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A B S T R A C T

Age-related diseases are often associated with a disruption of RedOx balance that can lead to lipid peroxidation 
with the formation of oxysterols, especially those oxidized on carbon-7: 7-ketocholesterol (also known as 7-oxo- 
cholesterol) and 7β-hydroxycholesterol. Like cholesterol, these oxysterols have 27 carbons, they are composed of 
a sterane nucleus and have a hydroxyl function in position 3. The oxysterols 7-ketocholesterol and 7β-hydrox-
ycholesterol are mainly formed by cholesterol autoxidation and are biomarkers of oxidative stress. These two 
oxysterols are frequently found at increased levels in the biological fluids (plasma, cerebrospinal fluid), tissues 
and/or organs (arterial wall, retina, brain) of patients with age-related diseases, especially cardiovascular dis-
eases, neurodegenerative diseases (mainly Alzheimer’s disease), ocular diseases (cataract, age-related macular 
degeneration), and sarcopenia. Depending on the cell type considered, 7-ketocholesterol and 7β-hydrox-
ycholesterol induce either caspase- dependent or -independent types of cell death associated with mitochondrial 
and peroxisomal dysfunctions, autophagy and oxidative stress. The caspase dependent type of cell death asso-
ciated with oxidative stress and autophagy is defined as oxiapoptophagy. These two oxysterols are also inducers 
of inflammation. These biological features associated with the toxicity of 7-ketocholesterol, and 7β-hydrox-
ycholesterol are often observed in patients with age-related diseases, suggesting an involvement of these oxy-
sterols in the pathophysiology of these disorders. The cytotoxic effects of 7-ketocholesterol and 7β- 
hydroxycholesterol are counteracted on different cell models by representative nutrients of the Mediterranean 
diet: ω3 and ω9 fatty acids, polyphenols, and tocopherols. There are also evidences, mainly in cardiovascular 
diseases, of the benefits of α-tocopherol and phenolic compounds. These in vitro and in vivo observations on 7- 
ketocholesterol and 7β-hydroxycholesterol, which are frequently increased in age-related diseases, reinforce 
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the interest of nutritherapeutic treatments to prevent and/or cure age-related diseases currently without effective 
therapies.

1. Cholesterol and cholesterol autoxidation products: formation 
and inactivation of 7-ketocholesterol and 7β-hydroxycholesterol

Oxysterols are molecules obtained by the oxidation of cholesterol; 
they can be formed endogenously (by autoxidation, via specific enzymes 
or by both processes), and/or provided through the diet such as dairy, 
egg, and meat products [1]. Like cholesterol, oxysterols consist of a 
sterane nucleus, and an aliphatic side chain connected to the nucleus at 
carbon-17 (https://lipidmaps.org/resources/lipidweb/index.php?page 
=lipids/simple/chol-der/index.htm). Oxidation of cholesterol can take 
place by the addition of oxygen to the sterane nucleus and/or the side 
chain either by autoxidation (type I or II autoxidation) [2,3], or by en-
zymes, most commonly Cytochrome P450 enzymes [1,4]. Type I 
autoxidation concerns oxidation reactions involving reactive oxygen 
species (ROS) and/or reactive nitrogen species (RNS) (superoxide anion 
(O2

●-), hydroxyl radical (HO●), nitric oxide (NO), and peroxynitrite 
(ONOO-). ROS and RNS can be generated by cellular metabolism, or by 
their decomposition into hydroxyl radicals by the dismutation of two 
superoxide anions into hydrogen, or by the Fenton reaction (H2O2 +

Men+ → HO● + OH- + Me(n+1)+) where Me is a transition metal such as 
copper, iron, or aluminum; type II autoxidation concerns non-radical 
attacks by oxygen singlet (1ΔgO2 or 1O2), hypochlorous acid (HOCl; 
corresponding oxyanion: hypochlorite (ClO-) or ozone (O3) [2,5]. Oxy-
sterols resulting from oxidation on the sterane nucleus and/or on the 
side chain can be increased or decreased in several severe diseases: 
age-related diseases (cardiovascular, brain and ocular diseases, sarco-
penia) [6], metabolic diseases (type 2 diabetes, metabolic syndrome) [7, 
8], and genetic diseases (X-linked adrenoleukodystrophy (X-ALD), Nie-
mann Pick disease) [9,10]. Several oxysterols, especially those oxidized 
on the side chain, interact with cellular receptors [11]. They can be li-
gands or activators of the following receptors: (i) nuclear receptors, such 
as liver X receptors (LXRs) α or β [12] and retinoic acid receptor-related 
orphan receptor α and γ (RORα [NR1F1] and RORγ [NR1F3]) [13], (ii) 
cytoplasmic receptors such as SREBP (sterol regulatory element binding 
transcription protein) [14], NPC1 (NPC intracellular cholesterol trans-
porter 1 / Nieman-Pick type C1) [15], FXR (NR1H4, farnesoid X receptor 
alpha) [16], oxysterols binding proteins (OSBPs), OSBPs-related pro-
teins (ORPs) [17,18] and cholesterol epoxide hydrolase (ChEH) (also 
named anti-estrogen binding site (AEBS); ChEH is an hetero-oligomeric 
complex comprising 3beta-hydroxysterol-delta(8)-delta(7)-isomerase 
(D8D7I) and 3beta-hydroxysterol-delta(7)-reductase (DHCR7)) [19] as 
well as (iii) membrane receptors such as receptor tyrosine kinases [20]
and the Epstein–Barr virus-induced gene 2 receptor (EBI2, also known as 
GPR183) [21–23]. Among the oxysterols involved in age-related dis-
eases, there are, among others, those which are formed mainly by 
autoxidation on the carbon 7, such as 7-ketocholesterol (7KC) and 
7β-hydroxycholesterol (7β-OHC). It is important to underline that 7KC 
can also be formed enzymatically from 7β-OHC by the hydroxysteroid 
dehydrogenase type 2 (11β-HSD2; HSD11B2 gene, OMIM 614232) 
which is mainly expressed in the kidney, colon, and placenta [24]. In 
addition, in patients with cerebrotendinous xanthomatosis or with 
Smith Lemli Opitz (SLO) syndrome, 7KC can be formed from 7-dehydro-
cholesterol (a direct precursor in cholesterol biosynthesis belonging to 
the Kandutsch–Russel pathway) [25] by the enzyme cholester-
ol-7α-hydroxylase (CYP7A1) [26,27]. In addition, the enzyme hydrox-
ysteroid dehydrogenase type 1 (11β-HSD1; HSD11B1 gene, OMIM 
600713) reduces 7KC to 7β-OHC [28]. Noteworthy, during lipid per-
oxidation, which affects all lipids, cholesterol is less susceptible to free 
radical attacks than polyunsaturated fatty acids in body fluids, while the 
opposite occurs at the cellular level [29]. The preferential site of 
oxidation of cholesterol by highly reactive species is at C7 because a 

