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A B S T R A C T   

The aviation industry is a dynamic and ever-evolving sector. As technology advances and becomes more so-
phisticated, the aviation industry must keep up with the changing trends. While some airlines have made in-
vestments in machine learning and mixed reality technologies, the vast majority of regional airlines continue to 
rely on inefficient strategies and lack digital applications. This paper investigates the state-of-the-art applications 
that integrate machine learning and mixed reality into the aviation industry. Smart aerospace engineering 
design, manufacturing, testing, and services are being explored to increase operator productivity. Autonomous 
systems, self-service systems, and data visualization systems are being researched to enhance passenger expe-
rience. This paper investigate safety, environmental, technological, cost, security, capacity, and regulatory 
challenges of smart aviation, as well as potential solutions to ensure future quality, reliability, and efficiency.   

1. Introduction 

The aviation industry has undergone a massive transformation as 
technology advanced and new digital capabilities have been developed. 
Intelligent solutions can enhance effectiveness, reduce costs, and boost 
productivity in the industrial sector. Advanced systems integrate a va-
riety of cutting-edge technologies including automation, robotics, arti-
ficial intelligence (AI), machine learning, mixed reality, and the Internet 
of Things (IoT) (Menouar et al., 2017; Siegel et al., 2017; Zhu et al., 
2018; Andreoni et al., 2021; Menezes et al., 2022). Digitization has 
changed the industry paradigm for smart aviation. The recently adopted 
innovative digital approaches promote efficiency, safety, and security in 
the operating process, and raise passenger satisfaction by better un-
derstanding their needs, preferences, and habits (Abeyratne, 2020; 
Molchanova, 2020; Xiong and Wang, 2022). Digitalisation has enhanced 
cooperation and communication among airlines, airports, and other 
aviation stakeholders (Kuisma, 2018). With machine learning and mixed 
reality, the aviation industry has the chance to transform aerospace 
engineering and enhance passenger experience. 

Machine learning is crucial for digitalisation, interpreting and 
identifying features, patterns and trends in digital data to gain valuable 
insights and make informed decisions (Mahdavinejad et al., 2018; Adi 
et al., 2020; Brunton and Kutz, 2022). Machine learning provides 
powerful tools for creating efficient, reliable, and safe aircraft designs, 

manufacture, and training. Machine learning applications in the digital 
twin, aerospace design, aerospace production, aerospace verification 
and validation, and aerospace services has increased automation and 
streamlined processes in aviation industry (Mackall et al., 2002; Zhu 
et al., 2012; Allen, 2016; Brunton et al., 2020; Chinchanikar and Shaikh, 
2022; Rodrigues et al., 2022; Xiong and Wang, 2022). Transformative 
machine learning has an effect on the manufacturing, automation, and 
data analysis in the aerospace industry with the use of digital modelling 
and simulation (Hey, 2009; Donoho, 2017; Brunton and Kutz, 2019). 
The data-rich aviation industry is poised to capitalize on the machine 
learning revolution. Machine learning optimises transportation net-
works, predicts customer behaviour, and provides tailored services to 
improve the passenger experience. Airlines can optimise operations, 
improve loyalty, and increase revenue by analysing passenger data 
(Akerkar, 2014; Duraisamy et al., 2019; Brunton et al., 2020). Machine 
learning tracks and analyses numerous passenger transit phases, 
including the arrival, departure, and waiting periods to reduce delays 
and improve the customer experience. Airlines use mobile applications 
to offer real-time updates and individualised services. Smart services 
such as customized tickets, baggage tracking, and flight tracking are 
provided by airlines (Avram, 2017; Bor, 2017; Molchanova, 2020; Per-
eira et al., 2022). Machine learning is a useful technology that makes 
travel more pleasant and gratifying. 

Virtual reality (VR), augmented reality (AR), and mixed reality are 
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all related technologies that use computer-generated content to enhance 
the user experience. VR is an innovative technology that enables users to 
engage with a simulated environment, creating a fully immersive 
experience. This technology is designed to generate a completely arti-
ficial world that can be navigated and interacted with in a seemingly 
realistic way. By wearing a VR headset such as the Oculus Rift, HTC 
Vive, Google Daydream, and Oculus Quest, users are transported to a 
digital environment that completely blocks out the real world. These 
headsets are equipped with high-quality screens that display images in 
360◦, allowing users to look around and explore the virtual environ-
ment. Additionally, users may interact with the digital environment 
using controllers or sensors that track their movements and gestures, 
allowing them to manipulate objects and engage with the environment 
in a natural way. VR technology can be utilized for training aviation 
professionals such as pilots, air traffic controllers, and maintenance 
technicians in a simulated environment. Through the creation of 3D 
models of aircraft, VR can simulate their performance, aerodynamics, 
and engineering, providing a platform for testing and refinement before 
building actual prototypes. Unlike VR, which creates a completely 
artificial environment, AR enhances or augments the existing environ-
ment with digital content that appears as if it is part of the physical 
world. AR technology is accessible through various devices, including 
smartphones, tablets, and smart glasses, such as HoloLens. These devices 
use cameras and sensors to identify and monitor the user’s environment, 
enabling them to display digital information in real-time. AR can overlay 
digital images onto physical components, providing visual guidance, 
simplifying the process, and identifying issues in real-world. Mixed re-
ality is sometimes used synonymously with Extended Reality (XR). 
Mixed reality combines both VR and AR to create a cohesive and 
interactive blend of virtual and real-world elements (Rokhsaritalemi 
et al., 2020; Rauschnabel et al., 2022a). This technology allows users to 
seamlessly perceive and interact with both virtual and real-world en-
vironments. Mixed reality experiences can be achieved using various 
technologies, such as sensors, cameras, and advanced graphics pro-
cessing capabilities. Mixed reality applications may require the use of 
headsets or mobile devices such as Microsoft HoloLens. Mixed reality 
creates rich, immersive, interactive, and engaging experiences. 

Mixed reality can be applied in aviation through a combination of 
robotics, analytics, mobility, and visualization (De Crescenzio et al., 
2010; Tran et al., 2022). Mixed reality has the potential to revolutionise 
aerospace engineering (Van Krevelen and Poelman, 2010; Safi et al., 
2019). Using mixed reality, aerospace engineers can easily develop 
virtual worlds where they interact with physical objects in a lifelike 
manner (Frigo et al., 2016; Mourtzis et al., 2022). Mixed reality trans-
forms manual labour into digital assistance for smart maintenance, 
visualising intricate parts, and achieving problem-solving in a virtual 
environment (De Crescenzio et al., 2010). The cost and time associated 
with developing and testing physical prototypes are reduced. Using 
mixed reality, pilots can undergo safe and cost-effective training in a 
highly efficient visualization environment (Schaffernak et al., 2020, 
2022). Virtual instructions are overlaid on physical items for training, 
allowing staff to gain hands-on experience (De Crescenzio et al., 2010). 
Mixed reality merges virtual and physical worlds to create immersive 
and interactive passenger experiences. Some airlines use mixed reality 
for indoor navigation, advertising recommendations, information noti-
fication, and immersive entertainment (Pucihar and Coulton, 2015; Safi 
et al., 2019). Mixed reality increases the effectiveness of airport infra-
structure, such as baggage handling and security checks. Additionally, 
passengers can enjoy a more user-friendly and convenient experience 
(Gupta and Sandhane, 2022; Jiang et al., 2022; Rauschnabel et al., 
2022b). The potential of mixed reality in the aviation industry is 
virtually limitless. 

This paper contributes to the aviation industry by researching and 
analysing innovative applications and services, as well as discussing 
current industry issues and challenges. This paper offers practitioners, 
academics, airlines, airports, and other stakeholders insights into how to 

shape the industry globally to make it more efficient, agile, sustainable, 
and safe. This paper makes the following contributions:  

i) Investigating the applications and challenges of machine learning 
and mixed reality in the aviation industry with digital solutions.  

ii) Exploring machine learning based intelligent tools for more 
efficient and reliable aerospace engineering through design, 
manufacturing, testing, and services.  

iii) Researching mixed reality based applications, which combines 
digital information with physical objects to visualise the entire 
aerospace engineering process, identify potential issues, and 
provide immersive training experience, from product design to 
production.  

iv) Studying machine learning solutions for improving the passenger 
experience by leveraging data from customer surveys, ticketing, 
and reservation systems to better understand passengers, antici-
pate their needs, and provide personalised services.  

v) Exploring mixed reality services, which immerse passengers in a 
multidimensional experience, provide real-time flight informa-
tion, and expand passenger entertainment options. 

vi) Discussing future opportunities of smart aviation as well as po-
tential digital solutions for efficiency, productivity, automation, 
convenience, safety, and collaboration.  

vii) Investigating a variety of aviation industry challenges, including 
safety, environmental, technological, cost, security, capacity, and 
regulatory issues. 

The remainder of the paper is organized as follows: Section 2 reviews 
machine learning and mixed reality for aerospace engineering, 
including recent advances, methods, and applications. Section 3 dis-
cusses machine learning and mixed reality for passenger experience 
enhancement, including recent developments, services, and solutions. 
Section 4 presents advanced digitalisation solutions for the future 
aviation industry. Section 5 investigates safety, environmental, tech-
nological, cost, security, capacity, and regulatory challenges of smart 
aviation. Finally, a conclusion is provided in Section 6. 

2. Smart aerospace engineering 

2.1. Machine learning 

Machine learning provides powerful analysis and optimization tools 
for complex problems in aerospace engineering. Advanced machine 
learning in aerospace design, manufacturing, testing, and services is 
covered in this section (see Fig. 1). 

Machine learning has become an integral part of modern aircraft 
design. Aircraft designers can create more efficient and safer aircraft, as 
well as optimise aircraft performance, by utilising powerful algorithms. 
The proliferation of data science and model-based engineering has made 
modern aircraft design possible (Bowcutt et al., 2008; Bons and Martins, 
2020). Multidisciplinary design employs data analytics and dimension-
ality reduction to deal with high-dimensional design parameters. Data 
reduction improves calculation accuracy and interdisciplinary in-
teractions in jet propulsion, swept wings, and composite construction 
(Henderson et al., 2012; Martins and Lambe, 2013). The design of an 
aircraft is a multi-objective optimization problem (Cramer et al., 1994; 
Booker et al., 1999). The objective functions, prediction algorithms, and 
analytic tools have transformed aerodynamics, structures, and control 
systems in aircraft design (Baran et al., 2017). 

