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 A B S T R A C T

We study numerically the nonintegrable dynamics of coherent, solitonic, nonlinear waves, in a spatially 
nonlocal nonlinear Schrödinger equation relevant to realistic modelling of optical systems: the Schrödinger–
Helmholtz equation. We observe a single oscillating, coherent solitary wave emerging from a variety of initial 
conditions. Using the direct scattering transform of the (integrable) cubic nonlinear Schrödinger equation, we 
find that this structure is a bound state, comprising of a primary and secondary soliton whose amplitudes 
oscillate in phase opposition. We interpret this as the solitons periodically exchanging mass. We also observe 
bound states comprising of three oscillating solitons, hinting at the existence of a family of multi-soliton bound 
states. Focusing on the two-soliton bound state, we observe it self-organising from an initial state of incoherent 
turbulence, and from solitonic structures launched into the system. When a single (primary) solitonic structure 
is launched, a resonance process between it and waves in the system generates the secondary soliton, resulting 
in the bound state. Further, when two solitons are initially launched, we show that they can merge if their 
phases are synchronised when they collide. When the system is launched from a turbulent state comprised 
of many initial solitons, we propose that the bound state formation is preceded by a sequence of binary 
collisions, in which the mass is transferred on average from the weak soliton to the strong one, with occasional 
soliton mergers. Both processes lead to increasingly stronger and fewer dominant solitons. The final state – a 
solitary bound state surrounded by weakly nonlinear waves – is robust and ubiquitous. We propose that for 
nonlocal media, a bound state comprising of at least two solitons is a more typical statistical attractor than 
the single-soliton attractor suggested in previous literature.
 

1. Introduction

A broad class of optical systems, in which quasi-monochromatic 
light propagates through nonlinear media, exhibit solitons: coherent, 
solitary, strongly nonlinear waves, which balance wave dispersion 
with nonlinear self-focusing, and thereby translate through the system 
with no overall change of shape. Such systems can be modelled, to 
the first approximation, by the one-dimensional, focusing, nonlinear 
Schrödinger equation (NLSE), 

𝑖 𝜕𝑢
𝜕𝑡

+ 1
2
𝜕2𝑢
𝜕𝑥2

+ 𝑢|𝑢|2 = 0. (1)

Here 𝑢(𝑥, 𝑡) ∈ C is the envelope of the electric field of the light inside 
the medium. In the case of light passing through an optical sample, 
the timelike variable 𝑡 represents the distance along the beam axis, and 
𝑥 is the transverse spatial coordinate (here we consider systems with 
one spatial dimension). In optical fibres, 𝑡 represents the longitudinal 
distance and 𝑥 is the physical time. The nonlinear term in Eq. (1) arises 
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from the Kerr effect: the spatially local refractive index change due to 
the intensity |𝑢|2 of the input beam [1,2].

The single-soliton solution of the NLSE in infinite space is 

𝑢(𝑥, 𝑡) = 𝐴 sech [𝐴(𝑥 − 𝑠 − 𝑣𝑡)] 𝑒𝑖𝑣(𝑥−𝑠)𝑒𝑖(𝐴
2−𝑣2)𝑡∕2𝑒𝑖𝜙, (2)

where 𝐴 is the soliton amplitude, 𝑣 its velocity, and 𝑠, 𝜙 its initial 
position and phase. The NLSE is integrable, a consequence of which 
is that solitons collide elastically: when they collide they preserve their 
shape, speed and amplitude, undergoing only a change of phase [3].

However, in real physical systems, perfect integrability is broken 
due to subleading physical effects that introduce new nonlinear terms 
to the NLSE. This deviation from integrability leads to a richer variety 
of soliton dynamics. Solitons may become inelastic, i.e. they can be-
come strongly modified or even merge upon collision, and may interact 
strongly with the background field of weakly nonlinear waves. This 
is particularly relevant in the context of nonintegrable optical wave 
turbulence, studied in experimentally and theoretically in Refs. [4,5].
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There, it was observed that an initially turbulent state, consisting of
multiple solitons propagating on a background of weakly nonlinear 
waves, evolves via a sequence of inelastic soliton collisions towards 
a state in which one single dominant coherent wave survives, having
absorbed all the others. The final state is one dominant, solitonic 
structure, surrounded by small amplitude, weakly nonlinear waves.

The tendency for solitonic structures to coalesce into a single dom-
inant structure coexisting with weakly nonlinear waves in noninte-
grable nonlinear Schrödinger systems was first described by Zakharov 
et al. [6]. They termed this scenario ‘‘soliton turbulence’’, although 
it must be emphasised that in the strictest sense, solitons cannot be 
defined for nonintegrable systems, see Section 1.1 below. Additionally, 
they suggested that the single dominant coherent structure surrounded
by small-scale waves is a ‘‘statistical attractor’’, in the sense of a 
universal end state that arbitrary initial conditions evolve towards. 
Using statistical-mechanics arguments, it was determined in [7,8] that
the final large soliton is a minimiser of the energy in a microcanonical 
ensemble, with the small-scale waves in the final state acting as a 
reservoir of excess energy that is present in the initial condition.

In this paper we characterise the statistical attracting state, and 
xamine the processes that lead to it, in a spatially nonlocal variant of 
he NLSE, revisiting the scenario of optical wave turbulence described 
n Ref. [5]. The model we focus on incorporates deviations from the 
LSE where the change of refractive index responds nonlocally to the 
nput beam. For example, in thermo-optic crystals heating by the beam 
preads through the crystal by diffusion [9–11], or in elasto-optic media 
uch as liquid crystals, the input beam reorients the liquid crystal 
olecules, and the reorientation spreads by long-range elastic forces [4,
2,13]. Such systems can be modelled by the Schrödinger–Helmholtz 
quation (SHE), 

𝑖 𝜕𝑢
𝜕𝑡

+ 1
2
𝜕2𝑢
𝜕𝑥2

+ 𝑉 𝑢 = 0, (3a)
(

1 − 𝛽 𝜕2

𝜕𝑥2

)

𝑉 = |𝑢|2. (3b)

his system is so called because the of change refractive index
𝑉
(

|𝑢(𝑥, 𝑡)|2
) solves the Helmholtz equation (3b), which incorporates

both spatially local and nonlocal effects, the latter controlled by the 
nonlocality parameter 𝛽. Evidently, this parameter also controls the 
nonintegrability as sending 𝛽 → 0 in the SHE recovers the NLSE. The 
nonintegrability of the SHE was demonstrated in [5], as it supports 
resonant nonlinear six-wave interactions.

Examining the dynamics of the SHE, we show that the dominant 
final coherent structure is in fact comprised of a bound state of multiple
spatiotemporally coincident solitons that periodically exchange mass, 
defined in Eq. (5), leading to a pulsating peak (see Section 1.1 regarding
the usage of ‘‘soliton’’ in this context). We focus on the two-soliton
bound state, and show that it self-assembles from a variety of initial 
conditions launched into the SHE: soliton turbulence (as envisaged by 
Ref. [6]), a single quasi-coherent solitonic structure, and two solitons 
launched on colliding trajectories. This gives us good grounds to believe
that the statistical attractor that is preferred by the SHE is a multi-
soliton bound state, whose two-soliton exemplar we study in detail in 
this paper.

1.1. Definition of solitons—the direct scattering transform

At this stage it is necessary to comment on the language used to
describe coherent solitary nonlinear wave solutions of PDEs, and in par-
ticular solitons. The strictest definition stipulates that solitons are solu-
tions of integrable systems alone. Other definitions categorise solutions 
of nonintegrable systems that balance nonlinearity against dispersion 
as solitons [14]. For example the SHE has such a solution [15,16]:

𝑢(𝑥, 𝑡) = 3
√

sech2
[

1
√

(𝑥 − 𝑠 − 𝑣𝑡)

]

8𝛽 4𝛽

2 
× exp [𝑖𝑣(𝑥 − 𝑠)] exp
[

𝑖
(

1∕𝛽 − 𝑣2

2

)

𝑡
]

exp(𝑖𝜙). (4)

Note that the amplitude, and hence the mass (see Eq. (5)), of this 
solution is set by the nonlocality parameter 𝛽, whereas in the NLSE
soliton (2) the amplitude is arbitrary.1 As we discuss later, the fixed 
mass of the SHE’s solitonic solution means that it cannot accommodate 
the mass of an arbitrary initial condition. This implies that the eventual
statistical attractor cannot be simply a single structure given by Eq. (4).

When they are the only object in the field, the solitonic solutions (4)
of the SHE propagate without change of shape, but when they collide 
they can become distorted, exchange mass, and even merge; we study
this in Section 5. Some authors refer to solutions such as (4) loosely as 
solitons; yet others term these quasi-solitons, see e.g. [17].

In this work, we take the definition of solitons from a pivotal 
method from integrable systems: the Direct Scattering Transform (DST)
[18–20], a.k.a. the nonlinear Fourier transform [21,22]. This method
involves casting a system obeying an integrable equation of motion, 
in this case the NLSE (1), as an associated linear scattering problem, 
in which the solution of the equation of motion plays the role of an 
interaction potential. The solitons present in the system are in one-to-
one correspondence with the set of discrete DST eigenvalues obtained 
from the linear scattering problem. Moreover, the DST eigenvalues are 
constant in time. In this sense, one can define a soliton as the physical-
space counterpart of a DST eigenvalue. This is especially useful when 
a field contains many overlapping and interacting solitons, making it
hard to associate a soliton with any particular spatiotemporal fluctua-
tion of the field. Such a situation is often referred to as a soliton gas or 
integrable turbulence [23,24].

One of the main motivations of this paper is to investigate whether 
the DST can be used to characterise a system that is nonintegrable, in 
our case the SHE (3), but is nevertheless related to an integrable system.
We will show that the DST is indeed very useful for the SHE, as it allows 
one to identify the phenomenology of turbulent processes in the system, 
and their evolution towards a final statistical attractor. In keeping with 
this approach of borrowing the DST from integrable systems, we also 
borrow the terminology, and speak of solitons as the DST eigenvalues 
and their physical-space manifestations. We allow ourselves to slip 
into the looser convention of referring to Eq. (4) as the SHE soliton. 
Otherwise, we will use phrases such as ‘‘coherent structures’’ or ‘‘soli-
tonic waves’’ to describe nonlinear waves that are spatiotemporally 
coherent, but whose profile changes as they move through the system.
In Section 5 we describe numerical experiments in which we collide two
SHE solitons together. The remnants of these collisions are often two
coherent structures that are perturbed versions of the input solitons. For
convenience, we will continue to refer to these as solitons, until such
time as they merge and form the dominant coherent structure that is 
the end-state of practically all initial conditions we study in this paper:
the two-soliton bound state.

Finally, we will follow the convention of Ref. [6] and continue to 
refer to chaotic states of a nonintegrable system where there are many
strongly nonlinear coherent structures interacting as soliton turbulence. 
As we will see, such states are indeed characterised by many DST eigen-
values with significant imaginary parts—solitons as we have chosen to
define them via the DST.

1  Thus, although sending 𝛽 → 0 in the SHE recovers the NLSE, the solitonic 
olutions (2) and (4) are topologically distinct, in the sense that one cannot
continuously transform into the other by a continuous change in parameters. It
is natural that solutions to the SHE are more restricted than those of the NLSE,
due to the introduction of the lengthscale 1∕√𝛽, which reduces the number of
free parameters.
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2. Numerical methods

2.1. Direct numerical simulation

In our numerical experiments we solve the SHE, focusing mainly on 
the case with 𝛽 = 10−2. We find that this strikes a balance that deviates
enough from integrability to access the regime of interest without 
entirely breaking the correspondence with the NLSE. In Appendix  A 
we give some details of the dynamics with even smaller 𝛽, for which 
the system is closer to integrability.