relatively weak carbon–hydrogen bond. Therefore, increased levels of 
7KC and 7β-OHC in the body fluids, as well as tissues and organs affected 
by the diseases is a sign of strong oxidative stress; however, in contrast to 
plasma oxidation, cellular cholesterol is more susceptible to oxidation 
than cellular linoleates [29]. The detailed mechanisms leading to the 
formation of 7KC but also 7β-OHC, and the associated metabolites, have 
been described by several authors [2,3,30,31]. The major oxysterol 
metabolite routes for 7KC and 7β-OHC inactivation are esterification, 
sulfation, oxidation, and reduction. These different aspects of biogenesis 
and inactivation of 7KC and 7β-OHC are summarized in Fig. 1. Metal 
ions (Men+) which are involved in the Fenton reaction, where Me is a 
transition metal (copper, iron, or aluminum) also contribute to the 
biogenesis of 7KC and 7β-OHC via HO● production, not only in the body 
but also during the processing of industrial meat [32].

Currently, several data support that 7KC and 7β-OHC, as well as their 
metabolites and degradation products, can constitute suitable bio-
markers for several pathologies especially age-related diseases and in 
the ageing process [8,33,34]. They could be also of interest as bio-
markers in some “civilization” diseases (diabetes, metabolic syndrome) 
[35] and in food industry involved in the production of more or less 
highly processed foods to evaluate food quality: indeed, long term 
storage as well as the industrial methods used to prepare food can in-
fluence autoxidation and have detrimental consequences on food qual-
ities [36].

2. Required precautions and available methods for the 
identification and quantification of 7-ketocholesterol and 7β- 
hydroxycholesterol

To evaluate the part taken by 7KC and 7β-OHC in cell and tissue 
samples, reliable and sensitive analytical methods are required. These 
methods need important expertise, and several cautions must be taken 
both for sample collection and storage, as well as during the pre- 
analytical and analytical steps to avoid artefactual results. The anal-
ysis of 7KC and 7β-OHC encounters numerous challenges due most often 
to their low concentrations in biological fluids and tissues, typically in 
the nanomolar range, with cholesterol coexisting at concentrations 
104–106 times higher in the same samples. Concentrations in the 
micromolar ranges have however been observed in advance stages of 
patients with the most aggressive forms of X-linked adrenoleukody-
strophies (X-ALD) [9] as well as in patients with acid SMase-deficient 
Niemann-Pick disease [37]. High amounts of these oxysterols can also 
be observed in brain lesions of patients with Alzheimer’s disease [38]
and in the biological fluids (cerebrospinal fluid, plasma, serum) [39,40]. 
In addition, it is important to underline that after fat-rich meals, very 
high levels of 7KC can be found in the plasma [41,42] suggesting that 
regular consumption of fat could progressively favor the accumulation 
of this oxysterol in various tissues and gradually trigger important 
dysfunctions, since 7KC has strong pro-oxidant and inflammatory ac-
tivities [6,43]. 7KC concentration is also strongly increased in the 
plasma of patients with chronic artery disease (CAD), and it is repro-
ducibly detected in more than 90 % of patients with CAD [44]. In 
addition, multiple regression analysis revealed that 7KC was an inde-
pendent variable for CAD progression [45]. It is important to underline 
that presence of high concentrations of cholesterol not only disrupts 
chromatography and contaminates instruments, but also poses the risk 
of autoxidation during sample preparation, leading to the artifactual 
formation of oxysterols such as 7KC and 7β-OHC. Therefore, care must 
be taken for accurate identification and quantification of 7KC and 
7β-OHC. Several chromatography-based analytical methods have been 
developed to avoid this problem [1–4]. New analytical methods 
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available on tissues samples including antibody - based methods [5], as 
well as mass spectrometry imaging of oxysterols and cholesterol have 
been applied for this purpose [46,47], with advantages and limitations.

Thorough understanding of the fundamental levels of 7KC and 7β- 
OHC is closely tied to the experimental conditions employed throughout 
the analytical process. This encompasses various stages such as sample 
collection, extraction, fractionation, separation, detection, and quanti-
fication [6]. Notably, the strategies applied in sample preparation such 
as the type of sample collection tubes used, the number of freeze-thaw 
cycles, presence of antioxidant compounds and storage conditions 
significantly contribute to variability, impacting the stability of samples, 
as well as the overall recovery and profile of 7KC and 7β-OHC.

