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Introduction: Neovascular age related macular degeneration (nAMD) is a sight threatening, ocular
condition that can be managed with varying doses of anti-vascular endothelial growth factor (anti-VEGF)
drugs and is routinely monitored with optical coherence tomography (OCT) retinal scans. Artificial
intelligence (Al) based technologies also now offer automated analysis of such scans making available
additional information on features within the scanned area.

Purpose: This study aims to use OCT determined information to predict anti-VEGF treatment frequency
and visual prognosis in nAMD, potential influence on treatment regimen and the role Al might play in
managing nAMD in the future.

Methods: This was a retrospective, non-interventional, observational study of patients aged 50 and over
diagnosed with nAMD between May 2016 and March 2020. From electronic medical records, measures
of visual acuity (VA), demographic information and anti-VEGF dosing for the duration of the management
were included. OCT characteristics from the baseline visit and the post loading visits were extracted by
automated segmentation and Al-enabled retinal segmentation. These were analysed using Al driven
technology to predict outcomes.

Results: 327 eyes of 308 individuals were enrolled within the study. It was found that classification
modelling differentiating between eyes that required 3 or >3 injections could predict between the classes
to an area under the receiver operating characteristic curve (AUC) of 0.63 with ganglion cell layer and
drusenoid PED found to be the most informative features. In attempting to sort between eyes that lost or
gained VA over 12 months, classification accuracy of AUC 0.88 was achieved with baseline VA deemed the
most informative feature.

Conclusion: This study evaluated the application of Al based technologies in investigating anti-VEGF dosing
and visual outcomes. The results determined the presence of relationships in predicting injection numbers

and VA and perhaps gave some further insights into the role Al may play in the future nAMD management.
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Preface

Neovascular age related macular degeneration (nAMD) is a sight threatening, ocular condition that can
be managed with anti-vascular endothelial growth factor (anti-VEGF) drugs; a vast amount of research
has been already undertaken and remains ongoing studying the management and outcomes of this

condition.

One method of evaluating nAMD treatment is through the analysis of retinal scans which are undertaken
on a regular basis on those receiving treatment. Such scans can provide global values of retinal changes
or be subdivided to consider specific regions within the retina. Artificial intelligence based technologies
also now offer automated analysis of such scans making available additional information on features

within the scanned area.

Studies evaluating nAMD have previously researched and published findings of the prognostic value of

changes within individual retinal layers, groups of layers and features derived from retinal scanning.

This study aims to develop this previous work by investigating retinal scan determined information that
might: predict anti-VEGF treatment frequency, have a significant bearing on visual prognosis and might
influence decisions on treatment regimens. Additionally, the role advanced algorithms and machine

learning might play in managing nAMD will be considered.

A novel approach within the project will be to investigate a larger number of variables, derived from
retinal scans, than have previously been collectively considered. Potential benefits of this method include
a more detailed analysis of effects of changes within specific retinal regions and the relative influence of

such changes compared to each other.
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1 Introduction

1.1 Neovascular age related macular degeneration
A highly regarded Cochrane review of anti-VEGF use for nAMD by Solomon et al. (2019) states that age
related macular degeneration (AMD) is the most common cause of uncorrectable severe vision loss in

people aged 55 years and older in the developed world with incidence increasing with age.

nAMD usually occurs when abnormal, new blood vessels, often originating from the choroid, breach the
outer layers around the retina causing pathological changes which eventually result in loss of visual
function (Grossniklaus and Green, 2004). The condition accounts for about 10% of all cases of AMD and

approximately 80% of those with severe visual loss caused by AMD.

1.2 Anti-VEGF

The anti-VEGF agents have been shown in studies to block the growth of abnormal vessels helping to
reduce vision loss and, in some cases, improve vision (Solomon et al., 2019). This therapy has been
credited in playing a significant role in halving the incidence of legal blindness attributed to AMD in

Denmark from 2000 to 2010 (RCOPHTH, 2013).

A review of random control trials (RCTs) has also deemed anti-VEGF agents were associated with
significantly better visual acuity outcomes, reporting fewer patients reaching visual acuity equivalent to

legal blindness (Colquitt, 2008).

Both the National Institute for Health and Care Excellence (NICE) and the Royal College of
Ophthalmologists issued guidance recommending ranibizumab as an option for the treatment of nAMD
in 2008 (NICE, 2008, Amoaku et al., 2009), followed by aflibercept in 2013 (NICE, 2013), brolucizumab in
2021 (NICE, 2021) and faricimab in 2022 (NICE, 2022). Since 2022 ranibizumab biosimilar drugs have also
become available and recommended for the treatment of nAMD by National Health Service (NHS) England

(2023).

Treatment of nAMD itself however has economic implications with the cost of ranibizumab required for
one year of treatment of monthly injections estimated at £9134 with additional costs of £3120 for service
provision (Colquitt, 2008) and costs projected as £8498 over two years if following a model where

treatment was stopped and recommenced (Dakin et al., 2014).

Optometrists have been involved in various aspects of service delivery for nAMD from detection and

referral, to assessments in secondary care and delivery of anti-VEGF agents (Harper et al., 2016). As the
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burden of treatment nAMD is expected to continue to grow both financially and in terms of service
provision, options of trying to manage the condition have been discussed including shared cared schemes

involving community based optometrists (Townsend et al., 2015).

1.3 nAMD dosing

Diagnosis of NAMD and decisions on commencement of anti-VEGF therapy, where appropriate treatment
criteria are fulfilled, are undertaken in medical retina consultant led services. If suitable, therapy is
recommended to be initiated within two weeks of referral with a mandated, initial loading dose of anti-
VEGF intravitreal injections; the previously accepted loading phase of monthly injections for three months
(Chandra et al.,, 2022) having been superseded by advice to follow drug summary of product

characteristics (RCOPHTH, 2024) to reflect developments within the field.

Dosing of patients with anti-VEGF agents can then occur at regular monthly, two monthly or three monthly
intervals, can be based solely on clinical and OCT findings on a pro re nata (PRN) schedule or be
administered at set intervals determined by disease activity, with progressive attempts at lengthening
periods between treatments in a method named ‘treat and extend’. The merits of treatment modalities
have been investigated with guidance issued by the Royal College of Ophthalmologists taking a neutral
stance, when issued in 2013, recommending the regimen most appropriate for the patient be adopted by
the clinician (RCOPHTH, 2013) but revised in 2022 to since support a treat and extend regimen (Chandra
et al., 2022).

Several systematic reviews have considered the effect of treatment regimen on structural and functional
outcomes. Li et al. (2020) found dosing at monthly intervals to yield a statistically better level of vision at
one year when compared against PRN treatment, but that the difference was not clinically relevant. There
appeared to be no statistically significant inferiority when monthly dosing was compared against a treat
and extend regimen. There was also a greater mean decrease in retinal thickness found in those treated
monthly compared to the alternative treatment modalities. Rosenberg et al. (2023) compared results of
a treat and extend regimen against PRN and monthly dosing to find similar visual and retinal thickness
outcomes in treat and extend and monthly dosing. A small statistically and clinically significant benefit to
vision was found in the treat and extend regimen over PRN dosing in most of the studies they considered,
where as only one RCT found retinal thickness to be less well maintained in PRN compared to treat and
extend dosing. No significant difference in vision or macular thickness was however found in the review

by Nichani et al. (2023).
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No difference in quality of life indicators was reported between the treatment regimens but few studies

were found to report on such measures (Li et al., 2020).

All reviews reported those treated monthly received the greatest number of injections over a period of
one year, followed by the treat and extend regimen with PRN dosing requiring the fewest treatments to
be administered. Cost implications were logically linked to injection numbers and thus, where reported,
highest in the group medicated monthly, followed by the treat and extend course of therapy. Service
provision however includes drug administration and patient monitoring. Frequent observation is thus an
aspect which impacts PRN models less favourably financially and is a significant, additional budgetary
factor which was estimated at 15% of the total costs in one RCT studying ranibizumab. Despite requiring
the most review visits, PRN treatment was reported by Li et al. (2020) as the most cost effective modality
with a reduced risk of endophthalmitis believed to be proportionally linked to the reduced number of
interventions. In keeping with developing consensus however, the latterly authored review articles
favoured the balance of lower treatment burden and favourable or non-inferior visual outcomes of a treat

and extend regimen.

1.4 Optical coherence tomography

Optical coherence tomography (OCT) is an imaging technology that uses infrared light sources and
detectors to create a two dimensional map of reflection sites within a three dimensional body and can
thus reproduce a representative slice image through an object such as an eye (Fercher et al., 2003). The
human eye lends itself to examination using such technology due to its optical qualities, high
transmittance and the non-invasive, in vivo, high resolution imaging possible of the layer structure of the

retina (Figure 1.1) (Puliafito, 1996).
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Figure 1.1: OCT defined high resolution view of the layered architecture of the retina (Hassenstein and Meyer, 2009). Reproduced
with permission.

Component retinal layers can be differentiated by their varying reflectivity patterns and have shown a
high level of agreement with the histological structure of the retina (Figure 1.2) which allows the

visualisation of pathogenic and morphological changes in retinal disease (Hassenstein and Meyer, 2009).
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Figure 1.2: Relationship between retinal structure and reflectivity pattern on OCT with bands representing interfaces between the
vitreous, inner limiting membrane (ILM), nerve fibre layer (NFL), ganglion cell layer (GCL), inner plexiform layer (IPL), inner nuclear
layer (INL), outer plexiform layer (OPL), outer nuclear layer (ONL), external limiting membrane (ELM), interface of the inner and
outer segments of the photoreceptor layer (IOPRSI), photoreceptor layer (PRL), photoreceptor outer segment-RPE interdigitation
(OPRT), retinal pigment epithelium (RPE), and Bruch’s membrane (BM), choriocapillaris (CC) and choroid. Adapted from
Hassenstein and Meyer (2009). Reproduced with permission.

This availability of such cross-sectional and volumetric information of retinal architecture has led to OCT
being widely adopted in the management of retinal disease (Lim et al., 2012) with OCT also now
recommended on initial assessment of those with suspected nAMD and as the primary method for

ongoing monitoring of those with the disease (NICE, 2018).

1.5 Segmentation
The ability of OCT technology to automatically detect retinal layer boundaries, in a process termed
segmentation, enables the measurement of component retinal thicknesses at various locations within the

scanned region (Keane et al., 2012).

The Spectralis SD-OCT (spectral domain optical coherence tomography) device, produced by Heidelberg
Engineering, Germany, utilises mapping patterns to acquire multiple scans of the central macula. From
the scans, the proprietary image analysis software Heidelberg Eye Explorer (HEYEX) produces measures
of average central foveal thickness, macular volume as well as segmentation of eight distinct retinal layers

to allow interpretation of the thickness of individual, component retinal layers with a high level of
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repeatability and reproducibility of measurements demonstrated in young, healthy individuals (Ctori and

Huntjens, 2015).

Oberwahrenbrock et al. (2015) undertook a literature review and patient study of automated OCT
segmentation data produced by several device manufacturers to find that when averaged over a larger
region rather than single locations, a high level of repeatability was found in the measures for all layers

except the outer plexiform layer using the Heidelberg Spectralis.

1.6  Retinal subfields

A pattern commonly used to grade central retinal thicknesses uses three concentric circles overlaying the
central macula with diameters of 1mm, 3mm and 6mm (Figure 1.3) derived from ratios relating to a third,
one and two disc diameters was first described in the landmark Early Treatment Diabetic Retinopathy
Study (ETDRS) (1991b). This ETDRS grid pattern was further subdivided to form nine standardised sections
within which observations could be made. This model has more recently been described as comprising a

central foveal ring, an inner macular (perifoveal) ring and an outer macular ring (Réhlig et al., 2019).

Figure 1.3: Standard ETDRS grid subfields (1991b). Reproduced with permission.

Alternative square grid patterns have been studied (Réhlig et al., 2019) and maps using concentric circular
patterns considering only the central 3.45mm diameter region of the macula have been used in studies

(Khanifar et al., 2010, Panozzo et al., 2019) and are available as OCT overlays within HEYEX alongside the

26
M. K. Gupta, DOptom Thesis, Aston University, 2024



standard ETDRS grid. A literature search however failed to find any obvious evidence that might confer
superiority of a particular mapping strategy but did find the standard 1mm, 3mm and 6mm zones most
commonly described as those considered in research. Perhaps more relevantly however, it is changes
within the central Imm subfield have conventionally been studied in large scale RCTs investigating the

effect of anti-VEGF in nAMD (Pawloff et al., 2022).

1.7 Biomarkers
Structural changes, seen on OCT, predictive of disease progression have been studied in nAMD with retinal
morphology shown to relate strongly to visual function and efficacy of anti-VEGF therapy (Schmidt-Erfurth

et al., 2015).

Subretinal fluid (SRF), intraretinal fluid (IRF), pigment epithelial detachment (PED) and subretinal hyper
reflective material (SRHM) are changes visible within retinal layers on OCT, commonly cited as being
indicative of nAMD (Jaffe et al., 2013, Schmidt-Erfurth et al., 2015, Phadikar et al., 2017, Borrelli et al.,
2024, Gale et al., 2024).

Refractory cystoid IRF is believed to be a relevant finding on OCT with intraretinal cysts (IRCs) associated
with a higher risk for visual loss (Gianniou et al., 2015, Schmidt-Erfurth et al., 2015) than subretinal fluid
or fluid beneath the retinal pigment epithelium (RPE) (Jaffe et al., 2013). IRCs have also been associated
with poorer levels of improvement in vision and citied as the most relevant imaging marker for visual

function (Schmidt-Erfurth et al., 2015).

PED, when present as an initial indicator of neovascular activity, has been associated with poorer visual
outcomes in PRN dosing regimens, particularly in the presence of secondary IRC formation. Presence of
PED was also found to be the strongest indicator for progressive disease activity and consecutive vision
loss in PRN treatment by Schmidt-Erfurth et al. (2015). SHRM is believed to be constitute various exudative
substances but is generally regarded as negative prognostic indicator (Borrelli et al., 2024) and is

associated with the development of macular scarring and atrophy (Casalino et al., 2018).

A comprehensive literature review of imaging biomarkers in nAMD undertaken by Schmidt-Erfurth and
Waldstein (2016) again associated persistent IRCs, SRHM and PED with poorer visual outcomes, but

conversely found subretinal fluid to have a less detrimental effect on vision and disease progression.

Abnormal levels of retinal thinning or thickening, increasing choroidal neovascular membrane (CNVM)
area and foveal scarring have also been associated with the larger decreases in visual acuity (Jaffe et al.,

2013).
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1.8 Significance of retinal layer thickness and volumes in nAMD
The relevance of retinal thickness in nAMD has been considered in various aspects including the

significance to disease activity, visual outcomes and in a novel attempt at predicting treatment frequency.

An increase in sub-retinal drusen volume and increased RPE thickening where shown as features more
prevalent in those that developed nAMD by Roberts et al. (2017) while nerve fibre layer (NFL), ganglion
cell layer (GCL), inner plexiform layer (IPL) thickness was found to be greater in treatment naive patients

with nAMD, than in control subjects in a separate study by Muftuoglu et al. (2018).

A reduction in thickening of the NFL and ganglion cell layer-inner plexiform layer (GCL-IPL) was found in a
study of those with nAMD treated with anti-VEGF over a period of 12 months by Lee et al. (2020), whereas
over the review period of 6 months when assessing the effect of anti-VEGF, Kim et al. (2019) found a

significant reduction in GCL-IPL thickness but no significant change in NFL thickness.

Research comparing baseline results to those after 12 months of therapy with aflibercept included work
by Asikgarip et al. (2021), which reported statistically significant thickening of the GCL, NFL and IPL at
baseline in their retrospective control study. Significant central macular GCL thickening at baseline was
also reported by Gunay and Esenulku (2022) in their study, but no significant change in the NFL thickness
was found. The group also reported mean central macular thickness (CMT) and sub foveal choroidal

thickness were significantly increased prior to treatment (Gunay and Esenulku, 2022).

The outcomes of a group considering treatment using ranibizumab however found NFL and GCL

thicknesses did not alter significantly over the period of the first year (Zucchiatti et al., 2017).

A study by Shin et al. (2011) assessing prognostic factors relating to visual acuity, in those with nAMD,
determined that preservation of the inner segment/outer segment layer and external limiting membrane,
thinner CMT, and lesser CNVM lesion height before treatment were associated with better final visual
acuity. The study did not however find that CMT, outer nuclear layer thickness or RPE regularity were

significant prognostic factors.

Separately sub RPE volume, sub RPE drusenoid complex thickness and inner segment layer thickness have
been reported as the most statistically significant features in predicting anti-VEFG treatment frequency

over the first 12 months by Pfau et al. (2021).
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1.9 Limitations of OCT in nAMD

It has been shown that measurements of macular thickness and segmentation vary dependant on OCT
manufacturer (Mylonas et al., 2009) and that structures arranged obliquely in the retina are often poorly
visualised in OCT images as detection of features by OCT is related to the angle light reflected from the

area of study (Keane et al., 2012).

Errors in automated measurements are further compounded by nAMD presenting in multiple forms,
where complex alterations in morphology diminish the ability of segmentation algorithms to detect
normal boundaries (Sadda et al., 2006, Keane et al., 2012, Song et al., 2012) with OCT enabling
determination of a cross-sectional outline of a neovascular complex, but being limited in definitively
allowing internal neovascular components to be distinguished from features such as fibrosis,

haemorrhage or dense exudate (Lim et al., 2012).

It has previously been recommended that manual measurement of central macular thickness is
undertaken when two or more line scans are affected by segmentation errors in the central 1mm region
(Patel et al., 2009) but newer algorithms and more modern SD-OCT have been associated with improved

levels of accuracy (Krebs et al., 2009).

Studies assessing relationships between retinal thickness or volumes and changes found in nAMD have
also more often tended to consider the sum of the component retinal layers, thus failing to account for
subtle pathological changes within individual layers and the potential prognostic impact of such
alterations (Schmidt-Erfurth and Waldstein, 2016) with a similar recommendations made by Keane et al.
(2008) that more detailed OCT evaluation may lead to refining the relationship between anatomical

change and visual acuity.

1.10 Artificial intelligence in retinal conditions

Methods based on machine learning (ML) and supervised, deep learning (DL) have been shown to
accurately identify pathological features in retinal disease by recreating the multi-layered neural structure
seen in the visual cortex, in an artificial, convolutional neural network (CNN). When trained using existing
large scale data sets, such as databases of images, CNNs have shown, in task specific recognition, a level
of performance equivalent to ophthalmologists in evaluating retinal images and OCT scans. In other
specific examples, including mapping electrocardiograms to detect arrhythmias and evaluating complete
patient medical records to predict hospital admission, CNN deployment has been shown to exceed human

performance (Schmidt-Erfurth et al., 2018b).
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Management of retinal conditions may draw benefits from such artificial intelligence (Al) based systems
with applications in fields including disease classification and predictive analyses extending beyond solely

image identification (Figure 1.4).

Methadology Application
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Figure 1.4: Applications of Al within management of retinal conditions including detection of retinal properties such as subretinal
hyper reflective material (SHRM), hyperreflective foci (HRF), geographic atrophy (GA), pigment epithelial detachment (PED) and
the ellipsoid zone (EZ) (Schmidt-Erfurth et al., 2018b). Reproduced with permission.

The CNN U-Net has been utilised in a collaboration between Google DeepMind Health and Moorfields Eye
Hospital to develop a validated, device independent, segmentation network that interprets raw OCT scan
data to extract 15 attributes (Table 1.1) including information on anatomical structures, pathological

features and image artefacts (De Fauw et al., 2018).

Vitreous and subhyaloid

Posterior hyaloid

Epiretinal membrane

Neurosensory retina

Intraretinal fluid

Subretinal fluid

Subretinal hyper reflective material
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Retinal pigment epithelium (RPE)

Drusenoid pigment epithelium detachment (PED)

Serous PED

Fibrovascular PED

Choroid and outer layers

Mirror artefact

Clipping artefact

Blink artefact

Table 1.1: Classifications of features extracted from OCT scans (De Fauw et al., 2018)

Al based attempts, using retrospective data, have also been made at predicting anti-VEGF dosing over a
period of one year by using CNN adapted OCT segmentation and feature extraction followed by ML based
probabilistic forecasting, Lasso regression and random forest regression, with the model employing

random forest regression found to yield the most accurate prediction (Pfau et al., 2021).

Most recently in 2024, promising results have been reported from a study using CNN derived automated
guantification of retinal fluid to distinguish between those that required more and less frequent dosing

with anti-VEGF in patients actively undergoing management of nAMD (Mares et al., 2024).

1.11 Alin data analysis

To statistically evaluate data to investigate relationships between multiple variables, a multivariate
analysis may establish the probability of potential correlations while simultaneously taking into account a
number of characteristics. Multivariate analyses of data are assisted by powerful, modern computers
which allow the simultaneous application of multiple, statistical processes and can facilitate

computationally demanding methods (Press, 2005).

Developments in ML are predicted to have a further transformative effect on such analyses through an
augmented ability to yield traditional binary outputs from pre-defined algorithms and additionally learn
rules from data by sifting through vast numbers of variables (Yoo et al., 2012). Such data mining methods,
have in broad terms been described as the analysis of large quantities of data to either find unsuspected
relationships that may be relevant to an effect being studied or that may be predictive of a response being

investigated (Bellazzi and Zupan, 2008).
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Modern data analysis tools, including the open source software Orange, developed at the University of
Ljubljanacan, can perform such functions (Demsar et al., 2013) with notably greater options for data

modelling when considered alongside similar software (Zupan and Demsar, 2008).

Such programmes also enable data visualisation described as ‘the use of computer-supported, interactive,
visual representations of data to amplify cognition’. This approach helps present information in an
accessible and concise format by employing processes like mapping, selection, and interactivity, allowing
the information to be tailored to various relevant aspects of the material or data being studied (Khan and

Khan, 2011).

Benefits to healthcare, from such Al based data analysis systems, are predicted to include improved
diagnostic and prognostic accuracy and a reduction in work load through savings in repetitive, interpretive
activities (Obermeyer and Emanuel, 2016) with a review by Ting et al. (2019) reporting on the notable
performance of DL technologies in detecting diabetic retinopathy (DR) in digital imaging based DR
screening programmes, the clinically acceptable performance of a DL diagnostic system in detecting
referable AMD on digital images and the use of computer programmes in analysing visual field plots in

earlier detection of field loss and progression of loss in glaucoma.

1.12 Topol review and the significance of Al in the education of healthcare professionals and patients

The Topol review published in 2019 set out recommendations on incorporation of digital technologies
within the NHS. The review stated ‘advances in mathematics, computing power, cloud computing and
algorithm design have accelerated our ability to analyse, interpret and make decisions using artificial

intelligence’.

The review considered technological advances in digital medicine including telemedicine, remote triage
and remote monitoring, as well as the widespread adoption of smart phone apps, which were recognised
as the future of healthcare in both managing and empowering patients to be able to access services and
to understand and participate in the management of their conditions. Focus, it was anticipated, would
shift to prevention and earlier, more accurate recognition of diseases through processes including
genomics, where the likelihood of an individual developing a given condition is mapped. The use of Al
based technologies, including automated image analysis, the gathering of patient-generating data and its
interpretation to clinically useful information has also been highlighted as key areas where significant

benefits were envisaged and rapid development was encouraged.
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It was also recommended that patients should be included as partners in the process of digital
transformation, collaborating with healthcare facilities and their workforces which, through a process of
education, it was deemed, would encourage adoption and development of the relevant systems and skills

to be able to take advantage of the benefits these technologies will bring.

A core recommendation in the report was thus provision of continuous professional development within
the emerging fields, including development positions in academia and industry, with additional
recommendations that future undergraduate education for healthcare professionals incorporate topics
including genomics, data analytics and Al, reinforcing the inherent value and changing landscape that this

digital future represents (Topol, 2019).

1.13 Challenges and limitations to Al application in healthcare

The predictive power of machine algorithms have been found to be dependent on the size and quality of
the datasets (Silver et al., 2016) and Al based systems have also shown susceptibility to error by finding
overly favourable correlations; predictors and results are therefore recommended to be carefully
validated. Additionally, while algorithms have shown an advanced ability to predict outcomes,
determinants of causes from data analysis can be more elusive and ML has been shown to remain
confronted with fundamental problems in statistical analyses including the detection of causal inference

in observational data sets (Obermeyer and Emanuel, 2016).

Data quality can also be detrimentally affected by certain groups being overrepresented within datasets
owing to inequalities in access to healthcare and capturing of results (Miotto et al., 2017) and information
can also exist in a vast manner of forms, sometimes termed heterogeneity, with Cios and Moore (2002)

reporting variants existing in the following:

e acquisition methods (images/scans/interviews/measurements)

e recording of data

e reporting of subjective results

e clinician interpretation

e conditions, such as inflammation, that are typically not mathematically described

e variation and non-standardisation in nomenclature defining conditions

Data complexity is further amplified in healthcare by disease heterogeneity with conditions existing in
various subsets and disease processes evolving and advancing over time which models may not take

account of, instead preferring static conditions. A limitation in the volume of data available on a specific
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characteristic or phase of a condition can thus be a constraint of studies within such fields (Miotto et al.,

2017).

The ease with which the language or form in which results generated by Al may be interpreted by the
intended user may also influence the assimilation of the technology (Ting et al., 2019). Visualisation of
data sets with larger volumes and multiple variables is limited by the number of visual dimensions or
vectors available to effectively display such information thus often requiring multiple charts and maps to
display material derived through processes such as self-organising maps (Vesanto, 1999). Improved
interpretability of results from an Al model, to readily enable the end user understand how a prediction
has been derived, has been thought, may facilitate acceptance of findings from such systems and

subsequent implementation into healthcare practice (Miotto et al., 2017).

The deployment of Al in healthcare presents particular challenges, including ethical and legal implications
around data ownership and privacy (Cios and Moore, 2002). There are also potential vulnerabilities to
data breach and cyberattack, concerns over accountability and legal liability of decisions made by Al
systems, the governance responsibility of such devices both in the UK and internationally, and financial
and environmental implications associated with the increasing computation demands (Gajjar, 2023).
Additionally, inherent scepticism and education may pose further challenges in the adoption of Al

technology in healthcare (Ting et al., 2019).

1.14 Conclusion
Thus, while studies have previously reported on, OCT determined, retinal layer changes typically seen in
nAMD treated with anti-VEGF, their evaluation as predictors, particularly using ML driven tools, appears

limited.

The use of ML technology to extrapolate biomarkers in OCT scans, considered relevantin nAMD, and their
use in modelling disease activity has however received a greater level of attention. Biomarkers do not
however appear to have been frequently considered alongside retinal layer segmentation in predicting

nAMD outcomes.

Of the various typically described anti-VEGF dosing regimens in nAMD, given that a PRN schedule is
administered solely based on disease reactivation, this treatment modality perhaps offers the greatest
insights into the activity of various nAMD phenotypes however does not appear to have been frequently

modelled.
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1.15 Rationale
This body of work therefore aims to consider relationships between a greater number of variables

predictive of disease activity, disease progression and markers associated with declining visual acuity than
previously collectively considered. In particular thicknesses of individual retinal layers and disease
biomarkers derived by ML driven technology will be evaluated, with statistical analysis also facilitated by

the use of Al based platforms which seems to be a novel approach in this project.

The study will also attempt to identify relevant OCT determined features that may predict how often
nAMD requires treatment, with a focus on data from treatment naive patients with a view this may
positively impact the future management of nAMD in differentiating cases which are likely to require more

frequent therapy from those in which the condition is inactivated more readily.

1.15.1 Primary outcome measures for the study
To investigate which OCT determined features influence treatment frequency.

To consider which OCT determined changes have the greatest bearing on visual prognosis.

1.15.2 Secondary outcome measures for the study
To establish whether OCT determined features can help differentiate patients that may benefit from a

PRN based treatment regimen versus a pre-determined number of treatments in the management of

nAMD.

To determine the impact advanced algorithms and ML might have in managing nAMD.
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2 Methodology

2.1 Introduction
This chapter aims to present the method used to devise the study, obtain results and perform the

statistical analysis of the investigation undertaken.

2.2 Literature review
A comprehensive literature review was conducted to evaluate the existing knowledge relevant to the field
of study. Strategies were employed to ensure only relevant material was reviewed focusing on studies

regarded as having produced the highest level of evidence.

Appropriate literary articles were identified on databases including the Cochrane Library, Medline, Web

of Science, Scopus and Google Scholar.

Where available, standardised search terms were used and acronyms avoided or considered carefully
before used as search terms. Boolean operators were employed to narrow the searches, with greater
emphasis placed on search terms appearing in titles or abstracts. Relevant date ranges were applied if

pertinent to the topic being explored.
Search terms and key words included:

e Anti-VEGF

e Neovascular AMD OR neovascular age related macular degeneration
e Epidemiology OR incidence OR prevalence
e Pathophysiology

e Service delivery

e Regimen

e Optical coherence tomography OR OCT

e Retinal layers

e Segmentation

e Retinal thickness

e Spectralis SD-OCT

e Heidelberg Eye Explorer OR HEYEX

e ETDRS

e Mapping patterns
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e Biomarkers

e Subretinal fluid

e Intraretinal fluid

e Pigment epithelial detachment
e Machine learning

e Deep learning

e Artificial intelligence
e Data analysis

e Healthcare

e Data mining

e Prediction

e Model

e Visual acuity

e Qutlier
e Ophthalmic
e Imaging

e NOT diabetic retinopathy
e NOT angiography

e NOT glaucoma
Limits Applied to Search Results:

e Peer-reviewed material only
e Availability in English

e Preference for articles published in journals with higher scientific rankings
Types of Studies Included:

e Randomised controlled trials
e Observational studies

e Case controlled studies

e Cohort studies

o Meta-analyses

e Systematic reviews
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Citation searching within relevant articles, in particular systematic reviews and meta-analyses, was further

used to source appropriate literature.

Furthermore, nationally issued guidance from regulatory bodies including the National Institute for Health
and Care Excellence (NICE) and Royal College of Ophthalmologists and the material considered by such
bodies in developing relevant guidelines was considered in this review along with publications used by

the National Health Service (NHS) in developing national recognised healthcare strategies and legislation.

2.3 Study design
This was a retrospective, non-interventional, observational study using fully anonymised data. Analyses
performed in the study were on data from electronic medical records (EMR) systems and human eye scans

using OCT. No patient identifiable information was transferred to the research team at Aston University.

2.4  Ethical and legal approval

The study conformed to ethical principles underlying the Declaration of Helsinki and good practice
guidelines on the proper conduct of research. Approval for the project was gained from the Health
Research Authority (HRA) and Health and Care Research Wales (HCRW) (Appendix 1). A data sharing
agreement between the study centre, Aston University, and principal research site, Wirral University

Hospital Trust (WUTH), was contained within the HRA research application.

An additional data sharing agreement between the primary research site and secondary research site,
Moorfields Eye Hospital NHS Foundation Trust (MEH), was established separately (Appendix 2) before

proceeding with the study.

2.5  Study risk assessment
The study only considered fully anonymised data for analysis where personal identifiers, both direct and

indirect, that could lead to an individual being identified, had been removed.

Any patients preferring not to have their information shared or used for research were invited to advise
WUTH of their wishes and such cases were highlighted within the Trust EMR. It was accepted that data
from patients who had previously requested that their information not be shared, even for research
purposes in anonymised form, would not be included in the study. The project was deemed to present no
obvious risk to patients as all would had previously received a diagnosis and clinical management plan
from a consultant ophthalmologist responsible for their care and furthermore the study only involved the
retrospective analysis of anonymised data and of known features, seen on OCT scans, that have formerly

been reported in literature. It was however planned that should the study find any previously unknown
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relationships relevant to the management of patients from this dataset, or in the unlikely event the study
uncovered any anomalies in the re-analysis of the data, such outcomes would be reported back to the
participating NHS organisation supplying the data. Such information could perhaps help to guide the
future management of individuals but it was deemed, would not impact on those who have already been

diagnosed and received treatment, being considered by the project.

In considering consent and disclosure of data, in retrospective studies using non-identifiable, anonymised
data of patients who have previously undergone investigations and treatment, the Information
Commissioner's Office (ICO) code of practice was consulted and found to state that consent was generally

not necessary in such cases (ICO, 2021).

Study data was additionally processed using an algorithm developed by MEH and Google DeepMind
Health. The data however was not at any time be accessed by Google or DeepMind Technologies
eliminating the risk it could have been retained by such organisations. The study was thus considered to
present a very low risk for disclosing identifiable data but regardless strict adherence to ICO advice on

managing data protection risk (ICO, 2019) and ICO guidance on anonymisation (ICO, 2012) was followed.

Where pseudonymised data was to be shared between WUTH and Moorfields Eye Hospital NHS Trust,
this was on the basis of the completed data sharing agreement where both parties followed appropriate
technical and organisational measures to comply with the obligations under Article 32 of the General Data

Protection Regulation (GDPR).

2.6  Study population and date range

While ranibizumab had been recommended for the treatment of NnAMD in 2008 (NICE, 2008), aflibercept
was developed subsequently and did not become available until July 2013 (NICE, 2013). Furthermore, the
adoption and integration into clinical use of a novel pharmaceutical agent would likely not have been
instant, thus January 2014 was chosen as the start date of the study, a period from which both drugs

recommended to treat the condition were first available for the full calendar year.

On 16™ March 2020 an official lockdown was announced in response to the COVID-19 pandemic. Data
published on NHS outpatient activity reported over a 50% decrease in attendances by April 2020 but as
shown in charts plotting outpatient appointments and attendances by week (Figure 2.1) , appointment
activity started to show a decline by the start of March 2020 (Secondary Care Analytical Team, 2021).

February 2020 was thus taken as an endpoint for the study to thus allow for the accumulation of results
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from a minimum period of 12 months of patient attendances unaffected by the response to the COVID-

19 pandemic.
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Figure 2.1: Outpatient appointments and attendances by week - April 2019 to March 2021 (Secondary Care Analytical Team,
2021). Reproduced with permission.

Prior to collecting data, a study population estimate was also made based on statistics from the Wirral
Intelligence Service (2019), which reported population data up to 2018, and UK prevalence data from a
meta-analysis referenced by NICE (NICE, 2018), which estimated 1.2% of those aged over 50 as having
nAMD (Owen et al., 2012). Using these figures, it could be estimated that 1646 individuals had the
condition in 2018 on the Wirral. A literature search for UK incidence data found a number of estimates
but using the most conservative of these figures from the same group that supplied the prevalence data,
0.14% of those aged over 50 developed the condition annually and again using Wirral population statistics
between 2014 and 2018, this extrapolated a figure of 756 individuals hypothetically having developed the

condition during this period.

As it was deemed unlikely that all patients with the condition at any one time would be under the care of
a Trust, the estimate derived using prevalence data was likely overestimated. Similarly, the incidence of

the disease was likely underestimated as it used most conservative incidence estimate and did not take
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account of 2019 population figures thus it was expected that the potential number of cases available for

investigation would lie somewhere between 756 and 1646.

As the prognostic abilities of Al based analytical systems are linked to the size of the dataset inputted
(Silver et al., 2016), it was decided for the purposes of this study that all eligible cases would be included
for evaluation. Furthermore on reviewing studies, already consulted in this report, that have previously
described retinal layer changes in nAMD, they were found to have considered population sizes of between
24 and 99 eyes (M = 54.00, SD = 29.41, N = 9) or if taking into account retrospective studies only, the
cohort size was between 52 and 99 eyes (M = 78.25 eyes, SD = 20.79, N = 4) (Shin et al., 2011, Roberts et
al., 2017, Zucchiatti et al., 2017, Muftuoglu et al., 2018, Kim et al., 2019, Lee et al., 2020, Asikgarip et al.,
2021, Pfau et al., 2021, Gunay and Esenulku, 2022). It was thus felt that the approach of using the
maximum available population size would both optimise the development of Al driven learning models
while minimising the risk that any statistical inferences drawn by the study would be negatively affected

by inadequate sample sizes.

2.7 Data collection
The ophthalmology EMR database, Medisoft, at WUTH was electronically searched by Trust staff to
acquire the relevant datasets for adult patients that had attended WUTH for the treatment of any form

of NAMD that met the inclusion and exclusion criteria.

Using the OCT image analysis software, HEYEX, scans acquired using Heidelberg Spectralis SD-OCT of those
identified from the EMR as eligible to be included in the study were reviewed by Trust staff in line with

the exclusion criteria to extract numerical values of component retinal thicknesses.

These data were anonymised, uploaded to a spreadsheet and forwarded to the research student

undertaking the project for further evaluation.

Additionally, Trust staff at WUTH securely transferred exported anonymised copies of the OCT scans to
MEH, in line with an established data sharing agreement, where additional processing by OCTANE API, an
automated machine learning algorithm, generated further quantitative outputs of retinal features. These

data were returned to WUTH and in turn forwarded to the research student for analysis.

2.8  Study analysis
To statistically evaluate the data collected and investigate relationships between the variables being
considered, analyses were conducted using the Al driven platform Orange Data Mining, developed by the

University of Ljubljana and Microsoft Excel (Excel).
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Analyses were carried out by the research student undertaking the project and assisted by the project

supervisor, associate supervisor and colleagues from Aston University.

2.9 Project timetable
The project began in April 2022 once approvals had been granted. With the agreement to an extension of
the project completion, data collection was concluded by August 2023. The data analysis and reporting

then commenced inline with a completion deadline for the project of January 2024.

2.10 Inclusion criteria
The primary inclusion criterion was an adult patient aged 18 years and over that attended WUTH for the

diagnosis and subsequent treatment of any form of NnAMD from January 2014 to February 2019.

For the dataset, the inclusion criteria were set as digital OCT images acquired using Heidelberg Spectralis

OCT and demographic and treatment information recorded on the EMR.

2.11 Exclusion criteria

The principal exclusion criteria initially set were:

e Data of patients who had requested that their records should not be shared and had informed
WUTH of this decision

e Datasets from individuals in whom OCT scanning could not be performed

e Datasets from individuals with incomplete records

e Images that did not permit analysis of the required features

e Datasets from cases where treatment was withdrawn within the first 12 months due to safety

concerns, vision falling below eligibility criteria and patients declining treatment

2.12 Additional exclusion criteria

A criterion of age 50 and over was additionally used to exclude cases within the project as a systematic
review of anti-VEGF use in nAMD (Solomon et al., 2019) reported the condition to be associated with
those aged 55 years and older and UK AMD related services commissioning guidance stating the condition
to typically affect those over the age of 50 years (Chandra et al., 2022). Additionally the pivotal ANCHOR,
MARINA and VIEW trials (Brown et al., 2006, Rosenfeld et al., 2006, Heier et al., 2012), which helped to
establish guidelines for the use of ranibizumab and aflibercept in nAMD, only included patients aged 50

and over within their cohorts with future studies seeming to adopt similar thresholds, thus if attempting
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to draw conclusions between this study and prior work, to ensure that cohorts considered were from

similar age groups, this approach seemed consistent.

A further exclusion criterion of the availability of a minimum of six instances of follow up episode
information within the first year of management was also set to ensure an appropriate number of integers
existed with which to carry out data interpolation or form any statistical inference as detailed in chapter

4.

Instances where additional therapies related to nAMD management, including surgical vitrectomy,
intravitreal tissue plasminogen activator and photodynamic therapy, were employed during the study

period also resulted in exclusion of the given record.

2.13 Security arrangements

A copy of the research data will be securely held at Aston for 6 years from date of study closure in
accordance with Aston University Record Management Policies and Procedures and any staff members
accessing the data will have been appropriately trained to handle and process data in accordance with

Aston University Data Protection Policies and Procedures.
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3 Data collection and rationale

3.1 Introduction
This chapter provides a detailed account of how data was collected and the rationale behind how

variables were to be considered by the study.

3.2 EMR database search and data extraction

An initial EMR database search found that 1322 eyes of 1123 adult patients aged 18 years and over had
been diagnosed and subsequently treated for nAMD from January 2014 to February 2019. During this
period all patients received a loading dose of 3 anti-VEGF injections at 4-week intervals with further

treatment determined on a PRN basis.

On applying inclusion criteria to these cases, as it was discovered that results of VA were not kept
electronically at WUTH until May 2016, this reduced the potential pool of 724 eyes of 638 individuals that

met the inclusion criteria.

Data was thus extracted from the EMR for the period between May 2016 and March 2020 for naive eyes
receiving anti-VEGF for nAMD using auditing tools contained within the software and case review. From
the initial, baseline visit onwards, information on following characteristics were considered for extraction

for each clinic visit:

e Ethnicity

e laterality of studied eye

e Age at given visit

e Sex

e Anti-VEGF drug type administered to studied eye

e Adjunctive interventions to the studied eye

e VAstudied eye

o VA fellow eye

e Number of injections administered at visit to studied eye

e Number of injections administered at visit to fellow eye
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33 OCT

3.3.1 OCT capture method
All OCT images were acquired by either qualified ophthalmic photographers or ophthalmic technicians

trained in the use of the Heidelberg Spectralis in capturing scans.

The device had preset scanning patterns for use in capturing images, centred on the fovea, in macular
diseases such as nAMD, with the two scanning patterns employed at WUTH within the AMD service
comprising 19 or 25 B-scan sections (also termed slices or frames) of the central macula. The variation in
scanning patterns resulted from the device defaulting to 19 frames for macular imaging, thus 25 slice
scans were performed either at clinician request or due to this becoming the preferred option over time

due to manufacturer advice on this extended pattern being more conducive to NAMD management.

An automatic retinal tracking (ART) mode, available within Heidelberg Spectralis, was engaged in macular
tomography to ensure that all B-scans, required to image the area of interest, were acquired consistently
despite any eye movements. In ART mode, the device additionally acquires a specified number of B-scans
per retinal location allowing averaging of the multiple sections, enhancing image quality further by

boosting the signal-to-noise ratio and reducing motion artifacts.

Details of the two scan patterns are catalogued in Table 3.1.

Number of B scans 19 25

Pattern size

20x15 (5.9x4.5mm)

20x20 (5.9x5.9mm)

Distance between B-scans 247um 247um
Scan angle 20° 20°
ART mode 9 images averaged 9 images averaged

Table 3.1: OCT scan pattern parameters

The ‘Auto Rescan’ function within Heidelberg Spectralis used active eye tracking to automatically acquire
OCT scans at the same location of the retina as during the previous exam thus allowing high reproducibility
of thickness measurements and allowing specific retinal loci to be more readily compared in images over

varying timeframes.

The accepted practice at WUTH was to use Auto Rescan at all follow up visits to reacquire macular scans

based on the template of the prior examination unless a specific scan was requested by the examining
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clinician or the ophthalmic imager felt the scanning pattern required to be altered to better capture the

area of interest.

3.3.2 OCT analysis and review

OCT image analysis software, HEYEX, allowed review of captured scans.

Automated segmentation of acquired scans by HEYEX detected 11 retinal boundaries (Figure 3.1) from
which the programme extrapolated thickness and volumetric information for component retinal layers

and layer groups (Table 3.2).

[ Intraretinal layers ] { 11 boundaries

[ IRL

Figure 3.1: Representation of retinal boundary detection and intra-retinal layer segmentation a normal eye by Spectralis SD-OCT:
inner limiting membrane (ILM), retinal nerve fibre layer (RNFL), ganglion cell layer (GCL), inner plexiform layer (IPL), inner nuclear
layer (INL), outer plexiform layer (OPL), outer limiting membrane (OLM), myoid zone of the photoreceptor layer (PR1), ellipsoid
component of the photoreceptor layer (PR2), retinal pigment epithelium (RPE), and Bruch’s membrane (BM), and secondary

derivation of intraretinal layers and layer groups (Table 3.2)
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Intraretinal layer or layer group

Segmentation boundaries

Retinat ILM-BM (Sum of all retinal
layers)
NFL (nerve fibre layer) ILM-RNFL
GCL RNFL-GCL
IPL GCL-IPL
INL IPL-INL
OPL INL-OPL
ONL OPL-ELM
RPE RPE-BM
IRL (inner retinal layers) ILM-ELM
ORL (outer retinal layers comprising photoreceptor [PR] layer) ELM-BM

Table 3.2: Intraretinal layers as defined by composite boundaries in HEYEX

Using a modified ETDRS grid overlaying the central 3mm of the macula (Figure 3.2), the software

determined tissue volumes for the central 3mm and 1mm zones centred over the fovea as well as

average thickness data in the central 1Imm zone and the minimum thickness measure from the analysed

region.
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Figure 3.2: Representation of OCT interpretation within HEYEX

3.3.3 OCT database search and data extraction

OCT scans from the baseline visit (V0), the post loading dose visit (VP) and at 12 months from initiation of
treatment (V12) were initially considered most pertinent to the investigation and chosen as the episodes
from which OCT data would be extracted. It became apparent, during the extraction process, that the V12
data could not however be used as a predictor for changes observed in treatment patterns or VA at 12
months as V12 was in effect the primary endpoint considered in the project. These V12 data were thus

superfluous and omitted from further extraction within the study.

As the 19 and 25 slice scan patterns, used to acquire OCTs of the central macula in nAMD at WUTH,
covered either a region comprising the central 5.9 x 4.5mm or 5.9 x 5.9mm zone, it was decided to
consider the retinal data from within only the 1mm and 3 mm central ETDRS rings as a modified 3mm
overlay would overfit all image frames independent of the scan pattern and thus study would avoid being
affected by incomplete capture affecting the 6mm zone from the standard ETDRS subfield map. Thickness
data from individual superior, nasal, inferior and temporal subfields offered by the ETDRS grid analysis

were not however considered within this project.
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From the HEYEX derived 10 retinal layers and layer groups in which thickness and volumetric data were

available, the following measures were extracted to a datasheet:

e volume (mm?3) within the 3mm subfield (3mm vol)
e volume (mm?3) within the Imm central subfield (Imm CM vol)
e mean layer thickness (mm?) within the Imm central subfield (Imm CMT)

e minimum layer thickness (mm?) within the Imm central subfield (min CMT)

Extraction of OCT data from HEYEX involved the inspection of each file to ensure layers were correctly
segmented and that the region of interest had been correctly scanned. Once the exclusion criteria had
been appropriately applied, the extracted OCT values were collated with the EMR workbook, anonymised

and transferred to Aston for analysis.

In applying the exclusion criterion of images that did not permit analysis of the required features, it was
decided to omit scans where two or more line scans are affected by segmentation errors in the central

1mm region as suggested as a limit in prior research (Patel et al., 2009).

OCT scans of datasets meeting all study criteria were additionally compiled on a secure server for

additional processing at MEH once the extraction process at WUTH was completed.

3.3.4 MEH OCTANE dataset
Extracted OCT files were electronically transferred to MEH by WUTH for analysis by for Al-enabled retinal

segmentation.

This retrospective OCT processor, OCTANE API (OCTANE), employed a deep learning tool with a U-Net
based architecture with previously published validation (De Fauw et al., 2018) to produce quantitative
tissues volumes by evaluation of component retinal features within each scan slice (Figure 3.3, Figure 3.4

and Figure 3.5).

49
M. K. Gupta, DOptom Thesis, Aston University, 2024



Slice 25

Feature
Background
Posterior hyaloid
Choroid and outer layers
Neurosensory retina
RPE
Intraretinal fluid
Subretinal fluid
Subretinal hyper reflect
Drusenoid PED
Serous PED
Fibrovascular PED
Epiretinal membrane
Clipping artefact
Blink artefact
Mirror artefact
Vitreous and subhyaloid
Intraretinal hyper reflect

Figure 3.3: OCTANE output showing tissue segmentation and determination of features including subretinal hyper reflective

material, subretinal fluid and fibrovascular PED
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Slice 25

Feature
Background
Posterior hyaloid
Choroid and outer layers
Neurosensory retina
RPE
Intraretinal fluid
Subretinal fluid
Subretinal hyper reflect
Drusenoid PED
Serous PED
Fibrovascular PED
Epiretinal membrane
Clipping artefact
Blink artefact
Mirror artefact
Vitreous and subhyaloid
Intraretinal hyper reflect

Figure 3.4: OCTANE output showing tissue segmentation and determination of features including intraretinal fluid and drusenoid

PED
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Slice 25

N

Feature

Background

Color
200 pm

Posterior hyaloid

Choroid and outer layers

Neurosensory retina

RPE

Intraretinal fluid

Subretinal fluid

Subretinal hyper reflect

Drusenoid PED

Serous PED

Fibrovascular PED

Epiretinal membrane

Clipping artefact

Blink artefact

Mirror artefact

Vitreous and subhyaloid

—
—
—

Intraretinal hyper reflect

Figure 3.5: OCTANE output showing tissue segmentation and determination of features including intraretinal fluid, subretinal

fluid, drusenoid PED, fibrovascular PED and serous PED

It was discovered however that the algorithm could only consider data from 25 slice OCT scans where the

data captured at WUTH comprised a combination of 19 and 25 section scans.

The outputted tissue data (Table 3.3) from the scans which could be interpreted was returned within an

Excel file with volumes displayed in the units um?3.

Background

Vitreous and subhyaloid

Posterior hyaloid

Epiretinal membrane

Neurosensory retina

Intraretinal fluid
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Intraretinal hyper reflective material

Subretinal fluid

Subretinal hyper reflective material

RPE

Drusenoid PED

Serous PED

Fibrovascular PED

Choroid and outer layers

Mirror artefact

Clipping artefact

Blink artefact

Table 3.3: Scan features reported on within OCTANE output Excel file

This data was carefully merged to the existing, complied study data using the supplied and returned
anonyms and the VLOOKUP function within Excel to ensure that files were correctly matched. Tissue
volumes were converted to mm?3 to match the existing units in which volumetric OCT was extracted from

HEYEX.

3.4  Visual acuity

3.4.1 Measurement and documentation

VA of patients attending WUTH in relation to nAMD management was assessed using logarithm of the
minimum angle of resolution (logMAR) ETDRS charts scored by counting individual letters correctly
identified (Ferris et al., 1982). The use of this letter score method adheres to the gold standards
recommended in clinical trials (Ferris and Bailey, 1996) and is widespread within the assessment of those
with nAMD. A change of five letters within this score relates to one line of logMAR VA and measures can

be related to approximate Snellen VA equivalent (Table 3.4).

Snellen equivalent
ETDRS Letter score LogMAR (m)
0 1.7
5 1.6
10 1.5 6/192
15 1.4 6/152
20 1.3 6/120
25 1.2 6/96
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30 1.1 6/76
35 1.0 6/60
40 0.9 6/48
45 0.8 6/38
50 0.7 6/30
55 0.6 6/24
60 0.5 6/19
65 0.4 6/15
70 0.3 6/12
75 0.2 6/9.5
80 0.1 6/7.5
85 0 6/6

90 -0.1 6/4.8
95 -0.2 6/3.8
100 -0.3 6/3

Table 3.4: The relationship between the ETDRS letter score, LogMAR and the approximate Snellen visual acuity

All staff engaged in the process of measuring visual acuity were trained on the use of ETDRS charts and
the letter scoring method and undertook the activity giving consistent instructions to patients, in
standardised testing conditions including the use pre-determined testing distances, employing an
appropriate visual correction, with charts presented in ETDRS illuminator cabinets in accordance with the
protocols derived at WUTH based on established standardised methods in measuring visual acuity (Ferris

and Bailey, 1996) and those reported in the benchmark ETDRS (1991a) and AREDS (2000) studies.

Since May 2016 VA results for patients undergoing treatment for nAMD at WUTH were recorded on
Medisoft. The programme allowed the selection of the ETRDS chart version used for the assessment, with
different charts using varied letter selections but employing a homogenised level of difficulty (Ferris et al.,
1982) utilised in testing either eye. The selected chart version was replicated by the EMR as an electronic
grid on screen with the assessor able to indicate the letters correctly identified and the software in turn

tabulating the letter score VA.

3.4.2 Evaluation of change in VA and managing fluctuation

The method of evaluating the change in visual acuity was considered carefully. A literature review of work
investigating the repeatability of VA found reports of significant variability within measures. Siderov and
Tiu (1999) found a change of 8 logMAR letters was required to be secure in the decision that a genuine
change in VA had occurred. When considering VA in those with AMD, patient related factors, change in

refraction and variation in disease state have been reported to play an additional role, thus the coefficient
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of repeatability has been found to increase in such cohorts with studies reporting intersessional VA

measures of 12 and 14.9 letters respectively (Patel et al., 2008, Aslam et al., 2014).

Prior work researching nAMD and using VA as an outcome measure has tended to either consider VA at
the end of the period of interest or where examining change in VA, have utilised a measure of the
difference between baseline VA and at the end of the studied timeframe. These approaches have been
repeated within this body of work but it was also thought worthwhile to apply an alternative method to
studying VA whereby some degree of the variation in repeatability of measures could be addressed and

indeed to consider whether the degree of variance was of significance.

It was thus thought the slope of the linear regression line of the VA values for each individual (Figure 3.6)
might better describe the trend in VA change over 12 months using the available data points and perhaps
be less affected by variability of any individual VA datapoint. In addition to the fluctuation in
measurements of VA between visits, some rationalisation could also be administered to account for the

inconsistency in the number of follow up visits, ranging from between six and 13 (as discussed in section

4.5).
VA and trendline y=0.1868x+59.754

80
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Months since baseline measures

Figure 3.6: Linear regression of sample data from Microsoft Excel plotting VA against time

While the value of the slope of the regression line was displayed within scatterplot charts overfitted with

trendlines, within Excel, this was more readily obtained by applying the command:
=SLOPE(known_ys, known_xs)

to VA data within workbooks which returned either a positive or negative value indicating whether visual

acuity had improved or declined. These slope values were thus used to extract classifications of whether
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vision was lost or gained during the study period and this data added to that already extracted for further

evaluation.

