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Abstract: This paper presents a new encryption technique, which combines affine ciphers
and the residue number system. This makes it possible to eliminate the shortcomings and
vulnerabilities of affine ciphers, which are sensitive to cryptanalysis, using the advantages
of the residue number system, i.e., the parallelization of calculation processes, perform-
ing operations on low bit numbers, and the linear combination of encrypted residues.
A mathematical apparatus and a graphic scheme of affine encryption using the residue
number system is developed, and a corresponding example is given. Special cases of affine
ciphers such as shift and linear ciphers are considered. The cryptographic strength of the
proposed cryptosystem when the moduli are prime numbers is estimated, and an example
of its estimation is given. The number of bits and the number of moduli of the residue
number system, which ensure the same cryptographic strength as the longest key of the
AES algorithm, are determined.

Keywords: affine ciphers; residue number system; module; Caesar cipher; cryptographic
methods; encryption keys

1. Introduction
The protection of information that is constantly transmitted and electronically stored

is a critical issue in modern society [1–5], and cryptographic methods [6–9] are one of the
key components of data security that ensure the confidentiality, integrity, and authentic-
ity of data, which is especially important in the age of digital technologies. Given the
ever-increasing number of cyber threats [10–13], cryptographic protection plays a crucial
role in ensuring privacy and security in the digital environment. Encryption methods
are used to prevent data leakage and ensure reliable functioning of modern information
systems [14–16]. However, with increasing key lengths, especially in asymmetric cryptosys-
tems, certain problems arise when encrypting short messages.

Affine ciphers are among the simplest symmetric ciphers. They are easy to implement
and require low computational resources, which makes them suitable for use in resource-
constrained environments, such as embedded systems, mobile devices, or Internet of Things
systems [17–19]. Due to their simplicity, they quickly perform encryption and decryption,
providing a sufficient level of protection in many everyday applications without requiring
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a lot of power or memory. However, it is relatively easy to cryptanalyze affine ciphers,
which limits their applications.

The combination of affine ciphers and the residue number system (RNS) [20,21]
provides an additional level of protection by dividing the numeric notation of characters
into several independent components. This complicates cryptanalysis, as the attacker needs
to take into account the number of moduli and their combinations. This approach increases
the cipher resistance to various attacks, including brute force attacks [22,23]. Affine ciphers
based on the RNS (ACRNS) can be easily adapted to different sizes of alphabets and coding
systems. This makes them flexible for a variety of applications, ranging from textual data
to specialized data formats [24]. Scalability is ensured by selecting appropriate moduli [25],
which allows one to control the level of security [26].

1.1. Contribution

The main contribution of this paper is as follows:

(1) A new efficient technique for the encryption of information flows based on a combi-
nation of affine ciphers and the RNS is developed, and its scheme and mathematical
justification are proposed;

(2) An example of affine encryption using RNS is given, in which the calculation of the
basic parameters of the RNS, key generation, as well as the encryption and decryption
features are considered;

(3) It is determined that the cryptographic strength of the proposed system depends on
the number of moduli and their bit size;

(4) The parameters of the cryptographic system, which has the same resistance to crypt-
analysis as the AES-256 symmetric encryption standard, are defined.

1.2. Organization

The rest of this paper is organized as follows: Section 2 presents an analysis of the
related work. The theoretical foundations of affine ciphers and the RNS are given in
Section 3. Based on the use of affine ciphers and the RNS, a new technique for encrypting
information flows is developed. Section 4 presents an example of the cryptographic
transformation of integer data using the developed technique. Section 5 provides an
estimation of the cryptographic strength of the proposed technique and a comparison with
the AES-256 symmetric encryption standard. Section 6 summarizes the contents of the
paper and outlines the prospects for further research.

2. Related Work
ACRNSs can provide a significant level of information protection due to their sim-

plicity, efficiency, and security, which the RNS ensures. Although they are not the most
resistant to all possible attacks, their use can be justified in practice, especially when speed
and simplicity of implementation are required [27]. They also serve as a good basis for the
further study and development of more complex cryptographic systems.

