualitatively consistent with the results

presented by, for example, Cooper et al.Cooper et al. (20152015), Garrett et al.Garrett et al. (20162016), Alveroglu et al.Alveroglu et al. (20162016),

and Özkan et al.Özkan et al. (20172017).

Each of the aforementioned studies considers variants of the rotating disk boundary-layer

problem whereby the fluid motion is induced by the rotation of a rough disk. The problem

we have considered here is in some sense similar, in that the fluid motion is being induced

by the translation of the rough surface. Having said that, our findings are opposed to the re-

sults presented by, for example, Levchenko & Solov’evLevchenko & Solov’ev (19721972), Kachanov et al.Kachanov et al. (19741974), and

Lessen & GangwaniLessen & Gangwani (19761976), who considered the presence of surface roughness in boundary

layers that are induced by the presence of an external oncoming flow. Our results, therefore,

suggest that surface roughness could be exploited for laminar flow control purposes for specific

classes of boundary-layer flows, those induced by surface translation/rotation. Clearly, this hy-

pothesis can only truly be tested with detailed experimental investigations. Having said that,

our finding of double periodicity of the base flow quantities is already qualitatively supported

by the experimental findings of Le Palec et al.Le Palec et al. (19901990). It remains to compare the results from

our linear stability analyses with findings from experiments.

Thus far we have only modeled the rough surface using a simple sinusoidal wave. Since any

dependence in the streamwise coordinate is lost upon averaging over one wall wavelength we

could model the rough surface to be any combination of sinusoidal waves provided the function

remains oscillatory, see HarrisHarris (20132013). By doing this we could develop a roughness model that

better represents surfaces that are observed in either the natural world or an industrial setting.

Using the notation introduced in Chapter 22, HarrisHarris (20132013) analysed a square wave represented
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by the function

s∗(x∗) = A∗
N

∑
n=1

1
2n−1

sin
(
(2n−1)πx∗

γ∗

)
. (7.0.1)

The corresponding surface, when N = 3, is shown in Figure 7.17.1.

x∗

s∗(x∗)

A∗

Figure 7.1: Schematic diagram illustrating the variation of the periodic surface s∗(x∗), defined
by equation (7.0.17.0.1), as a function of the streamwise coordinate for N = 3.

Note that in this instance σ0 = σ(ξ = 0) ̸= 1. Similar to the approach in Garrett et al.Garrett et al.

(20162016), HarrisHarris (20132013) applied the function (7.0.17.0.1) and solved the resulting equations using the

commercial NAG routine D03PEF. This routine solves PDEs by employing the method of lines,

converting the PDEs into a system of ODEs in the wall-normal direction, which are then solved

using a backward difference method. However, substituting the sinusoidal function with the

square wave described by (7.0.17.0.1) significantly increased the computation time and reduced the

reliability of the NAG routine. As a result, full datasets could not be obtained due to frequent

crashes, and any results produced were inconclusive. Consequently, HarrisHarris (20132013) opted to use

the simpler sinusoidal profile as a model for roughness.

We successfully obtained solutions using the Keller-Box method, but restricted our analysis

to the case where N = 3 and a ≤ 0.15. Increasing these values caused the scheme to fail to

converge. We argue that this failure is not due to flow separation. For instance, for the simple

sinusoidal profile, we obtained | f ′′ηη(0)| = 0.2960 in the case when a = 0.15 (see Table 3.13.1),

whereas for the surface described by equation (7.0.17.0.1) with N = 3, we obtained | f ′′ηη(0)| =
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0.3530 for the same corresponding value of a (see Table C.1C.1). This indicates that | f ′′ηη(0)|

approaches zero more slowly for the square wave profile. However, for larger values of N, the

gradient of the square wave at the origin tends to an infinite value, which causes the scheme to

fail to converge at this point and all other points where infinite positive (or negative) gradients

appear in the wall profile. Once again, we observed that surface roughness delays the onset

of linear instability. A summary of these results is provided in CC. The function can be easily

modified to represent a triangle wave or a sawtooth wave, as long as it remains oscillatory.

Furthermore, the analysis could be extended to include randomized surface roughness, such as

a Fourier series with a randomized phase spectrum, as described in Lu et al.Lu et al. (20202020).

