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The constantly growing demand for fibre-optic communication traffic motivates re-

searchers to develop new data transmission approaches. The nonlinear Fourier trans-

form (NFT) technique effectively linearizes an information channel and has the potential

to overcome the nonlinear capacity limit. However, this method has not been studied

thoroughly, especially its counterpart – the periodic NFT. In the context of fibre-optic

communication, the periodic NFT is closely related to the finite-genus solutions of the

nonlinear Schrödinger equation (NLSE). Previously, analysis of data transmission sys-

tems with finite-genus solutions was performed, but the capacity was underestimated

due to the restrictions of the periodic NFT. This thesis is devoted to developing the NFT

for finite-genus solutions, avoiding any limitations, and providing a fair analysis of the

corresponding communication systems.

The complete NFT framework for finite-genus solutions to the NLSE is developed

in the thesis. The Riemann-Hilbert problem (RHP) parametrization of finite-genus solu-

tions is exploited. Among the operations constituting the NFT, the inverse problem and

the evolution of scattering data are defined in the RHP method, while solving the direct

problem is limited. This transformation is performed with a convolutional neural network

that lifts existing restrictions. With this neural network-based direct transform, the NFT

framework for finite-genus solutions becomes complete.

Having such NFT tools in hand, fair performance estimations of fibre-optic commu-

nications with finite-genus solutions data carriers are performed. Numerical simulations

of the near-real communication systems are implemented, but the computational com-

plexity of the NFT algorithms is disregarded. In such a system, additional distortions

are caused by deviation from the original NLSE model. Applying a convolutional neu-

ral network at the receiver to compensate for these impairments while simultaneously

recovering the scattering data provides high spectral efficiency comparable to conven-

tional NFT techniques.

Keywords: Convolutional neural network, Data transmission, Nonlinear waves dy-

namic, Periodic nonlinear Fourier transform, Riemann-Hilbert problem
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Chapter 1

Introduction

1.1 Nonlinear Fourier transform

The nonlinear Schrödinger equation (NLSE) is a mathematical model for a wide range of

physical phenomena such as light propagation in an optical fibre [1, 2], fluid mechanics

[3, 4], the Bose-Einstein condensate [5, 6], superconductivity [7, 8], and others [9, 10].

The NLSE describes the evolution of slowly varying envelopes of quasi-monochromatic

wave packets1 in a medium with chromatic dispersion and weak nonlinearity [1]. When

the nonlinear term in the NLSE is absent, it simplifies to the standard, linear Schrödinger

equation describing the evolution of a quantum-mechanical state of a physical system.

The NLSE is a nonlinear partial differential equation. It can take either a focusing

or defocusing form depending on the sign of the nonlinearity and the type of disper-

sion, which is anomalous or normal. In the medium where self-focusing effects are

observed, the focusing NLSE governs the propagation of signals. In such a scenario,

energy tends to be concentrated in a localized area, allowing the formation of solitons,

demonstrating modulation instability or other phenomena [11, 12]. At the same time, the

defocusing NLSE describes dispersive waves propagation leading to energy spreading

or generation of the so-called dark solitons [13]. For example, in the description of sig-

nal propagation through a silica fibre, the type of dispersion depends on a wavelength

and a type of fibre. For the standard single-mode fibre, the dispersion changes its sign

at the wavelength of λD = 1312 nm [1]. The propagation of a signal with a carrier wave-

length longer than λD is governed by the focusing NLSE. However, if the wavelength

of a carrier is shorter than λD, the defocusing NLSE describes dynamics. The NLSE

takes the following dimensionless form:

iqz + σ
1

2
qtt + |q|2q = 0, (1.1)

1referred to as “signals” later in the manuscript.
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Chapter 1. Introduction

where t is temporal variable, z is evolutionary variable, and q(t, z) is an envelope of a

wave packet. The parameter σ defines the type of the equation, σ = 1 for the focusing

and σ = −1 for the defocusing NLSE.

The NLSE allows analytical solutions in a restricted number of cases [14, 15].

Among others, there is a fundamental analytical solution to the focusing NLSE – soliton.

The soliton is a solitary wave that keeps its waveform due to the joint action of disper-

sion and nonlinearity while propagating through a media [16, 17]. The solitons were a

subject of interest for a long time in such areas as optical communication [18] and wa-

ter surface dynamics [4]. However, in many practical cases, the exploration of a signal

dynamic is only available through numerical methods. There are a few approaches to

solve the NLSE numerically: the split-step Fourier method [1, 19], the finite-difference

method [1], and the nonlinear Fourier transform technique [20, 21].

The linear Fourier transform is a powerful tool for the analysis of linear differential

equations. The approach allows the construction of an analytical solution in the linear

Fourier domain as well as linear modes decomposition, providing an opportunity for the

comprehensive examination of the solution. However, this approach doesn’t work for

nonlinear equations such as the NLSE (1.1). This is because the superposition principle

is not satisfied in the presence of nonlinearity. In other words, the modes interact with

each other and do not propagate independently. Nevertheless, some nonlinear partial

differential equations (NPDE) allow for a generalization of the Fourier transform method

through the decomposition of a solution into nonlinear modes. It is called the nonlinear

Fourier transform2 (NFT), obviously because it deals with nonlinear equations. The sys-

tems allowing such analysis are known as integrable. They are the Korteweg–de Vries

equation, the mentioned nonlinear Schrödinger equation, the Sine-Gordon equation,

and others [22, 23]. In this context, integrability means that for a given NPDE, there

exists an ordinary linear differential equation or a system of equations for which the

solution of NPDE serves as a potential. While the solution of NPDE experiences com-

plicated dynamics, the spectrum of the operator corresponding to the ordinary linear

differential equation has a trivial linear evolution property [20, 21]. Therefore, the non-

linear Fourier transform represents the solution of integrable NPDE as a set of nonlinear

modes that have a linear evolution property despite their nonlinear nature. Such an ap-

proach enables solving and comprehensive analysis of integrable nonlinear equations.

It found its application in fluid mechanics, nonlinear optics, and other areas.

In the frames of the NLSE, the nonlinear Fourier transform is an approach to convert

the nonlinear evolution governed by the NLSE into a linear evolution of special param-

eters, so-called nonlinear spectrum3 (NS), defined within the nonlinear Fourier domain

[21]. It is possible because the NLSE belongs to the class of integrable systems, for

2referred to as inverse scattering transform in literature.
3also known as spectral data or scattering data.

S. A. Bogdanov, PhD Thesis, Aston University 2024 14



Chapter 1. Introduction

which an effective linearization of the nonlinear evolution is possible [16, 20]. The NFT

framework consists of solving the direct problem that is finding the spectral data for a so-

lution to the NLSE given in the time domain q(t, z), the inverse problem that is retrieving

of q(t, z) from the nonlinear spectrum, and evolution lows for the scattering data in the

nonlinear Fourier domain, that are linear relations showing how the nonlinear spectrum

changes with z. In other words, the NFT is a way to solve an initial value problem for the

NLSE getting around the complex nonlinear dynamic of a signal: (i) a solution q(t, z) is

transformed by means of solving the direct problem to the spectral data Q(k, z) (k is a

spectral parameter), (ii) of which linear evolution properties are exploited to find them at

any value of z, and then (iii) the solution in time domain is retrieved again at new z value

of interest with the inverse problem. A scheme demonstrating the approach is depicted

in Fig. 1.1.

NLSE

Linear evolution

q(t, z=L)

Q(k, z=L)Q(k, z=0)

q(t, z=0)

Direct
NFT

Inverse
NFT

Figure 1.1: The scheme of the NFT technique to solve the NLSE. q(t, z) is a solution in the time
domain, Q(k, z) is the spectral data.

Plenty of works dedicated to the conventional nonlinear Fourier transform are pre-

sented in the literature [16, 20, 21]. Initially, the NFT was developed for vanishing bound-

ary signals q(t, z), which decay exponentially as t tends to infinity. In this case, the

nonlinear spectrum consists of two parts: a discrete spectrum and a continuous spec-

trum4, which are defined by solving the appropriate generalized eigenvalue problem,

also known as the Zakharov-Shabat problem with q(t, z) playing the role of potential:

Φt(t, z, k) =

(︄
−ik q(t, z)

−σq∗(t, z) ik

)︄
Φ(t, z, k), (1.2)

where k is a spectral parameter (eigenvalue) and Φ(t, z, k) is an auxiliary vector eigen-

4The existence of the discrete spectrum, solitonic components, is possible exclusively for
the focusing NLSE. In the defocusing scenario, only the continuous spectrum exists.
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function. σ takes value “+1” and “−1” for the focusing and defocusing case correspond-

ingly. Solving the system that is finding its eigenvalues and eigenfunctions gives the

nonlinear spectrum5 (a detailed procedure is given [20, 21]). The discrete spectrum

consists of eigenvalues {ki ∈ C+}Ni=1 that are associated with the complex amplitudes

{r(ki) ∈ C}Ni=1, defined through the solution of the system (N is a number of discrete

spectrum components). It represents solitonic components in the signal q(t, z) that are

either solitary soliton or multisoliton structures. The frequency and amplitude of a soliton

are equal to the real and imaginary part of the ki, while r(ki) determines a time shift and

phase. The continuous spectrum can be found from the solution of the system with the

spectral parameter k defined on the real axis {r(k), k ∈ R}. It corresponds to radiative

waves. In the quasilinear scenario, the limit of a small signal’s amplitude, the nonlinear

spectrum does not contain discrete components, while the continuous spectrum tends

to the linear Fourier transform of the signal q(t, z).

The discrete spectrum is invariant, while a wave packet propagates over a medium,

and the focusing NLSE governs its evolution. Whereas the continuous spectrum and

complex amplitudes have a linear evolution:

r(k, z) = r(k, z0)e
2ik2(z−z0),

r(ki, z) = r(ki, z0)e
2ik2i (z−z0). (1.3)

The solution to the inverse problem is found through a couple of integral equations,

the Gelfand-Levitan-Marchenko system, with the kernel expressed through the discrete

and continuous spectra. When the spectral data are provided, they uniquely determine

q(t, z). A more detailed and mathematically rigorous description of the NFT framework

can be found in corresponding literature [16, 17, 20, 21].

The nonlinear Fourier transform has been actively applied in fibre-optic communica-

tions, where the NLSE is a master model describing the propagation of the information

signals through optical fibre [24]. These signals experience the joint action of chromatic

dispersion and nonlinearity, which complicates their evolution. Initially, nonlinearity was

considered a harmful property of an optical fibre that forces communication systems

to operate in a linear regime. At the same time, dispersion introduces the channel

memory and can be compensated easily in the linear Fourier domain. The advent of

the NFT refined the role of nonlinearity: in the NFT framework, nonlinearity is con-

sidered an intrinsic property of signals but not a detrimental phenomenon. Using the

linear evolution properties of the scattering data allows compensation for the action of

nonlinearity as well as chromatic dispersion. Hasegawa’s and Nyu’s fundamental work

proposed the idea of using the nonlinear spectrum with its properties, where the infor-

5Although the system (1.2) is linear, the term “nonlinear spectrum” is widely used in the
literature, because related to the analysis of nonlinear partial differential equations.
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mation was encoded to a discrete spectrum [25]. Later, this approach was implemented

in distinct techniques such as continuous spectrum modulation, soliton communication,

b-modulation, and periodic nonlinear Fourier transform [26, 27].

Alternatively, the nonlinear Fourier transform for periodic signals was developed [28,

29, 30]. However, this technique is mathematically involved and requires analysis with

the algebro-geometric approach or the Riemann-Hilbert problem method [31]: behind

this periodic NFT are finite-genus solutions to the NLSE [32]. Nevertheless, some data

transmission systems have been constructed based on this method [33, 34]. A detailed

description of the periodic NFT and communications with this technique is presented in

this thesis.

1.2 Fibre-optic communications review

Two key technologies that established the era of fibre-optic communications were the

advent of low-loss optical fibre in 1970 and the invention of AsGa semiconductor laser

able to operate at room temperature [35]. The performance of the first commercial

fibre-optic communication systems was extremely low due to periodic optoelectronic

regeneration. The loss of optical fibre required signals to be received, regenerated in

the electronic domain, and transmitted again. The distance between transceivers was

about 50 km. In the earlier 1990s, such systems provided capacity of 5Gb/s over 2

wavelength channels (2.5Gb/s per channel) being restricted mainly by the interface

rate of existing transponders [36].

For reference, the Internet connection speed I have in my university’s office in 2024

is about 100 Mb/s. It allows me to browse the Internet, watch high-quality videos, and

have online meetings. Therefore, 5 Gb/s systems available in the 1990s could satisfy

only about 50 modern users.

The epoch of regenerating systems ended with the advent of optical fibre ampli-

fiers [37]. The erbium-doped fibre amplifier (EDFA) was invented at the beginning of

the 1990s and allowed direct signal amplification without converting into the electri-

cal domain. Though an EDFA didn’t provide a gain in systems’ capacity, it enabled the

development of wavelength-division multiplexing (WDM) technique through effective op-

tical signal amplification all over the bandwidth that EDFA is able to operate without the

necessity for channels separation. Commercial WDM systems available at the begin-

ning of 1990s had a capacity of up to 20Gb/s provided by 8 frequency channels [36].

The intrachannel data rate of 2.5Gb/s was restricted by the chromatic dispersion of the

standard single-mode fibre (SSMF) that is about 17 ps/nm/km at 1550 nm. The further

growth of capacity was achieved by means of special dispersion-shifted fibres provid-

ing reduced dispersion at the operation wavelength, and the dispersion management

technique enabled compensation for an aggregated dispersion through mixing fibres of
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different types. By 2009, the commercial systems based on the dispersion management

supported data transmission at 40Gb/s per channel with aggregated capacity 3.2Tb/s

provided by 80 wavelengths channels [38]. This throughout was restricted by the band-

width that an EDFA could operate with (C+L band ranging from 1530 nm to 1625 nm)

and fibre loss in the expanded range of wavelengths [35]. The further increase in ca-

pacity required new amplification systems to overcome these limits.

The development of optical coherent detection made it possible to operate with the

whole signal at the receiver, allowing applying advanced data transmission techniques

[39]. Modulation methods developed to use the amplitude and phase of a signal, as

well as both polarizations, provided higher spectral efficiency. Such modulation formats

as binary/quadrature phase shift keying or 16-QAM (quadrature amplitude modulation),

64-QAM, or even 1024-QAM significantly increased the capacity of systems. 400Gb/s

per WDM channel transmission based on dual-polarization dual-carrier 32Gboud and

16-QAM over 550 km was available in 2015 [40]. Later, in 2020 1.6Tb/s per channel

system was reported which operated at 95.6Gboud with 64-QAM signals providing data

transmission up to 1000 km [41]. At the same time, access to a full signal enabled by

coherent detectors gave rise to digital signal processing (DSP) methods. They include

signal modulation, pulse shaping, and precompensation techniques at the transmitter,

as well as equalization (chromatic dispersion and nonlinearity compensation), filtering,

demodulation, and decoding at the receiver [42]. Modern digital signal processing sys-

tems have become an important part of communications, consuming a significant por-

tion of total energy [43].

By the moment the fibre-optic communication systems had reached their limit with

the WDM and the coherent detection technologies, the further increase of capacity

was able by the parallel deployment of new systems. This meant a linear growth of

the systems’ throughput with cost. The spatial-division multiplexing (SDM) technology

provides access to a spatial degree of freedom to transmit information [44]. It can be

implemented by deploying special multicore fibres (containing a few cores under the

cladding) operating with signals propagated over many cores simultaneously. Another

approach is using multimode fibres, allowing many spacial modes to be propagated

over one core [45]. The different spacial channels in SDM systems can share common

elements, including light sources, amplifiers, and DSP processors, saving energy and

cost-per-bit. The SDM technology being proposed in the 1990s became available only

after 2010 because of progress in fibre fabrication and the advent of techniques allowing

for compensation inter cores/modes interactions [46]. The report published in 2018

demonstrated data transmission over more than 100 spacial channels in a single fibre

that consisted of 19 cores, each supporting 6 modes. The transmission exploited 739

WDM channels in C+L band and increased the aggregated capacity from 100Tb/s

provided by single-mode single core fibre up to 10.16Pb/s over the distance 11.3 km

S. A. Bogdanov, PhD Thesis, Aston University 2024 18



Chapter 1. Introduction

[47]. Therefore, applying the SDM technology increased capacity proportional to the

number of special channels.

A new, fast-developing area of research is ultrawideband (UWB) communications.

Initially, communication systems operated at wavelengths from 1530 nm to 1565 nm

(C-band), corresponding to the range where silica fibre has a minimal loss, and an

EDFA is able to provide amplification. By 1998 modified EDFA also covered the L-band

(1565 nm to 1625 nm), providing in total transmission over 80 frequency channels in

aggregated C+L-band [35]. Functioning behind this range is challenging due to the in-

creased fibre loss and dispersion. Moreover, amplification technologies based on EDFA

don’t support operation in the extended wavelength range, and new approaches were

required [48]. Later, hybrid amplification schemes made it possible to transmit data

through a single-mode fibre beyond the C+L band. The 190Tb/s transmission over

54 km was demonstrated with standard EDFA amplification in C+L band and additional

Raman/thulium-doped fibre amplifier in S-band [49]. Also, the record occupation of a

single-mode fibre bandwidth was shown using all bands (O-E-S-C-L-U-band) in a silica

fibre transparency window. The transmission over the range from 1260 nm to 1675 nm

was implemented with a complex combined amplification scheme. In this experiment,

the capacity achieved 402.2Tb/s over 50 km [50].

Finally, it is worth mentioning the increasing role of machine learning and artificial

neural networks in modern fibre-optic communications. Such techniques accompany all

stages of the transmission system’s functioning. Machine learning applications in optical

communications can be categorized as offline and online approaches. Offline applica-

tions are used at all stages before the system exploitation. They are system design,

parameters optimization, and performance estimations. Prediction of traffic, as well

as quality estimation of the future systems, are critical to prevent overusing resources

and saving them for other requests [51]. At the same time, the adoption of modern

approaches in communications makes systems to be attributed with many parameters

and complex for optimization. Neural networks can effectively reveal hidden relations

between parameters (bandwidth, modulation format, power, and others) and provide

optimal configurations [52]. On the other hand, the operation of modern communication

systems requires permanent online analysis of their state and real-time processing of

transmitting/receiving data. Optical performance monitoring provides information for the

system self-configuration as well as for the computation of an optimal transmission path

[53]. Many researches are devoted to the application of neural networks for digital sig-

nal processing, including equalization, nonlinear distortion compensation, and others

[54, 55]. These are just a few machine learning applications in optical communication;

a broader list can be found in [51, 52].
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1.3 NFT-based communications

The nonlinear Schrödinger equation, eq. (1.1), is a master model for information signals

propagation in a fibre-optic communication system [1]. It describes the intricate interplay

between dispersion and nonlinear effects, resulting in a complicated signal dynamic. At

the same time, the NLSE belongs to the so-called integrable systems for which nonlin-

ear Fourier transform can be developed [21]. The NFT effectively linearizes an optical

channel due to the linear property of the scattering data. While an information signal

propagates through an optical fibre and experiences joint action of dispersion and non-

linearity, its nonlinear spectrum demonstrates linear evolution that can be compensated

in the nonlinear Fourier domain with a trivial phase rotation, eq. (1.3), [26, 27] (see

Fig. 1.1). A constantly growing need for data transmission capacity leads to an increase

in the power of information signals to use high-modulation formats. However, such sys-

tems suffer from nonlinear effects that can not be neglected. It, in turn, restricts the per-

formance of communications and causes a so-called nonlinear limit [24, 56]. Therefore,

the NFT approach is an attractable tool for simultaneous dispersion and nonlinearity

management.

One of the first applications of the NFT in fibre-optic data transmission systems

relates to the idea of eigenvalue communication [25]. It is proposed that information

is encoded into invariant eigenvalues of solitonic signals. In the following research,

different approaches to NFT communication were developed. They are based on en-

coding information into continuous spectrum [57, 58, 59] or discrete eigenvalues (soli-

tonic components) [60, 61, 62, 63] as well as both these components of the nonlinear

spectrum [64, 65, 66]. In these scenarios, the evolution of scattering data is trivial;

see eq. (1.3). Later, an advanced technique known as b-modulation was proposed.