As treatment with anti-VEGF has been shown to improve VA in those with nAMD and maintenance after
two years has largely been considered against baseline measures of VA (Colquitt, 2008) it was felt that a
further worthwhile aspect of investigation might be to assess whether the improved level of VA, found
after anti-VEGF therapy was initiated, could be maintained and whether predictive factors of any such
maintenance or decline could be determined. To thus account for the initial recovery in VA, change in VA
over time was established against both baseline untreated levels of VA, when there was a likelihood of
some immediate recovery, and VA results immediately post loading with anti-VEGF when it could be

better interpreted whether this recovery was maintained over time.

Only a solitary measure of VA prior to treatment with anti-VEGF was available within the extracted data,
rendering the ability to consider a mean of this result unachievable. The mean of the VA recorded at the
two visits immediately post loading was however determined as well as the mean of the VA measure at
12 months, found by averaging the measure of VA at 12 months and the reading from the immediately

preceding visit.

To consider the variability of VA and whether this could be predicted or indeed whether this measure had
any predictive influence, the standard deviation of the mean of the VA measures immediately post loading
until 12 months from initiation for therapy was considered. The baseline VA was not included as there
would be an expected increase in VA after initial receipt of anti-VEFG therapy, as noted by Colquitt (2008),

which could skew results.

3.5 Loading dose timeframe

Guidelines from the Royal College of Ophthalmologists at the time required that a loading dose of anti-
VEGF was administered monthly for three months (RCOPHTH, 2013). The importance that intervals
between these treatments were not delayed was supported by findings from a study by Relton et al.
(2022) where those receiving the initial course of three treatments promptly within less than or equal to
eight weeks were found to have a small but statistically significant improvement on visual outcomes

compared to where this timeframe was greater than 10 weeks.

Through a combination of database search and case review, the timeframe over which loading with

three doses of anti-VEGF took place was determined, and allowed the effective classification of
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treatment delays and analysis to be carried out on whether this was a factor in treatment and visual

outcomes.

3.6  Adjunctive interventions

The additional review of records to determine injectional intervals allowed the discovery and exclusion
of cases where additional therapies related to nAMD management, including surgical vitrectomy,
intravitreal tissue plasminogen activator and photodynamic therapy, were employed that might
adversely affect the studied outcomes similar to an approach taken by the VIEW study (Heier et al.,

2012).

3.7 \Visits

Baseline VA and OCT measures were taken at the visit when diagnosis was made, prior to anti-VEGF
therapy being initiated. Patients at WUTH were subsequently invited to attended monthly monitoring
visits, starting one month after the third loading dose was administered, where OCT scans were taken
and VA measured with further therapy initiated based on clinical findings in line with the PRN regimen.
It would thus be expected that 9 episodes of such records would exist if considering a period of 12
months from when treatment was commenced. The number of such attendances over the first 12
months however varied from three to 13 visits with factors causing a reduction in visits including
appointment delays due to circumstances arising at WUTH, delays arising from patient illness and non-
attendance. Above expected numbers of episodes arose in cases where individuals were receiving
bilateral treatment, hence requiring monthly review for the fellow eye and inevitably having additional
measurements taken of the eye considered within the study, or where patients had been followed up at

intervals shorter than one month for a period during the first year.

A minimum number of six follow up episodes was thus set as a further exclusion criterion to ensure that
an appropriate number of data points existed such that change in visual acuity could be appropriately

assessed over an adequate timeframe.

3.8 Fellow eye involvement

Both eyes being affected by nAMD is a commonplace finding with a largescale retrospective cohort
study, evaluating 22,553 patients with unilateral nAMD, reporting development of the condition in the
fellow eye in 38% of patients within 3 years of the primary eye being commenced on treatment (Starr et
al., 2021). Chopra et al. (2018) also undertook a comprehensive study of those developing nAMD in

fellow eyes at MEH reporting bilateral involvement in 22% of the patients. Their analysis additionally
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found an improved level of baseline acuity in the second eye developing NnAMD with closer observation,
more frequent OCT imaging and those affected being more alert to sudden visual alteration cited as

potential factors leading to earlier diagnosis.

Beneficial therapeutic effects of anti-VEGF agents in untreated fellow eyes have also been described in
case reports (Wu and Sadda, 2008, Isildak et al., 2018), in statistically significant numbers of casesin a
prospective study by Michalska-Matecka et al. (2016) and a retrospective study of patients enrolled in
landmark MARINA and ANCHOR studies (Rouvas et al., 2009). The reports did not identify the exact
mechanism of this response but unanimously suggested a likely systemic effect via entry of anti-VEGF
into the blood stream with the prospective trial group also postulating a change in gene expression

found in those having received ranibizumab as a potential mediator (Michalska-Matecka et al., 2016).

Although all eyes entered into this study at Aston University were treatment naive, it did however seem
sensible to consider subsets of the complete cohort to eliminate factors arising from therapy given to a

fellow eye. During data extraction it was therefore determined:

e patients in whom there was no evidence of nAMD in the fellow eye either prior to or during the
initial 12 months of study (N1)

e patients in whom there was no prior evidence of nAMD in the fellow eye but where the
condition did subsequently develop and was treated with anti-VEGF in the fellow eye during the
initial 12 months of study (N1FA)

e patients in whom there was prior evidence of NAMD in the fellow eye and where treatment was
not administered to the fellow eye during the initial 12 months of study (N2Fl)

e patients in whom there was prior evidence of NAMD in the fellow eye and where anti-VEGF
treatment was administered to the fellow eye during the initial 12 months of study (N2FA)

e patients in whom nAMD was diagnosed in both eyes at the same visit and anti-VEGF treatment
was loaded bilaterally over the same interval, although subsequent treatment patterns may

have varied in both study eyes (NB)

3.9 Discussion
This chapter thus provided a detailed description of the data collection process from the electronic

medical records and the subsequent analysis of visual acuity and OCT data.

Key aspects of the methodology included:
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Patient selection: A rigorous selection process was employed to identify eligible patients with nAMD

who received anti-VEGF therapy during the specified study period.

Data extraction: Relevant clinical data, including demographic information, treatment regimen, visual

acuity measurements, and OCT scans, were extracted from the EMR.

OCT analysis: OCT scans were analysed using both automated segmentation software and Al enabled

retinal segmentation to quantify various retinal layer thicknesses and volumes.

Visual acuity assessment: VA was measured using standardised ETDRS charts, and changes in visual

acuity over time were evaluated using methods including linear regression analysis.

Adjunctive interventions and fellow eye involvement: The impact of adjunctive interventions, such as
surgical procedures, and categorisation based on fellow eye involvement was accounted for in the

analysis.

By systematically collecting and analysing these data, this study aimed to provide valuable insights into

the efficacy and outcomes of anti-VEGF therapy in managing nAMD.
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4 Data disposition, collation and processing

4.1 Introduction
This chapter aims to present the methods by which data was processed for further analysis during the

study.

4.2 Data disposition

Once the extracted EMR results and Heidelberg HEYEX OCT outputs were complied, the project exclusion
criteria could be applied yielding a total of 327 eyes of 308 patients for enrolment in the study (Figure
4.1). As explained in section 2.7, all 327 eligible cases were evaluated to optimise the predictive

capabilities of the ML based systems used for analysis within the study.
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Primary inclusion criteria
« Patient aged 18 years

treatment of of nAMD from January 2014 to

« Attended WUTH for the diagnosis and Initially enrolled—s-

1322 eyes
(1123

individuals)

February 2019

Additional inclusion criteria:

« Digital OCT images acquired using 724 eyes
Heidelberg Spectralis OCT Excluded n=59 (638
* Demographic and treatment information individuals)

recorded on EMR

Exclusion criteria:

» Patients who had requested that their records
should not be shared

+ Individuals in whom OCT scanning could not
be performed

« Cases with incomplete records

« Images that did not permit analysis of the
required features

» Instances where treatment was withdrawn
within the first 12 months due to safety
concerns, vision falling below eligibility criteria
and patients declining treatment

« Cases where additional therapies related to
nAMD management, including surgical
vitrectomy, intravitreal tissue plasminogen
activator and photodynamic therapy, were
employed

= Access to information of six follow up
episodes within the first 12 months

* Patient aged 50 years and over

327 eyes
——Excluded n=397 (308

individuals)

Figure 4.1: Application of inclusion and exclusion criteria in disposition of cases

4.3 EMR data extrapolation
On reviewing data extracted from within the EMR, the parameters displayed in Table 4.1, could either
immediately be defined or the relevant details were readily extrapolated using tools available in Excel,

with results added to the study datafile.
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Ethnicity

Laterality

Age At First Injection

Sex

Anti-VEGF drug type over the course of

treatment

Initial visit (baseline) VA studied eye

Initial visit (baseline) VA fellow eye

Time interval for loading dose, studied

eye

Fellow eye nAMD activity

Month 12 VA studied eye

VA mean, month 11-12, studied eye

Slope of best fit line, VA post loading

(post loading - month 12), studied eye

Slope of best fit line, VA 1% year

(baseline - month 12), studied eye

St deviation of mean VA post loading

(post loading - month 12), studied eye

St deviation of mean VA first year

(baseline - month 12), studied eye

Total Injections First Year

Clange in VA, baseline — month 12,

studied eye

Injections first year, studied eye

Table 4.1: EMR defined study variables

4.3.1 Additional EMR data processing
The patterns in which injections were administered to the studied eye over the first year were

additionally considered using hierarchical modelling of the administration records at each visit. The
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model outputs were again added to the study data file and the method will be described in greater

detail in chapter 6.

4.4  HEYEX OCT outputs

Extracted Heidelberg HEYEX OCT data (Table 4.2) for the 3mm subfield volume, 1mm subfield volume, the
central Imm average CMT and minimum CMT over the 10 retinal layers and layer groups, on which the
programme reported measurements, yielded 40 quantitative instances for both baseline visits (V0) and

post loading visits (VP) which were compiled with the extracted EMR results in the study workbook.

OCT data
e 3mm vol
e 1mm CM vol
e I1mmCMT
e min CMT

for the following 10 layers at VO and VP

Retina

NFL

GCL

IPL

INL

OPL

ONL

RPE

IRL

ORL

Table 4.2: Extracted HEYEX OCT data

4.5 Datasets

The enrolled study dataset of 327 eyes of 308 patients thus featured a complete set EMR and HEYEX OCT
records available for investigation with no missing instances of data. Additional subsets of data were
however available for supplementary analyses and sub-cohorts were created to consider effects within

particular groups during the project.
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4,51 MEH OCTANE dataset
As scans were captured variably in both 19 and 25 slice patterns at WUTH, this produced some limitations
to the data available for processing at MEH. The information returned by OCTANE therefore allowed the

further analysis of:

e 232 eyes of 214 patients at baseline (V0)

e 230 eyes of 212 patients post loading (VP)

The study omitted the OCTANE determined features; background and intraretinal hyper reflective
material, due to a complete absence of any returned integers and the features; mirror artefact, clipping
artefact and blink artefact, as not being deemed to have a potential significance to the studied outcomes,

while investigating the remaining 12 features (Table 4.3) which were added to the study datafile.
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Vitreous and subhyaloid

Posterior hyaloid

Epiretinal membrane

Neurosensory retina

Intraretinal fluid

Subretinal fluid

Subretinal hyper reflective material

RPE

Drusenoid PED

Serous PED

Fibrovascular PED

Choroid and outer layers

Table 4.3: Studied OCTANE outputs

4.5.2 Treatment naive eyes with no fellow eye involvement
Although all eyes entered into this study at Aston University were treatment naive, many fellow eyes

had disease activity in varying states (Figure 4.2).

N1 196
N2FI 47
Rl
2
S
E NZFA 45
T
“ NB 29
NIFA B 10

0 20 40 60 80 100 120 140 160 180 200
Instances

Figure 4.2: Histogram of fellow eye involvement (N1: fellow eye - no evidence of nAMD in either prior to or during study period ,

N2FI: fellow eye - prior evidence of nAMD but disease state was inactive during study period, N2FA: fellow eye - prior evidence of

65
M. K. Gupta, DOptom Thesis, Aston University, 2024



nAMD and was actively treated with anti-VEGF in during study period, NB: nAMD diagnosed in both eyes at the same visit and
anti-VEGF treatment was loaded bilaterally over the same interval, with subsequent variation in treatment patterns, N1FA:

fellow eye - no prior evidence of disease but nAMD did develop and was actively treated with anti-VEGF during study period)

It thus seemed sensible, where appropriate, to consider a subset of the complete cohort to eliminate
factors arising from therapy given to a fellow eye. The 196 patients in whom there was no evidence of
nAMD in the fellow eye either prior to or during the 12 months of the study period would therefore be

considered as a separate subgroup in addition to analyses performed on the whole cohort.

4.5.3 No further therapy past loading dose

As anti-VEGF therapy was administered using a PRN regimen at WUTH, this produced a variation in the
number of doses individual eyes would receive over a defined period of time. It was thus found that a
significant proportion of cases only required three loading doses of a given drug during the initial
12months of management and were as such evaluated in an additional analysis. This approach eliminated

the compounding effect on variation of VA mediated by treatable disease activity.

4.6 Discussion
This chapter thus offered a detailed description of the data extraction, cleaning, and preparation

processes.
Key aspects of the data processing included:

Case selection: Patients with nAMD who received anti-VEGF therapy were subjected to inclusion and

exclusion criteria.

Data cleaning and preparation: Relevant clinical data and OCT measurements were extracted from EMR,
HEYEX and OCTANE datasets and the extracted data was processed to remove inconsistencies and errors,

and missing values were handled appropriately.

Data categorisation: The dataset was divided into various subsets based on factors such as fellow eye

involvement and treatment regimen to enable more targeted analysis.

By effectively processing and preparing the data, this study aimed to provide a solid foundation for

subsequent statistical analysis and machine learning modelling.
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5 Orange data mining and data analysis

5.1 Introduction

The chapter aims to explain the Al based data analysis methods used in the study

5.2 Orange data analysis

Data analysis was carried out with Orange data mining and machine learning software (ODM), allowing
access to a vast array of advanced analytical tools useful in healthcare research. The platform was
accessed through a computer programme available to download through the company website and was
operated by uploading a CSV data file containing potential determinants or features of interest and the
studied outcomes or targets to an interface where various instructions and operations, termed widgets,
could be combined to pre-process, evaluate and visualise data forming a ‘workflow’. Data modelling tools
or learners were additionally available allowing the development of predictive models of a particular
outcome. To determine modelling accuracy and the informativity of features for a given, investigated

effect, further widgets and statistical outputs were available to consider such potential relationships.

5.3  Features

From the collected study data, the parameters available as potential predictors in searching for
relationships in evaluating the study outcomes were collated to the following seven groups (Table 5.1)
and used in each analysis. VA, as a feature group, was however considered with and without including the
standard deviation of mean VA, post loading until 12 months. This approach was taken as some of the
measures considering VA at 12 months were also used in determining the mean VA over this period. As
the standard deviation in the mean was also thus derived from these results in part, an overlap of the data
within both groups potentially may have created an artefactual relationship which it was felt should be

taken into account.
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Feature group Description No. features

Demographic & Ethnicity 7
qualitative Laterality

Age At First Injection

Sex

Anti-VEGF drug type

Time interval 1st to 3rd injection

Fellow eye activity

VA VA baseline visit (VO) 4
VA fellow eye (VO0)

VA post loading (VP)

VA mean of 2 visits immediately

post loading

VA _stdev VA baseline visit (VO) 5
VA fellow eye (VO)

VA post loading (VP)

VA mean of 2 visits immediately
post loading

Standard deviation of VA mean,

post loading -12 months (VP-V12)

VO_OCT HEYEX OCT results from baseline 40
visit (VO)
VP_OCT HEYEX OCT results from post 40

loading visit (VP)

VO_OCTANE OCTANE results from baseline visit 12
(Vo)

VP_OCTANE OCTANE results from post loading 12
visit (VP)

Table 5.1: Feature groups for analysis in ODM

Groupings were created to allow systematic yet efficient evaluation of the features relevant to the study.

These sets were based on feature type, the algorithmic method in which OCT data was collected and
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treatment stage at which the feature data was acquired. In the case of the standard deviation of the VA
mean from post loading to 12 months, as this metric contained data from all VA points from the first year,
additional regard was considered appropriate in developing models with this attribute in the event that

determined relationships were biased by the manner in which it was construed.

5.4 Targets
Some outcome variables were immediately available from the spreadsheets returned by WUTH the
remainder; VA means, standard deviation of means, slope of best fit line through VA points and change in

VA, were extrapolated from the results using various functions available in Excel.

Hierarchical clustering methods, available in ODM, were additionally employed to separate injection
patterns, based on treatment frequency and intervals between injections, for investigation as a target

characteristic.

Study targets were thus considered as those investigating injection associated treatment outcomes and

those exploring visual outcomes.

Further rationalisation took place to identify discrete outputs and categorisation of continuous data to
allow classification modelling. Regression analyses conversely, where continuous target ranges were more
appropriate but where discrete variables could be considered with care, had appropriate variables

grouped for evaluation separately.

Many of the target classifications were immediately apparent in cases of discrete data, principally where
considering injections data. However, where determining target classes for continuous data, divisions
used in prior work were considered and where such classification did not exist, a sensible approach was

applied to section data and rationale explained within this document.

5.4.1 Anti-VEGF treatment models
Injection administration data existed in a discrete form and was thus used in both classification models

and regression analyses considered in following groups (Table 5.2).
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Data type

Target variable

Range/classification

Numeric discrete:

Injections First Year

no. of injections 3-10

Categorical: binary

Injections First Year

categories 3, >3

Categorical: ordinal

Injections First Year

categories 3,4,5,6,7,8,9, 10

Categorical: nominal

Injection pattern first year

Hierarchical model defined
clusters 1, 2,3,4,5,6,7,8,9,
10

Table 5.2: Anti-VEGF target variables

5.4.2 VA models

VA data when initially extracted was present in a continuous range but was manipulated to develop the

following outputs (Table 5.3), with standard deviation of VA also considered as a feature variable.
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Data type Target variable Classification
Numeric continuous VA at 12 months, letter score
VA at 12 months, months 11-12
mean, letter score

VA post loading (post loading -
month 12) slope of best fit line
VA baseline - 12 months, slope
of best fit line

St deviation of mean VA, post
loading (post loading - month
12)

St deviation of mean VA,
baseline - 12 months

Change in VA, baseline — month
12, letter score

Categorical: binary Change in VA post loading 2 categories (lost/gained)
(month 4 - month 12), slope of
best fit line
Change in VA (baseline — 2 categories (lost/gained)
12months), slope of best fit line
Change in VA (baseline — 2 categories (lost/gained)
12months), letter score

Categorical: ordinal Change in VA post loading 3 categories (5 letter
(month 4 - month 12), letter loss/gain/maintained)
score
Change in VA (baseline — 3 categories (5 letter
12months), letter score loss/gain/maintained)
Change in VA (baseline — 3 categories (5 letter
12months), letter score loss/gain/maintained)
VA month 12, letter score Categories <30, 31-40, 41-50,

51-60, 61-70, 71-80

Table 5.3: VA target variables

5.5 Modelling with learners
Machine learning algorithms were trained in ODM. These supervised learners, which utilised labelled
datasets, attempted to sort test data to relevant, predefined categories or to predict a relationship

between input features and output targets in classification and regression models (Alloghani et al., 2020).

5.6  Classification and regression analyses
Models were developed to utilise the following learners which ODM could apply to classification and

regression analyses:

kNN
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The k-Nearest Neighbours (kNN) algorithm works by finding the k closest training examples in the
dataset and using them to make a prediction (Demsar et al., 2013). This clustering learner, capable of
interpreting both categorical and numerical data, is considered to handle noisy data and outliers well
and to develop outputs which are simple to understand. The model can however be sensitive to
irrelevant features hence performance can deteriorate as the number of features increases

(Cunningham and Delany, 2021)
Tree

The decision tree model works by repeatedly splitting the data into subsets based on the values of the
input features until a prediction can be made about the target variable (Demsar et al., 2013). Easy to
understand and interpret, the learner can handle both categorical and numerical data and manage non-
linear relationships. Trees can however easily overfit the training data if not properly pruned and may

not perform well on datasets with larger numbers of features (Breiman et al., 1984).
Random forest

Random forest models use bootstrap ensemble learning where multiple decision trees are created on
different, arbitrary subsets of the data and then combined to form a prediction (Demsar et al., 2013).
Highly accurate and able to manage both categorical and numerical data, the learner is less prone to
overfitting than decision tree. The structure of individual trees in the forest can provide a degree of
interpretability into significance of different attributes but overall feature importance can be difficult to

interpret (Breiman, 2001).
Gradient boost

Gradient boosting models are an ensemble learning method that is used for classification and
regression. They work by creating multiple decision trees on different subsets of the data and then
combining the results to make a prediction (Demsar et al., 2013). With a high degree of accuracy and
being less prone to overfitting than decision tree models the algorithm can also handle non-linear

relationships but can be difficult to interpret and shows sensitivity to outliers (Hastie et al., 2009).
SVM

Support vector machine (SVM) models are a type of supervised learning algorithm that work by finding
the hyperplane that best separates the data into different classes. The algorithm repeatedly optimises

the process by selecting a small subsets of data points to update the model and using a separate subset
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to test model performance and accuracy. While more often used for classification problems, in
regression tasks, SVM performs linear regression in a high dimension feature space with the widget

classing predictions based on a SVM Regression (Demsar et al., 2013).

SVM models are deemed very accurate and can handle linear, nonlinear and high dimensional data.
They are also less prone to overfitting than other algorithms but outputs can be difficult to interpret, as
they do not provide a direct explanation of how the model makes its predictions. The learner can
however be sensitive to outliers in the data, as they can influence the placement of hyperplanes and

affect the model's decision boundaries (Hastie et al., 2009).

Logistic regression

Logistic regression is used for classification analyses by finding the line that best separates the data into
different classes. In ODM the model offers L1 (LASSO) and L2 (Ridge) regularisation, with L1 considered

to offer superior ability in feature selection (Demsar et al., 2013) and hence preferred in this project.

Model outputs tend to be readily interpretable with coefficients communicable as odds ratios. Results
tend to be less prone to overfitting than more complex models however assume linearity between
target and input characteristics, can only manage discrete variables and may not perform well on

datasets with large numbers of features (Nick and Campbell, 2007).

Naive Bayes

Naive Bayes models manage classification problems by applying Bayes’ theorem to calculate the
probability of each class given the input features with the assumption of feature independence (Demsar
et al., 2013). Outputs are readily explainable with feature relevance interoperability through
classification and ranking of odds ratios, however the algorithm assumes that the input features are
independent of each other and struggles with complex non-linear relationships and shows sensitivity to

outliers and irrelevant features (Zhang and Su, 2004).
Adaboost

The adaptive boosting (AdaBoost) ensemble learning method suitable for both classification and
regression analyses. The learner operates by combining the results of weaker learners and adapts to the
difficulty of each training sample to make a prediction (Demsar et al., 2013). In considering more
carefully the training instances that the predecessor underfitted the algorithm can thus improve the

accuracy of other models but in turn is hampered by datasets with noisy data (Géron, 2022).
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Neural network

Neural networks simulate the structure of the human brain to find patterns in the data that can fit
complex data patterns (Demsar et al., 2013). In ODM the Neural Network widget uses a Multi-layer
Perceptron algorithm and backpropogation that can train on a dataset for either classification or
regression. It differs from logistic regression, in that between the input and the output layer, there can
be several non-linear layers with the learner fine tuning the error rate from forward propagation and
propagating this loss backward through the neural network layers to adjust the weights during the
previous iterations of the layers. The resultant model yields a high level of accuracy and can handle both

linear and nonlinear data but may overfit the data if the network is too complex (Fabian, 2011)

Linear regression

The Linear Regression widget, used for regression analysis only, constructs a model that can identify a
line that best fits the data from a predictor and the response variable (Demsar et al., 2013). Linear

Regression output can be straightforward to interpret but may not perform well on datasets with non
linear relationships or large numbers of features and can be sensitive to outlying datapoints (James et

al., 2013).

To balance overfitting against the ability of a model to make accurate predictions, regularisation in the
form of LASSO and Ridge parameters modify the reliance of the learner on specific information obtained
from the training samples (Fabian, 2011). LASSO regularisation was employed in this body of work due

to the superior performance in feature selection.

5.7  Outliers
All models were trained on both complete datasets of the given attribute being studied and a reduced

set where outliers had been removed.

5.7.1 Noise vs outlying data
These attributes may initially seem alike but noise relates to causes including data type errors,

incorrectly captured data values and missing data resulting in worthless information (Smiti, 2020).

Landmark definitions of outliers include, an observation which deviates so much from other
observations as to arouse suspicions that it was generated by a different mechanism (Hawkins, 1980), an

observation (or subset of observations) which appears to be inconsistent with the remainder of that set
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of data. Authors considering outliers (or spurious values of any sort) however can be citied as far back as

the 18" century (Barnett and Lewis, 1994).

Outliers may result from measurement or recording errors, exceptional but true values, misreporting or
sampling errors. In some cases outlier removal avoids an analysis from being misled where as in other

instances their incorporation can prove insightful (Smiti, 2020).

Finding outlying data instances that do not fit well to the general data distribution is very important in
many practical applications and deciding on how to identify and manage these inconsistent data points

has in itself generated a field of study (Zimek and Filzmoser, 2018).

5.7.2  Pros and cons of removing outliers

The merits of considering and removing outliers and the methods in which this can be done have been
considered at length. Type 1 and 2 errors within classic parametric hypothesis based statistical methods
can be inflated where outliers are not adequately accounted or overly, readily removed. Modern
statistical methods including bootstrapping have been suggested to improve the robustness of data to

outliers (Erceg-Hurn and Mirosevich, 2008).

Identification of outliers and their removal should thus be considered as separate and by a method
which is blind to the hypothesis of interest (i.e., across all the data, or based on the residuals of a model
that omits all hypothesis-relevant predictors) has been suggested (André, 2022) with the alternative
approach involving hypothesis-aware outlier removal offering a greater consideration of the naturally

occurring differences in variance in different studied parameters in multivariate analysis (Karch, 2023).

Outlier removal has however been shown to improve model performance in machine learning based
imaging based studies with Li et al. (2015) reporting an improvement from 63% to 76% in test accuracy
with the improvement in results in turn yielding levels equivalent to gold standard clinician assessments
of a burn injury classification. Outlier classification and removal has also been shown to have benefits in
reducing variance of the structural analysis in automated RNFL measurement from OCT (Bergamin et al.,

2004).

5.7.3 Statistical approaches to managing outliers
ODM provides a range of statistical methods to aid in the identification and removal outliers with Local
Outlier Factor (LOF) and Isolation Forest methods more suited to moderately to highly dimensional

datasets. For both methods, their effectiveness depends on the specific dataset and problem at hand
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with LOF deemed to be better suited for datasets with moderate dimensionality, while Isolation Forest is

more effective for high dimensional datasets (Demsar et al., 2013).

Data dimensionality is determined by considering the number of independent observations ‘n’ against
‘p’ the number of variables associated with each instance. This dimensional property increases as p
increases and begins to exceed n, with genomic studies and imaging studies, considering signal values of

pixels, frequently cited as high dimensional in nature (Rahnenfihrer et al., 2023).

5.7.4 Outlier detection with LOF

In this study LOF was applied to manage outlying data.

LOF is an unsupervised anomaly detection algorithm which computed the local density deviation of a
given data point with respect to its neighbours. It considered as outliers, the samples that had a
substantially lower density than their neighbours (Fabian, 2011) with this score reflecting the degree of
abnormality of the observations, presenting an efficient manner to perform outlier detection on

moderately high dimensional datasets. (Demsar et al., 2013).

Hyperparameter tuning was considered, but for the purposes of the study, the default values for
contamination, neighbours, and metric used by ODM were applied as it was deemed unlikely that

significant additional performance of LOF would be aggregated through any adjustments.

Contamination determined the proportion of the most isolated points to be deemed anomalous and was

determined automatically in ODM as a percentage of the samples presumed to be normal.

In considering the number of neighbours, Fabian (2011) recommended adopting a value of 20 which
appeared to work well in practice as determining this figure otherwise, as a quantity set between the
minimum number of samples a cluster had to contain and the maximum number of close by samples that

could potentially be local outliers, was generally not feasible.

The metric parameter, defining the system of measurement to use for distance computation within LOC,
was also kept as the standard Euclidean setting where the straight-line distance between two datapoints

in a Euclidean space was considered (Fabian, 2011).

5.8 Preprocessing

A preprocess widget was added to identify and remove instances with missing data and to randomise
the order of the observations, a practice which has been recommended as beneficial in removing
potential trends associated with the sequence in which data were collected (Chicco, 2017). This also
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overrode any default preprocessing within the models applying only the custom preprocessing pipeline

devised in the study.

5.9 Test and score
A test and score widget provided various sampling schemes and statistical results of how well the

models formed predictions.

5.9.1 Sampling

Stratified k-fold cross validation was implemented where data was split into 10 sample groups
representative of the original dataset. The algorithm was then trained on k — 1 folds and evaluated on
the remaining subset. This process is repeated, so that each fold was used for testing just once with

information then produced on the average accuracy of the model (Demsar et al., 2013).

This process improved model performance and managed overfitting, a phenomenon to which machine
learning is prone where the algorithm excessively adapts to training data and predictions in turn relate

poorly when applied to test sets (Chicco, 2017, Demsar and Zupan, 2021).

5.9.2 Determinants of model accuracy in classification models
Demsar et al. (2013) described the range of statistics returned by the programme and used in the

project to help assess the performance of each model.

Precision is a measure of the accuracy of positive predictions made by a model and is expressed as the
proportion of true positives (TP) among the total positive predictions, TP and false positives (FP), made by

the model (Géron, 2022).
precision = TP/(TP+FP)

Recall, also referred to as sensitivity or true positive rate (TPR), is the ratio of true positives among all

positive instances in the data, TP and false negatives (FN) (Géron, 2022).
Recall = TP/(TP+FN)

Specificity, or true negative rate (TNR) is the proportion of true negatives (TN) among all negative

instances in the dataset are correctly identified by the model (Géron, 2022).

Specificity =TN / (TN + FP)
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Classification accuracy (CA) measures the proportion of correctly identified examples from the total
number of predictions by a model. Although straightforward to interpret, reliability of the metric declined

in the presence of skewed distributions in classification analyses (GoogleDevelopers, 2023).
CA=(TP+TN)/ (TP + TN +FP + FN)

Area under the receiver operating characteristic curve (AUC) is a metric used to evaluate model
performance utilising the TPR and false positive rate (FPR), the ratio of negative instances that are
incorrectly classified as positive found by subtracting the TNR from one. The receiver operating
characteristic (ROC) curve is generated by plotting the TPR against the FPR, and AUC considered for
different decision thresholds (Géron, 2022, IBMCorp., 2022).

F1: The F1 score combines precision and recall to a single metric allowing an efficient mechanism to assess
the accuracy of a classifier. F1 forms the harmonic mean of precision and recall giving more weight to low

values thus a classifier receives a high score if both recall and precision are high (Géron, 2022).

Matthews correlation coefficient (MCC) is a statistical metric taking into account sensitivity, specificity,
precision, and negative predictive value, a of measure of the proportion of negative predictions that are

actually correct calculated from the total number of true predictions.
Negative predictive value = TN / (TN + FN)

Instances where MCC indicates a significant level of accuracy thus signifies the constituent metrics have
also all generated high scores (Chicco and Jurman, 2023) offering a balanced measure that can be used

even where classes are different sizes. (IBMCorp., 2022).

5.9.3 Determinants of model accuracy in regression models

Mean squared error (MSE) is a common metric used to evaluate the performance of a regression model.
It measures the average squared difference between the predicted and actual values of the target
variable. As an error metric, MSE can be interpreted as showing greater model accuracy as the value

approaches zero. (Demsar et al., 2013).

Route mean squared error (RMSE) like MSE is a measure of the imperfection of the fit of the estimator to
the data (Demsar et al.,, 2013). RMSE generates smaller values which are typically considered more
interpretable however is also more sensitive to outliers and perhaps therefore more appropriate when

datasets contain outliers that need to be penalised more heavily (Steurer et al., 2021).
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Mean absolute error (MAE), a measure of average absolute differences, is used to assess how close
forecasts or predictions are to eventual outcomes. MAE has reduced sensitivity to outliers but may also

mask outlier impact on model performance (Demsar et al., 2013).

The coefficient of determination (R?) is used to evaluate the performance of a regression model by
providing a measure of the proportion of the variance in the dependent variable that can be explained by
the independent variable. In the case of ODM, the best possible score was 1.0 but R? could be negative as

the model could be arbitrarily worse (Demsar et al., 2013).

Coefficient of variation root mean squared error (CVRMSE) is a unitless statistical metric used to evaluate
the performance of a regression model. CVRMSE is a normalized measure of RMSE that takes into account
the variability of the input data . CVRMSE is expressed as a percentage, where lower values indicate better
model performance, can be used to calibrate model performance and compare accuracy between models

(Demsar et al., 2013).

5.10 Determinants of modelling performance

5.10.1 ROC analysis
ROC curves for a derived model could be plotted showing the true positive rate against a false positive

rate (Demsar et al., 2013).

5.10.2 Confusion matrix
Confusion matrices showed the proportions of correct and incorrect predictions made by the model

(Demsar et al., 2013).

5.10.3 Correlations
This ODM widget computed Pearson or Spearman correlation scores for all pairs of features in the

dataset being analysed (Demsar et al., 2013). The analysis was applied to models derived within dataset.

5.10.4 Scatter plot
Scatter plots allowed visualisation of the relationship between target and feature variables (Demsar et

al., 2013).
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5.11 Determinants of feature relevance

5.11.1 Distributions
Distribution curves and histograms showed how many times an attribute value appeared in a dataset
and in the case of categorical analyses, class distributions for each of the features was displayed using

the distribution widget (Demsar et al., 2013).

5.11.2 Rank

The Rank widget scored feature variables according to their correlation with targets. The widget
automatically selected the most informative metrics and outputted a list ordered according to the best
scoring attributes (Demsar et al., 2013). In the case of this study, where available, only the results of the

best five scoring features were considered.

5.11.2.1 Ranking indicators
Demsar et al. (2013) described the ranking indicators in ODM highlighting several key methods for
feature scoring and ranking, which were used to evaluate the relevance of features in relation to the

target variable.

e Information Gain was the expected amount of information or reduction of uncertainty that could
be garnered from a feature in respect to a target

e Gain Ratio was a ratio of the information gain and the intrinsic information of the attribute. This
normalisation acted to reduce the bias towards multivalued features that occurred in information
gain.

e Gini measured the reduction in impurity achieved by splitting the data based on a specific feature,
features that created the most homogenous subsets for each class, were ranked higher.

e Analysis of Variance (ANOVA): the difference between the means of the features in different
classes

e Chi-square provided a measure of the dependence between the feature and the category

e ReliefF measured ability of an attribute to distinguish between classes on similar data instances

e Fast correlation based filter (FCBF) assessed the relevance of each feature by combining the
strengths of information gain and feature redundancy analysis to identify informative features
while reducing redundancy

e Univariate Regression provided linear regression for a single variable
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5.11.3 Nomographic representation of feature importance

The nomogram widget could be applied to the Naive Bayes classifier and Logistic Regression classifier
allowing variable features to be ranked by relative importance. In Naive Bayes, odds ratios or
percentage points scale of a positive or negative influence of features in inducing a change in the target
variable could be viewed and manipulated. In the case of Logistic Regression, these odds or percentage
points were only available as positive integers but linear graphical representations were available for
continuous attributes to help visually understand their relationships with classifiers and relative degree

of influence in altering an outcome (Demsar et al., 2013).

5.11.4 Feature importance
This ODM widget used the Permutation Feature Importance technique to calculate the contribution of

each feature towards the prediction by measuring the increase in the prediction error of the model after

the relationship with each independent variable was disrupted (Demsar et al., 2013).

5.12 Workflow
Typical ODM workflows for classification analyses and regression analyses are shown in Figure 5.1 and

Figure 5.2 respectively.
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Figure 5.1: ODM workflow of classification analysis
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Figure 5.2: ODM workflow of regression analysis

5.13 Hierarchical clustering

Hierarchical clustering is an unsupervised learning technique that involves grouping unlabelled data

instances into clusters based on patterns recognised within the information. The groups, or labels,

devised by the algorithm can in turn be used for supervised learning tasks (Alloghani et al., 2020).

In ODM, widgets available within the hierarchical clustering pipeline allowed selection of Manhattan and
Euclidean distance prediction, the number of nodes used to form clusters and pruning of clusters (Figure
5.3). Silhouette plots, which provide a graphical representation of consistency of data instances within
clusters and scoring of the quality of clustering (Fabian, 2011), were used to optimise the number of
clusters formed. Examination of means within the devised groups and plotting data in box and whisker

charts within Excel allowed visualisation of the patterns within the clusters.
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Figure 5.3: ODM workflow of Hierarchical clustering

5.14 Discussion

This chapter outlined ODM and the data analysis methods employed to analyse the extracted data.

Key aspects of the data analysis methodology included:

Feature engineering: Relevant features, including demographic, clinical, and OCT derived parameters,

were identified and prepared for analysis.

Target variable definition: Target variables were defined, including both continuous and categorical
outcomes.

Machine learning algorithms: The range of machine learning algorithms employed to build predictive
models were defined.

Model and feature evaluation: Methods to evaluate modelling performance and feature importance

were considered alongside techniques used to identify and manage outlying data.

By leveraging the capabilities of ODM and employing a variety of machine learning techniques, this

study aimed to appropriately investigate the project outcomes measures.
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6 Features influential in determining treatment doses and treatment frequency

6.1 Introduction
This chapter aims to present the analyses and results related to anti-VEGF injections administered over

one year in the management of nAMD.
Anti-VEGF treatment was considered in terms of:

e The total number of injections administered during the first year

o The pattern of the injection administration over the first year

Analyses were undertaken by classification and regression modelling. These used the variables on which
information was gathered during the study, including OCT based characteristics, visual acuity measures
and demographic information, all of which were listed in chapter 5 within defined feature groups. These
predictors were inputted to ODM based pipelines in an attempt to forecast anti-VEGF dosing over the

first year treatment and the features relevant in forming such predictions.

The modelling accuracy and predictive strength of feature attributes from each ODM learner were
considered and are reported in their entirety in appendices 3 and 4. The models which reached a

significant level of performance and deemed further discussion have been reported within this chapter.

In order to more readily visualise classification model accuracy, models were initially ordered based on
the AUC scores. A colour coding system was applied where model performance was described between a
scale of 0 and 1 (Table 6.1). In the case of regression model interpretation, R? values were used to initially

arrange learner outcomes prior to further investigation.

Model performance range Colour
0-0.49 No colour
0.50-0.59 Yellow
0.60-0.69 Orange
>0.70 Green

Table 6.1: Key describing colours used to indicate model performance

6.1.1 Sub-analyses : Injection doses within N1 cohort

In addition to assessment using the feature groups in section 6.3, some analyses were repeated. Where
models were deemed to have attained a significant level of performance, these were re-evaluated
considering the N1 group of 196 patients in whom there was no evidence of nAMD in the fellow eye,

either prior to or during the 12 months of the study period. Where there was a significant improvement

85
M. K. Gupta, DOptom Thesis, Aston University, 2024



in modelling outcomes, compared to the unfiltered study cohort, these results were reported within the

thesis.

6.2 Predicting injection doses in year one

Considering the total study population of 327 treatment naive eyes of 308 patients, all cases within this
group completed the first year of treatment and monitoring. The minimum number of injections
administered to any given eye within this group was three doses, effectively the loading phase only, and
the maximum was 10 doses (Table 6.2). It can be seen that the distribution was right-skewed based on
the higher instances of eyes injected with lower numbers of anti-VEGF doses (Table 6.3 and Figure 6.2)

and a dispersion of 0.33 and a standard deviation of 1.5 around the mean of 4.56 (Figure 6.1).

Distribution Mean | Mode | Median | Dispersion | Standard | Minimum | Maximum
deviation

Injections First | 4.56 3 4 0.33 1.50 3 10

Year

Table 6.2: Injections in first year summary statistics

Injections | 3 4 5 6 7 8 9 10
First

Year

n 106 77 55 48 30 7 3 1

Table 6.3: Injections in first year instances

4.56 = 1.5
I
: '

Figure 6.1: Boxplot of Injections in first year
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Figure 6.2: Histogram of Injections in first year

6.2.1 Classification analyses: Injections first year n=3, >3

The following classification analyses investigated the ability of different feature groups to differentiate
between eyes that received only the loading dose of treatment (n=3) and those that required more than
three injections (>3). The displayed results were averaged by ODM over both classes. The results for
each class (injections n=3, injections n>3) were viewed individually and if a significant correlation was
identified or if the model behaviour was notably improved compared to the averaged results, such

findings were reported.

6.2.1.1 Feature group ‘VA’
The feature group ‘VA’ was considered in relation to eyes that received only the loading dose of

treatment and those that required more than three injections.
Target: Injections first year (categories: 3, >3)

Feature group: VA
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e VA baseline visit (V0)
e VA fellow eye (VO)
e VA post loading (VP)

e VA mean of 2 visits immediately post loading

6.2.1.1.1 ODM modelling

e AdaBoost was the only algorithm to yield results across all the performance metrics; AUC, CA,
F1, precision, recall, MCC and specificity, at a level suggesting a relationship existed but with
limited predictive power given the relatively low scores of just > 0.50 (Table 6.4).

e Removing outliers in this series of models did not yield a significant improvement in
performance.

e Feature prediction was not deemed accurate in this analysis and the removal of outliers, did not
have a meaningful impact on performance.

e Sub-analysis of the N1 group (no nAMD in the fellow eye) shows similar results, with slightly

reduced scores compared to the whole cohort.

Model AUC CA F1 Precision | Recall MCC Specificity
AdaBoost 0.55 0.60 0.60 0.60 0.60 0.10 0.50
Table 6.4: AdaBoost classification model performance for total dataset of ‘VA’ group features for target 'Injections First Year

categories 3,>3'

6.2.1.2 Feature group ‘VA_st dev’
The feature group ‘VA_st dev’ was considered in relation to eyes that received only the loading dose of

treatment and those that required more than three injections.
Target: Injections first year (categories: 3, >3)
Feature group: VA_st dev

e VA baseline visit (VO)

e VA fellow eye (VO)

e VA post loading (VP)

e VA mean of 2 visits immediately post loading

e Standard deviation of VA mean, post loading -12 months (VP-V12)
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6.2.1.2.1 ODM modelling
e After removing outliers, the decision tree algorithm demonstrated statistically significant
predictive ability but at a limited level given the low scores, particularly of AUC, MCC and
specificity (Table 6.5).
e Post loading standard deviation of the VA mean (VP-V12) was the most informative feature in

differentiating between the injection classes.

Model AUC CA F1 Precision | Recall MCC Specificity
Tree 0.57 0.61 0.62 0.62 0.61 0.13 0.52

Table 6.5: Decision tree classification model performance with outliers removed of ‘VA_st dev’ group features for target

'Injections First Year categories 3,>3'

6.2.1.3 Feature group ‘VO_OCT’
The feature group ‘VO_OCT’ was considered in relation to eyes that received only the loading dose of

treatment and those that required more than three injections.
Target: Injections first year (categories: 3, >3)
Feature group: VO_OCT

e 40 HEYEX OCT inputs from baseline visit (VO)

6.2.1.3.1 ODM modelling
e After removing outlying data, Naive Bayes, kNN, AdaBoost, and Decision Tree algorithms formed
predictions at a statistically significant level across all metrics (Table 6.6) but with limited
prognostic power owing to model proximity to the no-discrimination line in ROC curves (Figure

6.3 and Figure 6.4).

Model AUC CA F1 Precision | Recall MCC Specificity
Naive 0.63 0.58 0.59 0.65 0.58 0.17 0.61

Bayes

kNN 0.59 0.67 0.66 0.65 0.67 0.19 0.50
AdaBoost 0.55 0.60 0.60 0.61 0.60 0.09 0.50

Tree 0.54 0.60 0.61 0.61 0.60 0.11 0.51

Table 6.6: Naive Bayes, kNN, AdaBoost, and Decision Tree classification model performance with outliers removed of ‘VO_OCT’

group features for target 'Injections First Year categories 3,>3'
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Figure 6.4: ROC analysis of model performance with outliers removed of ‘VO_OCT’ group features for target Injections First Year

categories n>3

6.2.1.4 Feature group ‘VP_OCT
The feature group ‘VP_OCT was considered in relation to eyes that received only the loading dose of

treatment and those that required more than three injections.
Target: Injections first year (categories: 3, >3)
Feature group: VP_OCT

e 40 HEYEX OCT inputs from post loading (VP)

6.2.1.4.1 ODM modelling

e After removing outliers, the Naive Bayes model showed statistically significant predictive ability,

but with limited accuracy (Table 6.7).
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e Sub-analysis of the N1 group showed a significant improvement in accuracy after removing
outliers, particularly for the Naive Bayes model (Table 6.8), however considering the confusion

matrix, a significant proportion of misclassifications persisted (Figure 6.5).

Model AUC CA F1 Precision | Recall MCC Specificity
Naive 0.57 0.54 0.55 0.60 0.54 0.08 0.54
Bayes

Table 6.7: Naive Bayes classification model performance with outliers removed of ‘VP_OCT’ group features for target 'Injections

First Year categories 3,>3'

Model AUC | CA F1 Precision | Recall | MCC | Specificity
Naive Bayes 0.61 0.60 0.61 0.64 0.60 0.21 0.62

Table 6.8: Naive Bayes classification model performance for N1 filtered dataset with outliers removed of ‘VP_OCT’ group

features for target 'Injections First Year categories 3,>3'

Predicted
3 >3 3
3 41 22 63
3
= =3 49 65 114
£
3 20 87 177

Figure 6.5: Confusion matrix for Naive Bayes model data instances for N1 filtered dataset of ‘VP_OCT’ group features for target

'Injections First Year categories 3,>3'

6.2.1.5 Feature group ‘VP_OCTANE’ predictions of Injections first year (n=3, >3)
The feature group ‘VP_OCTANE’ was considered in relation to eyes that received only the loading dose

of treatment and those that required more than three injections.
Target: Injections first year (categories: 3, >3)
Feature group: VP_OCTANE

e 12 OCTANE OCT inputs from baseline visit (VP)

6.2.1.5.1 ODM modelling
e The Neural Network algorithm yielded the highest accuracy scores, attaining a statistically

satisfactory level across all metrics but with overall predictive power remaining low (Table 6.9).
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e Sub-analysis of the N1 group showed that kNN and AdaBoost models reach a statistically
significant level of accuracy after removing outliers (Table 6.10). However considering

predictions of the better performing kNN algorithm, a significant proportion of misclassifications

persisted (Figure 6.6).

Model AUC CA F1 Precision | Recall MCC Specificity
Neural 0.56 0.55 0.56 0.60 0.55 0.09 0.55
Network

Table 6.9: Neural network classification model performance for total dataset of ‘VP_OCTANE’ group features for target

'Injections First Year categories 3,>3'

Model AUC | CA F1 Precision | Recall | MCC | Specificity
kNN 0.59 0.66 0.64 0.65 0.66 0.23 0.54
AdaBoost 0.56 0.58 0.58 0.59 0.58 0.12 0.54

Table 6.10: kNN and AdaBoost classification model performance for N1 filtered dataset with outliers removed of ‘VP_OCTANE’

group features for target ‘Injections First Year categories 3,>3'

Predicted
3 >3 ¥
3 21 38 59
ju
= >3 15 83 98
<
¥ 36 121 157

Figure 6.6: Confusion matrix for kKNN model data instances for N1 filtered dataset of ‘VP_OCT’ group features for target

'Injections First Year categories 3,>3'

6.2.2 Classification analyses: Injections first year n=3, 4, 5, 6, 7, 8, 9, 10

Classification analyses were undertaken with the number of injections received over the first year of
treatment considered in the categories n=3, 4, 5, 6, 7, 8, 9, 10. It was found that no learners in this series
produced models with an adequate level of predictive accuracy. While many models reached AUC scores
of 0.50 and specificity was generally high in the order of greater than or equal to 0.70, the sensitivity
and precision of the models was however relatively low, in most cases less than or equal to 0.30. This

was also the case in considering modelling indictor scores averaged over the classes and when

evaluating performance in individual categories.
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Feature determination was also relatively poor across all models as no HEYEX OCT or OCTANE features
reached a significant level of prediction. Based on chi-squared values at the 0.05 significance level, the
following features were suggestive of some degree of correlation but when considered alongside the

level of modelling accuracy, any inference drawn would be disputable.

e Fellow eye activity (outliers removed)
e VA post loading (VP) (outliers removed)
e VA baseline visit (V0) (outliers removed)

e Standard deviation of VA mean, post loading -12 months (VP-V12) (outliers removed)

6.2.3 Regression analyses: Injections First Year
The following regression analyses investigated the devised feature groups abilities to predict the

number of injections received over the first year of treatment.

6.2.3.1 Feature group ‘Demographic & qualitative’
The feature group ‘Demographic & qualitative’ was considered in relation to the number of injections

received over the first year of treatment.
Target: Injections first year
Feature group: Demographic & qualitative

e Ethnicity

e laterality

e Age At First Injection

e Sex

e Anti-VEGF drug type

e Interval 1st to 3rd injection

o Fellow eye activity

6.2.3.1.1 ODM modelling
e After removal of outliers the linear regression model shows improved performance (Table 6.11)
and Pearson correlation improved to 0.376 suggesting the presence of a relationship but at a
weak level as suggested by scatterplot of the model (Figure 6.7).
e Sub-analysis of the N1 group showed further improvement in the performance of Linear
Regression and SVM models after removing outliers (Table 6.12), with the resultant models also
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yielding the highest levels of correlation; 0.441 Pearson correlation in the case of the linear
regression model and 0.410 Pearson correlation in the case of the SVM algorithm. However, a

high level of misclassified results persisted (Figure 6.8).

Models MSE RMSE MAE R2 CVRMSE
Linear 2.00 1.42 1.19 0.13 30.94
Regression

Table 6.11: Linear regression model performance with outliers removed of ‘Demographic & qualitative’ group features for target

'Injections First Year’
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Figure 6.7: Scatterplot of linear regression model predictions, with outlying data removed, of target 'Injections First Year’

Models MSE RMSE MAE R? CVRMSE
Linear 2.14 1.46 1.23 0.18 31.62
Regression

SVM 2.28 1.51 1.25 0.13 32.66

Table 6.12: Linear regression and SVM regression model performance with outliers removed for N1 filtered dataset of

‘Demographic & qualitative’ group features for target 'Injections First Year’
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Figure 6.8: Scatterplot of linear regression model predictions, of N1 filtered group with outlying data removed, of target

'Injections First Year’

6.2.3.2 Feature group ‘VA_st dev’

The feature group ‘VA_st dev’ was considered in relation to the number of injections received over the

first year of treatment.
Target: Injections first year
Feature group: VA st dev

e VA baseline visit (V0)
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VA fellow eye (VO)

VA post loading (VP)

VA mean of 2 visits immediately post loading

Standard deviation of VA mean, post loading -12 months (VP-V12)

6.2.3.2.1 ODM modelling
e Modelling performance was considered poor across all algorithms with minimal improvement
on removing outliers.
e Standard deviation of the post loading VA mean was ranked as most important attribute (Table
6.13) in predicting anti-VEGF doses but the relatively low RReliefF score and Pearson correlation

of 0.206 suggested that any inferences drawn would have to be treated carefully.

Univariate Pearson
Feature Regression RReliefF | correlation
Standard deviation of VA 14.454 0.083 0.206

mean, post loading -12
months (VP-V12)

Table 6.13: Feature ranking in regression analyses of total dataset of ‘VA_st dev’ group features for target 'Injections First Year’

6.2.3.3 Feature group ‘VO_OCT
The feature group ‘VO_OCT’ was considered in relation to the number of injections received over the

first year of treatment.
Target: Injections first year
Feature group: VO_OCT
e 40 HEYEX OCT inputs from baseline visit (VO)

6.2.3.3.1 ODM modelling

e Modelling performance was poor across all algorithms, with minimal improvement after
removing outliers.

e Central 3mm retina;volume was ranked as the most influential feature with univariate
regression, RReliefF and Spearman correlation optimised on removing outliers (Table 6.14),
however in view of the poor model performance scores, relatively weak correlation and
comparatively low RReliefF values, any conclusions drawn from these ranking results would be

guarded.
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Univariate Spearman
Feature Regression RReliefF | correlation
VO_retina 3mm vol 24.072 0.086 0.285

Table 6.14: Feature ranking in regression analyses of dataset with outliers removed of ‘VO_OCT’ group features for target

'Injections First Year’

6.2.3.4 Feature group ‘VP_OCT’
The feature group ‘VP_OCT’ was considered in relation to the number of injections received over the

first year of treatment.
Target: Injections first year
Feature group: VP_OCT
e 40 HEYEX OCT inputs from baseline visit (VP)

6.2.3.4.1 ODM modelling

e Modelling performance was considered poor across all algorithms in this dataset with minimal
improvement in performance metrics on removing outliers.

e 3mm and 1mm retina: volumes and retina; Lmm CMT were ranked as the most influential
features (Table 6.15). Removal of outliers from the data pool did not improve the ranking scores
in this instance. In view of the poor model performance scores, relatively weak correlations and
low RReliefF values, any conclusions drawn from these ranking results would also have to be

considered carefully.