Thus far, we have employed the parallel flow approximation to analyse the onset of linear

instability for flows generated by the translation of rough surfaces. This approach simplifies

the analysis by neglecting the streamwise variation of the mean flow thus reducing both the

complexity and dimensionality of the governing system of linear disturbance equations. An

alternative approach to analysing the onset of linear instability is to use the parabolised stability

equations (PSE). This method accounts for the streamwise variation of the mean flow (i.e.,

non-parallel effects) Bertolotti et al.Bertolotti et al. (19921992). The PSE approach also captures the evolution

of boundary layer disturbances, an idea first introduced by Floryan & SaricFloryan & Saric (19821982). In this

method, the solution is obtained by marching in the streamwise direction, with the scheme

initialized using solutions from a local analysis. To derive the PSE equations, the perturbations

are decomposed as follows:

[ũ(x, t), ṽ(x, t), p̃(x, t)] = [û(x,y), v̂(x,y), p̂(x,y)]exp
[

i
(∫ x

x0

α(x̃)dx+β z−ωt
)]

,

where α is now a slowly varying function of x, distinguishing this approach from the Orr-

Sommerfeld formulation.

The PSE method has been successfully applied to study how surface roughness affects
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boundary layers induced by an external oncoming flow, see, for example Wie & MalikWie & Malik (19981998).

Therefore, we are confident that PSE can be used to analyse flows induced by the translation of

rough surfaces. After performing a PSE analysis, a natural next step is to conduct a BiGlobal

stability analysis. BiGlobal analyses assumes homogeneity in the third spatial dimension and

considers perturbations of the form:

q̃(x, t) = q̂(x,y)ei(β z−ωt).

Substituting this expression into the linearized Navier-Stokes equations results in a two

-dimensional eigenvalue problem. While we will not delve into the details here, a compre-

hensive summary of BiGlobal approaches can be found in the work of TheofilisTheofilis (20032003). Finally,

a global stability analysis can be explored by conducting time-independent simulations of the

Navier-Stokes equations. In particular, MorganMorgan (20182018) examined the rough rotating disk bound-

ary layer investigated by Garrett et al.Garrett et al. (20162016) and argued that such simulations allow for the

direct imposition of radially anisotropic surface roughness without modifying the base flow or

relying on periodic surface modeling. It is important to emphasize that the techniques discussed

above — PSE, BiGlobal anlyses, and global analyses — should be combined with experimental

data to achieve a comprehensive understanding of the flow induced by the translation of a rough

surface.

As discussed previously, surface roughness can potentially be exploited for laminar flow

control in boundary layer flows induced by surface translation or rotation. However, this is not

the case for boundary layers induced by an external oncoming flow. A natural extension of the

work presented in this thesis would be to analyse a continuously moving surface within a paral-

lel free stream, incorporating the effects of surface roughness. AbdelhafezAbdelhafez (19851985) investigated

this particular flow configuration for a smooth boundary. Later, Lin & HuangLin & Huang (19941994) extended

this work by examining the flow and heat transfer over plane surfaces moving parallel or in re-
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verse to the free stream. Including surface roughness in such flow configurations would enhance

our understanding of how wall irregularities affect boundary layer stability more broadly.
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Appendix A

Non-Constant Wall

Velocity

The work presented in this thesis has focused on the class of boundary layer flows induced

by translation where the wall velocity varies. This generalized case has numerous industrial

applications, such as the production of thin sheets and fibers across a range of materials (see

Hanevy et al.Hanevy et al. (20242024)). Using the notation introduced in Chapter 22, the boundary layer equations

governing this class of flows are given by

∂u0

∂X
+

∂v0

∂Ŷ
= 0, (A.0.1a)

u0
∂u0

∂X
+ v0

∂u0

∂Ŷ
+

σ ′
X

σ
u2

0 = σ
2 ∂ 2u0

∂Ŷ 2
, (A.0.1b)

where the system is solved subject to the conditions

u0(Ŷ = 0) =
Uw(X)

σ(X)
, v0(Ŷ = 0) = 0, u0(Ŷ → ∞)→ 0. (A.0.2)
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In a similar fashion to the work presented in §3.43.4 we assume (A.0.1A.0.1) admits self similar solutions

and introduce the following similarity coordinate

τ =
Ŷ
g

√
Uw

Xσ

and the streamfunction ψ = g
√

UwX/σ f (τ), where g is a function of X to be determined. Given

the above we obtain the following velocity components

u0 =
∂ψ

∂Ŷ
=

(
Uw

σ

)
f ′τ ,

v0 =−∂ψ

∂X
= g

√
UwX

σ
(τ f ′ηH−− f H+).

