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Abstract: In the era of Industry 4.0 and 5.0, a transformative wave of softwarisation has surged. This
shift towards software-centric frameworks has been a cornerstone and has highlighted the need
to comprehend software applications. This research introduces a novel agent-based architecture
designed to sense and predict software application metrics in industrial scenarios using AI techniques.
It comprises interconnected agents that aim to enhance operational insights and decision-making
processes. The forecaster component uses a random forest regressor to predict known and aggregated
metrics. Further analysis demonstrates overall robust predictive capabilities. Visual representations
and an error analysis underscore the forecasting accuracy and limitations. This work establishes a
foundational understanding and predictive architecture for software behaviours, charting a course
for future advancements in decision-making components within evolving industrial landscapes.

Keywords: software application; virtualisation; AI-enabled sensor; prediction algorithm; random
forest

1. Introduction

In the ever-evolving landscape of industrial operations in Industry 4.0 and 5.0, a clear
shift towards virtual work has been seen [1]. The integration of virtualisation technologies
in industry, such as those of cloud computing and mobile edge computing, is indispensable
when adapting to the evolving demands of modern industrial landscapes. This leads to the
next generation of distributed systems, where there is a clear symbiosis between hardware
and software with impacts on key factors such as scalability, accessibility, and real-time
data processing [2].

This softwarisation of industrial processes requires ambitious new approaches to
address both hardware and software monitoring [3], which is driven by the critical need for
real-time solutions. As a result, predictive maintenance systems (PDMs) have emerged as
some of the most crucial strategies for adoption in modern industries [4]. These solutions
aim to provide insights into system behaviour by using historical data [5,6], predicting
behaviour [7], identifying anomalies, and facilitating comprehensive/immediate action.

Traditionally, industrial processes relied on dedicated hardware and software con-
figurations for optimal performance and control. However, the functionality of software
applications within the industrial framework is the key to the improvement of processes,
resource utilisation, and, ultimately, successful outcomes. The monitoring and predic-
tion of the behaviour of software applications in an industry present different challenges.
Proactive maintenance strategies are capable of foreseeing how each running software
works and anticipating potential issues [8] or even cybersecurity threats [9]. In this context,
the effectiveness of software applications within a virtualised environment becomes pivotal
for comprehending the overall system performance. The behaviour of software, including
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aspects such as CPU and memory usage, execution time, and disk reading/writing, plays a
crucial role in determining a system’s operational health. Predicting these behaviours is
critical for proactive maintenance strategies, as this enables the anticipation of emerging
risks related to resource utilisation. Predictive models applied to these metrics directly
contribute to the ability to identify and address potential issues.

Predictive monitoring is a field that is in continuous development, even more so
with the growth of AI applications. This evolution is visible in various sectors and is
exemplified in the case of aeronautical industry [10], where the use of machine learning for
predictive maintenance has been introduced as a mandatory future step, or the wind energy
industry [11] with the application of AI-driven predictors. Accurately predicting software
behaviour is paramount for anticipating and, thus, proactively preventing potential issues,
which leads to the minimization of business disruptions, reductions in losses, such as
operational and financial losses, and ensuring uninterrupted digital services for end-users.

Some solutions, while valuable, may be limited in their application to the scope for
which they were originally designed, or, in other words, they may adapt to the dynamic
demands of modern softwarised industrial setups. This research aims to bridge the gap
in resolving this industrial challenge. In addressing it, our approach encompasses the
following contributions to the advancement of the state of the art:

• The design, implementation, and empirical validation of an architecture for gathering
the metrics of distributed software applications (SAs).

• The design and implementation of software for performing the real-time compila-
tion of a dataset of metrics. The validation was conducted by collecting 17 metrics,
with more than 1000 measurements per metric, and more than 500 single threads of
software applications.

• The design, implementation, and empirical validation of machine learning techniques
for achieving real-time metric forecasting.

By applying these contributions, this study aimed to predict the behaviour of dis-
tributed software applications in the context of Industry 4.0 and 5.0. The focus was the
development of a novel architecture that integrated the gathering of metrics and real-time
forecasting by applying machine learning algorithms. This work is intended to contribute
to the advancement of predictive maintenance strategies and operational insights, ulti-
mately empowering autonomous decision making and self-optimisation processes in the
dynamically evolving and increasingly demanding landscape of modern industrial setups.

The remainder of this manuscript is organised as follows. Section 2 reviews the current
state of the art in the field of metric forecasting. Section 3 explains the proposed architecture
for achieving the goal of an AI-enabled sensor for the prediction of the behaviour of
industrial software applications. Then, Section 4 describes the implementation details and
provides an end-to-end flow diagram of the proposed architecture from the gathering and
reporting to the prediction. Section 5 introduces the dataset that was created. In Section 6,
the prediction algorithm applied and the model used are explained. The empirical results
are shown and analysed in Section 7. Finally, Section 8 discusses what has been achieved
and future work prior to the conclusion of the paper in Section 9.