For example, in [28], to increase the security level of databases, it was suggested to
use an affine cipher after the Caesar cipher. The encrypted text is stored as raw data in
a text file that is separated between fields. In [29], using the State Transition Diagram
technique, a cryptographic password prototype was built and implemented using modified
affine transformations.

One of the ways to increase the cryptographic strength of affine ciphers is to use
additional keys. In particular, the algorithm proposed in [30] combines the advantages of
affine and stream ciphers, which makes it possible to reduce the number of operations that
are required for modern modifications of affine ciphers. The new cipher also increases the
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degree randomization for the affine cipher by adding an additional key and can be used
in online data transmission. In [31], a method was developed in which the first random
number is used to generate the key stream of unique values of an affine cipher. This makes
it possible to dynamically change the encryption process. The simulation results showed
that, on the basis of the proposed method, a more randomized encrypted text is created, in
contrast to the traditional affine cipher. In [32], an affine cipher with the Diffie–Hellman
key exchange was successfully implemented on an Arduino ATmega2560 device. It can be
applied on IoT devices, given their limited computing resources. In the avalanche test, the
algorithm showed a high security level.

Affine ciphers are also used to protect graphic resources. For example, in [33], a new
algorithm for encrypting color images was presented using a related configuration of
a two-dimensional Henon map, a three-dimensional logistic map with XOR operation,
and an affine Hill cipher (AHC) technique. The proposed scheme introduces a modified
procedure for generating the initial key values of the three-dimensional logistic map, which
significantly increases the security of the system. The obtained results and comparative
analysis with the existing methods prove the safety, efficiency, and effectiveness of the
proposed method. In addition, the correct location of the keys in the AHC technique
at the decryption stage, the key space, and their sensitivity counteract various types of
cryptanalytic attacks, increasing the overall security of the system.

An algorithm for image encryption based on an affine cipher was presented in [34].
The algorithm first encrypts the pixel positions using a Lorenz chaotic sequence; then,
an affine cipher is used to scatter and scramble the pixel values. The theoretical analysis
and experimental results showed that the algorithm has keys with high sensitivity, better
encryption security, and high diffusion and confusion values. In [35], the concept of the
theory of affine groups was applied to protect digital images using the DES algorithm and
wavelet transform. Matrix multiplication and vector addition operations were used. As a
result, the image that was transformed using the affine transformation was saved without
changing its dimensions.

Increasing the reliability of affine ciphers can be achieved by combining them with
other cryptographic algorithms. Thus, in [36], the affine cryptography technique was first
used, and then, a transposition cipher was applied to the received text. This complicates
the cryptanalysis of ciphertext due to the use of keys of different types. At the same time, in
general, plaintext and encrypted text differ in the number of characters. In [37], the authors
combined the Rabin asymmetric cryptographic algorithm and a symmetric affine cipher.
As a result, a hybrid scheme was obtained, in which the affine transformation was used to
encrypt messages, and the Rabin cryptosystem was used to encrypt and decrypt the key. It
was shown that *.pdf files could be recovered without the loss of integrity.

In [38], an affine cipher using asymmetric keys generated from rectangular matri-
ces was introduced. This made it possible to increase the cryptographic strength of the
proposed encryption algorithm. An asymmetric cryptosystem using an affine Hill cipher
was developed in [39]. The proposed method increases the security of the system, as it
involves the use of two or more digital signatures when modulating a prime number.
In [40], it was shown that the modification of the original message using a linear congruent
generator could increase the level of security by increasing the number of messages and
adding random numerical values to the plaintext. In [41], a cryptographic algorithm was
proposed, combining an affine cipher with the Blum Blum Shub pseudorandom number
generation algorithm. This made it possible to generate a random stream of keys, the use
of which increases the unpredictability of the encrypted text and, accordingly, increases the
cryptographic strength of the proposed algorithm.
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Therefore, the combination of affine ciphers and the RNS allows us to use the advan-
tages of the latter, in particular the parallelization of the calculation process, the possibility
of performing arithmetic operations on lower bit operands, and the absence of inter-bit
carriers. The proposed cryptosystem shows high cryptographic strength due to the linear
combination of encrypted residues.

