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Abstract: The growing ageing population and their preference to maintain independence by living in their own

homes require proactive strategies to ensure safety and support. Ambient Assisted Living (AAL) technologies

have emerged to facilitate ageing in place by offering continuous monitoring and assistance within the home.

Within AAL technologies,  action recognition plays a crucial  role in interpreting human activities and detecting

incidents  like  falls,  mobility  decline,  or  unusual  behaviours  that  may  signal  worsening  health  conditions.

However, action recognition in practical AAL applications presents challenges, including occlusions, noisy data,

and  the  need  for  real-time  performance.  While  advancements  have  been  made  in  accuracy,  robustness  to

noise, and computation efficiency, achieving a balance among them all  remains a challenge. To address this

challenge,  this  paper  introduces  the  Robust  and  Efficient  Temporal  Convolution  network  (RE-TCN),  which

comprises  three  main  elements:  Adaptive  Temporal  Weighting  (ATW),  Depthwise  Separable  Convolutions

(DSC), and data augmentation techniques. These elements aim to enhance the model’s accuracy, robustness

against noise and occlusion, and computational efficiency within real-world AAL contexts. RE-TCN outperforms

existing  models  in  terms  of  accuracy,  noise  and  occlusion  robustness,  and  has  been  validated  on  four

benchmark datasets: NTU RGB+D 60, Northwestern-UCLA, SHREC’17, and DHG-14/28. The code is publicly

available at: https://github.com/Gbouna/RE-TCN.

Key words:  Ambient  Assisted  Living  (AAL); action  recognition; occlusion  robust; noise  robust; computational

efficiency

1　Introduction

According  to  the  United  Nations,  the  number  of
individuals  aged  65  years  or  older  is  projected  to
double  by  2050,  reaching  approximately  1.5  billion
worldwide[1].  This  demographic  shift  presents

significant  challenges  for  healthcare  systems,
economics, and society at large[2].

Despite these challenges, most older adults prefer to
age in place, desiring to live independently in their own
homes rather than relocating to assisted living facilities
or nursing homes[3]. However, enabling ageing in place
requires  proactive  measures  to  ensure  safety  and
support[4],  especially  as  older  adults  become  more
susceptible  to  health  risks,  such  as  falls —which  are
the  leading  cause  of  injury-related  deaths.  In  this
context,  Ambient  Assisted  Living  (AAL)  technologies
support  ageing  in  place  by  providing  continuous
monitoring  and  assistance  within  the  home
environment[5, 6].  Among  the  various  components  of
AAL  systems,  action  recognition  plays  a  crucial  role,
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enabling  the  system  to  detect  and  classify  human
actions,  including  events,  such  as  falls,  mobility
decline,  or  abnormal  behaviours,  that  may  indicate
health deterioration[7].

Different  sensing  technologies  are  common in  AAL
systems. Wearable devices, such as accelerometers and
gyroscopes, are used to monitor movements and detect
falls[6, 8, 9].  While  wearables  provide  continuous
monitoring,  they  rely  heavily  on  user  compliance
causing discomfort, which can be problematic for older
individuals,  especially  those  with  cognitive
impairments[8].  Audio-based  systems  can  monitor
sound  patterns  and  movement  within  the  home[10, 11].
However, the accuracy of these systems is degraded in
the  presence  of  background  noise[11].  Recently,
computer  vision-based  approaches  have  gained
popularity  for  action  recognition  in  AAL  due  to  their
ability to capture rich visual data of human movements
and interactions[12].

While  many  vision-based  approaches  rely  on
traditional  RGB video data for  action recognition,  this
raises  privacy  concerns  due  to  the  intrusive  nature  of
capturing  full-colour  video  of  individuals  in  their
homes[12].  Moreover,  RGB-based  systems  are
computationally  expensive,  requiring  significant
processing  power  to  handle  large  volumes  of  data
generated by continuous video streams[13].

A  promising  alternative  is  skeleton-based  action
recognition,  which  uses  skeleton  data  extracted  from
images  to  represent  human  motion  rather  than  using
raw  image  data[14, 15].  This  approach  offers  several
advantages  in  the  context  of  AAL  systems.  First,
skeleton-based  data  preserves  visual  privacy  by
abstracting  the  human  figure  into  a  set  of  joints,
eliminating  the  need  to  capture  identifiable  features
such  as  facial  details  or  body  appearance[16, 17].
Furthermore, skeleton data is compact and lightweight,
making  it  computationally  more  efficient  to  process
than  RGB  video.  This  is  an  advantage  for  real-time

action  recognition  tasks  in  resource-constrained
environments[18–21].

However,  skeleton-based  action  recognition  faces
several challenges in real-world AAL settings as shown
in Fig.  1.  One  of  the  primary  issues  is  dealing  with
occlusions, where body parts may be hidden from view
due  to  obstacles  or  suboptimal  camera  placement[22].
Another challenge is  noisy data resulting from camera
inaccuracies  or  motion  artefacts[23].  To  address  these
challenges,  various  methods  have  been  proposed,
focusing  on  enhancing  the  robustness[22–24],
accuracy[25],  and  efficiency[26, 27] of  skeleton-based
systems.  While  progress  has  been  made  in  specific
areas,  such  as  robustness,  accuracy,  or  real-time
performance, a solution that balances all three remains
a challenge.

This  paper  proposes  Robust  and  Efficient  Temporal
Convolution network (RE-TCN) that builds on a state-
of-the-art  model  Temporal  Decoupling  Graph
Convolution  Neural  network  (TD-GCN)[28] by
incorporating  three  key  components:  Adaptive
Temporal  Weighting  (ATW),  Depthwise  Separable
Convolutions  (DSC)  and  data  augmentation
techniques. These components are designed to improve
both  the  accuracy,  robustness  to  noise  and  occlusion,
and computational efficiency of the proposed model in
a  real-world  AAL  environment.  ATW  enhances  the
model’s ability to focus on the most informative frames
in an action sequence. It  dynamically assigns different
levels of importance to each frame, allowing the model
to  prioritise  key  moments  in  the  sequence.  DSC
decomposes  the  convolution  into  depthwise  and
pointwise  convolutions,  significantly  reducing  the
number  of  parameters  and  operations  required  to
process the input skeleton data. The data augmentation
techniques  were  designed  to  enhance  the  model’s
robustness in real-world environments.

We  conduct  extensive  experiments  on  four
benchmark  datasets:  NTU,  RGB+D  60[29],

 

(a) (b) (c) 
Fig. 1    Challenges  in  a  real-world  environment,  (a)  represents  data  with  noise  and  occlusion,  (b)  represents  relatively  clean
data, and (c) represents data with occlusion.
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Northwestern-UCLA[30],  SHREC17[31],  and  DHG-
14/28[32] to  evaluate  the  effectiveness  of  the  proposal.
RE-TCN  outperforms  existing  methods  in  terms  of
computational  efficiency,  accuracy,  and  robustness  to
noise and occlusion.

2　Related Work

2.1　Action recognition in AAL

There are two common approaches to Human Activity
Recognition (HAR),  rule-based and data-driven.  Rule-
based  approaches  employ  thresholds  for  triggering
alerts  of  potentially  harmful  or  dangerous  events[33].
The  second  approach  leverages  machine  learning
algorithms  for  HAR[34].  These  methods  can  learn
complex  patterns  from  data,  enabling  more  accurate
recognition  of  activities.  These  methods  are
implemented  using  various  sensors,  generally
categorised into wearable and non-wearable sensors.