Upon substitution into (A.0.1A.0.1) yields

Xg2[−H+ f f ′′ττ +U−1
w (Uw)

′
X( f ′τ)

2] = σ
2 f ′′′τττ .

To determine self similarity it must be the case that

Xg2H+ = c1σ
2, (A.0.3a)

Xg2U−1
w (Uw)

′
X = c2σ

2, (A.0.3b)

where the constants c1 and c2 ensure self similarity. Rearranging (A.0.3bA.0.3b) yields

g2 = c2σ
2Uw[X(Uw)

′
X ]

−1.
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Substituting into (A.0.3aA.0.3a) yields the following ODE

Uw
d2Uw

dX2 + γ

(
dUw

dX

)2

−SUw
dUw

dX
= 0, (A.0.4)

where S = [ln(σ)]′X and γ = 2(c1 − c2/c2). We observe that the case c1 = 0 corresponds to

γ = −2, for which no real solutions exist. This outcome is analogous to the Falkner-Skan

problem in the limit as m →−1, where the flow cannot be determined in a diverging channel

due to the rapid deceleration of the free-stream velocity. In contrast, the case c2 = 0 corresponds

to γ → ∞, where it is clear that Uw remains constant (see §3.43.4). Therefore, the class of boundary

layer flows discussed here generalizes the boundary layer flows induced by translation with

constant wall velocity. Considering the ODE described by (A.0.4A.0.4), two cases arise. For the first

case, when γ =−1, substituting R = [ln(Uw)]
′
X into (A.0.4A.0.4) gives

dR
dX

−SR = 0.

Therefore R = kσ where k is a constant of integration and it follows that

(Uw)
′
X = kUwσ . (A.0.5)

For the case γ ̸=−1, substitution of R = (1+ γ)U1+γ
w [ln(Uw)]

′
X leads to

(Uw)
′
X =

kσ

(1+ γ)U γ
w
. (A.0.6)

We can rewrite the ODE as follows

W ′
X = kσ , (A.0.7)

where W = U1+γ
w . To determine self similar solutions we choose to specify either the wall

velocity, Uw and calculate s or specify s and determine the required form of Uw. If we fix s we

141



J. Ferguson, PhD Thesis, Aston University, December 2024

can determine Uw like so

Uw =


CekI γ =−1

(C+ kI)
1

1+γ γ ̸=−1,

where C is a constant of integration and

I =
∫

σ(X)dX

Thus, for any fixed s, the form of Uw for any γ can be determined by integrating σ . When γ ≥

−1, it is evident that the surface is accelerating, whereas for γ <−1, the surface is decelerating.

This class of boundary layer flows is particularly useful for modeling deforming surfaces, such

as surface thinning or thickening Hanevy et al.Hanevy et al. (20242024). Additionally, when c1 > 0, defining

F(ζ ) =
√

c1 f (τ) with ζ =
√

c1τ leads to F ′
ζ
= f ′τ , resulting in the following ODE

F ′′′
ζ ζ ζ

+FF ′′
ζ ζ

−
(

2
2+ γ

)
(F ′

ζ
)2 = 0, (A.0.8)

which is solved subject to

F(ζ = 0) = 0, F ′
ζ
(ζ = 0) = 1, F ′

ζ
(ζ → ∞)→ 0, (A.0.9)

where we note that (A.0.8A.0.8) admits analytical solutions for the two cases γ = 0 and γ =−4, see

Hanevy et al.Hanevy et al. (20242024). By introducing a non-constant velocity, we can analyse a broader range

of boundary layer flows, making the results applicable to various industrial processes.
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Appendix B