3. Materials and Methods
Sections 3.1 and 3.2, respectively, highlight the theoretical foundations of affine ciphers

and the RNS. In Section 3.3, a new encryption technique based on a combination of affine
ciphers and the RNS is developed, and the use of the developed technique in some special
cases is discussed in Section 3.4.

3.1. Analysis of Affine Ciphers

An affine cipher is a special case of the more general monoalphabetic substitution
cipher, and it has all the vulnerabilities of this type of ciphers. In particular, it is easily
subjected to frequency cryptanalysis; that is, its cryptographic properties are weak. In
an affine cipher, each character of the plaintext is mapped to a numeric equivalent of the
letter in the English alphabet, not taking into account uppercase and lowercase characters.
The correspondence between letters and numbers can be made as shown, for example,
in Table 1.

Table 1. Correspondence between letters of the English alphabet and numbers.

Letter a b c d e f g h i j k l m

Number 00 01 02 03 04 05 06 07 08 09 10 11 12
Letter n o p q r s t u v w x y z

Number 13 14 15 16 17 18 19 20 21 22 23 24 25

Table 1 can be expanded to include not only textual information but also any other
kind of information such as video, audio, graphic, etc. In addition, standard encoding
schemes such as ASCCI code or Unicode can be used.

Then, based on the properties of modular arithmetic, for each number that corresponds
to a plaintext character, a new number is calculated that replaces the previous one. Thus,
the ciphertext is generated. At the same time, each letter is encrypted on the basis of the
linear function and can be shown as follows:

X = (ax + s) mod n, (1)

where x and X are letter numbers of the plaintext and encrypted text, respectively; pair a
and s are cipher keys, for which the following conditions must be met: 1 ≤ a ≤ n − 1, and
GCD (a, n) = 1, 0 ≤ s ≤ n − 1.

The following conversion is used for decryption:

x = (AX + S) mod n, (2)

where A = a−1 mod n is the inverse of number a relatively prime modulo n; S = (−As)
mod n.

The number of possible keys for an affine cipher can be written using Euler’s function
as follows: ϕ(n) = −1 (in the case when a = 1, s = 0 is not taken into account).
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If a = 1, the Caesar cipher is obtained, and the encryption and decryption functions
are reduced to a simple linear shift:

X = (x + s) mod n, x = (X + S) mod n, (3)

where S = (−s) mod n = n − s.
The number of keys in this case is n − 1 (the case when s = 0 is not taken into account).
If a ̸= 1 and s = 0, then only the multiplication operation is performed for encryption

and decryption:
X = (ax) mod n, x = (AX) mod n, (4)

The number of keys will be ϕ(n) − 1.

3.2. Theoretical Foundations of the Residue Number System

Any number N, given in the decimal number system, can be written in the RNS
as a set of residues bi from its division by certain selected numbers pi, which are called
moduli [42–44]:

bi = N mod pi. (5)

At the same time, two conditions must be met:

(1) All moduli are relatively prime;

(2) The selected number N is less than the product of all moduli: N < P =
k

∏
i=1

pi, where k

is a number of moduli.

