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Abstract—Along with the development of renewable energy
sources, energy storage units are introduced to increase the stability
and reliability of electricity production. The storage units can improve
the efficiency of energy consumption for consumers as well. By
smartly controlling home appliances, renewable energy sources and
energy storage units, consumers can satisfy their energy demand with
a minimum cost. However, the declined maximum capacity of energy
storage units and the unstable power of electricity grid, due to
randomly unexpected failures, can cause challenges for consumers’
energy plans. In this article, we develop a novel joint chance-constraint
mixed-integer linear programming model to support consumers in
finding the optimal energy plans for a minimum cost of energy
consumption under the simultaneous impact of unexpected failures on
energy storage units and electricity grid. A case study for a set of
households in Nottingham, United Kingdom, is used to demonstrate
the efficiency of the proposed model. Some interesting insights are
achieved for home energy management under uncertainties.

1. INTRODUCTION

Nowadays, the use of RESs (e.g., photovoltaic panels and

wind turbines) has been widely developed to replace the exist-

ing systems of polluting electricity generation. This can help
improve environmental quality as well as increase electricity

supply. However, the power generated by the RESs is inter-
mittent due to the continuous change of climate (e.g., sun and

wind). To increase the stability and reliability of energy con-

version in the electricity grid, energy storage units are pro-
posed to store the electricity power when the RESs are

copious, and to use smartly this power in the case of energy
shortage [1]. The energy storage units are utilized not only for

the stability and reliability of the entire electricity grid, but
also for improving the efficiency of energy consumption in the

home energy management system. Therefore, under the scen-

arios that the production of electricity grid and/or the capacity
of energy storage units are decreased due to some unexpected

failures, home energy management system can pose critical
issues. Under impact of randomly unexpected failures, the

Keywords: electricity grid, energy storage, joint chance-constraint, mixed-
integer linear programming unexpected failure
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power of electricity grid is decreased and thus cannot supply
enough energy for households’ demand. Such the failures can
reduce the maximum capacity of energy storage units (e.g.,
health of battery). Then, households’ energy consumption will
be affected. The households need to adjust their energy plan
(e.g., using home appliances within off-peak hours) and/or cut
unnecessary home appliances to minimize total energy con-
sumption cost. In the recent BBC news [2], nearly one million
people across England and Wales were affected by the black-
out, after the “incredibly rare event” of two power stations dis-
connecting. It is essential to develop a decision-making support
tool for home energy management under the uncertainties.

In this article, we focus on the literature of home energy
management system with uncertainties. Among the considered
uncertainties, uncertain electricity prices have received much
attention by researchers. For example, [3] proposed an opti-
mization model to maximize the utility of the consumer, sub-
ject to a minimum daily energy-consumption level, maximum
and minimum hourly load levels, and ramping limits on such
load levels. In the model, robust optimization techniques are
applied to account for the prescribed uncertainty level of elec-
tricity prices. [4] addressed an appliance commitment problem
under the impact of uncertainties from electricity price and hot
water usage. A novel linear-sequential-optimization-enhanced,
multi-loop algorithm is developed to schedule thermostatically
controlled household loads with a minimum payment or max-
imum comfort. [5] built a mixed-integer linear programming
model for optimally scheduling electricity consumption, gen-
eration and storage in a dynamic pricing environment. Robust
optimization algorithms are developed to minimize the impact
of stochastic input on the objective function. [6] adopted the
scenario-based Monte Carlo simulation to deal with uncertain-
ties of real-time electricity prices in the residential appliance
scheduling problem. Next, [7] studied the real-time residential
appliance scheduling problem in which the conditional value-
at-risk is used to balance the expected costs and risks caused
by uncertainties of electricity prices.

Besides the studies of uncertain electricity prices, research-
ers have recently started considering the single-/multi-objective
optimization problem in home energy management system with
other uncertainties. For example, [8] developed a stochastic
scheduling technique for optimally coordinating the electrical

appliances with the uncertainties in household appliance oper-
ation time and intermittent renewable generation. [9] improved
the model in [10], a linear programming routine for reducing
the net-peak load with the aid of a grid-connected photovoltaic
and a battery system, to investigate the uncertainties of forecast-
ing in both solar radiation and load demand of the building. For
a comprehensive review of forecasting errors and uncertainties
in home energy management system, readers can refer to [11].
[12] developed a stochastic multi-objective optimization model
within model predictive control framework for determining the
optimal operational schedules of home appliances (e.g., heating,
ventilation and air conditioning systems) in the presence of
RESs. Monte Carlo simulation is used to represent uncertainties
in electricity price, outdoor temperature, RES generation, water
usage and non-controllable loads. [13] built a model-based peri-
odic event-triggered mechanism to handle the uncertainties in
the building operation for determining the optimal scheduling
of building operation with a minimum energy cost. [14] built a
chance-constrained model predictive control algorithm for
demand response in a home energy management system. [15]
proposed a day-ahead optimal operation strategy, utilizing dis-
tributed energy resources based on the framework of intercon-
nected multi-energy system, to investigate the negative impacts
of intermittent RESs. [16] constructed a model based on a
mixed-integer linear programming framework to investigate the
cooperative evaluation of an energy management system oper-
ation in a building. The model evaluates the impact of photo-
voltaic uncertainty on energy management system operation,
based on real smart-metering data, and compares with a deter-
ministic photovoltaic production approach. [17] proposed a
multi-objective mixed-integer linear programming model for
scheduling smart appliances and electrical energy storage,
under the uncertainty of user behaviors, such that both the elec-
tricity bill and CO2 emissions are reduced. To reduce the con-
servative level of the robust solution, the authors introduce a
parameter that allows to achieve a trade-o between the price of
robustness and the protection against uncertainty. Recently,
[18] proposed a hybrid robust-stochastic optimization model to
study the smart home energy management with uncertainties of
energy prices and photovoltaic generation.

