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ABSTRACT
Birt-Hogg-Dubé syndrome (BHDS) is the most common 
monogenic cause of pneumothorax. Most affected families 
have pathogenic variants in the FLCN gene. Using large 
genomic registries (UK Biobank (UKB), 100,000 Genomes 
Project and East London Genes & Health) including 
>550 000 individuals, we demonstrate that the frequency 
of clinically validated loss-of-function FLCN variants is 1 in 
2710 to 4190. While the lifetime risk of pneumothorax in 
FLCN mutation carriers in the UKB and a BHDS clinical cohort 
was substantial (28.4% and 37.3%, respectively, to age 65 
years), the lifetime risk of renal cancer was significantly lower 
in UKB than in BHDS patients (1% vs 32.1%). These findings 
highlight the importance of clinical context in managing 
individuals with FLCN mutations.

INTRODUCTION
Birt-Hogg-Dubé syndrome (BHDS) is an autosomal 
dominant disorder comprising benign skin tumours, 
cystic lung disease, pneumothorax and kidney cancer.1–3 
The population prevalence of BHDS is uncertain, 
but frequencies around 1 in 200 000 are commonly 
quoted (https://www.orpha.net/en/disease/detail/122?​
name=FLCN&mode=gene). Pulmonary cysts occur 
in 70–92% of patients but are asymptomatic unless a 
pneumothorax occurs (30–51%, median age of 30–38 
years).4 Renal cell carcinoma (RCC) occurs in 12–23% 
of individuals (median age 46–56 years) and can be 
multifocal.4–6 Early diagnosis of BHDS enables RCC 
surveillance. BHDS is caused by pathogenic variants 
(mostly loss-of-function) in the FLCN gene3 and >190 
pathogenic variants have been identified with an esti-
mated lifetime penetrance of 84–95%.4 7 Cutaneous 
fibrofolliculomas on the face and upper trunk are often 
overlooked.2 To define the prevalence and penetrance 
of BHDS, we investigated the frequency of FLCN 
mutations in large-scale genomic database research 
studies.

METHODS
We analysed exomes/genomes of 556 898 individuals 
recruited to the 100,000 Genomes Project (100kGP),8 
the UK Biobank (UKB)9 and East London Genes & 
Health (ELGH).10 Variants in the FLCN gene region 
were extracted from sequencing data, annotated and 
filtered to prioritise loss-of-function (predicted to 
cause a premature stop codon, a frameshift, or abolish 
a canonical splice site). Variants were then reviewed 
for pathogenicity and class-categorised according to 
UK clinical diagnostic standards. Their prevalence was 

then calculated for each cohort separately. We calcu-
lated age-related risks for FLCN mutation carriers 
comparing UKB to a UK clinical series of BHDS 
patients (128 carriers from 43 families).6 Further 
details on the clinical cohort, datasets, data processing 
and analysis can be found in the online supplemental 
methods.

RESULTS
Across the three studies, we identified 155 individuals 
from 556 898 genomes with 45 different pathogenic 
loss-of-function FLCN variants (online supplemental 
Table S1:figure S1). After correcting for potential 
causes of ascertainment bias (online supplemental 
methods), the prevalence of unrelated individuals with 
a loss-of-function FLCN variant in the rare disease arm 
of the 100kGP was 1 in 2710 (95% CI 1650 to 4480) 
(table 1). In the UKB cohort, 117 people (78 unrelated) 
had pathogenic loss-of-function FLCN variants giving 
the estimated prevalence of 1 in 4190 (95% CI 3360 
to 5230) (table 1). The ELGH cohort gave a prevalence 
estimate of 1 in 1490 (95% CI 680 to 3240; six indi-
viduals with three loss-of-function variants) (table 1).

We next investigated the frequency of BHDS-related 
manifestations (pneumothorax and RCC) in individ-
uals with a pathogenic loss-of-function FLCN mutation 
in 100kGP and UKB cohorts (no clinical information 
available for ELGH). In 100kGP, 3.1% (1/32) had a 
history of pneumothorax (when aged <28). In the 
UK Biobank, 25.6% (30/117) had a pneumothorax 
(median 47 years, range 23–83). The frequency of 
RCC in FLCN mutation carriers was 15.6% (5/32, 
median age 61, range 25–77 years) and 5.1% (6/117, 
median age 72, range 46–80 years) in the 100kGP 
and UKB respectively. In UKB, two individuals with a 
pathogenic FLCN mutation had both a pneumothorax 
and an RCC. Age-related risks of pneumothorax and 
RCC in the UKB cohort were calculated and compared 
with those from a UK clinical series of BHDS patients 
(online supplemental Table S2 and S3).6 Though the 
age-related risk of pneumothorax was higher in BHDS 
patients than in UKB participants to age 65 years 
(37.3% and 28.4%, respectively), the difference was 
not significant (p=0.2154) (figure 1A). However, the 
lifetime risk for RCC in FLCN mutation-carrying 
individuals was significantly lower in the UKB cohort 
(1%, 95% CI 0% to 2.8%) than in the BHDS patient 
cohort (32.1%, 95% CI 18.6% to 43.4%) at age 65 
years (p=0.0005) (figure 1B). Age-related risks were 
not available for 100kGP participants.