Oxysterol analysis has been successfully performed using mass 
spectrometry (MS) methods coupled with gas or liquid chromatographic 
separation. Over the years, research has been advanced to tackle com-
mon analytical challenges of oxysterol analysis with the development of 
high-sensitive mass spectrometers. Different approaches such as chem-
ical derivatisation to improve the ionisation characteristics of the 7KC 
and 7β-OHC for subsequent MS detection have been successfully applied 
in literature [7]. Derivatisation is often employed to enhance the vola-
tility of oxysterols for efficient separation. However, this method re-
quires a multi-step sample preparation process, making it 
time-consuming and prone to potential errors.

Various liquid chromatography methods, including reverse-phase 
and normal-phase chromatography, have been developed for sepa-
rating 7KC and 7β-OHC [4]. Tandem mass spectrometry (MS/MS) en-
hances specificity by providing structural information through 
fragmentation patterns [8]. Another widely used method in MS is the 
multiple reaction monitoring (MRM) method that allows to selectively 
detect and quantify 7KC and 7β-OHC based on the screening of specified 
precursor-to-fragment ion transitions [2]. Since this method uses tar-
geted approach, it is not possible to screen for unknown oxysterols.

MS methods are superior to high-performance liquid chromatog-
raphy (HPLC) coupled with UV or fluorescence detection. However, 
HPLC methods remains a valuable option, as this provides a fast, simple 

technique to separate, identify, and quantify most of the oxysterols [9], 
particularly for laboratories without access to advanced mass 
spectrometers.

ELISA assays offer a high-throughput and cost-effective alternative 
for screening many molecules. However, its specificity can be a concern 
for oxysterols, as the antibodies used may cross-react with structurally 
similar sterol compounds. For localization studies, immunohistochem-
istry allows researchers to visualize the distribution of 7KC within tis-
sues. This technique provides valuable insights into the spatial 
distribution of 7KC in cells and tissue [5]. However, the methods must 
be used with care and adapted to the types of cells and tissue samples 
studied. Currently, the potential of mass spectrometry imaging (MSI) to 
study cholesterol, its precursors, and its metabolites, including oxy-
sterols, in human biopsies is a major challenge [47].

Despite the advancements in oxysterol analysis, challenges persist, 
such as the need for stable isotope-labelled internal standards for ac-
curate quantification and the isomer interference during separation of 
7α-hydroxycholesterol and 7β-OHC. Future research may focus on 
refining existing methods, exploring novel techniques, and developing 
standardized protocols to ensure reproducibility and comparability 
across studies [48,49]. The identification and quantification of 7KC and 
7β-OHC are pivotal for unravelling their roles in health and disease. 
Researchers must carefully select and validate analytical methods based 
on the specific requirements of their investigations, balancing sensi-
tivity, specificity, and practical considerations. Continued advance-
ments in analytical techniques will undoubtedly contribute to a deeper 
understanding of the complex roles played by these oxysterols in cellular 
processes and disease pathogenesis including age-related diseases and 
ageing process [49,50].

3. Identification of 7-ketocholesterol and 7β-hydroxycholesterol 
in patients with age-related diseases

A more or less pronounced oxidative stress is a common feature of 
age-related diseases [51–53]. Consequently, several biomarkers of 