Application of machine learning in aerodynamics optimization re-
sults in more fuel-efficient, stable, and easy-to-control flight. The data 
collected from wind tunnel tests, flight tests, and simulations is trained 
in a machine learning model, which can then be used to determine the 
optimal design parameters. These parameters are used to generate 3D 
models of the aircraft, which are then tested in a virtual environment to 
ensure the desired aerodynamic performance (Dong et al., 2021; 
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Clainche et al., 2022; Sabater et al., 2022). Machine learning can 
generate new aircraft structures and optimise their performance for 
much lighter and stronger aircraft. A large data set of existing aircraft 
structures, including materials, aerodynamics, structural, and cost, is 
collected and analysed using machine learning. Based on the patterns 
identified in the data set, the trained model generates new aircraft 
structures. The generated aircraft structures are evaluated in a computer 
simulation environment. The designed aircraft structures achieve the 
desired performance and safety through an iterative process (Salehi 
et al., 2018; Ai et al., 2021). Machine learning can create and optimise 
control systems that make aircraft more manoeuvrable and easier. Data 
from the aircraft control system is collected and analysed, such as 
aircraft performance and safety records. A mathematical model is 
designed for aircraft control systems to reveal the relationships between 
input and output variables. The trained model is tested on a simulator or 
a real aircraft to make further adjustments (Eroglu et al., 2020; Ravaioli 
et al., 2022). 

Model-based engineering supports accurate prediction and optimi-
zation of complex aircraft designs. The digital twin system captures 
physical world information accurately and ensures standard data 
format. Diverse signals from hundreds of subsystems are modelled, and 
physical operational systems are effectively represented with virtual 
portrayals (Singh et al., 2018). Airbus and Boeing are investing heavily 
in machine learning platforms. Airbus created aircraft design solutions 
that combines 3D modelling and machine learning (Airbus, 2023a). The 
solutions can analyse aircraft components such as wings and fuselages, 
optimise weight, performance, and other metrics to determine the best 
aircraft design, and diagnose potential aircraft problems. Boeing uses 
machine learning to analyse the design of various aircraft components, 
allowing engineers to design aircraft components quickly and accurately 
(Boeing, 2023a). The utilization of machine learning is causing a para-
digm shift in aircraft design, resulting in improved aircraft performance 
and enhanced safety for the future of aviation. 

Aircraft manufacturing is a complex process that involves the 
manufacture of components, assembly, testing, and inspection. Machine 
learning reduces costs, improves safety, and boosts efficiency in the 
aircraft manufacturing. In process control, autonomous detection, and 
material selection, machine learning plays a significant role. Machine 

learning identifies trends, detects abnormal behaviour, suggests 
corrective actions, recommends optimal assembly sequences, assumes 
expected performance, and suggests potential modifications, allowing 
manufacturers to make better decisions (Caesarendra et al., 2019; 
Brunton et al., 2021; Shafi et al., 2023). 

Machine learning redefines standard data formats and assists in 
robust cross-platform data transfer. Data analysis of aircraft parts pa-
rameters shortens the material manufacturing cycle and accelerates the 
parts assembly process. Parts parameters are used in aircraft standard-
ization, which has informed future decisions and streamlined processes. 
Machine learning uses sensors and data logs to detect abnormalities in 
the process, reducing downtime and improve safety and reliability of the 
aircraft. Automated machines produce detailed aircraft parts with 
higher accuracy and lower cost. 

In autonomous detection, machine learning monitors and controls 
manufacturing processes (Malik et al., 2020; Brunton et al., 2021; Lu 
et al., 2023). Machine learning recognises patterns in data, analyses 
deviations from expected output, and identifies invisible manufacturing 
defects such as cracks and warping. To improve the accuracy and reli-
ability of aircraft manufacturing, supervised learning, unsupervised 
learning, and deep learning are used in autonomous detection. Machine 
learning measures error to shorten operation times and increase oper-
ator efficiency. Sensors detect faults in real time, recognise repetitive 
patterns, and predict abnormalities. Outliers are detected using prin-
cipal component analysis and feature extraction to improve the quality 
of automated inspections (Manohar et al., 2018). 

Machine learning improves material selection by detecting param-
eter changes, filtering out suitable materials, shortening testing times, 
and determining the best options (Chinchanikar and Shaikh, 2022). 
Digital models are used to simulate new materials or structures based on 
a variety of criteria such as cost, strength, weight, and durability 
(Conduit et al., 2017; Verpoort et al., 2018; Brunton and Kutz, 2019). 
Sparse regression is used to investigate the relationship between various 
parameters such as material characterization, structural characteriza-
tion, friction, pressure resistance, and temperature sensitivity. The use 
of digital simulations reduces the cost of developing new materials 
significantly (Sachs, 2014; Conduit et al., 2018; Green et al., 2018). 
Computer vision and thermal detection are used in new material 

Fig. 1. An overview of smart aerospace engineering.  
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diagnostics and defect detection. 
Machine learning-based systems are gradually taking the place of 

manual labour (Juarez et al., 2018; Sacco et al., 2019). GE Aviation 
employs machine learning in aircraft manufacturing (GE Research, 
2023). The AI-powered analytics tools are used for predictive mainte-
nance and performance optimization of its jet engines. GE Aviation is 
also using machine learning to improve the efficiency of its jet engine 
production lines. 

Machine learning provides efficient and accurate data analysis for 
aircraft testing, allowing for the development of better aircraft models 
and the improvement of aircraft performance. Data-driven methodolo-
gies streamline the testing process while also ensuring testing quality. 
Machine learning is used at the subsystem and integrated system levels 
to reduce the dimension of sensor collected data, extract main features, 
analyse parameter relationships, and visualise optimised data patterns. 
There are many different types of aircraft and multi-modal signal data, 
such as accelerometers, temperature sensors, and pressure sensors. Each 
process of the complex and dynamic integration system has been 
significantly improved through data modelling and constraint optimi-
zation. Automatic verification and validation have reduced the need for 
time-consuming manual labour and alleviated the problem of staff 
shortages. A large amount of real-time discrete data is processed by 
aviation industry to ensure flight safety. Automated flight testing allows 
staff to refocus on critical information, detects abnormal activities 
quickly, increases testing efficiency, and shortens testing cycles. Data 
simplification converts messy sensor data into regular patterns. Data 
visualization reduces the cognitive burden on engineers. Active learning 
algorithms simplify multi-dimensional and multi-objective verification 
models. Digital twin seamlessly connects verified digital models with 
physical entities (Cohn et al., 1996). Machine learning incorporates 
prior testing experience into data analysis and physical information to 
perform real-time decision-making during the testing phase. Lockheed 
Martin is developing novel machine learning applications for testing and 
evaluating aircraft designs (Lockheed Martin, 2023a). Engineers and test 
pilots are capable of conducting structural, propulsion, avionics, and 
environmental testing. Aircraft testing ensures that the tested aircraft 
meet the highest possible standards and provide passengers with a safer 
experience. Boeing offers competitively priced, timely, accurate, 
consistent, and repeatable test results in wind tunnels, propulsion, 
environmental, electromagnetics, and structures (Boeing, 2023b). 

Aerospace stages can be improved in reverse by utilising service 
data, including enhanced predictive maintenance, optimised perfor-
mance, and improved safety, reliability, efficiency. Potential problems 
are identified and addressed before they occur, resulting in lower 
maintenance and operating costs. The information gathered from the 
services fleet improves the digital models of the aircraft, allowing for 
more accurate predictions and simulations of performance, mainte-
nance, and other operational aspects. The service data further optimises 
sensor processing, allowing for more accurate and precise aircraft de-
signs. Furthermore, the service data can be used to quickly evaluate and 
modify existing aircraft designs to make them more efficient and safer. 
Many passengers lose confidence in the airline as a result of flight delays 
caused by aircraft failures (Ariyawansa and Aponso, 2016; Mangortey 
et al., 2020; Huang and Zhu, 2021). Machine learning recognises data 
patterns in previous flights to predict the likelihood of a flight delay. 
Machine learning identifies the delay caused by mechanical problems, 
allowing them to be resolved quickly and avoided in the future. Machine 
learning processes massive amounts of aircraft system data to support 
quick self-diagnosis, identify real-time faults, and make accurate de-
cisions. Airport services generate a large amount of data, including 
passenger check-in information, cargo details, flight schedules, security 
logs, and weather updates, which can be used to optimise airport op-
erations and ensure passenger safety (Muelaner and Maropoulos, 2011; 
Muelaner et al., 2013; Mamdouh et al., 2020; See et al., 2022). Auton-
omous systems based on machine learning make informed decisions for 
airport staff and provide better services to passengers. These systems 

optimise operations to reduce delays, improve flight schedules, and 
predict passenger needs. 

2.2. Mixed reality 

Mixed reality has a significant impact on aerospace engineering. 
Advanced interfaces and visualization systems are developed for prod-
uct design, complex assembly, accurate maintenance, and assisted 
training. 

Mixed reality has the potential to improve the efficiency and effec-
tiveness of the design process, thereby shortening the time to market for 
new aircraft designs. Designers create immersive simulations of aircraft 
to test and evaluate virtual prototypes in a controlled environment. This 
approach saves time and money that would otherwise be spent on 
traditional physical design methods (Regenbrecht et al., 2005; Shen 
et al., 2010; Ng et al., 2013; Mei et al., 2019; Kent et al., 2021). Mixed 
reality has the capability to evaluate different design concepts quickly 
and easily. It can build virtual prototypes in hours or days, which is a 
drastic reduction from the weeks or months required for physical pro-
totypes. As a result, mixed reality can significantly accelerate the design 
process (De Crescenzio et al., 2019). By utilising mixed reality, engineers 
can optimise the performance of aircraft designs, identify potential is-
sues, and construct convincing product lifecycles (Mourtzis et al., 2018; 
Lallai et al., 2021). 

Mixed reality improves the way teams collaborate (Utzig et al., 2019; 
Cooper et al., 2021). Instead of relying on physical models or drawings, 
which can be difficult to share and collaborate on. With mixed reality, 
designers can work together in a virtual environment, allowing for 
real-time collaboration and communication. Mixed reality is integrated 
into the current development platform and workflow. Based on the 
feedback, the mixed reality based product is refined and tested until the 
desired results are obtained. Boeing leverage Microsoft’s mixed reality, 
cloud platform, and AI capabilities to modernise critical infrastructure, 
streamline processes, and accelerate digital aviation innovations (Air-
force Technology, 2023). Boeing visualises and optimises aircraft de-
signs in real time using Microsoft HoloLens device (Microsoft, 2023a). 
Airbus uses Microsoft Hololens hardware and software to speed up 
production. The designing is 80 percent faster than traditional methods 
due to the ability to test designs in 3D before manufacturing (Computer 
World, 2023). Lockheed Martin develops new simulations to revolu-
tionise the way engineers design advanced systems from satellites to 
aircraft. Rather than utilising an expensive and time-consuming process 
to create new aircraft modifications and add-ons, engineers use a virtual 
workspace to craft digital parts and modify designs (Lockheed Martin, 
2023b). 