External Free Stream

We now analyse the inviscid flow outside the boundary layer for cases where an external on-

coming flow interacts with a fixed rough plate. This analysis aims to determine the appropriate

matching condition between the boundary layer flow and the inviscid outer flow. The system

(2.1.12.1.1) is solved with the wall conditions (u∗,v∗) · n̂ = (u∗,v∗) · t̂ = 0, which ensure no penetra-

tion and no slip along the surface. Recall the following equations:

∂u∗

∂X∗ +
∂ ṽ∗

∂Y ∗ = 0,

u∗
∂u∗

∂X∗ + ṽ∗
∂u∗

∂Y ∗ =− 1
ρ∗

∂ p∗

∂X∗ +ν
∗L ∗

1 u∗+
(s∗)′X

ρ∗
∂ p∗

∂Y ∗ ,

u∗
∂ ṽ∗

∂X∗ + ṽ∗
∂ ṽ∗

∂Y ∗ +(s∗)′′X∗X∗u∗2 =−(1+(s∗)
′2
X∗)

ρ∗
∂ p∗

∂Y ∗ +ν
∗L ∗

1 ṽ∗+
(s∗)′X∗

ρ∗
∂ p∗

∂X∗ +ν
∗L ∗

2 u∗,

where

L ∗
1 =

∂ 2

∂X∗2 − (s∗)′′X∗X∗
∂

∂Y ∗ −2(s∗)′X∗
∂ 2

∂X∗∂Y ∗ +(1+(s∗)
′2
X∗)

∂

∂Y ∗2 ,

L ∗
2 = 2(s∗)′′X∗X∗

(
∂

∂X∗ − (s∗)′X∗
∂

∂Y ∗

)
+(s∗)′′′X∗X∗X∗ .
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The problem is non-dimensionalised by introducing the following scalings

(X ,Y,s) =
(X∗,Y ∗,s∗)

L∗ , (u, ṽ) =
(u∗, ṽ∗)

U∗
∞

, p =
p∗

ρ∗U∗2
∞

,

where in this instance U∗
∞ is the external free stream velocity. Therefore we obtain

∂u
∂X

+
∂v
∂Y

= 0,

u
∂u
∂X

+ v
∂u
∂Y

=− ∂ p
∂X

+
1

Re
L1u+ s′X

∂ p
∂Y

,

u
∂v
∂X

+ v
∂v
∂Y

+(s)′′XX u2 =−(1+(s)
′2
X )

∂ p
∂Y

+
1

Re
L1v+ s′X

∂ p
∂X

+
1

Re
L2u.

To examine the potential flow solution outside the boundary layer in the presence of the wavy

surface, we consider the limit as Re → ∞. In this limit, the inviscid flow approximation applies,

yielding:

∂u
∂X

+
∂v
∂Y

= 0,

u
∂u
∂X

+ v
∂u
∂Y

=− ∂ p
∂X

+ s′X
∂ p
∂Y

,

u
∂v
∂X

+ v
∂v
∂Y

+(s)′′XX u2 =−(1+(s)
′2
X )

∂ p
∂Y

+ s′X
∂ p
∂X

.

Introducing the streamfunction, u = ∂ψ/∂Y , v = −∂ψ/∂X and writing the partial derivatives

as subscripts the continuity equation is automatically satisfied and we obtain

ψY ψXY −ψX ψYY =−pX + s′X pY

−ψY ψXX +ψX ψXY + s′′XX(ψY )
2 =−(1+(s′X)

2)pY + s′X pX .
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For small a ≪ 1 we can wite ψ and p like so

q(x,y) = q0(x,y)+aq1(x,y),

where s is O(a). At O(1) we have that

−ψ
0
Y ψ

0
XX +ψ

0
X ψ

0
XY =−p0

Y , (B.0.1a)

ψ
0
Y ψ

0
XY −ψ

0
X ψ

0
YY =−p0

X . (B.0.1b)

At O(a) we have that

−ψ
0
Y ψ

1
XX −ψ

1
Y ψ

0
XX +ψ

0
X ψ

1
XY +ψ

1
X ψ

0
XY +(s1

XX)
2(ψ0

Y )
2 =−p1

Y + s1
X p0

X , (B.0.2a)