2. Related Work

In this section, a study of the related work on the prediction of metrics is carried
out. It is focused on studies that employed machine learning algorithms and explores the
methods and validation techniques used. By evaluating diverse approaches, it is intended
to understand the current status of the literature in this field and, ultimately, comprehend
the choices made in the work presented.

As we explore existing architectures in the domain of the prediction of metrics of
software applications, it is essential to understand the diverse approaches employed in
the literature. Selmy et al. presented a predictive framework in [12]. The architecture
systematically collected data from sensors, employed a robust publishing/subscriber
communication system, and conducted data preprocessing before executing advanced
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prediction algorithms such as ARIMA and LSTM; ultimately, the results were presented
through visualisation. In [13], the authors presented work that also proposed a similar ar-
chitecture. The datasets were built, features were selected, and machine learning algorithms
were executed to predict code-smells. In general, it can be seen that various architectures
share commonalities in terms of their modular components, which include agents for
data gathering, communication middleware for seamless interactions, and predictors that
utilise machine learning algorithms. However, there are also differences that are worth
commenting on. The architecture presented here leveraged the use of different agents that
separated the main tasks. A database was used to save and access data in real time or for
future studies, together with an aggregator that provided high-level metrics, unlike in the
previous literature, which focused on direct gathering, processing, and prediction.

In the search for accurate forecasting, various models were considered and evaluated
before a choice was made. These models encompassed diverse methodologies. Random
forest emerged as the preferred choice due to its ability to capture nonlinear relationships,
unlike traditional regression models, such as ARIMA, which assume linear patterns. In ad-
dition, it uses multiple decision trees to mitigate the overfitting tendencies present in
individual decision trees. Jain et al. conducted a comparative study of various models
for the forecasting of load demand consumption in [14]. Their results showed that the
random forest model achieved better performance than that of advanced deep learning
models in four out of five test cases. They emphasised the effectiveness of simpler machine
learning methods, cautioning against more complex and unneeded deep learning models.
Another study [15] by Sedai et al. showed that the random forest model was the best-
performing model among the four types of models tested (ARIMA, SVR, RF, and LSTM),
with 50% better accuracy than that of univariate models and 10% better accuracy than that
of multivariate models.

The JM1 dataset from the PROMISE Software Engineering Repository [16] is an ex-
ample of a dataset used for software defect prediction. It is intended to identify modules
that can have any type of defect. It is a collection of 10,885 modules from 14 different
software systems. The dataset includes 22 metrics that characterise software modules,
including lines of code, complexity measures, and Halstead metrics [17]. These metrics
provide insights into the structure and complexity of the code, which can be correlated
with the likelihood of defects. It is widely used, as can be seen in [18], where Rahim et
al. proposed a Naïve Bayes Classifier for the identification of software application defects
with a high accuracy, reaching 98.7%. The early detection of these defects in software
systems can help developers remove them and, thus, improve the software quality before
the deployment phase.

Regarding resource usage prediction, Sriram et al. presented a time-series forecasting
method applied to the CPU percentage in [19]. They compared ARIMA and LSTM, and
they concluded that the best results were obtained with a neural network model. Also,
in [20], Wang et al. conducted a study of different neural networks to achieve high-accuracy
prediction. In [21], a random forest autoscaler was applied to the prediction of the CPU
and memory utilisation for containerised microservices. The authors created a dataset with
the following features: CPU and memory usage, disk read bytes, disk write bytes, network
in, and network out. Goli et al. presented a microservice autoscaler in [22]. They leveraged
machine learning models to predict the end-to-end response latency in a microservice
application. They used a large number of metrics, such as the CPU utilisation rate and
network utilisation rate, and better results were achieved with random forest than with
traditional regression algorithms.

Regarding I/O optimisation, Bagbaba [23] introduced a machine-learning-driven auto-
tuning solution for improving collective I/O performance; the main goal was to predict the
I/O performance based on the results of the previous runs.

The paramount importance of the prediction of metrics has been demonstrated in
a variety of industries. Regarding the healthcare and medical industry, Chen et al. [24]
presented a study that achieved blood pressure measurement prediction using a support
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vector machine regression model and a random forest regression model, and the best
results were obtained with the latter. Shanmugarajeshwari and Ilayaraja [25] presented
a system for efficiently mining the risk factors of chronic kidney disease. They achieved
98.97% accuracy with random forest, which was the algorithm with the best results and
was the fastest among random forest, SVM, and an ANN. An interesting application of
machine learning in a completely different industry can be found in [26], where Tian et al.
applied different models, such as random forest, LSTM, WNN, and SVR, to the prediction
of drought based on time-series imaging. It is of interest to see how random forest was
used and compared to different methods, and, depending on the application, achieved
better or worse results.

Findings

The analysis of the related work revealed several limitations in existing approaches
for the prediction of metrics. Table 1 shows a comparison based on criteria that allow us to
understand differences between our approach and different contributions. Regarding the
algorithm used, in several of the works that were mentioned, it was observed that random
forest was one of the most commonly used algorithms for time-series regression forecasting.
Model comparisons in which it provided successful results can be easily found.