Fig. 1. Oxysterols formed by autoxidation. Details about the formation of 7-ketocholesterol (7KC) and 7β-hydroxycholesterol (7β-OHC) are given in the following 
references: Iuliano in 2011, and Zerbinati & Iuliano in 2017 [2,3]; Anderson et al. in 2020 [30] and Ghzaiel et al. in 2022 [31].
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oxidative stress have been observed in these diseases, including lipid 
peroxidation biomarkers which reflect fatty acid oxidation (increased 
level of malondialdehyde (MDA) [54], 4-hydroxynonenal (4-HNE) [55], 
F(2)-isoprostanes [56], 9-hydroxy-10,12-octadecadienoic acid and 9-hy-
droxy-10,12-octadecadienoic acid (HODEs) [57], cholesterol autoxida-
tion products (oxysterols: 7KC and 7β-OHC), and enhanced levels of 
carbonylated proteins [58] and/or advanced glycation end products 
(AGEs) [59]. Overall, oxysterols, formed either by autoxidation and 
enzymatically, could be useful as biomarkers of aging to evaluate bio-
logical aging compared to chronological aging [33,34]. Whereas chro-
nological age corresponds how old we are, biological age is how old our 
cells are depending on internal and external factors [60]. As a result, 
there is not necessarily a correlation between chronological and bio-
logical age, and thus we can appear younger or older than our age. Some 
biomarkers of oxidative stress, especially 7KC and 7β-OHC, are most 
often described in biological fluids (cerebrospinal fluid, plasma) and in 
the cells and/or tissues of organs (atheroma plaques, heart, arteries and 
blood vessels, lens, retina, brain) affected by the disease [6,61]. In 
cardiovascular diseases, enhanced levels of 7KC and 7β-OHC have been 
described both in the plasma and atheroma plaques where apoptotic 
cells can be simultaneously detected [8,62]. It has been clearly estab-
lished that the cytotoxic components of oxidized low-density lipopro-
teins (LDL) were 7KC and 7β-OHC [63]. The role of 7KC and 7β-OHC is 
also widely suspected in vascular aging [64,65]. In age related macular 
degeneration and cataract enhanced levels of 7KC are found in drusen at 
the retinal level [66] and in the lens [67] respectively. In Alzheimer’s 
disease enhanced levels of 7KC and 7β-OHC have been observed in brain 
lesions [68], and in the cerebrospinal fluid and plasma [39,69]. In sar-
copenia, significant increased levels of 7β-OHC have been identified [70, 
71]. In breast cancer, which is the most common cancer in young and 
post-menopausal women, a significant increase in the level of 7KC was 
observed in the samples following tumor removal and the start of 
therapy compared to the sampling before [72]. In vitro data suggest that 
7KC could modulate the efficiency of chemotherapeutic treatment 
(doxorubicin, tamoxifen) in breast cancer cells: 7-KC stimulates the 
efflux function of P-glycoprotein and reduced intracellular doxorubicin 
accumulation in MCF-7 human breast cancer cells (estrogen receptor 
(ER) positive cells); 7KC slightly decreases the efficacy of tamoxifen in 
MCF-7 cells, while an increased effect of tamoxifen and higher caspase 
3/7 activity was observed in the human breast cancer BT-20 cell line (ER 
negative cells) [73,74]. Some authors suggested that 7KC and de-
rivatives, due to its biological activities (stimulation of immune 
response, cell death induction) could be used as anti-tumoral drugs [75, 
76]. In severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 
infection often observed in patients over 65 years old, enhanced levels of 
7KC and 7β-OHC were reported, and the contribution of these oxysterols 
in the pathophysiology of this infectious disease still remains not well 
understood [70,77]. However, accumulation of oxysterols, including 
7KC, in the erythrocytes of COVID-19 patients has been proposed as a 
biomarker for case severity [78]. Altogether, data on the potential 
involvement of 7KC and 7β-OHC in frequent age-related disorders is 
questionable since these oxysterols favor oxidative stress, inflammation 
and cell death which are hallmarks of several age-related diseases. The 
biological characteristics of these oxysterols also open new perspectives 
with therapeutic applications in several human diseases including 
age-related diseases, infectious and inflammatory diseases, and cancers 
[79,80].

3.1. Biological activities of 7-ketocholesterol and 7β-hydroxycholesterol

The biological activities of 7KC and 7β-OHC were initially described 
on cells of the vascular wall (endothelial cells and smooth muscle cells) 
and human monocytic U937 cells in the context of cardiovascular dis-
eases [81–83] and cancer [84,85], respectively. Subsequently, the bio-
logical activities of 7KC and 7β-OHC were studied on retinal epithelial 
cells, nerve cells, skeletal muscle cells and bone cells, since enhanced 

levels of these oxysterols were found in patients with cardiovascular 
diseases, age-related macular degeneration, Alzheimer’s disease, sar-
copenia and osteoporosis [86]. Noteworthy, 7KC and 7β-OHC are strong 
inducers of cell death, and the mode of cell death induced can be 
caspase-dependent or -independent, depending on the cell type consid-
ered. However, this cell death is always associated with an increased 
production of reactive oxygen species (ROS) and a rupture of RedOx 
homeostasis, as well as with organelle dysfunctions (mitochondria, 
peroxisome and/or lysosome) [86] (Fig. 2). In some cells, 7KC and 
7β-OHC can also induce inflammatory processes leading to the secretion 
of inflammatory cytokines [62] stimulation of the expression of adhe-
sion molecules [87–89] and activation of matrix metalloproteinase [90, 
91]. In several cell types from different species, 7KC and 7β-OHC induce 
a mode of cell death defined as oxiapoptophagy, described for the first 
time in human monocytic cells U937 in 2003 [92], which is considered 
as an hybrid cell death type [93], and could favor vascular diseases [94]. 
In U937 cells, oxiapoptophagy is associated with cytokine-dependent 
inflammation characterized by a secretion of MCP-1, MIP-1β, TNF-α, 
and/or IL-8 secretion, the latter involving the MEK / ERK1/2 signaling 
pathway [62]. This type of cell death, which includes the activation of 
oxidative stress, apoptosis induction, and is associated with autophagic 
criteria (oxiapoptophagy: OXIdative stress + APOPTOsis + autoPHAGY) 
[95] has been observed in the presence of 7KC and/or 7β-OHC on mu-
rine nerve cells (oligodendrocytes, glial cells, neuronal cells) [96–99], in 
bone marrow mesenchymal stem cell from patients with acute myeloid 
leukemia [100] and in the murine osteoblastic MC3T3-E1 cell line 
[101]. Noteworthy, this type of cell death can also be induced by other 
oxysterols. Thus, oxiapoptophagy has been described on 158 N oligo-
dendrocytes in the presence of 24S-hydroxycholesterol [102], in 
myeloma cell in the presence of 5,6-epoxycholesterol [103], with 
25-hydroxycholesterol in murine L929 fibroblasts [104], and with 7α, 
25-dihydroxycholesterol in murine chondrocytes both in vitro and in vivo 
[105]. The detailed signaling pathways associated with 7KC- and 
7β-OHC-induced oxiapoptophagy are well described by Vejux et al. [86]
and Nury et al. [5] which makes it possible i) to consider identifying 
pharmacological targets and ii) to search for natural or synthetic mol-
ecules as well as mixtures of molecules (such as edible oils) to oppose the 
toxicity of these compounds [5,106]. Currently, there is also preliminary 
data supporting that oxiapoptophagy can be induced by natural mole-
cules, which are not sterols. In C6 rat glioma cells, 7β-OHC induces a 
mode of cell death by autophagy (lethal autophagy) associated with 
oxidative stress and organelle dysfunctions [107]. In other cells, such as 
human fibroblasts, 7KC and 7β-OHC induces a mode of cell death 
considered as necrosis [82] and in human retinal ARPE-19 cells, both 
caspase-dependent and -independent modes of cell death have been 
reported [108–111] with a simultaneous induction of IL-8 secretion 
[109]. In the immortalized mouse myoblast C2C12 cell line, 7KC and / 
or 7β-OHC induce a caspase-independent mode of cell death associated 
with ROS overproduction, mitochondrial and peroxisomal changes [70, 
71] evocating ferroptosis [112,113] with a simultaneous secretion of 
IL-6, IL-8, and TNF-α [71]. Fig. 3 summarizes the main cytotoxic effects 
of 7β-OHC (50 µM; 24 h of treatment) [70,71] observed on C2C12 cells. 
The 7β-OHC-induced cell death, was measured by flow cytometry after 
staining with fluoresceine diacetate (FDA); it was associated with loss of 
transmembrane mitochondrial potential (ΔΨm), measured using 3, 
3′-dihexyloxacarbocyanine iodide (DiOC6(3)); overproduction of reac-
tive oxygen species (ROS) was evaluated on whole cells and at the 
mitochondrial level after staining with dihydroethidine (DHE) and 
MitoSOX red, respectively, and peroxisomal changes was evaluated by 
transmission electron microscopy. Whereas few peroxisomes were 
observed in untreated C2C12 cells, several peroxisomes localized in 
vacuolar structures, evocating pexophagy [114,115], were detected in 
7β-OHC-treated cells. Under treatment with 7KC and 7β-OHC, whatever 
the type of cells used and the type of cell death induced, an over-
production of ROS is always observed, associated with mitochondrial 
and peroxisomal dysfunctions.
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Fig. 2. Caspase-dependent and -independent mode of cell death induced by 7-ketocholesterol and 7β-hydroxycholesterol. Various types of cell death have often been 
described as caspase-dependent and -independent [182]. 7KC and 7β-OHC are strong inducers of cell death, and the mode of cell death induced is always associated 
with an increase production of reactive oxygen species (ROS) and a rupture of RedOx homeostasis, as well as with organelle dysfunctions (mitochondria, peroxisome 
and/or lysosome). The signalling pathways associated with 7KC- and 7β-OHC-induced oxiapoptophagy (a caspase-dependent mode of cell death associated with 
oxidative stress, apoptosis and autophagy) are well described by Vejux et al. and Nury et al. [95,183]. Oxiapoptophagy is currently considered as an hybrid cell death 
type [93].