A detailed review of uncertainty characteristic approaches
for the optimal design of DES can be found in [19]. The

NOMENCLATURE

CHP Combined Heat and Power
CO2 Carbon Dioxide
DES Distributed Energy System
MILP Mixed-Integer Linear Programming

MINLP Mixed-Integer Non-Linear Programming
UPS Uninterruptible Power Supply
UK United Kingdom
RES Renewable Energy Source
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authors aim to determine and categorize the most important
uncertain parameters in typical DES design models, and
review approaches used in the literature to represent their
uncertainty. From the literature review, it can be seen that
there is no study considering simultaneously the uncertainties
of electricity production in the grid and energy storage units in
home energy management. The most relevant studies have
addressed the degradation of energy storage units under
impact of uncertain environments. For example, [20] investi-
gated the practical implementation of exchanging electricity
between a distributed smart grid and a smart house under
impact of battery degradation involving the battery status (i.e.,
state of charge, charging speed and temperature clear). [21]
considered the operations of customer-side energy storage sys-
tem to minimize the electricity bill subject to a peak load limi-
tation constraint and uncertain environments. [22] developed a
linear programming model, combined with a model predictive
control framework, for optimally dispatching the battery of a
building under variabilities/uncertainties of the input variables.
[23] addressed the joint scheduling problem of large-scale
smart appliances and batteries to minimize electricity pay-
ment, user’s dissatisfaction and battery loss under kinds of
constraints. In [24], the authors studied the effects of modeling
assumptions, such as the treatment of uncertainties in the input
data and battery degradation effects. They performed a com-
prehensive comparison of seven different energy management
strategies (e.g., two optimization-based approaches, two
machine learning approaches and three rule-based heuristic
approaches) for the small-scale photovoltaic-battery systems.

Robust optimization method has been widely used for
solving optimization problems under uncertainties. A joint
chance constrained programming, one of robust optimization
approaches, is usually developed to deal with the type of
uncertainty such as unexpected failures and the joint prob-
ability of a multivariate random event. There are several
applications of this approach in various areas. For example,
[25] built MINLP models for linepack planning problem
under supply shortfall or compressor failure in gas transmis-
sion network. In the case of unexpected, random gas supply
loss, the model was used to evaluate the impact of supply
shortfall and search the optimal linepack plan to mitigate the
loss. In the case of unexpected, random compressor failure,
the model was used to investigate its impact on the linepack
planning management. In this article, our model is totally dif-
ferent from the MINLP models of [25]. Our model is formu-
lated to find the optimal scheduling plan such that the total
cost of home energy consumption under uncertainties is
minimized. The set of decision variables and constraints are
also different from those in [25]. We cannot use the models

of [25] to solve the energy consumption minimization prob-
lem under uncertainties, nor vice versa. In addition, we sim-
ultaneously investigate impact of both randomly unexpected
failures of energy storages and unstable capacity of electri-
city grid on the optimal scheduling plan of energy consump-
tion. A similarity between these two works is that the same
linearized technique was used to transform a MINLP into a
MILP model for solving by commercial solvers. Table 1
summarizes the comparison result of our article and three
papers [12, 26] and [25] that have some similar properties.
The result shows that [26] did not solve the energy consump-
tion minimization problem under uncertainties, [12] investi-
gated impact of different uncertainties (e.g., electricity price,
outdoor temperature, RES generation, water usage and non-
controllable loads) on this problem and did not use robust
optimization to handle the uncertainties, and [25] solved a
linepack planning problem in gas transmission network (not
for home energy management).

In summary, the major contributions in our article con-
sist of
� Simultaneously investigating impact of uncertainties

(e.g., unexpected failures of electricity grid and energy
storage) on the scheduling plan for the cost minimiza-
tion problem of energy consumption.

� Building a MINLP model for solving the uncertain
cost minimization problem.

� Developing the robust optimization method (i.e., joint
chance-constraint programming) to handle the uncer-
tainties, and applying the linearized technique of [25]
to transform the MINLP into the MILP model that can
be solved by commercial solvers.

� Applying the model for solving the case study with
various scenarios that is constructed by a network of
households in Nottingham, UK.

� Finding interesting insights for the home energy man-
agement under uncertainties.