Inertial  sensors  are  the  most  common  wearable
sensors  for  HAR  in  ALL  applications.  These  include
accelerometers,  gyroscopes,  and  magnetometers[6, 8, 9].
Wearable  devices  are  favoured  for  their  mobility,
portability,  and  accessibility.  Numerous  studies  have
utilised  wearable  devices  to  detect  falls  and  alert
caregivers[35, 36]. However, this approach requires users
to  constantly  wear  the  devices,  which  may  cause
discomfort.  Forgetting  to  wear  it  can  negate  the
purpose  of  monitoring,  compromising  the  system’s
effectiveness.

Non-wearable  sensor  solutions  for  HAR  involve
devices  or  systems capable  of  detecting  and analysing
human activities without direct attachment to the body.
Examples  include radio-frequency-based systems[37, 38]

and, increasingly, vision-based methods[12].
However,  vision-based  solutions  have  drawbacks,

such  as  limited  field  of  view,  sensitivity  to
environmental  factors  like  lightning  conditions  and
cluttered  backgrounds,  and  privacy  concerns[12, 39].
They also suffer  from subject  occlusion,  which occurs
when  parts  of  the  subject’s  body  are  hidden  or
obscured  by  other  objects  or  body  parts  within  the
room,  leading  to  incomplete  or  inaccurate  tracking  of
movements[39].

2.2　Skeleton-based action recognition

Skeleton-based  action  recognition  approaches  have
gained  attention  owing  to  their  lower  computational
complexity  compared  to  processing  RGB  data.  This

has  led  to  the  development  of  methods  aimed  at
enhancing action recognition performance.

Graph  Convolutional  Neural  Networks  (GCN)  have
become  a  fundamental  framework  in  skeleton-based
action  recognition  thanks  to  their  ability  to  model  the
spatial  and  temporal  dynamics  of  human  joints
effectively. One of the pioneering works is the Spatial-
Temporal  Graph  Convolutional  Network  (ST-GCN)
introduced  in  Ref.  [40],  which  captures  spatial  and
temporal  features  by  leveraging  the  graph  structure  of
the skeleton data.

To  enhance  GCNs’ representational  ability,  several
methods have focused on adaptively learning the graph
structure[41–50].  These methods employ adaptive GCNs
that dynamically learn the graph’s topology.

Other approaches leverage attention mechanisms and
transformer,  and  have  integrated  them  into  GCN
frameworks  to  improve  their  ability  to  capture
significant  relationships[51–53].  These  methods  utilise
attention  mechanisms  within  graph  convolutions  to
identify key relationships in the data.

Alternative  approaches  aim  to  enhance  GCN
performance  by  refining  the  input  representation  to
make it  more informative[41, 44, 49].  These works define
inputs  in  terms  of  bones  and  motion  by  preprocessing
existing  joint  data.  These  methods  aim  to  deepen  the
network’s  understanding  of  underlying  action
dynamics by providing richer features.

Despite  these  advancements,  few  methods  address
the  practical  constraints  of  deploying these  systems in
real-world  environments.  Many  existing  works  are
unsuitable  for  real-world  deployment,  particularly
given  the  computational  limitations  of  edge  devices
and  the  cluttered  environments  in  real-world  settings
that introduce noise and occlusions into the data.

To  address  some  of  the  real-world  challenges,
some  approaches  have  concentrated  on  designing
efficient  architectures  to  improve  real-time
performance[25–27, 54, 55].  Others  have  focused  on
mitigating  the  effects  of  noise  and  occlusion  in  real-
world  environments  by  proposing  methods  to
improve  performance  under  these  challenging
conditions[22–24, 56, 57].

This paper aligns with these efforts by developing an
efficient  architecture  that  satisfies  the  real-time
requirements  of  devices  with  limited  computational
resources.  Additionally,  we  address  the  challenges
posed  by  noise  and  occlusion  in  real-world
environments  to  achieve  robust  performance  in
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practical  applications.  Notably,  our  approach  aims  to
achieve these objectives without sacrificing accuracy.

3　Method

f : X→ y X
y

X N, C, T,
N C

T V

The architecture of RE-TCN is depicted in Fig. 2. The
model  aims  to  enhance  accuracy,  robustness  to  noise
and  occlusion,  and  computational  efficiency.  The
contributions  of  the  method  are  threefold:  an  adaptive
temporal  weighting  mechanism,  depthwise  separable
convolution  and  data  augmentation.  Details  of  the
implementation  are  explained  below.  The  objective  of
human  action  recognition  is  to  learn  a  function

 that maps the spatio-temporal skeletal data 
to  an  action  label  by  capturing  spatial  dependencies
between joints and temporal progression across frames.
Input data are denoted by , with dimensions 
and V,  where  is  the  batch  size,  is  the  number  of
channels (features),  is  the number of frames,  and 
is the number of joints.

3.1　ATW

The  ATW  mechanism  is  developed  to  dynamically
assign  different  levels  of  importance  to  frames  within
an  action  sequence.  This  section  outlines  the
implementation  and  the  design  decisions  made  during
its development to optimise computational efficiency.
3.1.1　Implementation of ATW
ATW  computes  an  attention  weight,  highlighting  the
importance of different frames for each input sequence.
To  compute  these  weights,  ATW  first  collapses  the

joint dimension by computing the average over joints, 

Xproj =
1
V

V∑
v=1

X [:, :, :, : v] (1)

Xproj ∈ RN×C×Twhere .  This  step  reduces  the  spatial
complexity  and  focuses  on  the  temporal  aspect  of  the
features.

1×1

To  efficiently  compute  weight,  the  temporal  feature
map is projected into lower-dimensional space using a

 convolution,
 

Xred = Conv1(Xproj) (2)

Xred ∈ RN×C
n ×T

n

where .  The  convolution  operation  in
this  step  is  designed  to  serve  two  purposes.  First,  it
reduces  the  number  of  channels  by  a  factor  of ,
enabling  more  efficient  computation  while  preserving
temporal  information.  Secondly,  the  convolution
operation acts as a feature transformation by combining
the information from the temporal features within each
channel.

1×1
The  reduced  temporal  feature  map  is  restored  to  its

original  number  of  channels  using  another 
convolution,
 

Xrestored = Conv2 (Xred) (3)
Xrestored ∈ RN×C×T

C/n
C

where .  This  step  further  transforms
the  intermediate  features  and  restores  the
dimensionality  of  the  temporal  feature  map  from 
back  to ,  ensuring  that  the  feature  representation
aligns  with  the  original  number  of  channels  before
weight is applied.
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Fig. 2    Architecture of the proposed RE-TCN: Graph convolution is first applied to the skeleton sequences. The output is then
passed to the multi-branch temporal convolution, followed by the ATW mechanism, and finally to the classification module for
action recognition.
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Next,  a  softmax  function  is  applied  across  the
temporal  dimension  to  compute  the  attention  weights.
The  softmax  operation  ensures  that  the  assigned
weights sum up to 1,
 

αt =
exp (Xrestored, t)

T∑
t=1

exp (Xrestored, t)
(4)

αt ∈ RN×C×Twhere  are the learned attention weights.

αt

Finally,  the  original  input  tensor  is  weighted  by  the
attention score  along the temporal dimension,
 

X′ = X ·αt (5)
X′ ∈ RN×C×T×Vwhere  is the output of the ATW. Here,

the  learned  attention  weights  are  applied  across  the
temporal  dimension,  scaling  each  frame  according  to
its relative importance.

In  comparison  to  the  TD-GCN[28],  the  convolution
operation  applies  convolutions  across  the  temporal
dimension as follows:
 

Xconv = Conv (X) (6)
where  each  frame  is  processed  uniformly,  leading  to
potential  information  loss  in  important  frames.  In  the
proposed  approach,  the  temporal  convolutions  are
complemented  by  ATW  which  assigns  higher
importance  to  informative  frames.  The  difference  lies
in  the  introduction  of  the  ATW  mechanism  that
dynamically scales each frame.
 