Fig. 3. Main characteristics of 7β-hydroxycholesterol-induced cell death in the immortalized mouse myoblast C2C12 cell line. 7β-OHC -induced cell death in C2C12 
cells, which is not an apoptotic mode of cell death, is associated with an increase of depolarized mitochondria, overproduction of ROS at both whole-cell and 
mitochondrial levels, and the presence of altered peroxisomes leading to a particular type of autophagy: pexophagy. This figure illustrates the main cytotoxic effects 
of 7β-OHC and 7KC observed whatever the type of cell used and the type of cell death induced: ROS overproduction, mitochondrial and peroxisomal dysfunctions.
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3.2. Prevention of 7-ketocholesterol- and 7β-hydroxycholesterol-induced 
cytotoxic effects with major nutrients of the Mediterranean diet and edible 
oils: in vitro studies

To prevent 7KC- and 7β-OHC-induced cytotoxic effects (oxidative 
stress, inflammation, and cell death induction), several strategies can be 
used. Currently, three strategies are possible consisting of either i) 
promoting the degradation of 7KC with bacterial enzymes [116], ii) 
selectively removing 7KC from the cells with UDP-003, which belongs to 
a new class of cyclodextrin dimers [117] or iii) acting on the signaling 
pathways involved in the cytotoxicity of this oxysterol [5]. For this latter 
strategy, molecules or mixtures of molecules (edible oils), which are 
efficient on 7KC, are also most often efficient on 7β-OHC [5,86,106]. 
Interestingly, among natural molecules and edible oils counteracting 
7KC- and 7β-OHC-induced cytotoxic effects, several of them are repre-
sentative nutrients of Mediterranean diet known for its benefits on 
human health, to prevent cardiovascular diseases, and to favor ageing in 
good health [118,119].

Up to now, only a few synthetic molecules attenuate 7KC- and 7β- 
OHC-induced cytotoxic effects. These are dimethyl fumarate (DMF), also 
known under the name of Tecfidera which is commercialized by Biogen 
and used in the treatment of remitting-relapsing multiple sclerosis, and 
one of its metabolites, monomethyl fumarate (MMF) [120,121]. Inter-
estingly, sulfo-N-succinimidyl oleate (SSO, a synthetic derivative of oleic 
acid (C18:1 n-9)) (SSO) has been shown to prevent 7KC-induced 
oxidative stress and cell death on 158 N and ARPE-19 cells, without 
lipid droplet formation induction as observed in the presence of fatty 
acids and edible oils [122].