To recover the decimal notation of a number from its residues, the Chinese Remainder
Theorem (CRT) can be used [45,46]:

N =

(
k

∑
i=1

Mimibi

)
modP, (6)

where Mi = P
pi

= p1 p2 . . . pi−1 pi+1 . . . pk is the product of all moduli, except for pi;

mi = M−1
i modpi = (Mimodpi)

−1modpi represent the corresponding modular inverses.
Another method for decimal number recovery from its residues is to use Garner’s

algorithm, according to which N can be uniquely noted as follows:

N = N0 + N1 p1 + N2 p1 p2 + . . . + Nk−1 p1 p2 . . . pk−1, (7)

where 0 ≤ Ni < pi+1, i = 0, 1, . . ., k − 1; Ni parameters can be successively calculated one by
one using the recurrence relation:

Ni =
((

(p1 p2 . . . pi)
−1modpi+1

)
· (bi+1 − (N0 + N1 p1 + . . . + Ni−1 p1 p2 . . . pi−1))

)
modpi+1, (8)

These and other methods of recovering a decimal number from its residues (such
as adding the product of moduli or residues from the product of moduli) [47] are rather
cumbersome and are characterized by high time requirements. It can be reduced using the
modified perfect form (MPF) of the RNS [48], in which the moduli are selected in such a
way that the following conditions are met for any of them:

mi = M−1
i modpi = (Mimodpi)

−1modpi = ±1, (9)

Calculations are carried out according to the CRT based on Formula (6), in which the
sum becomes sign-changing and each term consists of two, not three, factors. In addition,
it is not necessary to find the multiplicative modular inverse.



Cryptography 2025, 9, 26 6 of 17

3.3. Affine Ciphers in the Residue Number System

The difference between a simple affine cipher and a combination of an affine cipher
and the RNS is that when using a simple affine cipher, each letter is separately encrypted,
and a combination of an affine cipher and the RNS makes it possible to convert a block of
plaintext N, which must be smaller than the product of the selected moduli P.

Then, residues bi are found by Formula (5) and subjected to cryptographic transformation:

Bi = (aibi + si) mod pi. (10)

Similar conditions that must be met for affine ciphers are required for the ai, si, and pi

keys: 1 ≤ ai ≤ pi − 1, and GCD (ai, pi) = 1, 0 ≤ si ≤ pi − 1.
If ai = 1 (shift cipher) or si = 0, the formulas for encryption are as follows:

Bi = (bi + si) mod pi; (11)

Bi = (aibi) mod pi. (12)

The concatenation of the changed residues Bi can be a ciphertext. However, in order
to increase the resistance of the latter to cryptanalysis, it is expedient to recover the decimal
number K with residues Bi:

K =

(
k

∑
i=1

MimiBi

)
modP. (13)

Message K is the final ciphertext.
To decipher it, it is first necessary to find the changed residues from the following

expressions:
Bi = (aibi + si) mod pi. (14)

The calculation of real residues is performed according to formulas that are similar
to (2):

bi = (AiBi + Si) mod pi, (15)

where Ai = ai
−1 mod pi represent the inverses of ai by relatively prime moduli pi; corre-

spondingly, Si = (−Aisi) mod pi.
Figure 1 shows the scheme of the proposed affine encryption technique using the RNS.
The number of possible keys in this case increases significantly compared to the

classical affine cipher. Its value can be estimated as
k

∏
i=1

(ϕ(pi) · pi)− 1 (the possibility when

ai = 1 and si = 0 is not considered). If we assume that all moduli are prime numbers, the

number of keys can be estimated from the expression
k

∏
i=1

((pi − 1) · pi)− 1.

The encryption and decryption process is described in the following (see Algorithms 1
and 2, respectively).

If the plaintext message N exceeds the product of moduli P, then it, similarly to block
ciphers, is divided into numerical blocks that are smaller than P, which can be encrypted
according to the corresponding modes. Another method is to increase the number of
moduli or their bit size and, accordingly, the number P.
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Algorithm 1: The ACRNS encryption algorithm

Input:
N—number to be encrypted
pi—list of pairwise coprime moduli [p1, p2, . . ., pk]
ai, si—encryption keys, where 0 < ai < pi, 0 ≤ si < pi, GCD(ai, pi) = 1
Output:
K—encrypted number
function Encrypt(N, pi, ai, si):
// Compute remainders of N modulo each modulus
for x from 0 to k − 1:

r = N mod pi[x]
b.append(r)