This approach provides higher system effectiveness and full control over signal dura-

tion in contrast to the conventional method based on continuous spectrum modulation

[67, 68, 69, 70]. Finally, data transmission systems exploiting the periodic NFT were

proposed [33, 34, 71, 72, 73]. The last approach is described in detail in the corre-

sponding chapter below.

One approach to apply the NFT in fibre-optic communication is the direct modulation

of the nonlinear spectrum [58, 61, 64]. The information is encoded into the nonlinear

spectrum (continuous, discrete, or both simultaneously) in this scenario. Then, the in-

verse problem is solved at the transmitter, and the signal q(t, z = 0) corresponding to

this nonlinear spectrum is propagated through the optical fibre. At the receiver side,

the direct problem for the detected signal q(t, z = L) (where L is propagation distance)

is solved to get its scattering data. The evolution of this nonlinear spectrum is com-

pensated with eq. (1.3) to get the scattering data at the transmitter (z = 0), and it is

decoded. The scheme of this procedure is depicted in Fig. 1.2.
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Alternatively, the NFT may be applied at the receiver at the digital backpropaga-

tion (DBP) stage [74, 75]. In such an approach, the data is transmitted with traditional

data carriers, such as sinc pulses or their root-raised cosine modifications [24]. At the

receiver, after propagation, signals undergo the direct NFT, the evolution of their scatter-

ing data is compensated, and the inverse NFT operation is performed. The procedure’s

output is information signals with compensated accumulated dispersion and nonlinear-

ity corresponding to the signals at the transmitter (see Fig. 1.2). A detailed description

of both approaches is given in [26].
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Figure 1.2: Two applications of the NFT in fibre-optic communications: encoding information
through the nonlinear spectrum modulation (left) and using the NFT for digital backpropagation
(right).

The lossless NLSE in the form of eq. (1.1) contains only nonlinear and dispersion

terms. However, in real communication systems, information-bearing signals undergo

periodic attenuation and amplification due to the loss of optical fibre and the action of

amplifiers. The model involving the last two phenomena is not integrable, and the NFT

does not work in such systems. In other words, the scattering data no longer undergo

the evolution equations (1.3). Even though the dynamics of the signals are not governed

by the lossless NLSE, the propagation of the signals averaged over many fibre spans is

still described by the NLSE in the form of eq. (1.1), the so-called lossless path-averaged

model [58].

Though the NFT methods provide a solution to effectively compensate for the cou-

pled action of dispersion and nonlinearity in the nonlinear Fourier domain, their practical

implementation is limited due to the high numerical complexity of the direct and inverse

transforms [26, 76]. The most computationally effective algorithms are known as “su-

perfast NFT”. They provide the direct NFT transformation with complexity O(M log2M)

for signals containing the continuous spectrum only and O(M2) for discrete spectrum

(M is the number of samples in signal q(t)) [77, 78]. At the same time, the “super-

fast inverse NFT” for an arbitrary spectrum can be implemented with total complexity

O(MN + M log2M), where N is the number of solitonic components [79, 80]. De-

spite these efforts in developing the NFT algorithms, they didn’t find applications in

real systems because their complexity is still too high, and their implementation is not
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justified in contrast to the conventional transmission systems. However, it was demon-

strated that the performance of the NFT systems can outperform their linear counter-

parts [69, 81]. Therefore, NFT systems can find practical applications if they provide

significantly higher capacity to compensate for the excessive costs related to their com-

plexity [82].

To finish this section, a few remarkable communications results with the NFT should

be mentioned. In the first example, data transmission was realized with the b-modulation

method [83]. The authors investigated how the noise in the system correlates with in-

formation signals, enabling them to improve performance. The transmission parame-

ters were the following: the bandwidth was 5GHz, and the propagation distance was

960 km. The maximum SE of 5.51 bits/s/Hz was reported for such settings. Another

example is a dual-polarization NFT scheme with nonlinear frequency division multi-

plexing [69]. The Hermite-Gaussian-based wave carriers, which provide exceptionally

narrow bandwidth, were exploited in this system. SE of 12 bits/s/Hz over both polariza-

tions was demonstrated with the bandwidth of 4.75GHz and the transmission distance

of 800 km. This work provides a direct comparison with linear transmission in terms of

spectral efficiency and demonstrates the outperformance of the NFT technique.

Moreover, some noteworthy applications of neural networks (NN) in NFT-based

communications have been developed. A nonlinear frequency division multiplexing sys-

tem with NN-based symbols decision was proposed in [84]. Information was encoded

into solitons that were processed directly in the time domain at the receiver, avoiding the

NFT transformation. In the non-ideal system, where the signals were distorted with pe-

riodic gain/loss and noise, the approach demonstrated significantly higher performance

than the conventional numerical NFT. In another research, two convolutional neural

networks, a small-size serial NN and a high-speed parallel NN, for application in non-

linear frequency division multiplexing systems are proposed [85]. The authors provided

a comprehensive analysis of the models and gave specific recommendations for the

hardware implementation of each NN. In one more example, the direct spectral prob-

lem to the NLSE was solved with a convolutional neural network, coined later NFT-Net

[86]. The NN retrieved the continuous nonlinear spectrum and demonstrated advan-

tages in comparison with the conventional numerical NFT when the processed signals

were distorted by noise. This feature of the method is especially important in fibre-optic

communications applications. For more research on this topic, see [87, 88, 89, 90].

1.4 Motivation and thesis contribution

Many methods of data transmission based on the NFT are covered in the literature.

They are mainly devoted to the NFT with decaying boundary signals. However, practical

implementation of these approaches still requires significant efforts to address existing
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problems. At the same time, it was reported that the periodic NFT has some advantages

over its conventional counterpart. However, only a few works mention communications

based on the periodic NFT. It is explained by the incomplete theory behind the approach.

Therefore, the performance of such data transmission systems was underestimated.

For the mentioned reasons, the direct problem solver for finite-genus solutions that

are based on convolutional neural networks (CNN) was implemented in this work. The

development of this approach provided the complete NFT framework for finite-genus

solutions. The method and its analysis are the contribution of the thesis. Chapter 2

covers that study. Another research was devoted to the numerical realization of a fibre-

optic communication system based on the complete NFT framework for finite-genus

solutions. Investigation of data transmission with a proposed CNN-based receiver, sim-

ulations of such systems, and their performance analysis are the second contributions

of the thesis. It is described in Chapter 3.

The following works have been published in journals (J) and as conference papers

(CP):

[J1] S. Bogdanov, D. Shepelsky, A. Vasylchenkova, E. Sedov, P. J. Freire, S. K. Tu-

ritsyn, and J. E. Prilepsky, “Phase computation for the finite-genus solutions to

the focusing nonlinear Schrödinger equation using convolutional neural networks.”

Communications in Nonlinear Science and Numerical Simulation, vol. 125: 107311,

2023.

[J2] S. Bogdanov, D. Shepelsky, M. Kamalian-Kopae, A. Vasylchenkova, and

J. E. Prilepsky, “Finite-genus solutions-based optical communication with the Rie-

mann-Hilbert problem transmitter and a convolutional neural network receiver.”

Journal of Lightwave Technology, vol. 42, no. 16, pp. 5529-5536, 2024.

[J3] D. Shepelsky, I. Karpenko, S. Bogdanov, and J. E. Prilepsky, “Periodic finite-

band solutions to the focusing nonlinear Schrödinger equation by the Fokas met-

hod: inverse and direct problems.” Proceedings of the Royal Society A, vol. 480

(2286): 20230828, 2024.

[CP1] S. Bogdanov, J. E. Prilepsky, D. Shepelsky, M. Kamalian-Kopae, A. Va-

sylchenkova, E. Sedov, and S. K. Turitsyn, “Fiber-optic communications based on

finite-genus solutions to the NLS with a convolutional neural network receiver.”

49th European Conference on Optical Communications (ECOC 2023), Hybrid

Conference, Glasgow, UK, pp. 467-470, 2023.

[CP2] S. Bogdanov, P. J. Freire, and J. E. Prilepsky, “Complexity reduction of

neural networks for nonlinear Fourier transform in optical transmission systems.”

International Conference on Machine Learning for Communication and Network-

ing (ICMLCN), Stockholm, Sweden, pp. 537-542, 2024.
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[CP3] S. Bogdanov, “Nonlinear Fourier transform for finite-genus solutions of a

generic type: application in fibre-optic communications.” XI-th International Con-

ference “SOLITONS, COLLAPSES AND TURBULENCE: Achievements, Devel-

opments and Perspectives”, Belgrade, Serbia, 2024.

[CP4] S. Bogdanov, “Fibre-optic communication based on the inverse scattering

transform for finite-genus solutions.” 4th IMA Conference on Inverse Problems

from Theory to Application, Bath, UK, 2024.

1.5 This thesis

• In the introduction, a short description of the NLSE and the corresponding NFT

is provided. It followed with a brief history of fibre-optic communication systems,

showing how the advent of different technologies enhanced data transmission

capacity. This ends with a discussion of the communications based on the NFT.

• Chapter 2 starts with the theory behind the periodic NFT and finite-genus solu-

tions. Two frameworks, the algebro-geometric approach and the Riemann-Hilbert

problem method, are described. Then, I define finite-genus solutions of a generic

type and specify the problems limiting the applicability of the periodic NFT. Later

in the chapter, a description of a convolutional neural network-based method to

solve the direct problem for finite-genus solutions of a generic type is provided.

This approach is able to process arbitrary finite-genus solutions, lifting the re-

striction to operate in a quasi-linear limit. It follows with details of the method

implementation and performance estimation. Finally, the result of the CNN model

compression with the weight clustering technique is outlined.

• In Chapter 3, the principles of communications with the periodic NFT and its ex-

isting implementations are reviewed. Then, the data transmission using finite-

genus solutions of a generic type and the method of phase recovery described in

Chapter 2 is introduced and illustrated with a few numerical experiments. First,

the idealized fibre-optic communication system with minimal deviation from the

NLSE model is presented. At the receiver, the CNN-based detector is exploited

to retrieve the phases of information symbols. Second, a comprehensive analy-

sis of a more practical transmission scheme is provided. The configuration with

a non-zero gain/loss profile is realized while the CNN-based receiver processes

non-periodic signals. It is implemented to achieve higher capacity. Estimations of

efficiency and comparison with other NFT transmissions are provided, Finally, the

weight clustering technique is applied to compress the CNN model.

• The thesis concludes with a brief summary.
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Chapter 2

NFT for finite-genus solutions

2.1 The Riemann-Hilbert problem approach

An idea behind the Riemann-Hilbert problem (RHP) formalism is constructing an an-

alytic function in the complex plane, having known its behavior on the boundaries of

analyticity domain1. Let’s consider an oriented contour Γ in the complex plane and a

mapping G from this contour to an invertible N × N matrix2. The Riemann-Hilbert

problem consists of constructing the matrix function Ψ(λ) such that:

• Ψ(λ) is analytic everywhere in C \ Γ;

• Ψ(λ) satisfies to the jump condition Ψ+(λ) = Ψ−(λ)G(λ), with Ψ+(λ) and

Ψ−(λ) being the limiting values as λ approaches Γ from the left and right side

correspondingly;

• as λ tends to infinity Ψ(λ) → I (identity matrix).

The conditions provided above are enough to uniquely determine the analytic function

Ψ(λ). It is worth noting that contour Γ might be nontrivial, consisting of a few compo-

nents, being closed, and having self-intersections. This contour, along with the jump

matrix G(λ), are defined by the problem under consideration. The detailed explanation

and rigorous mathematical description of the Riemann-Hilbert problem can be found in

[91, 92].

In a simple scenario, when the problem of interest is reduced to a scalar RHP,

i.e., N = 1, the solution Ψ(λ) can be found explicitly in terms of the contour integrals

(Cauchy-type integrals). Such a case takes place in the analysis of the special functions

and other applications; see for examples [92]. However, in general, the RHP can be

1In this section, I am not chasing for mathematical rigor. Here is just a sketch to provide
insight for reading the following sections.

2The general case of the matrix RHP is considered. However, a scalar problem also appears
in many applications.
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reduced to a linear singular integral equation. It is a typical situation when the original

problem that has been formulated in terms of RHP is nonlinear. Therefore, the RHP

formalism allows for an effective linearization of the initially nonlinear problem [91].

An important application of the Riemann-Hilbert problem approach is the construc-

tion of solutions to nonlinear partial differential equations: the Korteweg–de Vries equa-

tion, the nonlinear Schrödinger equation, and others [93, 94]. The benefits of using the

RHP come from the following: a solution to the nonlinear equation expressed in the

term of the RHP has an explicit linear dependence from its temporal/spatial and evolu-

tionary variables. The approach developed for numerical solving of the Riemann-Hilbert

problem made it possible to construct solutions to the nonlinear equations [92, 95]. To

illustrate, let’s consider schematically a solution to the NLSE with vanishing boundary

initial conditions. It is constructed with the RHP approach using the continuous spec-

trum of the solution as input data for the problem [96]. The matrix-valued function Ψ(λ)

satisfies:

Ψ+(λ, t, z) = Ψ−(λ, t, z)G(λ, t, z), (2.1)

where t and z, temporal and evolutionary variables of the NLSE, eq. (1.1), are parame-

ters of the problem now. The jump matrix G(λ, t, z):

G(λ, t, z) = e−iλtσ3

(︄
1 r∗(λ∗)

0 1

)︄(︄
1 0

r(λ) 1

)︄
eiλtσ3 . (2.2)

r(λ) is the continuous spectrum, eq. (1.3), and σ3 =

(︄
1 0

0 −1

)︄
is the Pauli matrix. The

contour Γ is the real axis. However, just because r(λ) decays to zero as λ → ±∞,

Γ can be truncated at some values. Then, the solution to the NLSE can be expressed

from the asymptotic behavior:

Ψ(λ, t, z) = I +
Ψ1(t, z)

λ
+ . . . , λ → ∞ (2.3)

as (1,2) entrance of the matrix Ψ1(t, z):

q(t, z) = 2iΨ1
1,2(t, z). (2.4)

As mentioned, Ψ(λ, t, z) has the explicit parametric dependence on t and z, providing

the solution q(t, z) for any values of these variables.

Another example is the finite-genus solutions to the Korteweg–de Vries equation,

which were recovered using the asymptotics of the Baker–Akhiezer functions. The

lasts, in turn, were represented as a solution to the corresponding Riemann-Hilbert

problem [93]. Later, this approach was developed to calculate the large-genus solutions

to the Korteweg–de Vries equation thanks to employing weighted Chebyshev basis and
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weighted Cauchy transforms [97].

2.2 Periodic nonlinear Fourier transform and finite-genus so-

lutions

The nonlinear Fourier transform has been developed initially for the vanishing boundary

signals: q(t) decays to 0 as t tends to ±∞ [16, 20, 21]. Alternatively, integration of

the nonlinear Schrödinger equation (1.1) can be implemented with the periodic initial

condition:

q(t) = q(t+ T ), T ∈ R. (2.5)

The periodic nonlinear Fourier transform (PNFT) is a framework for parametrizing pe-

riodic signals in the nonlinear Fourier domain. The PNFT is closely linked with finite-

genus solutions (FGS), also referred to as finite-band or finite-gap solutions in the liter-

ature.

The finite-genus solutions were initially introduced in the works devoted to integrat-

ing the Korteweg-de Vries equation with a periodic Cauchy initial problem [28]. The

initial value problem for NLSE with periodic signals was solved by means of the algebro-

geometric (AG) approach in Kotlyarov and Its works [15, 29] as well as Ma and Ablowitz

[98]. A detailed description of the nonlinear Schrödinger equation integration, as well

as others, with the AG method, is given in [31]. Alongside the algebro-geometric ap-

proach, a solution to the NLSE can be constructed with the Riemann-Hilbert problem

(RHP) method, where a solution to the NLSE is defined from the asymptotic behavior

of the analytic function constructed through solving the corresponding Riemann-Hilbert

problem in the complex plane [30, 92].

The finite-genus solutions to the focusing NLSE3 allow parametrization with a dis-

crete spectrum in the nonlinear Fourier domain. This spectrum consists of the main

spectrum (MS) and the auxiliary spectrum (AS). The main spectrum is invariant: it

remains constant while a signal evolves according to the NLSE. Meanwhile, the aux-

iliary spectrum describes the signal’s dynamic and depends on t and z variables in

eq. (1.1). The main spectrum is the same for the algebro-geometric approach and the

Riemann-Hilbert problem method. The term auxiliary spectrum was introduced in the

AG approach, while for the RHP method, it is replaced by the phases. In this context,

the nonlinear Fourier transform framework for finite-genus solutions consists of the di-

rect problem, which is finding the main and auxiliary spectra from a given q(t, z0) at

a specific value of z0, and the inverse problem, which involves retrieving the signal in

the time domain from its nonlinear spectrum. Together with these transformations, the

3Later in the text, I talk about the finite-genus solutions to the focusing NLSE equation if other
is not specified. However, the same framework can be developed for the defocusing NLSE.
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evolution low of the auxiliary spectrum constitutes the NFT framework for finite-genus

solutions (see Fig. 1.1).

The following sections in this chapter describe two approaches to parameterize

finite-genus solutions in the nonlinear Fourier domain: the algebro-geometric approach

and the Riemann-Hilbert problem method. It is followed by a description of the numer-

ical implementation of the methods and the peculiarities of their use. Then, I provide a

generalization of the NFT for finite-genus solutions of a generic type with the support

of machine learning techniques. The section 2.3 is devoted to the method developed

in the frame of this research and published in [J1]. It solves the direct problem of the

NFT for finite-genus solutions of a generic type with a convolutional neural network. A

description of the model is provided, as well as details of the training process and es-

timation of the performance. Moreover, the weight clustering compression technique is

applied to reduce the computational complexity of the neural network. This research

was presented at a conference and published [CP2]. The chapter ends with a conclu-

sion summarizing the research.

2.2.1 Algebro-geometric approach

Without loss of generality, consider the parametrization of finite-genus solutions with

the algebro-geometric approach in the terms provided by Kotlyarov and Its [15, 29].

According to the formalism, a genus-N solution to the focusing NLSE q(t, z) can be

described with the following set of parameters:

• Main spectrum: N + 1 pairs of complex conjugated number {λj , λ
∗
j}Nj=0 ∈ C;

• Auxiliary spectrum: N values {µj}Nj=1 ∈ C;

• Riemann surface sheet indices: σj ∈ {−1, 1} defined for each µj ;

• Initial amplitude: q(t0, z0).

The main spectrum of a genus-N solution comes as N + 1 pairs of complex conju-

gated numbers4 [99]. An example of the main spectrum of a genus-4 solution is given

in Fig. 2.1, where the complex conjugated values of the main spectrum are joined with

arcs. If all {λj}Nj=0 are different, they provide a non-degenerated solution [100]. The

given main spectrum generates two-sheeted Riemann surface Γ:

Γ :

⎧⎨⎩(λ, P ), P 2 =
N∏︂
j=0

(λ− λj)(λ− λ∗
j ), λ, P ∈ C

⎫⎬⎭ . (2.6)

4for simplicity denoted as {λj}Nj=0 later in the text, where all λj lie in the upper half of the
complex plane.
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Im 𝝀

Re 𝝀

Figure 2.1: An example of the main spectrum of a genus-4 solution.

A topological genus of this Riemann surface coincides with the genus of the solution

corresponding to the main spectrum.

The auxiliary spectrum {µj = µj(t0, z0)}Nj=1 is initial values of corresponding hyper-

elliptic modes {µj(t, z)}Nj=1. These modes are a dynamic part of the spectrum; they are

functions of t and z variables. Therefore, the auxiliary spectrum changes while the so-

lution q(t, z) evolves according to the NLSE. These hyperelliptic modes are defined on

the two-sheeted Riemann surface (2.6), unique for the given main spectrum, and gen-

erate closed trajectories on this surface when q(t, z) is periodic. Each µj is attributed

with a sheet index σj = σj(t0, z0) to specify a sheet of the Riemann surface where µj

is located initially. As µj moves over the Riemann surface, it possibly switches from one

sheet of the surface to another. In this case, the corresponding index σj changes its

sign. The discrete functions {σj(t, z)}Nj=1 determine the evolution of these parameters.

Therefore, the sets {µj(t, z)}Nj=1 and {σj(t, z)}Nj=1 completely describe the dynamic of

the solution. It is worth noting that not each set of complex numbers can be an auxiliary

spectrum to provide a finite-genus solution (see more details in [100, 101]).