Xatt = X ·αt (7)
This  ensures  that  the  model  learns  to  focus  on  the

most relevant temporal features, enhancing its ability to
capture crucial moments in the action sequence.
3.1.2　Design choices in ATW

Cin→Cout

Cin→Cmid→Cout

Cin→Cmid
Cin Cmid

Cmid <Cin
Cmid Cout

Cout =Cin Cin, Cout Cmid

The  ATW  mechanism  is  designed  to  achieve
computational  efficiency  while  maintaining  modelling
capacity.  Inspired  by  the  depthwise  separable
convolution  process,  which  breaks  down  convolution
into a two-step operation, ATW’s core design replaces
a  single  convolution  with  ( )  channels  with
two-step  convolutions  featuring  an  intermediate
dimensionality  reduction:  ( ).  This
approach  divides  the  convolution  operation  into  two
steps.  The  first  convolution  operation 
reduces the channels from  to an intermediate 
where ,  while  the  second  convolution
operation restores the channels back from  to ,
where .  Here, ,  and  are  the
numbers of input, intermediate, and output channels.

1×1
The  reduction  in  computational  cost  is  significant.

For  instance,  the  computational  cost  for  a 
convolution operation can be expressed as
 

XCost = N ×Cout×Cin×T ×V (8)
The  cost  for  the  first  and  second  convolution

operations can therefore be expressed as
 

Costfirst = N ×Cmid×Cin×T ×V (9)
 

Costsecond = N ×Cout×Cmid×T ×V (10)
The total computational cost for this two-step process

is
 

Costtotal =N ×Cmid×Cin×T ×V+

N ×Cout×Cmid×T ×V (11)

Cin→Cout

For comparison, a single convolution operation from
 requires

 

Costsingle = N ×Cout×Cin×T ×V (12)

Using  two  convolutions  with  an  intermediate
reduction results in evident computational savings. The
ratio  of  computational  cost  between  the  two-step
process and the single convolution is
 

Costtotal
Costsingle

=
Cmid×Cin+Cout×Cmid

Cout×Cin
(13)

Cmid <<CinFor ,  this  ratio  becomes  much  smaller,
demonstrating  that  the  two-step  design  is  significantly
more efficient.

3.2　Depthwise separable convolutions

1×1

TD-GCN[28] employs  convolutions  across  both
temporal and spatial dimensions, enabling it to capture
spatio-temporal  features  effectively  and  thereby
improving the understanding of temporal dynamics and
spatial  relationships  between  joints.  Despite  its
strengths,  the  convolution  operation  in  TD-GCN  is
computationally  intensive  and  demands  a  relatively
high  number  of  parameters.  To  reduce  the
computational  cost  and  improve  the  model  efficiency
without  sacrificing  accuracy,  the  proposed  approach
decomposes  the  convolution  operation  of  TD-GCN
into  two stages;  depthwise  and pointwise  convolution.
The  depthwise  convolution  performs  a  convolution
operation for each input channel (feature), allowing for
spatial  feature  extraction  independently  on  each
channel.  In  contrast,  the  pointwise  convolution  uses  a

 kernel  to  combine  the  outputs  of  the  depthwise
convolution across channels.
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3.2.1　Convolution operation process
X ∈ RN×Cin×T×V

W ∈ RCout×Cin×Kh×Kw

Kh×Kw

Given  an  input  data ,  TD-GCN[28]

applies  a  set  of  filters ,  where
 is the filter size. The output of the convolution

operation is computed as
 

YTD-GCN =W ×X (14)
YTD-GCN ∈ RN×Cout×T×V

Cin×Cout×
Kh×Kw

where  is  the  result  of  the
convolution  operation,  which  involves 

 multiplication.  This  approach  requires  a  large
number  of  parameters  and  high  computational  cost,
especially when the input data is large.

The proposed convolution operation is formulated as
follows:
 

Ydw =Wdw×X (15)
 

Yfinal =Wpw×Ydw (16)

Wdw ∈ RCin×Kh×Kw

Wpw ∈ RCout×Cin×1×1

Ydw ∈ RN×Cin×T×V

Yfinal ∈ RN×Cout×T×V

where  is the depthwise filter applied
to  each input  channel  individually, 
is  the  pointwise  filter,  which  aggregates  the  output  of
the  depthwise  convolution  across  channels,

 is  the  intermediate  result  after  the
depthwise  convolution,  and  is  the
final output after the pointwise convolution.
3.2.2　Efficiency comparison
For  TD-GCN[28] convolution  operation,  the
computational complexity can be expressed as
 

CostTD-GCN = T ×V ×Cin×Cout×Kh×Kw (17)
Cin×Cout×Kh×Kw

Cin Cout

This  requires  multiplications  for
each  spatial  location  in  the  input,  resulting  in  a
significant  computational  cost  when  and  are
large.

In  contrast,  the  computational  cost  of  depthwise
separable  convolution  can  be  divided  into  depthwise
and  pointwise  convolution.  In  depthwise  convolution,
each  input  channel  is  convolved  independently  with  a
single filter, leading to a computational cost,
 

Costdw = T ×V ×Cin×Kh×Kw (18)
1×1While  in  pointwise  convolution,  a  convolution

is  applied  across  all  input  channels,  resulting  in  a
computational cost,
 

Costpw = T ×V ×Cin×Cout (19)

As a result, the total cost of the depthwise separable
convolution is
 

CostDSC =T ×V ×Cin×Kh×Kw+Cin×Cout (20)

Comparing  the  computational  costs  of  the  two
approaches,  we  can  see  that  the  depthwise  separable
convolution is more efficient,
 

CostDSC
CostTD-GCN

=
Cin×Kh×Kw+Cin×Cout

Cin×Cout×Kh×Kw
(21)

Kh Kw

Cin Cout

For  a  large  and ,  the  depthwise  separable
convolution  offers  a  substantial  reduction  in
computation, especially when  and  are large.

3.3　Data augmentation

To  enhance  robustness  against  noise  and  occlusion  in
real-world  environments,  we  propose  a  suite  of
augmentation  techniques  (see Fig.  3)  to  model
conditions  that  lead  to  performance  degradation.  For
instance,  we  recognise  that  an  object  occluding  a
camera view typically affects a continuous sequence of
frames  in  real-world  scenarios.  This  can  occur
randomly due to the cluttered real-world environments
often seen. With these practical  scenarios in mind, the
following augmentation strategies are designed.
3.3.1　Random joint and frame occlusion

p Lmin

Lmax

p
Lmin Lmax

This  method introduces variability  into the spatial  and
temporal  dimensions  of  the  skeleton  data,  simulating
potential occlusion situations encountered in real-world
environments.  It  applies  random  erasure  of  joints  and
frames across randomly selected continuous sequences
of frames. The process is controlled by the probability
of  erasure  and  erasing  sequences  length  range 
and . First, frames are chosen for erasure based on
probability .  Consecutive  sequences  of  frames  are
then selected, with lengths between  and . For
each selected sequence, random joints are set to zero to
simulate joint occlusion, while for frame occlusion, all
joint  values  are  set  to  zero.  After  processing  each
sequence,  a  random  number  of  frames  are  skipped
before  the  subsequent  process  begins.  The  full
procedure is outlined in Algorithm 1.
3.3.2　Skeleton rotation
This  method  introduces  variability  in  spatial
orientations to simulate different viewing angles. First,
a random rotation vector is  generated and transformed
into  a  rotation  matrix.  The  rotation  matrix  is  then
multiplied  with  the  skeleton  data  to  rotate  the
joint  positions.  The  full  algorithm  is  presented  in
Algorithm 2.
3.3.3　Jittering
The  jittering  method  introduces  random  perturbations
to  skeleton  data  by  adding Gaussian  noise  to  the  joint
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pframe

position in selected frames. First, frames are chosen for
noise  addition  based  on  a  random  decision  controlled
by  the  probability .  For  each  selected  frame,
Gaussian  noise  is  generated  and  added  to  the  joint
positions.  The  algorithm  describing  this  process  is
detailed in Algorithm 3.