Univariate Pearson
Feature Regression RReliefF | correlation
VP_retina 3mm vol 39.657 0.058 0.330
VP_retina Imm CMT 34.611 0.061 0.310
VP_retina Imm CM vol 33.624 0.060 0.306

Table 6.15: Feature ranking in regression analyses of total dataset of ‘VP_OCT’ group features for target 'Injections First Year’

6.3  Predicting injection patterns in year one
Beyond forming categories of anti-VEGF doses based on the number of injections received or those that
received a loading phase of treatment only over three months, it proved difficult to readily extract

frequency patterns from the dataset by conventional means, particularly where the time interval
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between injections would be taken into account. It was thus decided to attempt to evaluate first year

injection instances using ODM hierarchical clustering.

6.3.1 Injection frequency modelling using hierarchical clustering
Application of hierarchical clustering involved utilising unsupervised machine learning to separate eyes

into clusters based on recognisable patterns of dosage intervals over the first year of treatment.

Within the ODM hierarchical clustering pipeline, the Euclidean distance metric was preferred to
Manhattan distances due to improved cluster formation. The number of nodes used to form clusters
was also tuned to optimise homogeneity within clusters and differentiation between clusters. Pruning

did not appear to significantly impact on clustering results in this analysis.

Silhouette plots ( Figure 6.9) were used to visualise the number of nodes that yielded the best
performance scores of clustering quality, optimising the consistency of data instances within clusters
and ensuring adequate sample sizes within clusters. After evaluation, 10 clusters produced the best

available results.
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Cluster number and mean performance score

Silhouette plot performance score
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Figure 6.9: Silhouette plot showing clustering to 10 groups by first year injection pattern with illustration of mean performance

score, instance per cluster and homogeneity to determined pattern within clusters
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To understand the clustering patterns, results from each group were analysed in Excel. Averages were

taken of the injections administered each month across each cluster, calculating the mean to a whole

number to more easily visualise whether typically an anti-VEFG dose was received in any given month

(Table 6.16). The standard deviation of the means of each month in turn indicated the confidence in

each value and effectively how homogenous the treatment pattern was within cases assigned to a

cluster. Combination scatter and column charts (Appendix 9) where additionally complied to help

visualise the injection patterns and the spread in the results for each month.

Month 0 1 2 3 4 V5 |6 7 8 9 10 11 (12
Mean of injections

Cluster 1 |received 1 1 1 0 0 0 0 0 0 0 0 0 0
Standard deviation |0.00 [0.00 |0.00 |0.00 |0.00 (0.00 |0.00 |0.00 |0.30 |0.00 |0.00 |0.00 |0.00
Mean of injections

Cluster 2 |received 1 1 1 0 0 0 1 0 0 0 0 0 0
Standard deviation |0.00 [0.00 |0.00 |0.00 |0.00 (0.22 |0.00 |0.41 |0.31 |0.00 |0.44 |0.00 |0.00
Mean of injections

Cluster 3 |received 1 1 1 0 1 0 1 0 0 1 0 1 0
Standard deviation [0.00 |0.00 (0.00 |0.25 |0.50 |0.25 |0.00 |0.34 |0.00 |0.00 |0.25 |0.47 |0.00
Mean of injections

Cluster 4 |received 1 1 1 0 0 0 0 1 0 0 0 0 0
Standard deviation [0.00 |0.00 (0.00 |0.26 |0.26 |0.49 |0.19 |0.00 |0.19 |0.45 |0.35 |0.00 |0.50
Mean of injections

Cluster 5 |received 1 1 1 0 1 0 0 0 0 0 1 0 0
Standard deviation [0.00 |0.00 (0.00 |0.00 |0.48 |0.00 |0.00 [0.45 |0.26 |0.31 |0.50 |0.41 |0.41
Mean of injections

Cluster 6 |received 1 1 1 0 0 0 0 0 0 1 0 0 0
Standard deviation [0.00 |0.00 (0.00 |0.00 |0.00 |0.49 |0.00 {0.00 |0.00 |0.00 |0.23 |0.00 |0.31
Mean of injections

Cluster 7 |received 1 1 1 0 0 1 0 0 0 0 0 0 0
Standard deviation [0.00 |0.00 (0.00 |0.00 |0.00 |0.19 |0.00 [0.00 |0.50 |0.39 |0.50 |0.00 |0.31
Mean of injections

Cluster 8 |received 1 1 1 0 0 0 0 0 0 0 0 1 0
Standard deviation [0.00 |0.00 (0.00 |0.20 |0.20 |0.50 |0.37 |0.47 |0.49 |0.20 |0.00 |0.00 |0.40
Mean of injections

Cluster 9 |received 1 1 1 0 0 0 0 0 0 0 0 0 1
Standard deviation [0.00 |0.00 (0.00 |0.00 |0.00 |0.43 |0.45 |0.00 |0.49 |0.35 |0.00 |0.26 |0.00

Cluster Mean of injections

10 received 1 1 1 1 0 1 0 0 0 0 0 0 0
Standard deviation [0.00 |0.21 (0.49 |0.00 |0.43 |0.50 |0.47 |0.47 |0.50 |0.43 |0.39 |0.35 |0.49

Table 6.16: Injections patterns within clusters determined from mean of injections received at each visit and standard deviation

in the mean
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Cluster one could be considered as having most readily interpretable pattern with injections received
monthly for only the first three months of the entire year. Only the standard deviation in month eight
was raised showing increased variability in the cluster pattern at this single interval. This analysis
corresponded with results shown in the silhouette plot where a large proportion of the group could be
seen as having a high and similar level of clustering scores. This homogeneity of treatment patterns

could also be seen in the box and whisker chart for cluster one (Figure 6.10).

Cluster 1
1.00 ° ° °
- 0.80
(0]
2
(]
O
b
» 0.60
C
R
k3]
A
£ 0.40
=
(@]
C
©
Q
= 0.20
0.00 ° ° ° ° ° ° ° ° ° °
MO M1 M2 M3 M4 M5 M6 M7 M8 M9  M10 M1l  M12
Month

Standard deviation ® Mean of injections received

Figure 6.10: Combination scatter and column chart of Cluster 1 showing distribution of injections received per month

Cluster 10, in contrast to cluster one, had a treatment pattern where the results from the majority of
months (barring months one and four) showed an elevated standard deviation in the mean injections
received in each interval. The scatter and column chart (Figure 6.11) also showed greater dispersion of
means and greater variability within the averaged results, particularly in months 2, 5, 6, 7, 8 and 12. The
silhouette plot, which showed low clustering scores and a high degree of variability in the scores for

cluster 10, was therefore in agreement with these findings.
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Cluster 10
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Figure 6.11: Combination scatter and column chart of Cluster 10 showing distribution of injections received per month

The remaining injections patterns and the standard deviation in the mean values, determined from table
6.16, and the box and whisker plots, from Appendix 3, were also evaluated in relation to the results form
the silhouette plot. In general, there appeared to be a high level of concurrence where clusters with
tighter distributions in the means corresponded to higher clustering scores and showed greater

homogeneity within the plots with the reverse true of clusters with greater dispersion of dosing means.

In addition to evaluating the monthly pattern of injections, the mean of the total injections received by
each eye over 12 months within each cluster and size of each cluster were also considered (Table 6.17).
An immediate relationship was not however apparent which would relate these data to the silhouette

plot clustering scores.
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Mean of total Standard Instances within

injectionsin 12 | deviation of cluster

months mean
Cluster 1 3.1 0.30 118
Cluster 2 4.6 0.67 19
Cluster 3 6.5 0.81 15
Cluster 4 5.5 1.35 28
Cluster 5 5.1 1.00 28
Cluster 6 4.6 0.83 18
Cluster 7 5.2 1.17 27
Cluster 8 5.7 0.97 25
Cluster 9 5.1 0.87 28
Cluster 10 6.4 1.87 21

Table 6.17: Cluster data of the mean of the total injections received by each eye over 12 months in each group, standard

deviation of the mean and cluster size.

The findings thus strongly suggested that the hierarchical clustering algorithm based the groupings on

the monthly treatment pattern.

6.3.2 Classification analyses: Injection pattern first year (categories: clusters 1, 2, 3, 4,5, 6, 7, 8, 9, 10)
Classification analyses were performed to in an attempt to predict treatment patterns determined by
ODM hierarchical clustering. It was found however that no learners produced models with an adequate

level of performance.

The following characteristics did reach a meaningful level of prediction in differentiating between the
classes based on chi-squared values at the 0.05 significance level, however when considered alongside

the level of modelling accuracy, any inferences drawn would be disputable.

e Time interval 1st to 3rd injection (full dataset)
e Fellow eye activity (full dataset)

e Age At First Injection (full dataset)

e VA fellow eye (VO) (full dataset)

e Standard deviation of VA mean, post loading -12 months (VP-V12) (full dataset)

6.4  Discussion
This section aims to summarise previous studies which have attempted similar investigations, discuss
the results from this body of work in predicting anti-VEGF dosing and, in the cases of stronger

relationships, to assess in more detail how individual features influence injection outcomes.
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Prior work by Bogunovié et al. (2017) to predict treatment frequency has included a reanalysis of the
PRN arm of the landmark HARBOUR study which in 2013 published results on ranibizumab dosing
(Busbee et al., 2013). The post-hoc study divided the cohort into low and high retreatment subgroups
finding that random forest based models achieved AUC scores of 0.7 and 0.77, respectively, in
differentiating between the classes. Feature analysis within their study determined SRF volume within
the central 3mm subfield at month 2 to have the highest predictive value with 1mm total retinal

thickness and IRF within the 3mm central macular zone to also deemed to be discriminative.

A study carried out by Pfau et al. (2021) has already been considered within chapter 1. Regression
analyses from their work, attempting to predict anti-VEGF PRN treatment frequency over 12 months
from OCT biomarkers, devised a random forest based model (R? = 0.39) and a natural gradient boosting
model (R? = 0.094) which demonstrated significant relationships. Based on their retinal apportionment,
sub RPE volume, sub RPE drusenoid complex thickness and inner segment layer thickness were found be

the most statistically significant features in predicting anti-VEFG treatment frequency .

TREND was another pivotal study which helped to evaluate the safety and efficacy of delivering
ranibizumab in a treat and extend regimen in nAMD (Silva et al., 2018). Bogunovié et al. (2022) again
performed a retrospective analysis of patients from this study to create models that would differentiate
between those with high disease activity and requiring more frequent retreatment at shorter intervals
against those in whom treatment intervals could be extended. Their random forest model predicted the
extendable treatment interval group with an averaged AUC of 0.71. VA change from baseline to the first
follow up, at one month, and volume of SRF remaining at the first follow up were found to be the most

important predictive markers in predicting treatment intervals.

In this study, where anti-VEGF dosing modelling was attempted to categorise eyes by the actual number
of injections received or the temporal pattern in which injections were administered, modelling
accuracy failed to reach an acceptable level. This was based on AUC, CA, precision, recall and specificity
collectively all failing to reach a level above 50%. This in turn rendered the clinical application of results
from the models inappropriate. Fellow eye disease activity, baseline VA and the standard deviation of
the VA mean, post loading until month 12, were only features within both series of analyses to yield chi-

squared values, at an a level of 0.05, suggesting they had some bearing in predicting injection dosing.

In trying to differentiate between eyes that required three or more than three injections, modelling

performance improved significantly. Of the feature groups where modelling accuracy was above 50%
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collectively across AUC, CA, precision, recall and specificity, the most accurate model from each group is
considered below (Table 6.18). It was found that the Naive Bayes learner produced the highest degree
accuracy, AUC of 0.63, in considering baseline HEYEX OCT (VO_OCT) variables. Considering however the
confusion matrix for Naive Bayes performance, there were still a significant proportion of
misclassifications (Figure 6.12) thus results remained at a level where predictions would have to treated

carefully in clinical applications.

Feature group | Model AUC | Dataset Most informative feature
VA AdaBoost 0.55 | Full VA fellow eye (VO0)
VA_stdev Tree 0.57 | Outliers removed | VA fellow eye (VO)
VO_OCT Naive Bayes 0.63 | Outliers removed | VO_GCL 1mm CM vol
VP_OCT Naive Bayes 0.57 | Outliersremoved | VP_GCL 1mm CM vol
VP_OCTANE Neural Network | 0.56 | Full VP_vol_drusenoid_ped

Table 6.18: Models predicting Injections first year (n=3, >3) with highest levels of accuracy from each feature group (where

adequate level of performance was found), model AUC, dataset sample considered and most informative feature within model
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Figure 6.12: Confusion matrix for Naive Bayes model predictions of ‘VO_OCT’ group features with outliers removed for target

'Injections First Year categories 3,>3'

Features predictive of differentiating between eyes that required three or more than three injections
were more difficult to determine. While the most informative feature within each best performing
model was extracted (Table 6.18), the indictors determining the prognostic ability of these variables
suggested relatively poor performance. Standard deviation of the post loading VA mean showed the
best level of predictive performance of any individual variable scoring relatively highly across all feature
prediction indictors and reaching a chi-squared score which demonstrated significance but at an a level
of 0.1. In considering the influence of the post loading VA standard deviation on dosing, it was easier to
consider a logistic regression nomogram (Figure 6.13). The diagram effectively showed that as standard

deviation decreased to a minimum of 0.4, probability increased to maximum of 50% of only requiring
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three injections. The reverse was the case when considering those that required more than 3 injection
where a standard deviation of 0.4 again implied a 50% probability of requiring more then 3 injections

but this probability rapidly increased as the standard deviation rose.

0.0 1.0 2.0 3.0 4.0
Scale: () Point scale

Points L

(@ Log odds ratios

Displayed features

Order: | Original order W |

VA mean St dev post loading 20.3
Show: () All features

(@) Best ranked:

| 704+

13.7 4+

MNumeric features: | 2D curve » 0.4

Total

Probabilities (%o) 10 20 40 60 80 90

Figure 6.13: Logistic regression nomogram demonstrating effect of the standard deviation of VA mean, post loading -12 months

(VP-V12) on differentiating between the classes, Injections first year (n=3, >3)

In evaluating eyes that required three or more than three injections, the only analyses where N1
filtering produced a significant improvement in performance was in the feature group ‘VP OCT’ (post
loading HEYEX OCT variables). The Naive Bayes model AUC improved to 0.61 in this case but as
previously shown in the confusion matrix (Figure 6.5), a significant proportion of misclassifications
persisted. Ranking performance also remained at a level where statistical significance was not

demonstrated.

Regression models were also produced to investigate relationships between the features and doses of
anti-VEGF administered. In this series of analyses, only the group comprising demographic & qualitative
features were found to demonstrate a significant relationship with injection administered in year one.
The best performing linear regression model coefficient of determination of 0.13 and 0.376 Pearson
correlation however suggested a rather weak relationship which could be visualised within the model

scatterplot (Figure 6.7). R? (0.18) and Pearson correlation (0.441) improved marginally when considering
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the N1 sub-cohort of 196 patients in whom there was no evidence of nAMD in the fellow eye, but not to

a level where there was an obviously increase in modelling performance.

Within regression analyses predicting anti-VEGF treatment doses, feature ranking failed to determine
any characteristics which consistently scored at levels across univariate regression, RReliefF and
correlation what would suggest appropriate predictive ability.
6.5 Key Findings
e Predicting the exact number of injections or the specific pattern of injections over one year
proved challenging.
e Models differentiating between eyes that require only the loading dose (3 injections) and those
that need more showed improved accuracy.
o The Naive Bayes classifier, using baseline HEYEX OCT measures, predicted the need for more
than 3 injections with an AUC of 0.63.
o Fellow eye visual acuity, baseline GCL volume, post loading GCL volume, and post loading
drusenoid PED volume were the most informative features in predicting the need for more than
3 injections.
e The standard deviation of the VA mean post loading demonstrated a weak but statistically
significant influence on predicting the number of injections.
e Retina; thicknesses and volumes measured at baseline and post loading showed weak positive

relationships with the number of injections administered.
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7 Features relevant in predicting visual acuity and visual prognosis

7.1 Introduction
This chapter aims to present the analyses and results related to visual acuity and visual prognosis over

one year of those undergoing management of nAMD with anti-VEGF.
Visual acuity outcomes were considered in terms of:

e final visual acuity after 12 months of treatment

e change in visual acuity at 12 months from baseline

e change in visual acuity over 12 months when considered as slope of line of best fit through VA
datapoints

e standard deviation of VA mean over 12 months

Analyses were undertaken by classification and regression modelling. These used the variables on which
information was gathered during the study, including OCT based characteristics, visual acuity measures
and demographic information, all of which were listed in chapter 5 within defined feature groups. These
predictors were inputted to ODM based pipelines in an attempt to forecast VA over the first year of

treatment and the features relevant in forming such predictions.

The modelling accuracy and predictive strength of feature attributes from each ODM learner were
considered and are reported in their entirety in appendices 3 and 4. The models which reached a

significant level of performance and deemed further discussion have been reported within this chapter.

In order to more readily visualise classification model accuracy, models were initially ordered based on
the AUC scores. A colour coding system was applied where model performance was described between
ascale of 0 and 1 (Table 7.1). In the case of regression model interpretation, R? values were used to

initially arrange leaner outcomes prior to further investigation.

Model performance range Colour
0-0.49 No colour
0.50-0.59 Yellow
0.60-0.69 Orange
>0.70 Green

Table 7.1: Key describing colours used to indicate model performance
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7.1.1 Sub-analyses : VA outcomes within N1 cohort

In addition to assessment using the feature groups in section 6.3, some analyses were repeated. Where
models were deemed to have attained a significant level of performance, these were re-evaluated
considering the N1 group of 196 patients in whom there was no evidence of nAMD in the fellow eye,
either prior to or during the 12 months of the study period. Where there was a significant improvement
in modelling outcomes, compared to the unfiltered study cohort, these results were reported within the

thesis.

7.1.2  Follow up attendances first year

After the baseline measures and three loading doses of anti-VEGF were administered, the 308 patients
within the study population attended between six and 11 follow up visits within the first year at which
visual acuity was reassessed (Table 7.2 and Figure 7.1). The majority of the group attended for eight or

nine visits with the mean number of visits found to be 8.28 with a standard deviation of 1.3.

Distribution Mean | Mode | Median | Dispersion | Standard | Minimum | Maximum
deviation

Follow up 8.28 9 8 0.15 1.3 6 11

attendances first

year

Table 7.2: Follow up visits in first year summary statistics
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Figure 7.1: Histogram of follow up visits in first year

7.2 Visual acuity at 12 months

Visual acuity was recorded in letter score format and at 12 months varied between a maximum of 94

letters and a minimum of 18 letters (Table 7.3). It can be seen from the distribution plot (Figure 7.2) that

VA had a left skewed distribution around a mean of 60.99 letters.

Distribution Mean | Mode | Median | Dispersion | Standard | Minimum | Maximum
deviation
Visual acuity at 60.99 | 73 64 0.25 15.44 18 94
12 months
Table 7.3: VA at 12 months summary statistics

M. K. Gupta, DOptom Thesis, Aston University, 2024

111




20 |

8|

16 |

gy

Frequency
-
(=]

1

[=]

=]

o

o+

3%}

[=]

w—1=60.99, 0=15.44

20

30

40

50

60

VA final 12 months

70

a0

90

Figure 7.2: Distribution of VA at 12 months

VA was also sorted into categories based on the acuity measure gained at 12 months (Table 7.4 and

Figure 7.3).
Categories
(letter) <30 31-40 41-50 51-60 61-70 71-80 >80
Instances | 17 23 31 66 89 83 18

Table 7.4: Categories of VA at 12 months and instances per group
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Figure 7.3: Histogram of instances within categories of VA at 12 months

7.2.1 Classification analyses: VA at 12 months (categories: letter score VA <30, 31-40, 41-50, 51-60,
61-70, 71-80, >80)

The following classification analyses investigated the devised feature groups in relation to the visual

acuity within the classes; letter score VA <30, 31-40, 41-50, 51-60, 61-70, 71-80, >80. The displayed

results were averaged by ODM over the seven groups. The results for each category were however

viewed individually and if a significant correlation was identified or if the model behaviour was notably

improved compared to the averaged results, such findings were reported.

7.2.1.1 Feature group ‘VA’

The feature group ‘feature group ‘VA’ was considered in relation to VA at 12 months.
Target: VA at 12 months (categories: letter score VA <30, 31-40, 41-50, 51-60, 61-70, 71-80, >80)
Feature group: VA

e VA baseline visit (V0)
e VA fellow eye (VO)
e VA post loading (VP)

e VA mean of 2 visits immediately post loading
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7.2.1.1.1 ODM modelling

On considering the class VA 71-80 letters individually, with outliers removed, the models based

on SVM, logistic regression and a neural network did reach an appropriate level of accuracy
across all indictors (Table 7.5). The confusion matrix for SVM model (Figure 7.4) did however
continue to show a significant number of misclassifications, even within the VA 71-80 letters
grouping, thus results remained at a level where prediction may be deemed unreliable.

All attributes in this case demonstrated a significant relationship, at the 0.05 a level based on
chi-squared scores, in predicting between the VA classes (Table 7.6). VA mean of the 2 visits
post loading, in particular, performed satisfactorily across all indictors however given that the
modelling accuracy was questionable, reported feature ranking results would have to be

interpreted with care.

Model AUC CA F1 Precision Recall | MCC Specificity
SVM 0.81 | 0.75 | 0.60 |0.52 0.70 | 0.43 0.77
Logistic 0.80 | 0.74 | 059 |0.51 0.69 | 0.42 0.76
Regression

Neural Network | 0.79 | 0.74 | 0.57 | 0.51 0.64 | 0.39 0.78

Table 7.5: Classification model performance with outliers removed for dataset of ‘VA’ group features for target ‘VA at 12 months

(categories: letter score VA 71-80)

Actual

Predicted
31-40 41-50 51-60 61-70 71-80 <30 =80 ¥
31-40 5 2 8 2 2 1 0 20
41-50 2 1 12 5 5 0 0 25
51-60 1 2 39 15 5 0 0 62
61-70 1 1 21 36 26 0 0 85
71-80 0 0 3 21 56 0 0 80
<30 7 0 6 1 0 0 0 14
=80 0 0 0 1 13 0 0 14
¥ 16 6 89 81 107 1 0 300

Figure 7.4: Confusion matrix for SVM classification model predictions for dataset with outliers removed of ‘VA’ group features

for target

‘VA at 12 months (categories: letter score VA <30, 31-40, 41-50, 51-60, 61-70, 71-80, >80)’
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Feature Info. Gain Gini ANOVA | x2 ReliefF | FCBF

gain ratio

VA mean initial 2 visits post 0.528 | 0.264 | 0.107 | 58.458 | 129.364 | 0.037 0.305

loading

VA post loading (VP) 0.480 | 0.240 | 0.095 | 48.903 | 120.513 | 0.030 | 0.000
VA baseline visit (VO) 0.201 | 0.101 | 0.037 | 19.715 | 63.427 | 0.015 | 0.000
VA fellow eye (V0) 0.073 | 0.037 | 0.017 | 3.059 17.115 | 0.010 | 0.033

Table 7.6: Feature ranking in classification analyses of total dataset of ‘VA’ group features for target ‘VA at 12 months

(categories: letter score VA <30, 31-40, 41-50, 51-60, 61-70, 71-80, >80)’

7.2.1.2

Feature group ‘VA_st dev’

The feature group “VA_st dev’ was considered in relation to VA at 12 months.

Target: VA at 12 months (categories: letter score VA <30, 31-40, 41-50, 51-60, 61-70, 71-80, >80)

Feature group: VA_st dev

VA baseline visit (VO)

VA fellow eye (VO)

VA post loading (VP)

VA mean of 2 visits immediately post loading

Standard deviation of VA mean, post loading -12 months (VP-V12)

7.2.1.2.1 ODM modelling

After removing outliers, the model based on gradient boosting, reached an appropriate level of
accuracy in predicting those within the 51-60 and 71-80 letter classes (Table 7.7 and Table 7.8).
The confusion matrix for the gradient boosted model (Figure 7.5) did however continue to show
a significant number of misclassifications, even within the 51-60 and 71-80 letters groupings,
thus results remained at a level where prediction may not be of practical use.

All attributes in this case demonstrated a significant relationship, at the 0.05 a level based on
chi-squared scores, in predicting between the classes with the VA mean of the 2 visits post

loading, being the most informative feature, performing well across all indictors (Table 7.9).
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Model AUC CA F1 Precision Recall | MCC Specificity
Gradient 0.82 (0.79 |0.51 |O0.50 0.52 | 0.38 0.86
Boosting

Table 7.7: Classification models with adequate performance with outliers removed for dataset of ‘VA_st dev’ group features for

target ‘VA at 12 months (categories: letter score VA 51-60)’

Model AUC CA F1 Precision Recall | MCC Specificity
Gradient 0.82 | 0.77 0.56 | 0.56 0.55 0.40 0.85
Boosting

Table 7.8: Classification models with adequate performance with outliers removed for dataset of ‘VA_st dev’ group features for

target ‘VA at 12 months (categories: letter score VA 71-80)

Actua

31-40

41-50

51-60

61-70

71-80

<30

>80

31-40

21

41-50

22

51-60

33

19

66

Predicted

61-70

4

6

14

37

25

87

71-80

0

0

3

22

78

<30

14

>80

12

18

26

63

85

80

14

14

300

Figure 7.5: Confusion matrix for gradient boosted classification model predictions for dataset with outliers removed of ‘VA’

group features for target ‘VA at 12 months (categories: letter score VA <30, 31-40, 41-50, 51-60, 61-70, 71-80, >80)’
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Feature Info. Gain Gini ANOVA | x2 ReliefF | FCBF

gain ratio

VA mean initial 2 visits post

loading 0.528 | 0.264 | 0.107 | 58.458 | 129.364 | 0.071 0.305
VA post loading (VP) 0.480 | 0.240 | 0.095 | 48.903 | 120.513 | 0.057 0.000
VA baseline visit (VO) 0.201 | 0.101 | 0.037 | 19.715 | 63.427 | 0.020 0.000

Standard deviation of VA
mean, post loading -12

months (VP-V12) 0.124 | 0.062 | 0.020 | 11.989 | 35.180 | 0.042 0.058

VA fellow eye (VO) 0.073 | 0.037 | 0.017 | 3.059 17.115 | 0.012 0.033

Table 7.9: Feature ranking in classification analyses of total dataset of ‘VA_st_dev’ group features for target ‘VA at 12 months

(categories: letter score VA <30, 31-40, 41-50, 51-60, 61-70, 71-80, >80)’

7.2.2 Regression analyses: VA at 12 months
The following regression analyses investigated the visual acuity at 12 months as a continuous variable

using the devised feature groups.

7.2.2.1 Feature group ‘VA’

The feature group ‘VA’ was considered in relation to the VA at 12 months.
Target: VA at 12 months
Feature group: VA

e VA baseline visit (V0)
e VA fellow eye (VO)
e VA post loading (VP)

e VA mean of 2 visits immediately post loading

7.2.2.1.1 ODM modelling
e On removing outlying data, the linear regression model showed improved performance (R? =
0.50, Pearson correlation = 0.711) (Table 7.10) . The scatterplot of the linear regression based
model (Figure 7.6) also began to suggest a degree of linearity but with the persistence of a

significant degree of misestimation.
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e Baseline visit VA was the most influential attribute according to the Rank widget, but the VA

mean of 2 visits immediately post-loading shows a stronger relationship with VA at 12 months

based on univariate regression and correlation results (Table 7.11). When additionally

considering features most informative to the linear regression model (Figure 7.7), the VA mean

of 2 visits immediately post loading again showed greater influence than the other attributes.

The scatterplot of the VA mean of 2 visits immediately post loading plotted against VA at 12

months also suggests a linear relationship (figure 7.8) but with a significant degree of predictive

error.

e Sub-analysis of the N1 group (no nAMD in the fellow eye) showed further improvement in the

Linear Regression model performance (R? = 0.56, Pearson correlation = 0.749) after removing

outliers (Table 7.12).

Models MSE RMSE MAE R? CVRMSE Pearson correlation
Linear 110.94 | 10.53 7.51 0.50 17.15 0.711
Regression

Table 7.10: Linear regression model performance with outliers removed for total dataset of ‘VA’ group features for target 'VA at

12 months’
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Figure 7.6: Scatterplot of linear regression model predictions, with outliers removed, for total dataset of ‘VA’ group features for

target 'VA at 12 months’

immediately post loading

Univariate Spearman
Feature Regression RReliefF | correlation
VA baseline visit (V0) 114.170 0.091 | 0,514
VA fellow eye (VO) 7.448 0.106 0.222
VA post loading (VP) 295.823 0.065 | 0.694
VA mean of 2 visits 346.402 0.069 0.722

Table 7.11: Feature ranking and Spearman correlation in regression analyses of total dataset of ‘VA’ group features for target

‘VA at 12 months’
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VA mean of 2 visits
immediately post loading

VA baseline visit (V0)

VA post loading (VP)

VA fellow eye (VO)

I T
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Feature .
Decrease in R2

Figure 7.7: Feature importance in linear regression model predictions, with outliers removed, for total dataset of ‘VA’ group

features for target ‘VA at 12 months’ ranked by influence on R?
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Figure 7.8: Scatterplot of VA mean of 2 visits immediately post loading plotted against VA at 12 months

Models MSE RMSE MAE R? CVRMSE Pearson correlation
Linear 104.90 | 10.24 7.24 0.56 16.68 0.749
Regression

Table 7.12: Linear regression model performance for N1 filtered dataset, with outliers removed, of ‘VA’ group features for target

'VA at 12 months’

7.2.2.2 Feature group ‘VA_st deV’

The feature group ‘VA_st dev’ was considered in relation to the VA at 12 months.

Target: VA at 12 months

Feature group: VA st dev

e VA baseline visit (V0)

e VA fellow eye (VO)

e VA post loading (VP)
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e VA mean of 2 visits immediately post loading

e Standard deviation of VA mean, post loading -12 months (VP-V12)

7.2.2.2.1 ODM modelling

e After removing outliers, the Linear Regression model shows improved performance (R? = 0.59,
Spearman correlation = 0.774) (Table 7.13). The scatterplot of the linear regression based model
(Figure 7.9) also demonstrated linearity but with some degree of misestimation.

e VA mean of the 2 visits immediately post loading was ranked as the most influential attribute

(Table 7.17).
Models MSE RMSE MAE R? CVRMSE Spearman correlation
Linear 90.61 | 9.52 6.80 0.59 15.48 0.774
Regression

Table 7.13: Linear regression model performance with outliers removed for total dataset of ‘VA_st_dev’ group features for

target 'VA at 12 months’
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Figure 7.9: Scatterplot of linear regression model predictions, with outliers removed, for total dataset of ‘VA_st-dev’ group

features for target 'VA at 12 months’
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Univariate Spearman
Feature Regression RReliefF | correlation
VA mean of 2 visits 346.402 0.074 0.722
immediately post loading
VA post loading (VP) 295.823 0.074 0.694
VA baseline visit (VO) 114.170 0.081 0.514
VA fellow eye (VO) 7.448 0.124 | 0.222
Standard deviation of VA 67.354 0.145 -0.364
mean, post loading -12
months (VP-V12)

Table 7.14: Feature ranking and Spearman correlation in regression analyses of total dataset of ‘VA_st_dev’ group features for

target ‘VA at 12 months’

7.2.2.3 Feature group ‘VP_OCT
The feature group ‘VP_OCT’ was considered in relation to the VA at 12 months.

Target: VA at 12 months
Feature group: VP_OCT
e 40 HEYEX OCT inputs from baseline visit (VP)

7.2.2.3.1 ODM modelling
e After removing outliers, the Gradient Boosting model showed some improvement in
performance (R? = 0.14, Gradient Boosting = 0.404), but the relationship remained weak (Table
7.15) with the scatterplot of the model predictions model showing significant dispersion around
the best fit line (Figure 7.10).
e GCL volume over the central 3mm zone was ranked as the most influential feature (Table 7.16)
however in view of the moderate model performance scores and relatively uniform RReliefF

values, any conclusions drawn from these ranking results would however be guarded.

Models MSE RMSE MAE R? CVRMSE | Gradient

Boosting
Gradient 202.35 | 14.23 11.22 | 0.14 23.22 0.404
Boosting

Table 7.15: Gradient Boosting regression model performance with outliers removed for dataset of ‘VP_OCT’ group features for

target 'VA at 12 months’
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Figure 7.10: Scatterplot of gradient boosting model predictions, with outliers removed, for total dataset of ‘VP_OCT’ group

features for target 'VA at 12 months’

Univariate
Feature Regression RReliefF
VP_GCL 3mm vol 34.234 0.119
VP_IPL 3mm vol 30.866 0.085
VP_IRLs 3mm vol 16.066 0.103
VP_IPL min CMT 13.221 0.107
VP_OPL 3mm vol 8.081 0.114

Table 7.16: Feature ranking in regression analyses of total dataset of ‘VP_OCT’ group features for target 'VA at 12 months’
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7.3  Mean of VA from final 2 visits in first year

Visual acuity was also considered at 12 months but as the mean of the letter score results from the final

two visits in first year. The purpose of this was to account for fluctuation in VA and establish whether

would have any bearing on modelling outcomes. The VA mean again formed a left skewed distribution

around a mean of 61.24 letters (Table 7.17 and Figure 7.11) in a similar manner to the distribution of VA

at 12 months. Classification and regression analyses were repeated using the mean VA of the final 2

visits in the first year, however, this approach did not significantly improve modelling outcomes or

reveal new relationships. Modelling results are reported fully in appendices 6, 7 and 8.

(mean of VA
from final 2
visits) (letter
score)

Distribution Mean | Mode | Median | Dispersion | Standard | Minimum | Maximum
deviation
VA at 12 months | 61.24 | 72.5 61.24 0.24 14.76 20.50 94.0

Table 7.17: VA at 12 months summary statistics (mean of VA from final 2 visits)
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Figure 7.11: Distribution of VA at 12 months (mean of VA from final 2 visits) (letter score)

7.4

Change in visual acuity at 12 months from baseline

Visual acuity, recorded in letter score format, was available from baseline visits and at 12 months for all

study eyes. Subtracting the two measures yielded the change in VA over the initial 12 months of

management of those treated for nAMD. The 12 month VA change formed a slightly left skewed

distribution (Figure 7.12) around a mean gain of 1.16 letters with a maximum gain of 37 letters and

greatest loss found to be 49 letters (Table 7.18).
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Figure 7.12: Distribution of change in VA, baseline — month 12

Distribution

Mean

Mode | Median | Dispersion | Standard

deviation

Minimum

Maximum

Change in VA,
baseline —
month 12

(letter score)

1.16

5 3 11.99 13.86

37

Table 7.18: Change in VA, baseline — month 12, summary statistics

Change in VA was also sorted into two categories (Table 7.19 and Figure 7.13), those that did not lose or

indeed gained VA (change >0 letters) and eyes that lost any degree of VA (change <-1 letters).
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Categories (VA) Gained | Lost

VA change (letter score) | 20 <1

Instances 189 138

Table 7.19: Categories of change in VA, baseline — month 12 and instances per group
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Figure 7.13: Histogram of instances within two categories of change in VA, baseline — month 12

7.4.1 Classification analyses: Change in VA, baseline - month 12 (categories: VA gained, lost)

The following classification analyses investigated the devised feature groups in relation to the change in
visual acuity over 12 months within the classes VA gained or lost. The displayed results were averaged
by ODM over the two groups. The results for each category were however viewed individually and if a
significant correlation was identified or if the model behaviour was notably improved compared to the

averaged results, such findings were reported.

7.4.1.1 Feature group ‘Demographic & qualitative’
The feature group ‘Demographic & qualitative’ was considered in relation to Change in VA, baseline -

month 12.
Target: Change in VA, baseline - month 12 (categories: VA gained, lost)

Feature group: Demographic & qualitative
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e Ethnicity

e Laterality

e Age At First Injection

e Sex

e Anti-VEGF drug type

e Interval 1st to 3rd injection

o Fellow eye activity

7.4.11.1

e Removal of outlying data in this series improved modelling accuracy to a level of significance
(Table 7.20) with all learners except those based on Naive Bayes, logistic regression and SVM

returning adequate levels of performance across all indicators.

ODM modelling

e The gradient boosting model displayed the highest accuracy however the confusion matrix for

the model (Figure 7.14) continued to show a significant number of misclassifications.
e Sub-analysis of the N1 group showed improved accuracy for several models after removing
outliers, with kNN showing the highest accuracy (table 7.21).

e The confusion matrix of the kNN based model (Figure 7.15) demonstrated the improved

sensitivity of the model but the specificity remined relatively low.

Model AUC CA F1 Precision Recall | MCC Specificity
Gradient 0.60 | 0.57 | 0.57 | 0.56 0.57 | 0.11 0.53
Boosting

AdaBoost 0.60 | 0.56 | 0.56 | 0.55 0.56 | 0.08 0.52
Neural Network | 0.59 | 0.60 | 0.60 | 0.59 0.60 | 0.17 0.56
kNN 0.58 | 0.58 | 0.57 | 0.57 0.58 | 0.12 0.54
Random Forest 0.57 | 0.59 | 0.58 | 0.58 0.59 | 0.14 0.55
Tree 0.56 | 0.58 | 0.58 | 0.58 0.58 | 0.13 0.55
Naive Bayes 0.55 | 056 | 054 |0.54 0.56 | 0.06 0.49
Logistic 0.55 | 0.55 | 0.51 |0.52 0.55 | 0.01 0.46
Regression

SVM 0.52 | 055 | 054 |0.54 0.55 | 0.05 0.50

Table 7.20: Classification model performance with outliers removed of dataset of ‘Demographic & qualitative’ group features for

target ‘Change in VA, baseline - month 12 (categories: VA gained, lost)’
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Predicted

gained lost 3
gained 120 53 173
=
=3
5 lost 74 51 125
<
¥ 194 104 298

Figure 7.14: Confusion matrix for gradient boosting classification model predictions for dataset with outliers removed for

‘Demographic & qualitative’ group features for target ‘Change in VA, baseline - month 12 (categories: VA gained, lost)’

Model AUC | CA F1 Precision | Recall | MCC | Specificity
kNN 0.65 0.63 0.63 0.63 0.63 0.20 0.56
Neural Network | 0.61 0.66 0.65 0.64 0.66 0.22 0.55
Tree 0.60 0.64 0.63 0.63 0.64 0.19 0.53
Random Forest 0.58 |[0.64 |0.64 |0.63 0.64 0.20 0.54
AdaBoost 0.57 0.60 0.59 0.59 0.60 0.10 0.51

Table 7.21: Classification models demonstrating adequate level of performance for N1 filtered dataset with outliers removed of

dataset of ‘Demographic & qualitative’ group features for target ‘Change in VA, baseline - month 12 (categories: VA gained,

lost)’
Predicted
gained lost 3
gained 85 33 118
£ lost 34 31 65
<
2 119 64 183

Figure 7.15: Confusion matrix for kNN classification model predictions for N1 filtered dataset with outliers removed for

‘Demographic & qualitative’ group features for target ‘Change in VA, baseline - month 12 (categories: VA gained, lost)’
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7.4.1.2

Feature group VA’

The feature group ‘VA’ was considered in relation to Change in VA, baseline - month 12.

Target: Change in VA, baseline - month 12 (categories: VA gained, lost)

Feature group: VA

VA baseline visit (VO)
VA fellow eye (VO0)
VA post loading (VP)

VA mean of 2 visits immediately post loading

7.4.1.2.1 ODM modelling

Removal of outlying data in this series improved modelling accuracy (Table 7.22) with all
learners returning adequate levels of performance across all indicators.

The model based on logistic regression displayed the highest levels of accuracy however
confusion matrix for the model (Figure 7.16) did continue to show a significant number of
misclassifications.

Feature ranking scores found baseline VA of the treated eye to be the most influential feature
(Table 7.23) with chi-squared scores indicating significance at the 0.05 a level and the other
indicators being more elevated for baseline VA that the other attributes.

Sub-analysis of the N1 group after outliers were removed showed improved accuracy for all
models with logistic regression learner in achieving an AUC of 0.86 suggesting a relatively high
level of predictive ability (Table 7.24).

The confusion matrix for the logistic regression model however (Figure 7.17) did continue to

show a significant number of misclassifications thus again questioning the model application.

Model AUC CA F1 Precision Recall | MCC Specificity
Logistic 0.82 | 074 |0.74 |0.74 0.74 | 0.46 0.72
Regression

Neural Network | 0.81 | 0.72 | 0.72 | 0.72 0.72 | 0.42 0.70

SVM 0.79 | 0.70 |0.70 |0.70 0.70 | 0.38 0.68
Gradient 0.73 | 0.66 | 0.66 | 0.66 0.66 | 0.30 0.63
Boosting

kNN 0.70 | 0.64 | 0.64 | 0.64 0.64 | 0.26 0.61
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Random Forest 0.69 | 0.63 0.63 | 0.63 0.63 | 0.23 0.59
Tree 0.68 | 0.64 | 0.63 | 0.64 0.64 | 0.25 0.59
Naive Bayes 0.65 0.64 | 0.62 | 0.63 0.64 | 0.23 0.57
AdaBoost 0.59 | 0.60 | 0.60 | 0.60 0.60 | 0.18 0.58

Table 7.22: Classification model performance with outliers removed of dataset of ‘VA’ group features for target ‘Change in VA,

baseline - month 12 (categories: VA gained, lost)’

gained

lost

)]

Actual

Predicted

gained lost
139 36

42 83

181 119

175

125

300

Figure 7.16: Confusion matrix for logistic regression classification model predictions for dataset with

outliers removed for ‘VA’ group features for target ‘Change in VA, baseline - month 12 (categories: VA

gained, lost)’

Feature Info. Gain Gini ANOVA | ¥* ReliefF | FCBF
gain ratio

VA baseline visit (VO) 0.061 | 0.030 | 0.041 | 34.510 | 22.851 | 0.032 | 0.043

VA fellow eye (V0) 0.021 | 0.011 | 0.014 | 4.250 7.297 | 0.008 | 0.000

VA mean initial 2 visits post

loading 0.008 | 0.004 | 0.006 | 1.421 1.776 | 0.005 | 0.000

VA post loading (VP) 0.008 | 0.004 | 0.006 | 0.525 0.227 | 0.005 | 0.000

Table 7.23: Feature ranking in classification analyses of total dataset of VA’ group features for target ‘Change in VA, baseline -

month 12 (categories: VA gained, lost)’

Model AUC CA F1 Precision | Recall MCC
Logistic 0.86 0.77 0.76 0.76 0.77 0.49 0.72
Regression

Neural 0.84 0.76 0.76 0.76 0.76 0.48 0.71
Network
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SVM 0.80 0.73 0.72 0.73 0.73 0.41 0.64
Gradient 0.73 0.66 0.66 0.66 0.66 0.26 0.60
Boosting

kNN 0.70 0.63 0.62 0.62 0.63 0.19 0.55
Random 0.70 0.65 0.65 0.65 0.65 0.24 0.59
Forest

Naive 0.68 0.63 0.61 0.61 0.63 0.16 0.52
Bayes

Tree 0.66 0.66 0.64 0.64 0.66 0.23 0.56
AdaBoost | 0.63 0.66 0.66 0.66 0.66 0.27 0.61

Table 7.24: Classification model performance for N1 filtered dataset with outliers removed of dataset of ‘VA’ group features for

target ‘Change in VA, baseline - month 12 (categories: VA gained, lost)’

Predicted
gained lost 3
gained 95 18 113
E
= lost 24 43 &7
<
¥ 119 61 180

Figure 7.17: Confusion matrix for logistic regression classification model predictions for N1 filtered dataset with outliers removed
for ‘VA’ group features for target ‘Change in VA, baseline - month 12 (categories: VA gained, lost)’

7.4.1.3 Feature group ‘VA_st dev’

The feature group ‘VA_st dev’ was considered in relation to Change in VA, baseline - month 12.
Target: Change in VA, baseline - month 12 (categories: VA gained, lost)
Feature group: VA_st dev

e VA baseline visit (V0)

e VA fellow eye (VO)

e VA post loading (VP)

e VA mean of 2 visits immediately post loading

e Standard deviation of VA mean, post loading -12 months (VP-V12)
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7.4.1.3.1 ODM modelling

o Removal of outlying data in this series improved modelling accuracy to a level of significance
with all learners returning adequate levels of performance across all indicators (Table 7.25).

o The Neural Network based model displayed the highest levels of accuracy however the
confusion matrix for the model (Figure 7.18) continued to show a significant number of
misclassifications.

e Feature ranking scores found baseline VA of the treated eye and the standard deviation of VA
mean, post loading -12 months, to be the most influential features (Table 7.26) with chi-squared

scores indicating significance at the 0.05 a level.

Model AUC CA F1 Precision Recall | MCC Specificity

Neural Network

Logistic

Regression

SVM

Gradient

Boosting

Random Forest

kNN

Naive Bayes

Tree

AdaBoost

Table 7.25: Classification model performance with outliers removed of dataset of ‘VA_st dev’ group features for target ‘Change

in VA, baseline - month 12 (categories: VA gained, lost)’
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Figure 7.18: Confusion matrix of neural network classification model predictions, with outliers removed, for ‘VA_st dev’ group

features for target ‘Change in VA, baseline - month 12 (categories: VA gained, lost)’

Feature Info. Gain Gini ANOVA | x2 ReliefF | FCBF
gain ratio

VA baseline visit (VO) 0.061 | 0.030 | 0.041 | 34.510 | 22.851 | 0.022 | 0.043

Standard deviation of VA 0.061 | 0.030 | 0.041 | 28.966 | 21.094 | 0.026 | 0.042

mean, post loading -12

months (VP-V12)

VA fellow eye (VO) 0.021 | 0.011 | 0.014 | 4.250 7.297 | -0.008 | 0.000

VA mean initial 2 visits post 0.008 | 0.004 | 0.006 | 1.421 1.776 | 0.008 | 0.000

loading

VA post loading (VP) 0.008 | 0.004 | 0.006 | 0.525 0.227 | 0.001 | 0.000

Table 7.26: Feature ranking in classification analyses of total dataset of ‘VA_st dev’ group features for target ‘Change in VA,

baseline - month 12 (categories: VA gained, lost)’

7.4.1.4 Feature group ‘VO_OCT’

The feature group ‘VO_OCT’ was considered in relation to Change in VA, baseline - month 12 (categories:

VA gained, lost)

Target: Change in VA, baseline - month 12 (categories: VA gained, lost)

Feature group: VO_OCT

e 40 HEYEX OCT inputs from baseline visit (VO)
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7.4.1.4.1

ODM modelling

o Modelling accuracy improved significantly on removing outliers in this analysis with all learners

returning adequate levels of performance across all indicators (Table 7.27).

e The model based on Naive Bayes displayed the highest levels of accuracy however confusion

matrix for the model (Figure 7.19) did continue to show a significant number of

misclassifications.

Model AUC CA F1 Precision | Recall MCC Specificity
Naive 0.62 0.60 0.60 0.61 0.60 0.20 0.60
Bayes

SVM 0.60 0.58 0.58 0.59 0.58 0.17 0.59
Gradient 0.60 0.60 0.60 0.60 0.60 0.17 0.56
Boosting

Random 0.59 0.60 0.60 0.60 0.60 0.17 0.57
Forest

Neural 0.58 0.58 0.58 0.58 0.58 0.14 0.55
Network

Tree 0.56 0.57 0.57 0.57 0.57 0.12 0.55
Logistic 0.55 0.55 0.54 0.54 0.55 0.06 0.51
Regression

kNN 0.54 0.55 0.55 0.55 0.55 0.08 0.53
AdaBoost | 0.52 0.53 0.53 0.53 0.53 0.04 0.51

Table 7.27: Classification model performance with outliers removed of dataset of ‘VO_OCT’ group features for target ‘Change in

VA, baseline - month 12 (categories: VA gained, lost)’

Actual

gained

lost

gained
101
49

150

Predicted
lost 3
71 172
77 126
148 298

Figure 7.19: Confusion matrix for Naive Bayes classification model predictions for dataset with outliers removed for ‘VO_OCT’

group features for target ‘Change in VA, baseline - month 12 (categories: VA gained, lost)’
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7.4.1.5 Feature group ‘VP_OCT’
The feature group ‘VP_OCT was considered in relation to Change in VA, baseline - month 12 (categori

VA gained, lost)
Target: Change in VA, baseline - month 12 (categories: VA gained, lost)
Feature group: VP_OCT

e 40 HEYEX OCT inputs from baseline visit (VP)

7.4.1.5.1 ODM modelling
e Modelling accuracy improved slightly on removing outliers in this analysis with logistic
regression, gradient boosting and adaptive boosting learners returning adequate levels of
performance across all indicators (Table 7.28).
e The model based on logistic regression displayed the highest levels of accuracy however from
the confusion matrix of the model (Figure 7.20) a high degree of misclassifications could be

appreciated.

Model AUC CA F1 Precision | Recall MCC Specificity
Logistic 0.53 0.60 0.57 0.58 0.60 0.11 0.50
Regression

Naive 0.52 0.52 0.53 0.54 0.52 0.03 0.51

Bayes

AdaBoost 0.52 0.52 0.53 0.53 0.52 0.03 0.51

es:

Table 7.28: Logistic Regression, Naive Bayes and AdaBoost classification model performance with outliers removed of dataset of

‘VP_OCT’ group features for target ‘Change in VA, baseline - month 12 (categories: VA gained, lost)’
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Predicted

gained lost ¥
gained 141 36 177
3
5 lost 83 36 119
<
)] 224 72 296

Figure 7.20: Confusion matrix for logistic regression classification model predictions for dataset with outliers removed for

‘VP_OCT group features for target ‘Change in VA, baseline - month 12 (categories: VA gained, lost)’

7.4.1.6 Feature group ‘VO_OCTANE’
The feature group ‘VO_OCTANE’ was considered in relation to Change in VA, baseline - month 12

(categories: VA gained, lost)
Target: Change in VA, baseline - month 12 (categories: VA gained, lost)
Feature group: VO_OCTANE

e 12 OCTANE OCT inputs from baseline visit (VO)

7.4.1.6.1 ODM modelling
e The Gradient Boosting model showed the highest accuracy among the models that reached
significance across all metrics, but with a poor level of prognostication (Table 7.29) as can be

appreciated from the misclassifications within the confusion matrix (Figure 7.21).
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Model AUC CA F1 Precision | Recall MCC Specificity
Gradient 0.55 0.55 0.55 0.56 0.55 0.10 0.55
Boosting

Naive 0.55 0.53 0.52 0.57 0.53 0.11 0.58

Bayes

AdaBoost | 0.55 0.55 0.55 0.56 0.55 0.10 0.55

Tree 0.55 0.55 0.55 0.55 0.55 0.08 0.52
Random 0.53 0.53 0.53 0.53 0.53 0.03 0.50
Forest

Table 7.29: Classification model performance with outliers removed of dataset of ‘VO_OCTANE’ group features for target

‘Change in VA, baseline - month 12 (categories: VA gained, lost)’

Actual

gained

gained 100
lost 59

3 159

L=]

t
m
(=]

T
=]
=1

lost

a9

79

168

189

138

327

Figure 7.21: Confusion matrix for logistic regression classification model predictions for dataset with outliers removed for

‘VO_OCTANE’ group features for target ‘Change in VA, baseline - month 12 (categories: VA gained, lost)’
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7.4.2 Classification analyses: Change in VA, baseline - month 12 (categories: VA lost, maintained and
gained)

Change in VA was further considered in three categories (Table 7.30 and Figure 7.22), those that lost five

or more letters, those that gained 5 or more letters and those than had neither gain or lost more than 4

letters since base line measures were taken and had effectively maintained their level of VA over 12

months.
Categories (VA) Lost Maintained Gained
VA change (letter score) | <-5 <t4 >5
Instances 95 92 140

Table 7.30: Categories of change in VA, baseline — month 12 and instances per group

Change in
VA
categories

gained 140

lost . s

maintained 92

0 20 40 60 80 100 120 140

Instances

Figure 7.22 Histogram of instances within three categories of change in VA, baseline — month 12

7.4.2.1 ODM modelling

Results were broadly similar to those reported when considering change in visual acuity as two
categories (lost and gained), but with lower levels of modelling accuracy in all cases. Models able to
separate eyes into the three classes, predicting whether VA was lost, gained or maintained from
baseline over 12 months, could be developed to an acceptable level of accuracy in the feature groups

‘VA_stdev’, ‘VA’ and ‘Demographic & qualitative’ but not in the groups evaluating HEYEX or OCTANE
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OCT outputs. Feature analysis again predicted baseline VA and standard deviation of VA mean, post
loading -12 months, to have a strong predictive influence but in this series also determined fellow eye
activity to have a somewhat weak, but statistically significant, prognostic influence. Results are fully

reported in appendices 7 and 8.

7.4.3 Regression analyses: Change in VA, baseline - month 12
The following regression analyses attempted to predict the change in VA from baseline to 12 months as

a continuous variable.