Among natural molecules ω3 and ω9 fatty acids such as docosahex-
aenoic acid (DHA, C22:6 n-3) present in high amount in some fishes 
(sardine, mackerel, tuna) present in Mediterranean cuisine [123] and 
fish oils [124], as well as oleic acid (C18:1 n-9) present in high amount 
in several Mediterranean oils, especially olive and argan oils [125,126], 
strongly attenuate 7KC- and 7β-OHC-induced cytotoxic effects [5]. 
Alpha-tocopherol (a component of vitamin E comprising four tocoph-
erols (α-, β-, γ-, and δ-tocopherol) and four tocotrienols (α-, β-, γ-, and 
δ-tocotrienol)) [127] is also present in several edible oils associated with 
the Mediterranean diet, and can be considered as a strong inhibitor of 
7KC- and 7β-OHC-induced cell death: it is efficient whatever the cell 
type considered and the type of cell death induced [5,86,128–131]. In 
7KC-treated cells, α-tocopherol prevents the accumulation of 7KC in 
lipid rafts [132,133]. However, whereas 7β-OHC does not accumulate in 
lipid rafts, α-tocopherol also prevents its cytotoxicity [133]. Besides its 
accumulation in lipid raft and its antioxidant role, α-tocopherol has also 
important effects on cell signaling and gene expression which could 
explain its cytoprotective activity [134]. There is also evidence that 
several polyphenols found in high amount in the Mediterranean diet 
(trans resveratrol, quercetin, apigenin) [135] attenuate 7KC-induced 
oxiapoptophagy on neuronal N2a cells, Human Monocyte-Derived M1 
and M2 Macrophages or ARPE-19 cells [99,109,136]. Other nutrients 
present in the Mediterranean diet as γ-tocopherol, sterculic acid, lyco-
pene, epicatechin, epigallocatechin-3-gallate, hydroxytyrosol, and 
tyrosol are also potent inhibitors of 7KC- and 7β-OHC-induced cytotoxic 
effects [5,35,137–144]. Protective effects of biotin (also known as 
Vitamin B8, identified in seeds and oleaginous fruits) have only been 
observed on 7β-OHC-treated cells [145]. However, epidemiological 
studies revealed that isolated bioactive phytochemicals (polyphenols, 
tocopherols) are not as effective as fruits and vegetables containing 
these substances whereas they are of interest for the functional food 
industry [146].

As several Mediterranean oils are a mixture of nutrients (fatty acids, 
polyphenols, tocopherols), which counteract 7KC- and/or 7β-OHC- 
induced cytotoxic effects, the cytoprotective activities of these edible 
oils (olive and argan oils, Pistacia lentiscus seed oil, pomegranate seed oil, 
and milk thistle seed oil) were evaluated in vitro in 7KC- and/or 7β-OHC- 
treated cells.

In a recent study conducted by Ghzaiel et al. [147], it was proven that 
with Tunisian Pistacia lentiscus seed oil (PLSO) (100 µg/mL), the 
7β-OHC-induced cytotoxic effects in murine C2C12 myoblasts were 
strongly attenuated. The cytoprotection was comparable to that seen 
with 400 µM of α-tocopherol, which was utilized as a positive control. 
This cytoprotective effect was characterized by decreased oxidative 
stress (reduction in ROS overproduction in whole cells and at the 
mitochondrial level; decrease in the formation of lipid and protein 
oxidation products; and normalization of antioxidant enzyme activities: 
glutathione peroxidase (GPx) and superoxide dismutase (SOD)), as well 
as prevention of cell death and organelle dysfunctions (restoration of 
cell adhesion, cell viability, and plasma membrane integrity; prevention 
of mitochondrial and peroxisomal damages). These findings demon-
strate that PLSO comprises a combination of bioactive compounds that 
counteract the cytotoxic effects of 7 β-OHC on C2C12 myoblasts and has 
antioxidant qualities comparable to α-tocopherol used at high concen-
tration. The cytoprotective properties of Mediterranean oils against the 
toxicity induced by 7KC (25 µM; 50 µM) and 7β-OHC (12.5 µM; 25 µM) 
were also confirmed by Ksila et al. [148] in N2a murine neuronal cells 
when using pomegranate seed oil (100–200 µg/mL). Additionally, it was 
observed that argan oil and milk thistle seed oil prevented ROS over-
production induced by 7KC (25 µM) in murine oligodendrocytes (158 N) 
(measured by flow cytometry after staining with DHE) and improved 
plasma membrane permeability to propidium iodide (PI), which is a cell 
death criterion [149,150]. It is widely known that 7KC causes oxidative 
stress, cell death, and organelle malfunction (mitochondria, lysosomes, 
endoplasmic reticulum, and peroxisomes), which are the hallmarks of 
neurodegeneration. It was proven that the 7KC-induced adverse effects 
are significantly reduced by olive oil which is frequently utilized in the 
Mediterranean diet for cooking. The cytoprotective effects obtained 
with this oil on 158 N oligodendrocytes and BV-2 microglial cells further 
support its potential to protect against neurodegenerative illnesses. 
Indeed, on 158 N and BV-2 cells, 7KC (25 µM)-induced loss of plasma 
membrane esterase activity measured after staining with FDA, which is 
also a cell death criterion, is prevented by olive and argan oil [151,152]. 
These data support that olive oil could be a helpful supplement to 
pharmaceutical treatments or to prevent central nervous system (CNS) 
dysfunction [153]. Based on animal models and clinical investigations, 
some polyphenols of olive oil, such as hydroxytyrosol, may induce their 
protective effects through the potentiation of neurotrophins, which are 
molecules known to favor neuron growth, proliferation, survival and 
differentiation, and which also have antioxidant properties [154,155].