ψ
0
Y ψ

1
XY +ψ

1
Y ψ

0
XY −ψ

0
X ψ

1
YY −ψ

1
X ψ

0
YY =−p1

X + s1
X p0

Y . (B.0.2b)

The derivative of (B.0.1aB.0.1a) with respect to X minus the derivative of (B.0.1bB.0.1b) with respect to Y

yields

ψ
0
X(ψ

0
XX +ψ

0
YY )Y −ψ

0
Y (ψ

0
XX +ψ

0
YY )X = 0. (B.0.3)

Now the boundary conditions are given by

u(Y = 0) = v(Y = 0), u(Y → ∞)→ 1.

Therefore

−ψ
0
X(Y = 0) = 0, ψ

0
Y (y → ∞)→ 1.

Notice (B.0.3B.0.3) is satisfied when ψ0
XX +ψ0

YY = c, so we try ψ0 = aX +bY which implies that

ψ
0
XX +ψ

0
YY = 0. (B.0.4)
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We notice that ψ0
X = a, however we need ψ0

X(Y = 0) = 0 which implies a = 0. Also ψ0
Y = b,

but we require ψ0
Y (Y → ∞)→ 1, therefore b = 1 and thus

ψ
0 = Y. (B.0.5)

Given the above it is easy to see that p0
Y = p0

X = 0 which implies that p0 is constant. Equations

(B.0.2aB.0.2a) and (B.0.2bB.0.2b) now become

−ψ
1
XX + s1

XX =−p1
Y , (B.0.6a)

ψ
1
XY =−p1

X . (B.0.6b)

Differentiating (B.0.6bB.0.6b) with respect Y minus the derivative of (B.0.6aB.0.6a) with respect to X yields

ψ
1
XYY +ψ

1
XXX − s1

XXX = 0. (B.0.7)

We solve (B.0.7B.0.7) via the Fourier transform where

F(ψ(X)) =
∫

∞

−∞

ψ(X)e−itX dX = ψ̂(t),

F−1(ψ̂(t)) =
1

2π

∫
∞

−∞

ψ̂(t)eitX dt = ψ(X).

Notice that F(ψX) = itF(ψ). Taking the Fourier transform of (B.0.7B.0.7) gives

ψ̂
1
YY − t2

ψ̂
1 =−t2ŝ, (B.0.8)

where the solution is given by

ψ̂
1 = ŝ+A(t)e|t|Y +B(t)e−|t|Y . (B.0.9)
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Taking the Fourier transform of ψ1
X(Y = 0) = 0 yields ψ̂1(Y = 0) = 0 therefore

ŝ+A(t)+B(t) = 0. (B.0.10)

Taking the Fourier transform of ψ1
Y (Y → ∞)→ 0 yields ψ̂1

Y (Y → ∞)→ 0 therefore

A(t)|t|e|t|Y −B(t)|t|e−|t|Y → 0, (B.0.11)

as Y → ∞. It must be the case that A(t) = 0. Therefore it is easy to see that

ψ̂
1 = ŝ− ŝe−|t|Y . (B.0.12)

Taking the inverse Fourier transform of the above gives

ψ
1(X ,Y ) = F−1(ψ̂1) = F−1(ŝ− ŝe−|t|Y ),

which yields

ψ
1(X ,Y ) = s(X)−F−1(ŝe−|t|Y )

= s(X)− 1
2π

∫
∞

−∞

ŝ(t)e−|t|Y eitX dt

= s(X)− 1
2π

∫
∞

−∞

(∫
∞

−∞

s(X̃)e−itX̃ dX̃
)

e−|t|Y eitX dt

= s(X)− 1
2π

∫
∞

−∞

s(X̃)

(∫
∞

−∞

e−itX̃−|t|Y+itX dt
)

dX̃ .