4　Experiment

In  this  section,  we  evaluate  the  accuracy,  robustness,
and  efficiency  of  the  proposed  RE-TCN  framework.
We compare RE-TCN’s performance to state-of-the-art
skeleton-based action recognition methods and conduct
comprehensive ablative studies.

4.1　Dataset

0◦ 45◦

−45◦

(1) NTU RGB+D 60[29]: The dataset comprises 56 880
skeleton  sequences  covering  60  actions  performed  by
40 subjects. Shahroudy et al.[29] suggested two primary
evaluation  benchmarks: (a)  Cross-view  (X-view),
where  training  data  are  captured  from  two  camera
angles,  (view 2)  and  (view 3),  while  testing  is
conducted from  (view 1),  and (b) Cross-subject
(X-sub), in which 20 subjects data are used for training
while data from the remaining 20 subjects are reserved
for testing. Following this approach, we report the top-

1 recognition accuracy across both benchmarks.
(2)  NorthWestern-UCLA  (NW-UCLA)[30]: The

NW-UCLA dataset includes 1494 sequences across 10
actions, captured from Kinect cameras, each positioned
to  provide  different  viewpoints.  Following  the
evaluation  protocol  suggested  by  Ref.  [30],  data  from
the  first  two  cameras  are  used  for  training,  and  the
remaining camera’s data are used for testing.

(3)  SHREC’17[31]: The  dataset  comprises  2800
gesture sequences performs by 28 participants. Each of
the 28 participants performs each gesture 10 times. The
gestures  are  categorised  into  either  14  or  28  classes
based  on  the  gesture  type.  Consistent  with  the
evaluation  protocol  outlined  in  Ref.  [31],  1960
sequences are used for training, and 840 sequences are
reserved for testing.

(4)  DHG-14/28[32]: The  dataset  comprises  2800
gesture  sequences  performed  5  times  each  by  20
participants. As suggested by Ref. [32], the leave-one-
subject-out  cross-validation  method  are  used  for
evaluation.  This  means  that  data  from  19  participants
are  used  for  training  and  the  remaining  participant’s
data are reserved for testing. This evaluation process is
repeated 20 times, and the final accuracy is reported as
the average of these iterations.

 

Action: arm cross

Original frames

Jittering

Random occlusion

Frame occlusion

Rotation

 
Fig. 3    Skeleton  sample  of “cross  arm” action  with  data  augmentation  techniques:  jittering,  random  occlusion,  frame
occlusion, and rotation.
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4.2　Implementation details

The model is trained using Stochastic Gradient Descent
(SGD)  with  a  warm-up  strategy.  The  learning  rate  is
initialised  at  0.1,  and  a  momentum  of  0.9  is  applied.
Model  checkpointing  is  used  to  save  the  model  based

on  optimal  performance  on  the  validation  set.  For  the
SHREC’17 and DHG-14/28 datasets, a batch size of 32
is  used,  with  a  weight  decay of  0.0001 and a  learning
rate decay factor  of  0.1.  The NTU RGB+D 60 dataset
is  trained  with  a  batch  size  of  64,  a  weight  decay  of
0.0004 and a learning rate decay factor of 0.1. For the
NW-UCLA  dataset,  the  model  is  trained  with  a  batch
size of 16, a weight decay of 0.0001 and a learning rate
decay factor of 0.1. Based upon findings from ablation
studies,  the  following  parameter  settings  are  used  for
the ATW mechanism: the reduction ratio is set to 8, the
mean pooling strategy is used, placement in the model
architecture  is  set  to  late,  and  two  layers  with  a
reduction ratio are implemented.

4.3　Ablation study and parameter tunning

To  analyse  the  various  components  of  the  proposed
method,  we  perform  extensive  experiments  using  the
NW-UCLA dataset as a case study.
4.3.1　ATW and DSC
We  evaluate  the  effectiveness  of  the  proposed  ATW
and DSC in enhancing model accuracy and optimising
parameter  count,  as  summarised  in Table  1.  For  this
evaluation,  baseline  training  is  conducted  using  the
TD-GCN[28] and  TD-GDSCN[18] model,  and  the  same
training  parameter  settings  are  maintained  across  all
experiments.  The  only  modifications  involve  the
integration  of  different  components  of  the  proposed
method.  As  shown in Table  1,  the  integration  of  DSC
improves  both  accuracy  and  parameter  efficiency.
Furthermore, the addition of ATW yields an additional

 

Algorithm 1　Random joint and frame occlusion
d ∈ RC×T×V×MRequire: Original skeleton data 

daug ∈
RC×T×V×M
Ensure: Augmented  skeleton  data  with  occlusions 

daug d1: Initialize  with ;
C, T, V, M← Shape of d2: ;
p, Lmin, Lmax← probability, min/max occlusion length3: ;

m← 0 M−14: for  to  do
tcurrent← 05: 　 ;

tcurrent < T6: 　while  do
tremaining← T − tcurrent7: 　　 ;

tremaining < Lmin8: 　　if  then
9: 　　break;
10:   　end if

Locclusion← Random int in [Lmin, min (Lmax, tremaining)]11: 
12: if joint occlusion is selected then

t← tcurrent tcurrent +Locclusion −113: 　　　for  to  do
Jocclude← Random subset of joints from {1, 2, . . . , V}14: 　　　 ;

daug [:, t, Jocclude, m]← 015: 　　　Set ;
16:　　　end for
17: 　　else if frame occlusion is selected then

daug [:, tcurrent : tcurrent +Locclusion −1, :, m]← 018: 　　　Set ;
19: 　　end if

tskip← Random int in [1, min (10, T − tcurrent)]20: 　　 ;
tcurrent← tcurrent + tskip21: 　　 ;

22: 　end while
23: end for

 

Algorithm 2　Skeleton rotation
d ∈ RC×T×V×M θRequire: Skeleton data  and rotation angle 

drot ∈ RC×T×V×M
Ensure: Augmented  skeleton  data  with  random  rotation

d dtorch1: Convert  to torch tensor ;
C, T, V, M← Shape of dtorch2: ;

dtorch← Reshape to (T, C, V ×M)3: Reshape and permute ;
rot ∈ RT×3

[−θ, θ]
4:  Initialize  random  rotation  vector  with  values  in
　 ;

_rot
rot← _rot (rot) ∈ RT×3×3

5:  Apply  a  rotation  function  to  create  a  rotation  matrix
　 ;

dtorch←
rot×dtorch

6:  Multiply   rotation   matrix   with   skeleton   data  
　  ;

dtorch← Reshape back to (C, T, V, M)7: Reshape and permute ;
drot8: Return augmented skeleton data 

 

Algorithm 3　Jittering
d ∈ RC×T×V×M

σ pframe

Require: Skeleton data , Gaussian noise standard
deviation , and frame selection probability 

djittered ∈ RC×T×V×MEnsure: Augmented skeleton data with jittering 

djittered← copy of d1: Initialise augmented data ;
C, T, V, M← Shape of d2: ;

m← 0 M−13: for  to  do
t← 0 T −14: 　for  to  do
rand ( ) < pframe5: 　　if  then

noise ∼ N (0, σ2)
(C×V)