The utilization of mixed reality is revolutionizing aircraft assembly 
and providing numerous advantages to aircraft builder teams. The 
application of mixed reality enables the accurate and quick assembly of 
thousands of parts (Tang et al., 2003; Luxenburger et al., 2019; Dong 
et al., 2021; Wang et al., 2022). During product assembly, manual in-
structions must be laboriously studied and constantly referred to. 
However, mixed reality offers hands-free and voice-controlled opera-
tions with detailed 3D instructions (Gavish et al., 2015). The task of 
installing electrical wires on an aircraft is difficult and must be executed 
with absolute precision. Nevertheless, interactive 3D wiring diagrams 
have made this task possible (Wang et al., 2016; Yin et al., 2018). Using 
3D manufacturing, engineers have achieved a 90 percent improvement 
in first-time quality as compared to 2D information, as well as a 30 
percent reduction in the time required (Baird and Barfield, 1999; Mizell, 
2001; Barfield and Caudell, 2001; Davies and Sivich, 2011). Mixed re-
ality applications superimpose 3D models on physical parts, providing a 
more consistent and accurate assembly process. 

Mixed reality makes aircraft assembly more engaging and interac-
tive, allowing engineers to practise and fine-tune their skills before 
performing the actual task (Wang et al., 2021). Engineers first determine 
the specific area of aircraft assembly before designing and laying out the 
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mixed reality environment. They then integrate the hardware and soft-
ware components into the existing assembly line. The systems are tested 
for functionality and accuracy to ensure their proper operation. 
Following testing, assembly line workers are trained to optimise per-
formance. Boeing uses mixed reality to accelerate aircraft assembly 
(Boeing, 2023c). 3D digital models of aircraft components are visual-
ised, interacted, and assembled in a physical environment. The Boeing 
mixed reality system can detect errors in the assembly process quickly 
and easily, as well as virtually simulate and review assembly operations. 
Mixed reality guides and trains aircraft assembly technicians, enabling 
them to quickly become acquainted with the assembly process. Teams 
from across the Boeing are working to transform aircraft assembly to 
assist in the resolution of difficult and real-world problems (Boeing, 
2023d). 

Mixed reality improves maintenance process efficiency and reduces 
downtime, making aircraft maintenance safer and more cost-effective 
(Hincapié et al., 2011; De Marchi et al., 2014; Palmarini et al., 2018; 
Hebert Jr, 2019; Siyaev and Jo, 2021). Mechanics have traditionally 
relied on paper manuals to assist with thorough maintenance. Mixed 
reality overlays instructions on over the actual product, allowing oper-
ators to visualise machine status in real time (Scurati et al., 2018). 
Rigorous quality screenings identify problems at an early stage, reducing 
machine downtime and airline costs (Ceruti et al., 2019). Human-based 
defect detection cannot ensure optimal quality assurance because 
human errors are unavoidable. Mixed reality projected digital overlays 
over the product to accurately identify defects and inefficiencies (Eschen 
et al., 2018). Engineers solve complex problems by interacting with 3D 
models of aircraft, viewing their parts and systems, and simulating 
maintenance activities. Mixed reality provides interactive step-by-step 
instructions for maintenance activities to reduce the time required for 
training and onboarding new employees (Mustapha et al., 2021). The 
inventory of aircraft parts is tracked and managed using mixed reality. 
Engineers scan, identify, and check the availability of parts to make 
maintenance processes faster, safer, and more cost-effective (Utzig et al., 
2019). Airbus creates mixed reality systems that provides 3D models of 
aircraft components to facilitate maintenance process (Airbus, 2023b). 
The 3D models assist technicians in rapidly and precisely identifying the 
parts and components requiring repair or replacement. Simultaneously, 
they provide a more extensive overview of the aircraft structure. Mixed 
reality provides technicians step-by-step instructions, allowing them to 
complete maintenance tasks quickly and safely. Mixed reality uses ho-
lograms to transform digital information from two-dimensional to a 
three-dimensional experience. Airbus employs the Microsoft HoloLens 
headset to interact with holograms in physical space (Microsoft, 2023b). 
The HoloLens 2 enhances the mixed reality experience by including eye 
tracking to detect digital information, automatic scrolling for user reads, 
iris recognition login, and secure sharing among multiple people. Hol-
oLens significantly speeds up the maintenance process, cutting time 
spent by 80 percent, while improving quality. 

Mixed reality is used for aircraft ground navigation, assisted piloting, 
and operator training (Schaffernak et al., 2020). Mixed reality creates a 
virtual environment that is overlaid with the physical environment for 
ground navigation. The terrain, navigation, air traffic, weather, instru-
mentation, and airspace information are visualised in a simple 3D 
format. Mixed reality creates virtual landmarks to assist pilots in ori-
enting themselves in their surroundings and guiding them to destina-
tion. Microsoft Flight Simulator creates systems for pilot navigation 
simulation (Flight Simulator, 2023). Mixed reality assisted piloting al-
lows pilots to view a more realistic and accurate surrounding repre-
sentation, access real-time data about the aircraft, and make split-second 
decisions with greater accuracy and confidence (Oh et al., 2021; 
Schaffernak et al., 2022). The head mount display (HMD) assists pilots 
during flight, takeoff, and landing. The mixed reality systems show a 
corridor overlay to show the pilots the proper path from takeoff to 
landing (Wu et al., 2012; Zollmann et al., 2014). Mixed reality has the 
potential to reduce pilot fatigue and stress by providing an immersive, 

realistic experience. Without the need for actual flight, mixed reality for 
piloting training allows pilots to experience a realistic simulation of 
flying a real aircraft, better understand different scenarios, and practise 
more in less time. Thorough and extensive training is required for airline 
personnel before they work in a real-world environment. However, 
preset manual training is insufficient to meet the growing needs. Mixed 
reality enables operators to gain hands-on experience, making the 
equipment easier to learn and use (Macchiarella et al., 2008; Kaplan 
et al., 2021; Kaplan et al., 2021). The utilization of remote mixed reality 
can reduce both training and execution costs. This is achieved by 
enabling experts to view through the technician’s eyes, facilitating 
remote expert support, and permitting inspections without any distance 
restrictions (Schneider et al., 2017; Utzig et al., 2019). Delta Air Lines 
trains airport staff in mixed reality using Microsoft HoloLens. The Hol-
oLens headset is capable of simulating a wide range of scenarios, 
including emergency situations (Foundry, 2023). 

3. Passenger experience enhancement 

3.1. Machine learning 

In the aviation industry, machine learning is becoming increasingly 
prevalent. Its usage enhances security, improves passenger experience, 
and streamlines the travel process, ultimately providing a more efficient, 
secure, seamless, and enjoyable journey from the entrance to the 
boarding gate (Zheng et al., 2016; Din et al., 2019; Guo et al., 2022). The 
journey of passenger through an airport is shown in Fig. 2. 

Before traveling, passengers can easily plan journeys, book tickets, 
and buy ancillary products online with machine learning. Machine 
learning provides passengers with personalised recommendations based 
on their preferences and location (Kumar and Zymbler, 2019; Heidari 
and Rafatirad, 2020; Hasib et al., 2021; Guo et al., 2022). Passengers’ 
past travel patterns and preferences are analysed by algorithms. The 
algorithms can recommend routes, destinations, and attractions tailored 
to their specific needs and desires (Jain and Pamula, 2021; Noviantoro 
and Huang, 2022). Through machine learning, passengers are offered a 
range of options, including the most suitable modes of transportation, 
lowest fares, and most comfortable journeys. This empowers passengers 
to make informed decisions and choose the most suitable option for their 
journey, resulting in time and cost savings. 

Machine learning updates traffic in real time, suggests alternate 
routes, and ensures passengers arrive on time (Khaksar and Sheikho-
leslami, 2019). Machine learning optimises routes by taking into ac-
count real-time traffic, weather, and other conditions to ensure the 
quickest and most efficient route, making journey planning more 
enjoyable and stress-free. Uber has developed scalable, reliable, 
easy-to-use, and automated machine learning tools to predict approxi-
mate arrival times. This process involves data management, data 
training, model evaluation, model deployment, prediction, and predic-
tion monitoring (Uber, 2023). Machine learning is utilized by Google 
Maps to optimise routes for passengers. Passengers are informed of any 
delays or changes in their route in real-time, and alternative routes 
based on current conditions are recommended (Google, 2023). Delta Air 
Lines uses machine learning to price tickets, analyse passenger behav-
iour, and provide self-service experiences (Harvard Business School, 
2023). 

During check-in, machine learning is rapidly transforming the airline 
industry, with self-service, self-tagging, bag dropping, and streamlining 
processes (Rostworowski, 2012; Yau and Tang, 2018; Thamaraiselvan 
et al., 2019; Antwi et al., 2021; Jamaluddin and Rahmat, 2023). 
Self-service check-in machines are gaining popularity as a means of 
providing more accurate and efficient processes. Machine learning can 
recognise various types of passengers and provide a more personalised 
check-in experience. By automating the process, airlines can save money 
on labour while also analysing data to gain insights into passenger 
preferences to improve service and increase loyalty. The passengers 
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enter their information, such as their name and flight number, into the 
self-service kiosk. The system then accesses a database of stored pas-
senger information and uses machine learning to quickly identify the 
passenger and check them in for their flight without the need for manual 
verification, reducing the possibility of human error, shortening wait 
times, and providing more cost-effective solutions. Hong Kong Interna-
tional Airport is using machine learning to automate its self-service 
airport check-in system. The airport uses a combination of facial 
recognition, passport scans, and other biometric data to verify passenger 
identities, and facilitate a faster, more secure check-in process (Hong 
Kong International Airport, 2023a). These technologies can reduce long 
queues at entry points and optimise passenger service efficiency. 

Machine learning with self-tag baggage improve airport processes 
while reducing manual labour and passenger wait times. The system 
quickly recognises the shape and size of baggage, assigns a unique code, 
and labels it accurately. The code then is used to track the baggage and 
ensure their safely arrive. Singapore Changi Airport employs machine 
learning for self-tagging, which recognises passengers, assigns them a 
unique boarding pass, and assigns an identification tag to their baggage 
(Changi Airport Group, 2023). Cathay Pacific requires passengers to 
obtain their boarding pass and baggage tag from the kiosk before pro-
ceeding to the bag drop counter (Cathay Pacific, 2023). The imple-
mentation of self-service bag drop has the potential to considerably 
decrease passenger wait times at airports while eliminating the need for 
airport personnel to manually check in passengers. This allows passen-
gers to allocate their time to more critical tasks. Computer vision sys-
tems read the ticket information and compare it to the information on 
the passport. Once the information has been validated, the machine 
learning-based facial recognition system identifies the passenger. The 
system retrieves flight information quickly and generates the appro-
priate bag tags. The passenger then places their bags on the conveyor 
belt, and the machine scans the tags to route the bags to the correct 
destination. Cathay Pacific and Hong Kong International Airport have 
implemented self-service bag drop facilities to assist passengers in 
printing bag tags and checking their baggage on their own, reducing the 
bag drop process to approximately 1 min (Cathay Pacific, 2023; Hong 
Kong International Airport, 2023b). The Heathrow and Los Angeles in-
ternational airports adopt advanced system to make the check-in process 
easier for passengers (Heathrow, 2023; Transportation Security 

Administration, 2023). Machine learning can streamline the check-in 
process and reduce wait times by analysing the time of day, number of 
passengers, and other factors. The daily data is used to optimise staffing 
and check-in station layout, improving passenger experience. 