We solve the SHE in a periodic box of length 𝐿 = 2𝜋, which gives 
a wavenumber resolution of 𝛥𝑘 = 2𝜋∕𝐿 = 1, using a spatial Fourier
pseudo-spectral method consisting of 𝑁𝑥 = 2048 Fourier modes [25,26].
We apply full dealiasing using the 3∕2-rule. To ensure conservation 
of momentum, we apply dealiasing every time we multiply two fields 
together in physical space [27] (i.e. dealiasing happens twice per 
timestep as the nonlinearity in Eqs. (3) is cubic). Time integration 
is implemented using the fourth-order exponential time-differencing 
Runge–Kutta method [28], with a timestep 𝛥𝑡 chosen small enough
that the group velocity 𝑣𝑔 = 𝜕𝜔∕𝜕𝑘 of the fastest mode is sufficiently 
resolved, i.e. 𝛥𝑡 < 𝛥𝑥∕max𝑘(𝑣𝑔) = 2𝐿∕𝑁2

𝑥 . In all simulations, we 
closely monitor the waveaction spectrum 𝑛𝑘 ∶= |�̂�𝑘|

2 + |�̂�−𝑘|
2, where 

�̂�𝑘(𝑡) = (1∕𝐿) ∫ 𝐿
0 𝑢(𝑥, 𝑡) exp(−𝑖𝑘𝑥) 𝑑𝑥, and we see no indication of finite-

size effects, in the form of spectral bottleneck, appearing at high 𝑘. 
Consequently, we do not add any artificial dissipation to the SHE in
the form of hyperviscosity.

To check the convergence of our numerical scheme, we monitor
the conservation of the two dynamical invariants of the SHE. The first
invariant is the total waveaction 

= ∫ |𝑢|2 𝑑𝑥, (5)

a.k.a. intensity, or hereafter the ‘‘mass’’. The second invariant is the
Hamiltonian 𝐻 , 

𝐻 = 𝐻2 +𝐻4 =
1
2 ∫

|

|

|

|

𝜕𝑢
𝜕𝑥

|

|

|

|

2
𝑑𝑥 − 1

2 ∫

[

(

1 − 𝛽 𝜕2

𝜕𝑥2

)−1∕2
|𝑢|2

]2

𝑑𝑥, (6)

where the quadratic energy 𝐻2 is associated with dispersive linear
waves, and the quartic energy 𝐻4, often called the interaction energy, 
is associated with strongly nonlinear structures.

We find throughout our simulations that the dynamical invariants 
𝑁 and 𝐻 are conserved to within 10−5% and 5 × 10−5% respectively.

2.2. Diagnostics

To help characterise the evolution of the SHE, we utilise two key 
diagnostics, namely (i) the DST and (ii) the (𝑘, 𝜔) spectrum, which en-
able us to extract information about solitonic structures. Additionally,
we make direct observations of the field, either representing the entire
spacetime evolution of |𝑢(𝑥, 𝑡)| as a colour plot, or plotting snapshots at
fixed times.

2.2.1. Direct scattering transform
As mentioned in Section 1, the DST was developed for the integrable 

NLSE, and consists of recasting the equation as a linear eigenvalue
problem, the Zakharov–Shabat problem [18,19]. In this problem, the 
solution 𝑢(𝑥, 𝑡) of the NLSE at fixed 𝑡, appears as a parameter. Interpret-
ing the Zakharov–Shabat system as a scattering problem, 𝑢(𝑥, 𝑡) plays 
the role of a scattering potential. The solution of the Zakharov–Shabat 
problem yields a discrete spectrum of complex eigenvalues {𝜁𝑗}. Speci-
fying that the corresponding eigenfunctions behave like plane waves at 
infinity, and imposing their linear independence, generates associated 
so-called scattering coefficients, whose ratios define a discrete set of 
norming constants {𝑟(𝜁𝑗 )}, and also a reflection coefficient 𝜌(𝜉) defined
along the real line 𝜉 ∈ R [21,29]. The index 𝑗 = 1,… , 𝑚 labels each 
soliton, with each pair (𝜁 , 𝑟(𝜁 )) containing all the information about
𝑗 𝑗  

3 
Fig. 1. Schematic illustration of the DST and (𝑘, 𝜔) diagnostics, as applied to an NLSE
system. (a) DST output with eigenvalues plotted in the upper half complex plane C+.
Each eigenvalue (red dots) 𝜁𝑗 represents a single soliton with an amplitude 𝐴 equal to
2Im(𝜁𝑗 ) and velocity 𝑣 equal to −2Re(𝜁𝑗 ). The grey region illustrates our threshold area
denoting spurious eigenvalues produced by the numerical Fourier collocation algorithm.
(b) (𝑘, 𝜔) spectrum, |�̂�(𝑘, 𝜔)|2, with the complex field’s wave component (blue area)
located around the wave dispersion relation (dashed white curve). Solitons manifest
as linear traces orientated with a slope equal to their velocity and centred around the
point (𝑣,−(𝐴2 − 𝑣2)∕2).

the 𝑗th soliton in the field 𝑢(𝑥, 𝑡). The reflection coefficient is associated 
with the non-soliton content of the system, i.e., incoherent, dispersive 
waves.

For integrable systems, the discrete eigenvalues remain constant,
both in their number (the number of solitons 𝑚 is conserved throughout
the evolution), and in their values 𝜁𝑗 (a condition known as isospec-
trality). In the NLSE the eigenvalues satisfy 𝜁 Im𝑗 ∶= Im(𝜁𝑗 ) = 𝐴𝑗∕2 and 
𝜁Re𝑗 ∶= Re(𝜁𝑗 ) = −𝑣𝑗∕2, where 𝐴𝑗 , 𝑣𝑗 are the amplitude and velocity 
of the 𝑗th soliton respectively, see Eq. (2), and we have introduced
the notation of the real and imaginary parts as 𝜁𝑗 = 𝜁Re𝑗 + 𝑖𝜁 Im𝑗 . 
Isospectrality reflects the fact that soliton collisions in the NLSE are
elastic. The norming constants change in time and encode the positions
and phase offsets of the solitons. Likewise, the reflection coefficient 
changes, echoing the evolution of the wave component.

In this work, we apply the DST to our system of interest, the SHE. 
Tuning the nonlocality parameter 𝛽 away from zero breaks integra-
bility, destroying the precise (in principle, via the Inverse Scattering 
Transform, invertible) relationship between the solutions of the equa-
tion and the DST data. Nevertheless, the DST is still a valid transfor-
mation which we can apply to the numerical solutions of the SHE, and 
can be used as a diagnostic tool to characterise the solutions. The DST
is often referred to as the nonlinear Fourier transform [21,22].

In particular, we wish to examine coherent quasi-solitonic waves 
in the SHE. These are large-scale spatial structures, whose support in 
Fourier space is largest at low 𝑘. The Fourier transform of Eq. (3b), 

𝑉𝑘 = (1 + 𝛽𝑘2)−1
(

|̂𝑢|2
)

𝑘
, (7)

shows that the SHE-to-NLSE correspondence is best at low 𝑘, and so we 
expect that the DST will still yield useful information about the solitonic
content of the system.

As our system is spatially periodic, we employ a Fourier collocation 
method to calculate the DST eigenvalues [30]. This method yields only
the discrete spectrum {𝜁𝑗}, which in the NLSE encodes the amplitudes 
and velocities of solitons, and does not generate information about
the norming constants {𝑟(𝜁𝑗 )}, nor the reflection coefficient 𝜌(𝜉). The 
Fourier collocation method generates a fixed number, 2𝑁𝑥, of eigenval-
ues, where 𝑁𝑥 is the number of collocation points used. Consequently, 
the legitimate discrete spectrum is padded with additional spurious
eigenvalues with small imaginary parts, due to a shift of the reflection
coefficient into the upper half-plane [31]. As these additional eigenval-
ues do not correspond to physical solitons, we define a threshold 𝜁 Imth
for the imaginary part of 𝜁𝑗 . Eigenvalues with 𝜁 Im𝑗 > 𝜁 Imth  correspond 
to realisable solitons, with characteristic widths ∼ 1∕𝜁 Im𝑗  significantly 
smaller than the width of the periodic box 𝐿. Conversely, eigenvalues 
with 𝜁 Im ≪ 𝜁 Im must be interpreted with caution, as the corresponding 
𝑗 th
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solitons are not physically realisable within the box. Subsequently, we 
set this threshold such that an NLSE soliton (2) whose eigenvalue has
𝜁 Im = 𝜁 Imth , has a full-width half-maximum equal to 𝐿∕4. We order the 
eigenvalue indices 𝑗 = 1,… , 2𝑁𝑥 by the size of their imaginary parts, 
i.e. 𝜁 Im1 ≥ 𝜁 Im2 ≥ ⋯; as discussed above, this corresponds to ordering the
solitons by their amplitudes.

A schematic representation of the DST output on a 5-soliton system
can be seen in Fig.  1(a). Here, eigenvalues are represented as red dots,
with a position in the upper half complex plane that determines their 
velocity and amplitude. Spurious eigenvalues are shown as those inside 
the threshold region depicted in grey (see also Appendix  B).

2.2.2. (𝑘, 𝜔) spectrum
The spatiotemporal, or (𝑘, 𝜔), spectrum is obtained by taking the

double Fourier transform of the field 𝑢(𝑥, 𝑡) with respect to both 𝑥 and
𝑡, to produce

�̂�(𝑘, 𝜔) = (1∕𝐿𝑇 )∫

𝑡+𝑇 ∕2

𝑡−𝑇 ∕2 ∫

𝐿

0
𝑢(𝑥, 𝑡′)𝑒(𝑖𝜔𝑡

′−𝑖𝑘𝑥) 𝑑𝑥 𝑑𝑡′.

The Fourier transform in time is taken over a time window 𝑇  long 
enough to resolve the smallest frequencies of interest. Data is acquired
at a fast enough rate that any temporal artifacts, such as Gibbs ringing 
due to non-periodicity, manifest at frequencies higher than those of the 
physical features that we wish to resolve, described below.) Plotting 
|�̂�(𝑘, 𝜔)|2 as a function of 𝑘 and 𝜔 shows the power in the Fourier 
coefficient of the spatiotemporal basis function exp(𝑖𝑘𝑥 − 𝑖𝜔𝑡) [32,33].

One can then identify features corresponding to the different dy-
namical entities, see Fig.  1(b) for a schematic representation. Indeed,
the (𝑘, 𝜔) spectrum allows for a full decomposition of the field into 
wave and solitonic components. Weak waves are characterised by (𝑘, 𝜔)
distributions concentrated close to the linear wave frequency dispersion 
relation 𝜔(𝑘) = 𝑘2∕2. Nonlinear effects lead to a broadening of the 
dispersion relation (indicated by the width of the blue parabola), and 
a vertical shift due to self-interaction (white dashed line).