In a fibroblast model of patients with Smith-Lemli-Opitz syndrome 
(SLOS, an inborn error of cholesterol biosynthesis characterized by 
diminished cholesterol and increased 7-dehydrocholesterol (7-DHC) 
levels), a mix of antioxidants showed a decrease in 7-DHC-derived 
oxysterol, 3β,5α-dihydroxycholest-7-en-6-one levels but also a normal-
ization of the changes observed in gene expression [156]. The antioxi-
dant mix was composed of vitamin A, coenzyme Q10, vitamin C, and 
vitamin E. According to the results of this study, the effects of the 
antioxidant mix were mainly due to vitamin E [156].

There are also several studies supporting that the cytoprotective ef-
fects of edible oils could be due to tocopherols (α- and γ-tocopherol), and 
oleic acid (C18:1 n-9), which strongly reduce 7KC- and 7β-OHC-induced 
cytotoxicity [109,137,157,158]. Interestingly, some of them could cross 
the blood-brain barrier. This is well established for tocopherols, 
long-chain fatty acids (carbon chain of 13–22 carbons) as well as poly-
phenols [159–161]. Bioactive compounds counteracting 7KC and 
7β-OHC-induced cytotoxicity are listed respectively in Table 1 and 
Table 2.

3.3. Prevention of age-related diseases associated with increased levels of 
7-ketocholesterol and 7β-hydroxycholesterol: in vivo arguments in favor of 
nutritherapy on animal models

Numerous evidences of the contribution of 7KC and 7β-OHC in age- 
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related diseases are reported in cardiovascular diseases, ocular diseases 
and sarcopenia. In this context, convincing data are described on various 
animal models [162]. Dietary 7-ketocholesterol exacerbates myocardial 
ischemia–reperfusion injury in mice through 
monocyte/macrophage-mediated inflammation [86,163] and in 
humans [68,164,165]. In cardiovascular diseases, several compounds 
representative of the Mediterranean diet known to counteract 7KC- and 
7β-OHC-induced in vitro cytotoxic effects, can also preserve a normal 
vascular status. Thus, phytosterols (β-sitosterol, stigmasterol), which are 
abundant in several vegetables, are beneficial in improving lipoprotein 
profile and aortic function in hamster [166]. Less 7KC- and 7β-OHC were 
also identified in the meat from chicken fed α-tocopherol- and β-car-
otene-supplemented diets supporting a potential benefits of these nu-
trients in sarcopenia[167]. Although studies have shown that people 
who eat diets rich in vitamin E are less likely to suffer from cardiovas-
cular diseases, other studies on vitamin E supplements are rather con-
tradictory [168,169]. In a model of hamsters fed hypercholesterolemic 
diets, it was shown that antioxidant supplementation (selenium, 
α-tocopherol) led to a drop in plasma cholesterol concentrations, a 
reduction in lipid peroxidation in tissues, and an increase in liver oxy-
sterol concentrations (inhibition of free radical-mediated oxysterol 
catabolism) [170]. In a mouse model of SLOS (Dhcr7-heterozygous), 
pregnant females were fed a vitamin E-enriched diet. This supplemen-
tation reduced the formation of oxysterols in the brain and liver of the 
newborn Dhcr7-knockout pups [156]. Currently, several benefits of 
trans resveratrol have been shown to be effective in the prevention and / 
or treatment of patients with age-related macular degeneration or 
cataract [171]. The PREDIMED (“PREvención con DIeta MEDiterránea”) 
study has also shown that the incidence of major cardiovascular events 
was lower among the patients assigned to a Mediterranean diet sup-
plemented with extra-virgin olive oil or nuts than among those assigned 
to a reduced-fat diet [172]. Red wine polyphenolic compounds also 
preserve a normal vascular reactivity by acting at different stages of the 
cascade that leads to lipid oxidation, endothelium dysfunctions and 
vasospasm [173]. Extended lifespan was also observed in obese mice fed 
a diet supplemented with a polyphenol-rich plant extract (PRPE) [174]
which also favors the differentiation of myocytes in myotubes support-
ing also potential benefits in patients with sarcopenia [175]. Altogether, 
these in vivo data support benefits of nutritherapy with representative 
compounds of the Mediterranean diet to prevent and / or cure 
age-related diseases associated with increased levels of 7KC and 
7β-OHC.

3.4. Prevention of age-related diseases associated with increased levels of 
7-ketocholesterol and 7β-hydroxycholesterol: in vivo arguments in favor of 
nutritherapy based on human studies

Clinical studies have been carried out to assess the effects of various 
dietary compounds on oxysterol-induced toxicity. These studies were 
mainly carried out in the context of cardiovascular diseases identified 
very early on as involving oxysterols. Most clinical studies focus on the 
involvement of oxysterols in pathology, notably cardiovascular pathol-
ogy, but also in neurodegenerative diseases such as Alzheimer’s disease. 
Few studies on nutritherapy applied to oxysterols have published re-
sults, but their number is increasing. Some are still in the recruitment 
phase, while others have completed their recruitment very recently. 
Here are a few interesting studies: Cholesterol and Antioxidant Treat-
ment in Patients With SLOS (ClinicalTrials.gov ID NCT01773278) and 
Evaluation of Consuming Olive Extract on Total Cholesterol Levels 
(OLICOL) (ClinicalTrials.gov ID NCT06490133).