Table 1. Comparison of research works.

Criteria [24] [25] [21] [19] [26] [22] [23] [18] This Study

Dataset creation ✗ ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✓

Number input metrics 7 33 6 1 4 +1 * 6 17 17

Number output metrics 1 1 2 1 1 1 1 1 17

RT metric gathering ✓ ✗ ✓ ✓ ✗ ✗ ✓ ✗ ✓

Automated architecture ✓ ✗ ✓ ✓ ✗ ✗ ✓ ✗ ✓

Distributed architecture ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✓

RT prediction ✓ ✗ ✓ ✓ ✗ ✗ ✓ ✗ ✓

Validation # (S) (A) (S) (P) (A) (A) (A) (A) (P)
(#) Validation: analytical (A), simulation (S), prototype (P); (*): not specified in the paper.

Additionally, it was difficult to find a study that took as large of a number of metrics
as in our work into account. The largest number of outputs (forecast metrics) was 2, as
almost all of the studies had a single output (with the exception of [21]). Only the authors
of [19,21,23,24] automated the gathering of the metrics and their further prediction, and
the rest of the studies tested with static data. Only one was found to have a distributed
architecture [19], and the validation of their work was mainly analytical or based on
simulations. It was difficult to find a prototype that worked completely in real time and to
find strong validations of the proposed methods, which was one of the main motivations
of this research work.

Furthermore, regarding software applications, the works most aligned with ours were
focused on specific resources or the scaling of microservices. This demonstrates a gap in
the literature, that is, the limited comprehension and prediction capabilities concerning
software applications. Addressing this gap serves as a motivation behind the approach
introduced in our study.

3. Proposed Architecture

In this section, the architecture that was designed to enable the sensing and prediction
of software application metrics is presented. The architecture comprises a series of inter-
connected agents. The architecture collaborates with AI to achieve the contributions of the
sensing and prediction of software application metrics in industrial scenarios. An overview



Sensors 2024, 24, 1236 5 of 21

of the architecture and the set of components is depicted in Figure 1. They are described in
the following subsections.

Database

Monitoring Agent

Communication
Middleware

HARDWARE

Metric
Collector

(MC)

KERNEL OS

Predictor

Aggregator

Figure 1. Proposed architecture for enabling the sensing and prediction of software application metrics.

3.1. Monitoring Agent (MA)

The monitoring agent is in charge of sensing all of the software applications running
within a system. It achieves the profiling of the software behaviour by obtaining the
metrics for each of the processes and the threads that form the software applications
running in the system. The MA gathers metrics not only from the host system, but also
from docker containers [27], allowing OS-level virtualisation, virtual machines, etc. It
is fully configurable so that new metrics can be added as new rules with definitions
and ways of retrieving them. In summary, the MA gathers vital software performance
data and publishes them in the publication/subscription middleware. To maintain the
separation of data, a consistent routing key convention is employed with the format
“software.ma.IP”. In this convention, if the IP is, for instance, “192.168.121.2”, the routing
key will be “software.ma.192.168.121.2”. This meticulous organisation of the publication
topic ensures that each software metric is processed and stored regardless of the system to
which it belongs.

3.2. Metric Collector (MC)

This component subscribes to channels in which different types of metrics—either
raw measured metrics or predicted ones—are published. It receives them and securely
stores their data in a dedicated database. This ensures data integrity and availability for
future access by any other component of the architecture. This component subscribes
to “software.ma.#”, meaning that it receives the metrics generated by all different MAs
distributed throughout the system.



Sensors 2024, 24, 1236 6 of 21

3.3. Aggregator

The aggregator is in charge of providing high-level metrics that are both spatial and
temporal aggregations of raw metrics, as well as linear or nonlinear combinations of raw
metrics. These are useful for providing objective KPIs or other high-level metrics. Temporal
aggregation is performed by using any aggregator function, such as the median, average,
max, or min. Spatial aggregation is implemented by using combinations of different
metrics. The new metrics from the aggregator are treated in the same way as that of raw
metrics and, thus, published to the same publishing channel. Thus, both raw metrics and
aggregated metrics are treated similarly by the predictor.

3.4. Predictor

In the final processing stage, this component forecasts future values based on the
metrics received from the middleware. It uses random forest to generate predictions
for software application metrics within the system. Furthermore, those predictions are
published in the middleware for its future use in other applications, providing valuable
insights for future decision making and planning.

The prediction function within the architecture is formulated as described in the
following.

Variables and Definitions

Let H represent a set of histograms in which each histogram Hi is a collection of metric
values for a given metric Mi from time t = 1 up to the current time tnow:

H = {H1, H2, . . . , Hn}

Hi =
tnow⋃
t=1

Mt
i

Pi represents the predictive function for metric Mi, denoted as f (Hi), which aggregates
the histograms Hi to derive the next value Mi(n+1):

Pi = f (Hi) = Mi(n+1)

The predictive function ( f ) processes the combined histograms (Hi) and generates the
next value Mi(n+1).