The remaining parts of this article are organized as follows.
The domestic energy cost minimization problem under uncer-
tainties is described in Section 2. The joint chance-constraint
MILP model for solving the problem is presented in Sections
3. The numerical experiments, carried out on the case study in
Nottingham, UK, are shown in Section 4. Finally, the conclu-
sions and future work are provided in Section 5.

2. HOME ENERGY CONSUMPTION UNDER
UNCERTAINTIES

Development of RESs and energy storage units has improved
the efficiency of energy consumption for customers. Any
negative impact on the capability of RESs and the capacity of

Tran and Nguyen: Minimizing Total Cost of Home Energy Consumption under Uncertainties 1145



energy storage units may significantly affect the efficiency of
home energy management system. A model of domestic
energy streams in a smart house is shown in Figure 1. It con-
sists of (i) electricity supplies: the electricity grid, photovol-
taic, micro CHP and UPS; (ii) electricity demands (i.e., home
appliances): television, fridge, light, radiator, shower, etc.; and
(iii) energy storage: battery. In the electricity supplies, the
UPS is used as an essential fail-safe device. If power goes
down, it provides brief ride-through time during the automatic
switch-over to auxiliary power. All the domestic energy devi-
ces can be controlled by a controller, that allows consumers to
be able to turn on/off them.

Figure 2 illustrates the relationship of domestic energy

streams in terms of mathematical notations, where yGRDt and

zGRDt are the amount of electricity bought from and sold to

the grid at a specific time t, respectively; sPHOt is the amount

of electricity generated by photovoltaic at time t; qyCHPt is the

amount of electricity transmitted from the amount of bought

gas yCHPt by micro CHP (with q represents the transmission

coefficient) at time t; uBATt and vBATt are the charging and dis-
charging rate of the battery at time t; and djt denotes the
amount of electricity consumed by home appliance j at time
t. This figure also represents the balance equation of domes-
tic energy streams in a smart house.

In this study, we consider the cost minimization problem of
energy consumption on a network of households under uncer-
tainties (see Figure 3). The problem aims to minimize total
energy cost (including buying gas for micro CHP, and buying/
selling electricity from/to the grid) subject to the predefined
constraints. Constraints may include the equations of energy
balance, the profiles of energy consumption for home applian-
ces, the maximum capability of electricity grid, computing the
amount of electricity in energy storage units, the maximum cap-
acity of energy storage units (the health of battery is taken into
consideration), and the maximum charging and discharging
rates (battery consistency, charging method, and temperature
influence the charge and discharge rates in the current state of
battery). The equations of energy balance do not include heat
stream to heat store. Contribution of heat stream to energy bal-
ance is integrated in the transmission coefficient of CHP from
gas to electricity. In addition, this problem studies the impact of
unexpected failures on the electricity supply capability of the
grid and the capacity of energy storage units, which affects sig-
nificantly the energy consumption plan of consumers.

3. A JOINT CHANCE-CONSTRAINT
MILP MODEL

In this section, we present a MINLP model to address the
domestic energy cost minimization problem under uncertain-
ties. Next, a joint chance-constraint programming technique is
developed to solve this problem efficiently. A summary of
mathematical notations is presented in Table 2. In the table, the
unit measures are not described since they depend on the div-
ision of time slot, e.g., 15minutes, 30minutes or 60minutes
for a time slot, in the study. The relevant parameters and varia-
bles would be updated based on the division of time slot.

3.1 A MINLP model

Based on the offline optimization models in [28] and [29],
we develop a MINLP model for the home energy cost mini-
mization problem under uncertainties. As compared with the
original models, it can be seen that our model has adapted
the objective function 1 and the set of constraints 2–3, 5,
7–11 to formulate the cost minimization problem of energy
consumption on a network of households under uncertainties.
In addition, to deal with uncertainties that were not

Paper Model Uncertainty Application

[26] Linear
programming,

Home
energy
management

MILP
MINLP
Quadratic

programming
[12] MILP Electricity

price
Home

energy
management

MINLP Outdoor
temperature

Monte Carlo
simulation

RES

Water usage
Non-controllable

loads
[25] MILP Gas supply

shortfall
Gas

transmission
network

MINLP Compressor
failure

Robust
optimization

Our
article

MILP Electricity
grid

Home
energy
management

MINLP Energy storage
units

Robust
optimization

TABLE 1. A comparison of our article and other papers.
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considered in [28] and [29], we add new constraints 4 and 6
in this model. Then, these new constraints are linearized into
linear constraints by the joint chance-constraint programming
method that was developed by [25]. In the proposed model,
we extend the joint-chance constraint programming method
for solving the home energy cost minimization problem
under uncertainties. This model’s objective function,

constraints and uncertainties will be discussed in next
subsections.