Now ∫
∞

−∞

e−itX̃−|t|Y+itX dt =
2Y

Y 2 +(X − X̃)2
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Therefore

ψ
1(X ,Y ) = s(X)− 1

2π

∫
∞

−∞

s(X̃)
2Y

Y 2 +(X − X̃)2 dX̃ . (B.0.13)

Therefore ψ is given by

ψ(X ,Y ) = Y +a
[

s(X)− 1
2π

∫
∞

−∞

s(X̃)
2Y

Y 2 +(X − X̃)2 dX̃
]
. (B.0.14)

Now the X component of the inviscid velocity is given by u = ∂ψ/∂Y which yields

U0(X) = 1+a
[
− 1

2π

∫
∞

−∞

s(X̃)

(
2

Y 2 +(X − X̃)2 −
4Y 2

(Y 2 +(X − X̃)2)2

)
dX̃
]
.

To obtain the velocity at the surface we take the limit as Y → 0 therefore

U0(X) = 1+a
[
− 1

π

∫
∞

−∞

s(X̃)

(X − X̃)2 dX̃
]
.

Since s(X) = 0 for X < 0 we have that

U0(X) = 1+a
[
− 1

π

∫
∞

0

s(X̃)

(X − X̃)2 dX̃
]
.

Integrating by parts yields

U0(X) = 1+a
[

s(0)
πX

+
1
π

∫
∞

0

sX̃(X̃)

X̃ −X
dX̃
]
.

The above analysis is valid for any function s(X) for which s(0)= s′X(0)= 0 as per Ghosh Moulic & YaoGhosh Moulic & Yao

(19891989) therefore

U0(X) = 1+a
[

1
π

∫
∞

0

sX̃(X̃)

X̃ −X
dX̃
]
. (B.0.15)
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This matching condition accounts for the adjustment to the inviscid flow velocity caused by the

presence of a wavy surface. When the surface is flat, the integral term vanishes, resulting in

U0 = 1, which corresponds to the uniform free stream velocity. This condition ensures a con-

sistent transition between the boundary layer flow and the inviscid outer flow. In the context

of boundary layer analysis, the streamwise velocity U0(X) serves as the outer boundary condi-

tion for solving the boundary layer equations. The integral term captures the effect of surface

roughness on the mean flow, providing a means to analyse how variations in the surface profile

influence the boundary layer characteristics. This approach ensures that the viscous flow within

the boundary layer matches smoothly with the inviscid flow outside, accurately reflecting the

impact of surface roughness on the overall flow behavior.
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Appendix C

The Square Wave

We begin by analysing the averaged flow solutions for various values of the roughness parameter

where the surface is now described by the function (7.0.17.0.1). Once again we truncate the domain

at the location ξ = 1.5 given that the base flow is doubly periodic with a period equal to 2. In

this case we capture one complete cycle of periodicity between ξ0 = 0.5 and ξ1 = 1.5. Similar to

the discussions in Chapter 33 the base flow becomes periodic at a suitable distance downstream

from the point ξ = 0. Therefore we take an ensemble average of the base flow quantities at

equally spaced locations between ξ0 and ξ1. The solutions are presented below.
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Figure C.1: In (a) and (b) we illustrate the averaged streamwise and scaled wall-normal
velocity profiles, respectively, for a range of values of the roughness parameter. In (c) we

illustrate the variation of the averaged shear profiles with the boundary-layer coordinate for the
same range of values of a.

From the above Figure we observe that an increase in the roughness parameter leads to

a decrease in the streamwise velocity component. Again we observe that the flow converges

to the free-stream further from the wall indicating the boundary layer has thickened in the

presence of surface roughness. We also illustrate the scaled wall-normal velocity
√

ξ v0, and

upon increasing a we find that the constant large-η value of this flow component increases

in value. Finally we observe that the absolute value of the shear at the wall decreases in the

presence of increasing levels of surface roughness where the results are summarized below.
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Table C.1: Numerical values of the basic flow parameters for a range of values of the
roughness parameter a.

a f ′η(0) | f ′′ηη(0)| δ

0 1 0.4437 1.6161
0.05 0.9833 0.4259 1.6300
0.1 0.9471 0.3896 1.6664

0.15 0.9081 0.3530 1.7238

We now analyse the linear stability by solving (4.1.74.1.7) subject the conditions (4.1.94.1.9). In