6: 　　　Generate Gaussian noise  of shape
　　　　 ;

djittered[:, t, :, m]← djittered[:, t, :, m]+noise
7: 　　　Add noise to the selected frame:
　　　　 ;
8: 　　end if
9: 　end for
10: end for

djittered11: Return augmented skeleton data 
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increase  in  accuracy,  although  with  a  minimal
parameter  increase  of  0.01.  These  results  validate  the
contribution  of  DSC  and  ATW  in  enhancing  the
baseline model’s performance.
4.3.2　Reduction ratio

n

To enable efficient convolution operations, one design
choice in ATW is to reduce the number of channels by
a  factor  of  in  the  first  convolution  operation.  We
conduct  an  experiment  to  select  an  appropriate
reduction ratio.  Initially,  we use a  reduction ratio  of  8
to train the model as a baseline. We then test different
reduction ratios and present the results in Table 2. The
results  show that  higher  reduction ratios  lead to  fewer
parameter counts, with a ratio of 64 yielding the fewest
parameters.  However,  accuracy  fluctuats  among  the
different  ratios,  with  the  ratio  of  8  achieving  the
highest accuracy. Since the increase in parameter count
with  a  ratio  of  8  compared  to  64  is  minimal,  and  the
accuracy  improvement  is  significant,  we  use  the
reduction ratio of 8 in subsequent experiments.
4.3.3　Pooling strategy
To  compute  the  attention  weights  along  the  temporal
dimension,  the  ATW  mechanism  first  collapses  the
joint  dimension.  This  reduces  the  spatial  complexity
and focuses on the temporal aspect of the features. We
conduct  an  experiment  to  determine  the  most
appropriate pooling mechanism for collapsing the joint
dimension.  We  test  various  pooling  strategies  and
present the results in Table 3. The results show that all
pooling  strategies  have  the  same  effect  on  parameter

count.  However,  the  mean  strategy’s  accuracy  is
significantly higher compared to others. Therefore, we
select  it  as  the  pooling  strategy  for  subsequent
experiments.
4.3.4　ATW location in model architecture
We  conduct  an  experiment  to  identify  the  optimal
placement location of the ATW mechanism within the
overall  model  architecture.  Various  positions  are
tested, with the result presented in Table 4. The results
indicate  that  the  placement  of  ATW  affects  both
accuracy  and  parameter  count.  Introducing  the  ATW
mechanism earlier in the network minimises parameter
count,  though  this  configuration  does  not  achieve  the
highest  accuracy.  Conversely,  positioning  ATW  later
in  the  network  produces  the  highest  accuracy,  with
only a minimal increase in parameter count relative to
early placement.
4.3.5　Efficient design strategy
One key design choice in ATW mechanism is to use a
two-step  convolution  operation  with  an  intermediate
dimensionality  reduction.  We  conduct  an  experiment
using  various  combinations  of  convolution  layers  to
assess  their  impact  on  accuracy  and  parameter  count.
The  result  is  presented  in Table  5.  We  train  and
evaluate  two  sets  of  models:  one  with  only  full
convolution  layers  (without  a  dimensionality
reduction), and another with a dimensionality reduction
layer. In both sets, we observe that the parameter count
increases  with  the  number  of  convolution  layers.

 

Table 1    Impact  of  ATW  and  DSC  on  accuracy.  The  best
results are highlighted in bold.

Method Number of
parameters (×106)

Accuracy
(%)

TD-GCN 1.35 94.40
TD-GDSCN 1.23 95.05

RE-TCN + DSC 1.23 95.69
RE-TCN + DSC +

ATW 1.24 96.34

 

Table 2    Impact  of  reduction  ration  on  accuracy.  The  best
results are highlighted in bold.

Reduction ratio Accuracy (%) Number of
parameters

4 93.32 1 258 896
8 96.34 1 242 480
16 92.24 1 234 272
32 94.40 1 230 168
64 93.75 1 228 116

 

Table 3    Impact  of  pooling  strategy  on  accuracy.  The  best
results are highlighted in bold.

Pooling strategy Accuracy (%) Number of
parameters (×106)

Max 93.10 1.24
Adaptive 94.18 1.24

Mean 96.34 1.24
Global max 91.81 1.24
Global mean 83.41 1.24

 

Table 4    Impact  of  ATW location in model  architecture on
accuracy. The best results are highlighted in bold.

Location in model
architecture

Accuracy
(%)

Number of
parameters

Early 93.10 1 226 904
Middle 92.75 1 230 048

Late 96.34 1 242 480
Early + Middle 92.89 1 231 144
Late + Middle 92.67 1 246 720

Early + Middle + Late 93.10 1 247 816
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However, accuracy does not consistently improve with
more  layers.  In  both  sets,  the  accuracy  is  higher  with
two  convolution  layers,  with  the  dimensionality
reduction  model  performing  best.  Based  on  this
finding,  we  adopt  this  setup  for  subsequent
experiments.
4.3.6　DAS
We explore the accuracy of different data augmentation
strategies  to  evaluate  their  effect.  The  result  is
presented in Table 6. First, we train the model without
data augmentation and test it on data with jittering and
occlusion.  Next,  we  introduce  various  augmentation
types  and  test  them  again  on  data  with  jittering  and
occlusion.  The  results  show  that  accuracy  increases
significantly  with  the  introduction  of  data
augmentation.  This  validates  the  effectiveness  of  data
augmentation  in  ensuring  robust  action  recognition
against noise.

4.4　Performance comparison with TD-GCN

4.4.1　Comparison  of  accuracy  and  parameter
count

We  conduct  an  experiment  using  the  SHREC’17  and
NW-UCLA  datasets  to  compare  the  accuracy  and
parameter  count  of  RE-TCN and  TD-GCN.  For  a  fair
comparison,  we  use  the  same  training  parameter
settings  and  joint  data  modality  for  both  models.  The
result  is  presented  in Table  7.  RT-TCN  outperforms
TD-GCN  across  both  datasets,  with  accuracy
improvements  of  1.54% for  NW-UCLA,  3.54% for
SHREC’17  14  gesture,  and  6.38% for  SHREC’17  28
gesture. In terms of computational efficiency, RE-TCN
reduces  the  parameter  count  by  0.11% for  both
datasets.  These  findings  demonstrate  that  RE-TCN
effectively enhances both computational efficiency and
accuracy.
4.4.2　Performance  comparison  on  cross-subject

evaluation
We  conduct  an  experiment  utilising  the  DHG-14/28
dataset  to  compare  the  generalisability  capability  of
TD-GCN and RE-TCN. We aim to evaluate the ability
of  the  model  to  generalise  across  new  participants
whose data are not used to train the model.  We utilise
the  DHG-14/28  dataset  as  it  allows  effective  cross-
subject  evaluation  through  the  leave-one-subject-out
cross-validation  method  suggested  by  Ref.  [32].  To
ensure a fair comparison, we employ the same training
parameter  settings  and  joint  data  modality  for  both
models. The result is presented in Table 8.

 

Table 5    Impact  of  design  strategy  on  accuracy  and
parameter  count,  where  layer  is  the  convolution  layer,  and
W-red stands for with reduction ration of 8. The best results
are highlighted in bold.

Design strategy Accuracy (%) Number of
parameters

One layer 93.97 1 291 600
Two layers 94.40 1 357 392
Three layers 81.41 1 423 184
Four layers 88.58 1 488 976

Two layers/W-red 96.34 1 242 480
Three layers/W-red 89.44 1 308 272
Four layers/W-red 91.51 1 374 064

 

Table 6    Influence  of  augmentation  types,  where “N” is
noise  (jittering  and  occlusion),  and  R  stands  for  skeleton
rotation. The best results are highlighted in bold.

Augmentation type Jittering (%) Occlusion (%)

RE-TCN 88.36 82.54

RE-TCN+R 92.24 90.73

RE-TCN+R+N 94.18 94.40

 

Table 7    Comparison  of  accuracy  and  parameter  count.
The best results are highlighted in bold.