For the given values {µj}Nj=1 and {σj}Nj=1 the functions {µj(t, z)}Nj=1, {σj(t, z)}Nj=1

are retrieved from the system of equations:

∂tµj = −2iσj

√︂∏︁2N+1
k=0

(µj − λk)∏︁N
m=1
m ̸=j

(µj − µm)
, (2.7)

∂zµj = −2

⎛⎜⎝ N∑︂
m=1
m̸=j

µm − 1

2

2N+1∑︂
k=0

λk

⎞⎟⎠ ∂tµj , (2.8)

where specific σj(t, z) switches a sign when µj(t, z) reaches an arc joining any pair

from {λj , λ
∗
j}Nj=0. It corresponds to the move from one sheet of the Riemann surface
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to another. Therefore, the functions {σj(t, z)}Nj=1 can be recovered from tracking if

the corresponding µj transferred to another sheet on the current step of the solving

procedure or not. Another couple of equations provides the solution q(t, z) with the

initial value q(t0, z0):

∂t ln q = 2i

⎛⎝ N∑︂
j=1

µj −
1

2

2N+1∑︂
k=0

λk

⎞⎠ , (2.9)

∂z ln q = 2i

⎛⎜⎜⎝2N+1∑︂
j,k=0
j>k

λjλk −
3

4

(︄
2N+1∑︂
k=0

λk

)︄2

⎞⎟⎟⎠+4i

⎛⎜⎜⎝1

2

(︄
2N+1∑︂
k=0

λk

)︄⎛⎝ N∑︂
j=1

µj

⎞⎠−
N∑︂

j,k=1
j>k

µjµk

⎞⎟⎟⎠ .

(2.10)

Therefore, if the main spectrum is provided, it generates the Riemann surface. With

known {µj}Nj=1 and {σj}Nj=1, the hyperelliptic modes can be found from eq. (2.7) and

(2.8). Finally, eq. (2.9) and (2.10) give the solution q(t, z) from initial value q(t0, z0).

However, because the hyperelliptic modes involved in these equations are defined on

the two-sheeted Riemann surface providing alternating eq. (2.7), the analysis of the

system is significantly complicated.

Inverse problem and the Riemann-theta function formalism

Alternatively, an approach based on the Riemann theta function can be applied to con-

struct a finite-genus solution. The Riemann theta function is:

Θ(z|τ ) =
∑︂

m∈ZN

eπim
T τm+2πimT z, z ∈ CN . (2.11)

It is a reduction of a multidimensional Fourier series because, in the general case,

Fourier coefficients are elements of a tensor of rank N , but τ is just a matrix [4]. τ is

a N ×N symmetric matrix of periods; its imaginary part is positively defined to provide

convergence of the series. The Riemann theta function is periodic in all components of

the vector-valued argument z. Summation is performed over integer-valued parameters

m = {m1,m2, . . . ,mN} in N dimensional space. The series is truncated after some

mmax
j to provide predefined calculation accuracy. The Riemann theta function is an im-

portant tool in the analysis of nonlinear differential equations and the periodic nonlinear

Fourier transform [4, 102, 103].

Finite-genus solutions to the focusing NLSE can be expressed through the Riemann

theta function:

q(t, z) = A0
Θ(π2 (ωt+ kz + δ−)|τ )
Θ(π2 (ωt+ kz + δ+)|τ )

eiω0t+ik0z. (2.12)

The matrix of periods τ , as well as the vectors of temporal and spatial frequencies ω,k

are a result of the integration of holomorphic differentials over a canonical homology
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basis defined on the Riemann surface. Therefore, this matrix and vectors are unique

for the given main spectrum. δ+, δ− depend on the auxiliary spectrum also and are

calculated as integrals on the Riemann surface. Finally, the parameters A0, ω0, k0 are

determined from the asymptotic expansion of the Abel integrals. The matrix τ has the

size of N × N while vectors ω, k, δ+, δ− have the size of N , where N is a genus

of the solution. For this reason, high-genus solutions are associated with multidimen-

sional Riemann theta functions that are inapplicable for numerical analysis. A detailed

procedure and explanation of the approach to construct finite-genus solutions with the

Riemann theta function are given in [4, 31].

Calculating the parameters in eq. (2.12) is mathematically involved and is beyond

my review purpose. However, because the temporal frequencies ω have an exceptional

role in the following analysis, their detailed calculation is considered. The given main

spectrum {λj}Nj=0 produces the Riemann surface (2.6) with the basis of holomorphic

differentials:

dUj =
λj−1dλ

P (λ)
, j = 1, . . . , N, (2.13)

with P (λ) being values of (2.6) with a corresponding sign of the squared root. At the

same time, a canonical basis of oriented contours on the Riemann surface can be

introduced {aj , bj}Nj=1. The basis is canonical if all {aj}Nj=1 do not intersect each other

and {bj}Nj=1 also do not intersect each other; aj and bj cross only once and, finally, no

one of the contours can be continuously deformed to other one or contracted to zero.

Any closed curve on the Riemann surface is decomposed into that canonical basis.

Then, the temporal frequencies are:

ωj = −4i

π
A−1

j,N , (2.14)

where matrix A is combined from integrals over the basis contours {aj}Nj=1:

Aj,k =

∫︂
ak

dUj , j, k = 1, . . . , N. (2.15)

Being calculated the frequencies (2.14) constitute the vector ω in eq. (2.12). For more

details about this calculation and also definitions of the other parameters in eq. (2.12)

see [31, 33, 99].

Definition 1. The closed-form expression for a finite-genus solution (2.12) is conve-

nient to introduce a nonlinear harmonic or nonlinear mode. A genus-N solution is

attributed with the vectors ω and k with N elements each. These vectors’ components

ωj , kj are temporal and spatial frequencies. The contribution associated with each pair

ωj , kj to the overall genus-N solution is a nonlinear harmonic. An additional (N + 1)th

mode must be associated with ω0 = 0, k0 = 0 that do not contribute to (2.12). The rea-
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son for introducing this harmonic is obvious when considering a genus-0 solution: while

N = 0, it consists of a single nonlinear mode5. In this sense, a genus-N solution q(t, z)

consists of N + 1 nonlinear harmonics or nonlinear modes. This definition is useful for

describing finite-genus solutions and will be actively used further in the text.

2.2.2 The Riemann-Hilbert problem approach

An alternative approach to construct finite-genus solutions is the Riemann-Hilbert prob-

lem (RHP) formalism [104]. In this method, a genus-N solution is parametrized with:

• Main spectrum: N + 1 pairs of complex conjugated number {λj , λ
∗
j}Nj=0 ∈ C; the

same main spectrum as defined in the algebro-geometric approach;

• Phases: N + 1 values {ϕj}Nj=0 ∈ [0, 2π).

This set of parameters uniquely determines a genus-N solution to the NLSE. To

calculate the solution, the following algorithm can be applied:

1. The given main spectrum {λj , λ
∗
j}Nj=0 forms the oriented contour Γ = ∪N

j=0Γj ,

where Γj = (λj , λ
∗
j ) is the arc connecting λj and λ∗

j .

2. For the given contour Γ a jump matrix is introduced:

J(t, z, λ) =

(︄
0 ie−i(ϕj+2λt+4λ2z)

iei(ϕj+2λt+4λ2z) 0

)︄
, (2.16)

where λ ∈ Γj , j = 0, . . . , N . This matrix contains the phases {ϕj}Nj=0 as param-

eters.

3. For the given oriented contour Γ and J(t, z, λ) an analytic 2 × 2 matrix function

Ψ(t, z, λ) of variable λ ∈ C \ Γ and real-valued parameters t, z such that:

• the limiting values Ψ±(t, z, λ) as λ approaches the contour Γ from both

sides hold Ψ+(t, z, λ) = Ψ−(t, z, λ)J(t, z, λ), λ ∈ Γ;

• Ψ(t, z, λ) has singularities no higher than the inverse fourth root at λj and

λ∗
j ;

• and Ψ(t, z, λ) → I as λ → ∞;

is a solution to the Riemann-Hilbert problem.
5It becomes clearer when considering FGS’s parametrization with the RHP provided in the

following section.
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Being evaluated Ψ(t, z, λ) provides a finite-genus solution to the NLSE from its asymp-

totic behavior as λ → ∞:

Ψ(t, z, λ) = I +
Ψ1(t, z)

λ
+ . . . , (2.17)

and, finally, with [Ψ1(t, z)]1,2 being the 1, 2 entry of the matrix-valued function Ψ1(t, z):

q(t, z) = 2i[Ψ1(t, z)]1,2. (2.18)

This algorithm constitute the inverse problem of the NFT for finite-genus solutions: start-

ing from {λj}Nj=0 and {ϕj}Nj=0 the corresponding finite-genus solution q(t, z) can be

constructed. A detailed description of the procedure is provided in [30, 34, 99, 105].

Alternatively, a finite-genus solution can be expressed through the solution of an-

other RHP with the jump matrix that contains the temporal and special frequencies in

an explicit way as in eq. (2.12). Let’s introduce an analytic function in C \ Γ:

ω(λ) =

N∏︂
j=0

√︂
(λ− λj)(λ− λ∗

j ). (2.19)

Each contour Γj oriented from λ∗
j to λj (all λj are such that Imλj > 0), and ω+(λ) is a

liming value of ω(λ) as λ reaches Γ from the right side. The following N ×N matrix K

with elements:

Km,j =

∫︂
Γj

λm−1dλ

ω+(λ)
, m, j = 1, . . . , N, (2.20)

determines vectors of temporal Cf = (Cf
1 , C

f
2 , . . . , C

f
N )T and spatial frequencies Cg =

(Cg
1 , C

g
2 , . . . , C

g
N )T through the systems of equations:

K ·Cf = [0, 0, . . . ,−2πi]T , (2.21)

K ·Cg = [0, 0, . . . ,−8πi,−4πi
N∑︂
j=0

(λj + λ∗
j )]

T . (2.22)

Calculating values f0 and g0 from asymptotic behaviour of the following analytic func-

tions in C \ Γ:

f(λ) =
ω(λ)

2πi

N∑︂
j=1

∫︂
Γj

Cf
j dξ

ω+(ξ)(ξ − λ)
= λ+ f0 +O(1/λ), (2.23)

g(λ) =
ω(λ)

2πi

N∑︂
j=1

∫︂
Γj

Cg
j dξ

ω+(ξ)(ξ − λ)
= 2λ2 + g0 +O(1/λ) (2.24)
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the finite-genus solution can be constructed as:

q(t, z) = 2i[Φ1(t, z)]1,2e
2if0t+2ig0z, (2.25)

where Φ1(t, z) is defined by the solution of the Riemann-Hilbert problem described

above (from the decomposition of asymptotic behavior as in eq. (2.17)) on the same

contour Γ with jump matrix:

Ĵ(t, z, λ) =

(︄
0 ie−i(ϕj+Cf

j t+Cg
j z)

iei(ϕj+Cf
j t+Cg

j z) 0

)︄
, λ ∈ Γj , (2.26)

with parameters Cf
0 = 0 and Cg

0 = 0.

The real-valued entries in eq. (2.26) {Cf
j }Nj=1 and {Cg

j }Nj=1 are the temporal and

spacial frequencies of nonlinear modes. Together with constants f0 and g0, they dictate

the finite-genus solution’s dependence on t and z. It is worth noticing that f0 can be

set to zero by shifting the main spectrum along the real axis [34]. The main spectrum

{λj}Nj=0 fully defines all these parameters.

Note: Similar to the Definition 1, in the RHP approach the nonlinear harmonics

can be associated with particular values Cf
j , C

g
j and ϕj . Moreover, these parameters

are the entries of a jump matrix, defined independently for each gap formed by a pair

{λj , λ
∗
j}. Therefore, a finite-genus solution consists of N + 1 nonlinear modes, each

associated with a particular pair {λj , λ
∗
j}, frequencies Cf

j , C
g
j and phase ϕj .

Finally, the scattering data characterizing a genus-N solution through the RHP ap-

proach have a trivial evolution. The main spectrum {λj}Nj=0 is invariant while a signal

q(t, z) evolves according to the NLSE. At the same time, the phase of each nonlinear

harmonic:

ϕj(z) = ϕj(0) + (Cg
j − 2g0)z, (2.27)

where z is a normalized propagation distance, Cg
j and g0 are the corresponding spatial

frequencies as specified above. A rigorous mathematical description of the described

procedure is given in [J1]. Also, more details about calculating the finite-genus solutions

to the focusing NLSE with the RHP approach see in [30, 34, 105, 96].

2.2.3 The direct problem and monodromy matrix

The scattering data for both methods, the AG approach 2.2.1 and the RHP 2.2.2, can

be found through monodromy matrix formalism. However, this method is applicable

only to periodic solutions (2.5) for which the period T is defined. It, in turn, requires

commensurability of the frequencies of nonlinear harmonics that are elements of the

vector ω in eq. (2.12) in the AG approach or Cf in the RHP method.
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Definition 2. For a genus-N solution the elements of the vector ω = [ω1, ω2, . . . , ωN ]

are frequencies of nonlinear harmonics. We say that these frequencies are commen-

surable if there exists a set of arbitrary integer numbers {k1, k2, . . . , kN} such that

k1ω1 = k2ω2 = · · · = kNωN = ωcom. In other words, the frequencies are commensu-

rable if a common multiple ωcom exists. The same is true for the periods of nonlinear

harmonics {Tj = 2π/ωj}Nj=1. The periods are commensurable if a common multiple

Tcom is defined as provided in Fig. 2.2.

Tcom

T1

T2

Figure 2.2: The schematic of commensurable periods with Tcom being a common multiple for
all others.

Monodromy matrix can be applied to calculate the scattering data for the subset

of finite-genus solutions of which nonlinear modes have commensurable frequencies,

Definition 2. Let’s denote such a periodic solution with a period T as qp(t, z). The

solution Φ(t, z, λ) of the Zakharov-Shabat system (1.2) on the period T with potential

qp(t, z) and the initial condition Φ(0, z, λ) = I (the unit matrix) provides the monodromy

matrix:

M(z, λ) = Φ(T, z, λ). (2.28)

The main spectrum {λj , λ
∗
j}Nj=0 is simple zeros of the equation:

(M1,1 +M2,2)
2 − 4 = 0. (2.29)

At the same time, the auxiliary spectrum {µj}Nj=1 is the double zeros of

M1,2 = 0 (2.30)

or simple zeros of eq. (2.30) that do not coincide with double zeros of eq. (2.29) [34,

100, 105]. To calculate the sheet indexes that take values from {−1, 1}, the following

expression can be used [4]:

σj =
i Im(M1,1(λ))(︁

M∗
1,2(λ)M2,1(λ)− Im2(M1,1(λ))

)︁1/2
⃓⃓⃓⃓
⃓
λ=µj

(2.31)

To find the phases {ϕj}Nj=0 from the RHP approach, the following system must be

solved:

K · ϕ = B, (2.32)
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where the (N + 1) × (N + 1) matrix K is calculated as (the same as eq. (2.20) but

including j,m = 0):

Kmj =

∫︂
Γj

λmdλ

ω+(λ)
, j,m = 0, . . . , N. (2.33)

The elements of the vector B are:

Bm = −i
N∑︂
j=0

∫︂
Γj

P (λ)λmdλ

ω+(λ)
, m = 0, . . . , N, (2.34)

with the function:

P (λ) = log

⎛⎝√︄−M1,2(λ)

M2,1(λ)

N∏︂
j=1

λ− µ∗
j

λ− µj

⎞⎠ . (2.35)

Equations (2.29), (2.30), and (2.31) provide the main spectrum, auxiliary spectrum,

and sheet indexes that together with q(t0, z0) constitute the scattering data for finite-

genus solutions in the algebro-geometric approach and, therefore, the solution of the

direct problem of the periodic NFT. At the same time, the solution of the system (2.32)

is the phases. The main spectrum (eq. (2.29)) and the phases are the full set of spec-

tral parameters for the RHP approach. However, the application of the monodromy

matrix formalism is restricted by the finite-genus solutions to those that meet the com-

mensurability condition (see Definition 2). More details are provided in the following

section. A comprehensive explanation of how to solve the direct problem can be found

in [34, 100, 105, 96].

2.2.4 Implementation of the periodic NFT

Two methods to implement the periodic NFT, the algebro-geometric and the Riemann-

Hilbert problem approaches, have been described above. Despite their rigorous math-

ematical definitions, both have peculiarities that complicate practical implementation if

unknown. Their limitations and nuances of numerical realizations are described in this

section.

Formulation of the algebro-geometric approach 2.2.1 allows a straightforward imple-

mentation of the inverse problem (finding a signal q(t, z)) through solving the system of

equations (2.7) – (2.10). In practice, such calculation is complicated because the aux-

iliary spectrum {µj}Nj=1 is defined on the Riemann surface that leads to the alternating

coefficient σj in eq. (2.7). This change of sign corresponds to the transfer of auxiliary

spectrum points from one sheet of the Riemann surface to another.

Alternatively, the inverse problem can be solved by using the Riemann theta func-

tion. For given scattering data 2.2.1, the parameters of the Riemann theta function to

calculate a finite-genus solution can be found from the Abel map [31, 99]. The evaluation

of the Riemann theta function (2.11) provides a finite-genus solution (2.12). However,
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the function (2.11) is presented as a multi-dimensional Fourier series that complicates

its numerical evaluation [4, 103]. The problem becomes more valuable for a numerical

calculation of high-genus solutions: computational complexity grows exponentially with

the number of dimensions, making straightforward analysis completely impractical. The

method to calculate such a high-dimensional Riemann theta function with a tensor-train-

based algorithm is given in [102]. The numerical approaches to the Riemann surfaces

and available software are described in [106].

Solving the direct problem with the monodromy matrix approach bounds the class of

finite-genus solutions for which the scattering data can be calculated. In the set of FGS

to the focusing NLSE, the subset of ones that have commensurable frequencies of their

nonlinear modes can be processed with the monodromy matrix, Fig. 2.3. Such limita-

Finite-genus
solutions

Commensurable

Figure 2.3: The subset of finite-genus solutions with commensurable frequencies of their non-
linear harmonics (see Definition 2).

tions on frequencies, in turn, impose restrictions on the main spectrum configurations.

In the general case, the vector of frequencies, ω in eq. (2.12), is a function of the real

and imaginary parts of the main spectrum. FGS shows a nonlinear nature, the degree

of which grows with an increase of Imλj . On the other hand, in the linear limit, when

the imaginary part of the MS points tends to be zero, the modes demonstrate linear

behavior, and their frequencies and amplitudes do not depend on each other. More-

over, in such a limit, the main spectrum approximates amplitudes of the linear Fourier

spectrum |q(ω)| [Appendix, 34]. Therefore, constructing a periodic finite-genus solution

is possible in a quasilinear regime when {Imλj}Nj=0 is close to zero. Using MS with a

small enough imaginary part and adjusting it for each nonlinear mode independently,

it is possible to provide frequency commensurability and, finally, a finite-genus solution

to be periodic. This approach was used in fibre-optic communication applications of

FGS [33, 34]. At the same time, commensurable finite-genus solutions (having com-

mensurable frequencies of nonlinear harmonics) that are not restricted by quasilinearity

conditions were found only for particular configurations of the main spectrum [107, 108].

In the general case of an arbitrary MS, the commensurability is not guaranteed. A trick

to build a commensurable finite-genus solution with an arbitrarily high imaginary part of

S. A. Bogdanov, PhD Thesis, Aston University 2024 37



Chapter 2. NFT for finite-genus solutions

the main spectrum, where it is calculated for an existing periodic function, is given in

[Appendix, 34]. However, in this approach, the frequencies and amplitude of separate

harmonics are uncontrollable. To summarize, applying the monodromy matrix formal-

ism reduces the set of finite-genus solutions that can be processed with the periodic

NFT framework. The inverse problem and evolution can still be solved for an arbitrary

main spectrum, but the direct problem is only for the finite-genus solutions with com-

mensurable frequencies.

Regarding the RHP approach, the inverse problem can be solved numerically for

any main spectrum configuration. Having a contour on the complex plane and a jump

matrix, one can solve the corresponding Riemann-Hilbert problem (see section 2.2.2).

The numerical approach and its practical implementation are given in [92, 95, 109, 110].