3.1.1. The objective function. This cost minimization prob-
lem aims to seek the optimal energy plans for a minimum
cost of energy consumption under the simultaneous impact
of unexpected failures on energy storage units and electri-
city grid. In the proposed model, the objective function is
thus the minimization of total cost of energy consumption
for all houses i 2 I during time horizon T, i.e., a subtrac-
tion between cost of bought gas and electricity amount

cCHPt yCHPit þ cGRDt yGRDit and revenue of sold electricity

amount pGRDt zGRDit (see the objective function (1)). The opti-
mal energy plan based on the decision variables such as

the amount of gas bought (yCHPit ), the amount of electricity

bought (yGRDit ) and the amount of electricity sold (zGRDit ) has
to be determined to minimize the total cost.

min
X
i2I

X
t2T

cCHPt yCHPit þ cGRDt yGRDit � pGRDt zGRDit

� �
(1)

3.1.2. Set of constraints. Finding the optimal energy plans
has been subjected to a set of constraints including the
equations of energy balance, the profiles of energy con-
sumption for home appliances, the maximum capability of

FIGURE 1. A model of home energy streams [27]: (i) Electricity supplies: the electricity grid, photovoltaic, micro CHP and UPS; (ii)
Electricity demands (i.e., home appliances): television, fridge, light, radiator, shower, etc.; and (iii) Energy storage: battery.

FIGURE 2. A representation of variables.
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electricity grid, computing the amount of electricity in
energy storage units, the maximum capacity of energy storage
units, and the maximum charging and discharging rates. In the
MINLP model, constraints (2) represent the balance equations
of acquired energy (on the left hand side) and consumed
energy (on the right hand side) in each house i 2 I and at each
time slot t 2 T : Constraints (3) ensure that activities j 2 J in
house i 2 I are scheduled between the required interval of the
earliest starting time ETij and the latest starting time LTij. The
constraints aim to capture types of different household, e.g.,
day-time operation and nighttime operation. Constraints (4)
ensure that total amount of bought electricity for all house-
holds are not allowed to exceed the maximum capacity of
electricity generation in the grid. Constraints (5) are used to
update the current amount of electricity in energy storage
units, computed by energy storage units in previous state along
with charge and discharge rates in current state. Constraints
(6)-(9) represent the minimum and maximum values of energy
storage units, charge rate, discharge rate and micro CHP.
Since only a charge or discharge state is allowed to do at a

specific time, we added the binary decision variables wBAT
it

into the right-hand side of constraints (7)-(8) to ensure this.
Constraints (10) and (11) are binary decision variables and
non-negative values for bought and sold electricity.

s:t: : qiy
CHP
it þ yGRDit þ sPHOit þ vBATit ¼

zGRDit þ
X
j2J

dijtxijt þ uBATit 8i 2 I , t 2 T , (2)

XLTij
t¼ETij

xijt ¼ 1 8i 2 I , j 2 J , (3)

X
i2I

yGRDit � hmax
t ðfÞ 8t 2 T , (4)

eBATit ¼ eBATi, ðt�1Þ þ uBATit �vBATit 8i 2 I , t 2 T , (5)

0 � eit � cmax
it ðnÞ 8i 2 I , t 2 T , (6)

0 � uBATit � CRmax
i wBAT

it 8i 2 I , t 2 T , (7)

0 � vBATit � DRmax
i ð1�wBAT

it Þ 8i 2 I , t 2 T , (8)

0 � qiy
CHP
it � jmax

it 8i 2 I , t 2 T , (9)

xijt,wit 2 f0, 1g 8i 2 I , j 2 J , t 2 T , (10)

yGRDit , zGRDit � 08i 2 I , t 2 T : (11)

3.1.3. Uncertainties. This work has investigated the home
energy cost minimization problem under the simultaneous
impact of unexpected failures on energy storage units and
electricity grid. In this model, the impact of unstable elec-
tricity generation (due to a shortage of electricity grid) and
the declined maximum capacity of energy storage units
(due to an unexpected random failure) on the cost mini-
mization problem are thus formulated in the right hand
side of Constraints (4) and (6), respectively, where hmax

t ðfÞ
represents the uncertain capacity of electricity generation in
the grid at time t, and cmax

i ðnÞ represents the uncertain cap-
acity of energy storage units in house i. Because these con-
straints possess the nonlinear properties, we need to

FIGURE 3. A network of home energy consumption.
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develop a solution method to handle them. A joint chance-
constraint programming method will be developed to lin-
earize the nonlinear terms in the constraints in next
subsection.

3.2. A Joint chance-constraint programming model

A robust optimization approach, based on the joint chance-
constraint programming [25], is developed to deal with the
nonlinear properties in the MINLP model. For the con-

straints (4), let Yt ¼
P

i2I y
GRD
it 8t 2 T : Given that a confi-

dence level a 2 ½0, 1� for the capacity of electricity
generation in the grid, the minimum probability of occur-
ring the event that Yt � hmax

t ðfÞ 8t 2 T is formulated by a
joint chance constraint programming

P Yt � hmax
t ðfÞ,8t 2 T

� � � a:

It is corresponding to

inf
P2P

P Yt � hmax
t ðfÞ,8t 2 T

� � � a,

where P is the set of all probability distributions for random

variable hmax
t ðfÞ with known mean and variance ðlt,r2t Þ:

Bonferroni’s inequality leads to

sup
P2P

P [t2TYt > hmax
t ðfÞ� � � 1�a:

In addition, we have

P [t2TYt > hmax
t ðfÞ� � �

X
t2T

P Yt > hmax
t ðfÞ� � 8P 2 P:

Set X
t2T

P Yt > hmax
t ðfÞ� � � 1�a,

and let 1�a ¼ �, we obtain

Notation Description

Sets and indexes:
T Set of discrete times (indexed by t)
I Set of households (indexed by i)
J Set of home appliances (indexed by j)
h Number of discrete times
n Number of households
m Number of home appliances
Parameters:
cCHPt Unit cost of gas bought at time t
cGRDt Unit cost of electricity bought at time t
pGRDt Unit price of electricity sold at time t
sPHOit Amount of electricity generated by photovoltaic in house i at time t
dijt Electricity consumption of home appliance j in house i at time t
ETij Earliest starting time of home appliance j in house i
LTij Latest starting time of home appliance j in house i
qi Transmission coefficient of CHP in house i
jmax
it Maximum capacity of CHP in house i at time t

CRmax
i Maximum charge rate of energy storage unit (i.e., battery) in house i

DRmax
i Maximum discharge rate of energy storage unit (i.e., battery) in house i

cmax
it Maximum capacity of energy storage unit (i.e., battery) in house i at time t
hmax
t Maximum capacity of electricity generation at time t
a Confidence level for the capacity of electricity generation in the grid
b Confidence level for the capacity of energy storage units
Decision variables:
xijt Binary variable for operating home appliance j in house i at time t
yCHPit Amount of gas bought by house i at time t
yGRDit Amount of electricity bought by house i at time t
zGRDit Amount of electricity sold by house i at time t
uBATit Charge rate of energy storage unit (i.e., battery) in house i at time t
vBATit Discharge rate of energy storage unit (i.e., battery) in house i at time t
wBAT
it Binary variable for charge and discharge of battery in house i at time t

eBATit Amount of electricity in energy storage unit (i.e., battery) in house i at time t

TABLE 2. The list of notations.

Tran and Nguyen: Minimizing Total Cost of Home Energy Consumption under Uncertainties 1149



X
t2T

P Yt > hmax
t ðfÞ� � � �:

Next, let � ¼ P
t2T �t, we get

P Yt > hmax
t ðfÞ� � � �t 8t 2 T

() P Yt � hmax
t ðfÞ > 0

� � � �t 8t 2 T

() P Yt � hmax
t ðfÞ� � � 1��t 8t 2 T

() inf
P2P

P Yt � hmax
t ðfÞ� � � 1��t 8t 2 T

where
P

t2T �t � 1�a:

Set �t ¼ 1�a
h , the joint chance constraint programming

can be derived into

Yt � lt þ rt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h

1� a
�1

r
8t 2 T :

Then, constraints (4) can be written by

X
i2I

yGRDit � lt þ rt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h

1� a
�1

r
8t 2 T : (12)

Similarly, constraints (6) can be derived into

eit � li þ ri

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hþ n

1� b
�1

s
8i 2 I , t 2 T , (13)

where ðli,r2i Þ are the known mean and variance for ran-
dom variable cmax

i ðfÞ, and b 2 ½0, 1� is a confidence level
for the capacity of energy storage units.

Since constraints (12) and (13) are linear constraints, we
can use any MILP solver for the domestic energy cost
minimization problem under the impact of unexpected fail-
ures of electricity generation and energy storage units. The
linearized model for the home energy cost minimization
problem under uncertainties can be presented as follows:

[MILP]:

min
X
i2I

X
t2T

cCHPt yCHPit þ cGRDt yGRDit � pGRDt zGRDit

� �
s:t: : qiy

CHP
it þ yGRDit þ sPHOit þ vBATit ¼

zGRDit þ
X
j2J

dijtxijt þ uBATit 8i 2 I , t 2 T ,

XLTij
t¼ETij

xijt ¼ 18i 2 I , j 2 J ,

X
i2I

yGRDit � lt þ rt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h

1� a
�1

r
8t 2 T ,

eBATit ¼ eBATi, ðt�1Þ þ uBATit �vBATit 8i 2 I , t 2 T ,

eit � li þri

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hþ n

1� b
�1

r
8i 2 I , t 2 T ,

0� uBATit � CRmax
i wBAT

it 8i 2 I , t 2 T ,

0� vBATit �DRmax
i ð1�wBAT

it Þ8i 2 I , t 2 T ,

0� qiy
CHP
it � jmax

it 8i 2 I , t 2 T ,

xijt,wit 2 f0,1g8i 2 I , j 2 J , t 2 T ,

yGRDit , zGRDit � 08i 2 I , t 2 T :

We can use the simplex method in any MILP solver (e.g.,
CPLEX or GUROBI) to solve the linearized model. A flow-
chart for the proposed solution approach is shown in Figure
4. The condition for termination is to reach the predefined
value of the absolute gap tolerance between the current solu-
tion and the optimality.