7.4.3.1 Feature group ‘VA’

The feature group ‘VA’ was considered in relation to Change in VA, baseline - month 12.
Target: Change in VA, baseline - month 12
Feature group: VA

e VA baseline visit (V0)
o VA fellow eye (VO)
e VA post loading (VP)

e VA mean of 2 visits immediately post loading

7.4.3.1.1 ODM modelling

e Removing outliers significantly improved accuracy, with the best performing linear regression
model returning an R? score of 0.46 (Table 7.19) and Spearman correlation of 0.712.

e The scatterplot of the linear regression based model (Figure 7.23) also suggested linearity but
with a significant degree of misestimation.

e Baseline visit VA was the most influential attribute particularly based on univariate regression
and Spearman correlation of -0.412 (Table 7.36). In terms of attributes which were most
informative to the linear regression model however, baseline VA and the VA mean of 2 visits
immediately post loading both seemed highly influential (Figure 7.24).

e Sub-analysis of the N1 group showed improved R? (0.51) and Spearman correlation (0.747) for
the Linear Regression model after removing outliers (Table 7.37).

e The scatterplot of the linear regression model again showed some misestimations but a linear

relationship could be appreciated (Figure 7.25).
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Models MSE RMSE MAE R? CVRMSE
Linear 96.57 9.83 7.09 0.46 835.17
Regression

Random 125.63 | 11.21 8.34 0.29 952.56
Forest

Gradient 127.73 | 11.30 8.25 0.28 960.50
Boosting

SVM 132.08 | 11.49 8.75 0.26 976.70
kNN 133.82 | 11.57 8.57 0.25 983.13
AdaBoost 134.48 | 11.60 8.56 0.24 985.55
Tree 209.02 | 14.46 10.57 -0.18 1228.68

Table 7.31: Regression model performance with outliers removed for total dataset of VA’ group features for target ‘Change in

VA, baseline - month 12’
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Figure 7.23: Scatterplot of linear regression model predictions, with outliers removed, for total dataset of ‘VA’ group features for

target ‘Change in VA, baseline - month 12’

Univariate Spearman
Feature Regression RReliefF | correlation
VA baseline visit (VO) 60.685 0.123 -0.412
VA fellow eye (V0) 2.947 0.100 0.162
VA mean of 2 visits 1.547 0.061 0.079
immediately post loading
VA post loading (VP) 0.441 0.061 0.048
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Table 7.32: Feature ranking in regression analyses of total dataset of ‘VA’ group features for target ‘Change in VA, baseline -

month 12’

VA mean of 2 visits
immediately post loading

VA baseline visit (V0)

VA post loading (VP)

VA fellow eye (V0)

| 1 |
Feature 02 04 06 08 1 12 14 1.6 1.8 2 22 24 26

Decrease in R2

Figure 7.24: Feature importance in linear regression model predictions, with outliers removed, for total dataset of ‘VA’ group

features for target ‘Change in VA, baseline - month 12’ ranked by influence on R?

Models MSE RMSE MAE R? CVRMSE
Linear 91.13 | 9.55 6.74 0.51 333.65
Regression

SVM 135.68 | 11.65 8.27 0.27 407.12

Random 139.79 | 11.82 8.77 0.25 413.25

Forest

kNN 144.21 | 12.01 8.59 0.23 419.72

Gradient 153.34 | 12.38 9.15 0.18 432.80
Boosting

AdaBoost 166.68 | 12.91 9.02 0.11 451.24

Tree 174.54 | 13.21 9.47 0.07 461.76

Table 7.33: Regression model performance for N1 filtered dataset, with outliers removed, of ‘VA’ group features for target

‘Change in VA, baseline - month 12’
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Figure 7.25: Scatterplot of linear regression model predictions, with outliers removed, for N1 filtered dataset of ‘VA’ group

features for target ‘Change in VA, baseline - month 12’

7.4.3.2 Feature group ‘VA_st deV’

The feature group ‘VA_st dev’ was considered in relation to Change in VA, baseline - month 12.
Target: Change in VA, baseline - month 12
Feature group: VA

e VA baseline visit (V0)

e VA fellow eye (VO)

e VA post loading (VP)

e VA mean of 2 visits immediately post loading
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e Standard deviation of VA mean, post loading -12 months (VP-V12)

7.4.3.2.1

e Removing outliers significantly improved linear regression modelling accuracy with R = 0.57

ODM modelling

(Table 7.34) and Spearman correlation of 0.761.

e The scatterplot of the linear regression based model (Figure 7.26) also showed linearity but with

a moderate degree of misestimation persisting.

e Baseline visit VA and standard deviation of VA mean, post loading -12 months, were most

influential attributes based on univariate regression and Spearman correlation (table 7.35). In

terms of attributes which were most informative to the linear regression model however,
baseline VA and the VA mean of 2 visits immediately post loading both were most influential

(Figure 7.27).

Models MSE RMSE MAE R? CVRMSE
Linear 74.62 | 8.64 6.19 0.57 702.32
Regression

Table 7.34: Linear regression model performance with outliers removed for total dataset of ‘VA_st dev’ group features for target

‘Change in VA, baseline - month 12’
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Figure 7.26: Scatterplot of linear regression model predictions, with outliers removed, for total dataset of ‘'VA_st dev’ group

features for target ‘Change in VA, baseline - month 12’

Univariate Spearman
Feature Regression RReliefF | correlation
Standard deviation of VA 68.979 0.107 -0.418
mean, post loading -12
months (VP-V12)
VA baseline visit (VO) 60.685 0.098 -0.397
VA fellow eye (VO0) 2.947 0.094 0.095
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VA mean of 2 visits 1.547 0.064 0.069
immediately post loading
VA post loading (VP) 0.441 0.065 0.037

Table 7.35: Feature ranking in regression analyses of total dataset of ‘VA_st dev’ group features for target ‘Change in VA,

baseline - month 12’

VA baseline visit (V0)

VA mean of 2 visits
immediately post loading

Standard deviation of VA
mean, post loading -12
months (VP-V12)

VA post loading (VP)

VA fellow eye (VO)

Feature

T |
02 04 06 08 1 1.2 14 16 18 2 2.2

Decrease in R2

Figure 7.27: Feature importance in linear regression model predictions, with outliers removed, for total dataset of ‘VA_st dev’

group features for target ‘Change in VA, baseline - month 12’ ranked by influence on R?

7.5  Visual acuity trend over 12 months

The trend in change in vision was also investigated in terms of whether this could be predicted. In doing
so regression lines were plotted through letter score measures of VA obtained over the first year of
visits of those with nAMD enrolled in the study (Figure 3.6). The slope of these lines of best fit were then
added to the data pool for investigation. The slopes appeared normally distributed around a mean of -

0.027 (standard deviation 1.052).
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Distribution Mean Mode | Median | Dispersion | Standard | Minimum | Maximum

deviation
Change in VA -0.027 0.14 0.09 -39.461 1.052 -3.98 3.15
trend (trend
line slope)

Table 7.36: Year 1 VA trend (trend line slope) summary statistics
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Figure 7.28: Distribution of year 1 VA trend (trend line slope)

As visual acuity measures gathered during the course of the study were used to determine the VA trend
lines, standard deviation in VA means and compose feature groups, it was felt correlations may
coincidentally be found. It was thus decided not to include feature groups developed around VA to

establish associations with VA trend lines but rather use the remaining attributes as the independent
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variables. A complete set of modelling and feature ranking outcomes, including those using the VA

feature groups for the following series of analyses were however reported in appendices 6, 7 and 8.

7.5.1 Classification analyses: Year 1 VA trend (categories: gained, lost)
Categories were also formed based on the visual acuity trend line slope (Table 7.37 and Figure 7.29). The
solitary eye with a neutral slope of 0.00 was placed in the gained class. Classification modelling was then

performed on these groups.

Categories Gained Lost
Slope of trend line 20 <0
Instances 180 147

Table 7.37: Categories of Year 1 VA trend and instances per group

gained 180

lost  [—_— 147

VA trend

0 20 40 60 80 100 120 140 160 180

Instances

Figure 7.29: Histogram of instances within Year 1 VA trend (categories: gained, lost)

7.5.1.1 Feature group ‘Demographic & qualitative’
The feature group ‘Demographic & qualitative’ was considered in relation to Year 1 VA trend

(categories: gained, lost).
Target: Year 1 VA trend (categories: gained, lost)

Feature group: Demographic & qualitative

150
M. K. Gupta, DOptom Thesis, Aston University, 2024



e Ethnicity

e Laterality

e Age At First Injection

e Sex

e Anti-VEGF drug type

e Interval 1st to 3rd injection

o Fellow eye activity

7.5.1.1.1

e Removing outliers improved modelling accuracy, with the decision tree model showing the

ODM modelling

highest accuracy, but with low predictive performance (Table 7.38).

Model AUC CA F1 Precision Recall | MCC Specificity
Tree 0.57 | 0.59 | 0.59 | 0.59 0.59 | 0.17 0.57
AdaBoost 0.56 | 0.56 | 0.56 | 0.56 0.56 | 0.12 0.55
Gradient 0.56 | 0.55 0.55 | 0.55 0.55 | 0.09 0.54
Boosting

Random Forest 0.55 0.55 0.55 0.55 0.55 0.09 0.54
Naive Bayes 0.54 0.54 0.53 0.53 0.54 0.06 0.52
kNN 0.54 | 0.52 0.52 | 0.52 0.52 | 0.03 0.51
Neural Network | 0.52 0.57 0.57 | 0.57 0.57 | 0.13 0.56
Logistic 0.52 0.55 0.52 | 0.54 0.55 | 0.06 0.51
Regression

SVM 0.48 | 0.52 0.51 | 0.51 0.52 | 0.01 0.50

Table 7.38: Classification model performance with outliers removed of dataset of ‘Demographic & qualitative’ group features for

target ‘Year 1 VA trend (categories: gained, lost)’

7.5.1.2

The feature group ‘VO_OCT’ was considered in relation to Year 1 VA trend (categories: gained, lost)

Feature group ‘VO_OCT’

Target: Year 1 VA trend (categories: gained, lost)

Feature group: VO_OCT

e 40 HEYEX OCT inputs from baseline visit (VO)
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7.5.1.2.1 ODM modelling

e Removing outliers improved modelling accuracy, with the gradient boosting model showing the

highest accuracy, but with poor predictive performance (Table 7.39).

Model AUC CA F1 Precision Recall | MCC Specificity
Gradient 0.60 | 0.57 | 0.57 | 0.57 0.57 | 0.13 0.55
Boosting

Naive Bayes 0.58 | 0.57 | 0.57 | 0.58 0.57 | 0.14 0.57
Logistic 0.57 | 0.55 | 0.55 |0.55 0.55 | 0.09 0.54
Regression

SVM 0.56 | 0.58 | 0.58 | 0.59 0.58 | 0.16 0.58
Random Forest 0.55 0.56 0.56 | 0.56 0.56 | 0.11 0.54
AdaBoost 0.52 | 0.53 |0.53 |0.53 0.53 | 0.05 0.52
Neural Network | 0.51 0.52 0.52 0.51 0.52 0.02 0.50
Tree 0.51 | 0.53 |0.52 |0.52 0.53 | 0.03 0.50
kNN 049 | 0.50 |0.50 | 0.50 0.50 | -0.02 0.48

Table 7.39: Classification model performance with outliers removed of dataset of ‘VO_OCT’ group features for target ‘Year 1 VA

trend (categories: gained, lost)’

7.5.1.3 Feature group ‘VP_OCT

The feature group ‘VP_OCT’ was considered in relation to Year 1 VA trend (categories: gained, lost)
Target: Year 1 VA trend (categories: gained, lost)
Feature group: VP_OCT

e 40 HEYEX OCT inputs from baseline visit (VP)

7.5.1.3.1 ODM modelling
e Removal of outlying data in this series improved modelling accuracy to a level of significance
where the algorithms based on decision trees, Naive Bayes, gradient boosting and neural
network, returned models with adequate levels of performance (Table 7.40).
e The model based on decision trees displayed the best levels of accuracy however predictive

performance in this instance was deemed as poor.
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e Sub-analysis of the N1 group shows that the gradient boosting model reaches acceptable
performance after removing outliers (table 7.41).
e The confusion matrix for the N1 subgroup model (Figure 7.30) however showed a significant

number of misclassifications thus predictions were deemed inadequate.

Model AUC CA F1 Precision Recall | MCC Specificity
Tree 0.57 | 0.56 |0.56 | 0.56 0.56 | 0.10 0.53
Naive Bayes 0.54 | 0.56 |0.57 | O0.57 0.56 | 0.12 0.56
Gradient 0.54 | 0.53 |0.53 |0.52 0.53 | 0.03 0.50
Boosting

Neural Network | 0.51 0.53 0.53 0.53 0.53 0.04 0.51

Table 7.40: Decision tree, Naive Bayes, gradient boosting and neural network classification model performance with outliers

removed of dataset of ‘VP_OCT’ group features for target ‘Year 1 VA trend (categories: gained, lost)’

Model AUC CA F1 Precision Recall | MCC Specificity
Gradient

Boosting 0.60 | 0.64 | 0.63 | 0.63 0.64 | 0.20 0.54
AdaBoost 0.56 | 0.59 | 0.59 |0.59 0.59 | 0.12 0.53
Naive Bayes 0.55 0.50 0.51 0.54 0.50 0.01 0.51

Tree 0.54 | 0.58 | 0.58 | 0.58 0.58 | 0.09 0.52

Table 7.41: Gradient boosting, AdaBoost, Naive Bayes and Decision tree classification model performance with outliers removed

in N1 filtered dataset of ‘VP_OCT’ group features for target ‘Year 1 VA trend (categories: gained, lost)’

Predicted
gained lost ¥
gained 88 24 112
3
2 lost 39 26 65
<
)] 127 50 177

Figure 7.30: Confusion matrix for gradient boosting classification model predictions for N1 filtered dataset with outliers removed

for ‘VP_OCT group features for target ‘Year 1 VA trend (categories: gained, lost)’
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7.5.1.4 Feature group ‘VO_OCTANE’

The feature group ‘VO_OCTANE’ was considered in relation to Year 1 VA trend (categories: gained, lost)
Target: Year 1 VA trend (categories: gained, lost)
Feature group: VO_OCTANE

e 12 OCTANE inputs from baseline visit (V0)

7.5.1.4.1 ODM modelling

e Removal of outlying data in this series improved modelling accuracy to a level of significance
where the learners based on random forests, adaptive boost and decision trees returned models
with adequate levels of performance across all indicators (Table 7.42).

e The model based on random forests displayed the best levels of accuracy however in view of the

relatively low scores, predictive performance in this instance was deemed as poor.

Model AUC | CA F1 Precision Recall | MCC Specificity
Random Forest | 0.55 0.55 0.55 0.56 0.55 0.12 0.56
AdaBoost 0.54 | 0.56 | 056 | 0.56 0.56 | 0.12 0.56
Tree 0.54 |0.53 |051 |0.52 0.53 | 0.03 0.50

Table 7.42: Random forests, adaptive boost and decision trees classification model performance with outliers removed of

dataset of ‘VO_OCTANE’ group features for target ‘Year 1 VA trend (categories: gained, lost)’

7.5.1.5

Feature group ‘VP_OCTANE’

The feature group ‘VP_OCTANE’ was considered in relation to Year 1 VA trend (categories: gained, lost)

Target: Year 1 VA trend (categories: gained, lost)

Feature group: VP_OCTANE

e 12 OCTANE inputs from baseline visit (VP)

7.5.1.5.1

ODM modelling

e Removal of outlying data in this series improved modelling accuracy with the neural networks

model yielding the best levels of accuracy but with poor predictive performance (table 7.43).

Model AUC CA F1 Precision Recall | MCC Specificity
Neural Network | 0.56 | 0.56 | 0.56 | 0.57 0.56 | 0.13 0.57
Naive Bayes 0.55 0.57 | 0.50 | 0.58 0.57 | 0.11 0.50
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AdaBoost 0.52 0.55 0.55 | 0.56 0.55 | 0.11 0.56

Random Forest 0.51 0.52 0.52 | 0.53 0.52 | 0.04 0.52

Table 7.43: Neural network, Naive Bayes, AdaBoost and random forest classification model performance with outliers removed

of dataset of ‘'VP_OCTANE’ group features for target ‘Year 1 VA trend (categories: gained, lost)’

7.5.2 Classification analyses: Year 1 VA trend (categories: gained, lost, maintained)
Further categories were formed based on visual acuity trendline slope (Table 7.44). In this instance three
classes were produced in an attempt to accurately predict which eyes trended towards gaining, loosing

or maintaining vision.

Categories Gained Lost Maintained

Slope of trend line >0.45 <-0.45 >-0.44,<0.44

Table 7.44: Classifications of 3 categories of Year 1 VA trend: gained, lost and maintained

In this series of classification analyses, no models were produced or features were identified with an

adequate level of predictive ability.

7.5.3 Regression analyses: Year 1 VA trend
Regression analyses were also carried out in an attempt to establish any potential relationships. No

models were however produced or features identified with an adequate level of predictive ability.

7.6  Visual acuity trend post loading

VA trendlines were also established from the first visit after the loading dose had been administered
until the end of the first year of treatment. This was in order to account for the improvement that
occurs on initiation of treatment of nAMD (Colquitt, 2008) and to determine if the change in vision
thereafter could be predicted. The slopes of the regression lines again appeared normally distributed,

this time, around a mean of -0.236 (Table 7.45 and Figure 7.31).

Distribution Mean Mode | Median | Dispersion | Standard | Minimum | Maximum
deviation

Year 1 VA -0.236 0.13 -0.08 -5.06 1.186 -5.06 4.96

trend post

loading (trend

line slope)

Table 7.45: Year 1 VA trend post loading (trend line slope) summary statistics
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Figure 7.31: Distribution of year 1 VA trend post loading (trend line slope)

As was the case in the section 8.5 Year 1 VA trend analyses, visual acuity measures and standard

deviation in VA means were not considered as attributes, as it was felt that relationships might

inadvertently be found. A complete set of modelling and feature ranking outcomes, including those

using the VA feature groups for the following series of analyses were however reported in appendices 6,

7 and 8.

7.6.1 Classification analyses: Year 1 VA trend post loading (categories: gained, lost)

Results were effectively in keeping with section 8.5.1 Year 1 VA trend analyses. Weak modelling

relationships could be derived when considering the feature groups:

e Demographic & qualitative

e VO_OCT
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e VP_OCT
e VO _OCTANE
e VP_OCTANE

In view of the relatively low accuracy scores however, predictive performance was deemed inadequate.
Similarly no attributes from these analyses attained a level of significance across feature ranking metrics
to suggest sufficient prognostic ability. Modelling and feature ranking outcomes are fully reported in

appendices 6 and 7.

7.6.2 Classification analyses: Year 1 VA trend post loading (categories: gained, lost, maintained)
On considering year 1 VA trend, post loading, as three classifications, no models were produced or

features were identified with an adequate level of predictive ability.

7.6.3 Regression analyses: Year 1 VA trend post loading
Regression analyses were also carried out in an attempt to establish any potential relationships. No

models were however produced or features identified with an adequate level of predictive ability.

7.7 Standard deviation of VA mean, baseline - 12 months
The standard deviation of the VA mean, baseline - 12 months, was also investigated in terms of whether
this could be predicted. Considering the standard deviation values from the instances, they appeared to

form a right skewed distribution around a mean of 6.027 (Table 7.46 and Figure 7.32).

Distribution Mean Mode | Median | Dispersion | Standard | Minimum | Maximum
deviation

Standard 6.027 2.67 5.08 0.552 3.325 0.79 19.56

deviation of

VA mean

(baseline - 12

months)

Table 7.46: Standard deviation of VA mean (baseline - 12 months) summary statistics
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Figure 7.32: Distribution of standard deviation of VA mean (baseline - 12 months)

7.7.1 Regression analyses: Standard deviation of VA mean, baseline - 12 months
Regression analyses found no models were however produced or features identified with an adequate

level of predictive ability.

7.8 Standard deviation of VA mean, post loading (post loading - month 12)

The standard deviation of the VA mean, post loading - 12 months, in addition to being used as an
independent variable was also considered as an outcome variable. Considering the standard deviation
values from the instances, they appeared to form a right skewed distribution around a mean of 5.295

(Table 7.47 and Figure 7.33).
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Distribution Mean Mode | Median | Dispersion | Standard | Minimum | Maximum
deviation

Standard 5.295 4.00 4.31 0.645 3.418 0.41 20.31

deviation of

VA mean (post

loading -

month 12)

Table 7.47: Standard deviation of VA mean (post loading - 12 months) summary statistics
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Figure 7.33: Distribution of standard deviation of VA mean (post loading - 12 months)

7.8.1

Regression analyses: Standard deviation of VA mean (post loading - 12 months)

Regression analyses of the standard deviation of VA mean (post loading - 12 months) however found

that no models could be produced or features identified with an adequate level of predictive ability.
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7.9 Discussion
This section aims to summarise previous studies which have attempted similar investigations, discuss
the results from this body of work in predicting visual acuity and, in the cases of stronger relationships,

to assess in more detail how individual features influence injection outcomes.

Bogunovic et al. (2022), within their retrospective analysis of the TREND study, were also able to create
models that could predict visual acuity outcomes with AUC of between 0.77 and 0.87. VA and IRF
volume within the central 1mm region at baseline and after one month were the most important

features in predicting VA after one year.

Prediction of VA at 12 months using baseline measures formed a regression model with R? of 0.36 with
baseline BCVA, followed by IRC area and volume cited at the most influential features. The model
accuracy improved to R? of 0.70 when considering input data from the four treatment initiation
intervals: baseline and months 1, 2, and 3, with the last measured VA during the loading phase found to

have the strongest predictive factor (Schmidt-Erfurth et al., 2018a).

VA at baseline and after 90 days were found to be the most informative measures in prediction models
at one year with MAE 10 letters and RMSE 11 letters (Rohm et al., 2018) and a retrospective analysis of
154 eyes with nAMD found VA at three months to also be the best predictor of VA at four years (Chae et
al., 2015).

Lower baseline VA, lower baseline age and higher injection number were independently associated with
a higher VA change at year one and two by Fasler et al. (2019) and a review article of factors that predict
nAMD visual outcomes found baseline VA, age and CNV lesion size to be the strongest indictors however

that they did not display significant precision to guide patient management (Phan et al., 2021).

Within this study, in attempting to predict visual acuity at 12 months using classifications of VA <30, 31-
40, 41-50, 51-60, 61-70, 71-80, >80, modelling accuracy failed to reach an acceptable level when
averaged across the categories using any of the devised feature groups. This was based on AUC, CA,
precision, recall and specificity collectively all failing to reach a level above 50%. On considering
individual categories however, it was found visual acuity could be predicted within the 71-80 letters
class, at a statically significant level, by the SVM based model with AUC of 0.81 using the ‘VA’ variable
group. Modelling with gradient boosting, considering the ‘VA_st dev’ group features, predicted VA with

a similar level of accuracy in the 51-60 and 71-80 letter classes yielding an AUC of 0.82. The confusion
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matrices for both the SVN and gradient boosted models (Figure 7.4 and Figure 7.5) however showed
significant levels of misclassification thus rendering the clinical application of results from the models

limited.

On assessing all the feature groups, several attributes (Table 7.48) yielded chi-squared values, at an a
level of 0.05, suggesting they had some bearing in predicting between VA classes. The VA mean of the
initial two post loading visits suggesting the strongest relationship based on elevated ranking scores

within all indicators.

VA mean initial 2 visits post loading

VA post loading (VP)

VA baseline visit (VO)

Standard deviation of VA mean, post loading -12 months (VP-V12)
VA fellow eye (VO0)

Age at first injection
Table 7.48: Features demonstrating significant relationship in predicting ‘VA at 12 months (categories: letter score VA <30, 31-

40, 41-50, 51-60, 61-70, 71-80, >80)’

Regression analyses were able to more successfully produce models in predicting VA at 12 months at a
level of significance (Table 7.49). The linear regression models developed using the ‘VA’ and ‘VA-st dev’
group features in particular reached levels of R? and correlations suggesting strong relationships. In all
cases the VA mean of the two visits post loading was the most informative attribute within the models.
The linear regression model which considered the combined visual acuity and standard deviation
variables, with outliers removed, had the highest degree of accuracy (R?=0.59, Spearman
correlation=0.774). The scatterplot of the linear regression model predictions (Figure 7.9) could be seen
to show a relatively strong relationship with the regression line however the level of misestimation
would continue to render the clinical application of these findings difficult. Using gradient boosting, post

loading HEYEX OCT features could be modelled to predict VA at 12 months with R? of 0.18 and a

Spearman correlation of 0.404 suggesting a weak relationship.

161
M. K. Gupta, DOptom Thesis, Aston University, 2024



Feature group Best MAE R? Most Dataset
performing informative
model attribute
‘VA Linear 7.51 0.50 VA mean of 2 Total with
Regression visits post outliers
loading removed
‘VA Linear 7.24 0.56 VA mean of 2 N1 filtered
Regression visits post with outliers
loading removed
‘VA_st_dev’ Linear 6.80 0.59 VA mean of 2 Total with
Regression visits post outliers
loading removed
‘VP_OCT Gradient 11.22 0.14 VP_ORLs 3mm Total with
Boosting vol outliers
removed

Table 7.49: Regression models and features demonstrating significant relationships in predicting ‘VA at 12 months’

In considering the univariate regression and correlations between the individual features and visual
acuity at 12 months, the VA mean of the two visits immediately post loading, VA post loading and
baseline VA showed the presence of a strong relationship with VA at 12 months (Table 7.50). Indeed, the
Spearman correlation (0.722) and the scatterplot of the VA mean of the two visits post loading
predicting VA at 12 months, with outliers removed (Figure 7.8), suggest a similar level of predictive
accuracy to that of the linear regression models, thus is was perhaps not remarkable given that the VA

mean of the 2 visits post loading had a strong influence within the models.

Univariate Spearman
Feature Regression correlation
VA mean of 2 visits 346.402 0.722
immediately post loading
VA post loading (VP) 295.823 0.694
VA baseline visit (VO) 114.170 0.514

Table 7.50: Feature univariate regression and Spearman correlation scores

Filtering to consider cases where there was no evidence of nAMD in the fellow eye produced a small
improvement in modelling accuracy in the analyses considering the ‘VA’ feature group. This suggested
fellow eye activity may have a subtle influence in visual outcomes of the study eye in this cohort but not

to a degree where additional relationships were uncovered.

As measurement of VA has been shown to fluctuate (Siderov and Tiu, 1999, Patel et al., 2008, Aslam et
al., 2014), some account of this was taken by attempting to model VA at 12 months taken as the mean

of the letter score measures at the final two visits over the first year. In the repeated classification

162
M. K. Gupta, DOptom Thesis, Aston University, 2024



analyses, again no learner produced a model with a significant level of accuracy and no features were
identified implying a significant prognostic ability. Within regression analyses only the feature groups
‘VA” and ‘VA_st dev’ models reached levels of significance with marginal improvement in R? to 0.54 and
0.64 respectively. No additional or stronger correlations were identified in considering the individual
features. In view of these results it might be concluded that accounting for visual fluctuation by
considering the mean of VA from final 2 visits over one year did not offer significant prognostic

outcomes to the use of the solitary final VA measure.

The change in VA from baseline to the end of the first year of treatment was also considered as a
dependent variable. In classification analyses, attempting to sort between eyes that lost or gained VA,
several learners produced models with an appropriate degree of accuracy. The best performing model,

based on AUC, in each category was summarised (Table 7.51).

Feature Best AUC | Dataset Most informative N1 filtering | N1

group performing feature with outliers | AUC*
model removed*

Demographic | Gradient 0.60 | Outliers Age at first injection kNN 0.65

& qualitative | Boosting removed

VA Logistic 0.82 | Outliers Baseline VA Logistic 0.86
Regression removed Regression

VA st dev Neural 0.88 | Outliers Baseline VA Neural 0.88
Network removed Network

VO_OCT Naive Bayes | 0.62 | Outliers VO_OPL 1mm CM vol No -

removed improvement

VP_OCT Logistic 0.53 | Outliers VP retina Imm CMT No -
Regression removed improvement

VO_OCTANE | Gradient 0.55 | Outliers VO neurosensory retina | No -
Boosting removed vol improvement

Table 7.51: Feature groups considering VA at 12 months where accurate modelling was achieved; best performing algorithm,

AUC, dataset, most informative attribute, N1 filtered model* and AUC* (*where accuracy improved)

Post loading OCTANE OCT features did not yield an appropriate level of predictive ability however the
remaining OCT derived groups did yield more successful modelling results. While the results of the post
loading HEYEX OCT (VP_OCT) and baseline OCTANE OCT (VO_OCTANE) group models were barely above
a level of significance, the Naive Bayes algorithm produced a model predicting between eyes that lost or
gained VA over 12 months with AUC of 0.62. ODM feature importance ranked baseline OPL volume
within the central 1mm macular zone as the most informative attribute. However on considering the
model nomogram (figure 7.34) both the central Imm NFL volume and OPL volume appeared to convey

roughly equal degrees of informedness. On interpreting the nomogram, it suggested that as baseline
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NFL and OPL volume decreased, the odds of losing VA over 12 months increased. Conversely thus as NFL
and OPL volume increased, the odds of gaining VA, compared to baseline, over 12 months increased.
One could argue that this is perhaps contrary to conventional thinking where thicker baseline OCT
measures would be associated with worse outcomes. It must also be stated that given the statistically
significant but relatively low level of modelling accuracy and the fact NFL and OPL chi-squared scores

were not at a level of significance at a = 0.05, these findings may have limited application in real world

situations.
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#VO_NFL 1mm CM vol L —OA !

Show: () All features 0.015 - 0.025

(® Best ranked: 2 = 0.035 0.025-0.035  {0.015 - 0.025

#0_OPL 1mm CM vol L 1 o— 1
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Figure 7.34: Naive Bayes nomogram demonstrating effect of baseline OPL and NFL volume on differentiating Change in VA,

baseline - month 12 (categories: VA gained, lost)

The finding that age at first injection was deemed by the kNN learner to be the most informative
attribute, when developing models using the demographic & qualitative feature group, was not
unexpected given this variable has previously been recognised as predictor of VA outcomes (Phan et al.,
2021). Given also the kNN model AUC (0.60) suggested only a modest relationship, these results are not

considered here in detail.

The nomogram of the logistic regression model (Figure 7.35), with AUC of 0.86, evaluating the combined
VA and standard deviation features was however considered. This nomogram showed a similar pattern
of behaviour when compared to modelling from the VA group features and was used in preference to

neural network which was incompatible with ODM nomogram tools. The graph effectively described
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that as baseline VA increased to a high level, if the either of the post loading VA features decreased to a

low level, the resultant probability was that the patient would also show a sustained loss of vision at 12

months. Conversely, if the baseline VA was of a low magnitude and improved significantly post loading

to a high value, the likelihood of this visual improvement being sustained was high. As standard

deviation in the VA mean post loading increased, the favourability of the visual outcome declined. In

relation to these aspects of prognostication, the model behaved with a high degree of certainty. The

likelihood of loss or gain in vision showed a high level of uncertainty in cases where the baseline VA was

close to the mean value and post loading VA was of a similar magnitude. This would perhaps explain the

ongoing misclassifications within the confusion matrix (Figure 7.36). The finding that large changes from

baseline to post loading were likely to sustained over 12 months, whether this outcome was favourable

or adverse, are perhaps of clinical value and perhaps uses of the devised nomogram could also be

helpful in real world setting provided moderate chnages in vision were interpreted carefully.
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Figure 7.35: Linear regression nomogram demonstrating effect of ‘VA_st dev’ group modelling, with outliers removed, on

differentiating between the Change in VA, baseline - month 12 (categories: VA gained, lost)
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Figure 7.36: Confusion matrix for logistic regression classification model predictions for dataset, with outliers removed, ‘VA_st

dev’ group modelling for target Change in VA, baseline - month 12 (categories: VA gained, lost)

Individual features determined as influential by classification analyses of change in VA, baseline - month
12 were baseline visit VA and the standard deviation of VA mean, post loading -12 months. Both of

these have been considered within this body of work.

Filtering to consider cases where there was no evidence of nAMD in the fellow eye produced a modest
improvement in modelling accuracy in the analyses consider the ‘VA’ feature group. This suggested
fellow eye may have activity may have a subtle influence in visual outcomes of the study eye in this

cohort but not to a degree where additional relationships were uncovered.

Change in VA over 12 months was further considered in three categories those that lost five or more
letters, those that gained 5 or more letters and those than had neither gained or lost more than 4 letters
since base line measures. Results were broadly similar to those reported when considering change in
visual acuity as two categories (lost and gained), but with lower levels of modelling accuracy in all cases.
It was therefore deemed that categorising VA change in this manner did not improve modelling

prognostication or unveil any unknown relationships.

Change in VA from baseline to 12 months was also considered using regression analyses. Linear
regression was found to be the most accurate method by which to create models (Table 7.52).
Appropriate levels of accuracy were determined in considering the ‘VA’ group features, R? = 0.46, MAE =
7.09 letters, with this accuracy improving to R? = 0.51 and MAE of 6.74 letters when consider only those
eyes where there was no fellow eye activity. In the linear regression model developed using the

combined ‘VA_st_deV’ variable, accuracy improved further, R2 = 0.57 and MAE predicted to 6.19 letters.
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In keeping with the classification results, baseline VA and the VA mean of 2 visits immediately post
loading were the most influential attributes within models. Also in keeping with the classification results,
but contrary to the regression analyses in predicting VA at 12 months, standard deviation of the VA
mean post loading and baseline VA had a negative Spearman correlation with the change in VA over 12
months, -0.418 and 0.397 respectively. The correlation of the model prediction of the change in VA was
also significantly higher of that of any individual attribute in this case suggesting attribute outcomes had

to be combined to improve modelling projection.

Feature group Best MAE R? Most Dataset
performing informative
model attribute
VA Linear 7.09 0.46 -baseline VA Total with
Regression -VA mean of 2 outliers
visits removed
immediately
post loading
‘VA Linear 6.74 0.51 -baseline VA N1 filtered
Regression -VA mean of 2 with outliers
visits removed
immediately
post loading
‘VA_st_dev’ Linear 6.19 0.57 -baseline VA Total with
Regression -VA mean of 2 outliers
visits removed
immediately
post loading

Table 7.52: Regression models and features demonstrating significant relationships in predicting ‘Change in VA, baseline -

month 12°

Filtering to consider cases where there was no evidence of nAMD in the fellow eye produced a modest
improvement in modelling accuracy in the analyses considering the ‘VA’ feature group. This suggested
fellow eye activity may have a subtle influence in visual outcomes of the study eye in this cohort but not

to a degree where additional relationships were uncovered.

In the remaining analyses being reported; VA trend over 12 months, the standard deviation of VA mean,
baseline - 12 months and Standard deviation of VA mean, post loading (post loading - month 12), the
feature groups ‘VA’ and ‘VA-st dev’ were not considered within the discussion. This was because
associations had already been determined in predicting VA outcomes with these independent variables
by work within the study and reported in prior investigations (Chae et al., 2015, Rohm et al., 2018,

Schmidt-Erfurth et al., 2018a, Fasler et al., 2019, Phan et al., 2021, Bogunovic et al., 2022). Furthermore
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as baseline VA, VA post loading, VA mean of the two visits immediately post loading and standard
deviation of VA mean, were effectively components used to derive the VA trendlines and standard

deviations, it was felt correlations may coincidentally be found.

Features and models that would predict the trendlines of VA change over 12 months were investigated.
This was to again take even greater account of the fluctuation in VA to determine if more accurate
predictions could be formed. The initial classification modelling involved attempting to group data
instances between positive and negative trendline slopes, effectively differentiating those that had a

trend suggesting loss of vision over 12 months and those that predicted a gain.

Modelling outcomes improved in that learners were able to make predictions at a statistically significant
level using all feature groups (Table 7.53). AUC for all models was however < 0.60 suggesting the
strength of the prediction to be limited. Age at first injection, baseline average retinal thickness over the
central Imm zone, post loading minimum inner retinal layer thickness, post loading average outer
retinal layer thickness over 1mm, baseline neurosensory retina volume and post loading RPE volume
were the most informative attribute in devising models. In view of the accuracy indicators however, a

clinical application of these results would be guarded.

No individual features were identified as producing a significant relationship in predicting the Year 1 VA
trend. Filtering to consider cases where there was no evidence of nAMD in the fellow eye produced a
modest improvement in modelling accuracy in the analyses consider the ‘VP_OCT’ feature group. This
suggested fellow eye may have activity may have a subtle influence in visual outcomes of the study eye

in this cohort but not to a degree where additional relationships were uncovered.
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Feature Best AUC | Dataset Most N1 N1 Most
group performing informative filtering AUC* | informative
model feature with feature
outliers
removed*
Demographic | Tree 0.57 | Outliers Age at first - - -
& qualitative removed | injection
VO_OCT Gradient 0.60 | Outliers VO _retina Imm | - - -
Boosting removed | CMT
VP_OCT Tree 0.57 | Outliers VP_IRLs min Gradient 0.60 | VP_ORL
removed | CMT Boosting Imm CMT
VO_OCTANE | Random 0.55 | Outliers VO - - -
Forest removed | Neurosensory
Retina vol
VP_OCTANE Neural 0.56 | Outliers VP RPE vol - - -
Network removed

Table 7.53: Feature groups considering Year 1 VA trend (categories: gained, lost) where accurate modelling was achieved; best

performing algorithm, AUC, dataset, most informative attribute, N1 filtered model* and AUC* (*where accuracy improved)

The visual acuity trendline slope was also considered between the intervals of immediately post loading
and at 12 months. The purpose of this was to account for both the expected improvement in VA on
initiation of treatment (Colquitt, 2008) and the fluctuation in VA measurement. The initial investigation

again involved predicting between eyes with positive and negative slopes.

Results were effectively in keeping with Year 1 VA trend (categories: gained, lost) analyses but with
generally slightly weaker relationships. Models could again be derived when considering the feature

groups:

e Demographic & qualitative

e VO OCT
e VP OCT

e VO_OCTANE
e VP_OCTANE

Only the demographic & qualitative variables yielded a modelling improvement of AUC 0.61, but as this
effective altered by 0.01, this was considered insignificant. In view of the continued low accuracy scoring
however, predictive performance was deemed limited and no attributes from these analyses attained a

level of significance across feature ranking metrics to suggest sufficient prognostic ability.
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Further analyses were performed to predict the slope of the VA trendline in the categories; lost, gained
and maintained. Regression analyses were also performed to predict the VA trendline slopes detailed
above. In all such scenarios, no models were however produced or features identified with an adequate

level of predictive ability.

Standard deviations of the VA mean from both baseline through to 12months and the post loading visit
to 12 months were considered as outcome variables. The goal of this investigation was to determine if
standard deviation of VA means, which had been shown to have a predictive influence in models
created during this study, could be predicted by any input features. Standard deviation while able to
describe the variance within the VA mean, could not be established until the end of the first year of
treatment hence while producing an interesting relationship, would be of limited prognostic value until
the later phases of treatment. In both series of regression analyses predicting standard deviation
however, no models could be produced or features identified with an adequate level of predictive
ability.

7.10 Key Findings

e Predicting VA at 12 months proved difficult, but models show improved accuracy for specific VA
categories (51-60 and 71-80 letters) using the Gradient Boosting algorithm.

e The VA mean of the 2 visits immediately post loading was the most influential attribute in
predicting VA at 12 months.

e Linear Regression models using baseline and post loading VA measures show strong
relationships with VA at 12 months (R? = 0.59) and change in VA (R?=0.57).

e OCT based features did not effectively predict VA at 12 months in regression analyses.

e (Classification models accurately differentiated between eyes that lost or gained VA over 12
months, with Naive Bayes (AUC = 0.62) and Neural Network (AUC = 0.88) showing the highest
accuracy using OCT and visual acuity defined features respectively.

e Baseline OPL volume, post loading retina thickness, and baseline neurosensory retina volume
are informative in predicting VA change.

e large changes in VA from baseline to post-loading tend to be sustained over 12 months.

e Predicting the trend of VA change over 12 months is possible with moderate accuracy using
various feature groups, but no individual features show strong predictive ability.

e Predicting the standard deviation of VA means over 12 months is not feasible with the available

data.
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8 Key findings, discussion and conclusion

8.1 Summary/introduction

This study aimed to evaluate OCT defined features in patients with nAMD and evaluate their bearing on
visual prognosis and treatment frequency. Additionally the study would consider whether the findings
could influence the tailoring of anti-VEGF treatment regimens and what role machine learning might

play in managing nAMD.

The project considered changes within the individually segmented retinal layers and the fluid volumes
and biomarkers typically used in the management of nAMD. This appears to be an innovative approach
with prior work tending not to have studied as many retinal features collectively. Furthermore changes
in visual acuity were evaluated in a number of novel methods which accounted for fluctuations in
measurement. The study also took advantage of Al based tools, both in OCT image analysis and data

modelling in determining relevant outcomes.

8.2 Cantreatment frequency be predicted?
Anti-VEFG dosing frequency was considered in a number of classification and regression analyses. This
included the application of ODM hierarchical clustering to sort studied eyes based on the pattern in

which they received injections, a method which appeared to be unique to this study.

Classification models which predicted between eyes that received three or more than three injections
reached the highest levels of accuracy. In considering baseline HEYEX OCT measures, the Naive Bayes

classifier was able to predict between the categories to an accuracy of AUC 0.63.

In forming models predicting between the categories; injections 3, >3, fellow eye visual acuity, baseline
GCL 1mm central macular volume, post loading GCL 1mm central macular volume and post loading

drusenoid PED volume were the most informative features.

Independent of the modelling, the standard deviation of the VA mean post loading was found to have a
weak but statistically significant influence on predicting the number of injections with the likelihood of
only requiring three injection increasing at the standard deviation reduced and the probability of

needing more that three doses over 12 months increasing at the standard deviation increased.

Regression model outcomes were generally not at a viable level of predictive accuracy. If considering the
univariate regression and correlation results of individual OCT based features, baseline HEYEX OCT

results suggested retina: thicknesses and volumes had a weak, positive relationship with numbers of
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injections administered (Spearman correlation in the range 0.251 - 0.285). Post loading HEYEX OCT data
determined a slightly stronger relationship (Pearson correlation in the range 0.284-0.330) again with

retina; thicknesses and volumes seemingly the most influential layer group.

In summary thus given the overall weak level of modelling and relationships developed in determining if
anti-VEGF dosing can be predicted, it could be concluded that the findings within this study could not

accurately predict injection frequency over one year to a degree that would be clinically relevant.

8.3  Can visual acuity outcomes be predicted?

As measurement of visual acuity has a strong subjective element and as discussed within section 4.4,
despite applying rigorous methods to ensure the repeatability of measurement in a standardised
method, is known to fluctuate due to reasons including patient related factors, change in refraction and
variation in disease state. Furthermore VA is known to alter after the administration of anti-VEGF
treatment, thus outcomes of VA over 12 months were considered in a number of methods which could

be modelled most effectively.

Regression models were able to predict VA after 12 months of treatment and the change in visual acuity
from baseline to 12 months using features related to baseline and post loading VA, to a reasonable level
of accuracy. On considering the feature group comprising VA and standard deviation measures, linear
regression of VA at 12 months resulted in a model with R?=0.59 and Spearman correlation of 0.774 and
in the case of change in visual acuity at 12 months from baseline, a model with R?=0.57 and Spearman

correlation of 0.761.

OCT determined features however were not able to model VA accurately in regression analyses with
only the post loading HEYEX OCT inputs returning a model with positive R?of 0.14. Compared to strong
correlations demonstrated by the models and VA related attributes, in the order of >0.7, the OCT

related correlation scores were generally <0.2.

Classification analyses yielded the strongest predictive modelling performance in sorting between those
that lost or gained VA over 12 months. In considering baseline and post loading VA inputs in cases where
there was no evidence of NnAMD in the fellow eye, logistic regression could categorise eyes with AUC of
0.86 and if adding the standard deviation of the VA mean, post loading — 12months, to the features, the
neural network algorithm achieved modelling accuracy of AUC of 0.88. The models in this case could
have a clinical application, particularly in cases where baseline and post loading VA was at the extremes

of the scale as discussed in section 8.9.
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Baseline HEYEX OCT, post loading HEYEX OCT and baseline OCTANE OCT measures were also able to be
successfully modelled with ODM learners with AUC > 0.5. The baseline HEYEX OCT feature group in
particular was used by Naive Bayes to predict between the classed with AUC of 0.62. Baseline OPL 1mm
central macular volume, post loading retina 1mm central macular thickness and baseline neurosensory
retina volume were the most informative within the models. Whilst the OCT based models reached a
level of predictive ability above random chance, their application within a clinical setting would remain

inappropriate given an overall low level of accuracy.

Visual acuity outcomes were also considered in terms of whether eyes had lost gained or maintained VA
over 12 months but without developing models with significant predictive ability. To account for
potential post loading improvement in VA and fluctuation in VA measures, outcomes were also
considered by taking the mean of the final 2 visits in the 12 month study period and the slope of visual
trendlines over 12 months. No significant improvement in modelling ability was found and no significant

relationship were observed.

In conclusion thus, VA at 12 months and change in VA over 12 months can be accurately modelled, and
in the case of classification models of eyes that gained and lost VA over 12 months, to a degree where
clinical applicability might be feasible. These predictions were however based on visual acuity measures

with OCT features, based on these analyses, not rendering appropriate levels of predictive accuracy.

8.4 Isfellow eye activity significant?

In all models which reached a significant level of predictive ability, the dataset was filtered to consider
cases where there was no evidence of nAMD in the fellow eye. The rationale behind this was due to a
beneficial therapeutic effect of anti-VEGF agents in untreated fellow eyes having been described in
several studies (section 3.8) and removing any potential effect this could have had on outcomes. Whilst
in some cases repeating the modelling produced minor improvements in prognostication, removing the

effect of fellow eye activity was considered negligible with no clinically relevant consequence identified.

8.5 Can OCT determined features help tailor anti-VEGF dosing?

From the modelling results of this study, it can be concluded that OCT determined features could not
accurately predict the number of anti-VEGF doses that would be required over a year. An interesting
finding was however that 106 of the 327 eyes enrolled within the study only required 3 anti-VEGF doses
over the entire first year of management. This poses the issue that some eyes would effectively be

overtreated under the treat and extend regimen now recommended by the Royal College of
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Ophthalmologists. Without a means however to identify at baseline or early in NnAMD therapy which
patients would stabilise after the loading dose, some additional injections for such cases seems likely for

the immediate future.

8.6  What role machine learning might play in managing nAMD?

Even within this project, ML was applied to several aspects of NAMD investigation. The convolutional
neural network U-Net was applied to OCT images to develop Al based outputs of retinal fluid volumes
and lesion thicknesses which were then used in further analyses. This allowed the accurate, rapid,
repeatable determination of such features in close to 300 images without the need to have clinician

validation as may have been the case if images were graded by an individual.

The ODM platform was used for data analysis to create classification and regression models, determine
the influence of features within models and determine independent relationships between attributes
and target variables. Furthermore unsupervised ML was able to apply hierarchical clustering to
determine anti-VEGF treatment patterns. The combined volume of investigations carried out would

have been unfeasible without ML.

From the work carried out in this study, a model to predict the change in VA over 12 months was
developed with AUC of 0.88 which theoretically could have a clinical application. Additionally research
being carried out by other groups considered within the project are developing similar models in
attempt to predict outcomes in AMD with Mares et al. (2024) recently publishing real world results of
their regulator approved, ML trained, fluid monitoring algorithm used in the active assessment of

patients with nAMD.

Itis the belief of the author that to tackle challenges including an aging population, expected increased
prevalence of nAMD over time, workforce understaffing and training needs, the development and
adoption of Al based tool will become common place in NnAMD management. An additional benefit could
be the ability of such system to digitise and automate the nAMD monitoring process which in turn could
allow observation of active disease to be carried out outside of secondary care establishments, perhaps

in optometric practices.

8.7 Limitations
During study enrolment, 724 eyes of 638 individuals were identified as having complete electronic

medical records and HEYEX OCT scans available for review. Of these however only 327 eyes of 308

individuals were actually considered within the study. A potential consequence of application of
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exclusion criteria in removal of poor quality images or images that could not be accurately segmented,

as was most commonly the scenario, was the introduction of unintended selection bias.

As more disorganised, unsegmentable scans were more likely related to more complex disease states
with features including SRF and RPE elevation more frequently acting to confuse segmentation
algorithms (Sadda et al., 2006), this may have led to under representation of such groups within the
study. Traits such as being male, non-white, older, having higher BMI and elevated blood pressure have
also been reported to have statistically significant increased likelihood of being more prevalent in

images excluded due to insufficient quality (Engelmann et al., 2023).

While a record of concurrent retinal therapy and surgical interventions was available and applied as
exclusion criteria, further records of ocular and systemic co-morbidities were unfortunately not
available and thus could not be studied as potential features and similarly could not be excluded thus

introducing a further source of potential bias.

To maximise the study dataset, all eligible cases were included as this was felt to offer the best
opportunity to train the algorithmics models. This had the effect to enrol all 327 eyes of 308 patients
resulting in 19 individuals having both their eyes included in the study. While the potential effects of
treatment crossover to the fellow eye were considered in section 3.8 and the project itself investigated
and found the effect of fellow eye activity to be negligible, there are additional considerations including
an underestimation of variance and bias in ocular comorbidities and systemic adverse events
(Armstrong, 2013). While the benefits of studying both eyes of an individual in an effort to increase the
size of a data pool have also been recognised, similarly have the potential risks and need to consider the

implications carefully (Glassman and Melia, 2015).

The ethnic diversity within the Wirral study population was also largely homogenously British caucasian
(n=300) with a further 23 eyes identified as ethnicity not stated. This may have led to further selection
bias. Only 1 eye within the study was identified as being from an individual with non-caucasian ethnicity.
Resolving this issue with the Wirral based dataset would however be difficult given the demographic

make up of the local population.

Owing to the fact the project utilised real world data, there was a variation in the number of
attendances for clinic appointments by patients over a 12 month period as discussed in section 3.7. and
as not all patients attend appointments at monthly intervals, there was thus a further disparity in the

interval between appointments when VA was recorded. This is hence a potential source of error
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particularly affecting the analyses involving the mean of the VA form the 2 visits post loading and mean
of the VA at 12 months. It is perhaps worth noting however that the no additional or stronger
relationships were noted when predicting mean of VA from final 2 visits in first year when compared to

the outcomes of VA at 12 months derived from a single integer.

8.8  Further work
During the course of the project it became obvious that the potential to carry out sub analyses from

different cohorts within the data was vast. Some properties determined that could use further
exploration however were the cohort that only received the three loading dose injection over the entire
first year to stabilise the disease process. As discussed in thesis, such patients are likely to be managed
under a treat and extend treatment pattern in future. Some of the benefits of PRN dosing will thus be
lost over time with a lack of datasets also available in future to study the effects within the regimen.
Further study on this subchohort perhaps by merging it with PRN data from another Trust to increase

the population size may lead to some useful findings.

The standard deviation of the VA mean post loading did appear to have reasonable prognostic ability
and equally could not be predicted during the loading phase of treatment. If indeed the standard
deviation does describe the variability of VA and this correlates with worse visual outcomes over the
course of therapy, this be useful piece of knowledge. One effect which was not examined during this
body of work was whether the standard deviation was purely linked to disease state this hence
additional investigation and indeed alternative properties of visual fluctuation may be investigated by

the author in due course.

The study was able to exploit the computational capabilities of ODM to carry out vast numbers of
analyses using large numbers of features which could easily be considered individually or in groups.
Targets were manipulated to form a variety of classes and continuous data sets; outputs were readily
visualised and scrutinised using the complement of accuracy and ranking tools. While the purpose of this
project was to consider the outcomes of anti-VEGF therapy in nAMD, it is the belief of the author that
with careful preparation of a dataset, that the methods and algorithmic pipelines developed in this

study could be readily applied to undertakings in a variety of fields of research.

The capabilities of platforms such as ODM also extend far beyond those utilised in this body of work.
Aspects which would be worth developing in future work include the furthered use of unsupervised
machine learning and developing more customised tools by directly writing the code for the operation
required although this was beyond the scope of this project.
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Appendix 1: HRA approval
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a Gofal Cymru m
Health and Care Health Research
Research Wales Authority

Dr Hannah Bartlett

Aston University Email: approvals@hra.nhs.uk
Aston Triangle

Birmingham

B4 7ETN/A
11 May 2021

Dear Dr Bartlett

HRA and Health and Care
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Study title: Evaluating morphological changes seen on OCT in patients with
wet AMD and their bearing on visual prognosis, lesion activity

and treatment efficacy.

IRAS project ID: 289108
Protocol number: N/A
Sponsor Aston University

| am pleased to confirm that HRA and Health and Care Research Wales (HCRW) Approval has been given for the above referenced study, on the

basis described in the application form, protocol, supporting documentation and any clarifications received. You should not expect to receive

anything further relating to this application.

Please now work with participating NHS organisations to confirm capacity and capability, in line with the instructions provided in the

“Information to support study set up” section towards the end of this letter.

How should I work with participating NHS/HSC organisations in Northern Ireland and Scotland?

HRA and HCRW Approval does not apply to NHS/HSC organisations within Northern Ireland and Scotland.

If you indicated in your IRAS form that you do have participating organisations in either of these devolved administrations, the final document
set and the study wide governance report (including this letter) have been sent to the coordinating centre of each participating nation. The

relevant national coordinating function/s will contact you as appropriate.
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Please see IRAS Help for information on working with NHS/HSC organisations in Northern Ireland and Scotland.

How should | work with participating non-NHS organisations?

HRA and HCRW Approval does not apply to non-NHS organisations. You should work with your non-NHS organisations to obtain local agreement

in accordance with their procedures.

What are my notification responsibilities during the study?

The “After HRA Approval — quidance for sponsors and investigators” document on the HRA website gives detailed guidance on reporting

expectations for studies with HRA and HCRW Approval, including:
* Registration of Research
* Notifying amendments
* Notifying the end of the study

The HRA website also provides guidance on these topics and is updated in the light of changes in reporting expectations or procedures.

Who should | contact for further information?

Please do not hesitate to contact me for assistance with this application. My contact details are below.

Your IRAS project ID is 289108. Please quote this on all correspondence.
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Yours sincerely,

Sarah Prothero

Approvals Specialist

Email: approvals@hra.nhs.uk

Copy to: Mr Matthew Richards List of Documents

The final document set assessed and approved by HRA and HCRW Approval is listed below.