An NLSE soliton appears in the (𝑘, 𝜔) spectrum as a linear trace 
centred at position (𝑘, 𝜔) = (

𝑣,−(𝐴2 − 𝑣2)∕2
)

. This can be seen directly 
from the exponential factors in Eq. (2) where the factors involving 𝑣
originate from Galilean invariance, and the term involving 𝐴2∕2 is the 
effective chemical potential of the soliton solution. The exponential
involving 𝑥 describes the profile of 𝑢(𝑥, 𝑡) ∈ C twisting around the 
real axis with wavenumber equal to 𝑣, and the 𝑡 exponential describes
the soliton solution rotating globally in the complex plane. Carrying
out the spatiotemporal Fourier transform of (2) shows that the soliton 
trace in the (𝑘, 𝜔) spectrum is a straight line with gradient 𝑣 with a
horizontal profile ∼ sech2[𝜋(𝑘 − 𝑣)∕2𝐴]. Such a trace is represented by 
the orange structure in Fig.  1(b). The above is also true for the SHE
soliton Eq. (4), with the amplitude 𝐴 fixed by 𝛽, and the horizontal
profile ∼ 𝛽2𝑘2csch2[𝜋

√

𝛽 (𝑘 − 𝑣)].

3. Soliton turbulence and the emergence of a bound state

We begin our numerical experiments with a similar initial condition
to that studied in [5], namely a flat-top spectrum of random waves. 
Specifically, we define our initial condition in Fourier space such that
�̂�𝑘(𝑡 = 0) = 𝐴0𝑒𝑖𝜃𝑘  if 𝑘𝑙 ≤ |𝑘| ≤ 𝑘𝑢 and zero otherwise, where 𝜃𝑘 is 
an independent random phase uniformly distributed on [0, 2𝜋) for each
mode 𝑘. We set the spectral amplitude 𝐴0 by specifying the total mass
𝑁 of the system, using 𝑁 = 2𝐿(𝑘𝑢 − 𝑘𝑙 + 1)𝐴2

0 (via Eq. (5) and using
Parseval’s identity).

3.1. Illustrative example of soliton turbulence

To illustrate the main finding of this paper, we generate a random 
state of initial waves in a narrow-band spectrum of modes at large 
scales by choosing 𝑘𝑙 = 6 and 𝑘𝑢 = 9, and choose a relatively high mass
𝑁 = 400. The evolution of this system is shown in Fig.  2, where in the 
4 
left panel we show the spacetime diagram of |𝑢(𝑥, 𝑡)|2 and distinguish
four time windows marked by white bars (a)–(d), representing four 
stages of the dynamics. For each stage (a)–(d), the columns of the right
panels show, from left to right: snapshots of |𝑢(𝑥, 𝑡)| at specified times, 
the DST spectra at those times, and the (𝑘, 𝜔) spectra taken over the 
whole time window. We choose the length of each representative time
window (a)–(d) to be 𝑇 = 𝜋 time units, in order to resolve one full
oscillation of a wave at 𝑘 = 𝛥𝑘 = 1.

3.1.1. (a), (b) Random waves developing into soliton turbulence
In Fig.  2(a) we show the initial condition: a linear superposition of 

random waves. As the initial mass is relatively large, the corresponding
DST spectrum consists of several eigenvalues that lie significantly above 
the threshold 𝜁 Imth , i.e. the initial condition already contains solitons (in 
the nonintegrable sense, defined by the existence of these eigenvalues).

When launched from this initial condition, the spatial fluctuations 
in the |𝑢(𝑥, 𝑡)| field evolve. Soon, solitonic structures emerge in the field 
and start to stay spatiotemporally coherent, changing in amplitude as
they interact, and overlapping significantly in their tails. We term this
phase soliton turbulence, in keeping with Ref. [6].

Meanwhile, the DST eigenvalues ‘‘swarm’’ in the complex plane, 
undergoing excursions in their real and imaginary parts. This is in
complete contrast to the behaviour of DST eigenvalues in the NLSE,
which remain constant in time due to integrability of the system:
nonintegrability of the SHE breaks isospectrality. The movement of 
the DST eigenvalues is orchestrated with the dynamics of the field 
structures. Close examination of this movement strongly suggests that 
eigenvalues with imaginary parts well above 𝜁 Imth  are associated with
individual solitonic structures in the field. Recalling that in the NLSE
the imaginary part of a DST eigenvalue is proportional to the amplitude
of the associated soliton, we see that the link between 𝜁 Im and ampli-
tude is qualitatively preserved in the solitonic structures observed in 
the SHE (although the constant of proportionality is no longer 2).

Video animations of the field, the DST, (𝑘, 𝜔), and 𝑛𝑘 spectra can be 
found in the Supplementary Material. Video S1 shows the evolution 
of these diagnostics over time period 𝑡 = 0–30, which encompasses
windows (a)–(c), and Video S2 shows 𝑡 = 970–1000 which encompasses 
window (d).

The details of the dynamics are complex and intricate, but the 
overall tendency is for the high-amplitude coherent solitonic structures 
to grow at the expense of the lower-amplitude ones as they collide
inelastically. Occasionally, the colliding solitons merge. As a result, a 
small and decreasing number of stronger solitons emerge out of the tur-
bulence and compete for dominance. Concomitantly, these interactions 
manifest as wide excursions of the eigenvalues, and often the identity 
of the eigenvalue with the largest imaginary part, 𝜁1, switches as a
result of the interactions. The general tendency is for a few eigenvalues 
gradually move upwards in the complex plane while the others migrate 
towards the real axis. In Fig.  2(b) we show a snapshot of the field and 
DST spectrum at the end of time window (b).

The emergence of coherent solitonic structures is also evident in 
the (𝑘, 𝜔) spectra, as blurry, rectilinear features below the parabolic
dispersion relation. The blurriness is due to the structures changing
direction during the time window over which the (𝑘, 𝜔) spectrum is
taken. Between Fig.  2(a) and (b) the dominant coherent structure grows 
in amplitude and changes velocity, and so its respective trace in the 
(𝑘, 𝜔) spectrum moves downwards and changes its slope.

3.1.2. (c), (d) Emergence and consolidation of a dominant bound state
At around 𝑡 ≃ 11, one coherent structure emerges from the turbulent

field, standing significantly above the other structures, and making 
quasiperiodic oscillations in amplitude. We choose time window (c) 
to be representative of the system soon after the dominant structure
establishes itself, and window (d) to represent to the system after a long 
period of evolution, when the structure is well consolidated. In the first 
panel of Fig.  2(c) and (d), we superimpose snapshots of the |𝑢(𝑥, 𝑡)| field 
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Fig. 2. Soliton turbulence leading to a single dominant bound state. Left panel: spacetime evolution of |𝑢(𝑥, 𝑡)|. White bars (a)–(d) mark representative phases of the evolution 
etailed in the right panels: (a) random waves developing into (b) soliton turbulence, (c) single dominant solitary bound state embedded in a weakly nonlinear wave field, (d)
trengthened bound state and suppressed weak waves. Panels (a)–(d) display: snapshots of |𝑢(𝑥, 𝑡)| at the displayed times (first column), DST at the same times (second column), 
𝑘, 𝜔) spectra calculated over a time periods marked by white bars in the left panel (third column). In (c) and (d) we also show the primary and secondary DST eigenvalues at 
ntermediate times (unfilled circles).
 

 

 
 

 

 

 

 

 

 

 

at respective maxima (blue) and minima (orange) of one oscillation. In
the second panel we show the DST spectra at the times of the chosen 
maxima and minima (filled blue and orange circles, respectively). We 
can distinguish two eigenvalues, 𝜁1 and 𝜁2 by the size of their imaginary 
parts; they stand well above the others in the complex plane.

At this point, we recall that in Zakharov and Shabat’s seminal 
paper [18], they presented a solution of the NLSE consisting of two DST 
eigenvalues with the same real part, with the two solitons spatiotempo-
rally coincident. Each soliton is trapped in the potential created by the 
other, and hence this solution is known as a bound state. In physical 
space, the bound state solution oscillates in amplitude as it propagates, 
although the DST eigenvalues remain constant due to isospectrality.

In Sections 3.1.3 and 3.1.4 we present evidence that the dominant
coherent structure, which emerges spontaneously out of the soliton 
turbulence of the SHE, is represented by the pair of distinguished 
eigenvalues 𝜁1 and 𝜁2. We therefore propose that this coherent structure 
is a nonintegrable version of a Zakharov–Shabat bound state. The key 
difference is that, isospectrality being broken, the eigenvalues of the 
SHE bound state are observed to oscillate. We show this oscillation in 
Fig.  2(c) and (d), where the positions of 𝜁1 and 𝜁2 are shown at times
in between the maxima and minima (unfilled circles). We discuss these
oscillations in detail in Section 3.1.3

From 𝑡 ≃ 11 to 𝑡 ≃ 40, the bound state grows overall in amplitude,
while the other field fluctuations are suppressed (this is also visible 
in the colours of the spacetime diagram). The period of oscillations 
also decreases. Likewise, in the DST spectrum both 𝜁 Im and 𝜁 Im grow, 
1 2

5 
while the subdominant eigenvalues move ever closer to the real axis. 
These observations demonstrate that the bound state strengthens and
consolidates by absorbing the other coherent waves through a gradual 
sequence of inelastic collisions; a ‘‘winner-takes-all’’ process where the
dominant structure clears out the field around it. The consolidation of 
the bound state is also evident in the (𝑘, 𝜔) spectra, where it is visible 
as a strong, rectilinear trace below the dispersion relation, reminiscent 
of the (𝑘, 𝜔) trace of an NLSE soliton, see Fig.  1. While the bound state 
consolidates, this trace moves in the negative 𝜔 direction. This agrees 
qualitatively with understanding gleaned from the NLSE soliton (2):
that the (negative) frequency of a solitonic structure grows as its 
amplitude increases (however, the bound state arising from soliton
turbulence cannot be interpreted as an NLSE soliton, see Section 3.1.3).

Another feature that is evident in the (𝑘, 𝜔) spectrum is a number of 
fainter rectilinear traces: a pair of secondary sidebands that flank the 
primary trace, a series of subdominant sidebands, and decorations of 
the dispersion relation at each integer value of 𝑘. In all simulations we 
have analysed, as the bound state changes velocity, all these rectilinear 
features change in slope and remain parallel, indicating that they are 
associated with the dominant bound state.

Regarding the decorations of the dispersion relation, we recall that 
our wavenumber resolution is 𝛥𝑘 = 1, so the discrete scarring is likely
a finite-size effect. We conjecture that in a physical system, the result 
of this decoration at every continuous wavenumber would be a general
broadening of the dispersion relation. We interpret this broadening as 
an interaction of the bound state with weakly nonlinear waves at every 
frequency.
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Additionally, we note existence of a primary and secondary set of 
furrows in the (𝑘, 𝜔) spectrum that cut the rectilinear traces lying above
the primary trace. We currently lack any explanation of these gaps in
excitation.

We have observed that around 𝑡 ≃ 40, the growth of the bound state
saturates, after which the diagnostics are qualitatively similar to what
is shown in Figs.  2(d) and 3. During this time the bound state under-
goes periods of acceleration, deceleration, and changes of direction,
presumably by exchanging momentum with the residual background
waves [6], akin to the Brownian motion of a particle suspended in a 
fluid.

3.1.3. Examination of the bound state—oscillations of eigenvalues
Returning to the oscillations of the consolidated bound state, and 

the DST eigenvalues 𝜁1 and 𝜁2 that comprise it, in Fig.  3(a) we plot 
timeseries of the peak amplitude 𝐴(𝑡) ∶= max𝑥(|𝑢(𝑥, 𝑡)|) (orange), 𝜁 Im1
(green), and 𝜁 Im2  (blue), for a representative time interval within time 
window (d). All three quantities appear to oscillate with the same 
fundamental frequency. The fluctuations between 𝐴(𝑡) and 𝜁 Im1  seem 
strongly positively correlated, whereas the fluctuations of 𝜁 Im1  appear 
negatively correlated with those of 𝜁 Im2 .