// Encrypt each remainder using the affine cipher:
// B[x] = (ai[x] × b[x] + si[x]) mod pi[x]
for x from 0 to k − 1:

encrypted = (ai[x] × b[x] + si[x]) mod pi[x]
B.append(encrypted)

// Compute modular inverse using Extended Euclidean Algorithm
function modular_inverse(a, m):

t, newt = 0, 1
r, newr = m, a

while newr ̸= 0:
quotient = r // newr
t, newt = newt, t − quotient × newt
r, newr = newr, r − quotient × newr

if r > 1:
error “Inverse does not exist”

if t < 0:
t = t + m

return t
// CRT to reconstruct the encrypted number
function CRT(residues, moduli):

P = 1
for p in moduli:

P = P × p
result = 0
for i from 0 to length(moduli) − 1:

pi = moduli[i]
ri = residues[i]
mi = P/pi

mi_inv = modular_inverse(mi, pi)
result = result + ri × mi × mi_inv

return result mod P
// 5. Build encrypted number K from wrong remainders
K = CRT(B, pi)
return K
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Algorithm 2: The ACRNS decryption algorithm

Input:
K—the encrypted number
pi—list of moduli [p1, p2, . . ., pk]
ai, si—encryption keys, where 0 < ai < pi, 0 ≤ si < pi, GCD(ai, pi) = 1
Output:
N — decoded number
function Decrypt(K, pi, ai, si):

k = length(pi)
B = [] // encrypted remainders extracted from K
// Extract encrypted remainders by taking K mod each pi
for x from 0 to k − 1:

r = K mod pi[x]
B.append(r)

// Recover original remainders using inverse affine transformation
b = [] # decrypted (correct) remainders
for x from 0 to k − 1:

ai_inv = modular_inverse(ai[x], pi[x])
b_x = (ai_inv × (B[x] − si[x])) mod pi[x]
b.append(b_x)

// Modular inverse function
function modular_inverse(a, m):

t, newt = 0, 1
r, newr = m, a

while newr ̸= 0:
quotient = r // newr
t, newt = newt, t − quotient × newt
r, newr = newr, r − quotient × newr

if r > 1:
error “Inverse does not exist”

if t < 0:
t = t + m

return t
// Use CRT to recover the original number from correct remainders
function CRT(residues, moduli):

P = 1
for p in moduli:

P = P × p
result = 0
for i from 0 to length(moduli) − 1:

pi = moduli[i]
ri = residues[i]
mi = P/pi

mi_inv = modular_inverse(mi, pi)
result = result + ri × mi × mi_inv

return result mod P
// Recover the original number N
N = CRT(b, pi)
return N



Cryptography 2025, 9, 26 10 of 17

3.4. Special Cases of Affine Ciphers

If ai = 1 (shift cipher) or si = 0, the formulas for calculating the real residues
are simplified:

bi = (Bi + Si) mod pi; (16)

bi = (AiBi) mod pi, (17)

where Ai = ai
−1 mod pi; Si = (−si) mod pi = (pi − si) mod pi.

The number of possible variants of the keys will be, respectively,
k

∏
i=1

pi − 1 and

k
∏
i=1

(ϕ(pi))− 1 (or
k

∏
i=1

(pi − 1)− 1 if the moduli pi are prime numbers.

For example, a plaintext message can be recovered on the basis of the RNS according
to Formula (6).

4. Results
Section 4.1 shows an example of affine encryption of integers in general using the

residue number system, and in Section 4.2, the applications of some special cases are given.