Document

Version

Date

IRAS Application Form [IRAS_Form_27042021]

27 April 2021

Organisation Information Document [WUTH]

02 March 2021

Organisation Information Document [Moorfields]

04 March 2021

Other [Data collection template]

Other [Summary CV Principal investigator]

22 March 2021

Other [Summary CV key collaborator]

31 March 2021

Other [GCP certificate - student]

15 March 2021

Referee's report or other scientific critique report [Proposal feedback]

30 November 2020
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Referee's report or other scientific critique report [University Ethics Approval]

01 March 2021

Research protocol or project proposal [Project proposal] 1.0 13 November 2020
Schedule of Events or SOECAT [WUTH] 1.0 11 May 2021
Schedule of Events or SOECAT [Moorfields] 1.0 11 May 2021

Summary CV for Chief Investigator (Cl) [CI CV]

18 March 2021

Summary CV for student

12 March 2021
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IRAS project ID

289108

Information to support study set up

The below provides all parties with information to support the arranging and confirming of capacity and capability with participating NHS

organisations in England and Wales. This is intended to be an accurate reflection of the study at the time of issue of this letter.

Types of participating

NHS organisation

Expectations related to
confirmation of capacity and

capability

Agreement to be used

Funding

arrangements

Oversight expectations

HR Good Practice Resource Pack

expectations

1) Site type 1
(Research site):

Wirral University
Hospital NHS Trust will
be undertaking the
following activities:
Provision of
pseudonymised

dataset.

Research activities should not
commence at participating

NHS organisations in England
or Wales prior to their formal

confirmation of capacity and

capability to deliver the study.

An Organisation
Information
Document has been
submitted and the
sponsor is not
requesting and does
not expect any other
site agreement to be

used.

No application for
external funding has

been made.

A Principal
Investigator should be

appointed at study sites.

No Honorary Research

Contracts, Letters of Access or pre-
engagement checks are expected
for local staff employed by the

participating NHS organisations.
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2) Site type 2
(Research site):
Moorfields Eye
Hospital NHS
Foundation Trust will
be undertaking the
following activities:
Processing of
pseudonymised ocular

scans.

Research activities should not
commence at participating

NHS organisations in England
or Wales prior to their formal

confirmation of capacity and

capability to deliver the study.

An Organisation
Information
Document has been
submitted and the
sponsor is not
requesting and does
not expect any other
site agreement to be

used.

No application for
external funding has

been made.

A Principal
Investigator should be

appointed at study sites.

No Honorary Research

Contracts, Letters of Access or pre-
engagement checks are expected
for local staff employed by the

participating NHS organisations.

Other information to aid study set-up and delivery

This details any other information that may be helpful to sponsors and participating NHS organisations in England and Wales in study set-up.

The applicant has indicated they do not intend to apply for inclusion on the NIHRCRN Portfolio.
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Appendix 2: Data sharing agreement
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Dated 01/01/2021

Wirral University Teaching Hospital NHS Foundation Trust
, (1)

MOORFIELDS EYE HOSPITAL NHS FOUNDATION TRUST
(2)

SERVICE AGREEMENT

(Contract No: [DN: please insért])

© Bevan Brittan LLP
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THIS AGREEMENT is dated 01/01/2021

BETWEEN

(1)

@

Wirral University Teaehing Hospital NHS Foundatidn Trust (WUTH) whose address is-Arrowe

Park Road, Upton, Wirral, CH49 5PE (University) [DN: :please'cqnﬁrm]; and

'MOORFIELDS EYE HOSPITAL NHS FOUNDATION TRUST whose address is 162 City Road,
‘London EC1V 2PD United K!ngdom (Institution)

(together the “Parties” ) ' .

. WHEREAS-
(A) The UnlverSIty is willing and able to perform its University Obligations on the terms and condltlons as
set forth below. :
(B) . The Institution is willing and able to perform its Instltutlon Obligations on the terms and conditions as
' set forth below.
(C) The Parties agree that the Institution Obhgatlons and University Obhgatlons are belng prowded to

_ the other respective Party by way of mutual consideration.

Therefore, University and the Institution agree as follows:

1.

]

DEFINITIONS t o | 5

Affiliate means any entity whlch directly or |nd|rectly Controls, is Controlled by, or is under common
Control with a Party. “Control” means direct or indirect ownership or control of more than 50% (fifty
percent) of the voting interests of the Party or the power to direct or cause the direction of the
management and policies of such Party whether by contract, through majority ownership of voting
capital stock or otherwise. “Controlled” shall be interpreted accordingly.

- Change: any change to this Agreement including to any of the Obliéations:

Change Control Note:: the written record of a Change agreed or to be agreed: by the Parties

~ pursuant to the Change Control Procedure.

Change Control Procedure: the procedure for changing this Agreement, as set out in Schedule 3.

Cloud means a third party data base hosted by the 1nst|tut|on on an Institution server located in the
European Uruon

Confidential Information means all ‘co‘nfidential information (however recorded or preserved)

disclosed by a party or its Representatives to the other party and that party's Representatives in

connection with this Agreement, including but not limited to:

(a) any information that would be regarded as confidential by a reasonable business person
relating to: (i) the business, affairs, customers, suppliers or plans of the disclosing party; and
(i) the operations, processes, product. information, know-how, designs, trade secrets or
software of the disclosing party;

(b) 'any information developed by the partles in the course of carrying out this Agreement;.

(c) ;Personal Data

(d) any commercially sensitive information.
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Data means the Shared Personal Data being transferred between the Parties under this Agréement
as set out in Schedule 2.

Data Protection Legislation means, for the “periods in which they are in force in the United
Kingdom, the Data Protection Act 2018, the GDPR, the Electronic Communications Data Protection
Directive 2002/58/EC, the Privacy and Electronic Communications (EC Directive) Regulations 2003
and all applicable Laws and regulations relating to Processing of Personal Data and privacy,
including where - applicable the guidance and codes of practice issued by the Information
Commissioner, in each case as amended or substituted from time to time.

Deadline means any binding date or deadline agreed between the Parties -in respect of the
respective Party's Obligations.-

Documentation means any document, record, report, presentation, data (including original and raw
data) or other written material. : ‘

EIR means the Environmental Information Regulations 2004 and any subordinate legislation from
time to. time together with any guidance and/or codes of practice issued by the Information.
Commissioner or relevant government department in relation to the Environmental Information
Regulations 2004.

FOIA means the Freedom of Information Act 2000 and any subordinate legislation (as defined in
section 84 of the Freedom of Information Act 2000) made under the Freedom of Information Act
2000 from time to time together with any guidance and/or codes of practice issued by the Information
Commissioner or relevant government department in relation to the Freedom of Information Act
2000.

GDPR means (a) the General Data Protection Regﬁlation (Regulation (EU) 2016/679); and (b) any
equivalent legislation amending or replacing the General Data Protection Regulation.

Insolvency Event means:

(a) the University is deemed unable to pay its debts within the meaning of sectlon 123 of the
Insolvency Act 1986 ‘

(b) the University commences negotiations with all or any class of its creditors with a view to
rescheduling any of its debts, or makes a proposal for or enters into any compromise or
. arrangement with its creditors;

() a petitibn is filed, a notice is given, a resolution fs passed, or an order is made, for or in
connection with the winding up of the University; .

(d) an appiibation is made to court, or an order is made, for the appointment of an administrator,
or a notice of intention to appoint an admlnlstrator is given or if an administrator is. appointed,
over the University;

(e) the holder of a qualifying floating charge over the assets of the Unwersaty has become
entitled to appomt or has appointed an administrative receiver;

(f) a person becomes entitled to appoint a receiver over the assets of the University or a .
receiver is appointed over the assets of the University;

(9) -a creditor or encumbrancer of University attaches or takes possessmn of, or a distress,
execution, sequestration or other such process is levied or enforced on or sued against, the
whole or any part of the other Party’s assets and such attachment or process is not
discharged within 14 days; : ;
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(h) any event occurs, or proceeding is taken; with respect to the University in any jurisdiction to.”
which it is subject that has an effect equlvalent or similar to any of the events mentioned in
(a) to (h) (mcluswe) or

- (i) the Umversﬂy suspends or ceases, or threatens to suspend or cease, carrying on all or a
~ substantial part of its business.

Institution Inventions means the outputs generated as a result of the Octane AP| analysis of the Data.

Institution Obhgatlons means those obligations to be fulfilled by the Institution in accordance with
clause 4. _ :

Law means any legal provision the parties must comply with including any law, statute, subordinate
legislation within the meaning of settion 21(1) of the Interpretation Act 1978, bye-law, enforceable
right within the meaning of section 2 of the European Communities Act 1972, regulation, order,
- mandatory guidance or code of practice, judgment of a relevant court of law, or directives or
requirements of any regulatory body, whether in the UK or elsewhere. !

Obligations means University and Institution Obligations

Octane API means the algorithm and software to analyse the Data.
ocT nteans human eye scans from optical coner_enc_e toh_ography;
Prohibited Act means the following constitute Prohibited Acts:

(@)  to directly or indirectly offer, promise or give any person working for or engaged by the
Institution a financial or other advantage as an. inducement or reward for any improper
performance of a relevant function of actl\nty in relation to obtaining this Agreement or any
other contract with Umversﬁy,

* (b) to directly or indirectly request, agree to receive or accept any financial or other advantage
as an inducement or a reward for improper performance of a relevant function or activity in
connection with this Agreement;

{c) committing any offence: (i) under the Bribery Act 2010 (i) under legislation or common law
concerning fraudulent acts; or (jii) of defraudlng attempting to defraud or conspiring to
defraud the Authority; :

(d) any activity, practice or conduct which would constitute one of the offences listed under (c)
" ' above, if such activity, practlce or conduct had been carried out in the UK.

Pseudonymised means the processing of the Data in such-a manner that the Data can no longer be
attributed to a specific Data Subject without the use of additional information, provided that such
additional information is kept separately and is subject to technical and organisational measures to
ensure that the Data are not attributed to an‘identified or identifiable natural person.

Purpose means the activities that are undertaken by the Institution in which Data is used as

described in Annex B. The activities that are undertaken by the University in which algorithms and
software are used as described in Annex C to Schedule 1.

. Relevant Requirement all applicable law relating to bribery, corruption-and fraud, mclluding the
Bribery Act 2010 and any guidance issued by the Secretary of State for Justice pursuant to section 9
of the Bribery Act 2010.

Representative means, in relation to a party, its emplcyees, officers, representatives and advisors.

Subcontractor means any service provider, supplier or subcontractor of the Institution.
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2.1

2.2

2.3

2.4

3.1

3.2

41

4.2

4.3

University Obligations means those obligations to be fulfilled by the Institution in accordance with
clause 4.

Working Day means Monday to Friday, excluding any public holidays in England and Wales.

Unless the context otherwise requires, words in the singular shall include the plural and in the. plural
shall include the singular. ‘

l PRINCIPLES OF THE AGREEMENT

The Appendices to the Agreement form an integral part of the Agreement. In case of inconsistencies
between the Agreement and any Appendix, the terms of the Agreement shall prevail. The general
terms and conditions of the Parties shall not apply, even if reference is made to them by either Party.

The University hereby nominates Mr Mandeep Gupta, Lead Optometrist, WUTH, phone number
07803923952 as the University's contact person for the Institution (the "University Project Manager”).

"~ The University may not exchange the University Project Manager without the Institution’s written

approval. Such approval shall not be unreasonably withheld.

Institution nominates Dr Siegfried Karl Wagner, Academic Clinical Fellow, NIHR Biomedical
Research Centre at Moorfields Eye Hospital and UCL Institute of Ophthalmology, phone number
0207253341, as the Institution's contact person for the University (the “Institution Project Manager").
The Institution may not exchange the Institution Project Manager without the University's written
approval. Such approval shall not be unreasonably withheld.

Both Parties shall nominate a. deputy for each of the fespective contact person/Project Manager,
who shall be authorised to represent the contact person/Project Manager in the event of absence of
the same. .

' SCOPE OF OBLIGATIONS

The Parties shall fulfil their Obligations as set out at Schedule 1.

Any requirement for a Change shall be subject to the Change Control Procedure.

" OBLIGATIONS OF THE PARTIES

To the extent that the Parties have agreed or subsequently agree on specific deliverables, each -

Party shall provide the deliverables to the other Party as specified in or pursuant to the Agreement at
the times set forth.in or pursuant to the Agreement. The relevant Party shall make all reasonable
modifications to such deliverables within a reasonable period after receipt of the other Party's written
request. A

The Institution shall report to the University any serendipitous findings that may be of direct and
substantial consequence for the health or wellbeing of a patient and/or its family members. The'
University shall handle slich sérendipitous findings in accordance with its internal pohcues and
applicable Law. .

Each party represents and warrants that in carrying out its Obligations:

4.3.1 it will do so wit_hin‘the timelines and at the Deadlines agreed upon and with all reasonable
care and skill in accordance with all applicable Laws and the provisions of this
Agreement;

432 it shall use suitably quailfled and trained employees capable of carrylng out |I"lStItUthl"I
Obligations;

433 its personnel is part of the Institution's own operations and is managed; and instructed by

the Instltutlon only;
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4.4

6.1

6.2

6.3

7.1

7.2

8.1

434 _ any deliverables, Data, reports and other information provided to University pursuant
hereto shall be prepared in accordance with best practices applicable to this Agreement;

4.35 it is in possession of (or will obtain prior to fulfilling Institution Obligations hereunder) and

will comply with all necessary permits, approvals, licenses, consents and other
authorizations required by applicable Law for the performance of Institution Obligations
(“Permits”). :
All Data to be used for the performance of Institution Obtigations and/or transferred to the Institution

hereunder are collected in accordance with informed consents and fulfil besides possible other -
elements necessary at least the following requirements:

441 the lnformed consent complies with applicable Law and is glven by the consentmg person
in compliance W|th applicable Law;,

442 . theconsenting person, upon his/her clear comprehensnon and understandlng of alI facts,
implications, and future consequences at the time the consent is given;

443 Data shall be Pseudonymised by the University before being provided to the Institution.

PRICE, PAYMENT AND TAXES

The Parties agree that Institution Obligations and University ‘Obligations are belng provided to the
other respective Party by way of mutual consideration.

DELAY

" The Institution shall fulfil Institution Obligations and. any-deliverables in accordance with the agreed
. Deadlines set forth'in Schedule 1 or otherwise agreed upon between the Parties.

The. Uniiversity shall fulfil University Obligations and any deliverables in accordance with the agreed =
Deadlines set forth in Schedule 1 or otherwise agreed upon between the Parties.

Each Party shall keep the other Party informed about the progress of their respective Obhganons If
either of the Parties are delayed in fulfilling their respective Obligations, they shall inform the other
Party forthwith. ‘

OWNERSHIP AND LICENCE OF OCTANE-API

The University will be granted a royalty-free perpetual non-exclusive license to use the research
results resulting from the utilisation of Institution algorithms for its own purposes, as specified in

. Schedule 1 and in accordance with clause 12. [DN: please ‘confirm whether the reference to

Schedule 1 is intended to refer to details of the utilisation of algorithms, or the University's ‘own
purposes’ | can confirm it is mtended to refer to details of the utlllsatlon of algortthms

OCTANE-AP!I is not licenced _for clinical use.

CONFIDENTIALITY

‘ Subject to clause 8. 2, each Party shall keep the other Party's Confidential lnformanon confidential

and shall not:

8.1.1 use such Confi denttal Information: except for the purpose of performlng its rights and
obllgatlons under orin connectlon with this Agreement; or - .
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8.2

8.3

8.4

9.1

9.2

- 10

8.1.2 disclose such Confidential Information in whole or in part to any third party, except as
expressly permitted by this clause 0.

The obligation to maintain confldentlallty of Confidential Information does not apply to any
Confidential information: .

8.2.1 which the other Party confirms in writing is not required to be treated as Confidential
; Information; '
8.2.2 which is obtained from a third party who is lawfully authorised to disclose such

information without any obligation of confidentiality;

8.23 . which a Party is required to disclose by judicial, administrative, govefnmental or
regulatory process in connection with any action, suit, proceedings or claim or otherwise
by applicable Law, including the FOIA or the EIRs;

8.2.4  which is in or enters the publrc domain other than through any disclosure prohlblted by
this Agreement

8.2.5 which a Party can demonstrate was Iawfully in its possession prior to receipt from the
other Party or

8.2.6 which is disclosed by the Institution on a confidential basis to any central government or

regulatory body.

A Party may disclose the other Party's Confidential information to those of its Representatives who
need to know such Confidential Information for the purposes of performing or advising on the Party s
obligations under this Agreement provided that: ;

8.3.1 it informs such Representatlves of the confidential nature of the Confidential Information
before disclosure; and
8.3.2 ‘. it procures that its Representatives shallr in relation to any Confidential Information
disclosed to them, comply with the obligations set out in this clause as if they were a
party to this Agreement, ;
883 " and at all tlmes it is liable for the failure of any Representatives to comply with the

obligations set out in this clause 8.3.
The provisiohs of this clause 0 shall_survive fora period ‘of ffve years from the termination dete.
FORCE MAJEURE
Force Majeure shall mean-any event beyond the reesonable control of a’Party, including but not

limited to war, terrorist act, earthquake, hurricane, flooding and national strikes. A Party affected by
Force Majeure shall forthwith notify the other Party of the nature and extent thereof.

_Neither Party shall be deemed to be in breach of the Agreement, or otherwise. be liable to the other,

for delay in performance, or non-performance, of any of its obligations under the Agreement to the
extent.that such delay or non-performance is due to Force Majeure of which it has notified the other -
Party. The time for performance of the delayed obligation shall be extended accordingly. If the
consequences of the Force Majeure event continue for a period of more than thirty (30) days, either
Party shall be entitled to terminate the Agreement:

INSURANCE
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10.1

10.2

11

12

12.1

12.2

12.3

12.4

12.5

The Parties are responsible for maintaining, at their own expense programs of insurance with
reputable insurance companies in amounts which -are reasonable and customary in the market for
the respective activities they are carrying out under the Agreement and adequate to cover
reasonable losses and damages caused by the Institution or the University, the Parties’ personnel,
Affiliates or Subcontractors in the course of its business and carrylng out its Obligations under this
Agreement

The Unlversuy shall g'ive the Institution, on request, evidence of its policies referred to in.this clause.
LIMITATION OF LIABILITY

Subject to clause 11.2, neither Party shall’ be liable to the other Party, whether in eontfact tort
(including negligence), breach of statutory duty, or otherwise, for any |nd|rect or conseguential loss -
arising under or.in connection with this Agreement.

Each Party shall at aII‘times take all reasonable steps to minimise and mitigate any loss or damage
arising out of or in connection with this Agreement, including any losses for which the relevant Party
is entitled to bring a claim against the other Party pursuant to'the indemnities in this Agreement.

Subject to clause 11.1 and 11:4, each Party's liability to the other Party. for all claims, losses or
damages, whether arising from tort (including negligence), breach of statutory duty, or otherwise,

‘arising: under or-in connection with this Agreement shall be limited to the Parties’ respective

insurance cover.
Notwithstanding any other provision of this Agreement neither Party limits or excludes its liability for:
11.4.1 fraud or fraudulent misrepresentation;

11.4.2 death or personal injury caused by its negligence (or the negligence-of its personnel,
agents or subcontractors); )

11:4:3 breach of any obligation as to title implied by statute; or
11.4.4 any other liability for which may not be limited under any applicable law.

INTELLECTUAL PROPERTY |

“ltis expre'esly agreed that neither Institution nor University transfers by operation of this Agreement
- to-the other party any right-in-or-license to any patents, copyrights; or other proprietary right owned

as of the Effective Date of the Agreement or arising outside of the research conducted under this
Agreement.

Any Background Intellectual Property Rights which-may be contained in the Data and/or Material
transferred to Institution for use in the Research Plan under this Agreement shall only be used for

the Research Plan and University shall retain ownership in such Background Intellectual Property
Rights.

Any improvements to a Party’s Background generated in the conduct of the Research Project and all
title and interest therein shall be owned exclusively by the Party owning such Background, and such
Party shall be free to use and exploit the same at its discretion and the Background of the Party, as
well as any improvements to a Party’s Background, shall not be affected by terms and conditions of
the present Agreement. :

Unless specifi cally stated otherwise in this Agreement, all ownership rights to the Foreground arising
from or in relation to the execution of the Agreement-and Intellectual Property Rights thereto shall
solely and exclusively belong to the University.

University reserve the right to request from the Institution for Institution Inventions during the Initial
Term, or where relevant, the Extended Term of the Agreement.
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16.1

The Institution grants University a world-wide, royalty free, perpetual, non-exclusive license to use
Institution Inventions for internal research and educational purposes. .

COMPLIANCE WITH LAWS

" Both Parties warrant that they will perform their respective Obligations in strict compliance with all

applicable Laws, including labour Laws, Data Protection Legislation and Laws relating to
environment, health and safety.

DATA PROTECTION

Both Parties will comply with the Data Protection Legislation and the provisions of the Data Sharing
Agreement at Schedule 2.

PUBLICATION

Both Parties agree, that the University and the Institution may have the wish to make research
results publicly available in the form of articles in scientific journals, seminars, poster presentations,
demonstrations, abstract books, etc. In-the event of any intended scientific publication relating to the
Purpose, the Parties shall safeguard each Party’s interests and submit the manuscript to the other
Party a minimum of 14 day prior to the proposed publication. Authorship will be dependent on the
contribution of the generated research derived data to the paper as a whole. In’ principle, the
Institution should be co-authors on each paper that results from this collaboratlon

Each Party will provide any material for publlcatlon for review to the other Party at least thirty (30)
days prior to submission for publication, public dissemination or review by a publication committee. If
the other Party does not respond with this period, the publishing party will be free to proceed with the
intended publication of the research results without further delay.

During the thii‘ty (30) day period for review, the other Party shall be entitled to:

15.3.1 make a reasoned request to the publication party to delay the publication for an additional
period of sixty (60) days (following the thirty (30) day period for review) in order to enable
the other party to take steps to protects its proprietary information and/or intellectual
property rights and know how, and the publication party shall not unreasonably withhold
its consent to such a request; and

15.3.2 may cause the publication party to remove from the projected publication any confidential
information from the other Party that are not research results resulting from the Purpose.
The publication party will adapt the proposed publication in such a way that it will not
publish the confidential information that is indicated by the other Party. The publication
Party will only. have the right to publish the adapted proposed publication after the written
consent from the other Party.

In-all oral presentations or written publications concerning the Purpose, each party will acknowledge
the other Party's contribution to the Purpose, unless otherwise agreed in writing by the Parties.

Each Party shall promptly communicate in writing all results, data and developments resulting from
the use of the Data (“Results") to the other Party. Each Party agrees not to use or disclose these
Results to any third party without the written consent of the other party, which consent shall not be
unreasonably withheld. Each Party shall be free to use these Results for its own educational,
academic and research purposes, provided that no disclosure shall be made of any confidential
information of the other Party. -

FREEDOM OF INFORMATION
For the purposes of this clause 16, "Information" has the meaning given under section 84 of the

FOIA and the meaning attached to “"environmental information" contamed in regulation 2 of the EIR
as appropriate.
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The University acknowledges that the Institution is subject to the requirements of the FOIA and the
EIR. ,

The University shall provide all necessary assistance and cooperation as reasonably requested by
the Institution to enable the Institution to comply with its obligations under the FOIA and EIR and
transfer to the Institution all requests for Information under the FOIA and the EIR relating to this
Agreement that it receives as soon as practicable and not respond directly to any such requests
unless authorised in writing to do so by the Institution.

The University acknowledges that the Institution may be required under the .FOIA and EIR to
disclose Information without consulting or obtaining consent from UNIVERSITY. The Institution shall
take reasonable steps to notify the University of a relevant request for Information (in accordance
with the Secretary of State's section 45 Code of Practice on the Discharge of the Functions of Public
Authorities under Part 1 of the FOIA) to the extent that it is permissible and reasonably practical for it
to do so but (notwithstanding any other provision in this Agreement) the Institution shall be
responsible for determining in its absolute discretion whether any Information is exempt from
disclosure in accordance with the FOIA and/or the EIR.

PREVENTION OF BRIBERY
The University represents and warrants that neither it, nor its personnel:
17.1.1 . has committed a Prohibited Act;

17.1.2 to the best of its knowledge has been or is subject to an investigation, inquiry or
' enforcement proceedings by a governmental, administrative or regulatory body regarding
any Prohibited Act or alleged Prohibited Act; or

17.1.3 has been listed by any government department or agency as being. debarred, suspended
proposed for suspension or debarment, or otherwise ineligible for participation in
government procurement programmes or contracts on the grounds of a Prohibited Act.

The University shall notify the other pro'mptly if, at any time during the Term;.its circumstances,
knowledge or awareness changes such that it would not be able to repeat the warranties set out in
clause 17.1 at the relevant time.

The University represents and warrant shall {and shall procure that its University personnel shall):
17.3.1 — not commit-a-Prohibited Act; and/or

17.3.2 not do' or omit to do anything that would cause the Institution or any of the Institution's

: employees, consultants, contractors, sub-contractors or agents to contravene any of the

Relevant Requirements or otherwise incur any liability in relation to the Relevant
Reqmrements

17.3.3 promptly report to the Institution any request or demand for any undue financial or other
advantage of any kind received by the Suppller in connection with performance of this
Agreement

The University shall maintain appropriate and up to date records showing all payments made by the

University in connection with this Agreement and the steps taken to comply with its obligations under
clause 17.3.

The Unlver5|ty shall allow the Institution and its third party representatwes to audit any of the
University’s records and any other relevant documentation. :

TERM AND TERMINATION
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The Agreement shall become effective on the day of the last signature of the Agreement and shall
continue for a period of two (2) years ('Initial Term"), after which the Parties may extend the

‘Agreement by a-further twelve (12) months ("Extended Term") by agreeing in writing to extend the
* Agreement at least three (3) months prior to the end of the Term. ! '

Voluntary termination

Without affecting any other right or remedy available to the Parties, either Party may terminate this
Agreement at any time by giving thirty (30) days’ written notice to the other Party.

Terminati_on for breach

Either Party may terminate this Agreement with immediate effect by service of written notice on the
other Party in the following circumstances: :

18.3.1 if either Party is in breach of any material obligation under this Agreement provided that if
* the breach is capable of remedy, the Party not in breach may only terminate this
Agreement under this clause 18.3 if the Party in breach has failed to remedy such breach
within 30 days of receipt of notice from the Party not in breach (a Remediation Notice) to

do so;

18.3.2 if there is an Insolvency Event;

18.3.3 if the Institution reasonably believes that the circumstances set out in regulation 73(1) of
the Public Contracts Regulations 2015 apply.

CONSEQUENCES OF TERMINATION

- The Institution shall immediately cease and refrain from using Data on termination or expiry of the

Agreement.

The lnstituti_on will destroy/delete the Data within the earlier of:.

19.2.1 three (3) months after completion of the project in accordence with clause 19.3; or

19.2:2 expiry of the Initial Term or where relevant the Extended Term

unless agreed otherwise in writing.

For the avoidance of doubt, completion of the project shall be when:

19.3.1 Data has been processed by the University and prbvide‘d to the Institution;

19.3.2 the Institution has delivered the Institution Inventions to the University; and

19.3.3 the Parties agree that the project is completed.

Any provision of this Agreement that expressly or by implication is intended to come into or continue
force on or after termination or expiry, including clause 0(Confidentiality), clause 10 (Insurance),
clause 10.2 (Limitation of Liability), clause 14 (Data Protection), clause 16 (Freedom of Information),
clause 18.3 (Termination for Breach) and this clause 19 (Consequences of termination), shall remain

in full force and effect.

Termination or expiry of this Agreement shall not affect any rights, remedies, obrigafions'or_liabilities
of the parties that have accrued up to the date of termination or expiry, including the right to claim

‘damages in respect of any breach of the agreement which existed at or before the termination date.

NOTICES



DocuSign Envelope ID: 2D7A629A-D0B5-4B14-9AC3-B76110194158

. 201

20.2

20.3 .

21

22

23 .

231
23.2

24

24.1

24.2
25

251

Any notece given to a Party under or in connection with this contract shall be in wrltmg marked for the
attentlon of the Party's Project Manager and shall be:

20.1.1 delivered by hand or by pre-paid first-class post or other next workmg day delivery
service at its registered office (if a company) or its principal place of business (in any
other case); or

20.1.2 sent by fax to its main fax number or sent by email to the address specified in clause 2.
Any notice shall be deemed to have been received:
20.2.1 if delivered by hand, on signature of a delivery receipt,

2022 - if sent by pre-paid first-class post or other next working day delwery service, at 9.00 am
on the second Working Day after postlng

20.2.3 if sent by fax or email, at the_time of transmission, or if this time falls outside working
hours in the place of receipt, when working hours resume. In this clause20.2.3, working -
hours means. 9.00am to 5.00pm Monday to Friday on a day that is not a publlc: holiday in
the place of receipt. :

This clause does not apply to the service of any proceedings or other docurnents in any legal action
or, where applicable, any arbitration or other method of dispute resolution '

WAIVER

No failure or delay by a Party to exercise any right or remedy provided under this Agreement or by
law shall constitute a waiver of that or any other right or remedy, nor shall it prevent or restrict the
further exercise of that or any other right or remedy. No"single or partial exercise of such right or

remedy shall prevent or restrict the further exercise of that or any other right or remedy. :

RIGHTS AND REMEDIES

Except as expressly provided in this Agreei'nent, the rights and remedies provided under this
Agreement are in addition to, and not exclusive of, any rights or remedies provided by law.

SEVERABILITY

If any provision or part-provision of this Agreement is or becomes invalid, illegal or unenforceable, it
shall. be deemed deleted, but that shall not affect the validity -and enforceab:llty of the rest of this
Agreement : ;

If any provision or part-provision of this Agreement is deemed deleted under clause 23.1, the parties

‘'shall negotiate in good faith to agree a replacement provision that, to the greatest extent possible,
_ achieves the intended commercial result of the original provision.

>

PARTNERSHIP OR AGENCY

Nothing in this Agreement is intended to or shall be deemed to, establish any partnership or Jomt
venture between any of the Parties, constitute any Party the ‘agent of another Party, or authorise any
Party to make or enter into any commitments for or on behalf of any other Party.

Each Party confirms it is acting on its own behalf and not for the benefit of any other person.

THIRD PARTY RIGHTS

- This Agreement does not give rise to any rights under the Contracts (Rights of Third Partles) Act

1999 to enforce any term of this Agreement.

A ™
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PUBLICITY
The University shall not:

26.1.1 make any press announcements or publicise this Agreement or its contents in any way;,
or

26.1.2 use the Institution’s name or logo in any promotion or marketlng or announcement. of
orders, ;

-except as required by law, any government or regulatory authority, any court or other authority of

competent jurisdiction, without the prior written consent of the Institution, which shall not be
unreasonably withheld or delayed.

ASSIGNEMENT

Neither Party shall assign this Agreement or any right granted hereunder without the prior written
consent of the other Party. _

ENTIRE AGREEMENT

This Agreement and the documents referred to in it constitutes the entire agreement between the
parties and supersedes and extinguishes all previous agreements, promises, assurances,
warranties, representations and understandings between them, whether written or oral, relating to its
subject matter. ;

Each Per.ty agrees-that it shall have no remedies in respect of any statement, representation,
assurance or warranty (whether made innocently or negligently) that is not set out in this Agreement.
Each party agrees that it shall have no claim for innocent or negligent misrepresentation or negligent

~ misstatement based on any statement in this Agreement.

VARIATION

No variation or amendment to this Agreement will be effective unless it is made |n writing by mutual

consent and signed by each Par’cy s representative.

COUNTERPARTS

This Agreement may be executed in any number of counterparts, each of which when executed and - .
delivered shall constitute an original of this Agreement, but all the counterparts shall together
constitute the same agreement.

GOVERNING LAW

This Agreement and any dispute or claim arising out of or in connection with it or its subject matter or
formation (including non-contractual disputes or claims) shall be governed by and construed in
accordance with the law of England and Wales.

JURISDICTION

Each Party irrevocably a-grees that the courts of England and Wales shall have exclusive jurisdiction
to settle any dispute or claim arising out of or in connection with this Agreement or its subject matter

- .or formation (including non-contractual disputes or claims).

This Agreement has been entered into on the date stated at the beginning of it.
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SIGNED ON BEHALF OF Wirral University Teaching Hospital NHS Founda!‘.idn Trust :

- Name = . Position | S_ignatW “Date
0. RER T

SIGNED ON BEHALF OF MOORFIELDS EYE HOSPITAL NHS FOUNDATION TRUST

Name ~ Position Signature Date

Declan Flanagan Deputy Director of Researcw ) 2/14/2022
. . D13CEDD15F1B4DD..
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SCHEDULE 1 - INSTITUTION AND UNIVERSITY OBLIGATIONS

Annex A — Purpose MOORFIELDS (Research project MOORFIELDS using the Data)

Project/Project Plan:

The Institution has developed a Deep Learning OCT segmentatlon algorithm in collaboratlon with
DeepMind.

The University will provide the Institution with a set of Data from the 'Evaluating the morphological
changes seen on OCT in patients with wet AMD and their bearing on visual prognosis, lesion activity
and treatment efficacy’ Study which the Institution can use to test the algorithms.

The Data will be managed through the Moorfields Research Informatics Strategy infrastructure.

The Institution will use these OCT images for upload to OCTANE AP| and this. will generate
numerical and qualitative outputs. The Institution will not use the Data for any commercial activity.

The Institution will destroy/delete the Data within the earlier of: |
= three (3) months after completion of the project
= expiry of the Initial Term or where relevant the Extended Term

unless agreed otherwise in writing.

For the avoidance of doubt, completion of the project shall be when:
» Data has been processed by the University and provided to the Institution;
= the Institution has delivered the Institution Inventions to the Unwersnty, and
= the Parties agree that the project is completed.

The University is entitled to use the Institution Inventions for its own projects.

The Institution Invent:ons will be mcfuded in the data which the Institution will share with the
University.

Annex B — Measures taken by the Institution to prevent a data leak

~ The Data will be uploaded to the Moorfields Research Informatics Strategy infrastructure.

The Data will then be ephemeraily processed by the Institution-DeepMind algorithm (this is a Cloud-
based API). ) )

The Institution is required to produce audit logs demonstrating each stage of the process.

The Institution shall only use the Data for the Agreed Purposes as set out in Schedule 2.
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SCHEDULE 2 - DATA SHARING AGREEMENT
INTENTION AND APPLICATION OF THIS AGREEMENT -

The parties agree to share the Shared Personal Data for the Agreed Purposes as set out in this Data
Sharing Agreement (DSA). :

This DSA supersedes all prior agreements, negotiations and discussions between the parties-in -
relation to the sharing of Personal Data.

DEFINITIONS AND INTERPRETATION

Agreed Purposes has the meaning set out in clause 4 of this DSA

| Data Controller ‘Data Processor, Data Subject, Personal Data Breach, Processmg (including

"Process" and "Processed“) and Appropriate Technical and Orgamsatlonal Measures have
the meaning set out in the Data Protection Leglslat|on

Data Protectlon Impact Assessment means an assessment by a Data Controller of the impact of
the envisaged Processing on the protection of Personal Data.

DPA 2018 means the Data Protection Act 2018.

Information Commissioner’s Office means the UK's supervisory authority based at Information

Commissidner's Office, Wycliffe House, Water Lane, Wilmslow, Cheshire, SK9 5AF.

Joint Data Controllers means where two or more Data Controllers jointly determtne the purpose
and means of Processing. :

Lawful Bases for Sharing means the lawful bases on which the parties will share the Personal
Data as set out in clause 7 of this DSA. »

Personal Data means any data relating to an identified or identifiable natural person. An identifiable
person is one whe can be identified, directly or indirectly, in particular by reference to an
identification number or to one or more factors specific to his physical, physiological, mental,
economic, cultural or social identity. For the avoidance of doubt, Pseudonymised Data is also
considered to be Personal Data

‘Shared Personal Data means the Personal Data to be shared between the parties under clause 6

of this DSA.

Special Categories of PersonaI'Dat'a has the meaning set out in the Data Protection Législation
and for the purpose of this DSA shall include information relating to criminal convictions and
of‘fences

THE DATA PROTECTION RELATIONSHIP

The parties acknowledge that for the purposes of the Data Protection Legislation the University and
the Institution are acting as Joint Data Controllers in relation to any Processing of Personal Data as
carried out under this DSA.

PURPOSE

This DSA sets ‘out the framework for the sharing of Personal Data when one Data Controller -
discloses Personal Data to another Data Controller. It defines the principles and procedures that the
parties shall adhere to and the responsibilities the parties owe to each other.
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The parties consider this data sharing initiative is just|f|able on the grounds that participants have
consented to the use of their Personal Data:for research purposes and their Personal Data will be
shared with Institution in a pseudonymised format.

The parties agree to only share the Shared Personal Data for the purpose of inputting
Pseudonymised retinal scans through the OCTane API for research purposes to obtain certain
classification outputs (i.e. triage recommendation and disease classification), intermediate
segmentation outputs and raw data to enable the development and use of Al algorithms.

. The parties shall not Process Shared Personal Data in a way that is incompatible with the purposes

described in this clause 4 of this DSA (Agreed Purposes).

" SINGLE POINT OF CONTAGT

Each party shall appoint a single point.of contact (SPoC) who will work together to reach an
agreement with regards to any issues arising from the data sharing and to actively improve the
effectiveness of the data sharing initiative. The points of contact for each of the parties are:

University Mr Mandeep Gupta, Lead Optometrist, Ophthalmology department,
Wirral University Teaching Hospital NHS Foundation Trust, Arrowe
Park Road, Upton, Wirral, CH49 5PE, tel: +44 (0) 7803 923 952.

Institution Dr Siegfried Wagner, Academic Clinical Fellow, NIHR Biomedical
Research Centre at Moorfields Eye Hospital and UCL Institute of
Ophthalmology, 162 City Road, London, EC1V 2PD, tel: +44 (0) 20
7253 3411.

SHARED PERSONAL DATA

Shared Personal Data shall include the following types of Special Categories of Personal Data
relevant to the following categories of Data Subject:

6.1.1 WUTH Study Participants: Pseudonymised health data, being images of the back of the
eye from OCT scanning devices.

The Shared Personal Data must not be irrelevant or excessive with regard to the Agreed Purposes.
LAWFUL BASES FOR SHARING

The shanng of the Shared Personal Data between the partles will be carried out on the following

. lawful bases (Lawful Bases for Sharing):

711 Personal Data

~ (a)  Article 6(1)(e) GDPR processing is necessary for the perfourmance of a task carried
' outin the public interest or in the exercise of official authority;

712 Special Categoriés of Personal Data:

(a}  Article 9(2)(j) GDPR processmg is necessary for arch.rwng, scientific or historical
research purposes;

Each party will ensure that it only further Processes the Shared Personal Data fairly and lawfully and
that it has legitimate grounds under the Data Protection Legislation for the Processing of Shared
Personal Data.

'COMPLIANCE WITH THE DATA PROTECTION LEGISLATION
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Each party shall comply with all the obligatio‘ns‘imposed on a Data Controller under the Data
Protection Legislation. ; : !

Each party warrants and undertakes that it will:

8.2.1 Process the Shared Personal Data in compliance with all applicable laws, enactments, - -
regulations, orders, standards and other S|m|Iar mstruments that apply to its Personal
Data Processmg operahons

8.2:2: . ReSpondr within a reasonable time and as far as reasonably possible to enquiries from the
_Information Commissioner‘s Office in relation to the Shared Personal Data.

-82.3 " Respond to a request from-a Data Subject in accordance with the Data Protection
Legislation..
824 . Where apphcable pay the appropriate fees to the Information Commissioner's Office.to

Process all Shared Personal Data for the Agreed Purposes.

8.2.5 “Maintain complete and accurate records and information to demonstrate its comphance
with this DSA. -
8.26 ‘Take aII appropriate steps to ensure compliance with the security measures set out in

clause 12 of this DSA.

8.2.7 Not disclose or transfer Shared Personal Data outside the European Economic Area
(EEA) unless it complies with the obligations set out in clause 14 of this DSA.

* Any. party sharlng' Shared Personal Data warrants and undertakes that it is entitled to provide the

Shared Personal Data to the rec:p|ent party and will ensure that the Shared-Personal Data are

accurate.

'The‘parties agree to use compatible technology, where possible, for the Processing of Shared

Personal Data to ensure that there is no lack of accuracy resulting from Personal Data transfers.

The parties agree that, consnienng the nature of the Processmg and the Data Subjects to which that
Processing relates, the envisaged Processing under the DSA is likely to result in a high risk to the
rights and freedoms of Data Subjects and as such, in accordance with Article 35 of the GDPR, each
party agrees to conduct a Data Protection Impact Assessment prior to commencmg any Processrng,
which shall include: -

8.5.1 " a'systematic description of the enwsaged Processing operations and the purpose of the

Processmg,
‘8.5.2_ an assessment of the necessity and proportlonallty of the Prccessrng operat|ons in

relation to the purposes
8.5.3 an assessment of the risks to the nghts and freedoms of Data Subjects and

8.5.4 the measures envisaged to address the risks, including safeguards security measures
and mechanisms to ensure the protection of Personal Data:

LAWFUL, FAIR'AND TRANSPARENT PROCESSING )
Each party shall ensure that:
9.11 it Processes the Shared Personal Data fairly and lawfully during the term. of this DSA;

9.1.2 it only shares the Shared Personal Data with the other parties on the Lawful Bases for
Sharing;
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9.1.3 it shall ensure the safekeeping and confidentiality of the Shared Personal Data and shall
limit access to the Shared Personal Data to those employees or other authorised
representatives who have a need to process them in accordance with this DSA and who
are bound by written confidentiality obligations with respect to the Shared Personal Dats;

9.1.4 it shall use prudence and reasonable care in the use, handling, storage transportation,
disposition and containment of the Shared Personal Data; .

9.1.5 it shall adopt Appropriate Techmcal and Organisational Measures to prevent any
Personal Data Breach, the minimum measures of which are specified in Annex C to
* Schedule 1. If either party identifies a Personal Data Breach, they will;

" (a) inform the -other party as soon as reasonably possible, though not later than
twenty-four (24) hours after discovering the Personal Data Breach, the possmle
impact of the Personal Data Breach on the other party and/or the Data Subject(s),
‘and also measures that is has taken or will take in order to correct the Personal
Data Breach and/or limit its consequences;

(b)  will immediately, at its own expense, tal‘ée all measures to correct the.shortcomings
in security that resulted in the Personal Data Breach and to limit its consequences;

9.1.6 it only further Processes the Shared Personal Data on one or more of the legal bases set

out in the Data Protection Leglsiatlon

9.1.7 it provides clear and sufficient information to the Data Subjects, in respect of the Shared
Personal Data, in accordance with the Data Protection Legislation, of the purposes for
which it will Process their Personal Data, the legal basis for Processing their Personal
Data and such other mformatlon as is reqmred by Articles 13 and 14 of the GDPR
including: ‘ i

(@) if Shared Personal Data will be transferred to a third party, that fact and sufficient
information about such transfer and the purpose of such transfer to enable the
Data Subject to understand the purpose and risks of such transfer (including the .
sharing of Personal Data with the other parties to this DSA); and -

(b) if Shared Personal Data will be transferred outside the EEA pursuant to clause
14.4 of this DSA, that fact and sufficient information about such transfer, the
purpose of such transfer and the safeguards put in place by the Data Controller to
enable the Data Subject to understand the purpose and risks of such transfer.

Where appropriate, each party shall ensure that it has all necessary consents in place to enable
lawful transfer of the Shared Personal Data for the Agreed Purposes. ,

DATA QUALITY

The parties have developed a reliable means of convertingl Shared Persconal Data to ensure
compatibility with each party’s respective datasets.

Each party shall ensure that before the date the Services Agreement is entered into, Shared
Personal Data are accurate, and it will update the same if required prior to transferring the Shared
Personal Data.

In the event that either party becomes aware of any éhanges to the Shared Personal Data, or aware
or suspects that any of the Shared Personal Data contains inaccuracies, it shall notify the other party
without undue deiay :

DATA SUBJ EGTS’ RIGHTS
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The parties each agree to provide such assistance as is reasonably required to enab!e the other
parties to comply with requests from Data Subjects to exercise their rights under the Data Protection
Legislation within the time limits imposed by the Data Protection Legislation.

The SPoC for each party is responsible for maintaining a record of individual requests for
information, the decisions made and any information that was exchanged. Records must include
copies of the request for information, details of the data accessed and shared and where relevant,
notes of any meeting, correspondence .or phone calls relating to the request. The SPoC for each
party are detailed in clause 5. '

DATA SECURITY

. The parties undertake to. have in place throughout the term of -the DSA Appropriate Technical and

Organisational Measures (to comply with the obligations under Article 32 of the GDPR) to-prevent
unauthorised or unlawful Processing of the Shared Personal Data and the accidental loss or
destruction of, or damage to, the Shared Personal Data to ensure a level of security appropriate to
the harm that might result from such unauthorised or unlawful. Processing or accidental loss,
destruction or damage and the nature of the Shared Personal Data to be protected.

. It is the responsibility of each -party to ensure that its staff members are appropriately trained to

handle and Process the Shared Personal Data in accordance with the Appropriate Technical and
Organisational Measures noted in clause 12.1 of this DSA together with any other applicable
national guidance and have entered into confidentiality agreements relating to the Processing of
Personal Data. ,

The level, content and regularlty of training referred to in clause 12.2 of this DSA sha!] be
proportionate to the staff members' role, responsibility and frequency with respect to their handling
and Processing of the Shared Personal Data.

DATA RETENTION AND DELETION

The parties shall not retain or Process Shared Personal Data for longer than is necessary to carry
out the Agreed Purposes and shall only retain the Shared Personal Data for the period specified in
the Service Agreement ' ; .

All Shared Personal Data must be stored appropriately by each party in accordance with that party’ s
data storage and retention policies and -procedures. No Personal Data should be stored by

personnel on their own personal computer systems. .

Each party shall ensure that once Shared Personal Data is no longer reqwred and relevant retention .
periods have expired, Personal Data is securely and permanently deleted in accordance with that

parties' retention and disposal policies or returned to the originating party as appropriate.

DATA TRANSFERS | '

For the purposes of this clause, transfers of Personal Data shall mean any sharing-of Personal Data
with a third party, and shall include, but is not limited to, the following: :

14.1.1 *  subcontracting the Processing of Shared Personal Data;
14.1.2°  granting a third-party Data Controller access to the Shared Personal Data. .

If a party appoints a third-party Data Processor to Process the Shared Personal Data it shall comply
with Article 28 and Article 30 of the GDPR. ‘

If a party grants a third party Data Controller acce'ss'td the Shared Personal Data, it shall comply

with Article 26 of the GDPR (in the event the third party is a Joint Data Controller) and shall comply
with the Information Commissioner's Data Sharing Code of Practice (as may be updated from trme to
time).
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14.4

15

161

15.2
16

16.1

17

171

18

18.1

The parties shall not transfer any Shared Personal Data outside the EEA unless the transferor:

14.4.1 complies with the provisions of Article 26 of the GDPR (in the event the third party is a
' Joint Data Controller); and

14.4.2 ensures- that (i) the transfer is to a country approved by the European Commission as
providing adequate protection pursuant to Article 45 of the GDPR; (i) there are
appropriate safeguards in place pursuant to Article 46 of the GDPR, or (iii) one of the
derogations for specific situations in Article 49 of the GDPR applies fo the transfer.

PERSONAL DATA BREACHES

Each party shall comply with its obligation to report a Personal Data Breach to the Information
Commissioner's Office under Article 33 of the GDPR and (where applicable) Data Subjects under
Article 34 of the GDPR and shall each, promptly (and in any event within 24 hours) inform the SPoC
of any party likely to be effected by the Personal Data Breach irrespective of whether there is a
requirement to notify the Information Commissioner's Office or Data Subject(s).

The parties agree to provide reasonable. assistance’as is necessary to each other to facilitate the -
handling of any Personal Data Breach in an expeditious and compliant manner.

RESOLUTION. OF DISPUTES WITH DATA SUBJECTS OR THE INFORMATION
COMMISSIONER’S OFFICE

In the event of a dispute or claim brought by a Data Subject or the Information Commissioner’s
Office concerning the Processing of Shared Personal Data against one or a number of the parties,
the parties will inform each other about any such disputes or claims and will cooperate with a view to
settling them amicably in a timely fashion. -

REVIEW AND TERMINATION OF THIS DSA

The parties shall review the effectiveness of this DSA every 12 mbnths,- having consideration to the
Agreed Purposes and shall continue, amend or terminate this DSA depending on the outcome of this
review. This review will involve:

17.1.1 assessing whether the purposes for which the Shared Personal Data is being Processed
are still those listed in clause 4 of this DSA;

17.1.2 assessing whether the Shared Personal Data is still as Iisted in clause 6 of this DSA,;

17.1.3 assessing whether the legal framework governing data quality, retentlon and Data
Subjects! rights are being complied with;

17.1.4 assessing whether Personal Data Breaches involving the Shared Personal Data have ‘
been handled in accordance with this DSA and the Data Protection Legislation; and

17.1.5 assessing whether this DSA needs to be updated to comply with any amendments to the
: Data Protection Legislation.

[INDEMNITY

Each party shall indemnify the other against all liabilities, costs, expenses, damages and losses
(including but not limited to any direct, indirect or consequential losses, loss of profit, loss of
reputation and all interest, penalties and legal costs (calculated on a full indemnity basis) and all
other reasonable professional costs and expenses) suffered or incurred by the indemnified party
arising out of or in connection with the breach of the Data Protection Legislation by the indemnifying
party, its employees or agents, provided that the indemnified party gives to the indemnifier prompt
notice of such claim, full information about the circumstances giving rise to it, reasonable assistance
in dealing with the claim and sole authority to manage, defend and/or settle it.]
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19 . ALLOCATION OF COST

19.1 - Each party shall perform its obligations under this DSA at'its own cost. »
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1.1

1.2

1.3

1.4

2.4

' 2.2

2.3

24

SCHEDULE 3- CHANGE CONTROL
GENERAL PRINCIPLES

Where either Party sees a need to change this Agreement, it may request such Change only in
accordance with the Change Control Procedure set out in paragraph 2 of this Schedule 3.

Until such time as a Change is made in accordance with the Change Control Procedure, the Parties
shall, unless otherwise agreed in writing, continue to perform this Agreement in compllance with its
terms before such Change. ;

Any discussions which may take place between the Parties in connection with a request or
recommendation before the authonsatlon of a resultant Change shall be without prejudice to the
rights of either party

Any work undertaken by either of the Parties which has not been authorised in advance by a :
Change, and which has not been otherwise agreed in accordance with the provisions of this

~Schedule 3, shall be undertaken entirely at the expense and liability of that Party.

PROCEDURE

, Diecussioh between the Parties concerning a Change shall result in any one of the following:

231 no further action being taken; or b

2.2 a request to change this Agreement by either Party..

Where a Party requests to Change this Agreement; that Party shall submit to the other Party a

signed Change Control Note
The receiving Party shall give its response to the Changé Control Note within three (3) weeks.

Each Change Control Note shall contain:

247 - the title of the Change;

. 242 the originator and date of the request or recommendation for the Change;

243 the reason for the Change;
244 full details of the Change, including any specifications;
245 the price, if any, of the Change'

246 a timetable for |mplementat|on together with any .proposals for acceptance of the

Change;

247 a schedule of payments if appropriate;

248, ' details of the likely lmpact if any, of the Change on other aspects of thIS Agreement
mcludlng

(@) the timetable for the provision of the Change;
(b)  the personnel to be provided;
(c) .the Charges;

(d) the documentation to be provided,;
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0,

2.5

2.6

“(e) the training to be provi&éd;
1)) working arrangements;
(g) other contractual issues;
249 the date of expiry of validity of tﬁe Change Controi Note; and
2:4.1Q provision for signature by the Parties. |

For each Change Control Note submitted by either Party, the other Party shall, within the period of
the validity of the Change Control Note:

2.5:1 allocate a sequential number to the Change Control Note; and
252 evaluate the Change Control Note and, as appropriate:
(a) request further information;

(b) - accept the Change Control Note by arranging for two cbpies of the Change Control
Note to be signed and return one of the copies to the other Party; or

(c)  notify the other Party of fhe rejection of the Change Control Note.