Machine learning analyses massive amounts of data to identify pat-
terns, predict potential security threats, detect fraudulent documents, 
inconsistencies, and anomalies. Airports can use machine learning to 
identify potential risks and take preventative measures to ensure trav-
eller safety (Zheng et al., 2016; Gota et al., 2020; Rodríguez-Sanz et al., 
2021; Zhang, 2022). Machine learning learns from datasets and recog-
nises patterns of behaviour to detect and prevent security issues at air-
ports. Airports treat each passenger as a data point, creating a personal 
profile for each one. Booking information, travel history, and individual 
details are used as predictive analysis parameters. These structured and 
unstructured data are used in unsupervised learning, and the airport 
assigns a risk rating to each individual. The Gaussian distribution is used 
in mathematical modelling to learn complex non-linear relationships 
between the characteristics of passengers. In a classification system, 
each passenger is assigned a different category, and the higher risk is 
easily identified. Computer vision algorithms analyse data from security 
cameras to detect suspicious behaviour, illegal activities, and potential 
threats. Airports use facial recognition technology to identify people 
who have been flagged as potential security threats. The system allows 
airports to quickly and accurately identify individuals who may pose a 
threat, preventing terrorism, smuggling, and other criminal activities. 
Machine learning identifies travellers who may pose a risk based on their 
travel patterns, such as whether they have visited specific countries or 
websites. 

Automated baggage detection and self-screening systems, including 
explosive detection systems, prohibited items detection systems, and 3D 
CT technologies, are extensively employed in airports (Gui et al., 2019). 
These systems aid operators in identifying suspicious items for further 
examination (Liang et al., 2018). The Transportation Security Admin-
istration (TSA) detects suspicious items, potential explosives, and other 
prohibited items in carry-on bags and airports using 3D imaging tech-
nology and machine learning models (U.S. Department of Homeland 
Security, 2023). Machine learning utilises synthetic training data sets 
and simulants to mimic real and diverse threats. Airport application 
scenarios are rapidly and thoroughly studied, recreated, modelled, and 

Fig. 2. The journey of a passenger through an airport.  
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understood to create synthetic augmentation libraries to fully train and 
test algorithms for complex threat propertises. Machine learning is 
increasingly being used to automate border control processes that are 
more efficient and secure than manual methods, such as emigration, 
passenger data verification, and other regulatory requirements. Bio-
metric information such as fingerprints, photographs, iris scans, pass-
port and visa numbers are collected from traveller for automated border 
control (Ariyawansa and Aponso, 2016). Based on the collected data, 
traveller profiles are created to proceed automatically. When machine 
learning detects unusual patterns in data, such as suspicious behaviour 
or potential security threats, it alerts authorities and initiates an inves-
tigation. The Munich Airport is developing the Information Security Hub 
(ISH) to assist in combating the threat, which ranges from preventing 
simple data theft to simulating risk scenarios (Munich Airport, 2023). 

Machine learning enhances the boarding and baggage experience by 
reducing wait times, optimising traffic flow, and providing passengers 
with intelligent services (Abdelaziz et al., 2010; Altexsoft, 2023). Ma-
chine learning analyses booking information, passenger number, 
aircraft size, baggage number to determine an efficient boarding order 
that minimises boarding time. Machine learning tracks passengers by 
analysing data such as arrival and security check times to adjust the 
boarding process accordingly. Machine learning detects patterns in the 
boarding process, such as boarding priority, boarding speed, and 
boarding time, to maximise efficiency. Machine learning analyses the 
current boarding process to identify bottlenecks, reduce congestion, and 
improve passenger flow. Machine learning provides personalised 
boarding experiences by analysing passenger data such as travel history, 
preferences, and previous flight experiences. 

Automated baggage solutions using machine learning provide 
streamlined and efficient air travel. Airports benefit from machine 
learning by using less time and resources to transfer baggage, which cuts 
costs and enhances the traveller experience. Airports can determine the 
best baggage routes and the most effective loading and unloading 
techniques by evaluating data from baggage scanners and passenger 
information. Machine learning identifies potential issues that may occur 
throughout the baggage handling procedure to foresee consumer com-
plaints and deal with them beforehand (Sørensen et al., 2020). Rapid 
identification, sorting, and delivery of baggage at the airport are 
required. Automated baggage handling eliminates the need for manual 
sorting and reduces the potential of human error. Using machine 
learning, airport staff can more precisely and efficiently track passenger 
and baggage information. After baggage tags are scanned, machine 
learning algorithms evaluate the scanned data and assign the correct 
passenger to the information. Anomalies, damaged, and lost baggage 
can be identified using image recognition algorithms. Krasnodar Inter-
national Airport uses robots to automate the baggage picking and 
loading process, reducing human error, loss and damage amount, and 
the time required to load and unload aircraft. The robot is a manipulator 
outfitted with cameras, bar code scanners, detectors, and advanced al-
gorithm. The first prototype can lift up to 42 kg and load one piece of 
baggage every 40 s in a specific order (Simple Flying, 2023a). An 
automated object detection system based on computer vision detects 
prohibited items in X-ray images. The system can detect prohibited 
items in black-and-white 2D X-ray images, colorized X-ray images, and 
3D CT scan images at up to 30 baggage images per second. The system 
detects threats more precisely and efficiently, reducing false alarms, 
saving valuable time, increasing passenger safety, and removing human 
error from the baggage-screening process (Community, 2023). Machine 
learning improves the accuracy, sustainability, and cost-effectiveness of 
the baggage process. Eindhoven Airport is testing a machine 
learning-powered baggage handling system that allows passengers to 
simply take photos of their baggage, deposit it, and collect it when they 
arrive at the destination without the need for labels. The image recog-
nition algorithm links to the baggage system. Algorithms categorize 
baggage and then compare it to the registered image dataset, retrieving 
precise data such as the origin, type, color, IATA classification, 

manufacturer, and baggage dimensions. The baggage system based on 
machine learning eliminates the need for baggage tags and label printing 
machines, making Eindhoven Airport more environmentally friendly 
(Community, 2023). The combination of bag tracking data generated 
and collected under Resolution 753 and machine learning tools has the 
potential to significantly increase efficiencies in baggage operations. Air 
Canada integrates Amazon Alexa, cloud platform and AI brain, into their 
system to provide baggage status to passengers (SITA, 2023). The air 
transport industry is undergoing digital transformation. The use of 
machine learning to revolutionise baggage operations is still in its early 
stages of development. 

Machine learning assists airport staff in making more informed 
operational decisions. Using sophisticated algorithms, airport staff can 
accurately predict and monitor flight arrival and departure times, as 
well as other pertinent information (Gui et al., 2019; Lambelho et al., 
2020; Rodríguez-Sanz et al., 2021; Guo et al., 2022). Regression tree 
algorithms can be used to forecast real-time quantile. The algorithm 
recognises late connecting passengers and assists them in making con-
nections. Large airports contain a vast amount of data from systems and 
equipment such as security, baggage, freight, traffic, and passengers. 
Machine learning collects all relevant data and converts them into 
actionable information, allowing operators to maximise their efficiency 
and optimises aiport effectiveness. Machine learning improves customer 
operations, provides personalised service, and allows individual strate-
gies (Sridhar et al., 2020; Barakat et al., 2021). Passenger activities such 
as check-in, departure paperwork, security checkpoints, boarding and 
deboarding a plane are being simplified. Airports create customer pro-
files by analyzing passenger data to identify their needs and provide 
customized solutions. Customer service agents use customer profiles to 
identify customers with similar needs and provide them with the same 
solutions, reducing wait times and increasing satisfaction. The airport 
adjusts flight schedules, aircraft capacity, load factors, and transfer rates 
based on changing passenger patterns. During peak hours, the airport 
dynamically coordinates queue length and promptly opens spare idle 
service equipment (Zhang, 2009; Sims, 2019; Orsini et al., 2019; Guo 
et al., 2020). Machine learning is used at Amsterdam Airport Schiphol to 
provide personalised service as well as asset corrective and predictive 
maintenance. Amsterdam Airport Schiphol analyses customer behaviour 
and preferences using predictive analytics to provide tailored boarding 
gate recommendations, flight information, and travel advice. Schiphol 
employs IBM Maximo and IBM Watson IoT for asset management to 
provide passengers with a pleasant journey (IBM, 2023). Heathrow 
Airport analyses aircraft generated data, refines aircraft turnaround 
processes, and reduces passenger delays using machine learning (In-
ternational Airport Review, 2023). 

Autonomous robots and vehicles offer an efficient, safe, and cost- 
effective way to move passengers and goods throughout the terminal, 
such as passenger flow control, baggage delivery, passenger security, 
and passenger transportation. Machine learning chatbots are critical 
tools for airports to improve passenger experience. They respond in a 
human-like manner using natural language processing, providing in-
formation efficiently while reducing airport staff workload. These 
chatbots can monitor and manage airport operations, track customer 
feedback, identify improvements, and alert on issues. AirAsia created 
AirAsia Virtual Allstar (AVA) chatbots using machine learning to pro-
vide passengers with a more seamless and user-friendly experience, from 
bookings to browsing to shopping to customer support (Kasinathan 
et al., 2020; Future Travel Experience, 2023). Guide robots based on 
machine learning help travellers navigate airports by assisting with 
navigation and baggage handling. Using computer vision, guide robots 
are programmed to recognise various types of baggage and locate the 
appropriate conveyor belts. For baggage transportation, Frankfurt 
Airport employs guide robots known as FRANbots. The robots are 
designed to autonomously transport baggage to its final destination, 
eliminating the need for manual handling and improving baggage 
transportation efficiency. The FRANbots were outfitted with sensors, 
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touchscreens, and computer vision technology to enable advanced 
navigation and obstacle avoidance. Passengers enter their flight infor-
mation and destination into the FRANbots, which will navigate them to 
their destination and drop off their baggage (Simple Flying, 2023b). 
With the increased popularity of air travel and the increasing demand 
for on-time departures and arrivals, autonomous robots are increasingly 
seen as a viable solution to the challenge of airport punctuality. Incheon 
Airport in South Korea and Munich Airport in Germany deploy auton-
omous robots to help passengers move around the airport quickly and 
with ease. The robots are outfitted with advanced sensors and machine 
learning to track passenger movement, ensure passenger punctuality, 
keep passengers on time, and avoid delays. By providing passengers with 
faster and more efficient service, the airport is able to reduce the amount 
of time and manpower required for smooth operation (Airport Bench-
marking, 2023; Airport Technology, 2023a). The autonomous vehicles 
are intended to be an efficient solution for baggage handling. Delta 
Airlines employs self-driving vehicles to assist with delayed baggage 
delivery. Self-driving electric wheelchairs improve accessibility for 
disabled passengers and represent a step forward in the travel industry. 
The self-driving electric wheelchairs are outfitted with various sensors 
and cameras to ensure equal access to air travel and a consistent travel 
experience for disabled passengers. All Nippon Airways (ANA), Etihad 
Airways, and Abu Dhabi Airports are testing the mobility of self-driving 
electric wheelchairs to provide disabled passengers with a comfortable 
and secure mode of transportation (ANA Group, 2023; Etihad Airways, 
2023). 