3.5. Communication Middleware

The middleware serves for communication to link every agent of the architecture, and
it plays a crucial role in facilitating their interaction. This component, while abstracted
from the individual agents, is in charge of the orchestration of message queues and ensures
seamless communication flow. By providing a channel for asynchronous data transmission,
the middleware enables the efficient decoupling of the components, allowing each agent
to independently perform its designated tasks while maintaining synchronisation and
integrity in data processing.

4. Implementation of the Approach

It is important to understand the practical implementation and functioning of this
architecture. This section dives into the implementation details of our approach. The
specific technologies and tools used in each task are introduced. Moreover, the flow
followed by the components is shown and described.

4.1. Implementation Details

All of the components of the architecture were prototyped in Java 13, with the ex-
ception of the predictor, for which python3 was used. Furthermore, the message broker
in charge of the data communication was RabbitMQ version 3.12.7. It was based on the
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Advanced Message Queuing Protocol (AMQP). This protocol provides a standardised
messaging format and ensures interoperability between different message brokers and
client applications. It was chosen due to its high scalability and fault tolerance, which
enabled us to handle large volumes of messages and ensured that message delivery was
not affected by system failures. All data were stored and accessed through a relational
database system, MySQL 8.1, which ensured data integrity and efficient retrieval.

Regarding software applications, they were defined as computer programs designed
to carry out a task for a specific purpose. They could be composed of a single process or set
of processes/threads that worked as one to achieve a function. Figure 2 shows a process tree
representation of the software application “virtual PLC Controller” in Linux OS (initialised
as vPLC Controller). It was formed by a set of processes and threads. The primary process
served as the root, and it had three child processes that spawned from it and nine threads.
Those child processes were, at the same time, parent processes of several threads. This
structure is common in complex systems in which an application needs more than one
parallel task to be performed. In this case, the controller could have three child processes
executing parallel jobs, such as continuously receiving data from a sensor while processing
them and communicating with different actuators.

Figure 2. Software application example: “Virtual PLC Controller”. (*) Child of a primary process,
(**) threads.

4.2. Sequence Diagram

The flow depicted in the sequence diagram in Figure 3 involves several interacting
components within the system architecture. The ‘Monitoring Agent (MA)’ initiates the
process by dispatching distributed software metrics to the ‘Metric Exchange’. Subsequently,
the ‘Metric Collector (MC)’ receives these metrics from the exchange for efficient storage
within the system’s database (‘Database’). Once stored, these metrics undergo continuous
aggregation and analysis by the ‘Aggregator’, which provides a comprehensive view of the
system’s software landscape and publishes the aggregated metrics to the metric exchange.

Simultaneously, the ‘Predictor’ comes into play by leveraging either the gathered data
or the aggregated data to generate insightful software predictions. These predictions are
relayed back through the ‘Metric Exchange’ to the ‘MC’ for further storage within the
database. This cyclic process of data collection, aggregation, prediction, and storage enables
the system to conduct real-time monitoring of software metrics and, finally, predict them.
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Figure 3. Workflow of the proposed architecture.

5. The Dataset

To create the dataset, an execution of the proposed architecture was conducted. The
MA continuously gathered metrics using parallel threads, with one dedicated thread per
metric per software application. This ensured the real-time collection of data at intervals
of one second. The resulting data were then stored in a database and exported as a .CSV
file that was specifically tailored for the training of machine learning models to ensure
compatibility and efficiency. In the .CSV file, each column corresponded to a specific
metric, and each row represented a timestamped entry that captured the real-time values
of these metrics.

Since the MA collected data without exceptions, missing values were nonexistent
within the dataset. However, if a software application was terminated during data col-
lection, the corresponding observations had empty values for that specific application
and timeframe.

The dataset collected and used for this work was created from a whole set of software
applications and their Linux processes and threads running in an operating system (OS).
To list and monitor these processes, robust Linux inventory tools were leveraged. In
particular, ps and proc were pivotal. The ps command acts as a versatile utility that offers
a snapshot with detailed information on the whole set in a system. Meanwhile, the proc
filesystem provides an interface with kernel data structures, facilitating the extraction
of essential information in a human-readable format. The dataset used in this study
comprised an extensive collection of software application metrics that encompassed over
500 individual processes and threads. Each process contributed a comprehensive array
of metrics, yielding more than 1000 values for each of the 17 distinct metrics tracked
per process. These metrics collectively captured various facets of system behaviour and
resource utilisation, and they included the following:

1. Utime: The total amount of CPU time used by a process in user-space tasks.
2. Stime: The total amount of CPU time used by a process in kernel-space tasks.
3. I/O wait: The amount of time for which the CPU was idle due to waiting for I/O

operations.
4. Number of threads: The total number of threads spawned by a process.
5. RSS: resident set size: the amount of memory occupied by a process in RAM.
6. VSZ: virtual set size: the total virtual memory used by a process.