The limitation on the main spectrum also is applicable to the direct problem in the

RHP framework. This is because the direct problem in the approach also exploits

the monodromy matrix formalism. The main spectrum in the RHP and the algebro-

geometric method is the same and generates the same frequencies of nonlinear har-

monics. Hence, the values {Cf
j }Nj=1 must be commensurable as well. Again, using the

full periodic NFT framework is possible for the restricted subset of finite-genus solutions

(as depicted in Fig. 2.3), while the inverse problem itself and the phase evolution can

be solved for an arbitrary main spectrum.

Specifically, implementing the periodic NFT with the RHP approach suffers from

additional restrictions. Among the finite-genus solutions that have commensurable fre-

quencies and for which monodromy matrix formalism can be applied, the signals with

the phases {ϕj < π}Nj=0 can be processed only. An algorithm with such a restriction

was used in [34], where the phases of FGS were used to carry information in a fibre-

optic communication system. Using the phases by modulo π reduced the system’s

capacity twice. This limitation on the phase originates from the formula (2.35) that is fair

for the case when all auxiliary spectrum points are located on one sheet of the Riemann

surface. Below an approach to resolve this restriction is described.

2.2.5 The analytical solving of the direct problem via the RHP method

In section 2.2.2, the approach to construct the finite-genus solutions to the NLSE through

the RHP method is described. For the given scattering data, the main spectrum, and

the phases, the procedure provides signal q(t, z). At the same time, the opposite

transformation, which is retrieving the spectral data, can be implemented by means

of monodromy matrix formalism. However, this method was restricted to operate with

the phases defined on the interval [0, π]. To lift this additional limitation and use the

full range of phases that is especially important in practice, the described approach to

solve the direct problem for FGS was expanded in [J3]. It was reported that retrieving
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the phases of finite-genus solutions is possible by constructing another Riemann-Hilbert

problem with a given signal q(t, z) and the main spectrum as initial data.

To build this new RHP the following needs to be considered. First, the initial bound-

ary value problem to the NLSE can be solved for the periodic initial condition (eq. (2.5))

through an RHP [111, 112]. To build that solution, the periodic signal q(t, z) is exploited

as initial data. The contour in this RHP formulation is the union of real and imaginary

axes with a number of finite arcs in the complex plane. The jump matrix, in turn, is

constructed using the scattering matrix of the Zahkarov-Shabat system. Second, the

RHP for the initial boundary value problem, if transformed to the problem in the form

2.2.2, provides the desired phases as entries of a jump matrix. More details about that

approach can be found in [J3].

The following examples demonstrate the method’s feasibility. First, the genus-1 so-

lution with the main spectrum λ = {0.2780 + i, 1.2780 + i} and different initial phases

was exploited. The inverse problem was solved for these scattering data to provide the

corresponding solutions q(t), as given in section 2.2.2. Then, the phases were calcu-

lated using the developed method. The retrieved phases for different initial values are

in Table 2.1. The error of recovery was smaller than 10−3. For these examples, the

original and recovered phases, as well as the main and auxiliary spectra and signals

q(t), are depicted in Fig. 2.4.

Ex Original phases q(0, 0) Aux. spectrum Recovered phases
ϕ0 ϕ1 q µ ϕ0 ϕ1

1 0.4 0.8 1.5844− 1.0839i 0.7780 + 0.3163i 0.4005 0.7995

2 3.5416 3.9416 −1.5844 + 1.0839i −0.7780− 0.3163i 3.5420 3.9411

3 0.4 3.9416 0.1463 + 0.2139i 0.7780− 3.9526i 0.4000 3.9416

Table 2.1: The original phases, values of q(0, 0), auxiliary spectra and recovered phases of
three different genus-1 solutions used to demonstrate the method (cited from [J3]).

Second, a genus-2 solution was also considered. The following configuration of the

main spectrum λ = {−1+ 3i, 5i, 1+ 3i} provides a periodic finite-genus solution [107].

The initial phases were ϕ = {0.1, 0.2, 0.3} while the auxiliary spectrum µ = {2.1061 +
0.4161i, 2.1061 + 0.4161i. The recovered phases were ϕ = {0.1007, 0.2000, 0.2993},

agreeing with the original values at 10−3. The main and auxiliary spectra, initial and

recovered phases, as well as q(t) are shown in Fig. 2.5.

In conclusion, the method briefly described here was developed to solve the direct

problem of finite-genus solution in the RHP framework. In contrast to the previous ap-

proach, this one is able to process the FGS parametrized with a full range of phases. It

was demonstrated with a few simple examples, genus-1 and genus-2 solutions. How-

ever, the expanding of the approach for a case of higher genera can be conducted if

required. The full description is provided in [J3].
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Figure 2.4: Three genus-1 signals used to demonstrate the method. The original and recovered
phases, main and auxiliary spectra, and signals q(t) are provided; see also Table 2.1. (Cited
from [J3].)
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Figure 2.5: The main and auxiliary spectra, original and recovered phases, as well as the signal
q(t), for an example genus-2 solution. (Cited from [J3].)

2.3 Nonlinear Fourier transform for finite-genus solutions of

a generic type with a convolutional neural network

Consider an arbitrary main spectrum {λj , λ
∗
j}Nj=0 providing a genus-N solution. The

solution consists of N + 1 nonlinear modes (Definition 1), each with a period Tj
6 and

periods {Tj}Nj=1 are not commensurable (Definition 2) or a common period Tcom is too

big to be processed with any existed algorithm. At the same time, there is no need

for a solution q(t, z0)
7 to be defined over the entire interval Tcom to solve the direct

problem of the periodic NFT and retrieve the scattering data from the signal. Among all

periods {Tj}Nj=1, the maximum Tmax = maxj Tj can be chosen as an interval on which

the signal is processed: q(t, z0) such that t ∈ [0, Tmax]. Because Tmax is the maximum

6the period corresponding to ω0 = 0 is not defined and is not considered.
7q(t, z0) is taken at a specific value of z0.
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period among all nonlinear modes, it guarantees that the signal q(t, z0) contains at least

one period for any nonlinear harmonic. It, in turn, means that all necessary information

about each nonlinear mode is contained in the signal q(t, z0) defined on Tmax.

Definition 3. Let’s call a finite-genus solution periodic if it has commensurable fre-

quencies of nonlinear harmonics and is defined on Tcom. Other words, q(t, z0) =

q(t + Tcom, z0) and t ∈ [0, Tcom]. Therefore, the direct problem for such solutions can

be solved with the monodromy matrix.

Definition 4. The set of finite-genus solutions of a generic type (FGS-GT) includes:

• the finite-genus solutions that have non-commensurable frequencies of nonlinear

harmonics, which means that Tcom does not exist;

• the finite-genus solutions defined on the interval smaller than Tcom (more practical

scenario for an arbitrary main spectrum);

• the periodic finite-genus solutions (Definition 3).

Therefore, the finite-genus solutions of the generic type are generalizations of the peri-

odic finite-genus solutions.

To the best of my knowledge, there is still no theoretical approach to retrieve the

scattering data of finite-genus solutions of a generic type. The only existing method

is to apply monodromy matrix formalism (described in the previous sections), which

works only with periodic signals. At the same time, machine learning and artificial neu-

ral networks (NN) offer a powerful tool to approximate any transformation despite its

unknown explicit form. The universal approximation theorem guarantees the mapping

of any function with a neural network [113]. Thus, this property of NN can be used to

solve the direct problem for a finite-genus solution of a generic type.

Later in this chapter, the method to solve the direct problem for FGS-GT (see Def-

inition 4) through neural networks is described. The RHP approach is exploited to pa-

rameterize finite-genus solutions for which the scattering data are the main spectrum

and the phases. To provide better performance, the neural network solves a simplified

task: for the given main spectrum, it predicts the phases only. In other words, the NN

model’s input is a discretized signal q(t, z0) defined on the interval [0, Tmax] and with a

fixed main spectrum. The output of the neural network is N + 1 phases.

It is worth remembering how the main spectrum configuration defines the property

of the corresponding finite-genus solution. In the linear limit, when the imaginary part of

the main spectrum is close to zero, the frequencies of nonlinear harmonics are defined

by the real part of the main spectrum, while the imaginary part provides the amplitudes

of the modes. With the growth of Im[λj ], the nonlinear nature of signals becomes sig-

nificant, and the imaginary part of the main spectrum also impacts the frequencies. In
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the last scenario, more nonlinearity-involved behavior is expected; the nonlinear modes

are not independent; they influence each other, determining mutual properties. The in-

vestigation of signals’ frequencies and amplitudes in dependence on the main spectrum

structure is given in [34].

2.3.1 Training data

A genus-N solution can be parameterized by the N + 1 points of the main spectrum

and N+1 phases. As mentioned, a neural network was trained to predict the phases of

finite-genus solutions for a fixed main spectrum. One of the configurations was a genus-

4 solution with the profile and the main spectrum provided in Fig. 2.6. Such a choice

is explained by its intermediate properties: a genus-4 solution contains 5 nonlinear

modes and, therefore, is not a trivial signal among finite-genus solutions, but it is still

not complex to be quickly and effectively generated with the inverse problem algorithm

in the frame of the RHP approach. At the same time, the imaginary part Im[λj ] = 1

used in this example ensures nonlinear properties.

0.0 0.5 1.0 1.5 2.0
t

3

2

1

0

1

2

3

q(
t)

Re q(t)
Im q(t)

3 2 1 0 1 2 3
Re 

2.0
1.5
1.0
0.5
0.0
0.5
1.0
1.5
2.0

Im
 

0 1 2 3 4

Figure 2.6: (left) The genus-4 solution in the time domain with the phases {π, π
6 ,

3π
2 , 2π

3 , 7π
6 }

(t and q(t) are in dimensionless units) and (right) the corresponding main spectrum (cited from
[J1]).

The other configurations of the main spectrum were used to demonstrate the fea-

sibility and flexibility of the method. Among them was the genus-4 solution with the

imaginary part of the main spectrum Im[λj ] = 5. A larger imaginary part provides more

nonlinearity and a stronger dependence of nonlinear harmonics on each other. Also, to

estimate the method’s performance with higher genus solutions, genus-8 was exploited.

The three configurations of the main spectrum for which a neural network was trained

independently are provided in Table 2.2.

The signals q(t, z0) were generated with the Riemann-Hilbert problem approach for

all main spectra under the study with random phases from 0 to 2π distributed uniformly.

The details of the methods are provided in the section 2.2.2. The pairs of the main

spectrum points {λj , λ
∗
j}Nj=0 generate the contour Γ; see Fig. 2.6. The phases {ϕj}Nj=0
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Genus Main spectrum
4-genus -2+i, -1+i, i, 1+i, 2+i
4-genus -2+5i, -1+5i, 5i, 1+5i, 2+5i
8-genus -4+i, -3+i, -2+i, -1+i, i, 1+i, 2+i, 3+i, 4+i

Table 2.2: The main spectrum configurations for which neural networks were trained. They
were genus-4 solutions such that Im[λj ] = 1 and Im[λj ] = 5, and genus-8 solution such that
Im[λj ] = 1.

and predefined temporal and special frequencies {Cf
j }Nj=1, {Cg

j }Nj=1 produce the jump

matrices according to eq. 2.26. These contour and jump matrices are the input data

for the numerical routine to solve the RHP [92, 95]. The output is a discretized function

{q(tk, z0)}Kk=1, a finite-genus solution to the NLSE, calculated at given values {tk}Kk=1

that are usually equidistant (K is the number of samples) and some fixed z0. Finally,

the phases {ϕj}Nj=0 and corresponding to them solution {q(tk, z0)}Kk=1 constitute the

train data for supervised learning.

The considered main spectra provided non-periodic signals interpreted as FGS-GT.

A neural network-based solver was implemented to retrieve the phases of such signals.

The NN took the discrete values of the signal {q(tk, z0)}Kk=1 and returned its phases.

As the processing window at the input of the neural network, the interval [0, Tmax] was

chosen where Tmax is the maximum period among all nonlinear modes. Each nonlinear

harmonic is guaranteed to contain at least one period in this interval, along with all the

information needed to retrieve the phases. To provide a high level of discretization and

some universality of the approach, each finite-genus solution was sampled with 128

values per interval.

Finally, finite-genus solutions are periodic in the phases. Therefore, the data labels

used for neural network training must also be periodic. A straightforward approach of

taking just phases in the interval [0, 2π] does not meet this condition. The finite-genus

solution with ϕj = 0 and ϕj = 2π is the same signal, while labels 0 and 2π are located

at distinct edges of the interval. To avoid this problem, the following labels were used:

each phase ϕj is replaced with two numbers Re[eiϕj ] and Im[eiϕj ]. In other words,

the real-valued phases are transformed to the points on the unit circle with coordinates(︁
Re[eiϕj ], Im[eiϕj ]

)︁
, that, are periodic in phase.

2.3.2 The neural network model

The direct problem for the finite-genus solutions of a generic type has been implemented

with a convolutional neural network. A similar model was used for the conventional NFT

(when signals decay exponentially fast with t → ±∞) and named as NFT-Net neural

network [86]. Such architecture demonstrated a high tolerance for the noise of input
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signals, making it a promising tool for signal processing in fibre-optic communications.

The NFT-Net is an example of an encoder-decoder model: the first part of NN, the

encoder, transforms the input signal into intermediate states while the second part, the

decoder, generates the output. The convolutional layers make the NN noise-resistant.

Such neural networks also have other applications, for example, audio signal processing

[114].

In the current study, the NFT-Net was an initial model in the Bayesian optimizer,

which adjusted the model’s hyperparameters. The Bayesian optimization usually per-

forms better than the straightforward approaches such as grid or random search [115]

and is used to adjust neural network models. This is because the algorithm exploits the

result of the previous optimization steps to select an area of search on the next one.

For the model applied in this research, the optimizer operated with the following param-

eters: a number and a type of layers, convolutional or fully connected, and an activation

function after each. The procedure selected the best number of filters for convolutional

layers as well as their size, stride, padding, and dilation. At the same time, the number

of neurons was optimized for fully connected layers.

The search for the best hyperparameters with the Bayesian optimizer starts from

the declaration of the range for adjustable parameters and the objective function, that

is, loss function or another metric, to evaluate model performance. The objective func-

tion is a function of optimized parameters (or NN hyperparameters in the particular task

considered here); this function is computationally difficult to estimate. The Bayesian

optimization is an iterative process. In the first step, based on prior knowledge about

the objective function, for example, its continuity, a surrogate model is built that is just

an approximation of the objective function. Given the subsequent evaluations of the ob-

jective function, the posterior, the surrogate model is updated according to the Bayesian

rule (this makes the method “Bayesian”). A goal at each iteration is to find such values

of parameters that provide the optimal value, maximum or minimum, of the objective

function with the smallest possible number of iterations. For this, a special auxiliary ac-

quisition function based on the surrogate model is constructed. This function can be the

probability of improvement or expected improvement of the surrogate model. Therefore,

parameters providing the maximum of the acquisition function are the best candidates

for the next estimation of the objective function. The choice of the acquisition function

and its settings is a question of “exploration-exploitation” balance, the optimization pro-

cess either exploiting a new area that it is not aware of or refining the position of the

estimated optimum. Therefore, step by step, looking for the best candidate with the

acquisition function, evaluating the objective one, and improving the surrogate model,

the Bayesian optimizer provided the optimal parameters of the model.

The resulting model architecture and hyperparameters received after optimization

with genus-4 and Im[λj ] = 1 signals at the input of the NN are presented in Fig. 2.7,
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(while padding p = 0 and dilation d = 1 for all convolutional layers). Independent

optimization was performed for other signals (genus-4 with Im[λj ] = 5 and genus-8),

with the initial guess being the optimized model for the genus-4 with Im[λj ] = 1. No

improvement was observed while optimizing the two last models. Therefore, the initial

architecture was applied for all types of finite-genus solutions under the study.

Figure 2.7: The model’s architecture and hyperparameters after applying the Bayesian opti-
mization (cited from [J1]).

As mentioned before, the generated model has an encode-decoder architecture.

The convolutional part of the NN produces a set of intermediate states from a finite-

genus solution sampled in the time domain. These states, then, are transformed into

the phases with the fully connected layer. The role of Bayesian optimization is to provide

the NN hyperparameters with the maximum possible performance on the particular task

of phase extraction. The Bayesian optimizer was run to select an NN with a limited

number of trainable parameters (trainable weights of NN), delivering the best model

among ones with restricted complexity.

To train the neural networks (three different main spectra), 4× 105 signals and cor-

responding labels were generated for each scenario. The data were split into training,

validation, and test data in proportion 80%, 17.5%, and 2.5% correspondingly. The train-

ing dataset was exploited to adjust the neural network weights, while the validation data

were used at the model optimization stage. Finally, the test data were saved to estimate

the final performance of the neural network with the data that the model didn’t see.

The points on the complex plane with coordinates
(︁
Re[eiϕj ], Im[eiϕj ]

)︁
were used as

labels. The measure of error for the phase of each nonlinear mode was just the distance

between the predicted and true point on the complex plane:

∆j = eiϕ
pred
j − eiϕ

true
j . (2.36)

Therefore, the loss function was just the mean squared error (MSE) across all nonlinear
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modes and all signals in the training dataset:

Loss =
∑︂
j

[︂
(Re[∆j ])

2 + (Im[∆j ])
2
]︂
, (2.37)

where Re[∆j ] and Im[∆j ] are real and imaginary parts of the error, (2.36).

The neural networks were implemented with the TensorFlow 2.0 framework. Each

model was trained with the Adam optimizer, learning rare 10−4. The training was

stopped after 5000 epochs when no improvement was observed. An example of training

and validation loss for the model trained with genus-4 and Im[λj ] = 1 data is depicted

in Fig. 2.8.
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Figure 2.8: Training and validation loss as a function of the number of epochs for the scenario:
genus-4 solutions with Im[λj ] = 1 (cited from [J1]).

2.3.3 Results

To estimate the performance of the method across all considered scenarios, the follow-

ing measure of error was introduced:

ϕerr = |ϕtrue − ϕpred|, (2.38)

that is the absolute value of the difference between true and predicted phases. The

loss function in the neural network models had a different form to provide the required

periodicity in phase (2.37). However, the method was developed to predict the phases

of finite-genus solutions and the absolute value of the error (2.38) was used for that

reason.

The homogeneous distribution of the errors (2.38) was registered across the phases

of all signals. The distribution of individual predictions for all three scenarios (genus-4

Im[λj ] = 1, genus-4 Im[λj ] = 5, and genus-8) is provided in Fig. 2.9. To calculate

the dependence of the mean error, the interval [0, 2π] was divided into 100 subintervals
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for which the error was averaged across the phases in the subinterval and all nonlin-

ear modes. The mean value of error also demonstrated homogeneous distribution in

dependence on the phase and amounted to 1.9× 10−3, 9.7× 10−3 and 1.5× 10−2 for

three considered main spectra correspondingly.
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Figure 2.9: The error distributions of the individual phase predictions and their mean values for
three different configurations of the main spectrum (cited from [J1]).

The result of applying trained neural network models to retrieve the phases of spe-

cific signals is presented in Fig. 2.10. The points with the coordinates (Re[eiϕj ], Im[eiϕj ])

for predicted and true phases are plotted. The figure provides results for all three

scenarios: genus-4 solutions Im[λj ] = 1 with the phases {0, 5π3 , 19π12 , 7π6 , π}, genus-4

Im[λj ] = 5 with {7π
6 , 2π3 , π

12 ,
3π
2 , π2 } and, finally, genus-8 with {7π

12 ,
7π
4 , 3π2 , π, 4π3 , 11π6 , π

12 ,
5π
3 , 13π12 }.
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Figure 2.10: The values of the true (green) and predicted (red) phases (cited from [J1]).

The prediction performance was analyzed for the phase corresponding to each non-

linear harmonic. The phase errors were calculated independently and averaged across

all signals, Fig. 2.11. In the figure, the error value corresponding to each nonlinear mode

is placed above the gap in the complex plane formed by the main spectrum points.

The error behavior in Fig. 2.11 demonstrates the patterns that require explanation.