4. NUMERICAL EXPERIMENTS

In this section, we investigate an efficacy of solving the
domestic energy cost minimization problem under the simul-
taneous impact of unexpected failures of electricity grid and
energy storage units by the proposed model. We evaluate the
efficacy on a case study in Nottingham, UK. The model is
implemented in Visual Studio Cþþ and solved by the IBM
ILOG CPLEX version 12.7 callable library. The experiments
are run on the Microsoft Windows 7 Enterprise PC with an
Intel Core i3-6100 Processor 2.30GHz and 8GB of RAM.
The condition for termination in CPLEX is to reach the default
value of the absolute gap tolerance (1e-6).

4.1. A case study

According to the report of the UK energy consumption [30],
the domestic sector accounts for the second largest share of
the final energy consumption at 28% (Figure 5). The fast
growth of the UK population [31] has increased challenges
in the domestic energy management. Therefore, it is essential
to utilize efficiently home appliances, renewable energy
resources and energy storage units.

We construct a case study based on the households’ domes-
tic energy consumption (e.g., n¼ 100) in Nottingham, UK.
All the households are identical and use the same set of home
appliances (e.g., m¼ 15). The description and electricity con-
sumption of each home appliance are provided in Table 3. We
investigate the domestic energy consumption of households
within 24-hour (i.e., time slot ¼ 1 hour and h¼ 24). In add-
ition, each household is equipped a solar photovoltaic gener-
ation (e.g., 4 kWh), a battery storage (e.g., capacity 19.2 kW,
and maximum charge/discharge rates 3.6 kWh or 0.2C - a
slow charger that can take between 6 and 12 hours for a full
charge), and a micro CHP (e.g., capacity 7.5 kWh, and energy
conversion rate 20%). The solar insolation data within a sum-
mer and winter day are shown in Figure 6.

If there is a lack of solar photovoltaic generation, a power
is imported from the grid (e.g., maximum capacity 500kW) at
the prescribed rates to satisfy the households’ unmet demand.
We consider Economy 7 and 10 tariffs [32] for trading the
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power from/to the grid. In particular, Economy 7 with an off-
peak time period of 7hours (e.g., 23:00–6:00) is levied at 8.00
pence/kWh, and the remaining time is charged at 15.98 pence/
kWh (Figure 7a). Economy 10 with an off-peak time period of
10hours (e.g., 5:00–13:00, 16:00–20:00, and 22:00–24:00) is
levied at 8 pence/kWh, and the remaining time is charged at
15.98 pence/kWh (Figure 7b).

In the case study, we consider two types of household:
(i) day-time operation and (ii) nighttime operation. All the
activities of home appliances can be postponed. Among
them, A1 (boiler) and A2 (fridge) have longer postponed
interval than the others. For example, A1 (boiler) and A12

(fridge), ET¼ 0 and LT¼ 23 for both the households. For
the remaining home appliances, ET¼ 0 and LT¼ 11 for the
day-time operational households, while ET¼ 12 and
LT¼ 23 for the nighttime operational households.

In addition, for the grid’s uncertain capacity hmax
t ðfÞ we use

mean and variance ðlt; r2t Þ ¼ ð200; 16Þ 8t 2 f6�9, 16�21g
and ðlt; r2t Þ ¼ ð400; 16Þ for the remaining time slots. For the
battery storage’s uncertain capacity cmax

i ðfÞ, its mean and

variance ðli; r2i Þ ¼ ð11; 0:09Þ 8i 2 I: Confidence values a ¼
0:85 and b ¼ 0:80 are applied for the grid’s capacity and the
battery storage’s capacity, respectively. These values can be
determined based on the historical data of failure events in
electricity grid and energy storage or expert ideas. Users (i.e.,
consumers) can input the values into the model based on their
experience. We also investigate the impact of unexpected dis-
ruptions, i.e., grid failure (i.e., hmax

t ¼ 0) and storage failure
(i.e., cmax

i ¼ 0) at some specific time slots, on the total cost of
domestic energy consumption. Figures 8 and 9 show the scen-
arios of grid and battery storage failures, respectively. In the
figures, Scenario 1 shows uncertain capacity of grid or battery
storage without the impact of unexpected disruptions while
Scenario 2 shows the capacity with the impact of unexpected
disruptions.

In summary, there are 16 scenarios investigated in total.
Each scenario is involved with a set of uncertainties in the
electricity grid and the battery storage units. Our proposed
model is applied to solve the instances to seek the optimal
energy plans for households.

4.2. Results and discussions

In this section, we present the results (e.g., total cost and com-
putational time) of our model for solving the case study. Based
on the combination of solar insolation data (e.g., summer and
winter), economic tariffs (e.g., Economic 7 and 10), and the
grid’s and battery storage’s uncertain scenarios in the case
study, sixteen instances are constructed. From Table 4, it can
be seen that the average total cost for winter day (£383.23) is
about 9 times higher than that for summer day (£42.83). That
is because the power generated by photovoltaic in winter
(5.2 kW) is lower than that in summer (30kW), the households
need to buy additional energy from the grid to satisfy their
demand. In addition, the computational result shows that
Economy 10 is more efficient than Economy 7 in both of sea-
sons. In particular, the households may reduce 76.24% and
19.33% of the average total cost for summer and winter by
using Economy 10 instead of Economy 7, respectively.