Sensors 2024, 24, 1236 9 of 21

7. Write bytes: The total number of bytes written by a process to the disk.
8. Read bytes: The total number of bytes read by a process from the disk.
9. CPU priority: Niceness of the value of a process.
10. Average percentage of CPU: The average percentage of CPU used by a process since

its start.
11. Average percentage of memory: The average percentage of memory used by a process

since its start.
12. Voluntary context switches: The number of voluntary context switches performed by

a process.
13. Involuntary context switches: The number of involuntary context switches performed

by a process.
14. Number of open file descriptors: The total number of file descriptors opened by

a process.
15. Major faults: The number of major page faults that occurred.
16. Minor faults: The number of minor page faults that occurred.
17. Total CPU: The total CPU utilization across the entire system. This metric was gathered

at the system level for its future use in aggregation.

Correlation Matrix

To understand how the gathered metrics were correlated, a Pearson correlation matrix
was created. It provided insights into the relationships between different metrics measured
within the single processes that formed the software applications. It was a (K × K) square
and symmetrical matrix whose ij entry was the correlation between the columns i and j of
the metric [28]. Each value in the matrix represented the correlation coefficient between
pairs of metrics. A coefficient close to 1 indicated a strong positive correlation, while a
coefficient close to −1 suggested a strong negative correlation, which meant that the two
variables tended to move in opposite directions. Furthermore, a value near 0 indicated that
there was no relationship between them.

The Pearson correlation matrix can be seen in Figure 4. For instance, the average
percentage of CPU metric exhibited notably high positive correlations with utime and
percentage of memory, with both of them being 0.64. This indicated that an increase
in CPU usage corresponded to a greater user CPU time and memory usage. Moreover,
the correlation between the number of threads and VSZ was notably strong (0.82), implying
a very close relationship. This suggested that an increase in the threads of a software
application could lead to greater memory utilisation. On the contrary, some metrics
demonstrated opposite correlations. Write bytes and voluntary context switches displayed
a very weak correlation (close to 0), suggesting that there was a minimal linear dependency
between these metrics. This lack of correlation indicated that any change made in one
metric did not impact the other, highlighting their independent behaviour.

It is important to note that this correlation matrix involved the calculation of relation-
ships between variables and it does not imply causation. A strong correlation between two
metrics does not necessarily indicate that a metric causes the other to change, but it means
that there is a statistical relationship between them. Also, this dataset was taken from
real computer operations; therefore, certain metrics may not have suffered large changes
during their gathering. Specifically, the CPU priority of individual processes and the
occurrence of major faults displayed limited variability within the dataset. This consistency
can be attributed to intrinsic factors in typical computer usage scenarios. The CPU priority,
for instance, is generally managed by the system and is not explicitly manipulated by the
user under the usual working conditions. Also, unless it is under specific conditions or
configurations, this metric might not change in the whole life of the software due to its de-
pendence on system defaults or automatic adjustments. In a similar manner, the occurrence
of major faults in software applications is an infrequent event during routine computer
usage. In regular operation, modern computing environments are optimised to minimise
such major faults, resulting in their limited occurrence.
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Figure 4. Correlation matrix showing the relationships between different metrics measured within
the single processes that formed software applications.

6. Prediction Algorithm

The random forest algorithm was the algorithm chosen for the prediction of the
metrics. It was demonstrated to be a robust learning technique in Section 2. It demon-
strates prowess in handling complex nonlinear relationships within data. Each tree in
the random forest aimed to minimise the total difference between the actual values of the
metrics and the model prediction. Mathematically, this difference was quantified with the
following formula:

N

∑
i=1

(Yi − Ŷi)
2

where Yi represents the true value, and Ŷi signifies the predicted value for each sample i
within the training set.

In a random forest model composed of numerous decision trees, each tree was made by
considering a subset of features at each node. This subset was randomly chosen, allowing
different trees to use different features to make decisions. The nodes in each tree represented
decision points based on specific features and their associated thresholds. Figure 5 shows
an example of a tree in our data with successful results, and the tree was shortened to only
seven nodes to facilitate visualisation.

In each node, the feature name is seen, and the initial node indicates the feature RSS.
The threshold value specifies the cutoff point for that feature. For instance, a threshold of
493,920.0 means that if the value of the RSS in a data point is greater than this threshold,
the model proceeds down to the right child, where the feature RSS is found again; otherwise,
it goes left, with the total CPU being used as a feature in this case.
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RSS <= 493,920.0
squared_err = 1,777,646.7

value = 2,917.3

RSS <= 505,190.0
squared_err = 475,703.0

value = 4,016.2

total_CPU <= 188,219,878.0
squared_err = 308,487.4

value = 1,661.5

minor_faults <= 139,087.5
squared_err = 8,567.9

value = 1,257.2

avr_perc_CPU<= 32.95
squared_err = 97,181.56

value = 2,200.5

NV_ctxt_switches <= 39.5
squared_err = 54,522.9

value = 3,302.1

utime <= 4,557.0
squared_err = 98,286.2

value = 4,571.5

Figure 5. Example of a tree in the proposed model with successful results.