First, the models provided higher accuracy of prediction for the scenario genus-4 and

Im[λj ] = 1 (blue line in the left figure) in comparison with genus-4 and Im[λj ] = 5 (red

line). This is because the higher imaginary part of the main spectrum corresponds to a

stronger nonlinear interplay between nonlinear modes. Moreover, solving the Riemann-
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Figure 2.11: The distribution of the phase prediction error for different nonlinear harmonics.
Three scenarios are considered: two genus-4 solutions (left) and genus-8 (right). Plots are
attributed with the gaps provided by the main spectrum and corresponding to each phase. (Cited
from [J1].)

Hilbert problem required numerical integration over gaps formed by the main spectrum

points and their complex-conjugated counterparts. In the case of Im[λj ] = 5, the gaps

are 5 times longer, and the same discretization level provides low performance. Second,

a stable pattern is observed in all scenarios: the neural network models demonstrate

a higher prediction error for the phases corresponding to the central gaps. Such a

behavior can be explained by the influence of nonlinear modes on each other: the

harmonics corresponding to the central gaps experience nonlinear impacts from both

sides’ modes compared to the edge ones.

2.3.4 Accuracy analysis

A few factors determine the accuracy of the inverse problem and the direct problem

algorithms in the developed NFT for finite-genus solutions.

Inverse problem. Accuracy of the inverse problem is associated with two stages:

(i) the calculation of the jump matrix Ĵ(t, z, λ) (2.26) for a given main spectrum and

(ii) solving the Riemann-Hilbert problem for given contour Γ and Ĵ(t, z, λ) that involves

numerical integration over that Γ. In the first stage, the calculation of the temporal and

spatial frequencies {Cf
j }Nj=1 and {Cg

j }Nj=1 is required. This step is associated with the

numerical solving of the linear equation systems (2.21) and (2.22). It was observed that

matrix K (2.20) is ill-conditioned when the genus of a solution reaches 15 or more [96].

This problem also restricts the maximum genus achievable with the RHP method. The

second stage is integration over the contour Γ to solve the Riemann-Hilbert problem

and calculate Ψ(t, z, λ) (2.17) [104]. It was implemented with RHPackage software
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[95, 110]. On each arc connecting the complex conjugated points of the main spectrum,

the integral is estimated at n points. Therefore, n determines the accuracy of solving

the Riemann-Hilbert problem and calculating Ψ(t, z, λ).

Direct problem. The data to train the neural network to solve the direct problem

were generated with the inverse problem. Consequently, the accuracy of signals in

the dataset is defined by the factors described above. One more aspect is the size

of that dataset. The value 4 × 105 was estimated experimentally. At smaller values,

performance degraded, while the increase in the dataset’s size did not improve.

Obviously, the accuracy of the proposed NN-based method for the direct problem

can be increased by calculating the input signals both for training and predictions with

higher precision. At the same time, to extract more information from these precise sig-

nals, a more complex NN model might be required, and a bigger dataset to train it.

However, in this study, the error of the phase predictions, about 10−3 − 10−2 rad, was

accepted (see Fig. 2.9). In the following chapter, this method is applied at the receiver

of a fibre-optic communication system. The information signals experience a lot of dis-

tortions before they reach the receiver; they are the noise of amplification, deviation of

the channel model from the exact NLSE, eq. (1.1), interchannel interference, and other

effects. Therefore, I need to care only that the NN-based direct problem solver is not

the main contributor to the final error of the retrieved phases. Based on the standard

phase modulation formats, such as 16-PSK, 32-PSK, and 64-PSK, a typical final error

of the received phases can be estimated. For example, the order of magnitude of phase

error in the 32-PSK system is 2π
32×2 ≈ 0.1 rad, where the extra factor 2 in the denomi-

nator is because the maximum possible error is the distance from the center of one of

32 intervals to its edge. This is a rough order-of-magnitude estimate because does not

consider the actual error distribution of the received phases. However, it is enough to

see that the NN-based solver has an accuracy of one or two orders of magnitude higher

and, therefore, can be accepted for this application.

2.4 Complexity reduction

2.4.1 Neural network complexity reduction with weight clustering

Artificial neural networks can approximate any nonlinear transformation and have found

their applications to many practical problems. However, implementation with real hard-

ware systems requires simplification of the neural networks and reducing computational

costs. Popular complexity reduction methods include weight clustering [116, 117], prun-

ing [118, 119, 120], and quantization [121, 122]. In this section, the performance of the

neural network models solving the direct problem for finite-genus solutions described

above is estimated for different degrees of complexity reduction with the weight clus-
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tering technique. Application of this method to a convolutional neural network demon-

strated remarkable effectiveness with examples such as VGG-16 and ResNet, which

showed prediction performance comparable with a baseline model while compressed

up to ten times [117].

The weight clustering technique8 consists of sharing the weight values of a model,

effectively reducing the number of multiplications and memory demand for weight stor-

age [116, 123]. Instead of a continuous weight distribution, the procedure selects only

a few values and assigns indexes to them. An initialized centroid contains the indexed

values of weights, providing operation only with the indexes instead of the weights. The

principle of the technique is presented schematically in Fig. 2.12. An initial matrix con-

tains a variety of weight values received from a continuous distribution after training.

To compress these weights are shared between clusters, four in my example, and only

one value, centroid, is chosen to represent each cluster. The centroids can be selected

by the K-means clustering method, for example. The centroids of all clusters are in-

dexed and saved. Having such a correspondence between indexes and centroids, the

matrix of weights can be represented as a matrix of indexes. Therefore, in the example

in Fig. 2.12, instead of 16 floats, only 16 integers and 4 floats are used to represent

weights. The memory saving is bigger for larger models and smaller numbers of clus-

ters.

0.12 0.68 0.23 0.59

0.64 0.56 0.77 0.17

0.41 0.21 0.51 0.74

0.08 0.71 0.32 0.34

0 0.15

1 0.33

2 0.58

3 0.73 0 3 1 2

2 2 3 0

1 0 2 3

0 3 1 1

Matrix of weights Matrix of indexes

Centroids

Weight clustering

Figure 2.12: Memory saving with the weight clustering technique: instead of a continuous
weight distribution, they are shared between a few clusters, and one value, centroid, is used to
represent the whole cluster. The centroids are indexed, allowing keeping in memory only the
integer values of indexes.

At the same time, the weight clustering technique allows for an effective reduction

in the number of multiplications. Let’s consider the action of a feed-forward layer imple-

mented as the product of the input vector to the weight matrix. The weights with the

same centroid that are from the same cluster can be put out of brackets as a common

multiplier; see Fig. 2.13, where such weights are marked with the same color. In this

toy example, with 4 elements in the input layer, 16 weights, and 3 clusters, the initial 16

multiplications in the uncompressed model turn to 10 after applying the technique. A
8or weight-sharing compression.
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significant reduction in the number of multiplications can be achieved for real models.

The degree of compression depends on the input vector size, the number of clusters,

and the weight matrix.
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=
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(𝑖1+𝑖2 + 𝑖4)𝑐3 + 𝑖3𝑐2

𝑖1𝑐2 + (𝑖2 + 𝑖4)𝑐1 + 𝑖3𝑐3
(𝑖1+𝑖3)𝑐1 + (𝑖2 + 𝑖4)𝑐2

Weight
clustering

Figure 2.13: Mechanism of the weight clustering techniques: the weights with shared values
are put out of brackets in matrix multiplication.

Despite the fact that the illustrations above are provided for a simple feed-forward

layer, the same approach can be applied to a convolution layer. In this case, the simplifi-

cation is provided by sharing the values between the kernels’ elements of different filters

on each layer [117]. Implementation of the weight clustering technique includes initial

training of the model with continuous weight distribution, the definition of the number of

clusters and initialized centroids, and finally, fine-tuning the model with new clustered

weights to achieve maximum performance.

The weight clustering approach, if applied to a 1D convolutional layer, provides the

following computational complexity in terms of the number of multiplications:

CCNN =

(︃
nin + 2p− d(nk − 1)− 1

s
+ 1

)︃
× nf × ncl. (2.39)

Here nin and nk are the size of an input vector and kernel, nf and ncl are the number of

filters and clusters. The parameters of a convolutional layer, such as padding, dilation,

and stride, are denoted with p, d, and s, respectively. The expression in the brackets in

(2.39) corresponds to the number of steps each filter makes, while ncl is the number of

multiplication on each step. More details are given in [123, 124].

2.4.2 Complexity reduction implementation and results

To implement the weight clustering technique and estimate the performance of the com-

pressed model, the neural network from the previous section was chosen, Fig. 2.7.

Among three different finite-genus solutions considered before, genus-4 Im[λj ] = 1 sig-

nals were used to operate with (the first line in Table 2.2). Initially, the baseline model

was trained over 5000 epochs with standard continuous distributions of the weights. Af-

ter that stage, the weight clustering technique was applied with the number of clusters

varying from 2 to 32. Finally, the fine-tuning was performed with another 3000 epochs.

The training and validation loss from the number of epochs for training the baseline

model and fine-tuning training with four clusters is depicted in Fig. 2.14. The weight

clustering procedure was implemented using the TensorFlow 2.0 framework. The op-
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Figure 2.14: Training and validation loss before (green shading) and after (red shading) weight-
sharing compression with four clusters (cited form [CP1]).

tion kmeans plus plus was chosen for the centroid initialization. The neural network

was trained with a learning rate 10−4 for the baseline model and 10−6 at the fine-tuning

stage, all with the Adam optimizer.

The continuous weight distributions related to different layers of the original model

after its training are plotted in Fig. 2.15. The figure also depicts the weights after ap-

plying the weight-sharing compression with four clusters and consecutive fine-tuning.

These weights were received in the training shown in Fig. 2.14. All layers demonstrated

four different weight values, including the “Conv. 3” layer, for which the fourth cluster is

unseen because it is too small.
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Figure 2.15: Weights for the baseline model with continuous distribution and after applying the
weights clustering technique (cited from [CP1]).

The performance of the compressed model in dependence on the number of clus-

ters is depicted in Fig. 2.16. The model’s weights corresponding to the lowest value of

the loss function (2.37) estimated during the training on the validation data were saved.

For these weights, the value of the loss function was estimated using test data. The
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Figure 2.16: Loss function estimated on test data for the different numbers of clusters and loss
of the baseline model (cited from [CP1]).

performance dependence demonstrates the expected trend: the model’s effectiveness

grows with the number of clusters and approaches that of the baseline model. This

is because more clusters allow a better approximation of the original model’s weight

distribution.

The complexity of the clustered model calculated in terms of the number of multipli-

cations in dependence on the number of clusters is provided in Fig. 2.17. It is calculated

with (2.39) and related to the complexity of the uncompressed model. With the number

of clusters 8 and less, the model provides compression degree 99% and more.
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Figure 2.17: The ratio of the clustered model Cclustered and baseline model Cbaseline complexity
in terms of the number of multiplications (cited from [CP1]).
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2.5 Chapter conclusion

Existing analytical approaches to solve the direct problem of the NFT for finite-genus

solutions can process only periodic signals defined over the entire interval Tcom (Defi-

nition 3). However, solutions for which Tcom can be introduced substitute only a small

subset among all finite-genus solutions. It happens because an arbitrary main spec-

trum does not guarantee that the periods of nonlinear harmonics are commensurable

(see Definition 2). Generally, the periods may be non-commensurable, or their common

period Tcom may be too large to be processed effectively with existing algorithms.

The method based on a neural network was developed to avoid these limitations.

The key idea is that if a signal q(t, z0) is defined on the interval [0, Tmax], where Tmax

is the maximum period among all nonlinear modes, then, the signal contains all neces-

sary information to retrieve the scattering data. The signals meeting this condition were

coined finite-genus solutions of a generic type (Definition 4). The method is based on a

convolutional neural network trained to solve the direct problem to the NFT for FGS-GT.

The Riemann-Hilbert problem parametrization was chosen; consequently, the scatter-

ing data comprised the main spectrum and phases 2.2.2. Three different configurations

of the main spectrum were used to demonstrate the method’s feasibility and flexibility.

They were genus-4 Im[λj ] = 1, genus-4 Im[λj ] = 5, and genus-8 Im[λj ] = 1. In all

scenarios, the error of the phase prediction was 10−3 − 10−2 rad, which, however, can

be decreased with more precise input signals, a bigger dataset, and a more complex

NN model. Therefore, the approach was tested with the finite-genus solutions, demon-

strating moderate nonlinearity, stronger nonlinearity, and a higher genus regime. While

the main spectrum was fixed, the neural network model predicted the phases of signals.

A detailed description of the method and estimations of its performance are given in this

chapter. Also, it was published in [J1] and presented at conferences [CP3], [CP4]. The

simplification of the neural networks in use was studied independently to gain practical

value of the approach. The weight clustering technique demonstrated a high level of

complexity reduction (up to 99%) with the accuracy of a compressed model comparable

with the baseline neural network. This research was presented at a conference [CP2].

This method implemented for finite-genus solutions of a generic type completes the

NFT for FGS. As mentioned, the inverse problem and the evolution of scattering data

can be realized for any configuration of the main spectrum. In contrast, the direct prob-

lem can be solved with analytical methods for the restricted subset of the periodic finite-

genus solutions (Definition 3). The proposed approach, based on a neural network,

implements the direct problem for FGS-GT. This, in turn, broadens the applicability of

the periodic NFT. For example, a few researches were devoted to data transmission

with finite-genus solutions in fibre-optic communication systems [33, 34]. However, the

incompleteness of the NFT for periodic signals was the cause of the performance un-
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derestimation in such systems. The next chapter provides the implementation of a data

transmission system based on the finite-genus solution of a generic type.

Finally, a few comments about the potential development of the method must be

made. For some tasks, retrieving the main spectrum along with the phases of finite-

genus solutions of a generic type may be of interest. It can find an application in the

analysis of general waveforms. For example, in the signal processing methods applied

in data transmission systems or investigating the dynamics of ocean waves. The pro-

posed approach implemented to get the phases can be expanded for the case of the

main spectrum retrieving. The same idea still works: a signal defined on the max-

imum period among nonlinear modes contains all information about scattering data.

Consequently, using the main spectrum along with the phases as labels of a neural

network makes it possible to train it to predict the complete set of scattering data. Here,

I restricted myself computing the phases only because the main goal of the research

was to develop a fibre-optic communication system based on finite-genus solutions of

a generic type. In such a task, the main spectrum is fixed: it defines signal parameters,

including bandwidth, duration, and power. Information is encoded to the phases only,

and they have to be retrieved. This approach is described in detail in the next chapter.

Another possible research direction is to expand the method to the case of Man-

akov’s system, which is also integrable and for which the periodic NFT can be devel-

oped [125]. Such an update can be applied in fibre-optic communications where data

are transmitted over both polarizations [126]. Some investigations on constructing finite-

genus solutions for Manakov’s system were done before [127, 128]. However, there is

no developed theoretical approach to link the finite-genus solutions to Manakov’s sys-

tem and a solution to the Riemann-Hilbert problem associated with a piece-wise con-

stant jump matrix. Another question is how to express the nonlinear spectrum of such

solutions in terms of the main spectrum and the phases. Therefore, the NFT for the

finite-genus solutions of Manakov’s system remains a subject for further research.
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Finite-genus solutions-based
communications

3.1 Communications with the periodic NFT

Alternatively to the conventional NFT, the schemes of data transmission based on the

periodic NFT (PNFT) were proposed [26, 100]. In the general case, the PNFT assumes

that any smooth enough periodic solution to the NLSE can be approximated with a

finite-genus solution (FGS) [32]. This gives rise to the development of the PNFT with

two described approaches, the algebro-geometric approach 2.2.1 and the Riemann-

Hilbert problem method 2.2.2. The PNFT lacks some shortcomings of the conventional

NFT developed for vanishing boundary signals [71, 72]. First, the PNFT functions with

non-decaying signals, avoiding burst mode operation and high peak-to-average power

ratio (PAPR). Second, signals are periodically continued with cyclic extension prefixes.

Therefore, it is enough to process them in one-period intervals at the receiver (smaller

than for the conventional NFT). That, in turn, reduces computational complexity and

noise-related effects. Finally, the PNFT framework provides full control over the sig-

nal’s parameters, such as duration, bandwidth, and power. However, the cost for this

advantage is the theoretical complexity of the methods to operate with finite-genus solu-

tions and, consequently, a lack of fast numerical routines to solve the direct and inverse

problem of the periodic NFT.

A better understanding of the developed methods, results, and unsolved problems

in the context of communications with the period NFT requires demonstrating how the

scattering data of finite-genus solutions determine the signal’s parameters. They de-

pend on the main spectrum only, whereas the auxiliary spectrum/phases do not con-

tribute. Let’s consider the main spectrum configuration with equidistant along the real

axis points, the structure that is of interest from the communications point of view,

Fig. 3.1. This configuration provides commensurability of nonlinear modes’ frequen-
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Figure 3.1: The main spectrum of a genus-4 solution with equidistantly placed cuts. The value
∆Im[λj ] determines the amplitude of the corresponding nonlinear mode. ∆Re[λ] is the same
for each pair of neighboring cuts; it provides the period of the solution, while W , the range of
values Re[λj ] is the bandwidth of the signal.

cies (Definition 2) in the quasi-linear limit. For the given example with equidistant main

spectrum points, the quasi-linearity conditions are defined by the ratio ∆Im[λ]/∆Re[λ]. The

nonlinear properties of a particular finite-genus solution (its deviation from being simply

the sum of nonlinear modes and, consequently, the impact of nonlinear harmonics on

each other) are dictated by this ratio, not by the imaginary parts of the main spectrum

only. It is also useful to consider ∆Im[λ]/∆Re[λ] to estimate the degree of nonlinearity

because it is possible to increase the imaginary part of the main spectrum with linear

scaling of both ∆Im[λ] and ∆Re[λ], thereby saving the property of the solution. For

more details about the scaling properties of the NLSE, see [27]. In the quasi-linear

limit, the amplitude of each nonlinear mode is defined by its ∆Im[λj ], and the total am-

plitude of the signal depends on all values ∆Im[λj ] simultaneously. In turn, the duration

of the signal, its period, equals T0 = π/∆Re[λ]. Finally, the bandwidth of the signal is

specified by the total range W = N × ∆Re[λ] (N is the genus of solution). However,

as soon as the ratio ∆Im[λ]/∆Re[λ] provides no quasi-linear regime, the imaginary part

of the main spectrum starts to affect the signals’ parameters: the bandwidth broad-

ens nonlinearly, and the frequencies of nonlinear modes are no longer commensurable.

This fact restricts the applicability of the PNFT in data transmission systems because

the previously developed methods are limited to operating with the periodic signals only

(Definition 3), which requires commensurability (a detailed explanation of these pecu-

liarities is provided in the previous chapter). A comprehensive description of how the

signals’ parameters depend on the main spectrum is given in [34].

These properties are demonstrated below with finite-genus solutions of two different

genera. The genus-4 solution with the main spectrum λ = {−2 + ai,−1 + ai, ai, 1 +

ai, 2 + ai}, with a taking values {0.1, 1, 10} is depicted in Fig. 3.2, as well as their lin-

S. A. Bogdanov, PhD Thesis, Aston University 2024 57



Chapter 3. Finite-genus solutions-based communications

ear Fourier spectra. The solutions were calculated using the Riemann-Hilbert problem

approach with the phases ϕ = {5.24, 0.98, 2.24, 4.44, 0.63} for all a. It is seen from

the figure that the solution is almost periodic at a = 0.1 and non-periodic at a = 10.

The deviation from commensurability with the growth of the imaginary part of the main

spectrum is demonstrated by the distribution of the frequencies provided in Table 3.1.

The corresponding linear Fourier spectra demonstrate nonlinear bandwidth increase for

higher values of a. It is also can be observed that in the quasi-linear regime (a = 0.1),

the absolute value of the linear Fourier spectrum |q(ν)| coincides with the main spec-

trum (a similar analysis is provided in [34]). However, that is not the case for higher a.

a = Im[λ] The frequencies of nonlinear modes of the genus-4 solution
0.1 {0, 2.01, 4.02, 6.03, 8.04}
1 {0, 2.65, 5.02, 7.38, 10.03}
10 {0, 7.59, 11.94, 16.29, 23.88}

Table 3.1: The frequencies of the nonlinear harmonics for different imaginary parts of the main
spectrum Im[λ] of the genus-4 solution.