In healthy subjects, the changes in lipid species relevant to cardio-
vascular disease (fatty acids, sterols, and oxysterols) were studied after 
drinking 400 mL coffee a day for 8 weeks [176]. Two coffees were tested 
containing 787 mg or 407 mg of chlorogenic acid. In the “coffee” group, 
subjects saw their levels of oxysterols and free fatty acids fall, while in 
the control group there was an increase [176]. At the same time, the Ta
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antioxidants in coffee were tested on a foam cell model (human THP-1 
monocytic cells treated with oxidized LDL) and a decrease in the pres-
ence of oxysterols and arachidonic acid was observed [176]. In 68 
postmenopausal women with hypercholesterolemia, Korean red ginseng 
consumption (2 g once a day) improves cholesterol metabolism by 
decreasing cholesterol and 7-hydroxycholesterol levels [177]. However, 
further studies are needed to corroborate these results. The effect of 
vitamin E supplementation was tested in candidates for carotid endar-
terectomy for whom plasma levels of 7β-OHC, 7KC, cholesterol, and 
vitamin E were measured [178]. In parallel with an increase in plasma 
vitamin E levels, this supplementation showed a decrease in 7β-OHC 
levels. This improvement in oxidative status via the drop in 7β-OHC was 
only observed in plasma, with no difference observed in the content of 
oxysterol and vitamin E in plaques. Twenty healthy Italian subjects were 
recruited to study the bioavailability of vitamin E in relation to dietary 
intake and the effect on plasma lipid peroxide-scavenging activity and 
on 7β-OHC and 7KC as markers of oxidative stress [179]. Vitamin E was 
administered either with food or directly on an empty stomach. Plasma 
vitamin E levels increased significantly with food intake. The lipid 
peroxide–scavenging activity of plasma increased significantly in the 
group where vitamin E was given with food. A reduction in 7β-OHC and 
7KC levels was observed, but without statistical differences [179]. The 
authors emphasize that oxysterol levels were initially low, probably 
related to the Mediterranean diet. In view of these results, the authors 
therefore recommend using vitamin E added to meals for greater 
effectiveness. Altogether, the clinical studies presented tend to demon-
strate that nutritherapy can be a possible way to help slow the pro-
gression of cardiovascular diseases associated with increased levels of 
7β-OHC and/or 7KC, but that it is important to consider the form of this 
nutritional intake.

4. Conclusion

Oxysterols, 7KC and 7β-OHC, are often present at an increased level 
in biological fluids, tissues and/or organs of patients affected by age- 
related diseases: cardiovascular diseases, ocular diseases (age-related 
macular degeneration, cataract), neurodegenerative diseases (Alz-
heimer’s disease in particular), and sarcopenia. In the light of these 
considerations, 7KC and 7β-OHC may be considered as biomarkers of 
these diseases specially to evaluate the local and / or systemic oxidative 
stress level. However, there is still a need to better define how to opti-
mize the use of 7KC and 7β-OHC alone or in combination with other 
biomarkers in terms of diagnosis, prognosis, and evaluation of treat-
ments efficiencies. In addition, a better knowledge of the cytotoxic ac-
tivities of 7KC and 7β-OHC will provide a better understanding of the 
associated signaling pathways, enabling pharmacological targets to be 
identified for better treatment of the diseases. Interestingly, the ability of 
several nutrients from the Mediterranean diet (fatty acids, polyphenols 
and tocopherols) to counteract 7KC- and 7β-OHC-induced cytotoxic ef-
fects brings additional arguments supporting the importance of nutri-
ents to prevent age-related diseases. The marked cytoprotective 
activities observed with ω3 and ω9 fatty acids, polyphenols and 
α-tocopherol highlight a new concept relying on oxysterols, nutrition 

and age-related diseases. Consequently, diet or functional foods rich in 
nutrients (ω3 and ω9 fatty acids, polyphenols and α-tocopherol) that 
counteract the toxicity of 7KC and 7β-OHC could therefore reduce the 
incidence of age-related diseases, the frequency of which is increasing as 
life expectancy is longer. As well as being of scientific and medical in-
terest, the use of nutritherapy to prevent and / or cure 7KC- and 7β-OHC- 
induced age-related diseases can be considered of economic and social 
interest.
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Université de Monastir (Monastir, Prof Sonia Hammami, Prof Mohamed 
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Table 2 
Bioactive compounds counteracting 7β-hydroxycholesterol-induced cytotoxicity.

Oxyterol Cytoprotective compounds 
(nutrients and edible oils)

Cells 7 β-OHC concentrations References

7β-hydroxycholesterol (7β-OHC) Tocopherols α-tocopherol; 10–400 μM 158 N cells; U937 cells 50 μM 
30 µM

[112,117]

Polyphenols Epigallocatechin−3-gallate; 1 µM CaCo−2 cells 4.4 μM [122]
Resveratrol; 1 µM ARPE- 19 cells 75 μM [103]

Edible oils Pomegranate seed oil; 100 µg/mL; 200 µg/mL N2a cells 12.5 µМ; 25 µM [132]
Pistacia lentiscus L. seed oil; 100 µg/mL C2C12 cells 50 µM [131]

Human Retinal Pigment Epithelial Cells: ARPE-19, Nerve Cells: N2a (mouse neuroblasts); 158 N (rat oligodendrocytes), Human Pro-Monocytic Cells: U937, Epithelial 
Intestinal Cells: CaCo-2; Mouse Myoblasts: C2C12.
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S.W. Lowe, T. Luedde, E. Lugli, M. MacFarlane, F. Madeo, M. Malewicz, 
W. Malorni, G. Manic, J.-C. Marine, S.J. Martin, J.-C. Martinou, J.P. Medema, 
P. Mehlen, P. Meier, S. Melino, E.A. Miao, J.D. Molkentin, U.M. Moll, C. Muñoz- 
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