A Change Control Note signed by the Parties shall constitute an amendment to this Agreement.
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Appendix 3:Treatment dose related classification models and model accuracy

s
o 2
a0 2 c Z
3] OL:: 2 g é :% = Q %
08 |sglé&| g |2 s | |8 |2 |8 &
Tree 0.53 0.57 0.57 0.57 0.57 0.01 0.45
Logistic 0.51 0.66 0.54 0.45 0.66 -0.08 0.32
Regression
Gradient 0.50 0.62 0.59 0.58 0.62 0.03 0.41
R . Boosting
1"\ % Neural 0.50 0.65 0.56 0.55 0.65 -0.02 0.34
;3; % _ ::L: Network
2 ; 2 © | AdaBoost | 049 [055 [055 [055 |055 [-002 [ 043
é § kNN 0.48 0.60 0.57 0.56 0.60 -0.01 0.39
.E_’. g Naive 0.47 0.65 0.54 0.51 0.65 -0.07 0.32
- Bayes
Random 0.47 0.60 0.57 0.56 0.60 -0.01 0.39
Forest
SVM 0.42 0.65 0.53 0.45 0.65 -0.10 0.31
Logistic 0.63 0.67 0.58 0.60 0.67 0.06 0.37
Regression
Neural 0.62 0.67 0.60 0.62 0.67 0.10 0.39
Network
R Gradient 0.61 0.64 0.62 0.61 0.64 0.12 0.46
o 4
% g _ﬁ Boosting
g 3 % s Naive 058 [062 |057 |o055 [062 |-002 |037
?: ZI a:U.: g Bayes
£ ~ E £ [N 058 | 062 | 060 | 060 |062 | 008 | 045
.g. & Random 0.58 0.66 0.64 0.63 0.66 0.16 0.49
B Forest
Tree 0.57 0.61 0.62 0.62 0.61 0.13 0.52
AdaBoost 0.51 0.57 0.57 0.57 0.57 0.02 0.45
SVM 0.50 0.67 0.57 0.60 0.67 0.05 0.35
- Random 0.54 0.63 0.59 0.57 0.63 0.03 0.39
% g Forest
g - '—Q SVM 0.53 0.68 0.58 0.65 0.68 0.11 0.36
= 8| 3 S [ kNN 053 [061 |058 |057 [061 |00l |040
i = E‘D Logistic 0.52 0.66 0.55 0.55 0.66 -0.01 0.33
o =
'g % Regression
£ AdaBoost 0.52 0.55 0.56 0.57 0.55 0.03 0.48
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Gradient 0.51 0.60 0.57 0.55 0.60 -0.02 | 0.38
Boosting
Tree 0.50 0.54 0.55 0.56 0.54 -0.01 | 0.44
Naive 0.50 0.61 0.57 0.56 0.61 -0.01 | 0.38
Bayes
Neural 0.49 0.62 0.57 0.56 0.62 0.00 0.37
Network
Naive 0.63 0.58 0.59 0.65 0.58 0.17 0.61
Bayes
kNN 0.59 0.67 0.66 0.65 0.67 0.19 0.50
Random 0.59 0.66 0.63 0.63 0.66 0.14 0.45

R Forest

o 3

L 3 § Gradient 0.58 0.66 0.64 0.63 0.66 0.15 0.47

5 - 3 < .

o 5 IS 5 Boosting

n o o 2

£ o 4y 3 Neural 0.57 0.62 0.60 0.59 0.62 0.05 0.42

o > 2 g

S 5 © Network

e ° | ¢

GC_’ © SVM 0.57 0.68 0.56 0.57 0.68 0.00 0.32
Logistic 0.55 0.62 0.57 0.55 0.62 -0.04 | 0.36
Regression
AdaBoost 0.55 0.60 0.60 0.61 0.60 0.09 0.50
Tree 0.54 0.60 0.61 0.61 0.60 0.11 0.51
SVM 0.59 0.68 0.57 0.62 0.68 0.07 0.35
AdaBoost 0.53 0.59 0.59 0.59 0.59 0.06 0.47
Neural 0.51 0.61 0.56 0.54 0.61 -0.05 0.35
Network

R Logistic 0.49 0.66 0.55 0.54 0.66 -0.03 0.33

o 3

s 8 Regression

§ 5 _ ; Gradient 0.49 0.60 0.56 0.54 0.60 -0.05 0.36

4 O' 2 8 Boostin

§ g Naive 0.48 0.61 0.57 0.56 0.61 -0.01 | 0.38

] >

.g © Bayes
Random 0.48 0.57 0.55 0.54 0.57 -0.06 | 0.38
Forest
kNN 0.45 0.59 0.56 0.54 0.59 -0.05 0.37
Tree 0.44 0.52 0.52 0.53 0.52 -0.08 | 0.40

- Naive 0.57 0.54 0.55 0.60 0.54 0.08 0.54

A

P 4 Bayes

L 3|z

= 2 2 Random 057 | 062 | 0.60 059 | 0.62 0.06 | 0.44

[ = € f

; gl o % Forest

= a v

z = 2 @O SVM 0.54 0.67 0.54 0.45 0.67 0.00 0.33

[S] 5 ©

g ° %‘ Neural 0.53 0.56 0.55 0.54 0.56 -0.04 | 0.40

2

£ Network
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Logistic 0.53 0.61 0.55 0.52 0.61 -0.07 0.34
Regression
Gradient 0.50 0.59 0.57 0.55 0.59 -0.01 0.40
Boosting
kNN 0.49 0.60 0.57 0.55 0.60 -0.02 | 0.39
Tree 0.48 0.55 0.56 0.56 0.55 -0.01 | 0.44
AdaBoost 0.46 0.52 0.52 0.52 0.52 -0.08 | 0.40
Random 0.49 0.63 0.57 0.55 0.63 -0.01 | 0.36
Forest
Naive 0.47 0.40 0.38 0.54 0.40 -0.04 | 0.56
Bayes
AdaBoost 0.46 0.50 0.51 0.53 0.50 -0.08 | 0.41
Tree 0.46 0.48 0.50 0.53 0.48 -0.07 | 0.44
R Neural 0.45 0.62 0.55 0.52 0.62 -0.07 | 0.33
o 9]
Js § Network
5 z ©
g = _ 5 SVvM
% Q 3 3
= OI b ° (error)
7 o o0
5 = o Gradient
S g
2 © Boosting
(error)
kNN
(error)
Logistic
Regression
(error)
Tree 0.55 0.63 0.60 0.59 0.63 0.05 0.41
Naive 0.54 0.61 0.61 0.60 0.61 0.09 0.48
Bayes
SVM 0.48 0.66 0.54 0.46 0.66 -0.08 | 0.32
R Logistic 0.47 0.66 0.56 0.56 0.66 -0.01 | 0.33
-~ w
[32] [
5 3 4 Regression
5 z 8 S .
9 = OEJ 5 Gradient 0.46 0.63 0.57 0.56 0.63 -0.01 | 0.36
7 8] b 3
E OI 0 -g Boosting
E § g AdaBoost 0.44 0.59 0.55 0.52 0.59 -0.08 0.34
] >
.g © kNN 0.43 0.60 0.53 0.49 0.60 -0.13 0.31
Random 0.43 0.60 0.54 0.51 0.60 -0.11 0.32
Forest
Neural 0.42 0.60 0.55 0.53 0.60 -0.06 0.35
Network
- . Neural 0.56 0.55 0.56 0.60 0.55 0.09 0.55
£ R = g
‘*é 'ﬁ; = _ _g §Network
8] = @
2 £ 9 < ® 5l Naive 051 |040 | 034 |062 |040 |007 | 065
o 8 o o
£ > & Bayes
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AdaBoost 0.50 0.52 0.54 0.56 0.52 0.00 0.48
Tree 0.50 0.36 0.27 0.56 0.36 -0.01 0.64
Random 0.50 0.43 0.43 0.56 0.43 0.00 0.57
Forest
SVM
(error)
Gradient
Boosting
(error)
kNN
(error)
Logistic
Regression
(error)
Logistic 0.53 0.67 0.56 0.62 0.67 0.06 0.35
Regression
SVM 0.52 0.67 0.54 0.61 0.67 0.03 0.34
Random 0.51 0.62 0.58 0.57 0.62 0.03 0.40
by " Forest
E " § % kNN 0.49 0.63 0.58 0.57 0.63 0.03 0.39
é; '<Z£ % :5 Neural 0.48 0.60 0.55 0.53 0.60 -0.05 | 0.36
;_E é' EU: ';, Network
é = _‘g ;‘:P AdaBoost 0.47 0.60 0.56 0.54 0.60 -0.02 | 0.38
z_’ & Gradient 0.46 0.62 0.56 0.55 0.62 -0.01 | 0.37
B Boosting
Naive 0.46 0.51 0.52 0.52 0.51 -0.09 | 0.40
Bayes
Tree 0.44 0.58 0.53 0.51 0.58 -0.09 | 0.35
AdaBoost 0.55 0.60 0.60 0.60 0.60 0.10 0.50
SVM 0.54 0.65 0.54 0.48 0.65 -0.09 | 0.32
Random 0.52 0.63 0.60 0.59 0.63 0.07 0.42
Forest
‘,*{ " kNN 052 | 061 |059 | 058 |061 | 004 |043
?:? % Neural 0.51 0.67 0.57 0.59 0.67 0.04 0.35
g - _ g Network
2 > 2 < | Gradient | 051 | 060 | 057 | 056 |0.60 | 001 | 039
« &
é g Boosting
.g & Logistic 0.50 0.66 0.54 0.45 0.66 -0.08 0.32
- Regression
Naive 0.49 0.66 0.55 0.54 0.66 -0.03 0.33
Bayes
Tree 0.49 0.55 0.55 0.55 0.55 -0.02 0.43
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Gradient 0.60 0.64 0.61 0.61 0.64 0.11 0.45
Boosting
Random 0.57 0.63 0.61 0.60 0.63 0.09 0.45
Forest
by Logistic 0.56 0.67 0.56 0.60 0.67 0.04 0.35
i g ,
£ ? 2 Regression
§ 8 ; AdaBoost 0.55 0.59 0.59 0.60 0.59 0.10 0.51
e < v >
g = g 8 Neural 0.55 0.66 0.55 0.55 0.66 -0.01 0.34
Q [
5 ] OEP Network
£ ° | g
'Gé © kNN 0.52 0.58 0.56 0.55 0.58 -0.02 0.39
Naive 0.52 0.63 0.56 0.54 0.63 -0.03 0.35
Bayes
Tree 0.50 0.53 0.54 0.56 0.53 0.01 0.47
SVM 0.49 0.66 0.55 0.56 0.66 0.00 0.34
Naive 0.57 0.59 0.59 0.59 0.59 0.06 0.46
Bayes
Neural 0.52 0.66 0.55 0.52 0.66 -0.05 0.33
Network
R g SVM 0.51 0.67 0.54 0.45 0.67 -0.07 0.32
N =1 v
[32] [
L E § Logistic 0.50 0.67 0.54 0.46 0.67 -0.05 0.32
& S S 4
g < _ § Regression
;_‘_9 2 & 3 AdaBoost 0.48 0.55 0.54 0.53 0.55 -0.07 0.38
Q. [
v oo
_s % g Gradient 0.46 0.60 0.57 0.55 0.60 -0.02 0.38
] >
.'5’_{ qE, © Boosting
£ (=}
Random 0.45 0.59 0.56 0.55 0.59 -0.03 0.39
Forest
Tree 0.44 0.50 0.50 0.51 0.50 -0.12 0.38
kNN 0.42 0.56 0.54 0.53 0.56 -0.08 0.37
SVM 0.55 0.67 0.55 0.46 0.67 -0.04 0.32
kNN 0.55 0.62 0.60 0.59 0.62 0.05 0.42
Logistic 0.51 0.68 0.57 0.62 0.68 0.06 0.34
Regression
by g AdaBoost 0.50 0.58 0.57 0.56 0.58 -0.01 0.41
~ i wn
o [}
s % < 2 Tree 0.50 0.54 0.55 0.56 0.54 -0.02 0.44
— 3 > S
§ ;’ % 5 Random 0.49 0.60 0.57 0.56 0.60 -0.01 0.39
4+ o >
2 _Lé 4 3 Forest
e o 9] 9]
2 © S & -
o @ 2 s Naive 0.47 0.66 0.58 0.59 0.66 0.03 0.36
5] >
.§ qE,‘ © Bayes
£ (=
Neural 0.47 0.61 0.56 0.54 0.61 -0.05 0.35
Network
Gradient 0.47 0.60 0.56 0.54 0.60 -0.05 0.36
Boosting
_ o > o 1l « 35| o | Tree 0.51 0.23 0.22 0.22 0.23 0.00 0.77
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kNN 0.51 0.28 0.24 0.22 0.28 0.02 0.75
Gradient 0.50 0.25 0.23 0.22 0.25 0.01 0.75
Boosting
Naive 0.50 0.00 0.01 0.11 0.00 -0.02 0.99
Bayes
AdaBoost 0.49 0.23 0.23 0.23 0.23 0.01 0.78
Neural 0.49 0.27 0.24 0.22 0.27 0.02 0.75
Network
Random 0.48 0.27 0.24 0.23 0.27 0.02 0.76
Forest
Logistic 0.47 0.28 0.20 0.20 0.28 -0.02 0.71
Regression
SVM 0.45 0.29 0.19 0.21 0.29 -0.03 0.69
kNN 0.55 0.32 0.27 0.26 0.32 0.08 0.76
s Tree 0.55 0.28 0.27 0.26 0.28 0.07 0.79
—
o Neural 0.53 0.30 0.27 0.26 0.30 0.07 0.78
o0
~ Network
$~ Naive 0.53 0.01 0.00 0.00 0.01 0.00 0.99
w
n [
:\ § g Bayes
w0 o) o
2 s] € 5 Random 0.52 0.28 0.25 0.24 0.28 0.03 0.76
S O -
o) o' n - Forest
3 > 2 g
g *g g AdaBoost 0.52 0.24 0.24 0.25 0.24 0.04 0.80
©
Q >
> © Gradient 0.51 0.25 0.23 0.21 0.25 0.01 0.76
"
= Boosting
5
B Logistic 0.48 0.26 0.22 0.22 0.26 0.01 0.75
)
=5 Regression
SVM 0.46 0.34 0.24 0.21 0.34 0.08 0.72
kNN 0.50 0.28 0.24 0.22 0.28 0.02 0.74
s Naive 0.49 0.00 0.01 0.32 0.00 -0.01 0.99
-
o Bayes
2\ Gradient 0.48 0.25 0.22 0.21 0.25 -0.01 0.74
) .
“ " Boosting
n [}
:. ﬁ AdaBoost 0.48 0.20 0.20 0.20 0.20 -0.03 0.77
.§ 5 g Random 0.48 0.23 0.19 0.17 0.23 -0.05 0.72
S S | s
) o e - Forest
g > %
g g Neural 0.47 0.24 0.21 0.20 0.24 -0.03 0.73
©
>
% © Network
4
= Logistic 0.46 0.29 0.22 0.24 0.29 0.00 0.70
c
9 .
"?:j Regression
5 Tree 0.46 0.18 0.17 0.17 0.18 -0.07 0.75
SVM 0.43 0.33 0.21 0.34 0.33 0.04 0.69
o w o — . | Random 0.56 0.30 0.27 0.27 0.30 0.05 0.75
2§ 65 5 5 2 g
£ 5 = © Y ®© | Forest
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Neural 0.54 0.26 0.24 0.24 0.26 0.01 0.75
Network
Tree 0.53 0.28 0.27 0.27 0.28 0.05 0.78
Gradient 0.53 0.30 0.28 0.27 0.30 0.06 0.77
Boosting
Logistic 0.53 0.27 0.25 0.26 0.27 0.02 0.74
Regression
Naive 0.53 0.01 0.01 0.15 0.01 -0.02 | 0.99
Bayes
AdaBoost 0.50 0.22 0.23 0.23 0.22 0.00 0.78
kNN 0.50 0.31 0.27 0.26 0.31 0.05 0.74
SVM 0.43 0.35 0.23 0.25 0.35 0.07 0.70
Tree 0.50 0.27 0.20 0.17 0.27 -0.02 | 0.71
Naive 0.50 0.19 0.19 0.22 0.19 0.00 0.81
§ Bayes
o
- Neural 0.50 0.18 0.16 0.19 0.18 -0.03 0.79
:~ Network
:~ § SVM 0.48 0.25 0.15 0.10 0.25 -0.05 0.71
-~ w
E = s Logistic 0.48 0.22 0.21 0.22 0.22 0.00 0.77
-z < =
S 5 = g Regression
-8 <3| ha ©
I g & AdaBoost 0.47 0.20 0.19 0.19 0.20 -0.04 | 0.76
— ©
3 % Gradient 0.46 0.24 0.21 0.21 0.24 -0.02 | 0.73
>
f‘_ﬁ Boosting
g Random 0.46 0.24 0.17 0.15 0.24 -0.06 | 0.71
E Forest
£
kNN
(error)
Naive 0.51 0.00 0.00 0.00 0.00 -0.01 1.00
. Bayes
=
o Random 0.50 0.28 0.21 0.20 0.28 -0.01 | 0.72
o0
~ Forest
E- AdaBoost 0.48 0.27 0.22 0.21 0.27 0.01 0.74
(%]
n [}
:. 2 ﬁ Tree 0.47 0.26 0.20 0.19 0.26 -0.02 0.72
w > -_
k| '<Z_( g o Gradient | 046 | 024 | 019 | 019 | 024 |-004 [0.72
o O v >
gf S, v 2 Boosting
© o Q )
ICA > = o
= 3 g Neural 0.45 0.24 0.20 0.19 0.24 -0.05 0.72
©
>
% © Network
|4
“: kNN 0.44 0.26 0.21 0.23 0.26 -0.04 0.70
c
‘% Logistic 0.44 0.26 0.17 0.15 0.26 -0.06 0.69
()
5 Regression
SVM 0.39 0.29 0.18 0.19 0.29 -0.05 0.68
o o o =z - Random 0.50 0.18 0.13 0.10 0.18 -0.02 0.80
S 8o 2wl 5 |8 Y
£ 5 %05 = © | Forest
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Neural 0.50 0.17 0.14 0.11 0.17 0.01 0.84
Network
Tree 0.50 0.28 0.15 0.10 0.28 -0.02 | 0.70
Naive 0.50 0.28 0.15 0.11 0.28 0.01 0.72
Bayes
AdaBoost 0.50 0.14 0.12 0.10 0.14 -0.01 | 0.85
SVM
(error)
Gradient
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Appendix 4:Treatment dose related classification model feature ranking
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VO_retina 3mm vol 0.043| 0.022 | 0.026|14.103|13.808 | 0.004 | 0.000
VO_RPE 3mm vol 0.037| 0.019| 0.022| 3.501|12.063| 0.000| 0.000
R " VO_retina min CMT 0.034| 0.017 | 0.020|14.070|10.881| 0.011| 0.000
[
s 3 3 VO_retina 1mm CM vol 0.027| 0.014| 0.016|12.346| 9.710| 0.003| 0.000
> |8 | 8 |
_E o E. _g VO_GCL 1mm CM vol 0.038| 0.024 | 0.019| 8.680| 8.874| 0.020| 0.032
‘; > K Q
5 E ®
=1 9 9]
O >
Q0 ©
=
VP_NFL 1mm CM vol 0.014| 0.026 | 0.007 | 3.347| 0.588| 0.000| 0.000
VP_RPE 1mm CMT 0.033| 0.016| 0.020| 2.019| 3.963| 0.003| 0.023
7\1 " VP_retina 3mm vol 0.031| 0.015| 0.018| 6.053| 6.803 | 0.005| 0.000
i 3
c w
s s VP_RPE 3mm vol 0.026 | 0.013| 0.015| 1.811| 6.008 | 0.001| 0.000
g S - | @
E a! 2 _g VP_retina 1mm CMT 0.025| 0.012 | 0.015| 6.423| 7.161| 0.010| 0.000
bt > O
5 g
prr [
o >
2 ©
=
VP_RPE 1mm CM vol 0.022| 0.011| 0.013| 4.032| 8.254| 0.010| 0.000
VP_RPE 3mm vol 0.022| 0.011| 0.013| 3.825| 4.156| 0.004| 0.000
7\1 " VP_ORLs min CMT 0.026| 0.013| 0.015| 4.384| 3.753| 0.005| 0.000
[
= 3 S VP_ORLs 3mm vol 0.021| 0.011| 0.012| 4.532| 3.417| 0.006| 0.000
> | 8 | B |¢E
,‘Z a! E _g VP_OPL 1Imm CMT 0.011| 0.006| 0.007 | 1.594| 3.133| 0.005| 0.000
b > o ]
5 E &
= o o
5] >
9 ©
C
VO_vol_serous_ped 0.040| 0.020| 0.020| 1.041| 0.304| 0.035| 0.029
VO_vol_posterior_hyaloid 0.030| 0.015| 0.015| 0.115| 0.029| 0.029| 0.000
m
A
o g VO_vol_subretinal_hyper_reflect 0.027| 0.013| 0.016| 0.192| 0.058| 0.007| 0.000
1 &
; u 3 VO_vol_epiretinal_membrane 0.019| 0.009| 0.012| 0.624| 0.039| 0.005| 0.000
$ = _ @
4 8| 2 S | vo_vol_subretinal_fluid 0.019| 0.009 | 0.011| 0.866| 0.000| 0.002| 0.000
o O
s F
et [
5] >
L ©
C
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VO_vol_fibrovascular_ped 0.020| 0.010| 0.012| 5.954| 2.852| 0.012| 0.000
VO_vol_subretinal_fluid 0.017| 0.009| 0.010| 1.014| 0.711| 0.040| 0.000
@ VO_vol_neurosensory_retina 0.010| 0.005| 0.006| 1.867| 0.593| 0.003| 0.000
7 g
c w ° @ VO_vol_intraretinal_fluid 0.005| 0.003| 0.003| 0.159| 0.573|-0.004| 0.000
© b= 3 ©
2 < € 5
o s) g 3 VO_vol_drusenoid_ped 0.010| 0.005| 0.006| 0.704| 0.435)-0.021| 0.000
o o 7
= | £ |3
2 S el ®
2 o o]
O >
Q0 ©
£
VP_vol_serous_ped 0.093| 0.046| 0.025| 0.032| 0.000|-0.004| 0.076
VP_vol_subretinal_hyper_reflect 0.034| 0.017| 0.022| 1.679| 0.591| 0.040| 0.000
VP_vol_epiretinal_membrane 0.023| 0.012| 0.015| 0.376| 0.620|-0.023| 0.000
o
:,\; ] VP_vol_vitreous_and_subhyaloid 0.009| 0.005| 0.006| 1.462| 2.427| 0.001| 0.000
£ w 3
s <Zt g VP_vol_neurosensory_retina 0.009| 0.005| 0.006| 1.320| 0.477|-0.002| 0.000
> 5 = g
12 fied o
< N e
5 > i
b g
2 ©
£
VP_vol_vitreous_and_subhyaloid 0.012| 0.006| 0.007 | 2.592| 4.918 | 0.004| 0.000
VP_vol_rpe 0.009| 0.005| 0.006| 1.222| 2.061|-0.007| 0.000
R
o~ 4 VP_vol_neurosensory_retina 0.009| 0.004 | 0.006| 3.814| 0.806| 0.000| 0.000
I el &
; % % = VP_vol_subretinal_fluid 0.011| 0.006| 0.007 | 2.256| 0.546| 0.016| 0.000
2 e) » S | vP_vol_intraretinal_fluid 0.007 | 0.003 | 0.004| 0.187| 0.546 |-0.010| 0.000
“J, n.l 2 s
c > = ©
2 3 ]
5} >
L ©
£
VA fellow eye (V0) 0.006| 0.003| 0.004| 0.941| 0.572| 0.004| 0.004
o
:; P VA baseline visit (V0) 0.006| 0.003 | 0.003| 2.266| 1.446| 0.004 | 0.000
!
3 o VA post loading (VP) 0.004| 0.002 | 0.002| 0.984| 0.619| 0.002| 0.000
> — [
I < = — — -
19 > 2 _§ VA mean initial 2 visits post loading 0.004| 0.002| 0.002| 0.248| 0.140| 0.002| 0.000
= 9]
] g
L ©
£
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0.008| 0.004| 0.005| 1.919| 0.615| 0.011| 0.005
- 0.005| 0.003| 0.003| 2.509| 1.558| 0.005| 0.000
N
1? 3 § 0.005| 0.003| 0.003| 1.033| 0.425| 0.003| 0.000
o > o
3 g g 0.005| 0.003| 0.003| 1.406| 1.103| 0.023| 0.000
= < o S
g = 2 el
%) 2 g"a
c =]
S 3 5
O >
Q0 ©
£
Anti-VEGF drug type 0.025| 0.026 | 0.010 | NA 0.005| 0.000| 0.028
Ethnicity 0.005| 0.011| 0.003 | NA 0.010| 0.006| 0.000
R < - Age At First Injection 0.015| 0.008 | 0.009 | NA 3.722| 0.010| 0.000
" B g
= w
; ] = Laterality 0.004 | 0.004 | 0.002 | NA 0.834 | -0.012| 0.004
o o =
; f 3 g Time interval 1st to 3rd injection 0.006| 0.004 | 0.003 | NA 0.604 | 0.000| 0.000
2 g g
5 t% © Fellow eye activity 0.003| 0.002 | 0.002 | NA 2.070| -0.026 | 0.000
g 2 g
g g s
< o Sex 0.001| 0.001| 0.001 | NA 0.386| 0.004| 0.000
Age At First Injection 0.009 | 0.005| 0.006 | NA 2.921| 0.037| 0.000
Fellow eye activity 0.002| 0.001| 0.001|NA 1.263| 0.010| 0.000
R < " Laterality 0.003 | 0.003| 0.002 | NA 0.575|-0.012| 0.003
) ® [}
£ % § ﬁ Sex 0.001| 0.001| 0.001 | NA 0.360 | -0.006 | 0.000
= =] o ]
§ ;— uEJ ] Time interval 1st to 3rd injection 0.004 | 0.003 | 0.003 | NA 0.083 | -0.002 | 0.000
7 e s |3
= < — el L.
0 2 2 & Ethnicity 0.006| 0.012 | 0.003 | NA 0.017 | 0.002| 0.000
s & ] °
B 2 ° | Anti-VEGF drug type 0.024 | 0.026 | 0.009 | NA 0.000| 0.016| 0.027
CU
5 a
VO_retina 3mm vol 0.100 |0.050 |0.018 [2.827 |21.343|0.000 | 0.048
[oe]
5 ~N § VO_IPL 3mm vol 0.098 | 0.049 | 0.020| 4.962|24.363|-0.002| 0.000
S 8
B! - o VO_GCL 1mm CM vol 0.079| 0.049| 0.016| 1.746|11.791| -0.003 | 4 ogo
£ ¥ 39 8 — o X
g E d g' 2 2 [vo_oPL3mm vol 0.083| 0.042 | 0.017| 3.846[17.192 | 0.003| 0.000
= (9]
5 < oo
§ & g VO_retina Imm CMT 0.081| 0.040| 0.013| 1.670|15.472| 0.002| 0.000
[ [
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VO_retina 3mm vol 0.116 | 0.058 [0.022 |4.195 |24.295|0.000 |0.056
S
© VO_IPL 3mm vol 0.090 | 0.045| 0.018| 3.752(19.423 | 0.004| 0.000
n
< VO_retina 1mm CM vol 0.097 | 0.049 | 0.016| 2.759|18.164 | 0.007 | g goo
™| 0 :
4 &
2 ? ] VO_NFL min CMT 0.050| 0.038 | 0.009| 1.180(17.490| 0.000| 0.000
5 o
» = - 2 g
% =1 3 aE) g VO_GCL min CMT 0.070| 0.041| 0.013| 1.348|17.237 | 0.005| g o35
CAY o - o :
5 o > b °
o = o0
> 5 o
i 9 o
= ®
2
9
k3]
2
£
VP_NFL 1mm CM vol 0.049| 0.088 | 0.009| 1.604| 1.908 | 0.002| 0.000
~
9 VP_retina 3mm vol 0.138| 0.069 | 0.021| 9.644(35.902 | 0.011| 0.067
)
:~ - VP_INL 1mm CM vol 0.091| 0.055| 0.012| 6.328|12.755| 0.008| 0.000
1% [
2 § VP_RPE 1mm CMT 0.108 | 0.054 | 0.020| 1.732|12.210| 0.005| 0.000
® = - °
Y o Q ]
T ; o, = 3 VP_IPL Imm CM vol 0.064 | 0.052| 0.011| 3.016|10.917| 0.003| 0.000
R g
> o
2
kel
k3]
2
£
~ VP_retina 3mm vol 0.097| 0.049| 0.015| 9.215|23.894| 0.012 | NA
©
':. VP_IPL 3mm vol 0.068 | 0.034| 0.015| 3.325|17.356| 0.001 | NA
‘f,’: ] VP_ORLs 3mm vol 0.081| 0.041| 0.013(13.165|15.858| 0.013 | NA
a ° a
2 5 g
o > -—
¥ = 5 g ; VP_RPE 3mm vol 0.077| 0.038| 0.013| 9.793|15.113| 0.010 | NA
w® - o o >
L o | o
T o0 % ,g 2 VP_RPE 1mm CM vol 0.087| 0.045| 0.016| 5.774|14.210| 0.011|NA
S g ®
g 5 |
= ©
w
c
kel
k3]
2
£
VO_vol_serous_ped 0.215| 0.107 | 0.032| 0.890| 2.174| 0.010| 0.104
[oe]
LN § VO_vol_posterior_hyaloid 0.184| 0.092| 0.029| 0.325| 1.566| 0.035| 0.000
0 O n
> - w o
E :i a '<Z£ ; VO_vol_epiretinal_membrane 0.111| 0.056| 0.019| 0.552| 0.844|-0.021|NA
“ + 9 6 = 3
§ E gl © 2 3 VO_vol_choroid_and_outer_layers 0.091| 0.046| 0.011| 1.039| 7.098| 0.004| 0.000
PR =) E
T > &
g g g VO_vol_subretinal_fluid 0.086| 0.043| 0.012| 4.732|10.017| 0.006| 0.000
\{3; ©
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VO_vol_vitreous_and_subhyaloid 0.069| 0.034| 0.011| 1.665|10.303 | 0.002| 0.000
~
:~ VO_vol_subretinal_fluid 0.107 | 0.054| 0.014| 4.997|10.027| 0.012| 0.000
:r; " VO_vol_fibrovascular_ped 0.085| 0.043| 0.017| 1.330| 6.822| 0.018| 0.040
4 a
2 w ? @ VO_vol_neurosensory_retina 0.076| 0.038 | 0.014| 1.164| 6.607| 0.019| 0.000
[e] . ) ]
2 3 z £ 5
S & 5 b 3 VO_vol_choroid_and_outer_layers 0.102| 0.051| 0.013| 1.040| 6.423|-0.001| 0.049
- < O 2 hel
5 o o 2 o
= > E &
2 o g
= ©
Z
0
k3]
2
£
o VP_vol_serous_ped 0.450| 0.225| 0.053| 1.405| 2.302| 0.030| 0.231
o0
l\: VP_vol_epiretinal_membrane 0.297| 0.148 | 0.049| 1.554| 2.949| 0.016| 0.000
(o)
) VP_vol_posterior_hyaloid 0.165| 0.083| 0.023| 0.631| 2.670|-0.010| 0.000
< «
o &" VP_vol_subretinal_hyper_reflect 0.119| 0.059| 0.020| 1.354| 5.280 | -0.007| 0.000
4] w o
5 <Z( g VP_vol_drusenoid_ped 0.114| 0.057| 0.016| 1.027| 5.967| 0.014| 0.000
[
g o 9] 3 3
% — o Y -
L | 9]
- IS o0
© > E
= g
E [3+]
2
kel
i3]
)
=
VP_vol_vitreous_and_subhyaloid 0.105| 0.052| 0.014| 1.474|10.191| 0.014| 0.000
~
© VP_vol_fibrovascular_ped 0.100| 0.050| 0.016| 1.839|10.134| 0.004| 0.000
™
-~ VP_vol_intraretinal_fluid 0.111| 0.056| 0.016| 0.999| 8.444| 0.000| 0.000
o g
- w g ﬁ VP_vol_choroid_and_outer_layers 0.067 | 0.033| 0.009| 0.536| 6.289| 0.019| 0.000
o 3 o
g s 2 £ 5
8 o 5 o z | VvP_vol_rpe 0.066| 0.033| 0.012| 2.337| 5.985| 0.006| 0.000
- O 2 kel
© o0 o 2 Q
S > E &
2 ° g
&= ©
v
c
K<l
k3]
()
&
N Anti-VEGF drug type 0.171| 0.181| 0.020 | NA 6.072 | 0.010| 0.115
L ©
@ S
g . °3 © o Ethnicity 0.017| 0.037| 0.003 | NA 0.095 | -0.010| 0.000
% S 9 & 32 3
&= 3 ; 2 w5 = B @ Time interval 1st to 3rd injection 0.054| 0.035| 0.009 | NA 3.236| 0.002| 0.028
2 v w = 2 w  q
S 5§ 182 g S Fellow eye activity 0.051| 0.030| 0.008 | NA 12.858 | -0.016 | 0.000
R ] s
o ©
£ < Age At First Injection 0.051| 0.026 | 0.009 | NA 7.374 | -0.006 | 0.024
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Laterality 0.013| 0.013| 0.002 | NA 2.670| 0.044| 0.008
Sex 0.009| 0.010| 0.001 | NA 2.756 | 0.027 | 0.000
o Fellow eye activity 0.055| 0.032| 0.009 | NA 11.062 | 0.009| 0.000
:: Age At First Injection 0.037| 0.019| 0.005 | NA 7.129| 0.023| 0.017
:: o Anti-VEGF drug type 0.189| 0.201| 0.023 | NA 6.244 | 0.022| 0.128
>
o 5
3 = ° ] Sex 0.010| 0.011| 0.001 | NA 2.764 | -0.027 | 0.000
5 3 ] <
¥ = 3 £ 5
= o e 3 Time interval 1st to 3rd injection 0.047| 0.031| 0.007 | NA 2.527|-0.001| 0.025
CA- = 2 -
o s g o
§ ,% E= © Laterality 0.013| 0.013| 0.002 | NA 2.506 | -0.027 | 0.008
e 19) 9 9]
2 GE, ® Ethnicity 0.018 | 0.037 | 0.004 | NA 0.115| 0.002| 0.000
= o
2
kel
5]
2
£
~ VA fellow eye (V0) 0.051| 0.026| 0.007 | 0.410| 2.028| 0.014| 0.024
$~ VA post loading (VP) 0.047 | 0.024| 0.004| 0.681| 7.648|-0.001| 0.022
:~ " VA mean initial 2 visits post loading 0.047| 0.023| 0.004| 0.307| 3.882|-0.001| 0.000
wn [
2 ﬁ VA baseline visit (VO) 0.037| 0.018 | 0.006| 0.676| 4.926| 0.001| 0.000
[ S
[T N
L 9 _ o
8 & | S 2 |3
) °
Q oo
> o
ja g
&= ®
2
kel
i3]
2
£
~ VA post loading (VP) 0.057| 0.029 | 0.005| 1.108| 8.575| 0.011| 0.027
E VA baseline visit (VO) 0.056 | 0.028 | 0.008| 0.876| 7.918 | 0.006| 0.000
<
o 4 VA mean initial 2 visits post loading 0.050| 0.025| 0.004| 0.459| 5.076| 0.005| 0.000
g 3 3
5 s |8
¥ = g 5 VA fellow eye (V0) 0.048 | 0.024 | 0.008| 0.446| 1.905|-0.002| 0.022
8§ & | S 5|8
5 o o e
> E o
g 5 | g
= ©
v
c
K<l
i3]
2
£
= Standard deviation of VA mean, post
©
3 . ] loading -12 months (VP-V12) 0.077| 0.039| 0.017| 3.701|14.641|-0.003| 0.037
% ¥ g 3 2
= 3 ; B = 2 @ VA fellow eye (V0) 0.051| 0.026 | 0.007| 0.410| 2.028| 0.007 | 0.024
o g ? =l Kl
85 9 ¢ E s
‘g‘ g N = g VA post loading (VP) 0.047| 0.024| 0.004| 0.681| 7.648| 0.006| 0.022
- ©
£ 8 VA mean initial 2 visits post loading 0.047| 0.023| 0.004| 0.307| 3.882| 0.004| 0.000
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VA baseline visit (V0) 0.037| 0.018 | 0.006| 0.676| 4.926 | -0.007| 0.000
o Standard deviation of VA mean, post
°°: loading -12 months (VP-V12) 0.077| 0.039| 0.016 | 3.974|11.269| 0.007 | 0.037
~
“’I VA post loading (VP) 0.058 | 0.029| 0.005| 1.171| 8.629| 0.009| 0.027
wn
ﬂ: %]
o - § VA baseline visit (V0) 0.057 | 0.029| 0.008 | 0.864| 7.898| 0.004 | 0.000
n 9] 4
> 0
‘% F g o VA mean initial 2 visits post loading 0.051| 0.025| 0.004| 0.491| 5.409| 0.009| 0.000
[N B T g
f{; S 2 - o VA fellow eye (V0) 0.049| 0.024| 0.008 | 0.417| 1.850|-0.001| 0.023
L < k] o
5 E &
=} —
Z
R
k3]
(]
£
Anti-VEGF drug type 0.101 [0.111 [0.017 |NA 5.887 |0.027 |0.055
(o]
z Ethnicity 0.030 [0.065 [0.004 |NA 0.309 |0.014 |0.000
[
TJJ ° Time interval 1st to 3rd injection 0.100 |0.064 |0.012 |NA 12.449 | 0.004 |0.046
§_ | = g
] P 2
~ ©
% o g ] Fellow eye activity 0.091 [0.053 [0.008 |NA 17.121 | 0.019 |0.000
o ]
-~ ~ g = S
— ~ =}
3 < b= ha f’; Age At First Injection 0.076 [0.038 [0.012 |NA 13.389 [ 0.004 |0.032
ca | E
s Qo o
T 2 z
g 3
©
Q
f
kel
5
(]
£
~ Age At First Injection 0.109 [0.055 [0.012 |NA 16.119 [ 0.011 | 0.046
—
g Fellow eye activity 0.099 [0.057 [0.009 |NA 16.033 [ 0.016 | 0.000
E
© o Time interval 1st to 3rd injection 0.102 | 0.069 |0.012 [NA 8.948 |0.016 |0.048
] =] )
53 | E 2
‘é o0 = g g Sex 0.022 (0.025 [0.002 |NA 5.828 |0.071 |[0.000
T~ 3 o 2
o ; _LE) v _g Anti-VEGF drug type 0.108 (0.119 (0.018 |NA 5.457 |0.047 |0.059
> % ] 9]
n N e = o
& T & 3 o
£ ° £ s
g &
©
o
c
0
i3]
2
£
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R VA fellow eye (V0) 0.077 |0.039 |0.009 [1.269 |10.276|0.018 |0.032
<
o
~
:': VA initial post loading 0.051 [0.026 |0.005 [0.740 |5.526 |0.018 |0.021
5
E TWOOperVABestMeasure 0.043 [0.021 |0.005 |[0.730 |6.012 |0.012 |0.000
o
% 3
'g =) B4 VA mean initial 2 visits post loading 0.040 |0.020 |0.005 |0.550 |4.017 |0.015 |0.000
=) o
g o 5
& o s e 3
- N -
© ~ [
[ (e} oo
o e
£ 5
c
g
©
o
c
9o
9]
2
£
- VA fellow eye (V0) 0.081 |0.040 [0.010 |1.573 [12.810(0.023 |0.034
~
-
:;3 TWO0OperVABestMeasure 0.044 |0.022 [0.004 |1.063 |7.064 |0.024 |0.000
B
; " VA initial post loading 0.046 |0.023 [0.005 |0.738 [4.800 |0.023 |0.000
£ 5 < 2
a0 :.; 3 S VA mean initial 2 visits post loading 0.046 |0.023 |0.006 |0.346 |3.682 |0.019 |0.019
- - E —
© 0 [
% ~ <>( g 3
@© ~ — el
[ (o} [} (7]
Z W = &
£3 s |8
c ©
g
©
o
C
kel
i3]
)
£
N Standard deviation of VA mean, post 0.084 |0.042 |0.018 [2.855 |17.670|0.002 |0.035
~
© loading -12 months (VP-V12)
wn
<f: VA fellow eye (VO) 0.077 [0.039 [0.009 |1.269 |10.276|0.014 |0.032
(32}
~
—
g . 0.051 [0.026 |0.005 [0.740 |5.526 |0.003 |0.021
2 " VA post loading (VP)
3 3
© 4 VA baseline visit (V0) 0.043 (0.021 |0.005 [0.730 |6.012 |0.004 |0.000
3 _ 2 S
s 9 © — o — -
@ s 2 = 3 VA mean initial 2 visits post loading 0.040 |0.020 |0.005 |0.550 |4.017 |0.005 |0.000
2 I =
g% | s g
3 g
> s
&
g
©
o
c
K<l
i3]
()
£
. 4 = ” © Standard deviation of VA mean, post 0.092 |0.046 |0.019 [3.005 |17.787|0.005 |0.039
a 5 4 0 3 E v |0
= 2 7 g 35 3 % § loading -12 months (VP-V12)
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VA fellow eye (V0) 0.078 |0.039 |0.009 [1.446 |11.572|0.010 |0.033
VA baseline visit (V0) 0.049 (0.025 |0.005 [1.371 |8.970 |0.023 |0.020
. 0.048 [0.024 |0.006 [0.836 |5.262 |0.018 |0.000
VA post loading (VP)
VA mean initial 2 visits post loading 0.049 |0.025 |0.007 |0.410 |3.972 |0.019 |0.000
. VO_GCL 1mm CM vol 0.114 |0.071 |0.017 |2.765 |26.604|0.008 |0.053
o
—
g VO_NFL 1mm CM vol 0.078 [0.063 |0.008 |1.166 |6.334 |0.002 |0.000
3
C VO_IPL Imm CM vol 0.099 [0.060 (0.014 |[0.401 |8.522 |0.001 |0.000
g _ "
el @
go - ] VO_RPE 1mm CM vol 0.111 |[0.056 |0.016 |1.486 |18.906 0.009 |0.047
8w | B 5
PN o, = 3 VO_RPE 1mm CMT 0.107 |[0.054 |0.016 |1.461 |15.231|0.009 |0.000
3 < =] ha o
> ~ > 9]
- wn oo
2 & o
R
[
©
o
c
kel
k3]
2
£
VO_GCL Imm CM vol 0.116 |{0.073 |0.018 |2.795 |27.184|0.003 |0.000
g
3 VO_retina 3mm vol 0.104 |{0.052 |0.023 |2.830 |23.150|0.004 |0.000
o
'g S " VO_retina min CMT 0.096 |0.048 |0.020 |3.188 |22.581|0.006 |0.000
-
¥ o g 2
S o 3 = VO_IPL 3mm vol 0.095 [0.048 |0.015 |3.050 |22.418|0.002 |0.000
PN s) £ 5
) ) p 3
> 5 o v _g VO_GCL 1mm CMT 0.106 |[0.053 |0.015 |2.871 |21.031|0.002 |0.000
s % |2 |
£ ™ 3 ©
g o ®
®
o
c
kel
k3]
2
£
. VP_NFL 1mm CM vol 0.055 [0.099 |0.010 [1.476 |1.664 |0.000 |0.000
wn
5 <
¢ o g VP_NFL min CMT 0.073 (0.080 |0.009 |1.338 |21.135|-0.008 | 0.000
B @
o ~ A ©
= ‘Z» s - o VP_retina 3mm vol 0.138 | 0.069 |0.025 |[2.654 |29.654|0.001 |0.059
s & 9 o3 = :
=] | 2 o
S —3 : % 2 VP_IPL 1mm CM vol 0.081 (0.066 |0.013 |2.448 |11.428 |-0.006 | 0.000
S v g &
o e o
g us.o % VP_OPL 1mm CM vol 0.085 (0.062 |0.013 [1.477 |5.090 |0.009 |0.000
[ )
- B
239

M. K. Gupta, DOptom Thesis, Aston University, 2024



R VP_RPE 1mm CM vol 0.103 [0.053 |0.018 [2.962 |23.8510.010 |0.000
o
% VP_retina 3mm vol 0.122 [0.061 |0.018 |3.614 |23.7870.009 |0.052
3
& VP_retina 1mm CM vol 0.088 [0.044 |0.013 [3.965 |19.423|0.012 |0.000
£ g 9
o =1 @
o o v © VP_RPE 1mm CMT 0.117 [0.059 |0.022 |2.931 |18.493|0.010 |0.000
© ~ o) o
S2 8 | E |
S < 2| = ) VP_retina 1mm CMT 0.088 [0.044 |0.013 [3.971 |17.9620.012 |0.000
o W > & T
£ < E &
c o o g
g W g
©
o
c
kel
i3]
2
£
VO_vol__um3_serous_ped 0.457 |0.229 |0.052 [1.562 |9.509 |0.006 |0.223
o
:~ VO_vol__um3_epiretinal_membrane 0.354 |0.177 |0.043 |0.804 |3.968 |0.008 |0.168
3
© VO_vol__um3_posterior_hyaloid 0.204 |0.102 |0.027 |0.647 |4.453 |0.033 |0.000
g _ g
58 . g
~ (8]
% :; '<21. 5 VO_vol__um3_rpe 0.139 |0.070 |0.013 |1.072 |6.986 |0.015 |0.060
S - = >
5 N S N
g © g' o VO_vol__um3_drusenoid_ped 0.132 |0.066 |0.013 |0.855 |8.743 |0.003 |0.056
- |
£ 2
c ©
g
©
o
f
kel
i3]
2
£
VO_vol__um3_drusenoid_ped 0.166 |0.083 |0.016 |1.202 |12.940|0.016 |0.072
™
<
o
~ VO_vol__um3_neurosensory_retina 0.128 (0.064 |0.012 [1.961 |12.652|0.003 |0.000
o
o
é w | VO_vol__um3_serous_ped 0.572 |0.286 |0.075 |2.032 |10.453|0.007 |0.305
g 3 |8
5 § = 3 3 VO_vol__um3_vitreous_and_subhyaloid | 0.078 [0.039 |0.011 |[0.971 |9.137 |-0.005 | 0.000
g o g § g
8 05 (@] %] °
NN [ ] k5
IS N 14 = )
o © > = ©
in o E VO_vol__um3_rpe 0.149 |0.075 |0.014 [1.196 |7.688 |0.006 |0.065
2 ©
=
g
©
o
c
2
k3]
2
£
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= VP_vol_um3_serous_ped 0.518| 0.259| 0.047| 0.552| 0.951|-0.002| 0.252
wv
9 VP_vol_um3_epiretinal_membrane 0.339| 0.170| 0.041| 0.546| 1.878| 0.009| 0.000
wv
=}
e VP_vol_um3_posterior_hyaloid 0.286| 0.143| 0.028| 0.633| 3.237|-0.040| 0.000
v
(]
;50 2 § VP_vol_um3_subretinal_hyper_reflect 0.183| 0.091| 0.020| 0.935| 6.280|-0.006| 0.000
g o w o
3 o« <Z( o VP_vol_um3_subretinal_fluid 0.133| 0.067| 0.015| 1.019| 5.453| 0.000| 0.000
— ~ = = q>)
© ~ (] =3 o)
(] o o Y
o W o ®
E < > ®
c o “>J
E ~ ©
©
o
c
0
k3]
2
£
VP_vol_um3_rpe 0.111| 0.055| 0.015| 2.063|14.107 | -0.004 0
“
<] —_
bBD S VP_vol_um3_neurosensory_retina 0.143| 0.071| 0.019| 2.047|12.902| -0.005 0
L o
E - ] VP_vol_um3_choroid_and_outer_layers | 0.091| 0.046| 0.01| 0.892| 7.783| 0.005 0
- - ol m
g ; w % 3 VP_vol_um3_posterior_hyaloid 0.358| 0.179| 0.041| 1.084| 6.732|-0.022 0
S Z = .
iz :~ 5 b g VP_vol_um3_subretinal_fluid 0.123| 0.062| 0.013| 0.973| 6.641 | -0.006 0
&= ~ O 2 kel
g ™ n_l 2 [
g o > = &
c [
o 4
5 2
[ [s)
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Appendix 5:Treatment dose related regression models, model accuracy and feature ranking

o
g .
& " g
- |2 |9 » %) v o b=
9] S ) [ L S S © 2
an = © o L %) w o = = o
5 | & | ® o Q2 = < o > o c o
- w a = = o = o O w ) o
Random 2.48 1.57 1.32 -0.09 |[34.49 8.647 |[0.221
Forest VO_vol_subretinal_fluid
SVM 2.55 1.60 1.33 -0.12 [34.99 | VO_vol_neurosensory_retina 3.838 |[0.155
5 Tree 3.51 1.87 1.49 -0.54 [41.04 | VO_vol_rpe 2.665 |0.221
CIJ
z = AdaBoost | 3.56 1.89 1.45 -0.57 [41.33 | VO_vol_fibrovascular_ped 1.783 |0.188
£z <
- g = Gradient 4.18 2.04 1.61 -0.84 |44.80 1.637 |0.193
c Y-
-% gl Boosting VO_vol_vitreous_and_subhyaloid
)
5 Linear 8.03 2.83 1.89 -2.54 162.10
Regression
kNN
(error)
Linear 2.36 1.54 1.28 -0.04 |33.66 9.544 |0.320
Regression VO_vol_subretinal_fluid
Gradient 2.36 1.54 1.27 -0.04 |33.68 4.470 |0.176
§ b Boosting VO_vol_neurosensory_retina
> w >
|4 Z 2 [Random [241 [155 [130 [-006 [34.06 2.155 [0.371
ic = (7]
g 8| » Forest VO_vol_subretinal_hyper_reflect
b= o 2
9 = 5 kNN 2.61 1.61 1.34 -0.15 [35.40 | VO_vol_rpe 1.798 |0.260
2 3
AdaBoost |2.62 1.62 131 -0.15 |[35.47 | VO_vol_intraretinal_fluid 1.720 |0.276
SVM 2.78 1.67 131 -0.22 |36.57
Tree 2.79 1.67 1.35 -0.23  |36.65
AdaBoost |7.58 2.75 197 -2.34 [60.35 |VP_vol_subretinal_fluid 5.546 |[0.292
SVM 8.36 2.89 2.37 -2.68 [63.38 |VP_vol_subretinal_hyper_reflect |3.150 |[0.369
Tree 8.92 2.99 2.55 -2.93 65.44 [ VP_vol_rpe 2.388 |0.278
s Random 10.16 |3.19 2.66 -3.47 [69.85 1.059 |0.317
CU
z % Forest VP_vol_drusenoid_ped
2 <
E 5 =] Gradient 19.40 |4.40 3.66 -7.54 ]96.53 0.746 |0.109
c o ha
% gl Boosting VP_vol_neurosensory_retina
()
=5 Linear 20.66 |4.55 3.46 -8.10 [99.61
Regression
kNN
(error)
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Linear 2.28 1.51 1.27 -0.06 [33.53 8.716 |(0.182
Regression VP_vol_neurosensory_retina
Random 2.40 1.55 1.28 -0.11 |34.38 3.626 |0.240
;_E " g Forest VP_vol_rpe
g L<Z‘§ % kNN 242 |156 [1.26 [-0.12 |34.55 |VP_vol_subretinal_fluid 2.935 |0.371
é 2' .g Gradient 2.52 1.59 1.32 -0.16 [35.22 1.554 |0.275
g > _‘g' Boosting VP_vol_drusenoid_ped
= AdaBoost | 2.56 1.60 1.29 -0.18 |[35.47 |VP_vol_intraretinal_fluid 1.073 |0.357
SVM 2.72 1.65 1.28 -0.26 |36.60
Tree 2.86 1.69 1.39 -0.32 [37.51
Linear 2.41 1.55 131 -0.06 |[34.04 NA 0.234
Regression Fellow eye activity
_"2’ kNN 2.83 1.68 1.36 -0.24 [36.84 | Anti-VEGF drug type NA 0.161
E % Gradient 2.85 1.69 1.36 -0.26 [37.02 NA 0.131
— =1
L% g _ Boosting Age At First Injection
é _é & SVM 2.86 1.69 1.30 -0.26 |37.04 | Sex NA 0.103
8| & Random [2.97 [172 [1.40 [-031 [37.79 NA  [0.078
= § Forest Laterality
AdaBoost |3.27 1.81 1.43 -0.44 |39.63
Tree 3.64 1.91 1.50 -0.60 |41.81
Linear 2.00 1.42 1.19 0.13 30.94 NA 0.220
Regression Fellow eye activity
< Gradient 2.23 1.49 1.26 0.03 32.63 NA 0.192
;E r_g § Boosting Anti-VEGF drug type
g g % Random 2.32 1.52 1.26 -0.01 |33.28 NA 0.171
é ~_§ g Forest Age At First Injection
s g; Té SVM 253 [159 [129 [-0.10 [34.77 | sex NA  [0.120
= § kNN 2.60 1.61 1.30 -0.13 |35.26 | Laterality NA 0.091
AdaBoost | 2.64 1.63 1.28 -0.15 |35.55
Tree 2.89 1.70 1.36 -0.26 |37.15
Linear 2.36 1.54 1.30 -0.04 |[33.69 0.751 |0.103
Regression VA fellow eye (V0)
Gradient 2.71 1.65 1.34 -0.19 |[36.08 2.474 |0.086
. Boosting VA baseline visit (V0)
i kNN 2.80 1.67 1.33 -0.23 [36.65 | VA mean of 2 visitsimmediately |0.009 |[0.059
E <>r. E post loading
% Random 2.80 1.67 1.37 -0.23 |36.67 0.227 |0.059
E‘ Forest VA post loading (VP)
SVM 2.88 1.70 1.33 -0.27 |37.21
AdaBoost |3.09 1.76 1.35 -0.36 |38.52
Tree 3.80 1.95 1.53 -0.67 |42.72
o = Linear 2.22 1.49 1.24 0.00 32.83 1.836 |0.095
% E <>t § g Regression VA fellow eye (V0)
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Gradient 2.40 1.55 1.26 -0.09 |[34.13 1.341 |0.080
Boosting VA baseline visit (V0)
Random 2.59 1.61 1.31 -0.17 |35.47 1.113 |0.065
Forest VA post loading (VP)
SVM 2.68 1.64 1.26 -0.21 [36.11 | VA mean of 2 visitsimmediately |0.174 |0.059
post loading
kNN 2.88 1.70 1.40 -0.30 |[37.40
AdaBoost |3.47 1.86 141 -0.57 |41.04
Tree 4.18 2.04 1.57 -0.89 |[45.07
Linear 2.43 1.56 1.31 -0.07 |[34.18 |Standard deviation of VA mean, 14.454 1 0.083
Regression post loading -12 months (VP-V12)
SVM 2.63 1.62 1.30 -0.16 [35.52 | VA baseline visit (VO) 2474 |0.072
E kNN 270 [164 [1.33 [-0.19 [36.03 |VAfellow eye (VO) 0.751 [0.109
g E _ Random 2.72 1.65 1.36 -0.20 |36.13 0.227 |0.060
é gl 2 Forest VA post loading (VP)
_i Gradient 2.97 1.72 1.43 -0.31 |[37.80 | VA mean of 2 visitsimmediately |0.009 |0.056
= Boosting post loading
AdaBoost |3.10 1.76 1.39 -0.36 |38.58
Tree 4.87 221 1.74 -1.14 |48.36
Linear 2.19 1.48 1.24 0.01 32.55 | Standard deviation of VA mean, 12.760 | 0.106
Regression post loading -12 months (VP-V12)
Gradient 2.54 1.59 1.33 -0.14 |35.07 1.635 |0.100
- Boosting VA fellow eye (VO0)
3 2
; 3 3 SVM 2.62 1.62 1.30 -0.18 [35.58 | VA baseline visit (VO) 1.550 |0.073
C‘E § 5 Random 2.67 1.63 1.36 -0.20 |35.91 1.128 |0.061
é §I é Forest VA post loading (VP)
% 3 kNN 2.90 1.70 141 -0.31 |[37.48 | VA mean of 2 visitsimmediately |0.168 |0.062
post loading
AdaBoost | 3.30 1.82 1.42 -0.49 |39.97
Tree 4.14 2.03 1.62 -0.86 |[44.75
Linear 2.37 1.54 1.30 -0.05 |[33.77 15.600 | 0.132
Regression VO_OPL 3mm vol
SVM 2.54 1.59 1.26 -0.12 [34.96 |VO_retina3mm vol 14.398 | 0.071
5 Random 2.63 1.62 1.34 -0.16 |35.52 8.207 |0.060
é 5 Forest VO_IRLs 3mm vol
t OI E Gradient 2.67 1.63 1.35 -0.17 |35.78 8.069 |[0.081
‘g = Boosting VO_retina min CMT
% kNN 2.79 1.67 1.39 -0.23 [36.58 VO_IPL 3mm vol 7.732 | 0.067
AdaBoost |2.81 1.68 1.34 -0.24 |36.74
Tree 3.62 1.90 1.46 -0.59 |41.69
o 40 = Gradient 2.40 1.55 1.27 -0.03 [33.80 24.072 | 0.086
iC_J' E Sl g § g Boosting VO_retina 3mm vol
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AdaBoost | 2.49 1.58 1.21 -0.07 |[34.40 |VO_OPL3mm vol 14.349 | 0.154