The same is true for another example of the genus-10 solution, Fig. 3.3 with the main

spectrum λ = {−5+ai,−4+ai,−3+ai,−2+ai,−1+ai, ai, 1+ai, 2+ai, 3+ai, 4+

ai, 5 + ai}. The phases used in constructing the solutions were ϕ = {1.43, 5.74, 2.03,
0.76, 3.65, 2.78, 4.12, 1.89, 5.11, 0.23, 2.37}. In the scenarios, the deviation from com-

mensurability starts from smaller values of the imaginary part and can be seen clearly

for a = 1 (see also the corresponding distribution of frequencies in Table 3.2). A higher

number of nonlinear modes in the signal explains this behavior.

a = Im[λ] The frequencies of nonlinear modes of the genus-10 solution
0.1 {0, 2.01, 4.01, 6.02, 8.03, 10.03, 12.03, 14.04, 16.04, 18.05, 20.06}
1 {0, 2.58, 4.84, 7.05, 9.23, 11.39, 13.56, 15.74, 17.95, 20.21, 22.79}
10 {0, 7.26, 10.37, 14.54, 17.80, 21.32, 24.84, 28.10, 32.27, 35.38, 42.64}

Table 3.2: The frequencies of the nonlinear harmonics for different Im[λ] of the genus-10 solu-
tion.

At the same time, the spatial-temporal dynamics of FGS must be considered. When

propagating through an optical fibre, signals can exhibit peaks in their waveforms as-

sociated with energy localization. This can produce undesirable nonlinear effects, such

as soliton formation and others. Moreover, the corresponding spectral broadening can

cause additional interchannel distortions in the data transmission scenario with many

WDM channels. Fig. 3.4 and Fig. 3.5 show genus-4 and genus-10 signals as a function

of both variables t and z. The main spectra and the phases from the examples above
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were used (with the particular value a = 1.0 for both solutions).

Finally, the finite-genus solutions with the configuration of the main spectrum pre-

sented in Fig. 3.1 are convenient for data transmission systems. The parameter ∆Re[λ]

defines the signal’s duration and bandwidth (last together with a genus N ). ∆Im[λj ]

being independent for each gap, for each nonlinear harmonic, is suitable for nonlinear

amplitude modulation. Moreover, each genus-N solution is attributed with N auxiliary

spectrum points or N + 1 phases that can be used for data encoding.
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Figure 3.2: Three genus-4 solutions for different values of Im[λ] = {0.1, 1, 10} and correspond-
ing to them linear Fourier spectra.
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Figure 3.3: Three genus-10 solutions for different values of Im[λ] = {0.1, 1, 10} and corre-
sponding to them linear Fourier spectra.
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Figure 3.4: The spatial-temporal dynamic of the genus-4 solution with the main spectrum and
phases from the example above, with a = 1.0.

Figure 3.5: The genus-10 solution as a function of t and z, calculated using the particular main
spectrum and phases from the example above, with a = 1.0.
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3.2 The previously developed transmission systems based

on the PNFT

A careful consideration of the data transmission system with the algebro-geometric ap-

proach is given in the works [33, 73, 129]. First, a numerical algorithm is provided

to build finite-genus solutions from their main and auxiliary spectra. Based on that

algorithm, the data transmission system was simulated using nonlinear frequency am-

plitude modulation [33]. The author operates with genus-3 solutions modulating inde-

pendently the amplitudes of four nonlinear modes. The spectrum of perturbed plane

waves was used to construct quasi-periodic finite-genus solutions. The resulting main

spectrum was λ = {−30 + g1i,−10 + g2i, 10 + g3i, 30 + g4i}, where parameters

g1, g2, g3, g4 were modulated independently with four levels {5, 7, 9, 11}. Therefore, the

ratio ∆Im[λ]/∆Re[λ] = 0.25−0.55 in this research that corresponds to quasi-linear regime.

The simulation was performed using the part-averaged NLSE as a model with propa-

gation over the standard single-mode fibre (SSFM) and one polarization. The approach

provided data transmission below the forward error correction (FEC) threshold (chosen

as 10−3) with a spectral efficiency (SE) of 0.67 bits/s/Hz at a distance of 1575 km.

Another part of this research was devoted to the experimental demonstration of the

data transmission with genus-2 solutions [73]. A single polarization communication sys-

tem with SSMF and erbium-doped fibre amplification (EDFA) scheme was implemented.

Information was encoded to the main spectrum: symbols had four configurations of the

main spectrum and carried 2 bits each. Every symbol was attributed with a half-period

cyclic prefix while the total duration was 1 ns. Therefore, the system provided a data

rate of 2Gbits/s with a spectral efficiency of 0.45 bits/s/Hz at a transmission distance

of 2000 km. For more details, see the original papers.

The algebro-geometric approach was also applied in the frame of the so-called “re-

duced” method [130, 131]. In this scenario, the finite-genus solutions with a special

symmetry of the main spectrum and with the closed-form expression in terms of the

Jacobi elliptic functions were used. Genus-2 solutions with such a symmetry have three

parameters: two were exploited to build a 2-dimensional constellation and another to

adjust the signal’s duration. Simulation of information symbols propagation over SSMF

with an ideal distributed amplification provided data transmission with a bit error ratio

(BER) below a threshold of 10−3 at a distance up to 1200 km (64-QAM modulation). It

was also demonstrated that applying probabilistic constellation shaping improves the

Q2-factor by 2 dB.

Some research was devoted to the data transmission with perturbed plane waves as

information carriers [72, 132, 133]. For a perturbed plane wave, while a nondegenerate

main spectrum point defines the signal parameters, a degenerate can be split, providing

two-dimensional space for modulation. The data transmission with high modulation
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formats, including 128-QAM, 256-QAM, and even 512-QAM, was implemented in the

work. A high degree of modulation provided significant spectral efficiency among such

systems. SE of 3.27 bits/s/Hz at a distance of 500 km and 2.75 bits/s/Hz at 1000 km

was reported. However, these results were obtained in a system with ideally distributed

amplification, which limits the practical value of the method.

Communication systems based on the periodic NFT were also developed using the

Riemann-Hilbert problem framework. The RHP approach solved the inverse problem at

the transmitter and generated information-carrying signals. In the first works, genus-1

solutions were exploited [105, 131]. Such simple structures have two main spectrum

points, λ0 and λ1: while Im[λ0] and Im[λ1] were used to construct 4-QAM symbols, the

Re[λ0] and Re[λ1] were adjusted to achieve the desired signal duration. The numerical

simulation of the communication system was performed with SSMF and both amplifi-

cation schemes: ideal Raman and EDFA. Cyclic extension prefixes were incorporated

to overcome intersymbol interference due to dispersion broadening, constituting a total

symbol’s duration of 1 ns and a bandwidth of 5GHz. For an EDFA scheme and a propa-

gation distance of 880 km, an optimal power of −5 dBm was reported. It provided a data

transmission rate of 2Gbits/s up to 1200 km. However, it was also demonstrated that

the capacity of such a system can be increased by using higher modulation formats. At

the same time, a significant drawback of the approach is a high oversampling factor: it

was revealed through a numerical analysis that 128 samples per symbol are required.

Moreover, this factor grows with the increase in the power of transmitted signals.

The further development of the approach based on the Riemann-Hilbert problem

made it possible to exploit not only the main spectrum of finite-genus solutions but also

their phases. The data transmission system with a modulation of the phases of finite-

genus solutions was implemented, while the main spectrum provided desirable signals’

parameters, such as duration, bandwidth, and power [34]. The authors performed a

numerical simulation of the data transmission over SSMF with single-polarization and

ideal distributed amplification. As information symbols, they exploited genus-14 so-

lutions containing 15 phases each to encode information (in [134] genus-8 solutions

are considered). The inverse problem solver based on the RHP method was used at

the transmitter to generate a symbol stream for a given scattering data 2.2.2. The di-

rect problem was solved at the receiver with the procedure 2.2.3 and evolution of the

phases compensated with eq. (2.27). However, the developed algorithm for retrieving

the phases operated only with values defined on the shortened interval [0, π] but not the

full [0, 2π], thereby effectively halving the system’s capacity. Nevertheless, 23.7Gb/s

with 8-PSK modulation format at a distance of 1040 km (13 spans of 80 km each) was

reported. The symbol duration was 1.9 ns, including 50% cyclic prefix on each side and

an average bandwidth of 9.8GHz. Analysis of the system performance in dependence

on the power of signals provided an optimal value of −17 dBm. The power-dependent
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error of the periodic NFT algorithms explains such a low value: accuracy decreases

with power growth. The approach also suffers from oversampling: the 128 samples per

symbol were used.

Finally, let’s mention research devoted to applying machine learning in transmission

systems with the periodic NFT. Different models, including support vector machine, k-

nearest neighbors, k-means clustering, and Gaussian mixture model, are exploited to

equalize/detect signals at the receiver side [135]. The authors applied their methods

to the communication system developed in [130]. The best gain in BER was achieved

when the support vector machine and k-nearest neighbors techniques were employed.

They provided data transmission below a hard decision forward error correction (FEC)

threshold of 3.8× 10−3 in a wide range of signal’s powers (with a propagation distance

of 924 km) while the direct detection method failed.

It is worth mentioning how periodic signals reduce the processing window at the

receiver. Consider as an example the data transmission case described above: encod-

ing information to the phases of the genus-14 solutions. The authors reported that an

information symbol had 128 samples. At the same time, each symbol consisted of two

periods because it had half-period cyclic extension prefixes on each side. However, the

cyclic extension serves to avoid intersymbols interference due to chromatic dispersion,

and all information about the signal is contained only in one-period interval. Therefore,

in the example, only 64 samples can be processed. In comparison, for the conventional

NFT (with decaying boundary signals), a full signal must be processed at the receiver

because all parts of the signal after its propagation contain original information. Anyway,

even with this reduction, the methods based on the PNFT still require significant over-

sampling. This makes them non-competitive compared to conventional communication

approaches.

A significant drawback of both data transmission approaches is the operation in the

quasi-linear regime. Whether the algebro-geometric approach or the Riemann-Hilbert

problem method is used, constructing a finite-genus solution starts by choosing the

main spectrum, which defines commensurability and periodicity (see Definition 2 and

Definition 3). However, the only known approach to finding the main spectrum providing

commensurability is to start construction from a linear plane wave, which, if perturbed,

corresponds to the finite-genus solution with a desired period. Application of this tech-

nique is limited: with the growth of the ratio ∆Im[λ]/∆Re[λ] the resulting main spectrum

does not provide a periodic solution. In the context of data transmission systems, the

low value of ∆Im[λ]/∆Re[λ] restricts the power of signals or broadens a bandwidth.

The finite-genus solutions considered in the works described above are for the

NLSE. Therefore, the developed systems use only one polarization for data transmis-

sion, which halves their capacity. To harness dual-polarizations in such systems, the

finite-genus solutions of Manakov’s system must be considered. However, the math-
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ematical theory behind this method is still poorly developed, and the construction of

such solutions is not described. I know a few studies touching on the topic [127, 128].

Consequently, developing dual-polarization data transmission systems with finite-genus

solutions of Manakov’s system is an area for future research.

3.3 Finite-genus solutions of a generic type for fibre-optic

communications

As described in the previous chapter, the method to solve the direct problem for finite-

genus solutions of a generic type based on neural networks (NN) provides opportunities

to implement new communication systems. These systems can avoid the drawbacks

of the data transmission approaches based on the periodic NFT developed early (see

review in the previous section). Therefore, the following principal method was proposed:

(i) information is encoded to the phases of finite-genus solutions of a generic type, while

the main spectrum controls the signal’s parameters; (ii) the Riemann-Hilbert problem

approach solves the inverse problem and calculates signal q(t, z0) for a given scattering

data at the transmitter; (iii) at the receiver a neural network retrieves the phases of finite-

genus solutions and compensates for their evolution if required.

Actually, a genus-N solution contains 3×(N+1) real-valued parameters: 2×(N+1)

from the main spectrum {Re[λj ], Im[λj ]}Nj=0 and N + 1 phases {ϕj}Nj=0
1. However, in

the proposed approach, information is encoded into the phases using a phase-shift key-

ing (PSK) modulation format. The real values of the main spectrum {Re[λj ]}Nj=0 define

the frequencies of nonlinear harmonics and a total signal’s duration and bandwidth. Fi-

nally, {Im[λj ]}Nj=0 determine the amplitudes of nonlinear modes. However, when the

ratio ∆Im[λ]/∆Re[λ] is out of the quasi-linear regime, the imaginary part of the main spec-

trum also affects signal’s duration and bandwidth. It is worth noting that {Im[λj ]}Nj=0 still

can be used for data encoding in addition to the phases: the independent amplitudes

can be modulated while the average value produces a desired power of the signal. But

in such a scenario, the power variety from symbol to symbol increases, and the peak-

to-average power ratio grows. That, in turn, reduces transmission quality. Therefore,

involving amplitudes in modulation is not straightforward and requires investigation of

the properties of such signals. This question is not considered in the current study.

From a practical point of view, the RHP framework has a principal advantage over

the algebro-geometric approach. While the Riemann theta function’s computational

complexity grows exponentially with the genus of a solution (in the AG method), the

RHP demonstrates significantly lower computational demands [105]. Moreover, the

RHP evaluates each signal value q(t) independently at every time t and, therefore,

1everywhere below the RHP framework is used, 2.2.2.

S. A. Bogdanov, PhD Thesis, Aston University 2024 65



Chapter 3. Finite-genus solutions-based communications

can be parallelized. Also, calculating the parameters δ+ and δ− in eq. (2.12) from the

auxiliary spectrum requires additional integration over the Riemann surface, whereas

the phases in the RHP approach are utilized directly from their original form. All these

factors influenced the choice of the RHP method in this study.

It was mentioned before that the monodromy matrix framework is the only exist-

ing method to solve the direct problem for finite-genus solutions. This limits the main

spectrum configurations with which the periodic NFT can operate: the solutions must be

periodic (Definition 3). The neural network-based direct problem solver can process any

finite-genus solution, lifting the periodicity requirement. It, in turn, allows the use of an

arbitrary value of ∆Im[λ]/∆Re[λ] harnessing the nonlinear nature of finite-genus solutions.

Moreover, using a neural network removes the restriction to operate with the phases on

the limited interval [0, π] [34]. Instead, the full range can be processed, doubling the sys-

tem’s capacity. At the same time, neural networks at the receiver can compensate for

some deterministic distortions caused by deviating from the ideal model. For example,

applying the analytic PNFT requires cyclic prefixes to avoid interference between the

neighboring symbols. However, neural networks can retrieve information from the sym-

bols stream without cyclic extension, shortening a symbol’s duration and increasing the

total capacity. This will be demonstrated later in one of the numerical experiments. Also,

NNs reduce the impact of other effects in fibre-optic communication systems, including

periodic signal amplification and attenuation, as well as noise-induced distortions.

The following sections describe the numerical simulations of the different data trans-

mission systems based on the proposed NFT for finite-genus solutions of a generic type

with a convolutional neural network. In the first experiment, the NN-based direct prob-

lem solver was used only to retrieve the phases at the receiver while their evolution was

compensated analytically with eq. (2.27); for details see [CP1]. In the second scenario,

the NN solved the direct problem and compensated for the phases evolution, reducing

the action of other deterministic effects [J2]. This is followed by applying a compression

technique to the neural network to decrease complexity [CP2]. These research pieces

constitute this chapter’s results and are described below.

3.3.1 Data transmission with the CNN-based phase detector

In the first study, the fire-optic communication system based on finite-genus solutions

of a generic type was implemented numerically. These results were also published in

[CP1]. At the transmitter, the phases of finite-genus solutions were exploited to encode

information, while the main spectrum provided control over signals’ duration, power, and

bandwidth. The sequence of symbols was generated with the RHP approach and fed

into the optical fibre with ideally distributed amplification (lossless model). At the re-

ceiver, a convolutional neural network (CNN) calculated the phases, and their evolution
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was compensated analytically with eq. (2.27). In this research, it was demonstrated that

the approach based on the CNN outperforms the analytical method of solving the direct

problem reported in the work [34].

Channel model

The NLSE governs signal propagation over an optical fibre. In the lossless scenario, it

takes the form:

iqz −
β2
2
qtt + γ|q|2q = n(t, z), (3.1)

where q(t, z) is the signal’s envelope in the time domain, t and z are the temporal

and spatial variables correspondingly, β2 and γ are the group velocity dispersion and

nonlinearity parameters of the optical fibre, and n(t, z) is the noise of amplification.

In the proposed system, the genus-4 solutions were data carriers: each information

symbol consisted of the genus-4 solution, defined at some interval T (symbol’s dura-

tion). Such signals have a complex structure that demonstrates intricate dynamics but,

at the same time, can be generated effectively with existing algorithms. Every genus-4

solution contains 5 nonlinear modes providing 5 phases to encode information. The

main spectrum had the following form:

λ = {−2 + ai,−1 + ai, ai, 1 + ai, 2 + ai}, (3.2)

with the parameter a controlling the power of the signal. Meanwhile, the real part of

the main spectrum (fixed in this study) and the imaginary part, parameter a, defined the

symbol’s duration and bandwidth. The value of the ratio ∆Im[λ]/∆Re[λ] provided substan-

tial deviation from quasi-linearity: the corresponding frequencies of nonlinear harmonics

were non-commensurable (see, Table 3.1 for a typical value Im[λ] = 1). The duration

of the symbol T was the longest period among all nonlinear modes. Each symbol was

attributed with extension prefixes to prevent overlapping due to dispersion broadening.

Because the signals were not periodic, the extension prefixes were not cyclic; they were

just a continuation of the solution behind interval [0, T ]. To guarantee the absence of

interference, the total duration of the extended symbol was 5 × T . In other words, the

extended symbol was defined on the interval [−2T, 3T ]. This extension is significantly

larger than required according to the linear signal broadening estimation [136]. There-

fore, the distortions caused by dispersion were excluded from the analysis, although it

reduced the system’s efficiency. Finally, the extended symbols were concatenated into

a single sequence and transmitted over an optical fibre.
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Convolutional neural network-based receiver

The key component of the method was a convolutional neural network at the receiver

exploited to retrieve the phases of information signals [J1]. The input of the CNN was a

propagated symbol with the removed extension prefixes incorporated to avoid overlap-

ping with the neighboring symbols due to the dispersion of a fibre. The neural network

took 128 samples of the signal and returned 5 complex-valued parameters, which are

points on the unit circle. This trick was applied to guarantee the periodicity with respect

to the labels: the solutions are periodic in the phases2. Then, the phases are calculated

trivially for the given points on the unit circle. Finally, the evolution of the phases was

compensated with eq. (2.27).

The details of the neural network architecture are given in the work [J1]. The CNN

consisted of three convolutional layers, one fully connected layer, and an output layer

(see Fig. 3.6). Such a model has an encoder-decoder structure: while the convolu-

tional part generates intermediate states, the feed-forward layer produces the output.

Moreover, convolutional layers provide effective noise filtering (see more details in the

previous chapter). The Bayesian optimization procedure delivered the optimal values of

hyperparameters; they are summarized in Table 3.3 (in addition, stride s = 2, dilation

d = 1, padding p = 0 for all convolutional layers) [115]; see the previous chapter as well.

The optimal values of the hyperparameters were the same for all powers and remained

unchanged in the simulations.

Figure 3.6: The convolutional neural network used at the receiver to retrieve the phases of
information symbols (genus-4 solutions). It consists of three convolutional layers, one fully con-
nected and an output layer. (Cited from [J2].)

Results and discussion

Data transmission with the genus-4 solutions as data carriers was numerically simu-

lated. The RHP solver calculated the information signals at the transmitter, while the

described CNN was used at the receiver. The scheme of the system is depicted in

Fig. 3.7. The propagation path consisted of 15 spans of standard single-mode op-

2It is not possible if the interval [0, 2π] is used. The labels for 0 and 2π are on opposite edges
of the interval while corresponding to the same solution.
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Filters Kernel size Activation
1 conv. 94 3 tanh
2 conv. 112 17 tanh
3 conv. 145 18 sigmoid

Fully-con. 128 neurons sigmoid

Table 3.3: The CNN’s hyperparameters as a result of Bayesian optimization, see Fig. 3.6 (cited
from [CP1]).

tical fibre. Each span was 80 km in length, totaling an overall propagation distance

of 1200 km. The parameters of the SSMF were the following: the group velocity dis-

persion was β2 = −21.7 ps2/km, while the nonlinear factor was γ = 1.3W−1km−1.