To confirm this, in Fig.  3(b) we show the normalised cross-
orrelations 𝜌[𝐴, 𝜁 Im1 ] (red) and 𝜌[𝜁 Im1 , 𝜁 Im2 ] (purple), calculated over 
he whole time window (d), where the normalised cross-correlation 
etween timeseries 𝑓 (𝑡) and 𝑔(𝑡), assumed statistically stationary, is

𝜌[𝑓, 𝑔](𝜏) =
∫ ∞
−∞

(

𝑓 (𝑡 + 𝜏) − 𝜇𝑓
)

(

𝑔∗(𝑡) − 𝜇∗
𝑔

)

𝑑𝑡

𝜎𝑓𝜎𝑔
,

and 𝜇𝑓 , 𝜎𝑓  respectively denote the empirical mean and standard devi-
ation of 𝑓 (𝑡), etc. There is a positive peak of 𝜌[𝐴, 𝜁 Im1 ](𝜏) and a negative 
peak of 𝜌[𝜁 Im1 , 𝜁 Im2 ](𝜏) at lag 𝜏 = 0. This demonstrates conclusively that 
the bound state amplitude 𝐴 and 𝜁 Im1  oscillate in synchrony, whereas
𝜁 Im1  and 𝜁 Im2  oscillate in exact phase opposition. We have also calculated
𝜌[𝜁Re1 , 𝜁Re2 ] and find a strong negative peak at 𝜏 = 0, demonstrating
that the real parts of these eigenvalues likewise oscillate in phase 
opposition. The phase-opposed oscillation of 𝜁1 and 𝜁2 is clearly visible 
in their trajectories, shown in Fig.  2(c) and (d).

In Fig.  3(c) we plot the temporal power spectral density (PSD) of
the timeseries that are partially shown in (a). Namely, we plot |�̂�(𝜔)|2
(orange), |𝜁 Im1 (𝜔)|2 (green), and |𝜁 Im2 (𝜔)|2 (blue). In each of these PSDs, 
we observe a primary peak at 𝜔 = 0, representing the mean value of 
the signal, and a pair of secondary peaks (indicated by filled arrows) at 
𝜔 ≃ ±415.8, the fundamental oscillation frequency of the eigenvalues. 
Tertiary peaks (unfilled arrows) are also seen at 𝜔 ≃ ±645.7. The 
symmetry around 𝜔 = 0 is due to the time series being real-valued.

To interpret the peaks of the PSDs, in Fig.  3(d) we again plot the 
(𝑘, 𝜔) spectrum, and superimpose the PSD |�̂�(𝜔)|2, aligning its primary
peak on (𝑘, 𝜔) = (−0.213,−730), the approximate centre of the primary 
solitonic trace (see below). We do this to take into account the fact
that 𝐴(𝑡) is the evolution of the bound state’s peak amplitude, which is
real-valued. Its PSD gives frequency information about the fluctuations
in the height of the peak. However, the whole profile is rotating in 
the complex plane. This rotation frequency is detected in the (𝑘, 𝜔)
spectrum as it is obtained by Fourier transforming the complex field 
𝑢 directly. Thus, aligning the 𝜔 = 0 peak of the PSD with the 𝜔 position
of the primary trace amounts to transforming into the frame corotating
with the primary soliton in the complex plane, and studying frequencies 
relative to the rotation frequency. We see that the secondary peaks 
of the PSD align perfectly with the secondary solitonic traces in the 
(𝑘, 𝜔) spectrum, showing that both the secondary PSD peaks and the 
secondary (𝑘, 𝜔) traces contain information about fluctuations of the
amplitude of the bound state. These fluctuations are mirrored, with the 
appropriate phase shifts, in 𝜁 Im1  and 𝜁 Im2 .

Regarding the (𝑘, 𝜔) placement of the PSD, we choose the horizontal 
position to be the measured average velocity of the bound state ⟨𝑣⟩ ≃
6 
Fig. 3. Examination of the consolidated bound state shown in Fig.  2(d). (a) Comparison
of the timeseries 𝐴(𝑡), 𝜁 Im1 (𝑡), and 𝜁 Im2 (𝑡). (b) Normalised cross-correlations 𝜌[𝐴, 𝜁 Im1 ](𝜏)

and 𝜌[𝜁 Im1 , 𝜁 Im2 ](𝜏). (c) Temporal PSDs |�̂�(𝜔)|2, |𝜁 Im1 (𝜔)|2, and |𝜁 Im2 (𝜔)|2. All three PSDs 
have a primary peak at 𝜔 = 0, secondary peaks at 𝜔 ≃ ±415.8 (filled arrows), and 
tertiary peaks at 𝜔 ≃ ±645.7 (unfilled arrows). (d) (𝑘, 𝜔) spectrum. A primary, a pair
of secondary, and a sequence of subdominant solitonic traces are observed below the
parabolic dispersion curve of weak waves. The PSD |�̂�(𝜔)|2 from (b) is superimposed in
orange, centred on the primary soliton trace at (𝑘, 𝜔) ≃ (−0.212,−730) (see main text).
The white dashed line 𝜔cut (𝑘) divides the wave component above from the solitonic
component below, see Section 3.1.4 and Fig.  5.

−0.213 during this time window, where angle brackets denote time 
averaging. We expect the relationship 𝑘 = ⟨𝑣⟩ to be preserved as 
this comes directly from the Galilean invariance of the SHE, see Sec-
tion 2.2.2. This position agrees with the centre of the soliton trace, with 
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Fig. 4. (a) full |𝑢(𝑥, 𝑡)| field (blue) and spatially filtered bound state |𝑢bs(𝑥, 𝑡)| (orange)
at time 𝑡 ≃ 996.5713. (b) DST of the full field (blue points) and filtered component
(orange plusses).

the caveat that the bound state has a velocity below the 𝑘 resolution of 
our system. The vertical placement of the PSD is chosen empirically 
as the maximum of the primary solitonic trace on the vertical line 
𝑘 = ⟨𝑣⟩, i.e. 𝛺 = max𝜔(|�̂�(𝑘, 𝜔)|

2)𝑘=⟨𝑣⟩ ≃ −730. This frequency agrees
with neither soliton equation (2) nor (4): averaging the bound state
amplitude throughout time period (d) gives ⟨𝐴⟩ ≃ 48.9. If the primary 
linear trace corresponded to an NLSE soliton, it would have frequency
𝜔 = −(⟨𝐴⟩2−⟨𝑣⟩2)∕2 ≃ −1194, which is far from the measured frequency
𝛺 ≃ −730. Neither does the bound state correspond to a SHE soliton (4), 
which has a fixed amplitude 3∕

√

8𝛽 = 10.6 in our case of 𝛽 = 10−2, 
corresponding to frequency −(1∕𝛽 − ⟨𝑣⟩2)∕2 ≃ −100. Nor does the SHE 
bound state frequency correspond to the frequency of a two-soliton 
bound state of the NLSE [18], which for our normalisation of (1) is
|𝜔NLSE

bs | = 2|(𝜁 Im1 )2 − (𝜁 Im2 )2|. Using the time-averaged eigenvalues of
our SHE bound state, this would correspond to |𝜔NLSE

bs | ≃ 2305, which 
compares very poorly to the measured frequency |𝛺| ≃ 730.

Thus, we conclude that the bound state arising from SHE soliton
turbulence can be modelled neither as an NLSE soliton, nor a SHE 
soliton, nor an NLSE bound state.

3.1.4. Examination of the bound state—reconstruction of system compo-
nents

To confirm the identity of the dominant coherent wave as a bound
state, we filter out the surrounding wave field spatially by setting
𝑢(𝑥, 𝑡) = 0 outside the coherent structure, from the first local minima
either side of max𝑥(|𝑢|) that satisfy |𝑢(𝑥, 𝑡)| < ⟨|𝑢(𝑥, 𝑡)|⟩𝑥 (with ⟨…⟩𝑥
denoting spatial averaging), giving the filtered bound state 𝑢bs(𝑥, 𝑡). Its 
absolute value is shown in orange in Fig.  4(a), together with that of 
the original field, |𝑢(𝑥, 𝑡)|, in blue. In (b) we show the DST spectrum 
calculated from the full (blue points) and filtered (orange plusses) 
field. We see perfect coincidence of 𝜁1 and 𝜁2, while all subdominant 
eigenvalues of the filtered field are practically zero. This definitively 
identifies the dominant coherent wave arising out of soliton turbulence 
as a bound state comprising of 𝜁1 and 𝜁2. Filtering the bound state from 
the waves in this way allows us to calculate the proportion of the total
mass that the bound state accumulates: ∫ 𝐿

0 |𝑢bs|
2𝑑𝑥∕ ∫ 𝐿

0 |𝑢|2𝑑𝑥 ≃ 0.618.
Further confirmation comes from band-pass filtering the doubly

Fourier transformed field �̂�(𝑘, 𝜔) to select either the weakly nonlinear
wave component, or the solitonic components. Examining the (𝑘, 𝜔)
spectrum Fig.  3(d), the waves can be separated from the solitons by the 
line 𝜔cut (𝑘) = ⟨𝑣⟩𝑘−40, shown by the white dashed line (the downshift
of the dispersion relation by 40 is due to the nonlinear correction to
the linear wave frequency, which is towards negative 𝜔 since the SHE 
resembles the focusing NLSE at low 𝑘). The wave component consists
of the parabolic dispersion relation lying in 𝜔 > 𝜔cut (𝑘). Filtering 
out the waves and taking the double inverse Fourier transform of the 
𝜔 ≤ 𝜔cut (𝑘) component of the �̂�(𝑘, 𝜔) field yields the spacetime diagram
in Fig.  5(a). The trajectory of the bound state is recovered exactly, with 
almost no waves in the field. Conversely, band-passing the Fourier field 
in 𝜔 > 𝜔cut (𝑘) and inverting recovers Fig.  5(b): the wave component, 
with the field suppressed at the bound state trajectory. This shows that
 

7 
Fig. 5. |𝑢(𝑥, 𝑡)| field and DST, reconstructed from filtered components of �̂�(𝑘, 𝜔). (a) 
pacetime diagram of the bound state, reconstructed by band-passing the soliton traces 
in 𝜔 ≤ 𝜔cut (𝑘) (see Fig.  3(d)). (b) Spacetime diagram of the background waves,
reconstructed from the dispersion relation in 𝜔 > 𝜔cut (𝑘). (c) |𝑢(𝑥, 𝑡)| snapshots taken
from the reconstructed spacetime diagrams at 𝑡 ≃ 996.5713. Orange: snapshot of the
bound state taken from (a), green: wave component taken from (b), blue (mostly 
obscured): original full field. (d) DST spectra of the snapshots shown in (c), respectively
shown in orange plusses, green crosses, and blue points.

the (𝑘, 𝜔) spectrum is a discriminating tool to separate the wave from
the solitonic components of a system.

Taking snapshots of the field at the temporal mid-point 𝑡 ≃ 996.5713
of the spacetime plots Fig.  5(a) and (b), we recover the isolated bound 
state (orange) and wave (green) components of the |𝑢(𝑥, 𝑡)| field shown 
in (c). The original snapshot at this time is shown in the background in
blue, which is almost completely obscured by the snapshots of the two 
reconstructed field components. Fig.  5(d) shows the DST spectra of the 
original snapshot (blue points), reconstructed bound state component
(orange plusses), and reconstructed wave component (green crosses). 
The eigenvalues 𝜁1 and 𝜁2 are reasonably well recovered, with clear
separation from the eigenvalues representing the wave component, 
near the real axis. This evidence cements the mutual link between
the bound state, its representation below the dispersion relation in 
the (𝑘, 𝜔) spectrum, and its DST spectrum which consists of the two 
eigenvalues 𝜁1 and 𝜁2.