Method Dataset Number of
parameters (×106)

Accuracy
(%)

TD-GCN NW-UCL 1.35 94.8
RE-TCN (Ours) NW-UCL 1.24 96.34

TD-GCN SHREC’17 14 1.36 96.31
RE-TCN (Ours) SHREC’17 14 1.25 99.85

TD-GCN SHREC’17 28 1.36 93.57
RE-TCN (Ours) SHREC’17 28 1.25 99.95

 

Table 8    Accuracy recognition per subjects for the DHG-14/28 dataset. “−” denotes results not provided by TD-GCN. The best
results are highlighted in bold.

(%)

Dataset type
Subject

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

14 gestures (RE-TCN) 88.57 80.00 97.86 95.00 92.86 87.86 87.14 92.86 91.43 95.00 95.00 92.14 88.57 90.00 95.71 91.14 87.14 91.43 97.86 88.57

14 gestures (TD-GCN) 90.00 − 98.57 93.57 90.00 − − 92.86 91.43 92.86 95.71 90.00 − 88.57 97.14 96.43 86.43 − 97.86 −

28 gestures (RE-TCN) 90.00 72.86 92.14 88.57 90.71 84.29 91.43 86.43 85.71 92.86 92.86 90.71 83.57 84.29 95.00 90.71 84.29 90.71 93.57 83.57
28 gestures TD-GCN) 89.29 − 93.57 88.57 85.00 − − 92.14 83.57 92.86 89.29 92.14 − 88.57 95.71 87.86 86.43 − 94.29 −
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From the result, we observe that performance across
the  subjects  varies,  highlighting  the  differences  that
exist when individuals perform the same action. These
variations  in  how  actions  are  performed  by  different
people  make recognising actions  more challenging for
certain  individuals,  as  evidenced  by  the  varying
accuracy  amongst  subjects.  Nevertheless,  despite  this
challenge,  the  overall  accuracy  of  RE-TCN  across  all
the subjects for both 14 and 28 action types is notably
high.  When  compared  to  TD-GCN,  the  accuracy  is
comparable,  with  RE-TCN  demonstrating  superior
performance  in  some  subjects  while  achieving  equal
accuracy  in  others.  Overall,  the  result  underscores  the
capability  of  RE-TCN  to  generalise  effectively  across
different subjects.

4.5　Comparison with state-of-the-art methods

Here, we compare RE-TCN’s accuracy and robustness
against  noise  and  occlusion  with  state-of-the-art
methods using the SHREC’17, NW-UCLA, and NTU-
RGB+D  60  datasets.  Details  of  the  comparison  are
discussed below.
4.5.1　Accuracy  comparison  with  state-of-the-art

methods
We compare RE-TCN with the state-of-the-art methods
on the SHREC’17 and NW-UCLA datasets, which are
skeleton-based  gesture  and  skeleton-based  action
recognition  datasets.  Some  methods  use  an  ensemble
approach,  fusing  results  from  joint,  bone,  and  motion
modalities,  while  others  use  only joint  data.  For  a  fair
comparison,  we  report  accuracy  using  only  joint  data
modality. The results are presented in Tables 9 and 10.

On both datasets,  our model (RE-TCN) outperforms
existing methods.  In Table  9,  using 14 and 28 gesture
classes,  classification  accuracies  are  99.95% and
99.85%,  respectively.  This  surpasses  the  current  best-

performing  method  in  Ref.  [52]  by  2.85% for  14
gestures  and  that  in  Ref.  [58]  by  5.05% for  28
gestures.  In Table  10,  the  classification  accuracy  is
96.34%,  outperforming  the  current  best-performing
methods[54, 66] by 1.04%. These results demonstrate the
effectiveness of the proposed in enhancing accuracy for
both gestures and action recognition.
4.5.2　Robustness to occlusion
To  evaluate  the  robustness  of  the  proposed  method
against occlusion, we test RE-TCN with occluded data
from various perspectives. Our tests cover both spatial
and  temporal  occlusions,  reflecting  scenarios  likely  to
be  encountered  in  real-world  ambient-assisted  living
environments.  For  a  fair  comparison,  we  compare  the
performance of RE-TCN with state-of-the-art  methods
designed  to  handle  occlusions.  We  design  our
occlusion  experiments  following  the  same  conditions
described in Refs. [25, 57, 67] and compare our results
with  their  methods.  We  use  the  NTU-RGB+D  60  X-
sub dataset and define three types of occlusions: frame,
body part, and random occlusion, as described in Refs.
[25, 57, 67].  The  details  of  these  occlusion  types  and
the comparison results are discussed below.

(1) Frame occlusion
This occlusion type simulates temporal occlusion. As

described  in  Refs.  [25, 67],  we  randomly  occlude
consecutive  sequences  of  frames  from  an  action
sequence.  We  set  the  length  of  the  occluded
consecutive  frames  to  10,  20,  30,  40,  and  50.  The
experimental  result  is  shown in Table 11.  We conduct
two  experiments:  one  with  a  low  probability  and
another  with  a  high  probability  of  frame  occlusion
occurring. The results reveal that methods not designed

 

Table 9    Accuracy  comparison  with  state-of-the-art
methods  using  SHREC’17  dataset.  The  best  results  are
highlighted in bold.

(%)
Method 14 gestures 28 gestures

ST-GCN[40] 92.70 87.70
MS-ISTGCN[58] 96.70 94.90

ST-TS-HGR-Net[59] 94.30 89.40
HPEV[60] 94.90 92.30

DSTA-Net[52] 97.00 93.90
TD-GCN[28] 96.31 93.57

RE-TCN (Ours) 99.85 99.95

 

Table 10    Accuracy  comparison  with  state-of-the-art
methods  using  NW-UCLA  dataset.  The  best  results  are
highlighted in bold.

Method Accuracy (%)
Lie Group[60] 74.20

Actionlet ensemble[61] 76.00
HBRNN-L[62] 78.50

Skeleton Visualisation[63] 86.10
Ensemble TS-LSTM[64] 89.20

AGC-LSTM[43] 93.30
Shift-GCN[25] 94.60

DC-GCN+ADG[66] 95.30
FGCN[54] 95.30

TD-GCN[28] 94.80
RE-TCN (Ours) 96.34
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for  occlusion  robustness  perform  poorly  as  the
occlusion  length  increases.  Even  methods  designed  to
be  robust  against  occlusion,  such  as  Refs.  [25, 67],
show  a  significant  performance  degradation  with
increased  occlusion  length.  In  contrast,  our  method
demonstrates  minimal  performance  degradation  as
occlusion  length  increases.  Moreover,  our  results
outperform  existing  methods  across  all  the  occlusion

lengths,  for  both  low  and  high  probability  scenarios.
The performance gap between our method and those of
Refs. [25, 67] widens as the occlusion length increases,
reaching about 49% and 50.1%, respectively, when the
occlusion length is 50.

(2) Body part occlusion
Body  part  occlusion  aims  to  simulate  scenarios

where  some  body  parts  of  a  person  are  occluded  by
objects  or  self-occlusion,  which  is  common  in  real-
world  unstructured  environments.  As  defined  in  Refs.
[25, 67], we occlude the left arm, right arm, two hands,
two  legs,  and  torso  when  testing  the  model.  The
experiment result is presented in Table 12. The effects
of occluding different body parts vary, with some parts
showing  better  performance  than  others.  Similar  to
frame  occlusion,  methods  not  designed  to  be  robust
against occlusion suffer performance degradation when
body  parts  are  occluded.  For  Refs.  [25, 67],  the
performance  notably  improves  with  body  part
occlusion.  In  comparison,  our  method  outperforms
existing methods across all body parts by a significant
margin, validating the robustness of our method against
occlusion.