SVM 2.50 1.58 1.25 -0.07 |34.48 VO_retina min CMT 13.265 | 0.106

Random 2.56 1.60 1.33 -0.09 |[34.86 13.258 | 0.091

Forest VO_retina Imm CMT

kNN 2.69 1.64 1.33 -0.15 |35.76 VO_retina 1mm CM vol 13.058 | 0.090

Linear 2.84 1.68 1.35 -0.21 |[36.71

Regression

Tree 3.71 1.93 1.47 -0.59 [41.98

Linear 2.31 1.52 1.28 -0.02 [33.35

Regression VP_retina 3mm vol 39.657 [ 0.058

SVM 2.61 1.61 1.30 -0.15 [35.38 | VP_retina 1mm CMT 34.611 | 0.061
g kNN 2.70 1.64 1.35 -0.19 [36.02 | VP_retina 1mm CM vol 33.624 | 0.06
E 5 Random 2.71 1.65 1.35 -0.19 |36.08
w | S| 2 | Forest VP_retina min CMT 28.417 | 0.061
% ~ Gradient 2.73 1.65 1.34 -0.20 |36.23
£ Boosting VP_NFL 3mm vol 24.401|0.063

AdaBoost | 2.86 1.69 1.31 -0.26 | 37.08

Tree 4.55 2.13 1.70 -1.01 |46.78

Random 2.01 1.42 1.18 0.00 31.59 32.986 | 0.076

Forest VP_retina 3mm vol

SVM 2.09 1.45 1.18 -0.04 |32.24 VP_ORLs 3mm vol 28.777 | 0.041
;_E § Linear 2.12 1.46 1.19 -0.06 |32.51 26.062 | 0.038
g g % Regression VP_ORLs min CMT
g %' 5 kNN 2.23 1.49 1.21 -0.11 [33.28 |VP_retina Imm CMT 21.456 | 0.066
::13_, % Gradient 2.28 1.51 1.23 -0.14 |33.65 21.424 | 0.066
= Boosting VP_ORLs 1mm CMT

AdaBoost | 2.42 1.56 1.23 -0.21 |34.72

Tree 3.53 1.88 1.47 -0.77 [41.91
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Appendix 6:Visual acuity related classification models, model accuracy

s
o £
a0 2 c Z
[] + Q [%) (] @]
o0 o © a ° S ‘S © (@] [}
- w o) O = < O o a o = )
" Logistic 0.54 0.55 0.52 0.55 0.55 0.08 0.51
5] 'g Regression
s 5
- § Neural 0.54 0.56 0.54 0.55 0.56 0.09 0.53
o~
Z § Network
£ 5
g 3 SVM 0.52 0.54 0.52 0.53 0.54 0.06 0.51
.= ]
::r f § Random 0.51 0.50 0.50 0.50 0.50 -0.01 | 0.49
€ £ z ©
o 9 S _ 5 Forest
E 5 =z 3 3
& s < = - kNN 0.51 0.53 0.52 0.52 0.53 0.04 0.51
= ) = [
gé ;‘:P Tree 0.49 0.50 0.50 0.50 0.50 0.00 0.50
- 5 >
8 g © Naive 0.49 0.50 0.49 0.49 0.50 -0.03 | 0.47
Q o
g = Bayes
c ©
.é,;,, b5 AdaBoost 0.48 0.48 0.48 0.48 0.48 -0.05 | 0.48
C [
2 2 Gradient 0.46 0.48 0.47 0.47 0.48 -0.06 | 0.46
(&} c
8 Boosting
" Logistic 0.66 0.61 0.60 0.60 0.61 0.20 0.60
5] ‘g Regression
s g
ey 5 Neural 0.65 0.59 0.59 0.59 0.59 0.18 0.59
o~
::' § Network
s 5
g 3 SVM 0.64 0.60 0.60 0.60 0.60 0.19 0.59
T2 3
<+ 3 a Naive 0.64 0.59 0.59 0.60 0.59 0.19 0.60
£ & . 3 S
s 4 o = B
g e ; g ug ayes
w 5 < » 5 Gradient 0.58 0.55 0.55 0.55 0.55 0.09 0.54
5 g > I .
E % 3 E‘ Boosting
2 g ® kNN 058 | 056 | 056 | 056 056 | 0.12 | 0.56
Q o
g _3 Random 0.58 0.58 0.58 0.58 0.58 0.15 0.57
c ©
o 9 Forest
2 3
e g AdaBoost 0.49 0.49 0.49 0.49 0.49 -0.02 0.49
(&} c
8 Tree 048 |[052 |[052 | o052 052 | 004 [ o052
Tree 0.55 0.54 0.54 0.54 0.54 0.08 0.53
PO ]
2 < a Random 0.52 0.50 0.49 0.49 0.50 -0.02 0.48
8_ < o
<>(§ 5 _ ; Forest
c E S, 3 3
o o a b - Neural 0.51 0.51 0.51 0.51 0.51 0.01 0.49
[ > 7]
c = oo
s 3 © Network
[SIe} g
© AdaBoost 0.50 0.50 0.50 0.50 0.50 0.00 0.50
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Naive 0.50 0.49 0.49 0.49 0.49 -0.03 0.48
Bayes
Gradient 0.49 0.52 0.52 0.52 0.52 0.03 0.51
Boosting
kNN 0.48 0.47 0.46 0.46 0.47 -0.08 0.45
Logistic 0.48 0.51 0.49 0.50 0.51 0.00 0.48
Regression
SVM 0.44 0.54 0.53 0.53 0.54 0.05 0.51
" Logistic 0.53 0.51 0.51 0.51 0.51 0.01 0.50
c E '
o © Regression
< Qlf
i g Neural 0.50 0.51 0.51 0.51 0.51 0.02 0.50
(o))
Z § Network
£ 5
g 3 Tree 0.50 0.51 0.51 0.51 0.51 0.03 0.51
T £ 3
zr f 3 § Random 0.47 0.46 0.46 0.46 0.46 -0.08 0.46
&= 2 S
€ o i ] o
” IS = Forest
g 8 s ° | %
o S %' 4y - kNN 0.46 0.46 0.46 0.46 0.46 -0.08 0.45
= o g [
-‘E £ § § AdaBoost 0.45 0.46 0.46 0.45 0.46 -0.10 0.45
- 5 >
8 g © SVM 0.45 0.53 0.51 0.52 0.53 0.03 0.50
Q@ o
§ o Naive 0.42 0.44 0.44 0.44 0.44 -0.12 0.44
c ©
'EZO 2 Bayes
C [
2 2 Gradient 0.42 0.47 0.47 0.47 0.47 -0.06 0.46
o c
8 Boosting
" AdaBoost 0.54 0.54 0.54 0.54 0.54 0.08 0.54
E ‘é Tree 0.53 0.53 0.53 0.53 0.53 0.06 0.53
©
i 5 Logistic 0.52 0.56 0.53 0.55 0.56 0.09 0.52
S < )
c > Regression
s 5
g 3 kNN 0.50 0.51 0.51 0.51 0.51 0.01 0.50
P~ 3
z j'% ﬁ Random 0.49 0.52 0.52 0.52 0.52 0.03 0.51
5 I 5 ; Forest
E 5 9 s 3
o s g b K Naive 0.48 0.48 0.47 0.47 0.48 -0.07 0.46
5 2 ® g
3 % E’ ayes
g g © Neural 0.47 0.50 0.49 0.49 0.50 -0.03 0.48
Q o
g @ Network
c ©
Eo 2 SVM 0.44 0.52 0.49 0.50 0.52 0.00 0.48
c [
s 2 Gradient 0.44 0.43 0.43 0.42 0.43 -0.16 0.41
o c
8 Boosting
c Random 0.57 0.55 0.55 0.55 0.55 0.09 0.54
an (9]
% '; ] Forest
© - el &
o o © -
T 3 S Naive 0.56 0.54 0.54 0.55 0.54 0.09 0.54
g § G £ 5
< S OI e 3 Bayes
> < 2 °
s = 2 & Gradient 0.50 0.52 0.51 0.51 0.52 0.02 0.51
$ = 2 | 5| oo
_'cc“ ag : oosting
© g SVM 0.49 0.53 0.50 0.51 0.53 0.02 0.49
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kNN 0.48 0.49 0.49 0.49 0.49 -0.03 0.48
AdaBoost 0.47 0.48 0.48 0.48 0.48 -0.05 0.47
Neural 0.46 0.52 0.51 0.51 0.52 0.02 0.50
Network
Tree 0.46 0.48 0.48 0.48 0.48 -0.04 0.48
Logistic 0.45 0.50 0.48 0.49 0.50 -0.03 0.47
Regression
" kNN 0.53 0.51 0.51 0.51 0.51 0.02 0.50
E'g_ AdaBoost 0.50 0.51 0.51 0.51 0.51 0.01 0.50
©
i w Gradient
~ ©
Z § Boosting 0.49 0.51 0.51 0.51 0.51 0.01 0.50
€t <
g %D ‘qz" SVM 0.53 0.51 0.48 0.49 0.51 -0.03 0.47
) = ] o
::f f _‘g § Random
=} = > S
ég g ; Forest 0.49 0.49 0.49 0.49 0.49 -0.03 0.48
o = 2
w B _:;3 & —g Tree 0.49 0.48 0.48 0.49 0.48 -0.03 0.49
5 g & 5
g;_% ED g Naive
~ © >
3 Y uE> © Bayes 0.45 0.48 0.48 0.48 0.48 -0.05 0.47
2 o [a]
g § Neural
c
.S;n 2 Network 0.46 0.48 0.46 0.46 0.48 -0.07 0.45
[ [}
2 2 Logistic
(&} c
8 Regression 0.42 0.51 0.40 0.43 0.51 -0.09 0.44
Gradient
2
5] ‘g Boosting 0.61 0.57 0.57 0.57 0.57 0.14 0.57
£ 3
S & Random
~ ©
= g Forest 057 | 056 | 056 056 | 056 | 0.11 0.55
€ <
2 %D _:‘é " Naive
+ 5 £ o 2 | Bayes 057 | 054 | 053 | 053 054 | 006 0.52
£ & o > o
s 3 3 e s AdaBoost 056 | 057 | 057 057 | 057 | 013 0.56
E o v >
= %5 2 0 2 Tree 055 | 055 | 055 056 | 055 | 011 0.56
® £ o 5 © Logistic
o 5 1) o ]
g @ UE, © Regression 0.55 0.54 0.53 0.54 0.54 0.07 0.52
a g o
;‘_2 Neural
c
o 9 Network 0.54 0.53 0.53 0.53 0.53 0.05 0.52
o0 bt
[}
_‘CC“ g SVM 0.54 0.53 0.53 0.53 0.53 0.05 0.53
(&} c
] kNN 0.54 0.55 0.54 0.54 0.55 0.08 0.53
Neural 0.51 0.44 0.37 0.44 0.44 -0.08 0.50
o 5 Network
=
5 2 ]
S 4 a SVM 0.51 0.46 0.29 0.21 0.46 0.00 0.54
8w L
8 = '<Z£ 5 | AdaBoost | 051 [050 [o051 [o051 [o050 |o001 [o051
c o = >
S S 2 2 Random 051 | 047 | 037 | 051 047 | 000 | 053
£ <) o
%; = %D Forest
>
g é © Gradient 0.50 0.51 0.51 0.51 0.51 0.01 0.50
T Boosting
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Logistic 0.50 0.44 0.43 0.45 0.44 -0.09 0.47
Regression
Naive 0.47 0.48 0.48 0.48 0.48 -0.05 0.47
Bayes
Tree 0.47 0.50 0.50 0.50 0.50 -0.01 0.49
kNN
(error)
- Random 0.54 0.57 0.56 0.57 0.57 0.12 0.54
5 'g Forest
< Qlf
ig Gradient 0.52 0.54 0.52 0.52 0.54 0.03 0.49
(o))
Z § Boosting
€t <
g %D AdaBoost 0.50 0.56 0.55 0.55 0.56 0.08 0.52
.= ]
z f ° § kNN 0.49 0.47 0.47 0.49 0.47 -0.03 0.49
v v 3 S
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gé > § ;‘:P Naive 0.47 0.44 0.30 0.44 0.44 -0.04 0.54
- 5 >
] © Bayes
Q o
§ E Tree 0.47 0.51 0.48 0.48 0.51 -0.04 0.46
c ©
'S;n b5 SVM 0.45 0.51 0.49 0.49 0.51 -0.03 0.47
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2 2 Logistic 0.40 0.52 0.43 0.45 0.52 -0.08 0.43
o ¢
8 Regression
- Naive 0.49 0.47 0.40 0.50 0.47 -0.01 0.52
5]
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o
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Forest

Gradient 0.46 0.46 0.46 0.46 0.31
Boosting

Naive 0.40 0.40 0.41 0.40 0.26
Bayes

kNN 0.35 0.34 0.34 0.35 0.16
AdaBoost 0.41 0.41 0.42 0.41 0.25
Tree 0.35 0.35 0.35 0.35 0.18
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Appendix 7:Visual acuity related classification model feature ranking

Feature group
dataset

class results
Feature

Info. gain
ANOVA
ReliefF

Gini

Target

2 | Gain ratio
Q
o

VA baseline visit (VO) 0.037 0.025| 18.653 | 12.562 | -0.006 | 0.025

VA post loading (VP) 0.037| 0.018| 0.025| 16.245| 13.595| 0.010| 0.000

VA mean initial 2 visits post loading 0.027| 0.013| 0.018]| 13.169 8.934 | 0.012| 0.000

Standard deviation of VA mean, post

loading -12 months (VP-V12) 0.025| 0.013| 0.017| 8.783 8.029 | 0.014| 0.017

VA_st dev

VA fellow eye (VO) 0.007 | 0.003| 0.005| 0.196 1.070 | -0.005 | 0.000

full
averaged over classes

Change in VA post loading (month 4 - month
12), when considered as slope of line of best fit

TWOOperVABestMeasure 0.036| 0.018| 0.024 | 14.945| 10.600| 0.001| 0.024

VA initial post loading 0.034| 0.017| 0.023| 12.384| 11.594| 0.006 | 0.000

Standard deviation of VA mean, post

loading -12 months (VP-V12) 0.029| 0.015| 0.020| 10.780 7.973| 0.012| 0.020

VA mean initial 2 visits post loading 0.024| 0.012| 0.016| 9.323 7.015| 0.008 | 0.000

VA fellow eye (V0) 0.010| 0.005| 0.007 | 0.845 2.493 | -0.010 | 0.000

VA st dev

outliers removed
averaged over classes

when considered as slope of line of best fit

Change in VA post loading (month 4 - month 12),

VP_NFL 1mm CMT 0.009| 0.005| 0.006| 1.813 3.021| 0.000| 0.000

VP_NFL 3mm vol 0.007| 0.004| 0.005| 1.046 1.793 | -0.002 | 0.000

VP_RPE 3mm vol 0.005| 0.003| 0.004| 1.452 1.521| 0.001| 0.000

VP_IPL Imm CM vol 0.008| 0.006| 0.005| 2.650 1.423 | 0.001| 0.000

VP_ONL 1mm CMT 0.007| 0.003| 0.005| 0.727 1.401 | -0.003 | 0.000

VP_OCT

full
averaged over classes

Change in VA post loading (month 4 - month
12), when considered as slope of line of best

Ch
av
r

q VP_NFL 1mm CMT 0.021| 0.011| 0.014| 2.506 2.832 | 0.010| 0.000

a
VP
ou
tli
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VP_ONL 1Imm CMT 0.007| 0.004 | 0.005| 2.519 1.661| 0.002 | 0.000
VP_NFL 3mm vol 0.010| 0.005| 0.007| 2.271 1.647 | 0.004 | 0.000
VP_ONL 1mm CM vol 0.006 | 0.003 | 0.004| 1.928 1.401| -0.005| 0.000
VP_IPL 1mm CM vol 0.009 | 0.008 | 0.005| 2.587 1.296 | 0.000| 0.000

c VO_NFL Imm CMT 0.021| 0.011| 0.014| 1.320 0.844 | 0.003| 0.014

P

é 2 VO_NFL 3mm vol 0.020| 0.010| 0.014| 1.194 3.649| 0.003 | 0.000

9]

! [

Zr £ VO_OPL 1mm CM vol 0.014| 0.009| 0.010| 1.771 1.603 | -0.002 | 0.000

€ 5 3

g g § VO_retina min CMT 0.017| 0.009| 0.012| 2.149 1.432| 0.004| 0.000

ERAls

5 © o, = 3 VO_IPL 3mm vol 0.015| 0.008 | 0.010| 1.216 1.906 | 0.005| 0.000

S8l |7 |3

g &

o ) [

< >

< 8 s

C j

- [

(] <

» 2

© —_

< o~

O «

g ] VO_retina 1mm CM vol 0.017| 0.008| 0.012| 2.847| 4.409| 0.000| 0.000

o e}

£ B VO_NFL 3mm vol 0.018 | 0.009| 0.013| 0.348 3.321| 0.001| 0.000

« £

% %S ] VO_retina 1Imm CMT 0.026| 0.013| 0.018| 2.579 2.488 | 0.000| 0.018

S o o @

E 5 - °g’ S VO_retina 3mm vol 0.009| 0.005| 0.006| 2.443 1.785 | -0.002 | 0.000

W % C

8} £

% ® o, g ag VO_retina min CMT 0.012| 0.006| 0.008| 2.797 1.764 | 0.005| 0.000

S k5 o 4 kel

- et > (7] 9]

-:;‘, [ f oo

o B 5 i

o g o CI>J

< 8 s

£ 5

(] <

» 2

© —

< o~

O «

Lo Anti-VEGF drug type 0.014| 0.015| 0.010 | NA 0.2111 -0.008 | 0.015

<t Q

S —3 o Time interval 1st to 3rd injection 0.016| 0.011| 0.011|NA 0.342 | 0.003| 0.000

= %

o =

£ -qc“: H 4] Ethnicity 0.005| 0.011| 0.003 | NA 0.012 | 0.012| 0.000

- O fi a

._g § 3 < Age At First Injection 0.017| 0.009 | 0.012|NA 2.111| 0.006 | 0.000

S G =3 et

T? § °3 E % Fellow eye activity 0.013| 0.008 | 0.009 | NA 8.744 | -0.036 | 0.000

55| % 3

$ 5|8 g

£ 2 @ &

£ S| E ®

g = &

S ¢

® o

G €

- © 4o Fellow eye activity 0.019| 0.011| 0.013|NA 11.328 | 0.100| 0.000

o Zle 35 99

® 2 é” ol 2 g & gAgeAtFirst Injection 0.019| 0.010| 0.013 | NA 1.693 | -0.004 | 0.013

T < £l5 g9 3@

5 >|8 %° 937 Anti-VEGF drug type 0.018| 0.019| 0.012|NA 0.345 | -0.020 | 0.019
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Time interval 1st to 3rd injection 0.020| 0.013| 0.013 | NA 0.331| -0.009 | 0.000
Sex 0.000| 0.000| 0.000 | NA 0.100 | -0.016 | 0.000
- Info. Gain
c &
§ ‘g gain ratio | Gini ANOVA | x? ReliefF | FCBF
E o)
<} VO_vol_posterior_hyaloid 0.039| 0.019| 0.026| 3.648 3.321| 0.020| 0.026
<+ o
% £ bA] VO_vol_neurosensory_retina 0.024| 0.012| 0.017| 0.651 3.125| 0.000| 0.000
g bS] a
v w 5
= o <Z( g VO_vol_epiretinal_membrane 0.011| 0.005| 0.008| 0.331 0.075| 0.002| 0.000
c & _ [
AR R
L2 B o 3 VO_vol_subretinal_fluid 0.011| 0.005| 0.007| 0.937 0.439 | -0.011| 0.000
g 5|3 ¢
<Q' ‘a % VO_vol_serous_ped 0.009| 0.005| 0.006| 0.093 0.029 | 0.007 | 0.000
> 8
- j
(] [
w <
s 3
< —
O «
—
- Info. | Gain
c &
] gain |ratio |Gini |ANOVA |y ReliefF | FCBF
g =
<'r ; VO_vol_neurosensory_retina 0.021| 0.010| 0.014| 0.155 2.944 1 -0.006 | 0.000
s = 0
S 5 - 3 VO_vol_fibrovascular_ped 0.009| 0.004| 0.006| 1.140 2.543 ] -0.005 | 0.000
g s s | 3
e ¢ w > o
™ o <Zt g o VO_vol_posterior_hyaloid 0.028| 0.014| 0.019| 1.207 1.900 | -0.009 | 0.019
S = 5] 4
% 8] 8 = 5
o B o 5 3 VO_vol_drusenoid_ped 0.007| 0.004| 0.005| 0.308 1.214| -0.009 | 0.000
2 5 > = %
S % 3 5 VO_vol_choroid_and_outer_layers 0.002| 0.001| 0.001| 0.112 0.424 | 0.015| 0.000
7} >
s g :
c o
o &
go <
s 3
< =
O «
i
Info. | Gain
5
< < gain |ratio |Gini | ANOVA |x? ReliefF | FCBF
5 5
- 3 VP_vol_serous_ped 0.047| 0.024| 0.032| 0.331| 0.001| 0.005| 0.033
€ £
g ; VP_vol_subretinal_fluid 0.041| 0.020| 0.028| 2.513 2.955| 0.006| 0.000
s [}
' ey [}
< (%] w
S 2 w © VP_vol_posterior_hyaloid 0.023| 0.011| 0.015| 0.486 0.034 | 0.055| 0.000
c 5| Z g
g o E = 9 | VP_vol_intraretinal_fluid 0.019| 0.010| 0.013| 0.920| 0.602 | -0.001| 0.000
£ £ S
o O Y-
_tén © a! ° VP_vol_neurosensory_retina 0.012| 0.006 | 0.008| 3.788 3.725| 0.004 | 0.000
T o > o
© Q. —
oS o g
s 3
< 9]
> 3
£ T
o 2
g 8
=
o
O < > a| o 4 « o VP_vol_subretinal_fluid 0.053| 0.027| 0.036| 1.059 3.930| -0.033 | 0.000
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VP_vol_intraretinal_fluid 0.034| 0.017| 0.023| 2.399 2.351| -0.007 | 0.000
VP_vol_neurosensory_retina 0.009| 0.004 | 0.006| 1.202 1.531| -0.004 | 0.000
VP_vol_drusenoid_ped 0.022| 0.011| 0.015| 0.136 0.878 | -0.007 | 0.000
VP_vol_fibrovascular_ped 0.007 | 0.004| 0.005| 1.671 0.633 | -0.025| 0.000
Do VA baseline visit (VO) 0.037| 0.019| 0.025| 18.653 | 12.562 | 0.006 | 0.025
<t Q
s 2 VA post loading (VP) 0.037| 0.018| 0.025| 16.245| 13.595| 0.010 | 0.000
< n
o
£ -acm: 3] VA mean initial 2 visits post loading 0.027| 0.013| 0.018| 13.169 8.934| 0.009| 0.000
~ w
(1) — (%]
% % s VA fellow eye (VO) 0.007 | 0.003| 0.005| 0.196 1.070 | 0.012| 0.000
g 2 _ ]
2 8| |3 |3
Qa c
g2 g %
S g
£ ©
3 5
© c
& 5
o E
Do VA baseline visit (VO) 0.039| 0.020| 0.026 | 16.090| 11.554 | -0.004 | 0.027
<t Q
s 2 VA post loading (VP) 0.034| 0.017| 0.023| 12.605| 11.447| 0.004 | 0.000
< n
o
€ %’ 4 VA mean initial 2 visits post loading 0.028| 0.014| 0.019| 9.677 7.794 | -0.001 | 0.000
(9]
» 2 ° a
._g g °g’ <z VA fellow eye (VO) 0.011| 0.005| 0.008 | 1.041 2.924 | 0.003| 0.000
s 2 S 3
o
- 9| £ 2 3
8 g § | 3
23 s |k
s 2 3 g
£ o
g T ”
[}
- Info. | Gain
— oo
N § gain |ratio |Gini | ANOVA |x* ReliefF | FCBF
< =
g ; Standard deviation of VA mean, post
E =
\ g loading -12 months (VP-V12) 0.215| 0.107 | 0.104 | 45.412| 69.563 | 0.017 | 0.139
< el [}
£ 5 & | VA post loading (VP) 0.069 | 0.035| 0.023| 17.242| 24.354| 0.001| 0.041
c 2 ©
£ é E ; VA mean initial 2 visits post loading 0.057| 0.029| 0.020| 17.502| 20.583 | 0.004 | 0.000
2ol 5 |2 |3
-r'g 5' <>t 2 VA baseline visit (V0) 0.056| 0.028 | 0.018| 13.935| 19.850| 0.009 | 0.000
7 oo
- ©
g _fE EJ VA fellow eye (V0) 0.023| 0.011| 0.008| 0.892 3.760 | -0.001 | 0.000
Q 9 ©
S 3
£ @
$ 8
g 5
o <
2
J Standard deviation of VA mean, post
£ o q>J »w g 8 g
e 8| = ki %gp & loading -12 months (VP-V12) 0.188| 0.094 | 0.093| 41.013 | 56.621| 0.019| 0.120
5§ « i 5 4686 4
5 = < °© g3 ¢ .
© > g VA post loading (VP) 0.065| 0.033| 0.022| 13.181| 20.905| 0.003| 0.038
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VA baseline visit (VO) 0.059| 0.030| 0.020| 13.505| 19.041 | 0.004 | 0.000

VA mean initial 2 visits post loading 0.055| 0.028 | 0.020| 13.947| 17.706 | 0.004 | 0.000

VA fellow eye (V0) 0.025| 0.013| 0.009| 1.460 5.336 | 0.011| 0.000

VO_ONL min CMT 0.032| 0.016| 0.012| 0.474 0.480| 0.011| 0.018

VO_NFL 1Imm CMT 0.031| 0.015| 0.015| 1.720 1.425| 0.001| 0.018

VO_INL min CMT 0.030| 0.015| 0.013| 1.169 0.092 | 0.003| 0.000

VO_RPE min CMT 0.029| 0.014| 0.015| 1.823 5.891| 0.001| 0.017

VO_NFL min CMT 0.019| 0.014| 0.007| 1.146 4.119| 0.000| 0.000

VO_OCT

full
averaged over classes

Change in VA post loading (month 4 - month
12), when considered as slope of line of best

VO_seg ERROR (2) 0.019| 0.012| 0.008 | 3.554 8.090| 0.010| 0.013

VO_IPL 3mm vol 0.018| 0.009| 0.010| 1.927 4.452| -0.001 | 0.000

VO_RPE min CMT 0.026| 0.013| 0.013| 0.679 4.447| 0.007 | 0.015

VO_retina Imm CM vol 0.016| 0.008| 0.007 | 1.628 4.347| -0.003 | 0.000

VO_OPL 3mm vol 0.013| 0.007| 0.007 | 2.708 4.083 | -0.009 | 0.000

VO_OCT

outliers removed

averaged over classes

Change in VA post loading (month 4 - month
12), when considered as slope of line of best

VP_GCL min CMT 0.017| 0.011| 0.009| 2.358 7.107 | 0.003| 0.000

VP_NFL min CMT 0.041| 0.044| 0.020| 1.650 5.361| 0.009| 0.035

VP_NFL 3mm vol 0.027| 0.014| 0.013| 0.339 3.676 | 0.001| 0.000

VP_IPL 3mm vol 0.012| 0.006| 0.007| 2.680 3.623 | 0.005| 0.000

VP_ORLs 1mm CM vol 0.020| 0.010| 0.008| 1.479 3.232| 0.006| 0.000

VP_OCT

full
averaged over classes

Change in VA post loading (month 4 - month
12), when considered as slope of line of best

VP_NFL min CMT 0.037| 0.045| 0.018| 1.943 6.917 | 0.004| 0.032

VP_GCL min CMT 0.016| 0.010| 0.008| 1.358 4.808 | -0.001 | 0.000

VP_OCT
outliers

Change in
VA post
remaued
averaged

n\ver

VP_NFL 3mm vol 0.029| 0.015| 0.014| 0.467 4.389| 0.003 | 0.000
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VP_IPL 3mm vol 0.011| 0.005| 0.006| 1.840 3.087 | 0.004| 0.000
VP_IRLs 3mm vol 0.021| 0.010| 0.010| 1.051 2.704 | -0.005 | 0.000
=~ ® VO_vol_neurosensory_retina 0.038| 0.019| 0.015| 0.008 7.574 | 0.000| 0.000
~ =]
— o
- £
‘g § VO_vol_vitreous_and_subhyaloid 0.013| 0.007 | 0.006| 1.193 2.953| -0.008 | 0.000
g ‘gj VO_vol_intraretinal_fluid 0.026| 0.013| 0.012| 1.975 2.238 | -0.003 | 0.000
<t el 73
% G § VO_vol_fibrovascular_ped 0.018| 0.009| 0.008| 0.522 1.886 | -0.002 | 0.000
o Q w 5
£ £ Z g VO_vol_posterior_hyaloid 0.034| 0.017| 0.014| 0.989 1.589 | 0.010| 0.000
= _ [
A ] 5 2
S Q (@] b S
@ o | O
S = g a0
% © 5
g 3 5
S
£ 2
T
22
s £
C oz
g ‘g VO_vol_neurosensory_retina 0.032| 0.016| 0.014| 0.005 4.241 | 0.003| 0.000
o o
E 5 VO_vol_vitreous_and_subhyaloid 0.022| 0.011| 0.009| 1.511 3.812 | -0.004 | 0.000
! )
::r = " VO_vol_intraretinal_fluid 0.032| 0.016| 0.015| 2.010 2.380 | 0.002 | 0.000
53 3 | 3
[} v
£ g = agJ 2 VO_vol_fibrovascular_ped 0.024| 0.012| 0.010| 0.308 1.440| -0.013 | 0.000
® & Z £ C
£ 8 5 @ ag VO_vol_posterior_hyaloid 0.055| 0.028 | 0.024| 0.559| 1.164| 0.005| 0.000
S22 |5 |3
2 S| S |8 | @
o B 5 i
o g o CI>J
< g :
c C
= Q
(] <
®» =
© —
< o~
O «
= _§° VP_vol_subretinal_fluid 0.064| 0.032| 0.029| 4.324 5.251| 0.002| 0.000
o
— o
< < VP_vol_rpe 0.031| 0.016| 0.015 1.941 5.239 | 0.010| 0.000
S =
g = VP_vol_neurosensory_retina 0.024| 0.012| 0.010| 2.291 4.868 | -0.001 | 0.000
]
z 2 g VP_vol_vitreous_and_subhyaloid 0.037| 0.019| 0.018| 0.364 1.148 | -0.001 | 0.000
5
o w —
£ = < © | vP_vol_drusenoid_ped 0.013| 0.006 | 0.006| 0.673| 0.829-0.013| 0.000
s — (3]
¥ 2| G 35 2
.-cav & OI - 2
A
wv © Q
a3 &
s g
=]
-
$ 8
g 8
C oz
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% 5 VP_vol_rpe 0.029| 0.014| 0.013 1.738 4.846 | 0.005| 0.000
o o)
€ 5 VP_vol_subretinal_fluid 0.082| 0.041| 0.036| 3.286 4.073 | -0.009 | 0.000
- 2
E S ] VP_vol_neurosensory_retina 0.018 | 0.009 | 0.008| 0.626 2.578 | 0.007 | 0.000
o o ° a
£ 5 u % 3 VP_vol_drusenoid_ped 0.018| 0.009| 0.009| 0.507 1.375| 0.009 | 0.000
=T Y < I -
% @ 5 v % VP_vol_subretinal_hyper_reflect 0.050| 0.025| 0.021| 0.650 1.027 | 0.005| 0.000
@© ° o n
g - | = 5 ©
o 2 [e) ﬂ>.)
< 8 s
£ 5
() =
®» 3
: s
S «
Do Ethnicity 0.020 | 0.043| 0.009 | NA 0.267 | -0.037 | 0.021
<t Q
< % Fellow eye activity 0.030| 0.018| 0.012 | NA 12.883 | 0.063| 0.000
c  » 9}
>
g 'g E=] § Anti-VEGF drug type 0.014 | 0.015| 0.006 | NA 0.144| 0.023| 0.000
Qo s = v
% % g 2 Time interval 1st to 3rd injection 0.019| 0.012| 0.006 | NA 1.485| 0.002 | 0.000
S %) o [
f § f E % Age At First Injection 0.014| 0.007 | 0.007 | NA 1.638 | 0.013 | 0.000
25| = 3
5|8 o
> i & @
£ N IS 2
R
c €
E o
S €
Do Fellow eye activity 0.031| 0.018| 0.013|NA 13.735| -0.030 | 0.000
<t Q
£ %’, Time interval 1st to 3rd injection 0.018 | 0.012| 0.007 | NA 0.902 | 0.006| 0.000
c  » 19}
>

g -:-5 B ] Sex 0.002 | 0.002| 0.001|NA 0.625 | 0.007 | 0.000
w 2 i ° a
._g g ] °g’ <z Age At First Injection 0.012| 0.006| 0.006 | NA 0.502 | 0.007 | 0.000
© %) o = [
T? § ﬁ o ag Laterality 0.002 | 0.002| 0.001|NA 0.342 | -0.028 | 0.000
8§ 8|5 | & |3
ss|§ |5 |¢
> 7 @ 3 o}
£ N £ 2
R
c €
® o
G £
P VA post loading (VP) 0.069| 0.035| 0.023| 17.242| 24.354| 0.006 | 0.041
=R
é 2 VA mean initial 2 visits post loading 0.057| 0.029| 0.020| 17.502| 20.583 | 0.005| 0.000

o
! ]
z = " VA baseline visit (V0) 0.056| 0.028 | 0.018| 13.935| 19.850| 0.016| 0.000
€ % O
g L ﬁ VA fellow eye (V0) 0.023| 0.011| 0.008| 0.892 3.760 | 0.012| 0.013
T Bl |3 |53
S ® 3

< >
S 8 ®
c =
= @
(] =
® =
Z s
O «
c 4o VA baseline visit (V0) 0.062| 0.031| 0.019| 13.127| 19.695| 0.012 | 0.037
s B 2 dq @ N
‘!ga 8| < 2 3 & g VApost loading (VP) 0.059| 0.030| 0.019| 11.409| 18.819| 0.007 | 0.000
© < 5 g ] q
S = °© 83 VA mean initial 2 visits post loading 0.045| 0.023| 0.016| 11.773| 13.680| 0.004 | 0.000
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VA fellow eye (V0) 0.027| 0.014| 0.010| 1.660 6.223 | 0.011| 0.000

VO_OPL 1mm CM vol 0.048 | 0.030| 0.019| 3.639 5.498 | 0.014| 0.031

VO_NFL min CMT 0.034| 0.026| 0.015| 2.563| 15.890| 0.001| 0.000

VO_GCL Imm CM vol 0.033| 0.021| 0.009| 2.753 4.764 | -0.003 | 0.000

VO_OPL 1mm CMT 0.037| 0.019| 0.015| 2.922 9.410| 0.007| 0.000

VO_retina min CMT 0.035| 0.017| 0.014| 4.933 8.067 | 0.001| 0.000

VO_OCT

full
averaged over classes

Change in visual acuity over 12 months when
considered as slope of line of best fit through

VO_NFL min CMT 0.040| 0.030| 0.017| 3.825| 14.499| 0.009 | 0.000

VO_GCL min CMT 0.022| 0.013| 0.010| 3.440 9.981| 0.000| 0.000

VO_OPL 1mm CMT 0.037| 0.018| 0.015| 2.599 8.493 | -0.004 | 0.000

VO_retina Imm CM vol 0.018| 0.009| 0.007 | 2.806 5.884 | 0.003| 0.000

VO_OCT

VO_OPL Imm CM vol 0.045| 0.029| 0.018| 3.613 5.384| 0.008| 0.029

outliers removed
averaged over classes

Change in visual acuity over 12 months
when considered as slope of line of best fit

VP_NFL 1mm CM vol 0.0180.032 |0.006 [0.530 |0.201 0.001 |0.017

VP_NFL min CMT 0.012| 0.014| 0.005| 0.343 1.296 | 0.001| 0.000

VP_OPL 1mm CM vol 0.018| 0.013| 0.008| 3.281 2.511| 0.005| 0.000

VP_RPE 3mm vol 0.026| 0.013| 0.010| 1.439 6.881| -0.001 | 0.000

VP_ONL 1mm CM vol 0.025| 0.013| 0.010( 0.801 0.446 | 0.000| 0.000

VP_OCT

full
averaged over classes

Change in visual acuity over 12 months when
considered as slope of line of best fit through

VP_RPE 3mm vol 0.028| 0.014| 0.011| 2.207 5.945| 0.005| 0.016

VP_IRLs 3mm vol 0.020| 0.010| 0.009| 3.344 5.115| 0.008 | 0.000

VP_OCT

VP_OPL 1mm CMT 0.015| 0.008 | 0.008| 3.882 4.483 | 0.003 | 0.000

Change in visual
acuity over 12
averaged over

outliers removed

VP_OPL min CMT 0.015| 0.007| 0.007| 2.022 4.213| -0.004 | 0.000
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VP_ORLs 3mm vol 0.019| 0.010| 0.008| 2.232 3.644 | 0.007| 0.000

VO_vol_serous_ped 0.131| 0.066| 0.055| 2.291 1.054 | -0.014 | 0.080

VO_vol_epiretinal_membrane 0.050| 0.025| 0.023| 0.799 0.736| 0.003| 0.000

VO_vol_intraretinal_fluid 0.042| 0.021| 0.019| 0.570 1.735| 0.003| 0.000

VO_vol_neurosensory_retina 0.036| 0.018| 0.017| 0.334 5.583 | -0.002 | 0.000

VO_vol_subretinal_hyper_reflect 0.025| 0.013| 0.011| 1.468 2.892 | -0.021 | 0.000

VO_OCTANE
full
averaged over classes

Change in visual acuity over 12 months when
considered as slope of line of best fit through VA

VO_vol_neurosensory_retina 0.031| 0.015| 0.014| 0.120 4.755 | -0.003 | 0.000

VO_vol_subretinal_hyper_reflect 0.031| 0.016| 0.014| 1.732 4.613| 0.000| 0.000

VO_vol_vitreous_and_subhyaloid 0.055| 0.027 | 0.028| 0.802 2.627| -0.011 | 0.000

VO_vol_intraretinal_fluid 0.051| 0.026| 0.024| 0.815 1.983 | -0.011| 0.000

VO_vol_rpe 0.019| 0.010| 0.008 | 0.458 0.782| -0.007 | 0.000

VO_vol_choroid_and_outer_layers 0.015| 0.007 | 0.006| 0.733 0.626 | 0.023| 0.000

VO_OCTANE

outliers removed
averaged over classes

VO_vol_fibrovascular_ped 0.026| 0.013| 0.013| 0.580 0.606 | 0.005| 0.000

VO_vol_serous_ped 0.113| 0.057| 0.044| 0.659 0.524 | -0.015| 0.067

Change in visual acuity over 12 months when
considered as slope of line of best fit through

VP_vol_serous_ped 0.073| 0.037| 0.033| 0.277 0.003 | 0.005| 0.043

VP_vol_drusenoid_ped 0.037| 0.018| 0.016| 1.184 5.003 | -0.004 | 0.000

VP_vol_subretinal_fluid 0.035| 0.018| 0.016| 2.212 2.633| 0.025| 0.000

VP_vol_neurosensory_retina 0.028| 0.014| 0.011| 3.810 4.726 | 0.001| 0.000

VP_vol_posterior_hyaloid 0.028| 0.014| 0.013| 0.076 0.788 | -0.027 | 0.000

VP_OCTANE
full
averaged over classes

Change in visual acuity over 12 months when
considered as slope of line of best fit through VA

VP_vol_rpe 0.015| 0.007| 0.007| 2.396 4.953 | -0.009 | 0.000

ad

Chang
n
VP_OC
TANE
outlier
averag

VP_vol_drusenoid_ped 0.038| 0.019| 0.017| 1.088 4.901| -0.002 | 0.000
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VP_vol_choroid_and_outer_layers 0.026| 0.013| 0.011| 0.569 2.249 | 0.002 | 0.000

VP_vol_neurosensory_retina 0.018| 0.009 | 0.007| 1.348 1.862 | 0.004 | 0.000

VP_vol_intraretinal_fluid 0.041| 0.020| 0.018 | 0.227 1.600 | -0.004 | 0.000

Fellow eye activity 0.054| 0.031| 0.024 | NA 12.820| 0.044| 0.034

Time interval 1st to 3rd injection 0.049| 0.031| 0.018 | NA 4.638 | -0.004 | 0.032

Ethnicity 0.011| 0.023| 0.005 | NA 0.052 | -0.004 | 0.000

Age At First Injection 0.025| 0.012| 0.010 | NA 4.557 | -0.008 | 0.000

Anti-VEGF drug type 0.011| 0.012| 0.004 | NA 0.030| 0.013| 0.000

Laterality 0.005| 0.005| 0.002 | NA 1.169 | 0.011| 0.000

Sex 0.001| 0.002| 0.001|NA 0.462| 0.024| 0.000

Demographic & qualitative
full
averaged over classes

Change in visual acuity over 12 months when
considered as slope of line of best fit through

Fellow eye activity 0.055| 0.032| 0.024|NA 14.657 | -0.011| 0.034

Age At First Injection 0.018 | 0.009| 0.008 | NA 3.006 | -0.007 | 0.000

Time interval 1st to 3rd injection 0.044| 0.029| 0.017 | NA 2.701| -0.004 | 0.029

Sex 0.005| 0.006| 0.002 | NA 1.399 | 0.005| 0.000

Laterality 0.006 | 0.006| 0.003 | NA 1.259 | 0.008 | 0.000

outliers removed
averaged over classes

Demographic & qualitative

Change in visual acuity over 12 months when
considered as slope of line of best fit through

VA baseline visit (V0) 0.113| 0.056| 0.047 | 28.070| 39.263 | 0.017 | 0.068

VA fellow eye (V0) 0.026| 0.013| 0.012| 0.833 4.138| 0.007 | 0.000

VA post loading (VP) 0.017| 0.009| 0.008 | 2.573 4.023 | -0.002 | 0.000

VA mean initial 2 visits post loading 0.010| 0.005| 0.005| 2.062 1.937 | -0.003 | 0.000

VA

full
averaged over classes

Change in visual acuity over 12 months when
considered as slope of line of best fit through
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Laterality 0.000| 0.000| 0.000 | NA 0.007 | -0.006 | 0.000

Fellow eye activity 0.021| 0.012| 0.014 | NA 4.221| -0.008 | 0.015

Age At First Injection 0.009 | 0.005| 0.006 | NA 1.889 | 0.010| 0.000

Time interval 1st to 3rd injection 0.024| 0.016| 0.014|NA 1.206| 0.000| 0.019

Ethnicity 0.011| 0.022| 0.007 | NA 0.125| 0.004| 0.000

Laterality 0.000 | 0.000| 0.000 | NA 0.053 | -0.002 | 0.000

Anti-VEGF drug type 0.005| 0.005| 0.003 | NA 0.052 | -0.018 | 0.000

outliers removed
averaged over classes

Sex 0.000 | 0.000| 0.000 | NA 0.015| 0.014| 0.000

Demographic & qualitative

Change in visual acuity over 12 months when
considered as slope of line of best fit through

VA baseline visit (VO) 0.052| 0.026| 0.035| 27.851| 18.787| 0.015| 0.036

VA fellow eye (V0) 0.029| 0.014| 0.020| 6.249 9.083 | 0.012| 0.019

VA post loading (VP) 0.004 | 0.002| 0.003| 0.394 0.229| 0.000| 0.000

VA mean initial 2 visits post loading 0.001| 0.001| 0.001| 0.016 0.291 | 0.006 | 0.000

VA
full
averaged over classes

Change in visual acuity over 12 months
when considered as slope of line of best fit

VA baseline visit (VO) 0.055| 0.027| 0.037| 27.070| 18.240| 0.019| 0.038

VA fellow eye (V0) 0.038| 0.019| 0.026| 8.891| 11.483| 0.003 | 0.026

VA post loading (VP) 0.002 | 0.001| 0.001| 0.359 0.460| 0.002| 0.000

VA mean initial 2 visits post loading 0.001| 0.000| 0.001| 0.056 0.182 | 0.003| 0.000

outliers removed
averaged over classes

Change in visual acuity over 12 months

when considered as slope of line of best fit
VA

VA baseline visit (V0) 0.052| 0.026| 0.035| 27.851| 18.787| 0.015| 0.036

Standard deviation of VA mean, post

loading -12 months (VP-V12) 0.048| 0.024 | 0.032| 18.548| 17.243| 0.020| 0.033

VA fellow eye (V0) 0.029| 0.014| 0.020| 6.249 9.083 | 0.013| 0.019

VA st dev

VA post loading (VP) 0.004| 0.002| 0.003| 0.394 0.229 | 0.011| 0.000

full
averaged over classes

Change in visual acuity
over 12 months when

VA mean initial 2 visits post loading 0.001| 0.001| 0.001| 0.016 0.291| 0.012| 0.000
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VA baseline visit (VO) 0.055| 0.027| 0.037 | 27.008 | 18.240| 0.021| 0.038

Standard deviation of VA mean, post

loading -12 months (VP-V12) 0.048| 0.024 | 0.032| 22.222| 15.524| 0.020| 0.033

VA fellow eye (V0) 0.033| 0.017| 0.023| 7.392 9.319| 0.014| 0.023

VA mean initial 2 visits post loading 0.002 | 0.001| 0.001| 0.197 0.278 | 0.003| 0.000

VA_st dev

VA post loading (VP) 0.001| 0.001| 0.001| 0.206 0.272| 0.001| 0.000

outliers removed
averaged over classes

Change in visual acuity over 12 months when
considered as slope of line of best fit through

VO_OPL 1mm CM vol 0.050| 0.032| 0.024| 5.549 6.886| 0.004| 0.033

VO_GCL Imm CM vol 0.040| 0.025| 0.014| 4.981 8.367 | 0.000| 0.000

VO_OPL 1mm CMT 0.048 | 0.024| 0.021| 5.106| 13.722| 0.001| 0.000

VO_IPL Imm CM vol 0.037| 0.023| 0.016| 4.652 7.623 | 0.002| 0.000

VO_retina Imm CM vol 0.045| 0.022| 0.022| 4.978| 14.708 | 0.001| 0.000

VO_OCT

full
averaged over classes

Change in VA, baseline - month 12
(categories: VA gained, maintained, lost)

VO_OPL 1mm CMT 0.052 [0.026 |0.023 |5.013 |13.750 |0.007 |0.000

VO_NFL min CMT 0.036| 0.027| 0.017| 2.874| 13.066| 0.004 | 0.000

VO_retina Imm CM vol 0.037| 0.019| 0.018| 6.856| 12.499| 0.006 | 0.000

VO_GCL min CMT 0.031| 0.018| 0.015| 5.160| 10.708 | 0.005| 0.000

VO_retina min CMT 0.034| 0.017| 0.016( 7.570| 10.531| 0.004 | 0.000

VO_OCT

outliers removed
averaged over classes

Change in VA, baseline - month 12
(categories: VA gained, maintained, lost)

VP_NFL 1mm CM vol 0.026| 0.046| 0.010| 0.006 0.359| 0.001| 0.025

VP_RPE 3mm vol 0.040| 0.020| 0.019| 2.800| 10.633 | 0.001| 0.000

VP_IRLs min CMT 0.032| 0.016| 0.014| 3.703 6.262 | 0.009| 0.000

-month 12
VP_OCT

VP_ONL 1mm CM vol 0.030| 0.015| 0.014| 2.031 3.086 | 0.009| 0.000

full
averaged over classes

VP_NFL min CMT 0.012| 0.013| 0.005| 0.048 0.041| 0.002| 0.000

Change in VA, baseline
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VP_RPE 3mm vol 0.041| 0.020| 0.019| 2.787 8.664 | 0.000| 0.023

VP_IRLs min CMT 0.030| 0.015| 0.013| 4.116 5.922 | 0.000| 0.000

VP_ORLs 3mm vol 0.023| 0.011| 0.010| 2.748 5.288 | -0.002 | 0.000

VP_IPL min CMT 0.021| 0.011| 0.010| 3.818 4.686| 0.012 | 0.000

VP_OCT

VP_ORLs min CMT 0.010| 0.005| 0.004| 0.871 2.674| 0.000| 0.000

outliers removed
averaged over classes

Change in VA, baseline - month 12
(categories: VA gained, maintained, lost)

VO_vol_serous_ped 0.086| 0.043| 0.033| 0.711 0.417| -0.006 | 0.051

VO_vol_epiretinal_membrane 0.041| 0.021| 0.018| 0.631 0.285| 0.017| 0.000

VO_vol_intraretinal_fluid 0.037| 0.019| 0.018| 1.934 1.411 | -0.004 | 0.000

VO_vol_subretinal_hyper_reflect 0.028| 0.014| 0.015| 1.807 7.027 | 0.007 | 0.000

VO_vol_neurosensory_retina 0.028 | 0.014 | 0.013| 1.432 2.302| 0.003 | 0.000

VO_OCTANE
full
averaged over classes

Change in VA, baseline - month 12
(categories: VA gained, maintained, lost)

VO_vol_subretinal_hyper_reflect 0.033| 0.016| 0.017| 1.661 8.152 | 0.014| 0.000

VO_vol_neurosensory_retina 0.023| 0.011| 0.010| 1.054 3.404 | 0.007 | 0.000

VO_vol_vitreous_and_subhyaloid 0.016| 0.008 | 0.008| 0.559 2.954 | -0.007 | 0.000

VO_vol_rpe 0.024| 0.012| 0.010( 1.297 2.403| 0.000| 0.000

VO_vol_drusenoid_ped 0.020| 0.010| 0.009| 2.380 1.693 | 0.006 | 0.000

VO_OCTANE
outliers removed

averaged over classes

Change in VA, baseline - month 12
(categories: VA gained, maintained, lost)

VP_vol_serous_ped 0.230| 0.115| 0.091| 0.319 0.049| 0.002| 0.150

VP_vol_fibrovascular_ped 0.041| 0.020| 0.018| 1.058 2.845| 0.021| 0.000

VP_vol_intraretinal_fluid 0.039| 0.020| 0.016| 1.966 5.092 | -0.004 | 0.000

-month 12

VP_vol_neurosensory_retina 0.038| 0.019| 0.013| 3.638 2.961| 0.005| 0.000

Change in VA, baseline
VP_OCTANE
full
averaged over classes

VP_vol_epiretinal_membrane 0.037| 0.018| 0.015| 0.125 0.259 | 0.030| 0.000
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§ OE) 2 2 _g Anti-VEGF drug type 0.010| 0.011| 0.004 | NA 0.086 | -0.007 | 0.000
< > 8 &
> < % ©
s 7| ¢ g
g 8| § s
c B [a]
e o
(SR
8
Fellow eye activity 0.065| 0.038| 0.032 | NA 19.355| 0.018| 0.041
o T%? Time interval 1st to 3rd injection 0.049| 0.033| 0.017|NA 3.401 | -0.004 | 0.033
- 2
- el
g 2] 2 | AgeAtFirst Injection 0.016 | 0.008 | 0.008 | NA 1.764 | -0.001 | 0.000
e E| 8 | | 8
' = = o
@ g 3 % r—: Sex 0.002 | 0.002 | 0.001|NA 0.576 | 0.035| 0.000
o
= ~ £ =
g 8| % g S | Laterality 0.003 | 0.003| 0.001 |NA 0.531{ 0.000 [ 0.000
S 5|5 |5 |3
S <l |5 | ¥
= ¢ 3 | ¢
g 8| § &
c 5 [a]
& o
[SI]
3
VA baseline visit (V0) 0.109| 0.055| 0.053| 29.100| 39.660| 0.029 | 0.065
< ]
z o 3 JVAfellow eye (VO) 0.038| 0.019| 0.017| 1.951 9.219| 0.006 | 0.022
355 |3 8]
:é: § g L:VApostIoadir\g(VP) 0.007| 0.003| 0.003 1.362 1.248 | 0.000 | 0.000
] >
© © VA mean initial 2 visits post loading 0.007 | 0.003| 0.003| 2.419 1.971| 0.008 | 0.000