Entertainment plays an important part in the passenger journey. 
Passengers were used to rely on available options like books, magazines, 
or board games during flights (Alamdari, 1999). Today, there are 
numerous entertainment options available to make the journey more 
enjoyable. Airlines use machine learning to provide more personalised 
in-flight entertainment. Some airlines provide personalised music as a 
soothing and calming tool for nervous passengers (Portalés et al., 2010). 
By collecting passenger data, airlines customise flight offerings to best 
meet their individual tastes, provides passengers with their favorite 
movies and food options on flights. Customized services improve pas-
senger satisfaction, help airlines better understand customer needs, 
build customer loyalty, and increase overall profitability (Steiner et al., 
2016). Passenger data is collected, cleaned, and organized to train a 
machine learning model to provide personalised service. With the 
advancement of technology, airlines are seeking opportunities to 
reimagine the travel experience and enhance overall business efficiency. 
Cranfield Airport has embarked on an ambitious “Urban Turbine” 
project to redefine the relationship between the city and the airport. The 
project seeks to create an innovative and sustainable approach to airport 
expansion and development. The project envisions transforming the 
existing airport terminal facilities and surrounding area into a vibrant 
urban space that incorporates commercial, office, leisure, and residen-
tial elements. The project aims to create an environment that seamlessly 
integrates the airport into the surrounding area, reducing its environ-
mental footprint and making it more accessible to the local community 
(Urban Turbine, 2023). 

3.2. Mixed reality 

Mixed reality, which combines the physical and digital worlds, 
provides passengers with a variety of benefits that enhance their airport 
experience. Mixed reality provides passengers with useful information 
and directions throughout their airport experience to speed up their 
travel efficiency. Passengers are shown advertisements and targeted 
recommendations while shopping. The virtual tags allow for faster 
baggage claims and reduce mishandled baggage. 

Airports are large, complex spaces that can be difficult to navigate. 
Airports assist passengers by providing indoor navigation services that 
guide them through the building with ease. Traditionally, indoor airport 
navigation employs a variety of technologies, including signposts, GPS, 

Wi-Fi, Bluetooth, beacons, and QR codes (Huang and Gartner, 2009). 
Indoor mixed reality navigation has numerous advantages over other 
types of navigation. Mixed reality provides navigation cues in an 
interactive and immersive manner, making it much easier and more 
enjoyable to navigate through indoor spaces. Indoor mixed reality 
navigation is a low-cost solution that can be installed in existing indoor 
spaces without requiring costly renovations. Mobile phones can be used 
for mixed reality based indoor navigation. Users can download a mixed 
reality indoor navigation app on their phone. These apps use the phone’s 
camera, GPS, and sensors to create a digital map of the indoor envi-
ronment and overlay it with relevant information, such as directions, 
points of interest, and other relevant data. The users can then use their 
phone as a window to view the digital map and navigate through the 
environment. Indoor mixed reality navigation is a visual treat that 
makes it easier for visually impaired passengers by improving 
turn-by-turn audio prompts. A mixed reality navigation system can 
locate late-running passengers and send them text reminders (Kim and 
Jun 2008). Indoor mixed reality navigation app can display points of 
interest along the way. The retailers send promotional messages to 
nearby passengers informing them of current ongoing promotions. The 
indoor mixed reality navigation app can collect passenger information, 
which is then used to improve airport queue management and direct 
passengers to a less congested area. Passengers can use mixed reality 
navigation to get through the airport quickly, accurately find their way, 
and avoid missing their flight. Google Maps integrated mixed reality for 
indoor navigation to help people navigate more precisely and efficiently 
(CNBC, 2023; Google AR & VR, 2023; Resonai, 2023). Instead of relying 
on traditional signs and maps, passengers can now use their phones or 
tablets to access indoor navigation, which provides passengers with 
real-time maps and directions in 3D, making airport navigation more 
intuitive and engaging. Passengers can also access additional informa-
tion such as flight times, gate information, and other relevant data. 

Retail is an essential source of revenue for airports, accounting for a 
sizable portion of total revenue (see Fig. 3). Mixed reality retail boosts 
in-store and online sales while revolutionizing how customers shop and 
businesses interact with them. Virtual try-ons allow customers to get a 
realistic view of a product on their mobile devices. Customers can move 
and rotate the product to see it from various angles, and they can even 
change the color or fabric to create personalised products (Bonetti et al., 
2018; Jiang et al., 2021a). Nike has launched a “Virtual Try-Ons” 
project, which uses mixed reality to allow customers to try on shoes 
without ever touching them (Forbes, 2023). Customers download the 
Nike app and then scan their feet with their phone camera. The app then 
generates a 3D model of their feet and overlays it with the shoe they 
want to try on. After that, the customer can change the size, color, and 
style of the shoes and receive feedback from the app. Mixed reality alters 
how businesses advertise their products and services. Customers can use 
phones to scan and access interactive videos rather than plain old print 
ads by implementing mixed reality markers on print advertisements. 
This technology brings a whole new dimension to marketing, allowing 
businesses to reach out to and engage new audiences. The mixed reality 
retail advertisement system directs passengers to specific products based 
on their interests and preferences. Retailers can use an indoor way-
finding system to give passengers a virtual tour of the store, allowing 
them to explore the various sections and shelves. Airports use mixed 
reality to provide interactive airport maps that show passengers their 
favorite shops and restaurants along their route as well as detailed in-
formation. Airports provide product information for a variety of prices 
and use guided arrows to direct customers to the correct location. The 
combination of mixed reality retail, advertisements, and indoor way-
finding gives passengers a more interactive and engaging airport shop-
ping experience, allowing them to make more informed purchasing 
decisions and increasing sales for retailers. 

Mishandled baggage and missed flights are both common sources of 
stress at airports, where mixed reality integrated solutions can help. 
Mixed reality can make flight information more interactive. Passengers 
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can view flight information in a virtual environment on their smart-
phones or tablets, including departure and arrival times, departure gate, 
flight path, route taken, and other details. Prior to boarding, the airport 
can use mixed reality applications to notify passengers of the best 
boarding time and direct them to the gate. Gatwick Airport uses a mixed 
reality application to provide personalised flight updates and a fric-
tionless experience for travellers. Late deliveries, damaged baggage, and 
mishandled baggage can all be red flags in baggage collection service 
(Zhang et al., 2008; Singh et al., 2016). Many airlines are eager to 
optimise their baggage handling process (see Fig. 4). Radio frequency 
identification (RFID), barcodes, QR codes, and mixed reality are used to 
track baggage and provide real-time information to passengers. How-
ever, barcodes only have 60–70% read rates, and RFID is costly and 
requires a separate reading scanner (Wyld et al., 2005; DeVries, 2008; 
IATA, 2023). Mixed reality with QR code allows passengers to track 
baggage with smartphone (Jiang et al., 2021b). The airlines assign a QR 
code to each baggage item and deliver it to the aircraft. When custody 
changes between carriers, an airline staff scans the QR code for verifi-
cation. When the baggage arrives at its destination, the passenger can 
scan the QR code to confirm baggage-passenger information and avoid 
mishandling. The application reduces the number of lost, delayed, and 
mishandled bags and improves customer satisfaction. Smart glasses are 
used for baggage handling at Singapore Changi Airport (Coconuts 
Singapore, 2023). Staff can scan QR codes on baggage and cargo con-
tainers to instantly determine weight and unit data, reducing loading 
time from 60 to 45 min. 

4. Opportunities 

The COVID-19 pandemic has caused some problems in the aviation 

industry (Sun et al., 2020). Airlines have been forced to reduce capacity 
and cancel flights, resulting in significant revenue losses. To ensure the 
safety of passengers and crew, the aviation industry has had to grapple 
with new safety protocols and procedures. A digital transformation is 
underway in many airlines, with the potential to bring about cost sav-
ings, increased productivity, streamlined operations, and reduced risk 
(Serrano and Kazda, 2020). 

Airlines are trying to achieve touchless and frictionless travel (Albers 
and Rundshagen, 2020; Gössling, 2020). Booking tickets, seat selection, 
and check-in via online reduce the contact and queue time. Machine 
learning-powered apps like Kayak, Booking.com, and Expedia assist 
travellers in planning and navigating their trip by providing affordable 
flights. Many airlines offer online services, including United Airlines, 
American Airlines, Delta Air Lines, Southwest Airlines, JetBlue Airways, 
Alaska Airlines, Virgin Atlantic, British Airways, and Air Canada, to help 
book ticket and self check-in. Airlines use travel history, previous 
behavioural patterns, and purchase history to create personalised travel 
packages. 

Self-service systems with computer vision technologies, including 
biometric enrolment, facial recognition, and finger scanning, are applied 
in automated check-in and boarding. The US Transportation Security 
Administration recently installed computed tomography (CT) scanners, 
which use AI to help target threats, at Los Angeles International Airport, 
John F. Kennedy International Airport, and Phoenix Sky Harbor Inter-
national Airport (Airport Technology, 2023b). Over the next five years, 
77 percent of airports plan major biometric ID management pro-
grammes. Facial recognition technology is already being implemented 
at several major airports to scan passengers as they go through customs 
(Airport Technology, 2023b). Hartsfield-Jackson International Airport 
has opened a biometric terminal that includes facial recognition 

Fig. 3. The sources of airport revenue: From the inside out, the inner data comes from the 2019 annual report of Beijing Capital International Airport, and the outer 
data comes from the 2019 annual report of Flughafen Zurich AG (Zurich Airport Company). 

Fig. 4. The willingness of airlines to optimise their baggage handling process.  
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scanners at self-service kiosks, checkpoints, and boarding gates. 
Fingerprinting, facial recognition, and retinal scans are expected to be 
increasingly used for airport security. 