(3) Random occlusion
Random  occlusion  simulates  how  skeleton  data

might  be  obscured  in  real-world  environments.
Following  the  approach  in  Ref.  [67],  we  set  the
occlusion  probabilities  to  0.2,  0.3,  0.4,  0.5,  and  0.6
with  the  result  shown  in Table  13.  We  also  compare
our  results  with  the  approach  in  Ref.  [57],  using  their

 

Table 11    Experiment  results  (accuracy)  with  frame
occlusion  on  NTU-RGB+D  60  X-sub  benchmark.  The  best
results are highlighted in bold.

(%)

Method
Number of occluded frames

0 10 20 30 40 50
ST-GCN[40] 80.7 69.3 57.0 44.5 34.5 24.0
SR-TSL[68] 84.8 70.9 62.6 48.8 41.3 28.8
STIGCN[69] 88.8 70.4 51.0 38.7 23.8 8.0
MS-G3D[70] 87.3 77.6 65.7 54.3 41.9 30.1

CTR-GCN[50] 87.5 72.4 54.1 35.6 22.4 11.5
TCA-GCN[71] 90.2 84.4 74.6 58.1 42.3 25.6
HD-GCN[72] 86.8 57.0 29.5 18.5 11.2 7.04
2s-AGCN[41] 88.5 74.8 60.8 49.7 38.2 28.0

1s RA-GCN[67] 85.8 81.6 72.9 61.6 47.9 34.0
2s RA-GCN[67] 86.7 83.0 76.4 65.6 53.1 39.5
3s RA-GCN[67] 87.3 83.9 76.4 66.3 53.2 38.5
1s PDGCN[25] 85.7 81.9 75.4 66.4 54.9 40.0
2s PDGCN[25] 87.4 83.8 76.7 66.8 55.1 40.6
3s PDGCN[25] 87.5 83.9 76.6 66.7 53.9 40.0

RE-TCN (P = 0.50) (ours) 89.33 87.68 86.75 84.18 85.13 81.24
RE-TCN (P = 0.01) (ours) 89.85 89.77 89.75 89.68 89.67 89.60

 

Table 12    Experiment results (accuracy) with body part occlusion on NTU-RGB+D 60 X-sub benchmark. The best results are
highlighted in bold.

(%)

Method Occlusion body parts
None Left arm Right arm Two hands Two legs Trunk

ST-GCN[40] 80.7 71.4 60.5 62.6 77.4 50.2
SR-TSL[68] 84.8 70.6 54.3 48.6 74.3 56.2
STIGCN[69] 88.8 12.7 11.5 18.3 45.5 20.9
MS-G3D[70] 87.3 31.3 23.8 17.1 78.3 61.6

CTR-GCN[50] 87.5 13.0 12.5 12.7 21.0 36.3
TCA-GCN[71] 90.2 75.4 53.4 70.8 75.2 78.6
HD-GCN[72] 86.7 67.1 55.7 56.7 74.8 61.3
2s-AGCN[41] 88.5 72.4 55.8 82.1 74.1 71.9

1s RA-GCN[67] 85.8 69.9 54.0 66.8 82.4 64.9
2s RA-GCN[67] 86.7 75.9 62.1 69.2 83.3 72.8
3s RA-GCN[67] 87.3 74.5 59.4 74.2 83.2 72.3
1s PDGCN[25] 85.7 73.4 60.4 65.9 83.0 71.2
2s PDGCN[25] 87.4 76.4 62.0 74.4 84.8 70.4
3s PDGCN[25] 87.5 76.0 62.0 75.4 85.0 74.3

RE-TCN (ours) 89.78 89.11 88.60 88.26 89.46 89.29
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occlusion probabilities of 0.08, 0.10, 0.12, and 0.15, as
presented in Table 14.

Table  13 reveals  a  significant  performance  drop  as
occlusion  probabilities  increase  for  those  methods  not
designed  to  handle  occlusion.  While  Ref.  [67]  shows
improved  robustness,  the  method  still  suffers
noticeable  degradation  at  higher  occlusion  levels.  Our
method,  however,  experiences  only  a  minimal
performance  loss  as  the  probability  increases,  and
outperforms  existing  methods  across  all  occlusion
probabilities.

Table 14 shows results  for  a  denoising method used
as  a  preprocessing  module  with  state-of-the-art
approaches.  While  this  method  maintains  stable
performance across various occlusion probabilities, our
approach consistently outperforms it at all levels.

The  superior  performance  of  our  method  as
demonstrated in both Tables 13 and 14, underscores its
robustness against occlusion.

4.5.3　Robustness to noise
This  is  designed  to  simulate  the  effect  of  noise  in
skeleton  data,  a  common  challenge  in  real-world
environments.  Following  the  approach  described  in
Ref.  [67],  we  design  two  experiments  with  different
Gaussian noises as shown in Tables 15 and 16. We set
the probability for every joint to 0.02, 0.04, 0.06, 0.08,
and  0.10.  Additionally,  we  adopt  the  approach  from
Ref.  [57]  and  set  the  jittering  probability  to  0.05,  0.1,
0.2 and 0.3, as shown in Table 17.

σ

In Tables  15 and 16,  we  observe  a  significant
performance  degradation  as  the  jittering  probability
increases,  even with  the  method in  Ref.  [67]  designed
to  handle  jittering  in  skeleton  data.  By  contrast,  our
method demonstrates consistent performance across all
the different  probability  levels,  outperforming existing
methods.  Notably,  for  both  tested  values  of ,  the
performance  gap  between  our  method  and  the  one  in
Ref.  [67]  widens  significantly  as  the  jittering
probability  increases  with  a  margin  of  52.96% and

 

Table 13    Experiment  results  (accuracy)  with  random
occlusion  on  NTU-RGB+D  60  X-sub  benchmark.  The  best
results are highlighted in bold.

(%)

Method
Occlusion probability

0 0.2 0.3 0.4 0.5 0.6

ST-GCN[40] 80.7 12.4 6.6 6.2 4.0 4.2

SR-TSL[68] 84.8 43.0 25.2 12.1 6.0 3.7

2s-AGCN[41] 88.5 38.5 22.8 13.4 8.5 6.1

RA-GCN[56] 85.9 84.1 81.7 77.2 70.0 57.4

1s RA-GCN[67] 80.0 75.1 68.4 57.4 44.7 27.6

2s RA-GCN[67] 82.5 79.7 76.2 71.0 62.0 48.7

3s RA-GCN[67] 82.7 79.8 75.6 68.9 58.1 43.7
RE-TCN (ours) 88.7 88.6 88.4 88.4 88.6 88.2

 

Table 14    Experiment  results  (accuracy)  with  random
occlusion  on  NTU-RGB+D  60  X-sub  benchmark:  The
symbol “w” denotes  the  use  of  DAE  denoising  method[57].
The best results are highlighted in bold.

(%)

Method
Occlusion probability

0 0.08 0.10 0.12 0.15
EfficientGCN[55] w[57] 87.74 87.66 87.66 87.57 87.51
ST-GCN++[73] w[57] 87.80 87.47 87.37 87.38 87.23
CTR-GCN[50] w[57] 89.20 89.19 89.19 89.12 88.12
AAGCN[74] w[57] 88.71 88.42 88.42 88.37 88.42
MS-G3D[70] w[57] 88.75 88.71 88.68 88.67 88.57
RE-GCN (ours) 89.78 89.35 89.29 89.20 88.92

 

(µ= 0 and σ= 0.1)
Table 15    Experiment  results  (accuracy)  with  jittering
skeletons  on  NTU-RGB+D  60  X-sub
benchmark. The best results are highlighted in bold.