3.2. Phase diagram of the bound state attractor

The results of Sections 3.1.1 and 3.1.2 are typical of many simu-
lations we have run starting from a spectrum of large-scale random 
waves. The self-assembly of a bound state from random turbulence is a 
robust phenomenon that occurs generally, provided the initial spectrum
of such waves is in some sense large enough. However, for low-
amplitude initial conditions, no long-lived coherent structure emerges. 
To characterise this more fully, we set up initial flat-top spectra of 
random waves at three different placements of 𝑘𝑙 and 𝑘𝑢, keeping the
spectral width the same. Specifically, we set up initial spectra supported
on |𝑘| ∈ [2, 5], [6, 9], and [10, 13]. We define 𝑘0 = (𝑘𝑙 + 𝑘𝑢)∕2, a 
characteristic wavenumber for each initial spectrum. For these three
placements of the initial condition, we vary the total mass 𝑁 . We 
launch these initial spectra into the SHE and evolve the system until a
stable bound state emerges in the system, or up to a long computational
time of 𝑡 = 12000. (To assist with the speed and memory requirements 
of this parameter scan, we drop the spatial resolution to 𝑁𝑥 = 1024. 
Energy and mass are still well conserved, and the 𝑛𝑘 spectrum shows 
no sign of a spectral bottleneck.)
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Fig. 6. Qualitative phase diagram of the final states reached from an initial flat-top 
andom wave spectrum, supported on the given wavenumber intervals. The control 
arameter 𝜎(𝑁, 𝑘0), given by Eq. (8), is a proxy for |𝐻4∕𝐻2| of the initial condition.

To determine a control parameter from characteristics of the initial 
spectrum that predicts whether or not a bound state will appear, we 
note once more that solitonic structures balance linear dispersion with 
self-interaction. The initial condition should therefore be nonlinear
enough to allow a solitonic structure to form, i.e. we should expect 
these structures when |𝐻4∕𝐻2| ≳ 1 in the initial condition. Noting
Eq. (6) for the expressions of these energy contributions, we form the
non-dimensional quantity 

𝜎(𝑁, 𝑘0) =
𝑁

𝐿𝑘0(1 + 𝛽𝑘20)
. (8)

This quantity is a proxy for |𝐻4∕𝐻2| that contains the characteristic
mass and wavenumber of the initial spectrum, but which does not
depend on the particular realisation of the initial condition.

Fig.  6 summarises the results of these simulations, in the form of a 
qualitative phase diagram, where we note four kinds of emergent states. 
Red crosses indicate that no long-lived coherent structures emerge from 
the turbulence. Here, the waveaction spectrum evolves from the initial
condition towards a broadband spectrum of random waves, and if 
any coherent structures appear during the evolution they persist only 
transiently. Purple circles indicate a low-amplitude oscillating coherent 
structure where 𝜁 Im1  is at least 1.5𝜁 Im2  on average, but 𝜁2 does not rise 
significantly above the other eigenvalues (i.e. different eigenvalues in 
turn rise above the others to transiently assume the role of 𝜁2 before
dropping towards the real axis again). We conjecture that this structure 
is also in fact a bound state, with an amplitude too low for 𝜁2 to
emerge clearly. Green-blue diamonds denote the formation of a larger-
amplitude bound state, with both 𝜁1 and 𝜁2 standing well above all
other eigenvalues in the complex plane. The simulation reported in 
Section 3.1 is of this type. Orange triangles denote a final state with 
three dominant eigenvalues with a clear ordering 𝜁 Im1 > 𝜁 Im2 > 𝜁 Im3 > 𝜁 Im𝑗
for subdominant eigenvalues 𝑗 ≠ 1, 2, 3. Again, the coherent structure 
presents as a single oscillating solitary wave in physical space: the 
system organises into a three-soliton bound state.

Fig.  6 demonstrates that 𝜎(𝑁, 𝑘0) is indeed a good control
parameter—it predicts the formation of a bound state for 𝜎 ≳ 1, and 
no coherent structure for 𝜎 ≲ 1, for each of the three placements of the 
initial spectrum.

Around the transition at 𝜎 ≈ 1, we observe slowing down of the 
dynamics, in that for a given placement of the initial spectrum, the 
bound state takes progressively longer to form as 𝜎 → 1+. In several
realisations close to but above the transition, we also observe transient
fragility of the bound state: a coherent structure initially forms with 
a certain amplitude, then it weakens, before consolidating again and 
8 
saturating at a higher amplitude. It is of course possible that these 
will collapse into random waves eventually, but we do not observe any 
further weakening for as long as we continue the simulations.

Likewise, for 𝜎 → 1−, we sometimes see a coherent structure 
emerging transiently only to disperse again, associated with one eigen-
value rising above the others in the DST spectrum, before eventually 
collapsing back into the ‘‘swarm’’ of eigenvalues near the real axis.

For values of 𝜎 significantly below the transition, long simula-
tions show no sign of the random waves strengthening into coherent
structures. It may be the case that the formation of the bound state
is delayed beyond our simulation time. However, since the control
parameter 𝜎 is physically motivated by energy considerations, we do 
not expect coherent structures ever to form for initial conditions below 
the threshold.

For simulations around 𝜎 ≈ 1, the observation of coherent structures 
transiently emerging then dispersing indicates a competition between 
the formation of solitonic structures (𝐻4 dominating), and their disrup-
tion by energetic linear waves (𝐻2 dominating). This lends a heuristic 
interpretation to the ‘‘squeezing out’’ of the low-amplitude bound state 
with only one dominant soliton (purple circles in Fig.  6) from parameter
space when the initial condition is concentrated at high characteristic 
wavenumber 𝑘0. For a given mass 𝑁 of an initial condition, increasing 
𝑘0 increases the energy 𝐻2 ∝

∑

𝑘 𝑘
2
|�̂�𝑘|

2 associated with linear waves, 
and so any incipient solitonic structures are more strongly disrupted by 
the energetic waves. When 𝜎 ≈ 1, the energy balance allows the bound
state to remain stable against perturbation. However since for large 𝑘0
we have 𝜎 ∼ 𝑁∕𝑘30, this requires a much larger 𝑁 than for small 𝑘0, 
and so when the bound state is robust enough to persist, it has a large
enough amplitude for the second eigenvalue to rise above the ‘‘swarm’’
of subdominant eigenvalues.

The orange triangles in the bottom-right corner of Fig.  6 indicate a 
second transition from a two-soliton to a three-soliton bound state. In-
creasing 𝜎 towards this portion of the phase diagram from below leads
to progressively larger 𝜁 Im1  and 𝜁 Im2 , until the third dominant eigenvalue
𝜁3 rises above the ‘‘swarm’’ of subdominant eigenvalues, oscillating
with the same frequency as 𝜁1 and in phase opposition. We note that 
systems in this portion of the phase diagram are initialised with high 𝑁 . 
Evidently, the amount of mass that each soliton comprising the bound
state has an upper limit, leading to a third soliton growing from the
‘‘swarm’’ to absorb the mass of the initial condition at some critical 
value.

This clearly raises the possibility that the two-soliton bound state is
the low-amplitude member of a family of bound states with an arbitrary
number of dominant solitons. We focus on the two-soliton structure for
the rest of this paper, and leave a full characterisation of the full family 
of multi-soliton bound states and their transitions to future work.

The classification criteria of the final states reported in Fig.  6, 
and the boundaries of the various phases, is admittedly somewhat 
subjective. We present it as a first attempt to categorise the final states
that appear out of soliton turbulence in the SHE, and leave it to future
work to detail a more principled and quantitative classification scheme,
in particular to determine the parameters that control the transition to 
a bound state with three or more dominant solitons.

3.3. Summary

To summarise the findings above, we have observed the sponta-
neous self-assembly of a single coherent, dominant, solitonic wave, 
emerging out of soliton turbulence in the SHE. In the system of Sec-
tion 3.1 that we have studied closely, this coherent structure is a bound 
state comprised of two solitons, defined and detected by the Zakharov–
Shabat DST eigenvalue spectrum. As the bound state propagates, its
amplitude oscillates periodically, as do its constituent solitons. The 
oscillations of the solitons’ DST eigenvalues are in phase opposition
in both their real and imaginary parts, corresponding to oppositional 



C. Colléaux et al.

 
 

 

 

 

 
 

 

 
 
 
 
 

 

 

 

 

 
 

 

 

 

 

 

 
 
 
 

 

Physica D: Nonlinear Phenomena 477 (2025) 134687 
Fig. 7. (a) Spacetime evolution of |𝑢(𝑥, 𝑡)| for an NLSE soliton launched into the SHE.
Snapshots of the field at the displayed times are plotted in (b) (marked in (a) by grey
lines). (c) DST spectra at the corresponding times.

fluctuations in their amplitudes and velocities. It is natural to inter-
pret these anti-correlated fluctuations in velocity as both solitons in
the potential well created by the other, analogous to a binary star 
system orbiting a common barycentre. Likewise, we interpret the phase-
opposed oscillations in amplitude as the solitons exchanging mass back
and forth as they propagate.

The findings of Section 3.2 indicate that the appearance of the
bound state is a robust phenomenon that occurs in the SHE as long 
as the system contains enough interaction energy to form coherent
structures. It appears that as the mass of the initial condition increases,
the system self-organises into a bound state comprising of progressively 
more solitons to accommodate the majority of this mass. We therefore
propose that the pulsating multi-soliton bound state is a statistical 
attractor of the SHE.

The initial condition we have considered, a flat-top spectrum of
random waves, is sufficiently general that we expect the emergence of
a bound state from any other class of initial condition. Put otherwise,
the self-organisation of random waves into a bound state represents
‘‘order emerging from chaos’’. More coherent initial conditions would
also readily evolve towards the universal attractor: ‘‘order emerging 
from order’’. The rest of this paper describes results we have obtained
in this direction.

4. Single NLSE soliton propagation in the SHE

In Section 3 we carried out a thorough examination of the final 
bound state created by a turbulent process, involving the interaction 
of many solitons that are initially present in the system. We now 
demonstrate that a similar bound state can arise directly when we 
launch a nonlinear wave that is different to the exact soliton naturally 
supported by the SHE.

We launch a single NLSE soliton (2) with parameters (𝐴, 𝑣, 𝑠, 𝜙) =
(20, 4, 𝜋, 0), into the system. Since 𝛽 = 10−2 ≠ 0, we do not expect 
this initial condition to propagate in the SHE without a change of 
profile. Indeed, in Fig.  7 we see that the coherent structure immediately 
emits waves into the domain while the profile relaxes: the peak of 
the structure falls while its width broadens. This initial relaxation is 
9 
followed by a rebound, and thereafter the amplitude and width of 
the coherent structure oscillate periodically. These oscillations become 
noisy once the radiated waves travel across the periodic domain and re-
encounter the structure. This is seen in Fig.  7(a), where we show the 
spatiotemporal evolution of the |𝑢(𝑥, 𝑡)| field, with snapshots at times 
𝑡 = 0 (initial condition), 𝑡 = 0.056 (minimum of the first relaxation), 
𝑡 = 0.432 (maximum of a subsequent noisy oscillation), and 𝑡 = 0.504
(ensuing minimum) shown in (b). The DST spectra at the corresponding
times are shown in (c). Once again, we see that the DST eigenvalue 𝜁1
oscillates in phase with the peak of the coherent structure.