Machine learning can predict future traffic flow and enable informed 
decision-making for airport operations. Predictive analytics is used to 
forecast the number of passengers and flights over specific time periods. 
Machine learning-based automated routing systems for aircraft to 
reduce operational costs and delays. Flight scheduling systems that are 
automated to maximise the number of aircrafts and flights. Automated 
air traffic control systems are used to optimise traffic flow. Machine 
learning-based incident detection systems can identify and address po-
tential issues quickly. Real-time weather updates and forecasts will be 
provided by weather forecasting systems. Automated ground operations 
systems can optimise resource utilization and aircraft flow. American 
Airlines, Delta Air Lines, United Airlines, Southwest Airlines, and British 
Airways all utilize machine learning to predict flight delays and can-
cellations. They also use it to optimise their aircraft routes and main-
tenance schedules. 

The airports use mobile applications to provide optimised queues 
and to ensure a safe distance between passengers. Passengers can use the 
apps to check in and receive their boarding passes, avoiding long lines at 
the airport. The apps deliver real-time updates on flight departure and 
arrival times, as well as other pertinent information. The apps provide 
details on airport amenities and services. Mobile applications are used 
by Ryanair, easyJet, Delta Air Lines, American Airlines, JetBlue Air-
ways, and KLM Royal Dutch Airlines to create efficient wait lines, reduce 
wait times, and increase customer satisfaction. 

Health screening and certificates are special operations during 
COVID-19 (Gold et al., 2019). The airports utilize the web, mobile, social 
media, kiosk, email, smartphone apps, and chatbots to assist the 
customer services. Machine learning algorithms are used to detect pat-
terns and trends in passenger health data. The information gathered 
from the online system and social media helps identify passenger’s risk 
of contracting the virus. It provides targeted intervention to reduce their 
chances of becoming infected. Machine learning can be used to generate 
COVID-19 certificates that verify passenger health status, reducing the 
risk of the virus spreading. IBM has created a COVID-19 screening and 
certification system that evaluates health screening questions using 
machine learning and natural language processing technology. Micro-
soft has developed a system that uses machine learning to provide per-
sonalised health advice and quarantine alerts. Google has created a 
machine learning-based system that uses questionnaires to determine 
whether an individual should be tested for COVID-19. Apple has created 
a system that detects potential COVID-19 symptoms in Apple Watch data 
using machine learning. Amazon has developed a system that analyses 
COVID-19 test results using machine learning. The health of each pas-
senger is recorded in a digital form, and machine learning is used for 
abnormal data identification, identifying infected suspects in a timely 
manner. Data-driven real-time analytics ensure that potential patients 
are not missed. Machine learning analyses large datasets to find patterns 
in the data that can indicate an outbreak or provide additional infor-
mation about the virus. Machine learning models can accurately predict 
the future spread of the virus by analysing data from previous outbreaks, 
such as the number of cases and the rate of spread. COVID-19 digital 
forms are used by Air Canada, American Airlines, Delta Air Lines, 
Emirates, JetBlue Airways, KLM, Lufthansa, Qatar Airways, Singapore 
Airlines, and United Airlines. Passengers authorise access by logging 
into the apps on their smartphones, using cameras to capture passport 
information, and adding their itineraries, vaccination certificates, and 
Covid-19 test results as a travel pass. As vaccination passports, health 
passports, and digital green certificates, the EU issued digital COVID 
certificates. The digital COVID certificate issued by the EU provides 
travelers with a QR code in both paper and digital formats. This code 
contains information about their vaccination and health status, ensuring 
their safety and facilitating their travel. 

Data science is used to manage airport sanitization, ensuring high 

hygiene standards. It decreases human intervention while increasing 
fidelity, accuracy, and observations. Data is used to identify areas of the 
airport that are most at risk for disease spread, such as those with the 
most foot traffic and those touched by travellers. Machine learning de-
termines the most effective sanitization methods, such as the types of 
cleaning products to use, the frequency of cleaning, and the best times of 
day to clean. Data science can track the effectiveness of sanitization 
efforts over time and make necessary adjustments. Temperature 
screening, contactless payment systems, and automated disinfection 
robots have been implemented at Shenzhen Bao’an International Airport 
in China, San Francisco International Airport in the United States, 
Heathrow Airport in the United Kingdom, and Changi Airport in 
Singapore. 

Although airports will incur short-term losses during COVID-19, 
renewed digital aviation investments will increase long-term benefits 
(Adrienne et al., 2020). This paper promotes airport digitization while 
also emphasising environmental protection (Rolnick et al., 2022; 
Chaouk et al., 2020). Airports must prepare for an increase in passenger 
traffic in the future, as well as a faster recovery of the leisure passenger 
segment (Schultz et al., 2020). Passengers’ modes of transportation to 
and from the airport have significantly changed in recent years (see 
Fig. 5). Public airport transportation necessitates substantial assistance, 
such as route subsidies (Mandle et al., 2000; Vuchic, 2002). A 
baggage-free airport terminal is considered a potential solution, as it 
moves baggage operations away from passenger terminals, reducing 
airport operator workload and encouraging passengers to use public 
transportation to airport terminals. The baggage-free airport terminal 
integration of the modified Clark and Wright savings heuristic and a 
density-based clustering algorithm for optimising logistic hub location 
and vehicle routes for baggage collection. The baggage-free airport 
terminal will have a significant impact on energy and the environment, 
resulting in lower fuel consumption and lower carbon emissions (Jiang 
et al., 2021b). Machine learning and predictive analytics are being used 
to monitor aircraft operations and identify potential environmental 
risks. Algorithms can be used to identify anomalies that could indicate 
potential pollution or other environmental risks by utilising data from 
flight patterns, fuel efficiency, and aircraft performance. The risks alert 
is sent to airport operators or other stakeholders so that they can take 
corrective action. Commercial air taxi services have been expanded at 
some airports. The Volocopter successfully completed its first manned 
flight over Singapore. Planned urban air mobility solutions were un-
veiled by Boeing, Bell, Embraer, Safran, Uber, Fraport, and Groupe ADP. 
Airports have joined forces to reduce their environmental impact. A new 
air transport industry has emerged, as has a new travel ecosystem. 

5. Challenges 

Machine learning and mixed reality are rapidly evolving fields, and 
their increasing popularity in smart aviation brings a slew of new 
challenges, including security and privacy, technology, cost, acceptance, 
and regulations (Helbing, 2015; Scholz et al., 2018; Helbing et al., 
2019a; Helbing et al., 2019b). 

Security and Privacy: Machine learning and mixed reality pose a 
distinct set of security and privacy challenges, as it becomes increasingly 
vulnerable to malicious attacks and manipulation. Machine learning 
algorithms are trained on data containing passenger personal informa-
tion, from which sensitive information can be inferred. Malicious actors 
can design biased algorithms to influence decision-making and out-
comes. Machine learning is vulnerable to cyber attacks and other ma-
licious activities to gain access to sensitive data. Personalization service 
based on machine learning raises privacy concerns. Machine learning 
analyses massive amounts of data from various sources, including in- 
flight system, social media, web searches, and even physical locations. 
This allows to create detailed profiles of the passenger, which can then 
be used to provide personalised services. However, the information 
gathered can be abused. Machine learning-based personalised in-flight 
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service can result in unfair discrimination, including the creation of 
’blacklists’ of passengers who are deemed undesirable, denying them 
access to certain services or treating them differently. Algorithms can 
result in biased decision-making or unfair pricing. Airlines must follow 
strict privacy regulations to ensure that machine learning-based per-
sonalised services remain ethical. Before collecting and storing personal 
data on passengers, airlines should obtain their explicit consent. Airlines 
must be transparent about how data is used and ensure that any de-
cisions based on data are fair and nondiscriminatory. These services 
should allow passengers to choose to opt out and have their data deleted. 

The most significant security concern of mixed reality is the potential 
for malicious individuals to gain access to the actual environments of 
passengers. To provide a realistic and immersive experience, mixed re-
ality technology requires access to personal data such as location, age, 
and gender. Attackers can potentially use this information to carry out 
targeted attacks, posing a security risk. Compliance with data privacy 
laws and clear policies for the use of passenger data should be estab-
lished by mixed reality systems. Mixed reality technology can track 
passengers’ physical movements and behaviours, which raises concerns 
about privacy. Airlines may collect and monetize this data, potentially 
leading to issues such as unwanted advertisement targeting. Virtual 
spaces created through mixed reality technology can be inaccessible to 
the public, and therefore not subject to regulations or laws. This can 
potentially allow airlines to collect and use passenger data without 
proper oversight, raising concerns about privacy and data protection. To 
ensure that the benefits of machine learning and mixed reality outweigh 
the risks, passenger security and privacy must be addressed. 

Technology: As technology advances and becomes more sophisti-
cated, the aviation industry must keep up with the changing trends. The 
data in the aviation industry is of high volume, velocity, variety, and 
veracity, making traditional data management tools ineffective. Avia-
tion data is made up of a large amount of structured or unstructured data 
generated from various sources. Data is generated at a rapid rate from 
social media, web logs, and sensors. Machine learning has limited pro-
cessing power and speed. There is often a lot of noise in aviation data. 
Machine learning algorithms frequently struggle to identify and learn 
from noise, resulting in inaccurate models. Machine learning lacks 
interpretability, making it difficult for humans to comprehend under-
lying processes and decisions of models. The lack of understanding can 
lead to mistrust, the interpretability causes problems with trust and 
reliability. Machine learning are prone to bias, which can lead to inac-
curate and unfair outcomes. Machine learning models are trained on the 
real-world data, which can reflect societal biases. This type of bias can 
have serious consequences for algorithms, as it can lead to unfair or 
discriminatory decisions. To reduce the risk of bias in machine learning, 

the data used to train the model should be accurate and representative of 
the population it is meant to serve. Data scientists should use techniques 
such as stratified sampling. Regular bias testing should be performed on 
algorithms. 

One of the major technological challenges for mixed reality is scal-
ability. As mixed reality is still in its nascent stages, it is difficult to 
ensure that the content created is compatible with a wide range of de-
vices and platforms. The non-scalability makes mixed reality applica-
tions struggle to provide a consistent and positive user experience across 
devices. Ensuring a smooth and engaging interactive experience with 
mixed reality content can be challenging due to the possibility of 
encountering glitches and delays. As technology continues to advance, 
the challenges and limitations can be addressed and overcome. 

Cost: Deploying machine learning and mixed reality applications 
demands a considerable amount of computing power, software, and 
energy. The implementation cost of machine learning algorithms can 
depend on various factors, such as the complexity and size of the data 
set, the number of models and algorithms used, the required hardware 
and software, and the duration and resources needed for training and 
deployment. Hardware and software costs can be quite high, especially 
for deep learning algorithms and large datasets. The time and resources 
required to train and deploy models are costly, and they necessitate 
specialized knowledge. Aviation data used in machine learning algo-
rithms must be accurate and up to date, which can be challenging due to 
changes in the environment and the data collection process. Maintaining 
and updating machine learning algorithms is a time-consuming and 
costly process. Airlines need to carefully consider the advantages and 
drawbacks of employing machine learning technology to ensure that 
their resources are being utilized efficiently. 