4.1. An Example of Affine Ciphers Using the Residue Number System

Let us consider the system of moduli p1 = 9; p2 = 10; p3 = 11; and p4 = 17. Their product
(range of calculations) P = 16,830. Next, the basic parameters of this system are calculated:
M1 = 10·11·17 = 1870; M2 = 9·11·17 = 1683; M3 = 9·10·17 = 1530; M4 = 9·10·11 = 990;
1870 mod 9 = 7; 1683 mod 10 = 3; 1530 mod 11 = 1; and 990 mod 17 = 4. Since the selected
moduli are relatively small, it is expedient to determine the modular inverses of the found
numbers in the following way: add 1 to the modulus and check whether the found sum
is evenly divisible by the corresponding number. If so, then the quotient is the inverse;
if not, then the modulus is added until the quotient is an integer. Therefore, 1 + 9 = 10;
10 + 9 = 19; and 19 + 9 = 28; then, m1 = 28:7 = 4; 1 + 10 = 11; 11 + 10 = 21; m2 = 21:7 = 3;
m3 = 1; 1 + 17 = 18; 18 + 17 = 35; 35 + 17 = 52; and m4 = 52:4 = 13.

The obtained results are given in Table 2.

Table 2. Basic parameters for the system of selected moduli.

i 1 2 3 4

pi 9 10 11 17
Mi 1870 1683 1530 990

Mi mod pi 7 3 1 4
mi 4 7 1 13

Let us assume that the message “bot” needs to be encrypted in this system of the
selected moduli: 9, 10, 11, and 17. According to Table 1, this message in a number format is
as follows: 011419. The input data (plaintext N = 11,419), selected keys for encryption, and
results obtained from expressions (5), (10), and (13) are shown in Table 3.
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Table 3. Input data, keys for encryption, and obtained results.

i 1 2 3 4

pi 9 10 11 17
ai 4 3 4 8
si 4 6 5 10
N 11,419

bi = N mod pi 7 9 1 12
Bi = (aibi + si) mod pi 5 3 9 4

K =

(
k
∑

i=1
MimiBi

)
modP 3353

It should be noted that the ciphertext can be both the concatenation of the true bi or the
changed residues of Bi (07090112 and 05030904, respectively) and the number K = (1870·4·5
+ 1683·7·3 + 1530·1·9 + 990·13·4) mod 16,830 = 3353, recovered from the changed residues
using the CRT (Formula (13)).

Ai’s parameters, which are one part of the decryption key and are defined as modular
inverses, are easy to find by adding the modulus: 1 + 9 = 10; 10 + 9 = 19; and 19 + 9 = 28;
then, A1 = 28:4 = 7; 1 + 10 = 11; 11 + 10 = 21; A2 = 21:3 = 7; 1 + 11 = 12; A3 = 12:4 = 3;
1 + 17 = 18; 18 + 17 = 35; 35 + 17 = 52; 52 + 17 = 69; 69 + 17 = 88; and A4 = 88:8 = 11. The rest
of the decryption keys (Bi parameters) are determined as follows: S1 = (−7·4) mod 9 = 8;
S2 = (−7·6) mod 10 = 8; S3 = (−3·5) mod 11 = 7; and S4 = (−11·10) mod 17 = 9. Having
obtained the true bi residues, using the CRT and the data in Table 2, the plaintext can be
recovered: N = (1870·4·7 + 1683·7·9 + 1530·1·1 + 990·13·12) mod 16,830 = 11,419. Therefore,
the decrypted message corresponds to the original plaintext.

The input parameters, decryption keys, and decryption results are given in Table 4.

Table 4. Input data, decryption keys, and decryption results.

i 1 2 3 4

pi 9 10 11 17
Ai 7 7 3 15
Si 8 8 7 3
K 3353

Bi = K mod pi 5 3 9 4
bi = (AiBi + Si) mod pi 7 9 1 12

N =

(
k
∑

i=1
Mimibi

)
modP 11,419

4.2. Example of the Use of Special Cases of Affine Ciphers

When si = 0 (ai ̸= 1), using the same input parameters and having found the changed
residues, the ciphertext is determined as follows: K = (1870·4·1 + 1683·7·7 + 1530·1·4 +
990·13·11) mod 16,830 = 2017. During decryption, the true bi residues are found first, from
which the plaintext is recovered using the CRT and the data in Table 2. The encryption and
decryption results are shown in Table 5.