After the initial condition has relaxed, and as the residual coherent 
structure starts to rebound and oscillate, the eigenvalue 𝜁2 grows from 
the real axis and oscillates above and below the threshold 𝜁 Imth , in phase 
opposition with 𝜁 Im1 . Both eigenvalues have the same constant real part 
𝜁Re1 = 𝜁Re2 ≃ −2.00, indicating that the two solitons corresponding
to these eigenvalues travel at the same speed, not fluctuating like in 
the case of Section 3. The velocity of the coherent structure remains 
identical to the initial soliton velocity, measured to be 𝑣 ≃ 4.00
over any time interval during the simulation, so we drop the angle
brackets. The relation between 𝑣 and 𝜁Re1,2 is in perfect agreement with 
the Zakharov–Shabat theory for NLSE solitons.

We repeat the analysis of Section 3.1.3 and display the results in Fig. 
8, showing: (a) timeseries of the peak amplitude 𝐴(𝑡) ∶= max𝑥(|𝑢(𝑥, 𝑡)|),
and the DST eigenvalues’ imaginary parts 𝜁 Im1 (𝑡), and 𝜁 Im2 (𝑡), (b) the
temporal PSDs of 𝐴(𝑡) and 𝜁 Im1 (t), and (c) the (𝑘, 𝜔) spectrum, overlaid 
with the PSD of 𝐴(𝑡). Carrying out a cross-correlation study as before,
we once again find that the peak amplitude and 𝜁 Im1  oscillate in phase, 
and that 𝜁 Im1  and 𝜁 Im2  oscillate in exact phase opposition. For brevity we 
omit displaying this study.

Just like in the case of Section 3, where a bound state emerged from
a period of soliton turbulence, Figs.  7 and 8 demonstrate that when the 
NLSE soliton is launched into the SHE, the system again self-organises 
into a bound state comprising of two oscillating eigenvalues. In this
case the bound state has a lower amplitude, such that the secondary 
soliton 𝜁2 fluctuates above and below the threshold 𝜁 Imth  set by the 
domain size; physically it dips in and out of existence.

Looking in detail at the (𝑘, 𝜔) spectrum, in Fig.  8(c) we have centred 
the PSD of 𝐴(𝑡) horizontally at 𝑘 = 𝑣 = 4, which according to 
Eqs. (2) and (4) should be the centre of the (𝑘, 𝜔) primary soliton trace. 
Inspection of the figure shows this to be the case. As for the vertical 
positioning, we centre the PSD on 𝛺 = max𝜔(|�̂�(𝑘, 𝜔)|)𝑘=𝑣 = −45.0. 
This compares very favourably to the frequency 𝜔 = −47.1 of an NLSE 
soliton with amplitude ⟨𝐴⟩ = 10.5 and velocity 𝑣 = 4. (We note that a 
two-soliton bound state of the NLSE whose eigenvalues had imaginary
parts ⟨𝜁 Im1 ⟩ and ⟨𝜁 Im2 ⟩ would have frequency |𝜔NLSE

bs | ≃ 93.7, which is 
very far from the measured |𝛺|.)

Placing the PSD at (𝑘, 𝜔) ≃ (4,−45.0), we find that the secondary 
peaks of the PSD align perfectly with the secondary solitonic (𝑘, 𝜔)
traces, as was the case in Section 3. Furthermore, we find that the 
centre of the upper secondary trace is at 𝜔 ≃ 0 to within numerical 
resolution, i.e. the oscillations in the amplitude and eigenvalues have
the same frequency as the rotation of the whole profile in the complex 
plane, 𝛺. We also observe that the secondary trace here is tangent to the
dispersion relation of linear waves. To model this, let us first ignore the
spatial profile, and transform into the comoving frame with velocity 𝑣.
The leading temporal behaviour is the rotation of a complex amplitude
𝐴, i.e. 𝑢 ∼ 𝐴𝑒−𝑖𝛺𝑡. Next, we include sinusoidal oscillations of the 
amplitude about its average ⟨𝐴⟩, i.e. 𝐴 → ⟨𝐴⟩+2𝛥𝐴 cos(𝛺𝑡). Expressing 
the cosine as a sum of complex exponentials, we immediately see that 
the temporal variation of such an amplitude-modulated solitary wave is 
𝑢 ∼ ⟨𝐴⟩𝑒−𝑖𝛺𝑡 +𝛥𝐴+𝛥𝐴𝑒−2𝑖𝛺𝑡, a signal that rotates in the complex plane 
with frequency −𝛺, and that has weaker sidebands at frequencies 0 and 
−2𝛺. Dressing these signals with a solitonic profile that is linear in the
(𝑘, 𝜔) plot reproduces exactly what we observe in Fig.  8(c).
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Fig. 8. As per Fig.  3(a), (c) and (d), for a single NLSE soliton (2) with 𝐴 = 20 and 
= 4, launched into the SHE. In (b), the temporal PSDs have secondary peaks at 
≃ 45.0; tertiary peaks at 𝜔 ≃ 90.0 are evident in the PSDs |𝜁 Im1 (𝜔)|2 and |𝜁 Im2 (𝜔)|2, and 
ot prominent in |�̂�(𝜔)|2. In (c) we overlay the PSD of 𝐴(𝑡) onto the (𝑘, 𝜔) spectrum 
t (4,−45).

4.1. Discussion—mechanism for the secondary soliton’s creation

To conclude this Section, we propose the following heuristic expla-
nation of our observations of one initial NLSE soliton launched into
the SHE. Since the profile (2) no longer balances dispersion with self-
focusing in the SHE, the initial condition releases waves and relaxes. 
As the deviation from integrability is in some sense small (however 
see Appendix  A), the nonlinear wave remains mostly coherent, and its
initial velocity is unperturbed by this collapse. The remaining coherent 
nonlinear wave has a soliton component as it is detectable in the DST 
spectrum as the eigenvalue 𝜁1.

Since we do not damp the waves, they recirculate in the system,
with each wave packet travelling at its own group velocity. As the 
coherent structure passes through the wave field, the two interact
nonlinearly. We speculate that this wave-structure interaction amounts
to a forcing of the waves by the coherent structure at every 𝑘, leading to 
the broadening of the dispersion relation, observed as the decorations 
of the parabola in Fig.  8(c) (and indeed in Fig.  3(d) in Section 3). 
The bright spot where the secondary soliton trace meets the dispersion 
10 
relation tangentially suggests that this forcing is most efficient where 
the coherent structure is resonant with the waves, namely where the 
primary soliton’s velocity and the wave group velocity are equal. (We 
note that the resonant excitation of waves by solitons was reported in a
nonintegrable Korteweg–De Vries equation [34].) We further speculate 
that this efficient forcing of the resonant waves causes them to grow
preferentially. Eventually they become nonlinear enough to undergo
a modulational instability, which creates the secondary soliton, rep-
resented in the DST by 𝜁2. The primary and secondary solitons are
spatially coincident, the resulting structure being the bound state. As 
the system evolves and the bound state propagates, the two solitons 
periodically exchange mass, leading to phase-opposed oscillations in 
the imaginary parts 𝜁 Im1  and 𝜁 Im2 . We note that while this scenario is
physically plausible, it remains somewhat speculative. Further work is
necessary in order to put it on a more sound mathematical footing.

In addition to the results presented here, we have also launched 
simulations initialised with a single NLSE soliton with a variety of am-
plitudes and velocities. Furthermore, we have made runs starting from
a SHE soliton, and from an NLSE or SHE soliton amplified vertically 
by a factor 𝛾 ∈ [0.70, 2.0], in the manner of Ref. [35]. In each case 
we see qualitatively the same dynamics, further reinforcing the idea
that the generation of the second soliton via the wave-primary soliton 
interaction is generic, and that the resulting two-soliton bound state is
a universal solution favoured by this nonintegrable system.

It is natural to assume that this mechanism of resonant interaction 
with waves is active in the initial transient phase of soliton turbulence 
examined in Section 3. We conjecture that during the initial phase as 
coherent structures are assembling, each such structure accumulates 
waves into its own secondary soliton, so that the coherent structures
that finally merge into the final dominant bound state are each them-
selves bound states. We turn to the question of collisions and mergers
of coherent structures next.

5. Collisions of SHE solitons

In this Section, we examine a key feature that separates the dynam-
ics of coherent solitonic waves in nonintegrable systems to those of
solitons in integrable systems: the ability of coherent waves to undergo 
inelastic collisions and mergers. We observe such events happening
frequently during the initial phase of soliton turbulence (see Fig.  2(a) 
and (b) and Video S1), en route to forming the dominant bound state
of the system.

Here we study the collision and merger processes in a cleaner 
environment, allowing us to determine some necessary conditions for 
two solitonic waves merge into a single bound state. We initialise the
system with the linear sum of two SHE solitons (4) with positions 
𝑠1 = 𝐿∕4, 𝑠2 = 3𝐿∕4, and velocities 𝑣1 = 0.5, 𝑣2 = −0.5, and study the
effect of varying the initial the phase difference 𝛥𝜙i = (𝜙2 − 𝜙1)|𝑡=0.

The periodic boundary conditions mean that the two solitons that
we launch into the system will cycle through the domain and collide 
with each other many times. In contrast to integrable dynamics, the 
solitons perturb each other at every encounter, meaning that they do 
not retain their profiles after the first collision. From this point, in order 
to not overburden the narrative we will use the term soliton to refer not 
only the initial profiles that we launch into the system, but also to the
perturbed remnants that emerge after each collision. As we will see, this
comports with the terminology we have already established, of solitons 
being objects that are represented by physically-relevant eigenvalues
in the DST spectrum, but here we will mainly be concerned with their
spatiotemporal manifestations.

Fig.  9 shows the spacetime plots of our simulations, for SHE solitons
with initial phase differences of (a) 𝛥𝜙i = 0, (b) 𝜋, (c) ±𝜋∕4, (d) ±𝜋∕2,
and (e) ±3𝜋∕4. We group simulations (c), (d), and (e) this way in order 
to visualise the initial symmetry under reflection and phase inversion
{𝑥 → 𝐿 − 𝑥, 𝑣 → −𝑣, 𝛥𝜙(𝑡) → −𝛥𝜙(𝑡)}.



C. Colléaux et al.

I
c
b

Physica D: Nonlinear Phenomena 477 (2025) 134687 
Fig. 9. Spacetime evolution of two SHE solitons colliding in our periodic computational domain. The solitons are initialised with the displayed initial phase differences 𝛥𝜙i = 𝜙2−𝜙1. 
n each case the two initial solitons merge into a single bound state. In (c)–(e) the respective subplots (i) and (ii) retain the reflection–phase inversion symmetry of the initial 
ondition, until the symmetry is spontaneously broken by the soliton merger event. Thereafter the phase-space trajectories of (i) and (ii) diverge. Note the difference in timescale 
etween (a), (b) and (c)–(e).
 
 

 
 

 

 

 

 

 
 
 

 

 

 

 
 

 

 
 

 

 

 
 

In all cases the two solitons eventually merge into a single dominant 
coherent structure remaining in the system, surrounded by incoherent 
weak waves which are mainly emitted following the merger event.
Using the same methods as presented in Sections 3 and 4, we find
once again that the final coherent structure is a two-soliton bound state, 
with a primary DST eigenvalue that oscillates in phase with the peak 
amplitude, and in phase opposition to the secondary eigenvalue, and 
with a (𝑘, 𝜔) spectrum consisting of a primary and two solitonic traces, 
which align perfectly with the primary and secondary peaks of |�̂�(𝜔)|2.
This lends further credence to the bound state being the final statistical
attracting state of the SHE.