The costs associated with mixed reality applications mainly stem 
from expensive hardware requirements, such as complex headsets, 
sensors, and controllers. In addition, users must have internet connec-
tivity, which can result in extra charges. To stay current with the latest 
technology, the aviation industry must regularly update the hardware 
used in mixed reality applications, which can be expensive. The creation 
of virtual environments in mixed reality applications may also be costly 
due to the need for specialized software and expertise. These virtual 
environments must be maintained and updated, which can increase the 
overall cost. While machine learning and mixed reality are exciting 
technologies that have the potential to transform the way we interact 
with the world, it is essential to consider their associated costs. 

Acceptance: Airlines face challenges in the acceptance of machine 
learning and mixed reality due to concerns about their potential impact 
on broader applications. To address this, airlines must ensure that their 
applications are explainable, providing insight into the underlying 

Fig. 5. Changes in the modes of transportation used by passengers to and from the airport over time.  
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decision-making process. The quality of machine learning algorithms is 
highly dependent on the quality of the data on which they are trained, 
and any bias in the data can negatively affect even the most advanced 
sophisticated algorithms. Airlines must therefore take steps to identify 
and eliminate potential sources of bias in their data. To ensure that users 
trust machine learning algorithms, the data must be accurate and un-
biased, the algorithms must be transparent and explainable, and the 
system must be secure against potential cyber attacks. However, ma-
chine learning algorithms are often complex and difficult to understand, 
and the datasets used to train them may contain errors or not be 
representative of the entire population, resulting in inaccurate or biased 
results. The algorithms are also constantly evolving, making it difficult 
to ensure consistent results. 

The high cost of hardware needed for mixed reality still makes it 
expensive for users to adopt. In addition, the cost of mixed reality 
software can pose a challenge for developers to create and disseminate 
new applications. Mixed reality applications are intricate, and users 
need to learn new concepts and various tools, which can be time- 
consuming and hinder their acceptance. Furthermore, mixed reality 
applications can gather a significant amount of user data, which raises 
concerns about privacy and security. As mixed reality technology con-
tinues to develop, it is crucial to safeguard the security of passenger data 
and responsibly use this technology. 

Regulations: Stringent government regulations and compliance are 
essential for the industry to remain safe and secure. Machine learning 
and mixed reality have numerous and diverse potential applications, 
and their impact on our lives is growing rapidly. However, there are 
several gaps in the current regulatory system that must be filled. Many 
regulatory bodies are struggling to define machine learning and mixed 
reality usage standards. To keep up with the ever-changing capabilities 
of technologies, these standards must be revised and updated. The inner 
workings of machine learning are largely unknown, making it difficult 
for regulatory bodies to ensure that the algorithms are not biased or 
discriminatory in their decisions. Much of the regulation is currently left 
to individual countries and organisations, resulting in a patchwork of 
laws and regulations. A global regulatory framework would ensure that 
all countries adhere to the same standards and provide a level playing 
field for the development and use of technology. Laws and regulations 
are required to address the ethical implications of machine learning and 
mixed reality. A framework must be in place to ensure that algorithms 
do not make biased decisions based on factors such as race or gender. 
There is a need for the implementation of worldwide regulations to 
oversee the progress and utilization of cutting-edge technology, along-
side specialized laws and policies aimed at tackling the ethical concerns, 
data confidentiality, and possible negative impacts. Data regulation 
contributes to a more informed and engaged public by allowing in-
dividuals to use data to hold decision-makers accountable and exercise 
their rights. Data regulation promotes data producer and data consumer 
transparency and collaboration. Increased data accessibility can result in 
more equitable decision-making processes. Users are required to possess 
digital literacy, which includes an understanding of how the digital 
world operates and its impact on their lives, as well as the potential 
advantages and hazards of technology, and the usage of digital content 
in a responsible and secure manner. 

6. Conclusion 

This paper provided a review of machine learning and mixed reality 
applications and solutions in the aviation industry. This paper investi-
gated intelligent tools based on machine learning for aerospace design, 
manufacturing, testing, and services. Mixed reality applications for 
product design, complex assembly, accurate maintenance, and assisted 
training were explored. This paper studies advanced machine learning 
techniques for improving passenger experience, such as self-service 
check-in and boarding, advanced passenger controlling, more efficient 
baggage claim processes, intelligent predictive analysis, and impressive 

in-flight entertainment. Mixed reality influences the passenger experi-
ence through visualised real-time information, indoor wayfinding, 
immersive retail, and virtual baggage tags. This paper discussed the 
opportunities and challenges faced by the aviation industry. With the 
breathtaking array of innovative digitization technologies, the aviation 
industry will open up a new era of “touchless, seamless and secure” 
operations and services. 
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Loreiro, Á.P., 2021. Queue behavioural patterns for passengers at airport terminals: 
a machine learning approach. J. Air Transport. Manag. 90, 101940. 

Rokhsaritalemi, S., Sadeghi-Niaraki, A., Choi, S.M., 2020. A review on mixed reality: 
current trends, challenges and prospects. Appl. Sci. 10 (2), 636. 

Rolnick, D., Donti, P.L., Kaack, L.H., Kochanski, K., Lacoste, A., Sankaran, K., Ross, A.S., 
Milojevic-Dupont, N., Jaques, N., Waldman-Brown, A., Luccioni, A.S., 2022. 
Tackling climate change with machine learning. ACM Comput. Surv. 55 (2), 1–96. 

Rostworowski, A., 2012. Developing the intelligent airport. J. Airpt. Manag. 6 (3), 
202–206. 

Sabater, C., Stürmer, P., Bekemeyer, P., 2022. Fast predictions of aircraft aerodynamics 
using deep-learning techniques. AIAA J. 1–13. 

Sacco, C., Radwan, A.B., Beatty, T., Harik, R., 2019. Machine Learning Based AFP 
Inspection: A Tool for Characterization and Integration. No. NF1676L-32137).  

Sachs, U., 2014. Friction and Bending in Thermoplasctic Composites Forming Processes. 
University of Twente, Enschede, Netherlands.  

Safi, M., Chung, J., Pradhan, P., 2019. Review of Augmented Reality in Aerospace 
Industry. Aircraft Engineering and Aerospace Technology. 

Salehi, H., Das, S., Chakrabartty, S., Biswas, S., Burgueño, R., 2018. Damage 
identification in aircraft structures with self-powered sensing technology: a machine 
learning approach. Struct. Control Health Monit. 25 (12), e2262. 

Schaffernak, H., Moesl, B., Vorraber, W., Koglbauer, I.V., 2020. Potential augmented 
reality application areas for pilot education: an exploratory study. Educ. Sci. 10 (4), 
86. 

Schaffernak, H., Moesl, B., Vorraber, W., Holy, M., Herzog, E.M., Novak, R., Koglbauer, I. 
V., 2022. Novel mixed reality use cases for pilot training. Educ. Sci. 12 (5), 345. 

Schneider, M., Rambach, J., Stricker, D., 2017. Augmented reality based on edge 
computing using the example of remote live support. In: 2017 IEEE International 
Conference on Industrial Technology (ICIT). IEEE, pp. 1277–1282. 

Scholz, R.W., Bartelsman, E.J., Diefenbach, S., Franke, L., Grunwald, A., Helbing, D., 
Hill, R., Hilty, L., Höjer, M., Klauser, S., Montag, C., 2018. Unintended side effects of 
the digital transition: European scientists messages from a proposition-based expert 
round table. Sustainability 10 (6), 2001. 

Schultz, M., Evler, J., Asadi, E., Preis, H., Fricke, H., Wu, C.L., 2020. Future aircraft 
turnaround operations considering post-pandemic requirements. J. Air Transport. 
Manag. 89, 101886. 

Scurati, G.W., Gattullo, M., Fiorentino, M., Ferrise, F., Bordegoni, M., Uva, A.E., 2018. 
Converting maintenance actions into standard symbols for Augmented Reality 
applications in Industry 4.0. Comput. Ind. 98, 68–79. 

See, K.F., Ülkü, T., Forsyth, P., Niemeier, H.M., 2022. Twenty years of airport efficiency 
and productivity studies: a machine learning bibliometric analysis. Res. Transport. 
Bus. Manag., 100771 

Serrano, F., Kazda, A., 2020. The future of airports post COVID-19. J. Air Transport. 
Manag. 89, 101900. 

Shafi, I., Mazahir, M.F., Fatima, A., Alvarez, R.M., Miró, Y., Espinosa, J.C.M., Ashraf, I., 
2023. Deep learning-based real time defect detection for optimization of aircraft 
manufacturing and control performance. Drones 7 (1), 31. 

Shen, Y., Ong, S.K., Nee, A.Y., 2010. Augmented reality for collaborative product design 
and development. Des. Stud. 31 (2), 118–145. 

Siegel, J.E., Erb, D.C., Sarma, S.E., 2017. A survey of the connected vehicle landscape- 
Architectures, enabling technologies, applications, and development areas. IEEE 
Trans. Intell. Transport. Syst. 19 (8), 2391–2406. 

Sims, N., 2019. Transforming the Future of Airports with Artificial Intelligence, Machine 
Learning and Generative Design. 

Flight Simulator. Microsoft flight simulator. Available online: https://www.flightsimulat 
or.com, 07 January 2023b).  

Coconuts Singapore. Augmented Reality Glasses Introduced to Changi Airport Ground 
Handlers to Help Speed Up Operations. Available online: https://coconuts.co/sin 
gapore/news/augmented-reality-glasses-introduced-changi-airport-ground-handlers 
-help-speed-operations/(accessed on 10 January 2023). 

Singh, A., Meshram, S., Gujar, T., Wankhede, P.R., 2016. Baggage tracing and handling 
system using RFID and IoT for airports. In: 2016 International Conference on 
Computing, Analytics And Security Trends (CAST). IEEE, pp. 466–470. 

Singh, S., Shehab, E., Higgins, N., Fowler, K., Tomiyama, T., Fowler, C., 2018. Challenges 
of Digital Twin in High Value Manufacturing. 

SITA. Intelligent tracking: a baggage management revolution. Available online: http 
s://www.sita.aero/resources/White-papers/intelligent-tracking-a-baggage-manage 
ment-revolution/. (Accessed 15 January 2023). 

Siyaev, A., Jo, G.S., 2021. Towards aircraft maintenance metaverse using speech 
interactions with virtual objects in mixed reality. Sensors 21 (6), 2066. 