The children (left or right) indicate if a decision moves based on the evaluation of the
condition at the node. If the condition is satisfied, the model proceeds to the left child; if not,
it goes to the right child. In this case, the left is the total CPU, and the right is the RSS again.
Furthermore, nodes that do not have any children are considered leaf nodes, and they make
the final prediction. In this example, the tree representation was restricted to a depth of
three for easier visualisation. There were different trees (as many as the estimators, see
Section 6), and each tree was able to split the data in different ways based on the random
selection of the features. Because of this, the nodes, features, and thresholds could vary
across the trees. The depth indicated the number of splits that it had; the more levels, the
more complex the model. The number of nodes reflected how many decision points the
tree had to make before arriving at a prediction.

In summary, the tree began by examining the specific metric that would be predicted.
Then, it leveraged other features through decision points based on thresholds, as explained
previously. These thresholds guided the tree along different branches, examining relation-
ships between the rest of the metrics and the one selected for prediction. Each of the trees
explored decision paths that were different from the rest. Finally, combining each of them
led to the final prediction.

The Proposed Model

The model hyperparameters were empirically chosen in order to optimise both perfor-
mance and efficiency. The limit of trees—also called estimators—was set to 50. The more
trees, the better robustness, but at the same time, this increased the computational effort.
The model stopped splitting the nodes when it arrived at the maximum depth (in this case,
it was set to 100) or if further division did not significantly improve the performance of the
model. The mean squared error was chosen to measure the quality of a split (see Figure 5).
There was no minimum number of leaf nodes. The random state of the data was crucial in
the case of this work because we were working with time series. In order to avoid interfer-
ing with the temporal nature of the data, they were sorted by time. The input and output
of the model were values that were normalised between 0 and 1. This ensured uniformity
and consistency in the data, preventing features with larger scales from dominating the
model’s learning process and enabling efficient convergence during training.

7. Empirical Results

This section details the experimental setup and findings when employing the random
forest model to forecast metrics within a software application environment. The creation
of the dataset and the validation results were performed on a computer with an Intel(R)



Sensors 2024, 24, 1236 12 of 21

Xeon(R) CPU E5-2630 v4 @2.20 GHz with 20 cores and 32 GB of RAM running Ubuntu
20.04 LTS as the operating system.

The aggregator component was used to aggregate the metrics, meaning that it listed
the needed metrics that were taken from the database or created new metrics that could
not be directly taken from the SO kernel. For the empirical results shown in this section,
the aggregator prepared a set of the last five values of each metric. This allowed for
time-series forecasting while taking the previous values of the metrics into account. An
example of the creation of metrics can be the instant percentage of CPU; to calculate it,
measurements of metrics at different times are needed:

Instant percentage CPU =
(ncpu × 100)(∆utime + ∆stime)

∆total time
(1)

= No. o f CPUs ∗ ∆(CPU time spent by the process)
∆(CPU time spent by the system)

∗ 100 (2)

Another aggregated metric was the total number of context switches (CSs), which
was obtained by summing the involuntary and voluntary CSs. Write bytes per second and
involuntary context switches per second were calculated by finding the difference in the
measures at every second.

Total CS = Nonvoluntary CS + Voluntary CS (3)

Write bytes/s = ∆write bytes (4)

Involuntary CS/s = ∆Nonvoluntary CS (5)

The aggregator was not only limited to single processes; one of its strengths was that
it allowed for metrics within different software applications. For example, the average of
read bytes in a group of applications could be found. It was interesting to see if there was a
task being carried out by a set of processes within the system to provide wider view.

Analysis of the Results

In order to show a visual representation of the forecasting results, in this section,
different figures of two different software applications named SA1 and SA2 are presented.
The forecasting of the instant CPU (aggregated rule calculated via Formula (1)) is seen in
Figures 6 and 7, where one can observe that the predicted values were usually not as high or
low as the actual value, which is why the average R2 score was 0.753. Forecasting could be used
to see the trend of the metric, but the exact value was something that needed to be improved.
The forecasting of minor faults is seen in Figures 8 and 9. Moreover, in Figures 10 and 11,
the representation of involuntary context switches can be observed. In Figures 12 and 13, the
values of the RSS are depicted. Finally, the forecasting of the total amount of CPU time used by
a software application in both the user space and kernel space can be seen in Figures 14 and 15
and in Figures 16 and 17, respectively.
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Figure 6. Comparison between the actual and predicted values of instant CPU usage for software
application SA1.

Figure 7. Comparison between the actual and predicted values of instant CPU usage for software
application SA2.

Figure 8. Comparison between the actual and predicted values of minor faults for software applica-
tion SA1.
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Figure 9. Comparison between the actual and predicted values of minor faults for software applica-
tion SA2.

Figure 10. Comparison between the actual and predicted values of involuntary context switches for
software application SA1.

Figure 11. Comparison between the actual and predicted values of involuntary context switches for
software application SA2.
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Figure 12. Comparison between the actual and predicted values of RSS for software application SA1.

Figure 13. Comparison between the actual and predicted values of RSS for software application SA2.