We also note that the time at which the two initial solitons merge 
to form the final bound state depends on 𝛥𝜙i. In the case of 𝛥𝜙i =
0 the bound state forms on the first collision of the input solitons.
By contrast, for 𝛥𝜙i = 𝜋 the single bound state emerges after the 
solitons have recirculated through the system and collided many times. 
For intermediate values of 𝛥𝜙i, the merger of the two initial solitons 
occurs after an intermediate number of collisions (note the different
timescales shown in Fig.  9(a) and (b), vs. (c)–(e)). As the solitons are 
launched with identical initial amplitudes and velocities, they rotate in
the complex plane with the same initial frequency 𝛺 = (1∕𝛽 − 𝑣2)∕2. 
Therefore, they retain their initial phase differences as they approach
the first collision.

This dependence on the phase difference can be explained by noting 
that if two solitons approaching each other are to merge, the merger 
is a highly nonlinear process. If the solitons approach with phase
difference 𝛥𝜙 = 0, as shown in Fig.  10(a), it is natural to assume
that their amplitudes will add in the complex plane, leading to a large
nonlinearity. This favours the solitons merging into a single coherent 
structure. Conversely, if two solitons approach with phase difference 
𝛥𝜙 = 𝜋, Fig.  10(b), their complex amplitudes will tend to cancel out,
the nonlinearity will be small, and their merger is inhibited.

These considerations suggest that solitons with a general phase 
difference merge when their phases synchronise. We confirm this in Fig. 
11, where we show the first two quasi-elastic collisions of the solitons,
followed by the merger at the third collision, for the case of 𝛥𝜙i = 𝜋∕4. 
The spacetime plot in (a) shows the general evolution of |𝑢(𝑥, 𝑡)|. In (b) 
we plot the evolution of the phase difference between the two solitons. 
This is found at each timestep by first finding the 𝑥 positions of the 
two largest local maxima of |𝑢(𝑥, 𝑡)| to detect the soliton peaks. We 
then take the phase of the solitons as the arguments of 𝑢(𝑥, 𝑡) at these
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Fig. 10. SHE solitons approaching each other before their first collision, with phase
differences 𝛥𝜙 = 0 (a), and 𝛥𝜙 = 𝜋 (b). In (a) we demonstrate schematically how we 
identify the phase and amplitude of one of the solitons. As time evolves, the solitons
approach each other with velocities 𝑣1 and 𝑣2, and the solitons rotate in the complex
plane clockwise, with frequency 𝛺𝑗 ∼ (𝐴2

𝑗 − 𝑣2𝑗 )∕2.

positions, as shown in Fig.  10(a) for 𝜙2. In (c) we plot the evolution of 
𝜁 Im1  (in green) and 𝜁 Im2  (in blue). We see that 𝛥𝜙(𝑡) remains 𝜋∕4 until the
first collision. During this collision, some mass is exchanged from one 
soliton to the other, with the change in soliton amplitudes reflected in 
𝜁 Im1  increasing and 𝜁 Im2  decreasing. The difference in amplitudes means
that the rotation frequencies of the solitons 𝛺𝑗 ∼ (𝐴2

𝑗 − 𝑣2𝑗 )∕2 are
now different, leading to a linear growth of 𝛥𝜙. Another exchange of 
mass (and consequently the soliton rotation frequencies) happens at the 
second collision. At the third collision at 𝑡 ≃ 8.05, the phase difference 
approaches 2𝜋, i.e. the solitons are nearly synchronised in phase, and 
the solitons merge into a bound state. (The evolution of 𝛥𝜙 after this
point loses its interpretation as the phase difference between the two 
solitons.) Note that before the merger, 𝜁1 and 𝜁2 are each associated 
with a different soliton, but after the merger they are the primary and 
secondary eigenvalues of the bound state. During the merger event, the
larger soliton appears to capture the smaller one. As the solitons merge, 
the identity of 𝜁2 changes several times. Namely, the old 𝜁2 drops into 
the grey area below 𝜁 Imth , with a different eigenvalue arising from the
grey area to assume the new identity of 𝜁2. After a short transient phase,
the bound state stabilises and 𝜁  and 𝜁  retain their identity, oscillating
1 2  
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Fig. 11. Initial collisions, and merger at 𝑡 ≃ 8.05, of two SHE solitons initialised with 
𝜙i = 𝜋∕4. (a) spacetime diagram, (b) evolution of the phase differences 𝛥𝜙(𝑡) as found
via the first and second local maxima of |𝑢| (see text and Fig.  10), evolution of 𝜁 Im1
(green) and 𝜁 Im2  (blue).

in phase opposition as we have observed before. These dynamics can
be seen in Video S3 of the Supplementary Material.

We have repeated the study above for all cases in Fig.  9. For 𝛥𝜙i =
±𝜋∕4 and ±𝜋∕2 it is clear that the binary soliton mergers occur when 
the solitons collide with a phase difference close to 0 mod 2𝜋. In the case 
of 𝛥𝜙i = ±3𝜋∕4 and 𝜋, a large number of mass-exchanging collisions
occur before the eventual merger. Either soliton can gain mass at the ex-
pense of the other, but the general tendency is for the larger-amplitude
soliton to accrete mass from the smaller. This leads to a pre-merger 
condition where the soliton amplitudes are very different, and hence
the phase is evolving very rapidly. The timescales of the merger and 
phase evolution become comparable, so it is hard to associate the
merger with one particular instance that 𝛥𝜙 ≈ 0. The hypothesis of
binary solitons mergers being associated with phase synchronisation 
is nevertheless consistent with these cases. Additionally, it is natural
to assume that it is easier for colliding solitons of very different sizes
to merge, because it is hard for a much smaller soliton to escape the 
potential created by a comparatively large soliton.

We have also repeated the study of binary soliton mergers, launch-
ing two identical NLSE solitons into the SHE, and scanning over initial
phase differences. Again, every initial condition leads to a single bound 
state, with mergers of the initial solitons happening quickly for 𝛥𝜙i = 0, 
delayed for 𝛥𝜙i = 𝜋, and at intermediate times for intermediate phase
differences. We find clear merger events when solitons collide with 
aligned phases, as well as cases where mergers are preceded by a large 
number of mass-exchanging collisions. For a summary of one such 
study, see Appendix  C.

Finally, we note that in Fig.  9(c)–(e) the reflection–phase inversion 
symmetry is broken in every case after the merger occurs, as evidenced
by the loss of bilateral symmetry between the respective subfigures (i) 
and (ii). We attribute this symmetry breaking due to numerical effects
and the discretised representation of the SHE being a chaotic dynamical 
system. At the mergers, which are large-amplitude, high-nonlinearity
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events, the differences in the phase space trajectories of systems (i) and 
(ii) are amplified and the trajectories diverge exponentially thereafter. 
Convergence studies show that increasing the spatial resolution 𝑁𝑥 or 
decreasing the timestep 𝑑𝑡 cause the reflection–phase inversion sym-
metry to be retained for longer after the merger, before the trajectories 
diverge. Crucially, increasing the spatial or temporal resolution does 
not influence the time of merger, indicating that this qualitative feature
of the dynamics is robust. As for Fig.  9(a) and (b), the breaking of
bilateral symmetry in both of these cases is a numerical artifact that
can be delayed by increasing the resolution. We expect that if we were 
to realise infinite precision, the case with 𝛥𝜙i = 𝜋 would never result in 
a merger. We conjecture that this would be the only case in which the 
binary soliton merger could be avoided up to arbitrary time. Likewise 
with infinite precision the system initialised with 𝛥𝜙i = 0 would remain 
symmetric for arbitrarily long times.

6. Other oscillating solitonic waves discussed in previous litera-
ture

The identification of the statistical attractor of the SHE as a bound 
state shares some commonalities with oscillating solitonic structures
that have been described in the literature. As we have noted, the bound 
state that we realise is the nonintegrable version of the Zakharov–
Shabat bound state [18].

The oscillating behaviour of solitons has also been observed experi-
mentally in Ref. [22], where the integrability of 1D NLSE is broken by
the existence of losses in optical fibres and by the pumping of lasers.
Here too, solitons with oscillating amplitudes are associated with a pair 
of DST eigenvalues.

Related observations were recently made in Refs. [36,37], where
two-soliton states (termed bi-solitons by those authors) were con-
structed in nonintegrable models of two-dimensional hydrodynamics, 
starting from bi-solitonic states of the NLSE. In their narrow-band limit, 
these hydrodynamic models are nonintegrable extensions of the NLSE.
The bi-solitons discussed there qualitatively resemble those of the SHE 
that we report on here, in terms of their profile, their oscillatory
spacetime dynamics, and in [37], the phase-opposed oscillations of 
their DST eigenvalues. This is strong evidence that the two-soliton 
states that we describe are generic attractors in weakly nonintegrable
models, for both spatially nonlocal (in our case) and spatially local (in
the hydrodynamic case) nonlinearities. However, we note that the DST
spectra reported in Ref. [37] have eigenvalues whose real parts have
opposite sign. Interpreting these as correlates of the soliton velocities, 
it appears that the bi-solitons reported are in fact counter-propagating 
solitons recirculating in a periodic box, in contrast to the bound states 
we describe here. Our results also show that coherent multi-solitonic 
bound states are generic, self-assembled structures that evolve out of 
chaotic processes (turbulence and collisions) and do not require careful 
preparation in order to produce them.

Further back in the literature, Kuznetsov et al. [35] studied an
amplified soliton (Eq. (2) multiplied by an overall factor) in the NLSE. 
This amplified soliton showed an initial relaxation, followed by peri-
odic oscillations in amplitude that eventually decayed towards a new
equilibrium soliton state at a rate ∼ 𝑡−1∕2. Their decay was associated 
with the use of absorbing boundary conditions that dissipated the
waves radiated from the initial relaxation. In our numerical experi-
ments reported in Section 4, the waves emitted by the relaxation of the 
initial soliton recirculate within the domain, and the oscillations remain 
stable and persistent. Indeed, the generation of the secondary soliton, 
via resonance of the primary soliton with packets of weak waves, relies 
on waves co-existing with the primary soliton. As said in Section 4, 
we leave it to future work to describe this process more fully and 
mathematically.

Moreover, Agafontsev et al. [31] studied the forced NLSE, in which 
a period of forcing created a state with many oscillating solitons with 
zero velocity. They termed the final state a bound-state soliton gas, 
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which they suggested could be a universal asymptotic state of inte-
grable turbulence. The DST of this universal state has many eigenvalues 
arranged densely in a line along the imaginary axis. By contrast, in the 
nonintegrable SHE we find that the universal attracting bound state 
consists of oscillating eigenvalues that are well spaced in the complex 
plane.

Another class of coherent, strongly nonlinear solutions of the NLSE 
are breathers: spatiotemporally periodic solutions of the NLSE, which 
have been studied, for example, in Refs. [38,39]. In the taxonomy
of these authors, breathers are distinguished from solitons by their
asymptotics: the breather solutions asymptotically tend to a nonzero
constant as |𝑥| → ∞. The theoretical DST spectrum of breathers 
involves a vertical branch cut in the complex plane to create the 
nonzero background, with isolated eigenvalues placed in different po-
sitions to generate different classes of breather [38]. When the DST is 
taken numerically, the branch cut is reproduced by a line of closely-
spaced eigenvalues. The principal difference with our work is that we 
consider the evolution of solitonic structures on a zero background. 
Consequently, a vertical branch cut does not feature in our DST spectra.