When ai = 1 (si ̸= 0), using the same input parameters and having found the changed
residues, the ciphertext is determined as follows: K = (1870·4·2 + 1683·7·5 + 1530·1·6 +
990·13·5) mod 16,830 = 12755. During decryption, the true bi residues are found first, from
which the plaintext is recovered using the CRT and the data in Table 2. The encryption and
decryption results are given in Table 6.

In all these cases, the decrypted text is equal to the input plaintext.
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Table 5. Input data, encryption keys, and obtained results for si = 0.

i 1 2 3 4

pi 9 10 11 17
ai 4 3 4 8
N 11,419

bi = N mod pi 7 9 1 12
Bi = (aibi) mod pi 1 7 4 11

K =

(
k
∑

i=1
MimiBi

)
modP 2017

Ai 7 7 3 15
bi = (AiBi) mod pi 7 9 1 12

N =

(
k
∑

i=1
Mimibi

)
modP 11,419

Table 6. Input data, encryption keys, and obtained results for ai = 1.

i 1 2 3 4

pi 9 10 11 17
si 4 6 5 10
N 11,419

bi = N mod pi 7 9 1 12
Bi = (bi + si) mod pi 2 5 6 5

K 12,755
Si 5 4 6 7

bi = (AiBi) mod pi 7 9 1 12

N =

(
k
∑

i=1
Mimibi

)
modP 11,419

5. Discussion of the Results
Section 5.1 is devoted to the study of the cryptographic strength of the ACRNS.

Section 5.2 provides a comparison of the cryptographic strength of the proposed technique
and the AES-256 symmetric encryption standard.

5.1. Cryptographic Strength of Affine Ciphers Using the Residue Number System

The cryptographic strength of ACRNSs is their ability to resist cryptanalysis, which
refers to the product of the time complexity of one key variant, which is estimated using
Big-Oh notation, multiplying by a number of key variants.

To approximately estimate the cryptographic strength of the ACRNS, let us as-
sume that the moduli are prime numbers, the bit size of which is in the range from
(n − t) to n. According to the prime number theorem describing the asymptotic distri-
bution of prime numbers, their number in this range can be approximated as follows:
π(n) = 2n

n·ln 2 − 2n−t

(n−t) ln 2 . Then, k moduli can be selected in the following number of

ways: Ck
π(n) =

π(n)!
k!·(π(n)−k)! =

k−1
∏

i=0
(π(n)−i)

k! . For the convenience of estimating the number of

ways to select moduli, the last expression can be approximated as follows:
(

2π(n)−k+1
k

)k
.

For an approximate estimation of the number of key variants ai and si, which

is
k

∏
i=1

((pi − 1) · pi) − 1 ≈
k

∏
i=1

p2
i , it can be assumed that their average length will not

be less than n−t
2 . Thus, the total number of variants can be approximated as 2k(n−t). In

addition, the time complexity of affine transformations and the RNS for k moduli can be
approximated as n2k.
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Therefore, the overall cryptographic strength of the proposed system will be equal to
the product of these three estimated parameters:

O(n, k, t) ≈ 2k(n−t) · n2k

kk ·
(

2n

n · ln 2
− 2n−t

(n − t) · ln 2
− k + 1

)k

. (18)

For example, Table 7 shows the values of the decimal logarithm (or orders) of the
cryptographic strength with different values of the t, k, and n parameters.

Table 7. The values of the decimal logarithm lg(O(n, k, t)) of cryptographic strength with different
values of the t, k, and n parameters.

t k
n

16 32 64 128 256 512 1024

1
3 29 59 118 234 466 930 1855
6 57 117 234 467 931 1858 3709
10 93 193 388 777 1550 3095 6180

10
3 22 52 111 227 459 922 1848
6 43 102 220 453 917 1844 3695
10 69 169 364 753 1526 3071 6156

According to Table 7, it can be stated that with an increase in the number of moduli
and their bit size, the strength of the cryptosystem increases, and with an increase in the t
parameter, it decreases.