Amplification distributed ideally (lossless propagation) was introduced (see eq. (3.1))

with noise added after each span. The power of the noise was estimated as NASE =

αLℏνsKTNF [24] with parameters: α = 0.2 dBm/km being the loss of the optical fi-

bre, L = 80 km the span length, ℏνs energy of photon at the carrier’s frequency νs,

KT = 1.13, and noise figure NF = 4.5 dB.
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Figure 3.7: The principal scheme of the communication system under the study. It consists
of the phase modulation, the RHP signal generation, 15 spans of optical fibre, the CNN-based
phases detection and rotation, and, finally, symbols demapping (cited from [CP1]).

Each phase of a genus-4 solution was modulated with 16-PSK format. Therefore, 5

phases provided 5× 4 bits of information per symbol. The symbols were normalized to

have the duration of the central part of 1 ns and the total duration with extension prefixes

of 5 ns. To estimate the system’s performance, BER was calculated by directly counting

error bits (over 2× 104 symbols). BER values for different signal’s powers are shown in

Fig. 3.8. The successful data transmission below the FEC threshold of 3.8×10−3 and a

7% overhead [137] was demonstrated for two power levels ≈−6.3 dBm and ≈−5 dBm.

This research aimed to demonstrate the data transmission system with the CNN-

based detector at the receiver. The communication systems with finite-genus solutions

were implemented before, but their performance suffers from the restriction imposed

by analytical solving of the direct problem, which is the periodicity of the signals. The

method described here relieves these limitations and adopts the nonlinear nature of
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Figure 3.8: The dependence of the data transmission quality in terms of BER as a function of
signal power. The corresponding values of the imaginary part of the main spectrum, parameter
a in eq. (3.2), are depicted on the upper x-axis. The FEC threshold is 3.8 × 10−3 (7% over-
head). The inset provides the distribution of the phases at the receiver for the optimal power
≈ −6.3 dBm. (Cited from [CP1].)

finite-genus solutions to construct a reliable and effective fibre-optic communication sys-

tem. That proof-of-concept approach requires further development, which is described

below as a report of another research. Constructing a more realistic communication

system with a non-zero gain/loss profile and optimized data carriers was implemented.

Moreover, the full power of neural networks was harnessed to solve the direct problem

and compensate for the deterministic distortions related to real systems.

3.3.2 Fibre-optic communication system with the CNN-based receiver

This work continued the application of finite-genus solutions to the NLSE in fibre optic

communication systems. Similar to the previous section, information was encoded to

the phases of FGS while the main spectrum served to adjust signals’ parameters. The

RHP solver generated signals q(t, z0) for the given scattering data at the transmitter.

However, there were no extension prefixes: signals’ distortions due to their overlap-

ping were compensated with the same CNN at the receiver that performed the phase

detection. Another distinction in this research (compared to the previous section) was

implementing a more practical amplification scheme with a nonzero gain/loss profile

(EDFA). Finally, the key element of the method was the convolutional neural network-

based receiver. It detected the phases of finite-genus solutions and performed equal-

ization, including the phases’ rotation. Moreover, as mentioned before, it compensated
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for such deterministic effects as periodic attenuation and amplification, symbols over-

lapping due to the action of chromatic dispersion, and the impact of noise. The results

of this research were published in work [J2].

Finite-genus solutions of a generic type as data carriers

In this numerical experiment, the genus-4 solutions were chosen to encode information

into their phases. The main spectrum with the configuration of eq. (3.2) was exploited

where parameter a controlled signals’ power. However, the typical values of a consid-

ered in the research were high enough to affect the signal’s duration and bandwidth. In

other words, for these values of the imaginary part of the main spectrum, finite-genus

solutions have non-commensurable frequencies of nonlinear modes. Also, when a is

high enough, it broadens the linear spectrum (see Fig. 3.2). And finally, the phases

influence the bandwidth: while a signal propagates over an optical fibre, its bandwidth

changes, which relates to the evolution of the phases because the main spectrum is

invariant. But this impact is negligible, as was reported in [34].

The frequencies of nonlinear modes (C1
f , C

2
f ...) were calculated for every configura-

tion of the mains spectrum. Then, information symbols were calculated with the RHP

solver at the interval T . This value was defined as T = 2π/Cmin
f , where Cmin

f =

minj C
j
f is the minimum frequency across all nonlinear harmonics. Therefore, T con-

tains at least one period of each nonlinear mode because it is maximum among them.

In Fig. 3.9, three consecutive symbols at the transmitter are depicted. For the central

one, the periods of nonlinear harmonics, T1, T2, T3, T4, are provided3. It is seen that

the maximum period T1 (defined by the minimum frequency Cmin
f ) contains all other

T2, T3, T4. Thus, it is enough to choose the symbol’s duration as T = T1 because the

full information about each nonlinear mode is encapsulated in its one period. These

symbols were then concatenated into a sequence without extension prefixes, one by

one, as depicted in Fig. 3.9.

Compensation for dispersion-induced overlapping was performed with the CNN re-

ceiver that simultaneously processed three consecutive symbols. There exist remark-

able gaps between the neighboring symbols both in amplitude and phase. The ampli-

tudes’ gaps can be avoided by shifting each symbol in time. In other words, the symbol

is defined not on the interval [0, T ], but on [∆t, T +∆t], where ∆t is different for each

symbol and chosen to have no gaps. The total phase of each symbol can be adjusted

to remove the gaps in phase between the neighbors. However, each operation requires

sacrificing one of the phases used for modulation, obviously reducing the system’s ca-

pacity. Therefore, signals were propagated without any processing to eliminate these

3The genus-4 solution has 5 nonlinear modes, but one has zero frequency, and its period is
undefined.
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Figure 3.9: The genus-4 symbols at the transmitter generated with parameter a = 0.6 and
random phases. The central symbol with duration T = T1 encapsulates nonlinear harmonics
with smaller periods T2, T3, T4. The symbols are concatenated one by one without extension
prefixes. The amplitude and time are provided in dimensionless units. (Cited from [J2].)

gaps. As demonstrated later, the CNN-based receiver could fully compensate for dis-

ruptions related to this effect.

Communication system and a convolutional neural network-based receiver

The communication system under the study contained the following key elements: (i) a

genus-4 symbol’s phase modulator with random data; (ii) the RHP-based generator of

signals q(t, z0) in the time domain with the main spectrum specified by desired power;

(iii) N spans of an optical fibre with EDFA scheme; (iv) the convolutional neural network-

based receiver that retrieves the phases and compensate for their evolution. In some

experiments, optical bandpass filters were applied both at the transmitter and receiver,

as well as downsampling at the CNN input. The scheme of the system is in Fig. 3.10.

Figure 3.10: The scheme of the fibre-optic communication system. The RHP solver generates
information-carrying symbols for the given main spectrum and phases at the transmitter. Then,
signals propagate through N optical fibre spans with erbium-doped amplifiers. The described
CNN processes the signals at the receiver. In some scenarios, optical bandpass filters and
downsampling are applied. (Cited from [J2].)
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The equation governing a signal dynamic in the optical fibre with attenuation is:

iqz −
β2
2
qtt + γ|q|2q = −i

α

2
q + n(t, z), (3.3)

where in contrast to eq. (3.1) the loss term characterized parameter α is introduced.

However, the finite-genus solutions correspond to the NLSE with only dispersion and

nonlinear terms, eq. (3.1). Any deviation from this model breaks integrability, and finite-

genus signals do not hold their properties, including the linear evolution of the phases,

eq. (2.27). However, when signals propagate in the medium with attenuation and ampli-

fication, its dynamic averaged over the path still obeys the lossless model, the so-called

lossless path-averaged model [58, 136].

As specified above, the key component of this method is the convolutional neural

network-based receiver. The CNN solves the direct problem of the periodic NFT; details

are given in J1 and CP1. In the current approach, it also compensates for the phases’

evolution. Their rotation (governed according to eq. (2.27)) is incorporated into the

neural network at the receiver. This is achieved by training the NN with the propagated

signals as input and the phases from the transmitter as labels. The CNN has three

consecutive convolutional layers, one fully connected layer, and an output layer. The

same CNN and hyperparameters were utilized in the previous experiment; see Fig. 3.6

and Table 3.3.

In this study, the neural network at the receiver took three consecutive symbols. This

was implemented to consider dispersion-induced memory. There was no chromatic

dispersion compensation or extension prefixes; symbols were stacked one by one. To

guarantee that it is enough to account for only three symbols, the following estimation

of signal linear broadening can be done [136]:

∆T = 2π|β2|BL. (3.4)

Here β2 = −21.67 ps2/km is the group velocity dispersion, B = 6GHz is a typical

bandwidth, L = 1040 km is a typical propagation distance. The expression above pro-

vides the signal broadening of ∆T = 0.85 ns. At the same time, the symbol duration in

the experiment was fixed and chosen of 1 ns. Obviously, it is enough to consider only

three symbols at the CNN input to account for memory effects. Moreover, it was re-

ported in other research that finite-genus solutions experience even smaller broadening

than those provided with eq. (3.4) due to their nonlinear nature [73].

For each power, an independent neural network was trained. While the CNNs had

the same architecture and hyperparameters for all power levels, the layers’ weights

differed. The training data consisted of 4×105 symbols, while the test dataset contained

2 × 104 symbols (this value was expanded in some experiments to provide at least

100 error symbols). Each symbol was discretized into 128 or 64 samples in different
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simulations; thereby, the input of NN was 3 × 128 or 3 × 64 values. As labels, the

complex-valued points on the unit circle were chosen as specified above. The NN was

implemented with TensorFlow 2.0 framework and trained over 5 000 epochs with the

Adam optimizer and learning rate of 10−4.

Results and discussion

The results of the numerical implementation of the data transmission system (as speci-

fied in Fig. 3.10) are provided below. At the transmitter, the sequence of 1020 symbols

was generated, concatenated into one signal, and transmitted through an optical fibre

over one polarization and one frequency channel. The propagation path consisted of N

spans of SSMF, each 80 km in length. The EDFA scheme was implemented, and noise

was introduced at the end of each span. The first and last 10 symbols were removed

after the signal propagation to avoid boundary effects. Then, the CNN-based receiver

calculated the phases and compensated for any deterministic distortions. Finally, the

system performance was evaluated by directly counting error bits.

The information symbols were generated with the main spectrum specified in eq. (3.2).

The signal’s power was modulated with the parameter a. The duration of each symbol

was normalized to be 1 ns for any value of a4. 32-PSK modulation format was exploited

to encode information into each of the five phases of the genus-4 solution. The param-

eters of SSMF were the following: the group velocity dispersion β2 = −21.67 ps2/km,

the nonlinear factor γ = 1.27 × 10−3mW−1km−1, and the fibre loss coefficient α =

0.2 dB/km. The simulation of the signal propagation was performed utilizing the split-

stet Fourier method (SSFM) with 128 samples per symbol and 128 step per fibre span5.

After each span, the Gaussian white noise was introduced. Its spectral power density

is NASE = (eαLA − 1)hνsNF/2, with LA = 80 km being the span length, hνs the pho-

ton energy (h is Plank’s constant and νs = 193.4THz is the carrier’s frequency), and

NF = 104.5/10 a noise figure (NF/2 in the formula corresponds to the single polariza-

tion) [138].

First, data transmission performance with the chosen genus-4 solutions was esti-

mated in terms of BER as a function of the signal’s launch power after propagation

on 1040 km (13 spans). The results are depicted in Fig. 3.11. The launch power was

varied from −4 dBm to 3 dBm that corresponded to the parameter a changed in the

interval from 0.4 to 2. Two different sampling rates at the receiver (input of the CNN)

were considered: 128GSam/s and 64GSam/s. The first provided 128 samples per

symbol (that had a duration of 1 ns), while the second provided 64 samples. The value

64GSam/s is achievable with modern hardware; thereby, this scenario can be imple-

mented in a real system. Whereas 128GSam/s is out of common availability, this

4The description of the normalization procedure is provided in [26]
5More details about SSFM can be found in [1]
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regime was studied to observe the system’s behavior in an ideal scenario. However,

in both settings, the system demonstrated the data transmission with BER below a hard

decision FEC (HD-FEC) threshold of 3.8 × 10−3 (a 7% overhead) [137]. The optimal

power for the 128 sam/sym scenario (where BER achieved its minimum value) was

−1.72 dBm (a = 0.6). At the same time, −0.57 dBm (a = 0.75) corresponded to the

best performance for 64 sam/sym sampling rate. One can observe the remarkable be-

havior of the 128 sam/sym curve at low powers. It demonstrates smaller values of BER

than expected if compared with the 64 sam/sym dependence. This can be explained by

the ability of a CNN to filter noise [86]: more samples at the CNN input provide better

filtering. In Fig. 3.12, the constellation diagram for the optimal power of 64 sam/sym

scenario is presented.
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Figure 3.11: BER estimated in dependence on the signal’s launch power after propagation
on 1040 km (13 spans). Two different sampling rates at the receiver 128 sam/sym (green) and
64 sam/sym (yellow) are considered. The HD-FEC threshold is 3.8 × 10−3. The upper x-axis
depicts the values of parameter a corresponding to the power on the low x-axis. (Cited from
[J2].)

Second, the performance of both scenarios – 128 sam/sym and 64 sam/sym sam-

pling rates at their optimal powers – was evaluated as a function of distance (the num-

ber of fibre spans); see Fig. 3.13. When 128 samples per symbol were applied, BER

remained below the HD-FEC threshold up to the distance 1840 km provided with 23

spans. The maximum number of spans with data signaling below the threshold for the

64 sam/sym sampling rate was 15, corresponding to 1200 km.

In the following experiment, the effectiveness in terms of spectral efficiency was es-

timated. The scenario with the parameter a = 0.75 corresponding to the optimal power

for 64 sam/sym sampling rate was considered. The linear spectrum of the signal at
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Figure 3.12: The distribution of the phases at the receiver at the optimal power for 64 sam/sym
scenario, a = 0.75 (see Fig. 3.11). The shades of red depict the phases from different nonlinear
harmonics, while the green points are referred values at the transmitter. (Cited from [J2].)
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Figure 3.13: BER for different numbers of optical fibre spans (each 80 km). The 128 sam/sym
scenario is depicted in green, while 64 sam/sym is in yellow. The HD-FEC threshold equal to
3.8× 10−3 (7% overhead) also shown. (Cited from [J2].)

the transmitter consisting of 1020 symbols is plotted; see Fig. 3.14. The overtone-like

patterns on the sides effectively broaden the spectrum (depicted in grey in Fig. 3.14).

99% of energy is contained in the bandwidth of 21GHz. Such value makes the time-

bandwidth product unacceptably large to use in practice. However, the CNN-based

receiver can be trained to process the signals with a truncated spectrum. The narrow-

band filter was applied at the transmitter to cut undesirable side structures in the spec-

trum; see the scheme in Fig. 3.10. The same filter at the receiver cleaned the signal

from noise. Even in the scenario when all overtone-like structures are removed, the

central part of the spectrum (green in Fig. 3.14) still contains the majority of the energy
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(95%). Therefore, the properties of finite-genus solutions are kept.

12 9 6 3 0 3 6 9
, GHz

101

102

103

104

|q
(

)|,
a.

u.
At the transmitter
Full
Cut

12 9 6 3 0 3 6 9
, GHz

101

102

103

104

|q
(

)|,
a.

u.

At the receiver
Noised
Filtered

Figure 3.14: The linear spectra for the signal at the optimal power a = 0.75 at the transmitter
(left) and receiver (right). The grey depicts the spectrum before applying a narrow-band filter,
and the green is after filtering. (Cited from [J2].)

To see how truncation of the spectrum affects the performance, the scenarios with

different numbers of overtones were considered, starting from zero and finishing with

five overtones on each side. A wider spectrum provides less deviation from the original

finite-genus signals. In other words, such systems keep the properties of finite-genus

solutions but suffer from a high time-bandwidth product and are more affected by noise.

For the signals transmitted with different numbers of overtones (different bandwidth),

SE and BER were calculated for the practical case with 64 sam/sym sampling rate and

1040 km (13 spans) propagation distance. The results are presented in Table 3.4. To

estimate SE, the following expression was used:

SE =
5×AIRav

Ts ×B
, (3.5)

where Ts and B are the corresponding symbol duration and bandwidth. The achievable

information rate (AIR) was calculated assuming the received symbols have Gaussian

statistics and using the method described in [139]. AIRav was averaged over all sym-

bols in the received signal and all nonlinear modes in one symbol (5 modes per symbol).

Therefore, 5×AIRav is the average value of the achievable information rate per symbol.

Number of overtones 0 1 2 3 4 5
Bandwidth, GHz 5.83 7.95 9.96 11.96 13.95 15.97

SE, bits/s/Hz 4.28 3.14 2.51 2.09 1.79 1.56
BER, ×10−5 8.64 2.95 2.10 2.39 2.66 2.99

Table 3.4: SE, and BER for signals with different bandwidths (cited from [J2]).

The scenarios with the truncated spectra provided better system performance (low

BER) in comparison with the full bandwidth case with BER = 1.63×10−3 (see Fig. 3.11).
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This is explained by effective noise filtering. When all overtones were removed, and only

the central part of the spectrum was used, the performance degradation related to the

deviation from exact finite-genus solutions was observed. However, this regime still

resulted in data transmission with BER = 8.64 × 10−5 significantly smaller than the

HD-FEC threshold. The achieved spectral efficiency in the system was 4.28 bits/s/Hz.

With the occupied bandwidth of 5.83GHz the capacity of the system was 25Gbits/s.

To increase the system’s throughput, a wider bandwidth needs to be exploited. This

can be implemented by increasing the genus of solutions that carry information or by

occupying bandwidth with many channels of the type considered in this study. It is worth

noting that reducing the symbol’s duration to have a larger bandwidth requires a higher

sampling rate to provide the same oversampling factor and reliable work of the CNN-

based receiver. The optimization and dimensionality reduction of the CNN input are out

of the scope of the current research.

Investigating the communication system described in this section and estimating its

effectiveness are key results of this chapter. To my knowledge, SE reported here is

the maximum achieved in the systems with the periodic NFT. Therefore, it is useful to

compare this approach with others implemented based on the conventional NFT6. The

first example is the data transmission with the b-modulation method and noise-signal

correlation analysis [83]. The transmission parameters are close to the ones character-

izing the system from this chapter: 5GHz bandwidth and 960 km propagation distance,

providing spectral efficiency of 5.51 bits/s/Hz. Second, NFT scheme with nonlinear fre-

quency division multiplexing over both polarizations and the Hermite-Gaussian-based

carriers [69]. SE of 12 bits/s/Hz (over both polarizations) was reported while the band-

width was 4.75GHz and the transmission distance was 800 km. The system presented

in this chapter showed a lower but comparable SE than these referred values. However,

the communication systems based on the periodic NFT and finite-genus solutions still

require further investigation.

3.3.3 Complexity reduction of the CNN receiver

Compression techniques such as weight clustering, pruning, and quantization can sub-

stantially reduce neural network complexity. A detailed description of these methods

can be found in [124, 140, 141, 142]. Application of these techniques specifically to the

convolutional neural networks is given in [123]. The computational complexity of the

CNN-based receiver exploited in the previous sections was studied independently. The

weight clustering compression technique was applied to simplify the neural network. It

was published in the conference paper [CP2].

First, the computational complexity analysis of the CNN at the receiver was per-

6These particular works are mentioned in the introduction.
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formed. The complexity of prediction in terms of the number of real-valued multiplica-

tions was calculated. Training of the NN can be conducted offline, and therefore, the

complexity of this stage is out of interest. In the prediction phase, an initial signal passes

through all layers of the CNN consecutively. For the 1-D convolutional layer (CL), the

complexity is expressed as:

CCNN =

(︃
nin + 2p− d(nk − 1)− 1

s
+ 1

)︃
×nk × nfeat × nfilt, (3.6)

with nin being the input vector’s size, nk size of the kernel, nfilt the number of filters,

and nfeat the number of features. Parameters p, d, and s are padding, dilation, and

stride. A fully connected layer (FCL) has the following number of multiplications:

CFCL = nin × nn, (3.7)

with nin being layer’s input length, and nn the number of neurons in the layer. The total

complexity of CNN is just the sum of independent layers. There are three 1-D convo-

lutional layers, one fully connected and one output layer in the considered architecture.