Figure 14. Comparison between the actual and predicted values of stime for software application SA1.
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Figure 15. Comparison between the actual and predicted values of stime for software application SA2.

Figure 16. Comparison between the actual and predicted values of utime for software application SA1.

Figure 17. Comparison between the actual and predicted values of utime for software application SA2.

From these figures, it can be affirmed that the forecasting successfully achieved the
intended behaviour. Constant or small changes in the current values were perfectly fore-
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casted. When a large change was made, the first forecast may have lacked correctness, but a
good rate of success was achieved overall.

In Table 2, a study of the results is shown. The table is divided into three main columns:
R2 score, normalised mean squared error (NMSE), and average time spent for prediction.

Table 2. R2 score, NMSE, and average time for the prediction of metrics.

Metrics R2 Score NMSE Average Time (s)

utime 0.937 0.0067 0.12

major faults 0.944 0.0056 0.13

minor faults 0.908 0.0115 0.14

iowait 0.926 0.0081 0.15

number of threads 0.928 0.0092 0.16

stime 0.922 0.0016 0.11

average perc CPU 0.948 0.0011 0.10

read bytes 0.946 0.0011 0.12

CPU priority 0.980 0.0005 0.10

RSS 0.913 0.0104 0.13

voluntary ctxt switches 0.927 0.0031 0.14

write bytes 0.912 0.0116 0.15

average perc mem 0.915 0.0041 0.11

involuntary ctxt switches 0.947 0.0022 0.11

number open file descriptor 0.920 0.0115 0.13

VSZ 0.955 0.0031 0.10

total CPU 0.959 0.0021 0.14

instant perc CPU 0.753 0.0207 0.16

write bytes/s 0.587 0.0457 0.15

involunt ctxt switches/s 0.806 0.0071 0.11

total ctxt switches 0.941 0.0031 0.13

1. R2 (Coefficient of Determination):

R2 = 1 − ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − ȳ)2

2. Mean Squared Error (MSE):

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2

where:

• yi = Actual value at index i;
• ŷi = Predicted value at index i;
• ȳ = Mean of the actual values;
• n = Number of samples.

As the data used for both training and predicting were normalised between 0 and 1,
this contributed to a normalised evaluation of the different scales found in the features.
Because of this, the MSE was defined as the NMSE in Table 2. In summary, these equations
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are fundamental in evaluating the performance of regression models. R2 and the MSE
quantify the goodness of fit and accuracy, respectively.

Regarding the results, in general, minimal variation was observed. When the metrics
remained constant or exhibited minimal changes, the random forest was able to predict
them with an impressively low error. These cases could be seen in numerous software
applications that did not intensively consume resources, which contributed to the model’s
achievement of good results overall. An example could be the metric with the best results,
CPU priority (0.980 R2 score and 0.0005 NMSE). This metric did not suffer major changes
during normal software application use; therefore, it largely did not change. Furthermore,
the total CPU showed the second best R2 score (0.959); it is an important metric due to
its implications for the calculation of the instantaneous CPU usage (see examples of the
aggregated rule in Figures 6 and 7). While most of the metrics displayed accurate predic-
tions, it is worth noting that the normalisation process adjusted these metrics, which could
potentially reach unscaled values of up to 1 × 106, thereby influencing the observed NMSE
values. For instance, while an NMSE of 0.0016 might suggest near-perfect predictions,
especially for metrics with larger scales, such as ‘write bytes,’ a discrepancy of 100 in a
prediction within a scale of 1e6 can lead to a relatively low error score. This emphasises the
significance of scale in interpreting error metrics for regressors such as the random forest
model. In essence, while the model demonstrated robust predictive abilities, especially in
stable or minimally changing metrics, understanding the context of scaling is essential for
a more nuanced interpretation of error metrics such as the NMSE and R2 score.

The delay between metric predictions was determined by the MA. In essence, when
the MA monitored metrics every second, the predictor forecasted for the upcoming second.
It is noteworthy that the delay is fully configurable and can be changed in order to meet
the requirements depending on the use case. Furthermore, the model was able to generate
forecasts for more than five of the seventeen metrics per second with a speed that was
consistently below 0.16 s per metric.

This can provide real-time metric gathering and forecasting in industrial computing
scenarios. The distributed architecture allowed us to gather and predict metrics from
different computers and software applications at the same time. The inherent scalability of
the architecture ensures its effectiveness even in complex setups with numerous running
software applications. As the system dynamically adapts to increases in the number of
processes or threads created by multiple software applications, it maintains high levels of
performance in terms of metric gathering and forecasting. It is also important to understand
that the more software applications are running, the more processes or threads will be
created, and the higher load on the architecture, as it will need to gather all of them and then
predict what the aggregator provides.