Figure C.2C.2 we present the growth rates for a range of values of the roughness parameter a at

a fixed Reynolds number R = Rcrit + 1000. We find that the amplitude of the growth rate is

significantly reduced which suggests stabilisation. We also observe that the area encompassed

by the neutral curve is reduced upon increasing stabilisation where the results are summarised

below, see Table C.2C.2.
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Figure C.2: In (a) the growth rate, defined as −αi, is illustrated against αr for a range of values
of the roughness parameter a at a fixed value of the Reynolds number R = Rcrit +1000. In (b)
the curves of neutral stability, all the points where αi = 0, are illustrated for a range of values

of the roughness parameter a.
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Table C.2: Critical values for the onset of linear instability for various values of the roughness
parameter.

a Rcrit αcrit ωcrit
0 3564.01 0.2367 0.1736

0.05 3568.46 0.2330 0.1680
0.1 3666.91 0.2254 0.1569

0.15 3874.13 0.2190 0.1467

We now present the lower branch asymptotics for selected values of the roughness parame-

ter, see Figure C.3C.3. Once again we observe excellent agreement with the two sets of solutions.

To conclude, we have shown that if the roughness is modeled by (7.0.17.0.1) then again we de-

lay the onset of linear instability. Although we have not complimented the analysis with the

quasi-spatial approach, we are confident, given the results presented here, that conducting a

quasi-spatial approach would lead to qualitatively similar behaviour.
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Figure C.3: In (a) a comparison between the asymptotic and numerical results in the case when
a = 0.1. In (b) a comparison between the asymptotic and numerical results in the case when
a = 0.15. Comparing the asymptotic and numerical results for (a) a = 0.1 and (b) a = 0.15.

The large Reynolds number asymptotic solution is given by the dashed curve.
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THOMAS, PJ 2016 On the stability of von kármán rotating-disk boundary layers with radial
anisotropic surface roughness. Physics of Fluids 28 (1).

GASTER, MICHAEL 2016 Understanding the effects of surface roughness on the growth of
disturbances. In 46th AIAA Fluid Dynamics Conference, p. 4384.

GHOSH MOULIC, SANDIPAN & YAO, LS 1989 Mixed convection along a wavy surface. J.
Heat Transfer .

GRIFFITHS, PT, STEPHEN, SO & KHAN, MAIR 2021 Stability of the flow due to a linear
stretching sheet. Physics of Fluids 33 (8).

HALL, PHILIP 1986 An asymptotic investigation of the stationary modes of instability of the
boundary layer on a rotating disc. Proceedings of the Royal Society of London. A. Mathemat-
ical and Physical Sciences 406 (1830), 93–106.

HANEVY, N, FERGUSON, J, TREVELYAN, P. M. J. & GRIFFITHS, P. T. 2024 Boundary-layer
flows over deforming surfaces. Physical Review Fluids 9 (5), 054101.

HARRIS, JOSEPH H 2013 Stability of the flow over a rough, rotating disk. PhD thesis, Univer-
sity of Warwick.

HATTORI, YUNA 2023 Numerical simulations of sakiadis boundary-layer flow. Physics of Flu-
ids 35 (12).

HEALEY, JJ 1995 On the neutral curve of the flat-plate boundary layer: comparison between
experiment, orr–sommerfeld theory and asymptotic theory. Journal of Fluid Mechanics 288,
59–73.

HOSSAIN, MA & POP, I 1996 Magnetohydrodynamic boundary layer flow and heat transfer
on a continuous moving wavy surface. Archives of Mechanics 48 (5), 813–823.

ISHAK, ANUAR, YACOB, NOR AZIZAH & BACHOK, NORFIFAH 2011 Radiation effects on
the thermal boundary layer flow over a moving plate with convective boundary condition.
Meccanica 46, 795–801.

KACHANOV, Y. S., KOZLOV, V. V. & LEVCHENKO, V. Y. 1974 Experimental study of
laminar-boundary-layer stability on a wavy surface. Izv. Sib. Otd. Akad. Nauk SSSR, Ser.
Tekh. Nauk 13 (3), 2–6.

155



J. Ferguson, PhD Thesis, Aston University, December 2024

KELLER, HERBERT B 1978 Numerical methods in boundary-layer theory. Annual Review of
Fluid Mechanics 10 (1), 417–433.