As investigating the uncertainties of grid and battery stor-
age separately, it can be seen that impact of unexpected

FIGURE 4. A flowchart for the proposal solution approach.
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disruptions on battery storage affects significantly total cost
(e.g., increasing 5.50% and 0.84% for summer and winter,
respectively). The results show that the unexpected disrup-
tions have greater impact on total cost in summer than that in
winter. As for the impact of different scenarios in the grid’s
uncertain capacity, unexpected disruptions continue to
increase average total cost (e.g., increasing 781.38% and
9.77% for summer and winter, respectively). These demon-
strate the significant impact of unexpected failures/temporary
disruptions in the grid and battery storage on the total cost of
domestic energy consumption network.

Among two household types, total energy consumption
cost for day-time operational household is lower than that
for nighttime operational household. This is true because
the negative impact of unexpected failures in the grid and
the battery storage usually occurs in the time period after
15:00. The economic tariff’s benefit in this period is not
enough to offset the impact.

As compared with the energy consumption plan without
the grid’s and battery storage’s unexpected failures, our
energy consumption plan can reduce up to 30% total cost
of energy consumption for the households. Once again, this
shows that our model can solve efficiently the domestic
energy cost minimization problem under the impact of
unexpected failures in the power grid and battery storage.

For the instances of summer day (Instances 1–8), the aver-
age computational time is 1257 seconds. The corresponding
value for the instances of winter day (Instances 9–16) is
590 seconds. This shows that the instances of summer day
could be more difficult to solve by our model than the instan-
ces of winter day. The minimum value of computational time

is 19 seconds for instance 7, and the maximum value is
4015 seconds for instance 4. The average computational time
for solving all the instances is 924 seconds. This demonstrates
the efficiency of our model for solving the large-sized instan-
ces, and thus it can be applied for more challenging and prac-
tical problems.

4.3. Sensitivity analysis

In this section, we analyze the impact of change of confidence
level for the capacity of electricity generation in the grid (a)
and that for the capacity of energy storage (b) on total cost of
energy consumption. Table 5 shows the results of solving the
energy cost minimization problem (i.e., Instance 1 of the case
study) with a range of various confidence values a and b.
Since the denominators of right-hand side in constraints 12
and 13 are (1�a) and (1�b) respectively, a ¼ 0:99 and b ¼
0:99 are used to compute the corresponding values in the
constraints.

From Table 5, it can be seen that total cost is not affected
by change of confidence level b. For confidence level a, as
increasing its value, total cost will be reduced. This could be
because the average capacity of energy storage is much
smaller than the average capacity of electricity generation in
the grid. Figure 10 illustrates the impact of increasing confi-
dence level a on total cost. Total cost could be approximately
decreased by 50% with a high confidence level for the cap-
acity of electricity generation in the grid (or a low probability
of randomly unexpected failures). Therefore, the risk man-
agement of electricity generation in the grid is very important
to reduce total cost for consumers.

FIGURE 5. UK energy consumption percentage.

Notation Description
Electricity

consumption (kW)
Postponed
activity

A1 Boiler 24.00 Yes
A2 Oven 4.40 Yes
A3 Shower 3.50 Yes
A4 Grill/Hob 3.00 Yes
A5 Washing machine 3.00 Yes
A6 Tumble dryer 1.50 Yes
A7 Dishwasher 1.50 Yes
A8 Iron 0.90 Yes
A9 Television 0.80 Yes
A10 Microwave 0.75 Yes
A11 Toaster 0.75 Yes
A12 Fridge 0.70 Yes
A13 Vacuum cleaner 0.60 Yes
A14 Hair dryer 0.25 Yes
A15 Light 0.24 Yes

TABLE 3. A set of home appliances.
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4.4. Comparison Analysis

To prove the efficiency of our proposed model as compared
with the existing models, we make a comparison of these
models on the case study. We solved the case study by the
models of [12] and [26], and compared the results obtained
with our model’s result. Since their models did not consider
the uncertainties (i.e., random unexpected failures on energy
storage units and electricity grid), they were not used in their
models. In addition, because the model of [12] is a stochastic
multi-objective optimization model, to be able to make the
comparison we used the minimization of total energy con-
sumption cost as only the objective function in their model.
The uncertainties such as electricity price, outdoor tempera-
ture, RES generation, water usage and non-controllable loads
were also set to be deterministic to run this model for the
case study. The energy consumption plans found by these
two models were used to compute total costs for the problem
under uncertainties.

Table 6 shows the numerical results of this comparison.
It can be seen that there is no difference of total costs of three
models for the instances without disruptions. For other
instances with disruptions, total costs of the models of [12]
and [26] are increased as compared with our model’s total
cost. In particular, the average increments of total costs for

the models of [12] and [26] are 6.58% and 15.23% respect-
ively on the instances (summer and economy tariff 7), 7.97%
and 14.69% on the instances (summer and economy tariff
10), 1.69% and 4.73% on the instances (winter and economy
tariff 7), and 1.55% and 3.76% on the instances (winter and
economy tariff 10). The overall average increments of total
costs are 4.45% and 9.60% for the models of [12] and [26],
respectively. There is no much difference in the computa-
tional time of all the models. It took about 15minutes on
average to solve the instances. The results show that our
model outperforms, in terms of the solution quality, the exist-
ing models for solving the energy consumption cost mini-
mization problem with uncertainties.