Sørensen, R.A., Nielsen, M., Karstoft, H., 2020. Routing in congested baggage handling 
systems using deep reinforcement learning. Integrated Comput. Aided Eng. 27 (2), 
139–152. 

Sridhar, B., Chatterji, G.B., Evans, A.D., 2020. Lessons learned in the application of 
machine learning techniques to air traffic management. In: AIAA AVIATION 2020 
FORUM, p. 2882. 

Steiner, M., Eggert, A., Ulaga, W., Backhaus, K., 2016. Do customized service packages 
impede value capture in industrial markets? J. Acad. Market. Sci. 44 (2), 151–165. 

Sun, X., Wandelt, S., Zhang, A., 2020. How did COVID-19 impact air transportation? A 
first peek through the lens of complex networks. J. Air Transport. Manag. 89, 
101928. 

Tang, A., Owen, C., Biocca, F., Mou, W., 2003. Comparative effectiveness of augmented 
reality in object assembly. In: Proceedings of the SIGCHI Conference on Human 
Factors in Computing Systems, pp. 73–80. 

Thamaraiselvan, N., Arul, S.T., Kasilingam, D., 2019. Understanding the intention to use 
self service technologies in the airline industry. Int. J. Serv. Econ. Manag. 10 (2), 
89–109. 

Tran, T.H., Jiang, Y., Williams, L., 2022. Applications of Mixed Reality for Smart 
Aviation Industry: Opportunities and Challenges. 

Transportation Security Administration. TSA offers automated, touchless photo ID and 
flight verification at all LAX security screening checkpoints. Available online: https 
://www.tsa.gov/news/press/releases/2021/01/29/tsa-offers-automated-touchless 
-photo-id-and-flight-verification-all. (Accessed 10 January 2023). 

Uber. Meet Michelangelo: uber’s machine learning platform. Available online: https:// 
www.uber.com/en-GB/blog/michelangelo-machine-learning-platform/. (Accessed 7 
January 2023). 

Urban Turbine. Urban turbine. Available online: https://urbanturbine.org/. (Accessed 16 
January 2023). 

U.S. Department of Homeland Security. S&T’s transportation security laboratory 
evaluates artificial intelligence and machine learning technologies. Available online: 
https://www.dhs.gov/science-and-technology/news/2020/09/09/feature-article-st 
-tsl-evaluates-artificial-intelligence. (Accessed 10 January 2023). 

Utzig, S., Kaps, R., Azeem, S.M., Gerndt, A., 2019. Augmented reality for remote 
collaboration in aircraft maintenance tasks. In: 2019 IEEE Aerospace Conference. 
IEEE, pp. 1–10. 

Van Krevelen, D.W.F., Poelman, R., 2010. A survey of augmented reality technologies, 
applications and limitations. Int. J. Virtual Real. 9 (2), 1–20. 

Verpoort, P.C., MacDonald, P., Conduit, G.J., 2018. Materials data validation and 
imputation with an artificial neural network. Comput. Mater. Sci. 147, 176–185. 

Vuchic, V.R., 2002. Urban Public Transportation Systems, vol. 5. University of 
Pennsylvania, Philadelphia, PA, USA, pp. 2532–2558. 

Wang, X., Ong, S.K., Nee, A.Y., 2016. A comprehensive survey of augmented reality 
assembly research. Adv. Manuf. 4 (1), 1–22. 

Wang, P., Bai, X., Billinghurst, M., Zhang, S., Wei, S., Xu, G., He, W., Zhang, X., Zhang, J., 
2021. 3DGAM: using 3D gesture and CAD models for training on mixed reality 
remote collaboration. Multimed. Tool. Appl. 80 (20), 31059–31084. 

Wang, Z., Bai, X., Zhang, S., Billinghurst, M., He, W., Wang, P., Lan, W., Min, H., 
Chen, Y., 2022. A comprehensive review of augmented reality-based instruction in 
manual assembly, training and repair. Robot. Comput. Integrated Manuf. 78, 
102407. 

Wu, H., Cai, Z., Wang, Y., 2012. Vison-based auxiliary navigation method using 
augmented reality for unmanned aerial vehicles. In: IEEE 10th International 
Conference on Industrial Informatics. IEEE, pp. 520–525. 

Wyld, D.C., Jones, M.A., Totten, J.W., 2005. Where is my suitcase? RFID and airline 
customer service. Market. Intell. Plann. 23 (4), 382–394. 

Xiong, M., Wang, H., 2022. Digital twin applications in aviation industry: a review. Int. J. 
Adv. Des. Manuf. Technol. 1–16. 

Yau, H.K., Tang, H.Y.H., 2018. Analyzing customer satisfaction in self-service technology 
adopted in airports. J. Market. Anal. 6 (1), 6–18. 

Yin, X., Fan, X., Wang, L., Qiu, K., Liu, R., 2018. Augmented reality training system for 
aerospace product assembly process guidance and its application. Aeronaut. Manuf. 
Technol. 61 (1), 48–53. 

Zhang, Z.G., 2009. Performance analysis of a queue with congestion-based staffing 
policy. Manag. Sci. 55 (2), 240–251. 

Zhang, Z., 2022. Smart solutions to airport security in post-COVID-19 era. Acad. J. Bus. 
Manag. 4 (6), 100–106. 

Zhang, T., Ouyang, Y., He, Y., 2008. Traceable air baggage handling system based on 
RFID tags in the airport. J. Theor. Appl. Electron. Commer. Res. 3 (1), 106–115. 

Y. Jiang et al.                                                                                                                                                                                                                                    

http://refhub.elsevier.com/S0969-6997(23)00080-7/sref149
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref149
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref149
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref149
https://www.cathaypacific.com/cx/en_HK/check-in/airport-self-service-network.html
https://www.cathaypacific.com/cx/en_HK/check-in/airport-self-service-network.html
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref151
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref151
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref151
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref152
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref152
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref152
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref153
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref153
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref154
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref154
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref155
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref155
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref155
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref156
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref156
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref157
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref157
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref157
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref159
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref159
https://www.resonai.com/indoor-navigation
https://www.resonai.com/indoor-navigation
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref161
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref161
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref161
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref162
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref162
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref162
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref163
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref163
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref164
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref164
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref164
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref165
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref165
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref166
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref166
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref167
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref167
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref168
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref168
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref169
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref169
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref170
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref170
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref170
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref171
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref171
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref171
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref172
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref172
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref173
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref173
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref173
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref174
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref174
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref174
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref174
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref175
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref175
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref175
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref176
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref176
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref176
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref177
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref177
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref177
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref178
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref178
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref179
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref179
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref179
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref180
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref180
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref181
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref181
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref181
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref182
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref182
https://www.flightsimulator.com
https://www.flightsimulator.com
https://coconuts.co/singapore/news/augmented-reality-glasses-introduced-changi-airport-ground-handlers-help-speed-operations/
https://coconuts.co/singapore/news/augmented-reality-glasses-introduced-changi-airport-ground-handlers-help-speed-operations/
https://coconuts.co/singapore/news/augmented-reality-glasses-introduced-changi-airport-ground-handlers-help-speed-operations/
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref185
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref185
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref185
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref186
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref186
https://www.sita.aero/resources/White-papers/intelligent-tracking-a-baggage-management-revolution/
https://www.sita.aero/resources/White-papers/intelligent-tracking-a-baggage-management-revolution/
https://www.sita.aero/resources/White-papers/intelligent-tracking-a-baggage-management-revolution/
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref188
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref188
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref189
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref189
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref189
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref190
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref190
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref190
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref191
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref191
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref192
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref192
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref192
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref193
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref193
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref193
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref194
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref194
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref194
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref195
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref195
https://www.tsa.gov/news/press/releases/2021/01/29/tsa-offers-automated-touchless-photo-id-and-flight-verification-all
https://www.tsa.gov/news/press/releases/2021/01/29/tsa-offers-automated-touchless-photo-id-and-flight-verification-all
https://www.tsa.gov/news/press/releases/2021/01/29/tsa-offers-automated-touchless-photo-id-and-flight-verification-all
https://www.uber.com/en-GB/blog/michelangelo-machine-learning-platform/
https://www.uber.com/en-GB/blog/michelangelo-machine-learning-platform/
https://urbanturbine.org/
https://www.dhs.gov/science-and-technology/news/2020/09/09/feature-article-st-tsl-evaluates-artificial-intelligence
https://www.dhs.gov/science-and-technology/news/2020/09/09/feature-article-st-tsl-evaluates-artificial-intelligence
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref200
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref200
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref200
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref201
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref201
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref202
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref202
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref203
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref203
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref204
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref204
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref205
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref205
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref205
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref206
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref206
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref206
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref206
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref207
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref207
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref207
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref208
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref208
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref209
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref209
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref210
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref210
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref211
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref211
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref211
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref212
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref212
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref213
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref213
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref214
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref214


Journal of Air Transport Management 111 (2023) 102437

16

Zheng, Y.J., Sheng, W.G., Sun, X.M., Chen, S.Y., 2016. Airline passenger profiling based 
on fuzzy deep machine learning. IEEE Transact. Neural Networks Learn. Syst. 28 
(12), 2911–2923. 

Zhu, H., Gao, J., Li, D., Tang, D., 2012. A Web-based Product Service System for 
aerospace maintenance, repair and overhaul services. Comput. Ind. 63 (4), 338–348. 

Zhu, L., Yu, F.R., Wang, Y., Ning, B., Tang, T., 2018. Big data analytics in intelligent 
transportation systems: a survey. IEEE Trans. Intell. Transport. Syst. 20 (1), 
383–398. 

Zollmann, S., Hoppe, C., Langlotz, T., Reitmayr, G., 2014. Flyar: augmented reality 
supported micro aerial vehicle navigation. IEEE Trans. Visual. Comput. Graph. 20 
(4), 560–568. 

Y. Jiang et al.                                                                                                                                                                                                                                    

http://refhub.elsevier.com/S0969-6997(23)00080-7/sref215
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref215
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref215
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref216
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref216
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref217
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref217
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref217
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref218
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref218
http://refhub.elsevier.com/S0969-6997(23)00080-7/sref218

	Machine learning and mixed reality for smart aviation: Applications and challenges
	1 Introduction
	2 Smart aerospace engineering
	2.1 Machine learning
	2.2 Mixed reality

	3 Passenger experience enhancement
	3.1 Machine learning
	3.2 Mixed reality

	4 Opportunities
	5 Challenges
	6 Conclusion
	Author statement
	Acknowledgment
	References