7. Conclusion and perspectives

Through numerical experiments in the SHE, we have demonstrated
the existence of a multi-soliton bound state, surrounded by weakly 
nonlinear waves. This state is reached by the system from a variety 
of random or coherent initial conditions, demonstrating that it is an 
attracting end-state of evolution in the SHE. Focusing for the most part
on the two-soliton bound state, we have thoroughly characterised it by
the use of the DST and (𝑘, 𝜔) diagnostics.

In addition, by launching coherent structures into the SHE, we have
identified basic processes involved with the creation of the secondary 
soliton of the bound state, and of the collision and merger of solitonic 
structures. Launching an NLSE soliton into the system, we identify the 
generation of the secondary soliton as a resonance process between
the primary soliton and packets of incoherent weak waves travelling 
with the same phase velocity. Launching two SHE solitons, we find that 
in order for them to merge, they must be in phase synchrony when 
they collide. If they collide with detuned phases, they nevertheless
exchange mass. On average this mass transfer is from the smaller 
soliton to the larger. We conjecture that the resonant generation of 
secondary solitons, soliton mergers, and collisions with gradual mass 
exchange, are all active when the system is launched from a multi-
soliton state that evolves into soliton turbulence. The overall effect is 
for a decreasing number of coherent structures to become increasingly
large, until the emergence of the final statistical attractor of a single
dominant bound state, surrounded by weak waves.

A crucial feature of the final attracting state of the SHE is that the 
dominant coherent structure appears capable of absorbing the majority
of the mass of the initial condition, which can be arbitrary. This 
arbitrariness means the final state cannot be a single soliton of the 
SHE, due to the latter having an amplitude fixed by the nonintegrability 
parameter 𝛽, see Eq. (4). Nor can the dominant structure be a single 
soliton of the NLSE. Although this soliton can be of arbitrary amplitude, 
it is not a natural soliton of the system and immediately radiates waves 
and undergoes a partial collapse, as we saw in Section 4. The remedy 
is for the system to assemble itself into a multi-soliton system, in which 
the solitons exchange mass back and forth periodically. This indicates 
that a final oscillating multi-soliton bound state may be a feature of 
nonlocal systems in general, as they possess a natural lengthscale which 
controls the width and amplitude of their solitons.

The work we have presented here opens up lines of enquiry in a few 
directions. Firstly, it remains to be shown whether the multi-soliton
bound state is in fact the universal statistical attractor predicted by 
previous works [6–8], for weakly nonintegrable systems in general. 
The observations we report here certainly suggest that it is a promising 
candidate.
13 
Secondly, we have offered heuristic explanations of many features 
of the two-soliton bound state, such as the periodic exchange of mass
between the two constituent solitons being responsible for their os-
cillations in amplitude, the resonant interaction between the primary 
soliton and waves to generate the bound state, and the merger process
requiring phase synchrony between the colliding solitons on energetic 
grounds. All of these require a better mathematical explanation.

Thirdly, we have demonstrated conclusively that understanding 
the dynamics of a nonintegrable system can be aided by use of the 
DST of a related integrable system. This suggests a programme of 
work to examine other near-integrable systems in this vein. Further 
understanding could be gleaned by using established DST perturbation
theory techniques in which the parameter encapsulating the weakness 
of nonintegrability (in our case 𝛽𝑘2) is used as a small expansion
parameter [40–42]. Such an approach has already been demonstrated 
in Ref. [37], to examine the trajectories of the DST eigenvalues in 
hydrodynamic equations related to the NLSE. Such an approach would 
be useful in characterising the bound state, but might not be amenable 
to analysing the long-term dynamics of the system from a turbulent 
initial condition, as in Section 3, as it self-assembles into the bound 
state.

Finally, we have demonstrated that the DST yields information 
that is fully consistent with the (𝑘, 𝜔) spectrum, a tool that enjoys
widespread use in the study of weak wave turbulence. It is also well 
known that the DST becomes asymptotically equivalent to the lin-
ear Fourier transform in the low-amplitude limit [19]. We hope that
diagnostic techniques of this kind can be adapted to uncover de-
tailed information about the interactions between coherent structures 
and weakly nonlinear waves, in systems where both components are 
present. To do so would make great strides towards developing a 
self-consistent theory of strongly and weakly nonlinear waves in non-
integrable systems—a long-term objective of the wider theory of wave 
turbulence [43].
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Fig. A.12. (a) Evolution of max𝑥(|𝑢(𝑥, 𝑡)|) for a sech-profile soliton launched into the 
HE with increasing values of 𝛽 = 0, 10−4 , 10−3 , 10−2. (b) Corresponding values of the
global nonintegrability measure 𝜖 = 1 −𝐻4∕𝐻NLSE

4  (defined in main text) based on the
quartic contributions of the Hamiltonian. (c) Local nonintegrability measure √𝛽∕𝓁1∕2
(defined in main text) based on the soliton width.

Appendix A. Single NLSE soliton launched into the SHE - variation
with 𝜷

All the results in the main body of this paper were obtained with 
the nonlocality parameter 𝛽 = 10−2. In this Appendix we examine the 
results of varying 𝛽 and give metrics for the deviation of the SHE away 
from integrability.

We return to the numerical experiments detailed in Section 4, and 
examine the evolution of a single NLSE soliton (2) with parameters
(𝐴, 𝑣, 𝑠, 𝜙) = (20, 4, 𝜋, 0), launched into the SHE with four different
values of 𝛽 = 0, 10−4, 10−3, 10−2. For all values of 𝛽 in our experiments, 
we observe that the injected soliton remains spatially coherent as it
moves through the system. However, in the cases where 𝛽 ≠ 0, the 
deviation from the NLSE leads to the initial emission of waves and a 
relaxation of the soliton profile, followed by a rebound and subsequent 
oscillations about a new mean value, just as we reported in Section 4
for 𝛽 = 10−2, c.f. Fig.  7(a). As we reduce 𝛽 from 10−2, the initial fall
in amplitude of the soliton is less dramatic, the mean value of the 
subsequent oscillations is closer to the initial amplitude of 𝐴 = 20, the 
oscillation period is smaller, and its excursions are less wide. This is 
seen in Fig.  A.12(a) which shows the time evolution of the soliton peak, 
max𝑥(|𝑢(𝑥, 𝑡)|).

This mollifying of the initial collapse and subsequent oscillations is 
natural as the deviation from integrability reduces with 𝛽. To quantify
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this, in Fig.  A.12(b) we plot 𝜖 = 1 − 𝐻4∕𝐻NLSE
4 , where 𝐻NLSE

4 =
−(1∕2) ∫ |𝑢|4 𝑑𝑥, is the quartic energy of the NLSE, evaluated at the 
field configuration 𝑢(𝑥, 𝑡) of the SHE. The value of 𝜖 quantifies the
global deviation of the SHE away from the NLSE, i.e., 𝜖 = 0 implies 
no deviation. Additionally, in Fig.  A.12(c) we show the ratio of the 
nonlocality lengthscale, 

√

𝛽, to 𝓁1∕2, the full-width half-maximum of 
the bound state that self-assembles in the system. This ratio is a local 
measure of the deviation from integrability associated with the solitonic
bound state; referring to Eq. (7), we should have 

√

𝛽∕𝓁1∕2 ≪ 1 for the 
local nonintegrability to be small.

Fig.  A.12 demonstrates that for 𝛽 < 10−2 the SHE remains weakly 
nonintegrable, as measured by the diagnostics 𝜖 and 

√

𝛽∕𝓁1∕2, for 
this initial condition. For 𝛽 = 10−2 we consider the weakness of 
nonintegrability marginal; certainly for larger 𝛽 the techniques and 
observations we have reported on in this paper would start to enter 
a strongly nonintegrable regime. For smaller 𝛽 the dynamics associated 
with nonintegrability are slower (e.g. the two-soliton bound state takes 
longer to form out of soliton turbulence, and two-soliton mergers) and 
weaker (e.g. for the one-soliton initial condition reported here, for 
𝛽 = 10−3 and 10−4, 𝜁2 remains within the grey region denoting solitons 
too wide to be realised within the domain).

It is precisely these observations that motivate us to study the 𝛽 =
10−2 case in the main body of this paper. Our assessment is that this 
value strikes a good balance between accessing novel and interesting 
dynamics, and retaining enough contact with the NLSE to enable us to 
use the DST.

Appendix B. Physicality threshold in the DST

In Section 2.2.1 we noted that the Fourier collocation method we 
employ to carry out the DST generates spurious eigenvalues close to the 
real axis. To highlight this, we defined a threshold 𝜁 Imth , corresponding to
an NLSE soliton whose full-width half-maximum is 𝐿∕4. Solitons with
imaginary parts smaller than 𝜁 Imth  would be wider than 𝐿∕4, and so their 
tails extend over our periodic domain and self-interact. We therefore 
discard the diagnostic information of DST eigenvalues falling beneath 
the threshold as being unphysical.

Other authors devise more numerically-motivated thresholds that 
are based on either extending 𝑢(𝑥, 𝑡) spatially by padding it with zeros, 
or decimating the field [31]. Taking the DST spectrum of the new field 
and comparing it the original spectrum defines a new threshold, below 
which the eigenvalues show significant deviation. We have checked this
method on representative states of the field that we report in this work, 
padding the field to length 3𝐿∕2 and decimating it to 3𝐿∕4 and taking 
the DST spectra. In all cases, the thresholds we calculate by comparing 
these spectra to the original spectrum agree with 𝜁 Imth  by an order 1
constant. We retain our method of calculating the threshold as it is 
physically motivated and easy to compute, and the results of this paper 
depend on the location and movement of eigenvalues that are far from
the threshold.

Appendix C. Soliton mergers—two NLSE solitons launched into
the SHE

In Section 5 we presented the results of two SHE solitons collid-
ing, and showed that phase synchronisation is necessary for them to 
merge on collision. To come to these conclusions we have studied the 
collisions of many other coherent structures.

As an example, in Fig.  B.13 we present a study that is similar to Fig. 
9, but initialised with two NLSE solitons with amplitudes 𝐴 = 20 and 
velocities 𝑣 = ±0.5. We scan over the initial phase differences between 
the solitons and see once more that mergers are promoted for 𝛥𝜙i = 0, 
inhibited for 𝛥𝜙i = 𝜋, and occur at intermediate times for intermediate 
𝛥𝜙i. We have carried out similar analysis to Fig.  11 and found once
more that phase synchronisation is necessary for the merger of solitonic
structures, resulting in a bound state, as was observed in Section 5.
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Fig. B.13. As per Fig.  9 for two NLSE solitons launched into the SHE.
 
 

 

 

 

 

 

 

 
 

 

 

 

 

 

Some differences between Figs.  B.13 and 9 are apparent. As the 
NLSE solitons initially radiate waves, as discussed in Section 4, the 
background is much noisier in Fig.  B.13 than in Fig.  9. The break 
in reflection–phase inversion symmetry also occurs earlier, probably
because the amplitudes of the injected solitons are bigger and so
their collisions, whether they result in mergers or not, lead to large-
amplitude spikes in the field, for which the nonlinearity is large. These 
lead to comparatively large numerical differences between nominally
symmetrical setups, which then get amplified due to chaotic dynamics.

Appendix D. Supplementary data

Supplementary material related to this article can be found online 
at https://doi.org/10.1016/j.physd.2025.134687.

Data availability

No data was used for the research described in the article.
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