Figure 2 shows a logarithmic scale of graphical dependence of the cryptographic
strength on the bit size of moduli n and their number k when t = 3. It can be seen
that with an increase in the specified parameters, the complexity of the cryptanalysis
significantly increases.

Figure 3 shows a logarithmic scale of the graphical dependence of the cryptographic
strength of the ACRNS on the bit size of moduli when their number differs and t = 10.

The presented graphs are linear. It can be seen that the resistance to cryptanalysis
increases with an increase in the bit size of the moduli.
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5.2. Comparison of the Cryptographic Strength of an Affine Cipher Using the Residue Number
System with the AES Cryptographic Algorithm

According to [49,50], it is known that 2n−1 bit operations are required for cryptanalysis
of the modern symmetric AES cryptographic algorithm with an n-bit key (the maximum
key length of the AES algorithm is 256 bits). Then, due to the equality O(n, k, t) = 2255,
the number of RNS moduli and their bit sizes can be determined, which ensures that the
cryptographic strength that is no less than that ensured by the longest key of the AES
algorithm (Table 8).

The presented table shows that as the number of moduli increases, their bit size
decreases, and this dependence is non-linear.

Table 8. Bit sizes and the number of RNS moduli, which ensure that the cryptographic strength is not
less than that ensured by the longest key of the AES cryptographic algorithm when the parameter t
has different values.

Number of Moduli 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Bit size when t = 1 63 42 32 26 22 19 17 16 14 13 12 11 11 10
Bit size when t = 10 66 46 36 29 25 23 21 19 18 17 16 15 14 14

6. Prospects and Directions for Further Research
Due to their structural simplicity, affine ciphers provide a high speed when performing

encryption/decryption operations. Therefore, despite their limited cryptographic strength,
their use appears promising for solving a wide range of applied problems that require low
computing resources, in particular, in mobile devices, various embedded systems, and
Internet of Things technologies. The combination of affine ciphers with a non-positional
RNS will allow us to increase the cryptographic strength of encryption without a significant
loss of performance. This can be achieved due to the properties of the RNS, that is,
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parallelization of the computation process and execution of arithmetic operations on
relatively small operands. Therefore, the use of the ACRNS is especially promising in
systems where time is a critical parameter.

The software and hardware–software implementation of the proposed ACRNS is
considered a promising direction for further research. This will allow for comparing
experimental results, in particular the strength and performance of this cipher and known
standards of symmetric and asymmetric encryption. In addition, research can be carried
out using a different number of moduli and their bit size, due to which it is possible to
achieve an acceptable level of resistance to cryptanalysis and the speed of the algorithm.

An extremely important and promising direction for further research in this field is
the development of a matrix ACRNS, as well as the use of a perfect and modified form of
the RNS, which significantly simplifies the process of converting a number into a decimal
notation from its residues.

7. Conclusions
In this paper, a new encryption technique is developed, which consists of combining

affine ciphers and a non-positional RNS. This approach makes it possible to eliminate the
shortcomings of affine ciphers, which are sensitive to cryptanalysis, due to the advantages
of the residue number system, in particular the parallelization of calculation processes,
the performance of operations on low bit numbers, and linear combinations of real and
encrypted residues. Mathematical support is developed, and a graphical scheme for affine
encryption using the RNS and an implementation example are given. Special cases of affine
ciphers, including a shift cipher and a linear cipher, are considered. The cryptographic
strength of the proposed encryption algorithm is estimated. When prime numbers of
a given bit size are selected as moduli, its graphical dependence and a corresponding
example are shown. The bit sizes and the number of RNS moduli that ensure the same
cryptographic strength as the longest key of the AES algorithm are determined.
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