(%)

Method
Jittering probability

0 0.02 0.04 0.06 0.08 0.10
ST-GCN[40] 80.7 66.4 44.1 32.7 13.3 7.0
SR-TSL[68] 84.8 70.4 53.2 41.0 33.9 21.4

2s-AGCN[41] 88.5 74.9 60.9 41.9 29.4 20.6
RA-GCN[56] 85.9 73.2 59.8 45.3 41.6 34.5

1s RA-GCN[67] 85.8 84.1 66.1 34.2 22.2 13.9
2s RA-GCN[67] 86.7 70.0 55.3 48.2 41.5 36.4
3s RA-GCN[67] 87.3 84.2 72.4 61.6 42.4 28.7
RE-TCN (ours) 89.58 89.47 89.49 89.45 89.22 89.36

 

(µ= 0 and σ= 0.05)
Table 16    Experiment  results  (accuracy)  with  jittering
skeletons  on  NTU-RGB+D  60  X-sub
benchmark. The best results are highlighted in bold.

(%)

Method
Jittering probability

0 0.02 0.04 0.06 0.08 0.10
ST-GCN[40] 80.7 76.4 65.1 50.2 32.8 19.5
SR-TSL[68] 84.8 69.4 55.3 50.1 46.6 39.2

2s-AGCN[41] 88.5 78.9 79.8 76.8 72.6 60.7
RA-GCN[56] 85.9 83.8 81.3 75.3 69.2 61.4

1s RA-GCN[67] 85.8 82.4 77.1 72.3 63.8 49.9
2s RA-GCN[67] 86.7 83.8 77.3 71.6 61.6 58.5
3s RA-GCN[67] 87.3 87.0 84.5 81.1 72.9 61.4
RE-TCN (ours) 89.12 89.04 89.01 88.99 88.90 88.97
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σ = 0.1 σ = 0.0527.57% for  and ,  respectively,  at  a
probability of 0.1.

In Table 17, while the performance of the method in
Ref.  [57]  demonstrates  a  stable  performance  across
probability  levels,  our  approach  outperforms  it  across
all the probability levels.

Overall,  the  results  in Tables  15−17 highlight  the
robustness of our approach in mitigating the effects of
jittering.

5　Per-Class Classification Performance

We  evaluate  the  classification  performance  for  each
class  using  NTU  RGB+D  60,  Northwestern-UCLA,
SHREC’17,  and  DHG-14/28  datasets.  For  this
evaluation,  we  compute  the  confusion  matrix,  as
presented  in Fig.  4 and  classification  report,  which  is
provided  in  the  Electronic  Supplementary  Material
(ESM) of the online version of this article. As shown in
the confusion matrix, the model achieves high accuracy
across all classes, with the exception of the DHG-14/28
dataset, where the model occasionally misclassifies the
grab  class  as  the  pinch  class.  This  confusion  is
reasonable  given  the  high  similarity  between  the  two
classes.  Apart  from  this,  the  model  consistently
demonstrates  high  accuracy  across  all  classes  in  the
other  datasets.  This  class-wise  classification
performance  highlights  the  model’s  robustness  and  its
ability to effectively handle diverse range of classes.

6　Real-Time Application for Human Action
Recognition

We  develop  a  human  action  recognition  system  using
RE-TCN to demonstrate its practical use in real-world,
unstructured  environments.  The  system  is  tested  in  a
challenging  environmental  condition  where  objects

partially  block  the  camera’s  view,  resulting  in  noisy
data  and  occlusions.  Using  Mediapipe  Pose[75],  the
system  processes  RGB  image  sequences  to  estimate
human poses, which then feeds into the model for real-
time  action  recognition.  We  test  the  system  on  a
standard  PC  with  an  Intel  Core  i5  processor  running
Ubuntu  20.04  LTS,  without  a  dedicated  GPU.  As
shown  in Fig.  5,  the  system  successfully  identifies
actions  in  real  time.  The  fast  inference  speed
demonstrates  that  the  model  can  perform  effectively
even  on  devices  with  limited  resources.  The  model’s
reliable  performance  despite  noise  and  occlusion
demonstrates  its  suitability  for  practical  applications.
These  results  indicate  strong  potential  for  real-world
deployment for ambient assisted living applications.

7　Conclusion and Future Study

In this paper, we present RE-TCN, a model designed to
address  the  challenges  of  noisy  data,  occlusion  and
computational  cost  in  real-world  ambient  assisted
living  environments.  The  proposed  RE-TCN  model
incorporates  three  key  components:  ATW,  DSC,  and
data  augmentation  techniques.  Through  extensive
experiments on the NTU-RGB+D 60, NW-UCLA, and
SHREC’17  datasets,  we  demonstrate  the  effectiveness
and  robustness  of  the  model.  To  evaluate  the
robustness  of  RE-TCN  in  the  presence  of  noise  and
occlusions,  we  conduct  tests  simulating  various  real-
world  conditions.  Across  all  test  configurations,  RE-
TCN  consistently  achieves  state-of-the-art
performance. Additionally, the model exhibits superior
accuracy  and  computational  efficiency  compared  to
existing  approaches,  indicating  its  potential  for
facilitating  accurate  action  recognition  in  real-world
ambient assisted living environments.

Although  the  model  achieves  state-of-the-art
performance  on  different  testing  configurations,  there
remain  certain  limitations  that,  if  addressed,  could
further strengthen the model’s applicability in practice.
First,  while  RE-TCN  demonstrates  generalisability
comparable to the current methods, there is a scope to
optimise  the  architecture  to  improve  its  ability  to
handle  data  from  individuals  not  represented  during
training. Secondly, although the datasets employed are
comprehensive,  using  a  dataset  specifically  collected
from  care  homes  or  similar  settings  would  more
directly  ensure  that  the  model  is  applicable  to  its
intended  context.  Thirdly,  although  the  experiments
accounted  for  various  challenges  likely  to  be

 

Table 17    Experiment  results  (accuracy)  with  random
jittering on NTU-RGB+D 60 X-sub benchmark: The symble
“w” denotes  the  use  of  DAE denoising  method[57].  The  best
results are highlighted in bold.

(%)

Method
Jittering probability

0 0.05 0.10 0.20 0.30
EfficientGCN[55] w[57] 87.62 87.57 87.59 87.60 87.58
ST-GCN++[73] w[57] 87.89 87.80 87.75 87.58 87.31
CTR-GCN[50] w[57] 89.07 89.11 89.03 89.09 88.76
AAGCN[74] w[57] 88.57 88.59 88.65 88.65 88.45
MS-G3D[70] w[57] 88.60 88.64 88.62 88.61 88.34
RE-GCN (ours) 89.58 89.56 89.36 88.97 88.41
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Fig. 4    Confusion  matrices  showing  classification  performance  for  each  class  in  the  NTU RGB+D 60,  Northwestern-UCLA,
SHREC’17, and DHG-14/28 datasets.

    928 Big Data Mining and Analytics, August 2025, 8(4): 914−932

 



encountered in real-world conditions, the model has yet
to  be  deployed  in  a  living  setting.  Field  evaluations,
such as monitoring daily activities in care homes or the
residences  of  elderly  individuals,  could  yield
invaluable insights into its practical utility.

Addressing  these  limitations  will  not  only  enhance
RE-TCN  adaptability  and  scalability,  but  also  further
emphasise  its  relevance  across  a  range  of  real-world
environments.

Electronic Supplementary Material

Supplementary materials of the classification performance
for  each  class  using  NTU  RGB+D  60,  Northwestern-
UCLA,  SHREC’17,  and  DHG-14/28  datasets  are
available  in  the  online  version  of  this  article  at
http://doi.org/10.26599/BDWA.2015.9020003.
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Fig. 5    Real  time  action  recognition:  (a)  action  recognition  without  occlusions  and  (b)  action  recognition  with  occlusions.
Predicted action: The action is recognised by the model. Inference time: The time taken for the model to generate a prediction.
Inference + processing time: The total processing time that spans from frame capture, pose extraction, and model prediction.
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