    1Yngvadottir B, et al. Thorax 2025;0:1–3. doi:10.1136/thorax-2024-221738
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DISCUSSION
Although BHDS has been estimated to affect only 1 in 200 000 people 
(https://www.orpha.net/en/disease/detail/122?name=FLCN&​
mode=gene), our analysis of genomic data from 556 898 individuals 
suggests that pathogenic FLCN variants are far more common (1 
in 2710 to 4190). These estimates are conservative as we excluded 
related individuals, those that might have been recruited because of 
a BHDS-related complication (100kGP) and focused exclusively on 
loss-of-function FLCN variants. Our clinical cohort data (100kGP) 
are consistent with a smaller genomic study of 135 990 individuals 
from a healthcare cohort in the USA in which truncating variants 
in FLCN were detected in 1 in 3234 individuals.11 Importantly, 
the UKB cohort may better represent the prevalence in a general 
population.

Together, the results of genomic studies in healthcare (100kGP 
and Savatt et al11) or population-based cohorts (UKB) reveal that 
pathogenic FLCN variants are far more common than generally 
appreciated. Other studies have found that clinically ascertained 
cohorts have higher penetrance than population-based studies.12 13 
However, while we found some evidence of reduced penetrance for 
pneumothorax in population-ascertained FLCN mutation carriers 
than in a clinical BHDS patient cohort, this did not reach statistical 
significance for lifetime risk. In contrast, there was a significant 
difference in lifetime risks of RCC between BHDS patients and UKB 
participants (32.1% and 1% respectively; p=0.0005). These find-
ings would be consistent with the hypothesis that environmental or 
genetic modifiers in families ascertained with clinically diagnosed 
BHDS result in a higher penetrance for RCC.

There are some limitations to our analysis. We were unable to 
assess the frequency of skin lesions or lung cysts in participants with 
FLCN mutations. The absence of renal surveillance in the popula-
tion cohort might contribute, in part, to the lower ascertainment/
later diagnosis of renal cancer in these individuals. The interna-
tional statistical classification of diseases and related health prob-
lems, 10th revision (ICD10) code ‘C64 - malignant neoplasm of 
kidney, except renal pelvis’ does not include cases of oncocytoma 
and we are unable to distinguish between the different histological 
subtypes of RCC. While the ICD10 code ‘D30.0 Benign neoplasm: 
Kidney’ would capture oncocytomas, this code was only reported 
for 3 out of 502 369 UKB participants, none of which had patho-
genic FLCN mutations. We further note that in our clinical series 
of BHDS patients, 93% of patients with a renal tumour presented 
with RCC, indicating that our results are unlikely to be affected by 
large numbers of individuals with oncocytomas not being identified 
in UKB. UKB participants were aged >40 years and early onset, 
fatal cases of RCC would have been excluded from participation 

(though most RCCs in BHDS occur after age 50).2 6 The finding 
that FLCN mutation carriers are much more common than previ-
ously supposed should encourage the application of genetic testing 

Table 1  LoF FLCN variants in the three studied cohorts. Numbers were rounded up to three significant figures

100kGP UKB ELGH

Prevalence of LoF FLCN variants 1 in 2710*
(95% CI 1640 to 4480)

1 in 4190†

(95% CI 3360 to 5230)
1 in 1490
(95% CI 680 to 3240)

Frequency of LoF FLCN variants 0.0368%
(95% CI 0.0223% to 0.0608%)

0.0239%
(95% CI 0.0191% to 0.0298%)

0.0673%
(95% CI 0.0308% to 0.1467%)

Total number of individuals with LoF FLCN variants 32 117 6

Total number of unrelated individuals with LoF FLCN variants 15 78 6

% FLCN mutation carriers with pneumothorax 3.1% (1/32) 25.6% (30/117) N/A

% FLCN mutation carriers with RCC 15.6% (5/32) 5.1% (6/117) N/A

N/A: we do not have access to phenotypic information in the ELGH cohort.
*Removed related participants and those recruited to 100kGP for pneumothorax and/or cancer.
†Removed related participants.
ELGH, East London Genes & Health; 100kGP, 100,000 Genomes Project; LoF, loss-of-function; UKB, UK Biobank.

Figure 1  Age-related manifestations of Birt-Hogg-Dubé syndrome 
(BHDS). Kaplan-Meier survival curves (with 95% CI) for age-related risk 
of developing (A) pneumothorax and (B) renal cell carcinoma (RCC) in 
patients with BHDS with pathogenic loss-of-function FLCN mutations 
(blue line) versus UK Biobank participants with pathogenic loss-of-
function FLCN mutations (red line).

2 Yngvadottir B, et al. Thorax 2025;0:1–3. doi:10.1136/thorax-2024-221738
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for BHDS in individuals with familial or recurrent pneumothorax or 
familial or multiple RCC, even if a family history or other features 
of BHDS are absent. However, when a FLCN pathogenic variant is 
detected as an incidental/secondary finding, while the risks of pneu-
mothorax are appreciable, the application of screening protocols for 
RCC (eg, annual renal MRI) based on penetrance estimates from 
clinical BHDS cohorts might be less cost-effective than less intense 
screening (eg, biennial renal ultrasonography). Prospective follow-up 
to document the complication risks in individuals with an incidental 
germline pathogenic FLCN mutation identified by genomic analysis 
is required to delineate the optimal clinical management of such 
individuals.

X Stefan J Marciniak @Prof_Marciniak
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