LE PALEC, G, NARDIN, PH & RONDOT, D 1990 Study of laminar heat transfer over a
sinusoidal-shaped rotating disk. International journal of heat and mass transfer 33 (6), 1183–
1192.

LESSEN, MARTIN & GANGWANI, SANTU T 1976 Effect of small amplitude wall waviness
upon the stability of the laminar boundary layer. The Physics of Fluids 19 (4), 510–513.

LEVCHENKO, V. Y. & SOLOV’EV, A. S. 1972 Boundary layer stability on a wave-periodic
surface. Fluid Dynamics 7 (6), 884–888.

LIN, HSIAO-TSUNG & HUANG, SHIH-FENG 1994 Flow and heat transfer of plane surfaces
moving in parallel and reversely to the free stream. International journal of heat and mass
transfer 37 (2), 333–336.

LINGWOOD, R. J. 1995 Absolute instability of the boundary layer on a rotating disk. J. Fluid
Mech., 299, 17–33.

LU, HUI, XU, MINGHAI, GONG, LIANG, DUAN, XINYUE & CHAI, JOHN C 2020 Effects of
surface roughness in microchannel with passive heat transfer enhancement structures. Inter-
national Journal of Heat and Mass Transfer 148, 119070.

LUO, JISHENG & WU, XUESONG 2010 On the linear instability of a finite stokes layer: instan-
taneous versus floquet modes. Physics of Fluids 22 (5).

MALIK, MUJEEB R 1986 The neutral curve for stationary disturbances in rotating-disk flow.
Journal of Fluid Mechanics 164, 275–287.

MEHMOOD, AHMER, IQBAL, MUHAMMAD SALEEM, KHAN, SAJID & MUNAWAR, SUFIAN

2019a Entropy analysis in moving wavy surface boundary-layer. Thermal Science 23 (1),
233–241.

MEHMOOD, AHMER, USMAN, MUHAMMAD & WEIGAND, BERNHARD 2019b Heat and
mass transfer phenomena due to a rotating non-isothermal wavy disk. International Journal
of Heat and Mass Transfer 129, 96–102.

MILLER, ROBERT, GARRETT, STEPHEN J, GRIFFITHS, PAUL T & HUSSAIN, ZAHIR 2018
Stability of the blasius boundary layer over a heated plate in a temperature-dependent viscos-
ity flow. Physical Review Fluids 3 (11), 113902.

MORGAN, SCOTT 2018 Stability of periodically modulated rotating disk boundary layers. PhD
thesis, Cardiff University.

MORGAN, S. & DAVIES, C. 2020a Linear stability eigenmodal analysis for steady and tem-
porally periodic boundary-layer flow configurations using a velocity-vorticity formulation. J.
Comput. Phys. 409, 109325.

156



J. Ferguson, PhD Thesis, Aston University, December 2024

MORGAN, SCOTT & DAVIES, CHRISTOPHER 2020b Linear stability eigenmodal analysis for
steady and temporally periodic boundary-layer flow configurations using a velocity-vorticity
formulation. Journal of Computational Physics 409, 109325.

MORGAN, S., DAVIES, C. & THOMAS, C. 2021a Control of stationary convective instabilities
in the rotating disk boundary layer via time-periodic modulation. J. Fluid Mech. 925, A20
1–29.

MORGAN, S., DAVIES, C. & THOMAS, C. 2021b Control of stationary convective instabilities
in the rotating disk boundary layer via time-periodic modulation. J. Fluid Mech., 925, A20.

ORR, WILLIAM M’F 1907 The stability or instability of the steady motions of a perfect liquid
and of a viscous liquid. part ii: A viscous liquid. In Proceedings of the Royal Irish Academy.
Section A: Mathematical and Physical Sciences, , vol. 27, pp. 69–138. JSTOR.
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THOMAS, C., ALVEROĞLU, B., STEPHEN, S. O., AL-MALKI, M. A. S. & HUSSAIN, Z.
2023 Effect of slip on the linear stability of the rotating disk boundary layer. Phys. Fluids 35,
084118.
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