5. CONCLUSIONS AND FUTURE WORK

In this article, the energy cost minimization problem under simul-
taneous impact of unexpected failures (i.e., power grid and bat-
tery storage) was investigated. A joint chance-constraint MILP
model was proposed to seek the optimal energy consumption
plans. The model’s efficiency is demonstrated by a case study in
Nottingham, UK. The results show that our model can find an
efficient economic tariff for minimization of total energy cost
under various scenarios. Economy 10 is suggested to use,

FIGURE 6. Solar insolation data. (a) Economy 7. (b) Economy 10.
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regardless of seasonal solar power generation, impact of the
grid’s and battery storage’s unexpected failures, and household
types. We can save more total energy cost in summer, since total
power (kW) generated by photovoltaic in summer is greater than

that in winter in the UK. Impact of the grid’s unexpected failure
on total energy cost is more significant than that of the battery
storage’s unexpected failures. Total energy cost for day-time
operational household is lower than that for nighttime operational

FIGURE 7. Electricity and gas tariffs. (a) Without the impact of unexpected disruptions. (b) With the impact of unexpected
disruptions.
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FIGURE 8. The electricity grid’s uncertain capacity scenarios. (a) Without the impact of unexpected disruptions. (b) With the
impact of unexpected disruptions.
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FIGURE 9. The battery storage’s uncertain capacity scenarios.
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Instance Season Tariff Grid disruption Battery disruption Total cost (£) Time (s)

1 Summer Economy 7 No No 59.40 88
2 Yes 61.83 1959
3 Yes No 73.89 196
4 Yes 81.75 4015
5 Economy 10 No No 1.84 36
6 Yes 1.96 2605
7 Yes No 30.83 19
8 Yes 31.15 1141
9 Winter Economy 7 No No 410.40 236
10 Yes 414.20 167
11 Yes No 434.60 98
12 Yes 437.70 501
13 Economy 10 No No 318.80 43
14 Yes 318.80 119
15 Yes No 362.70 140
16 Yes 365.80 3418

TABLE 4. Computational results for the case study.

b

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99

a 0.0 71.39 71.39 71.39 71.39 71.39 71.39 71.39 71.39 71.39 71.39 71.39
0.1 70.98 70.98 70.98 70.98 70.98 70.98 70.98 70.98 70.98 70.98 70.98
0.2 70.50 70.50 70.50 70.50 70.50 70.50 70.50 70.50 70.50 70.50 70.50
0.3 69.90 69.90 69.90 69.90 69.90 69.90 69.90 69.90 69.90 69.90 69.90
0.4 69.17 69.17 69.17 69.17 69.17 69.17 69.17 69.17 69.17 69.17 69.17
0.5 68.24 68.24 68.24 68.24 68.24 68.24 68.24 68.24 68.24 68.24 68.24
0.6 66.97 66.97 66.97 66.97 66.97 66.97 66.97 66.97 66.97 66.97 66.97
0.7 65.12 65.12 65.12 65.12 65.12 65.12 65.12 65.12 65.12 65.12 65.12
0.8 62.02 62.02 62.02 62.02 62.02 62.02 62.02 62.02 62.02 62.02 62.02
0.9 55.02 55.02 55.02 55.02 55.02 55.02 55.02 55.02 55.02 55.02 55.02
0.99 35.78 35.78 35.78 35.78 35.78 35.78 35.78 35.78 35.78 35.78 35.78

TABLE 5. Impact of confidence levels on total cost.

FIGURE 10. Impact of confidence level a on total cost.
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household. There is a significant impact of change of confidence
level for the capacity of electricity generation in the grid (a), no
impact of change of confidence level for the capacity of energy
storage (b) on total cost of energy consumption. In addition, our
solution can reduce total cost for a set of households as compared
with the solution without unexpected failures, as well as the solu-
tions obtained by the existing models of [12] and [26].
Furthermore, our model can obtain the optimal solutions for the
large-sized instances in a reasonable computational time.

The mathematical model and solution approach are devel-
oped in general, and UK is used as a case study to demon-
strate the efficiency of the proposed model and solution.
They can be applied for other countries with the similar con-
ditions. In the case that other countries have additional spe-
cific constraints, the model can be extended to deal with the
problem of energy consumption optimization.

In the future, this model may be extended to investigate
other probability distributions of random and unexpected failure
events on the grid and battery storage. The impact of single-/
multi-phase home appliances may be studied and integrated
into our model. Furthermore, a stochastic optimization method
can be developed to model the problem under the impact of

uncertainty of renewable generation. Then, uncertain solar inso-
lation data can be collected to generate the probability distribu-
tion of the data that is integrated into the stochastic
optimization model to find the optimal energy plans.
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