Therefore, the total computational complexity is:

CCNN = CCL 1 + CCL 2 + CCL 3 + CFCL + Cout. (3.8)

The CNN considered in the previous section7, CL1 (the first convolutional layer)

has the length of the input nin = 3 × 128 or nin = 3 × 64 because three consecutive

symbols are processed. The signal’s real and imaginary parts (in-phase and quadrature

components) provide two features, nfeat = 2. The input for CL2 is determined by the

number of steps a kernel takes over the input on the previous layer (expression in the

brackets in (3.6)), while the number of features equals the number of filters from the

previous layer. The input of CL3 is defined similarly. The stride s = 2 for 3 × 128

input and s = 1 for 3 × 64 input for all convolutional layers as well as p = 0 and

d = 1 in all scenarios. The output of CL3 is flattened before being fed into the FCL,

which processes a one-dimensional array. The output layer consists of ten neurons and

returns the real and imaginary parts of eiϕj for the predicted phase {ϕj , j = 0, .., 4} of a

genus-4 solution. A more detailed analysis of the complexity can be found in [123, 124].

Below are the results of applying the weight clustering technique to the CNN model.

The particular regime was investigated: the propagation at signal’s launch power of

−0.6 dBm and a distance of 1040 km (13 spans). These settings were chosen to have

the BER of the baseline model (that was below 10−4) significantly smaller than the

7As an example, the CNN from section 3.3.2 is considered.
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HD-FEC threshold (3.8 × 10−3 corresponding to a 7% overhead). Therefore, while the

degradation in performance is expected for the clustered models, their BER can still

be below the FEC threshold. As before, three consecutive symbols were on the NN

input (each with 128 samples). BER was calculated after processing the signals with

the CNN of different degrees of clustering to estimate the performance of compressed

models and compare them with the baseline.

The performance of the clustered models in terms of BER as a function of the num-

ber of clusters (degree of compression) is in Fig. 3.15. The models demonstrate the

performance below the HD-FEC starting from six clusters. Then, their efficiency in-

creases while the number of clusters grows to 32. At this value, the clustered model

behaves the same as the original one. This trend is obvious: the more clusters in the

model, the better it approximates the weights distribution of the baseline model. A de-

tailed description of the compression of this model with the weight clustering technique

is given in the previous chapter; see section 2.4.
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Figure 3.15: BER provided with the clustered model in dependence on the degree of compres-
sion (the number of clusters). For comparison, the BER of the baseline model and the HD-FEC
threshold of 3.8× 10−3 are provided. (Cited from [CP2].)

3.4 Chapter conclusion

A numerical investigation of fibre-optic communication systems based on finite-genus

solutions of a generic type was performed in this chapter. This research was motivated

by the lack of methods to use the full potential of finite-genus signals. In the frame

of the periodic NFT, the particular implementations of such transmission systems were

provided in works [33, 34]. However, as mentioned before, these approaches suffer
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from restrictions imposed by monodromy matrix formalism and force the systems to

function in a quasi-linear regime. Moreover, the technique based on the RHP approach

is limited to operating with the shortened interval of the phases from 0 to π. As a result,

the effectiveness of the proposed data transmission systems with FGS as data carriers

was underestimated. The method described in the previous chapter was adopted to

provide a fair analysis of FGS-based communications. It is worth noting that an analyti-

cal approach to solve the direct problem for finite-genus solutions in a general case (not

in a quasi-linear regime) still does not exist. Therefore, a neural network-based solver

was developed to calculate the scattering data of finite-genus solutions.

In the first numerical experiment, the simulation of the fibre-optic communication

system with the phase detection based on the proposed method was performed, 3.3.1

(also [CP1]). The phases of genus-4 solutions were used to encode information, while

the main spectrum provided desirable signal parameters: power, duration, and band-

width. The RHP approach generated information symbols at the transmitter. The data

transmission was performed in the ideal conditions: information symbols were attributed

with excessively long extension prefixes to exclude from consideration the distortions

induced by dispersion, and signals propagated through a lossless fibre to avoid impair-

ments caused by attenuation and amplification. In such settings, the conditions were

close to correspond to the integrability of the NLSE and to keep the properties of finite-

genus solutions. The method of phase recovery with the CNN was exploited at the

receiver, which proved its feasibility and efficiency.

In the following work, the data transmission system was implemented in more real-

istic conditions, 3.3.2 or [J2]. To have higher spectral efficiency, the CNN at the receiver

was harnessed to process symbols without extension prefixes. Moreover, analysis of

the signals with truncated spectra was performed. All these techniques allowed a maxi-

mum spectral efficiency of 4.28 bits/s/Hz comparable with values provided by the con-

ventional NFT. Also, a non-constant gain/loss profile was introduced into the system,

making the analysis more practical. However, operation in such conditions significantly

deviates the model from integrability, breaking the properties of finite-genus solutions.

For these reasons, the CNN at the receiver was exploited to retrieve the phases of FGS

and compensate for any deterministic effects corresponding to non-ideal conditions.

The core of the proposed receiver is a convolutional NN to solve the direct prob-

lem for FGS-GT. The neural network takes a sampled signal q(tk, z0) for a fixed value

of z0 and returns the phases {ϕj}Nj=0 (where N is a genus of the solution). Although

the method provided a valuable result and solved the direct problem of finite-genus so-

lutions, being only an option due to the lack of analytical methods, implementing the

NN-based calculation in hardware is still complicated. This is mainly because of the

high computational complexity of NN models. The complexity reduction with weights

clustering was performed to see how a compressed model can provide the phase re-
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trieving and other receiver operations; see 3.3.3 or [CP2]. Whether CNN just solves

the direct problem or functions as a receiver, it allows significant compression up to

99% (only 1% of multiplications of the original model can be used). Although a high de-

gree of compression is available for the model, its implementation in hardware requires

further exploration.

Despite the progress in developing data transmission systems with finite-genus so-

lutions, there are still open problems that must be solved to construct effective commu-

nications. Here, I mention some of them to sketch the possible directions for further

exploration. First, the approach developed here is based on the FGS to the NLSE.

This means that only a single polarization is used for signal propagation, halving capac-

ity. Therefore, constructing the system based on the finite-genus solution to Manakov’s

system, which provides propagation over both polarizations, is required. However, to

the best of my knowledge, the theory behind these FGS has not been developed. An-

other direction of investigation is building high-genus solutions. They are important for

effectively occupying bandwidth and, finally, for enhancing spectral efficiency. Some

advanced approaches for such calculation were provided in [102]. However, more ef-

forts are needed to make the method practical. Also, the following challenges can be

addressed: implementation of data encoding with the amplitudes of nonlinear modes

together with the phases. This potentially can increase the throughput of the informa-

tion channel. The method proposed in the previous chapter can be easily expanded

to predict the main spectrum (or the imaginary parts of the main spectrum defining the

amplitudes of nonlinear harmonics). Finally, comprehensive optimization of finite-genus

signals can be performed to fully utilize their potential.
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Conclusion

When I started this research, I aimed to provide a fair capacity estimation of fibre-

optic communications based on the periodic NFT for the NLSE. A few works completed

by that time reported underestimated performance. This is mainly because they were

based on the periodic finite-genus solutions and, for this reason, were restricted to op-

erate in a quasi-linear regime where the performance of the communications degrades

due to the noise of optical amplifiers. The lack of theoretical methods to solve the direct

problem for finite-genus solutions in the general case made it impossible to adopt the

full potential of such signals. The direct problem solver was the only missing compo-

nent in building the complete NFT framework for finite-genus solutions to the NLSE,

while the inverse problem and evolution of scattering data were known. However, neu-

ral networks could approximate this transformation and provide a reliable technique to

process finite-genus solutions of a generic type.

Chapter 2 is devoted to that method. It starts from the description of two ways to

parameterize finite-genus solutions: the algebro-geometric approach and the Riemann-

Hilbert problem-based method. The first approach allows for a signal parametrization

with the main and auxiliary spectra, while the RHP method describes it in terms of the

main spectrum and phases. Then, I introduce the finite-genus solutions of a generic

type. To have a signal periodic, the frequencies of its nonlinear harmonics must be

commensurable, or, in other words, some interval Tcom that contains an integer number

of periods for each nonlinear mode must exist. To retrieve the scattering data, the

signal q(t, z0) needs to be defined on whole Tcom. In this case, the direct problem of

NFT can be solved with the monodromy matrix formalism. However, in practice, the

periods of nonlinear modes are arbitrary, and Tcom either does not exist or is too big

to be processed with existing algorithms effectively. These signals are coined as finite-

genus solutions of a generic type. Still, there is no theoretical approach to solve the

direct problem in such a scenario. For this reason, a convolutional neural network was

adopted to retrieve the scattering data of such finite-genus solutions.
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An idea behind the approach is the following: among periods of all nonlinear modes

for the given signal, the maximum one can be chosen as an interval on which q(t, z0)

is defined. It guarantees that each nonlinear harmonic contains at least one period in

this interval. Therefore, all information about the spectral data is contained in the signal.

The finite-genus solutions of a generic type used for NN training were parametrized with

the RHP approach, which means that the scattering data were the main spectrum and

phases. The neural network was trained to predict the phases of a finite-genus signal

having its samples in the time domain q(tn, z0) at the NN input. A convolutional encoder-

decoder model proved itself in other tasks in the frame of NFT and was chosen in this

research. This architecture was then adjusted with the Bayesian optimization technique

to provide better performance in my particular task. The feasibility and flexibility of the

method were demonstrated with different finite-genus solutions: genus-4 Im[λj ] = 1,

genus-4 Im[λj ] = 5, and genus-8 Im[λj ] = 1. The first example provided a moderate

degree of complexity, the interaction of five nonlinear modes, but weak nonlinearity that

does not contribute to the signal dynamic significantly. In the second scenario, genus-4

Im[λj ] = 5, the NN was tested in the regime with high nonlinearity changing the nature

of signal evolution. Finally, the NN demonstrated its ability to process high-genus signals

with genus-8 Im[λj ] = 1. In all scenarios, the error of the phase prediction was 10−3 −
10−2 rad, which, if it is required, can be decreased with more precise input signals, a

bigger dataset, and a more complex NN model. Also, the weight clustering technique

was applied to compress the NN, reducing the volume of memory that is needed to keep

the model and its complexity in terms of the number of multiplications. The high-level

compression of 99% was achieved while keeping the prediction performance compared

to those of the uncompressed model.

Therefore, with this NN-based direct problem solver, the complete NFT framework

for finite-genus solutions was implemented. The inverse problem, that is retrieving a

signal from its spectral data, as well as the evolution of the scattering data, can be

implemented with existing theoretical approaches, but the direct problem has been un-

solved for the finite-genus solution of the generic type. Now, this gap has been filled

with the proposed NN-based approach, making it possible to perform the full set of op-

erations: retrieving the scattering data, their evolution, and calculating the signal q(t, z)

from them. Although the method was developed to recover the phases of signals only,

following the initial goal of exploiting the finite-genus solutions in communications, it can

also be expanded to calculate the main spectrum. Moreover, I am convinced that the

approach can be applied in other areas where nonlinear waves dynamics are studied.

Just because the framework did not exist until recently, the analysis of finite-genus so-

lutions was constrained to specific low-genus scenarios, which allowed for analytical

descriptions. The provided approach releases this limitation.

Chapter 3 describes the application of the NFT for the finite-genus solution of a

S. A. Bogdanov, PhD Thesis, Aston University 2024 84



Chapter 4. Conclusion

generic type and the developed NN-based approach in fibre-optic communications. The

data transmission systems based on finite-genus solutions were proposed before. How-

ever, these techniques relied on theoretical methods to solve the direct problem of the

NFT and, therefore, operated only with a restricted set of periodic signals. This forced

the systems to function in a quasi-linear regime. Moreover, the developed RHP-based

communication method exploited a limited set of phases from 0 to π for modulation,

halving the throughput. As a result, the capacity of the proposed data transmission sys-

tems with the periodic finite-genus solutions as data carriers was underestimated. The

complete NFT framework, with the direct problem implemented through a convolutional

NN, was adopted. This allowed the design of a communication system that is able to

operate out of a quasi-linear regime, use the full set of phases for modulation, and,

finally, provide a fair analysis of finite-genus solutions-based communications.

Initially, an idealized system was implemented just to demonstrate the applicability

of the developed framework. The channel model was kept close to the integrable NLSE.

The genus-4 solutions were used as data carriers. Their main spectrum provided the

desirable signal parameters: power, duration, and bandwidth, while the phases were

modulated with the transmitted information. At the transmitter the RHP approach gener-

ated information symbols. Each symbol had excessively long extension prefixes, dimin-

ishing the distortion associated with symbols overlapping due to dispersion. Moreover,

signals propagated over the fibre with zero gain/loss profile, excluding impairments re-

lated to attenuation and amplification. At the receiver, the neural network retrieved the

phases of propagated symbols with the following evolution compensation by the known

analytic relation. This communication scenario proved the applicability of the proposed

NN-based method for phase retrieving.

In the following analysis, a more practical transmission system was investigated.

The same genus-4 solutions were exploited to encode information into their phases

while the main spectrum controlled the signal parameters. To achieve maximum spec-

tral efficiency, the symbols were transmitted without any extension prefixes. For the

same reason, the signals at the transmitter also undergo truncation of their spectrum.

A non-zero gain and loss were introduced, providing a realistic amplification/attenuation

scenario based on the erbium-doped fibre amplification scheme. Operation in such

settings deviates the channel model from the original integrable NLSE. This, in turn,

compromises the properties of finite-genus solutions, breaking the trivial evolution of

phases. To fix that problem, the neural network-based receiver was trained not only

to retrieve the phases but also to compensate for their evolution and other determin-

istic phenomena related to non-ideal conditions. The considered data transmission

approach demonstrated a high spectral efficiency of 4.28 bits/s/Hz over a transmission

distance of 1040 km that is comparable with the results provided by the conventional

NFT.
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Chapter 4. Conclusion

Despite an effective application of the proposed NFT framework for finite-genus

solutions of a generic type in fibre-optic communications, there are a few open ques-

tions that must be solved to improve the performance of the systems. Double capacity

can be achieved when using both polarizations for data transmission. In this scenario,

Manakov’s system describes signal propagation through an optical fibre. However, to

the best of my knowledge, still, there are no developed approaches to calculate the

finite-genus solutions for Manakov’s system. One more way to design an effective com-

munication system is exploiting high-genus solutions that requires the development of

corresponding numerical routines. The high-genus solutions are important for effective

bandwidth utilization to achieve maximum spectral efficiency.

Finally, the proposed neural network-based NFT for finite-genus solutions, as well

as the communication systems analysis, can be improved through further investigations.

A few possible research directions are stated above. I hope this modest work will serve

as a starting point for new discoveries.
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Birkhäuser Boston, 2012.

[4] A. R. Osborne. Nonlinear Ocean Waves and the Inverse Scattering Transform. In

International Geophysics Series, vol. 97. Elsevier, 2010.

[5] E. P. Gross. Structure of a quantized vortex in boson systems. Il Nuovo Cimento

(1955-1965), 20(3):454–477, 1961.

[6] L. P. Pitaevskii. Vortex lines in an imperfect Bose gas. Sov. Phys. JETP, 13(2):

451–454, 1961.

[7] A. C. Newell. Solitons in mathematics and physics. SIAM, 1985.

[8] A. S. Sharma and B. Buti. Envelope solitons and holes for sine-Gordon and non-

linear Klein-Gordon equations. Journal of Physics A: Mathematical and General,

9(11):1823, 1976.

[9] N. Karjanto. The nonlinear Schröodinger equation: A mathematical model with

its wide-ranging applications. arXiv preprint arXiv:1912.10683, 2019.

[10] B. D. Fried and Y. H. Ichikawa. On the nonlinear Schrödinger equation for Lang-

muir waves. Journal of the Physical Society of Japan, 34(4):1073–1082, 1973.

[11] A. Hasegawa and F. Tappert. Transmission of stationary nonlinear optical pulses

in dispersive dielectric fibers. I. Anomalous dispersion. Applied Physics Letters,

23(3):142–144, 1973.

[12] F. Copie, S. Randoux, and P. Suret. The physics of the one-dimensional nonlinear

Schrödinger equation in fiber optics: Rogue waves, modulation instability and

self-focusing phenomena. Reviews in Physics, 5:100037, 2020.

S. A. Bogdanov, PhD Thesis, Aston University 2024 87



Bibliography

[13] A. Hasegawa and F. Tappert. Transmission of stationary nonlinear optical pulses

in dispersive dielectric fibers. II. Normal dispersion. Applied Physics Letters, 23

(4):171–172, 1973.

[14] S. K. Turitsyn, B. G. Bale, and M. P. Fedoruk. Dispersion-managed solitons in

fibre systems and lasers. Physics reports, 521(4):135–203, 2012.

[15] A. R. Its and V. P. Kotljarov. Explicit formulas for the solutions of a nonlinear

Schrödinger equation. Akademiia Nauk Ukrainskoi RSR Dopovidi Seriia Fiziko

Matematichni ta Tekhnichni Nauki, (11):965–968, 1976.

[16] M. J. Ablowitz and H. Segur. Solitons and the inverse scattering transform. SIAM,

1981.

[17] G. L. Lamb Jr. Elements of soliton theory. New York, 1980.

[18] L. F. Mollenauer and J. P. Gordon. Solitons in optical fibers: fundamentals and

applications. Elsevier, 2006.

[19] J. Shao, X. Liang, and S. Kumar. Comparison of split-step Fourier schemes for

simulating fiber optic communication systems. IEEE Photonics Journal, 6(4):1–

15, 2014.

[20] M. J. Ablowitz, D. J. Kaup, A. C. Newell, and H. Segur. The inverse scattering

transform-Fourier analysis for nonlinear problems. Studies in applied mathemat-

ics, 53(4):249–315, 1974.

[21] V. E. Zakharov and A. B. Shabat. Exact theory of two-dimensional self-focusing

and one-dimensional self-modulation of waves in nonlinear media. Sov. Phys.

JETP, 34(1):62, 1972.

[22] C. S. Gardner, J. M. Greene, M. D. Kruskal, and R. M. Miura. Method for solving

the Korteweg-deVries equation. Physical Review Letters, 19(19):1095, 1967.

[23] P. D. Lax. Integrals of nonlinear equations of evolution and solitary waves. In

Selected Papers Volume I, pages 366–389. Springer, 2005.

[24] R. J. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel. Capacity

limits of optical fiber networks. Journal of Lightwave Technology, 28(4):662–701,

2010.

[25] A. Hasegawa and T. Nyu. Eigenvalue communication. Journal of Lightwave Tech-

nology, 11(3):395–399, 1993.

S. A. Bogdanov, PhD Thesis, Aston University 2024 88



Bibliography

[26] S. K. Turitsyn, J. E. Prilepsky, S. T. Le, S. Wahls, L. L. Frumin, M. Kamalian, and

S. A. Derevyanko. Nonlinear Fourier transform for optical data processing and

transmission: advances and perspectives. Optica, 4(3):307–322, 2017.

[27] M. I. Yousefi and F. R. Kschischang. Information transmission using the nonlinear

Fourier transform, Part I: Mathematical tools. IEEE Transactions on Information

Theory, 60(7):4312–4328, 2014.

[28] V. B. Matveev. 30 years of finite-gap integration theory. Philosophical Transac-

tions of the Royal Society A: Mathematical, Physical and Engineering Sciences,

366(1867):837–875, 2008.

[29] V. Kotlyarov and A. Its. Periodic problem for the nonlinear Schrödinger equation.

arXiv preprint arXiv:1401.4445, 2014.

[30] V. Kotlyarov and D. Shepelsky. Planar unimodular Baker-Akhiezer function for the

nonlinear Schrödinger equation. Annals of Mathematical Sciences and Applica-

tions, 2(2):343–384, 2017.

[31] E. D. Belokolos, A. I. Bobenko, V. Z. Enolskii, A. R. Its, and V. B. Matveev. Algebro-

geometric approach to nonlinear integrable equations. Springer, 1994.

[32] P. G. Grinevich. Approximation theorem for the self-focusing nonlinear

Schrödinger equation and for the periodic curves in R3. Physica D: Nonlinear

Phenomena, 152:20–27, 2001.

[33] J.-W. Goossens, H. Hafermann, and Y. Jaouën. Data transmission based on exact
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