8. Discussion

Our chosen data collection focused on normal operation scenarios. While it provided
the closest representation of real-world conditions, it is true that some software appli-
cations in a distributed environment may exhibit new and atypical behaviours due to
unexpected events or failures. The parameter prediction within our current work focused
on accurately forecasting application metrics for resource management and optimisation.
Furthermore, we acknowledge that identifying and anticipating potential failures requires
additional analyses and decision-making capabilities. An expansion of our approach by
incorporating a dedicated “failure detector” agent that leverages the predicted metrics to
trigger alerts and initiate appropriate countermeasures in response to identified anomalies
or unusual parameter deviations is envisioned as future work. This proposed improve-
ment will further enhance the overall resilience and proactive fault tolerance in industrial
scenarios. Moreover, a future step forward would be to create a controlled scenario in
which some software applications may change their behaviour unexpectedly. Examples
include preparing a threat to an application, forcing the application to carry out determined
behaviours, or programming a new software application to perform a specific task. In
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addition, the metrics chosen in this study mainly included the software application CPU,
memory, and faults. These metrics offer valuable insights into a process’s behaviour and
resource utilisation. However, incorporating network-related metrics could allow deeper
visibility, but accessing these network metrics though the OS kernel might entail significant
time and resource consumption, potentially limiting the real-time capabilities that we need
to achieve.

In Section 2, deep research was conducted in order to justify the election of the
algorithm and its success rate compared to those of other prediction models. However,
the study suggested that future research could examine further model implementations,
such as linear regression or deep learning, and how they can improve aggregated metrics,
which are the metrics for which the worst results were seen. However, in this research, the
main goal was to provide an AI-enabled architecture that was able to sense and predict
software applications rather than a review of algorithms.

Additionally, in the realm of orchestrating software components within the landscapes
of Industry 4.0 and 5.0, the integration of tools such as Kubernetes [29] or OpenShift [30] is
becoming more common. These tools not only facilitate efficient deployment and scaling but
also play a key role in optimising the overall operational efficiency of distributed systems.

As a result of the realisation of this work, further promising research can be sug-
gested. It was noticed that there is an important gap in the literature regarding software
applications in this new era of the change from manual to virtual industry. This study
introduced a baseline for the comprehension and prediction of software applications—from
the sensing of process and threads that compose the whole system until actions depending
on the specific goal—which is pivotal for setting the stage for future research endeavours.
For instance, this work serves as a starting point for potential advancements such as the de-
velopment and integration of a novel decision-making component that is explicitly tailored
to the enhancement of the predictive capabilities and operational efficiency of software
applications within this evolving landscape.

9. Conclusions

In this work, we presented and completed the creation of a new architecture that
effectively gathered the metrics of software applications for the era of Industry 4.0 and
5.0. With this architecture, we created a dataset with information on 17 metrics that were
taken directly from the OS kernel. Moreover, an AI algorithm called “random forest” was
implemented as a final state in order to achieve real-time metric forecasting. This whole
architecture allowed us to not only sense the system performance by understanding each of
the running processes, but also to forecast software behaviour. The results of the forecasting
for the whole set of metrics were good overall, with an R2 accuracy that was usually greater
than 0.9. Some metrics, such as the instant CPU percentage, write bytes per second, and
involuntary context switches per second, have to be further analysed. Regarding the speed
of the approach, it lasted less than 0.16 s per metric, thus providing the forecasting of up to
five metrics per second in the implemented prototype system. Furthermore, a comparison
between the forecasted values and current values was depicted for a better visualisation.
In addition, the whole set of errors (R2 score and NMSE) and the average time spent for
each metric were shown to demonstrate the satisfactory results of this approach. Finally,
we discussed the findings and their implications, as well as potential future work.

Author Contributions: Conceptualization, J.M.A.C. and Q.W.; Data curation, A.M.G.G.; Formal
analysis, A.M.G.G.; Funding acquisition, J.M.A.C. and Q.W.; Investigation, A.M.G.G.; Methodology,
A.M.G.G.; Project administration, J.M.A.C., H.M.M. and Q.W.; Resources, A.M.G.G.; Software,
A.M.G.G.; Supervision, J.M.A.C., H.M.M. and Q.W.; Validation, J.M.A.C., A.M.G.G., H.M.M. and Q.W.;
Visualization, A.M.G.G.; Writing—original draft, A.M.G.G.; Writing—review and editing, J.M.A.C.,
A.M.G.G. and Q.W. All authors have read and agreed to the published version of the manuscript.

Funding: This work was funded in part by the European Commission Horizon 2020 5G-PPP Program
under Grant Agreement Number H2020-ICT-2020-2/101017226: “6G BRAINS: Bringing Reinforce-



Sensors 2024, 24, 1236 20 of 21

ment learning Into Radio Light Network for Massive Connections” and the EU Horizon INCODE
project Programming Platform for Intelligent Collaborative Deployments over Heterogeneous Edge-
IoT Environments (HORIZON-CL4-2022-DATA-01-03/101093069).

Informed Consent Statement: Not applicable.

Data Availability Statement: The dataset presented in this article is not readily available because the
data is part of an ongoing study.

Acknowledgments: The authors would like to thank all the partners in the project for their support.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations
The following abbreviations are used in this manuscript:

OS Operating System
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ARIMA Autoregressive Integrated Moving Average
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