301
M. K. Gupta, DOptom Thesis, Aston University, 2024



. VA baseline visit (V0) 0.089| 0.044| 0.043| 20.711| 29.401| 0.034| 0.053
~ 8
z -8‘ VA fellow eye (V0) 0.047| 0.024| 0.022| 3.289| 11.754| -0.005| 0.027
€ c
g s 4 VA mean initial 2 visits post loading 0.009| 0.005| 0.004| 0.872 1.207| 0.012 | 0.000
c ° a
2 g g | 3
£ - £ 5 VA post loading (VP) 0.003| 0.002 | 0.001| 0.195 0.191 | 0.007 | 0.000
el
221 < |2 |3
a s ] T
< < s | P
s > 3 | &
o g ©
-
[e]
5 ¥
s
VA baseline visit (V0) 0.109| 0.055| 0.053| 29.100| 39.660| 0.016| 0.065
“
2 Standard deviation of VA mean, post
[e]
fyc loading -12 months (VP-V12) 0.100| 0.050| 0.042| 27.891| 33.490| 0.023| 0.059
© —_
S 7
S i § VA fellow eye (V0) 0.038| 0.019| 0.017| 1.951 9.219 | 0.006 | 0.022
s Q %
s % z 35 VA post loading (VP) 0.007| 0.003| 0.003| 1.362 1.248 | 0.004 | 0.000
£ = o _ ]
' —_ - = >
e E :I 2 3 VA mean initial 2 visits post loading 0.007| 0.003| 0.003| 2.419 1.971| 0.005| 0.000
T ©| > &
g 2 o
S 5 2
<(‘ oo ©
: s
‘v
[V
c
(1]
Ny
(&}
. Standard deviation of VA mean, post
v
'g loading -12 months (VP-V12) 0.103| 0.052| 0.043| 26.776 | 32.548 | 0.023| 0.062
o0
[
g 7 VA baseline visit (V0) 0.094| 0.047 | 0.046| 22.841| 30.959| 0.034| 0.056
(o] _O %}
i - & | vAfellow eye (VO) 0.043| 0.022| 0.020| 2.386| 9.008| 0.007| 0.025
s o 19} 3
[ c > -_
o —_ > [} [S]
E 2| 3 £ § | VAmeaninitial 2 visits post loading 0.011| 0.005| 0.005| 0.981| 1.072| 0.013| 0.000
' '® ° = o
g E < g kS
E -8‘ > = a0 VA post loading (VP) 0.005| 0.002 | 0.002| 0.210 0.289 | 0.010| 0.000
g £ 3 | g
<(‘ oo ©
2 3
‘v
o0
c
©
Ny
(@]
o ) 0 VO_OPL 1mm CM vol 0.044| 0.028 | 0.028| 12.087 7.161| -0.001 | 0.035
5 S12 -3 |8 3
O g & VO_retina 1mm CM vol 0.045| 0.023| 0.030| 9.704| 15.656| 0.002 | 0.000
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VO_IPL Imm CM vol 0.037| 0.023| 0.023| 9.994 7.978 | 0.003| 0.000
VO_retina 1Imm CMT 0.045| 0.022| 0.030| 9.466| 13.150| 0.001| 0.000
VO_retina min CMT 0.044| 0.022| 0.029| 13.907| 12.993| 0.003 | 0.000
VO_retina 1mm CM vol 0.041| 0.021| 0.028| 10.913| 13.407| 0.013| 0.000
~ VO_NFL min CMT 0.023| 0.018| 0.015| 4.980| 10.874| 0.009 | 0.000
-
< =
‘g 2 " VO_OPL 1mm CMT 0.039| 0.020| 0.026| 9.274 9.887 | 0.004 | 0.000
E g - | 2
é ugJ %J s VO_GCL min CMT 0.021| 0.012| 0.014| 9.080 9.716 | 0.005| 0.000
= & G IS ]
o < o g B . .
8 = o » it VO_retina min CMT 0.033| 0.016| 0.022| 12.662 9.387 | 0.013| 0.000
< &7 |25
5 =1 =
c ° 9]
o & 5
an ©
c O
s £
<
O
VP_NFL min CMT 0.012| 0.013| 0.008| 0.728 0.544 | -0.011| 0.000
~ VP_IRLs min CMT 0.020| 0.010| 0.014| 2.750 2.298 | 0.003| 0.014
—
s 7 VP_RPE 3mm vol 0.018| 0.009| 0.012| 5.165 4.049| 0.002 | 0.000
S o
8 ; g VP_OPL 1mm CM vol 0.011| 0.008 | 0.007| 4.002 1.539 | 0.005| 0.000
i Q ©
o £ ©
% & g — E. VP_ORLs 3mm vol 0.016| 0.008 | 0.010| 5.494 2.082 | 0.000| 0.000
2 g o 3 5
N 3
SR @
c 9]
o & 5
[V ©
c O
s £
<
(@)
VP_IRLs min CMT 0.023| 0.011| 0.015| 5.694 4.233| 0.011| 0.000
o
; . VP_IPL min CMT 0.011| 0.006 | 0.007| 6.149 3.493 | -0.009 | 0.000
é % 4] VP_OPL 1mm CMT 0.009| 0.005| 0.006| 5.493 2.860 | 0.000| 0.000
' 2 b &
@ _GEJ % < VP_RPE 3mm vol 0.015| 0.008 | 0.010| 1.191 2.850 | 0.006| 0.000
© = [
= o £
% <>.: oI o % VP_IRLs Imm CM vol 0.013| 0.007| 0.009| 1.750 1.843 | 0.002 | 0.000
o 7. [-% 2 o
c 9 3 ]
o ¥ s
o0 ©
c O
S =
=
O
o S5 T VO_vol_serous_ped 0.035| 0.017| 0.024| 1.566 0.367 | -0.031| 0.024
€ S|o ¥ 3 |? ¢
© | 2 jod 3
< c <| * o d
o - g & VO_vol_neurosensory_retina 0.031| 0.016| 0.020| 0.984 2.665 | -0.001 | 0.000
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VO_vol_posterior_hyaloid 0.020| 0.010| 0.013| 0.474 0.278 | 0.008 | 0.000
VO_vol_vitreous_and_subhyaloid 0.017| 0.009| 0.011| 0.087 0.086 | 0.003| 0.000
VO_vol_epiretinal_membrane 0.017| 0.008 | 0.011| 0.166 0.074 | 0.003| 0.000
VO_vol_neurosensory_retina 0.024| 0.012| 0.016| 0.786 4.099 | -0.005| 0.016

~ VO_vol_subretinal_hyper_reflect 0.009| 0.005| 0.006| 0.251 1.210 | 0.006 | 0.000

—

£ = VO_vol_subretinal_fluid 0.003| 0.001| 0.002| 0.702 0.953 | 0.007| 0.000

c 8 -

8 % - @ VO_vol_fibrovascular_ped 0.003| 0.002 | 0.002| 0.142 0.449 | -0.013 | 0.000

] 9] ] £

g = g é © VO_vol_posterior_hyaloid 0.017| 0.009| 0.011| o0.201 0.326| 0.012| 0.000

2 <| 5 |¢ |3

© > o %)

2 il o |2 |3

> 5]~ |8 | ¢

£ ® ° g

o 9 ©

an ©

£ &

2

[}

g VP_vol_serous_ped 0.152| 0.076| 0.097| 0.237 0.030| 0.003| 0.113

ﬁ VP_vol_epiretinal_membrane 0.034| 0.017| 0.022| 0.092 0.349 | -0.004 | 0.000

5 VP_vol_drusenoid_ped 0.030| 0.015| 0.020| 0.028 0.933| 0.008| 0.000

O

~— w

N § VP_vol_vitreous_and_subhyaloid 0.020| 0.010| 0.013| 1.718 1.210| -0.018 | 0.000

< = w o

€ 3 <Z( o VP_vol_neurosensory_retina 0.017| 0.008 | 0.011| 5.908 3.763 | 0.002 | 0.000

e |6 |s |8

[ 8 Ol Y 5

g = o &

T w0 o

g 2

<

>

£

(]

[V

c

©

<

O
VP_vol_rpe 0.017| 0.009 | 0.011 1.912 5.547 | -0.010 | 0.000

N VP_vol_intraretinal_fluid 0.019| 0.009| 0.013| 2.703 2.665| 0.002| 0.000

£ =

é % 4 VP_vol_neurosensory_retina 0.011| 0.006 | 0.007| 2.418 2.015| 0.002 | 0.000

' 2 b &

@ _GEJ % % 3 VP_vol_drusenoid_ped 0.029| 0.014| 0.019| 0.016 1.126 | -0.003 | 0.000

©

= a0 < £ b3

g <>r. s) o % VP_vol_posterior_hyaloid 0.024| 0.012| 0.015| 0.355 0.423 | -0.019 | 0.000

o 7. S 2 o

I

~ [ a Q (9]

S s> |5 |¢

£ © g

o 9 ©

o0 ©

£ =

2

[}

O < 0 ol « 4 « o Ethnicity 0.013| 0.027 | 0.008 | NA 0.086 | -0.002 | 0.000
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Time interval 1st to 3rd injection 0.023| 0.015| 0.015|NA 3.727| 0.001| 0.019
Fellow eye activity 0.023| 0.013| 0.015|NA 7.967 | 0.006| 0.017
Age At First Injection 0.023 | 0.012| 0.015|NA 5.876 | 0.022| 0.000
Anti-VEGF drug type 0.003 | 0.003| 0.002 | NA 0.010| 0.028| 0.000
Sex 0.000 | 0.000| 0.000 | NA 0.037 | -0.006 | 0.000
Laterality 0.000 | 0.000| 0.000 | NA 0.020 | 0.002| 0.000

P Fellow eye activity 0.015| 0.008 | 0.010 | NA 4.869| 0.018 | 0.000

Dso Time interval 1st to 3rd injection 0.024| 0.016| 0.014|NA 2.116| 0.010| 0.020

[0

©

‘:’ E " Age At First Injection 0.017 | 0.009| 0.011|NA 1.325 | -0.002 | 0.000

— © [}

s 7 % @ § Sex 0.000 | 0.000| 0.000 | NA 0.108 | 0.016| 0.000

eals 28

4 @ f et 3 Ethnicity 0.011| 0.023| 0.006 | NA 0.056 | 0.010| 0.000

c s < 2 °

T E‘J =3 2 % Laterality 0.000 | 0.000| 0.000 | NA 0.049 | 0.014| 0.000

g > ED 5 .

2 g °© % Anti-VEGF drug type 0.004 | 0.005| 0.003 | NA 0.029 | -0.004 | 0.000

g &

£

(]

oo

C

©

e

O
VA baseline visit (VO) 0.061| 0.030| 0.041| 34.510| 22.851| 0.032| 0.043

o~

T - VA fellow eye (V0) 0.021| 0.011| 0.014| 4.250 7.297 | 0.008| 0.000

=R

é % 4 VA mean initial 2 visits post loading 0.008| 0.004| 0.006| 1.421 1.776| 0.005| 0.000

T 3 8

@ ug) <z VA post loading (VP) 0.008 | 0.004| 0.006| 0.525 0.227| 0.005| 0.000

3 2 L < |8

ES|> |23

c & 9]

o & 3

oo ©

C O

S L

<

O
VA baseline visit (V0) 0.050| 0.025| 0.033| 24.461| 16.933| 0.035| 0.035

o

; . VA fellow eye (V0) 0.026| 0.013| 0.018| 5.348 8.038 | 0.017| 0.000

é % ] VA mean initial 2 visits post loading 0.007| 0.003| 0.005| 1.924 1.922 | 0.010| 0.000

o & g |

£ 'a g ; VA post loading (VP) 0.002| 0.001| 0.001| 0.713 0.205| 0.009 | 0.000

g < o >

855 o | o

P (7] (9]

g § g | ¥

c 9 3 ]

s & 3

o0 ©

c O

s L

=

[}
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“ VA baseline visit (V0) 0.061| 0.030| 0.041| 34.510| 22.851| 0.022| 0.043
[
DED Standard deviation of VA mean, post
[0
§ loading -12 months (VP-V12) 0.061| 0.030| 0.041| 28.966| 21.094| 0.026 | 0.042
S § VA fellow eye (V0) 0.021| 0.011| 0.014| 4.250 7.297 | -0.008 | 0.000
s 7 o
c 38 i
g 5 § g VA mean initial 2 visits post loading 0.008 | 0.004| 0.006| 1.421 1.776 | 0.008 | 0.000
\ O 2 = >
g % < 2 ‘,3 VA post loading (VP) 0.008 | 0.004 | 0.006| 0.525 0.227| 0.001 | 0.000
T 2 > &
2 £ ©
& g
< ©
>
£
(]
an
c
©
<
O
. Standard deviation of VA mean, post
'g loading -12 months (VP-V12) 0.060| 0.030| 0.040| 29.639 | 18.983 | 0.016| 0.042
a0
[
38 VA baseline visit (V0) 0.050| 0.025| 0.033| 24.413| 16.933| 0.039| 0.035
o~ %]
z - &" VA fellow eye (V0) 0.022| 0.011| 0.015| 4.182 6.176 | 0.004 | 0.000
=] 2 [
s o | 3 3 3
€ - ° GE) E VA mean initial 2 visits post loading 0.010| 0.005| 0.007| 2.609 2.140| 0.002 | 0.000
' 7] + bt
I I I =
‘é <°(° > % % VA post loading (VP) 0.002 | 0.001| 0.001| 1.009 0.386| 0.001 | 0.000
g > 3 | &
< ©
>
£
(]
oo
C
©
e
O

. VO_IPL 3mm vol 0.077| 0.039| 0.009| 1.336 8.974| 0.007| 0.035
N g
E pod VO_NFL Imm CMT 0.074| 0.037| 0.014| 0.937| 11.450| -0.002 | 0.000
E 3
& :,; 3] VO_GCL Imm CM vol 0.055| 0.034| 0.010| 1.748 9.549 | 0.004| 0.000
< S 9
“>6 “5’ = VO_GCL 3mm vol 0.061| 0.031| 0.009| 2.332| 12.816| 0.008 | 0.000
s 18 |5 |8
g g o = _g VO_ONL 1mm CMT 0.059| 0.030| 0.010( 2.179 8.778 | 0.008| 0.000
z 2> g
s @ o
c 9 g
2 s :
N3
— ©
- o
© %
< =
=z

< VO_GCL min CMT 0.042| 0.025| 0.007| 1.268| 15.821| 0.000| 0.000
E 3
f: § VO_NFL Imm CMT 0.095| 0.048 | 0.018| 1.358| 13.749| -0.002 | 0.044
s 2 @
Y [}
2 % g ﬁ VO_NFL min CMT 0.051| 0.038| 0.008| 1.224| 12.136| 0.003 | 0.000
S u | r g °

D O o
E 'g O| g 3 VO_GCL 3mm vol 0.050| 0.025| 0.008| 2.044| 11.572| 0.013| 0.000
2 o 4 -
g =2 = 2 ® |VO_GCL1mm CM vol 0.067| 0.042| 0.012| 2.045| 10.560| 0.008| 0.000
E 3 ©
N & &
5 &
-
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R VP_NFL 1mm CM vol 0.039| 0.071| 0.006| 1.057 1.194| -0.001 | 0.026
N2
E = VP_IPL 3mm vol 0.117| 0.059 | 0.013| 5.982| 24.985| 0.002| 0.055
[
g < " VP_OPL 1mm CM vol 0.067 | 0.049| 0.012| 2.102 4.797 | 0.007 | 0.000
: s
5 g 2 VP_GCL 1mm CM vol 0.047 | 0.044| 0.006| 0.753 4.734| -0.007 | 0.000
c 9 'L_) _ 9]
¢ 5|9 |2 |3
e £ a! = - VP_GCL 3mm vol 0.083| 0.042| 0.011| 6.598| 24.095|-0.001| 0.000
2 2|~ 5
5 £ g
<) ©
5 2
— ©
= o
© %
< £
> 2
. VP_IPL 3mm vol 0.127| 0.064 | 0.016| 6.591| 31.527| 0.006 | 0.060
~ o
T E VP_GCL 3mm vol 0.105| 0.052| 0.013| 7.509| 25.638| 0.006 | 0.000
— (32}
£ g VP_IRLs 3mm vol 0.105| 0.053| 0.011| 4.694| 23.277| 0.010| 0.000
o v
£« 8
g f) @ § VP_ONL 1mm CMT 0.096| 0.048| 0.015| 3.637| 21.373| 0.016| 0.044
2 3 S
fgu § g g E VP_ONL 1mm CM vol 0.083| 0.042| 0.012| 3.615| 18.160| 0.016 | 0.000
[} ] | ; o
E5|5 |8 |3
2 s | @
g ¢ 3 | ¢
[} ©
8 ¥
- ©
- o
© %
< 3
> 2
~ g VO_vol_epiretinal_membrane 0.251| 0.126| 0.033| 0.759 1.840| 0.021| 0.124
E oy VO_vol_posterior_hyaloid 0.244| 0.122| 0.035| 1.973 4.431 | -0.012 | 0.000
E 3
&= <\£ ] VO_vol_serous_ped 0.203| 0.101| 0.027| 0.418 1.013 | -0.002 | 0.000
< > 9
?5 g o < | VO_vol_choroid_and_outer_layers 0.082| 0.041| 0.015| 2.901| 13.828| -0.009| 0.038
s 2| g | = |8
g 2 8 2 _g VO_vol_neurosensory_retina 0.076| 0.038| 0.009| 0.668 8.332 | 0.001| 0.000
> 2 d 2
£ 5|~ o
g & g
[} ©
5 ¥
— ©
- o
© %
< =
> 2
< VO_vol_choroid_and_outer_layers 0.131| 0.066| 0.030| 3.057| 17.295| -0.005| 0.000
e >
o 2
f: o] VO_vol_subretinal_fluid 0.059| 0.030| 0.012| 1.268| 11.023| 0.019| 0.000
2 n
~>5 o - § VO_vol_neurosensory_retina 0.067| 0.033| 0.009| 1.003 7.070 | 0.019| 0.000
) [
9 w > o
§ w <Z( g o VO_vol_vitreous_and_subhyaloid 0.058| 0.029| 0.009| 1.110 6.124 | -0.002 | 0.000
£ 9 = ] g
2 S 3 - E VO_vol_drusenoid_ped 0.057| 0.029| 0.009| 0.684| 5.365| 0.010| 0.000
222 |€ g
s 8| ~ 5 ©
€ [} o [}
N & &
- >
T o~
-
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VP_vol_serous_ped 0.465| 0.233| 0.073 1.071 0.592 | 0.018 | 0.254
%] \—I|
Z un VP_vol_epiretinal_membrane 0.271| 0.136| 0.038| 0.577 1.522| 0.003 | 0.000
2 S
[Te}
% ;.' VP_vol_subretinal_hyper_reflect 0.137| 0.069| 0.030| 1.455 7.084 | 0.007| 0.000
£ g
g 3 F VP_vol_intraretinal_fluid 0.118| 0.059| 0.016| 1.517 4.485| -0.003 | 0.000
el 0
S 5| w &
> Q <Z( o VP_vol_choroid_and_outer_layers 0.106| 0.053| 0.019| 0.617 3.585| 0.025| 0.000
5 <« 5 = 2
s ol o [® ]2
t) o D.I O
E 3] 5> 2
%) = qL)
£ o
E 4
N v
- fe
= O
© oo
s i
o
. VP_vol_neurosensory_retina 0.075| 0.038| 0.008| 2.174 8.722 | 0.003| 0.000
~ O
r_cv : VP_vol_subretinal_hyper_reflect 0.148| 0.074| 0.032| 1.412 7.381| 0.007 | 0.000
— [a2]
E g VP_vol_subretinal_fluid 0.122| 0.061| 0.014| 2.206 5.329| 0.015| 0.000
o v
=z g - § VP_vol_drusenoid_ped 0.083| 0.042| 0.012| 0.894 4.912 | -0.005 | 0.000
> o o ©
5 5| 2 3 | © .
c 9 = £ o VP_vol_choroid_and_outer_layers 0.126| 0.063| 0.023| 0.537 4.572 | 0.005| 0.000
$ 5|8 e 3
- (%]
SE L |8
s ¥l ~ S ©
c 9 o g
2 3 :
8 %
500
S 3
~ g Ethnicity 0.030| 0.065| 0.007 | NA 0.174 | -0.006 | 0.000
T4
“; g Age At First Injection 0.074| 0.037 | 0.008 | NA 20.845| 0.017| 0.034
A 4]
o v =
= ] 7
E g '_*_3 § Anti-VEGF drug type 0.032| 0.033| 0.005 | NA 0.540 | -0.030| 0.000
L S 2
E S & ; Sex 0.027 | 0.030| 0.005 | NA 8.219| -0.012 | 0.016
© 2 3 = >
g g 2 2 _g Fellow eye activity 0.045| 0.027 | 0.007 | NA 9.594 | -0.013 | 0.022
- 2| %5 &
< o = ©
[} ©
S 2|8
— ©
- o
© %
< =
S @
>
Age At First Injection 0.076| 0.038 | 0.009 | NA 15.376 | 0.014| 0.035
:>1_: 3 g Fellow eye activity 0.042| 0.024| 0.007 | NA 10.017 | -0.046 | 0.000
o 5 k=1 4]
S ® ﬁ 2 03" Sex 0.028 | 0.031| 0.007 | NA 8.050 | -0.001 | 0.017
©
2 2 o3 9] g Laterality 0.014| 0.014 | 0.005|NA 2.898 | 0.001| 0.008
(%] —
S22 |5 |3
E = © = B Time interval 1st to 3rd injection 0.037| 0.025| 0.005|NA 2.546 | -0.006 | 0.019
8 £ ¢ 3 g
5 £ E ®
< 8 o
> Y-
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~ %’: VA mean initial 2 visits post loading 0.581| 0.291| 0.117 | 65.456 | 138.506 | 0.073 | 0.347
E by VA post loading (VP) 0.484| 0.242| 0.096 | 53.771|126.022 | 0.065| 0.000
E 3
i <\£ ] VA baseline visit (VO) 0.225| 0.112| 0.040| 21.143| 69.173 | 0.022 | 0.000
S v 4
2 S ; VA fellow eye (VO) 0.059| 0.029| 0.014| 2.319| 13.058| 0.013| 0.027
@© f < = >
(] o > =] o
E B el
-~ [ [
%) - oo
5 £ g
<] ©
5 ¥
A ©
= o
© %
< £
> 2
~ S’; VA mean initial 2 visits post loading 0.559| 0.280| 0.118 | 53.547 |120.873 | 0.090 | 0.334
TG
“; 2 VA post loading (VP) 0.438| 0.219| 0.091| 43.697 | 108.184 | 0.084 | 0.000
o
o
= <V,: 3] VA baseline visit (VO) 0.215| 0.108| 0.040| 18.062 | 61.004 | 0.035| 0.000
w
=3 3 |8
2 S g ; VA fellow eye (V0) 0.069| 0.035| 0.017| 2.486| 14.863| 0.034| 0.032
w
S 5| S | % |3
1S oy v ko]
- o 9]
2 ] &
5 ¢ -
[} ©
5 ¥
- ©
- o
m© %
< £
> 2
2 = VA mean initial 2 visits post loading 0.581| 0.291| 0.117| 65.456 | 138.506 | 0.071| 0.347
K2
> 1
i
% ; VA post loading (VP) 0.484| 0.242| 0.096 | 53.771|126.022 | 0.070 | 0.000
{=
s
E ;c . VA baseline visit (V0) 0.225| 0.112| 0.040| 21.143| 69.173 | 0.030| 0.000
o - [}
f: % _ﬁ Standard deviation of VA mean, post
> 3 o
s < s — g loading -12 months (VP-V12) 0.142| 0.071| 0.024| 12.800| 41.265| 0.055| 0.067
o @ 2 )
§ § < °
g 2 > an VA fellow eye (V0) 0.059| 0.029| 0.014| 2.319| 13.058| 0.028 | 0.027
2 8 &
2 o ®
g g
-
® I
g 3
< VA mean initial 2 visits post loading 0.547| 0.274| 0.113 | 56.989 | 123.881 | 0.075| 0.325
> (%]
s GE) n VA post loading (VP) 0.441| 0.220| 0.090| 45.202 |111.397 | 0.059 | 0.000
° o ]
c [=Ts] o [}
g = g ©
g 3 3 g E VA baseline visit (V0) 0.214| 0.107 | 0.038| 18.353 | 60.748 | 0.020 | 0.000
o £ ©° o
£ 2 @ 2 3 Standard deviation of VA mean, post
s | < |5 |3
E = = = o loading -12 months (VP-V12) 0.152| 0.076 | 0.022| 13.744| 41.949| 0.036| 0.073
- 3 | &
Z“‘ g © VA fellow eye (V0) 0.071| 0.036| 0.017| 2.637| 15.129| 0.018 | 0.033
S &
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< 3 VO_IPL 1mm CM vol 0.073| 0.045| 0.009| 1.301| 8.575| 0.004| 0.000
(] A
s o VO_ONL 1mm CMT 0.089 | 0.045| 0.016| 3.095| 15.763| 0.016| 0.041
3 @
5 N w | VO_NFL1mmcmT 0.089 | 0.044| 0.016| 1.760| 13.696| 0.003| 0.041
2 S 8
LN 4 |Vvo_GCL1mm CM vol 0.070| 0.043| 0.012| 2.002| 10.743| 0.005| 0.000
3 8| S
5 o o ]
® 3 S = z | VO_ONL min cMT 0.083| 0.042| 0.014| 2.259| 11.166| 0.005| 0.000
RS 3
F= o
§ < ®
£ o
~ ¥
° =
s "
< 3
> \Y
< g VO_ONL 1mm CMT 0.091| 0.045| 0.017| 3.032| 17.418| 0.005| 0.042
(] A
g 8 VO_NFL 1mm CMT 0.113| 0.057| 0.020| 2.784| 16.830| 0.005| 0.053
— i
% '; ¢ |[VO_IPL 1mm CMT 0.080| 0.040| 0.013| 2.761| 15.736| 0.002| 0.000
L R ° a
. ' (7] o
v i > —
% g 5 2 S | VO_INL 3mm vol 0.073| 0.037| 0.007| 2.976| 14.984| 0.003| 0.000
aw O (] v >
g 4| g » S [vo_IPL3mmyvol 0.083| 0.041| 0.009| 3.007| 14.971| 0.005| 0.000
g w > 9] ]
e = )
o 5 ©
s & o ]
s = &
E g
3 =
< 8
> Vv
< g VP_NFL 1mm CM vol 0.046| 0.083| 0.006| 1.015| 1.290|-0.002| 0.000
(] A
s o VP_IPL 3mm vol 0.137| 0.069| 0.018| 5.778| 25.665| 0.012| 0.065
a R
— i
2 '; $ | VP_IRLs Imm CM vol 0.109| 0.055| 0.021| 1.894| 11.832| 0.003| 0.000
i i
g S5 ; VP_GCL 3mm vol 0.096| 0.048| 0.016| 6.457| 23.314| 0.015| 0.000
2o |3 |3
5 0| & T | VP_IRLs 1mm CMT 0.092| 0.046| 0.018| 1.572| 10.546| 0.004| 0.000
z 9 2
£ g g
o - ©
S
o5
= "
s 7
R VP_IPL 3mm vol 0.170| 0.086| 0.025| 6.965| 31.501| 0.011| 0.082
.. N
g s g | VP_GCL3mm vol 0.125| 0.063| 0.018| 7.691| 26.050| 0.016| 0.000
o he] &
g3 e 8 |VP_IRLs 3mm vol 0.109| 0.055| 0.014| 4.905| 21.442| 0.007 | 0.000
[e)
T o| 5 | E |8
£ 9 3 = 3 | VP_ONL minCMT 0.060| 0.030| 0.012| 3.594| 16.673| 0.013| 0.000
ss|5 |53
8 2 3 £ |VP_IPLminCMT 0.068| 0.034| 0.015| 2.500| 16.079| 0.008 | 0.031
% 2 &
S 2
<Q
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< = VO_vol_epiretinal_membrane 0.256| 0.128 | 0.037| 0.875 2.134| 0.009| 0.125
> 3
[} A
§ =) VO_vol_serous_ped 0.215| 0.108| 0.028 | 0.749 1.823 | -0.033 | 0.000
s X
I = " VO_vol_posterior_hyaloid 0.213| 0.107| 0.031| 1.847 3.247| 0.029| 0.000
ES
@ $ = 2 VO_vol_choroid_and_outer_layers 0.080| 0.040| 0.015| 2.634| 12.267| 0.004 | 0.036
58 E |5 |8
% L—«'ﬁ S, = _g VO_vol_vitreous_and_subhyaloid 0.073| 0.037| 0.013| 1.158 6.942 | -0.011| 0.000
o - Q
28] °% ¥
PR | o
5 = &
E g
S8
< 9
Y
<« = VO_vol_choroid_and_outer_layers 0.141| 0.070| 0.030| 2.903| 16.485| 0.005| 0.066
> o
o X VO_vol_drusenoid_ped 0.071| 0.035| 0.012| 1.640 9.651| 0.003 | 0.000
S o
§ ﬁ VO_vol_subretinal_fluid 0.063| 0.032| 0.010| 1.336 6.551| 0.048| 0.000
[ ~
- w
- d Q
i : w @ § VO_vol_neurosensory_retina 0.073| 0.037| 0.009| 0.788 5.721| 0.021| 0.033
2 © = <] S
5 o = g 9] VO_vol_vitreous_and_subhyaloid 0.064| 0.032| 0.012| 1.015 5.685| 0.010| 0.000
g 218 | v |3
g wn ! ] °
2 s g = Qo
2 w =1 o
2 g ° | g
o N ©
s
o =
< 9
S Vv
S VP_vol_serous_ped 0.551| 0.276 | 0.093| 0.663 0.344 | 0.000| 0.315
o
;/; s VP_vol_epiretinal_membrane 0.220| 0.110| 0.032| 1.056 1.995| 0.015| 0.000
> ®
g g VP_vol_subretinal_hyper_reflect 0.136| 0.068 | 0.033| 1.537 8.697 | 0.005| 0.000
S ®©
5 ;c' F VP_vol_posterior_hyaloid 0.132| 0.066| 0.026| 0.930 2.029 | -0.022 | 0.000
2 o 2
Q w o
g : <Z( g VP_vol_subretinal_fluid 0.124| 0.062| 0.026| 1.978 6.508 | 0.053| 0.000
QL (e} —_ [}
s g '8 2 3
o © -
g4 n.l [
5 | % @
= 9
£ 3
s =
£ s
S o
©
<
>
< VP_vol_neurosensory_retina 0.090| 0.045| 0.015| 2.716| 12.159| -0.027 | 0.000
>
" v = § VP_vol_subretinal_hyper_reflect 0.099| 0.050| 0.022| 1.104 6.875 | -0.031| 0.000
£ S| w | ¢ |8
c Q
° 8 '<Z£ g 5 | VP_vol_subretinal_fluid 0.133| 0.067 | 0.022| 1.858| 5.936|-0.003| 0.000
= [ >
@ o by
3 " S, v ,? VP_vol_choroid_and_outer_layers 0.108| 0.054| 0.014| 0.441 5.860 | -0.019 | 0.000
" 9| o 2 &
< 5 = 5 £ | VP_vol_drusenoid_ped 0.105| 0.053| 0.016| 0.976| 4.920]-0.012| 0.000
[ >
:5; ©
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g g Ethnicity 0.035| 0.075| 0.008 | NA 0.284| 0.002 | 0.000
[ A

§ S Time interval 1st to 3rd injection 0.061| 0.039| 0.008 | NA 1.432| 0.002| 0.031
s X

g N 2 " Anti-VEGF drug type 0.031| 0.033| 0.005|NA 0.684| 0.014 | 0.000
5 S| E g

i : = ] Age At First Injection 0.066 | 0.033 | 0.009 | NA 16.374| 0.005| 0.030
2 © 2 ©

5 o g _ E, Fellow eye activity 0.050| 0.030| 0.011|NA 9.407 | 0.023 | 0.024
o0 (o} =

o Q 2 °

g 95 3

= S ® o0

2w o o

S 19) 9]

s Y| E &

E g &

SR

< 8

Y

< = Fellow eye activity 0.056 | 0.033| 0.012|NA 9.936| 0.000 | 0.027
> o

o X Age At First Injection 0.056 | 0.028 | 0.007 | NA 9.638| 0.010 | 0.000
S o

E z o Sex 0.023| 0.025| 0.005 | NA 6.429 | -0.007 | 0.014
2~ 3 n

t=J 5 ]

2 K = ° § Laterality 0.013| 0.013| 0.004 | NA 2.572| -0.008 | 0.000
g 3| 2 3 | ©

rel £ et

gﬁ 8; f L g Time interval 1st to 3rd injection 0.051| 0.034| 0.007 | NA 2.270 | 0.000| 0.026
0|5 | B |3

- 8| 8 E &

s 5| % |3 | &

s Y| E &

E g &

S

® ~

< I

S v

< = VA mean initial 2 visits post loading 0.528 | 0.264 | 0.107 | 58.458 | 129.364 | 0.037 | 0.305
S o

o X VA post loading (VP) 0.480| 0.240| 0.095| 48.903 [120.513 | 0.030| 0.000
g o

5 %

8 = " VA baseline visit (VO) 0.201| 0.101| 0.037| 19.715| 63.427 | 0.015| 0.000
= =) )

2 R ﬁ VA fellow eye (VO) 0.073| 0.037| 0.017| 3.059| 17.115| 0.010| 0.033
s 3 <

s o _ o

SRR

g5 g

- @ &

< 5

c g >

o . ©

s s

o .

A

< 3

> v

“ ;c' VA mean initial 2 visits post loading 0.503| 0.251| 0.108 | 49.088 |112.177 | 0.065| 0.290
(]

s 9 3

@& : b § VA post loading (VP) 0.435| 0.217| 0.088| 40.692 | 104.453 | 0.050 | 0.000
g ™ > o

= g g ; VA baseline visit (VO) 0.188| 0.094 | 0.036| 16.772| 54.626| 0.020| 0.000
2 v < o >

£ g = v 2 [vAfellow eye (VO) 0.077| 0.039| 0.016| 2.900| 15.736| 0.023| 0.036
E v 2 &

83 3 | &

® 5 s

< =

= o
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o VA mean initial 2 visits post loading 0.528 | 0.264| 0.107 | 58.458 | 129.364 | 0.071| 0.305

[20]

;/: . VA post loading (VP) 0.480| 0.240| 0.095| 48.903 |120.513 | 0.057 | 0.000

> 3

Q A

‘é S VA baseline visit (V0) 0.201| 0.101| 0.037| 19.715| 63.427 | 0.020 | 0.000

a X

g A § Standard deviation of VA mean, post

ﬁ E z 3 loading -12 months (VP-V12) 0.124| 0.062| 0.020| 11.989| 35.180| 0.042| 0.058

9 © h] _ o

S o 17 = 3 VA fellow eye (V0) 0.073| 0.037| 0.017| 3.059| 17.115| 0.012| 0.033

¥ el < - 3

g 0|~ 5

A S

v [Te}

£ d s

o ~

£ 3

oo

®

<

>

< = VA mean initial 2 visits post loading 0.513| 0.257 | 0.111| 51.604 | 118.428 | 0.074 | 0.299

> &

g N VA post loading (VP) 0.441| 0.221| 0.089 | 41.782|108.297 | 0.054 | 0.000
o

& 9

EJ IS - VA baseline visit (VO) 0.188| 0.094| 0.036| 17.058 | 54.807 | 0.017 | 0.000

g o g

- K § Standard deviation of VA mean, post

g B 2 3 <

qu 8‘ ° g E’ loading -12 months (VP-V12) 0.122| 0.061| 0.019| 11.652| 34.609 | 0.038 | 0.058

TElE g |2

% = > % % VA fellow eye (VO) 0.081| 0.041| 0.017| 3.130| 16.749| 0.000| 0.038

£ q -

o q\ ©

£ 3

S o

< 9

> \2

313
M. K. Gupta, DOptom Thesis, Aston University, 2024



Appendix 8:Visual acuity related regression models, model accuracy and feature ranking

M. K. Gupta, DOptom Thesis, Aston University, 2024

g s
” v g i % o 2 9k
9] S g @ [ ] = S c g 2
(oY) = ] @© © [WH] (%) w = > | o
= © y s} %) S < ~ < o = -
- g = = o = o @) w > Y x
SVM 252.19 |15.88 [12.99 |-0.06 |26.04 § 3.670 0.220
VO_vol_fibrovascular_ped
Random 268.58 |[16.39 |13.65 |-0.13 |26.87 2.354 0.265
Forest VO_vol_choroid_and_outer_layers
Gradient 350.15 [18.71 |14.81 |-0.47 |30.68 2.099 0.457
é ; Boosting VO_vol_epiretinal_membrane
o
€ |<£ = AdaBoost |362.27 |19.03 |15.10 |[-0.52 |31.21 0.949 0.234
~ Q 32 VO_vol_rpe
— OI
© g Tree 371.02 [19.26 |15.34 |-0.56 |[31.58 . . 0.684 0.245
g VO_vol_subretinal_fluid
Linear 77291 |27.80 |20.86 |-2.24 |45.58
Regression
kNN
(error)
SVM 242.75 [15.58 |12.46 |-0.02 |[25.54 . 2.437 0.298
VO_vol_choroid_and_outer_layers
Linear 253.77 [15.93 |12.89 |-0.07 |26.12 1.987 0.210
Regression VO_vol_fibrovascular_ped
" = Random 267.62 [16.36 |13.32 |-0.13 |26.82 1.780 0.503
= [
‘g g 3 Forest VO_vol_epiretinal_membrane
< I
E g g Gradient 279.41 |16.72 |13.36 |-0.18 |[27.40 1.204 0.238
— (%]
o [ 5 )
<rtv e _g Boosting VO_vol_rpe
> © kNN 284.17 [16.86 |13.26 |-0.20 |27.64 . . 0.919 0.455
VO_vol_posterior_hyaloid
AdaBoost |300.17 [17.33 |14.18 |-0.26 |28.40
Tree 340.78 |18.46 |14.17 |-0.43 |30.26
AdaBoost |398.27 [19.96 |16.36 |-0.67 |[32.72 . 6.779 0.102
VP_vol_neurosensory_retina
Random 700.49 |[26.47 |23.11 |-1.94 [43.39 2.038 0.495
Forest VP_vol_epiretinal_membrane
SVM 71791 [26.79 |23.51 |-2.01 [43.93 . 1.407 0.392
L VP_vol_subretinal_hyper_reflect
- w
c
g '<Z£ _ Linear 828.94 |28.79 [24.27 |-2.48 |47.21 1.306 0.240
5 =
S OI & Regression VP_vol_choroid_and_outer_layers
® a
<>( = Gradient 933.31 |30.55 [25.76 |-2.92 |50.09 1.089 0.282
Boosting VP_vol_subretinal_fluid
Tree 1343.18 | 36.65 |30.75 |-4.64 |60.09
kNN error
314
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SVM 246.67 |15.71 [12.65 |0.00 25.88 VP_vol_neurosensory. retina 13.592 |0.212
Linear 253.41 |15.92 [13.03 |-0.03 |26.23 2.152 0.489
Regression VP_vol_epiretinal_membrane
" - Random 272.50 [16.51 |13.44 |-0.11 |27.20 1.708 0.387
-C‘g g a;.) Forest VP_vol_subretinal_hyper_reflect
é g g Gradient 278.18 [16.68 |13.75 |-0.13 [27.48 1.547 0.225
5 gl % Boosting VP_vol_fibrovascular_ped
> °© AdaBoost |299.29 [17.30 |14.44 |-0.21 |28.50 . X 1.522 0.428
VP_vol_subretinal_fluid
kNN 301.24 [17.36 |13.83 |-0.22 |28.60
Tree 317.12 |17.81 [14.27 |-0.29 |29.34
Linear 235.63 |15.35 [12.41 |0.01 25.17 VA mean of 2 visits immediately 346.402 | 0.074
Regression post loading
Gradient |241.79 |15.55 |12.59 |-0.01 |25.49 295.823 | 0.074
Boosting VA post loading (VP)
é z SVM 245.28 |[15.66 |12.73 |-0.03 |[25.68 | VA baseline visit (VO) 114.170|0.081
‘% g E Random 262.69 |16.21 |13.02 |-0.10 |26.57 7.448 0.124
% §I Forest VA fellow eye (V0)
§ AdaBoost |271.11 |16.47 |13.00 [-0.14 |27.00 Standard deviation of VA mean, 67.354 |0.145
post loading -12 months (VP-V12)
kNN 286.15 [16.92 |13.55 |-0.20 |27.74
Tree 452.04 |21.26 [16.95 |-0.90 |34.86
Linear 90.61 9.52 6.80 [0.59 15.48 VA mean of 2 visits immediately 305.213 | 0.080
Regression post loading
Random 106.50 |10.32 |7.19 [0.52 |16.78 253.945 | 0.083
Forest VA post loading (VP)
2 3
= 2 3 kNN 110.68 |10.52 |7.69 [0.50 |17.11 VA baseline visit (V0) 99.841 [0.077
E ; g SVM 113.05 |10.63 |8.01 0.49 17.29 Standard deviation of VA mean, 66.359 |0.160
% §I é post loading -12 months (VP-V12)
<>t 3 Gradient 115.54 |10.75 |7.25 0.47 17.48 5.582 0.116
Boosting VA fellow eye (V0)
AdaBoost |121.41 [11.02 |7.51 0.45 17.92
Tree 170.54 |13.06 |9.07 0.22 21.23
Linear 237.19 |15.40 |12.45 |0.00 25.25 114.170|0.091
Regression VA baseline visit (V0)
SVM 243.35 |15.60 [12.72 |-0.02 |25.58 VA fellow eye (V0) 7.448 0.106
5‘2 Gradient 260.60 |16.14 [12.84 |-0.09 |26.47 295.823 | 0.065
g <>r. E Boosting VA post loading (VP)
w Random 261.90 [16.18 |13.19 |-0.10 |26.53 VA mean of 2 visits immediately 346.402 | 0.069
<>( Forest post loading
AdaBoost |281.61 [16.78 |13.31 |-0.18 |[27.51
kNN 284.88 |16.88 [13.59 |-0.20 |27.67
315



Tree 435.57 |20.87 |16.18 [-0.83 |34.22
Linear 110.94 |10.53 |7.51 0.50 17.15 5.878 0.100
Regression VA fellow eye (V0)
kNN 136.20 |11.67 |8.71 0.39 19.00 VA baseline visit (V0) 98.957 |0.073
- SVM 137.46 |11.72 |8.93 0.39 19.09 VA mean of 2 visits immediately 295.440 | 0.063
_:% % post loading
é g § Random 138.81 |11.78 |8.70 [0.38 |19.18 250.012 | 0.059
s %" Forest VA post loading (VP)
= 3 Gradient |144.19 |12.01 |8.66 |0.36 |[19.55
Boosting
AdaBoost |156.07 [12.49 |8.87 |0.30 |20.34
Tree 174.82 |13.22 |9.80 0.22 21.53
Linear 243.00 [15.59 |12.64 |-0.02 |25.56 NA 0.229
Regression Fellow eye activity
< Random 281.12 |16.77 |13.38 |-0.18 |[27.49 NA 0.035
g _% Forest Ethnicity
é 5‘ _ kNN 290.23 (17.04 |13.78 |-0.22 |27.93 | Anti-VEGF drug type NA 0.193
= % 2 [AdaBoost |301.25 |17.36 |13.75 |-026 |2846 | Sex NA 0.058
§ % Gradient |301.51 |17.36 |13.87 |-0.27 |28.47 NA 0.072
§ Boosting Laterality
SVM 327.78 |18.10 [15.53 |-0.38 |29.68 Time interval 1st to 3rd injection NA 0.031
Tree 355.00 |18.84 [14.70 (-0.49 |30.89 Age At First Injection NA 0.145
Linear 230.21 |15.17 |12.20 |-0.02 |24.86 NA 0.278
Regression Fellow eye activity
< SVM 230.85 [15.19 |12.56 |-0.03 [24.90 |Age AtFirst Injection NA 0.174
_:: L% § kNN 257.17 [16.04 |12.69 |-0.14 |26.28 Anti-VEGF drug type NA 0.124
é 5’ % Gradient |268.89 |16.40 |13.17 |-0.20 |26.87 NA 0.088
S _LC—) Z Boosting Laterality
5 s |2
< ED ‘g’ Random 276.84 |16.64 |13.62 |-0.23 |[27.27 NA 0.075
uE) Forest Sex
o
AdaBoost |287.57 [16.96 |13.65 |-0.28 |27.79 Time interval 1st to 3rd injection NA 0.063
Tree 364.77 |19.10 [15.35 |-0.62 |31.30 Ethnicity NA 0.053
SVM 220.01 |14.83 [11.77 |-0.01 |24.22 VO_GCL 3mm vol 10.470 |0.112
Linear 225.36 |15.01 [12.07 |-0.03 |24.51 9.688 0.123
Regression VO_OPL 3mm vol
2 Gradient 239.80 |15.49 [12.29 |-0.10 |25.29 6.434 0.109
E g _ Boosting VO_ONL 3mm vol
E g' 2 AdaBoost |249.72 [15.80 |12.15 |-0.15 |[25.81 VO_RPE 3mm vol 5.080 0.073
g Random 254.07 |15.94 |12.75 |-0.17 |26.03 4.943 0.097
Forest VO_ONL 1Imm CMT
kNN 265.51 |16.29 [12.91 |-0.22 |26.61
Tree 396.56 |19.91 [15.47 |-0.82 |32.52
> <« o > ol o 4SVM 206.23 [14.36 |11.31 |0.04 23.35 VO_RPE 3mm vol 14.387 |0.101
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AdaBoost |[211.28 |14.54 |11.45 [0.01 23.64 VO_OPL 3mm vol 10.216 |0.125
Random 212.06 |14.56 [11.79 |0.01 23.68 10.164 |0.109
Forest VO_GCL 3mm vol
Gradient 227.23 [15.07 |12.25 |-0.06 |24.51 7.680 0.103
Boosting VO_RPE 1mm CM vol
Linear 236.30 |15.37 |12.30 |-0.10 |25.00 7.271 0.105
Regression VO_RPE Imm CMT
kNN 243.11 [15.59 |12.36 |-0.14 |25.35
Tree 371.63 [19.28 |15.43 |-0.74 |[31.35
Linear 218.55 [14.78 |11.87 |0.00 24.14 36.979 |0.097
Regression VP_GCL 3mm vol
SVM 22195 [14.90 |11.91 |-0.02 |[24.33 VP_IPL 3mm vol 32.526 |0.071
2 Random 241.14 [15.53 |12.53 |-0.11 |25.36 15.312 |0.112
é g _ Forest VP_IPL min CMT
E %' & AdaBoost |249.81 |[15.81 |12.53 |-0.15 |25.81 VP_IRLs 3mm vol 15.099 |0.098
:;:“ kNN 251.73 |15.87 |12.68 |-0.16 |[25.91 VP_OPL 1mm CM vol 6.685 0.081
Gradient |257.84 |16.06 |13.05 |-0.18 |26.22
Boosting
Tree 393.33 [19.83 |15.36 |-0.80 |[32.39
Gradient 175.80 |13.26 |10.55 [0.18 |21.53 44907 [0.133
Boosting VP_GCL 3mm vol
Random 180.86 |13.45 |10.84 [0.16 |21.84 40.408 |0.085
_C: § Forest VP_IPL 3mm vol
é g % AdaBoost |[189.97 |13.78 [11.11 (0.12 |22.38 |VP_IRLs 3mm vol 30.978 [0.127
g %' % SVM 197.95 |14.07 |11.23 [0.08 |22.85 VP_IPL min CMT 12.262 |0.151
:;:“ % Linear 202.71 (14.24 |11.50 |0.06 |23.12 12.132 |0.092
Regression VP_OPL 1mm CM vol
kNN 238.15 |[15.43 |12.23 |-0.11 |25.06
Tree 318.09 [17.84 |14.00 |-0.48 |28.96
Random 230.29 |[15.18 |12.18 |-0.06 |24.78 4.124 0.222
% Forest VO_vol_fibrovascular_ped
“E SVM 235.55 [15.35 |12.48 |-0.08 |25.06 VO_vol_choroid_and_outer_layers | 2.491 0.275
E Tree 286.02 [16.91 |13.54 |-0.31 |27.62 VO_vol_epiretinal_membrane 1.765 0.455
“>6 g AdaBoost |293.09 [17.12 |13.71 |-0.34 |[27.96 VO_vol_rpe 1421 0.246
é g § E Gradient 293.27 |17.13 |13.90 |-0.35 |[27.97 1.314 0.261
‘_C;,’ g g' Boosting VO_vol_subretinal_fluid
§ Linear 511.62 |22.62 [17.13 |-1.35 |36.94
é Regression
5 kNN
>
(error)
N o 5 < o SVM 222.87 [14.93 |11.80 |-0.02 (24.43 VO_vol_choroid_and_outer_layers | 2.521 0.320
% £ § gl w ;; E Linear 229.74 [15.16 [12.18 [-0.05 |24.80 2.107 |0.208
<>( E B¢ © 8 Regression VO_vol_fibrovascular_ped
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Random 248.04 |15.75 |12.46 |-0.14 |25.77 1.617 0.267
Forest VO_vol_rpe
kNN 25470 [15.96 |12.51 |-0.17 |26.12 VO_vol_epiretinal_membrane 1.418 0.490
Gradient 260.58 |[16.14 |12.82 |-0.19 |26.42 1.312 0.276
Boosting VO_vol_subretinal_fluid
AdaBoost |278.57 [16.69 |13.47 |-0.27 |[27.31
Tree 312.82 [17.69 |13.77 |-0.43 |28.94
AdaBoost [411.39 |20.28 |16.51 [-0.89 |33.12 VP_vol_neurosensory_retina 9.831 0.089
% SVM 779.41 [27.92 |24.52 |-2.58 |[45.59 VP_vol_subretinal_fluid 1.771 0.276
"*E Random 798.60 |28.26 |24.80 |-2.66 |46.15 1.513 0.286
~§: Forest VP_vol_drusenoid_ped
“>6 = Linear 901.39 [30.02 |25.40 |-3.14 [49.03 1.167 0.373
§ ;f E = Regression VP_vol_subretinal_hyper_reflect
e N - -
T_C,,’ 2 Gradient |1019.43 |31.93 |26.98 |-3.68 |[52.14 1.162 | 0.505
E Boosting VP_vol_epiretinal_membrane
é Tree 1388.07 | 37.26 |31.59 |-5.37 |60.84
g kNN
(error)
~ SVM 226.73 |15.06 [12.09 |-0.01 |24.71 VP_vol_neurosensory_retina 13.122 |0.190
;_g_“ Linear 230.32 [15.18 |12.35 |-0.02 |24.90 1.760 |0.401
g Regression VP_vol_subretinal_hyper_reflect
:;: " § Random 241.82 [15.55 |12.73 |-0.07 |25.52 1.535 0.403
,% 3 '<Z£ % Forest VP_vol_subretinal_fluid
:’E: 2 8| u:"} Gradient |246.60 [15.70 |12.85 [-0.10 |25.77 1.354  [0.200
é = % Boosting VP_vol_fibrovascular_ped
§ AdaBoost |269.39 [16.41 |13.66 |-0.20 |26.93 VP_vol_epiretinal_membrane 1.233 0.486
g, kNN 273.96 |[16.55 |13.20 |-0.22 |27.16
< Tree 305.35 |17.47 |14.08 |-036 |28.67
~ Linear 22498 |(15.00 |12.12 |-0.03 |[24.49 NA 0.168
E Regression Fellow eye activity
g _“2’ kNN 264.03 |16.25 [13.05 |-0.21 |26.53 Age At First Injection NA 0.141
E ;% Gradient 267.46 |16.35 [12.93 |-0.23 |26.71 NA 0.128
E = 5‘ _ Boosting Anti-VEGF drug type
é § _LE) 2 Random 279.59 |16.72 [13.31 |-0.28 |27.31 NA 0.082
Py &
% ;,O-D Forest Sex
g ‘q:E, SVM 296.78 |17.23 [14.80 |-0.36 |28.13 Laterality NA 0.065
i AdaBoost |300.66 |[17.34 |13.52 |-0.38 |28.32
<>( Tree 327.83 |18.11 [14.21 |-0.50 |29.57
< o o Linear 207.46 |14.40 [11.61 |0.00 23.47 NA 0.294
I E E '§ E g '§ Regression Fellow eye activity
g -‘:é :;: ? .‘_é_ % E SVM 215.96 |14.70 [12.03 |-0.04 |23.94 Age At First Injection NA 0.163
g I8 = kNN 234.76 |15.32 [12.20 |-0.13 |24.96 Anti-VEGF drug type NA 0.140
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Gradient 245.75 |15.68 |12.46 |-0.18 |25.54 NA 0.106
Boosting Sex
Random 248.81 |15.77 [12.82 |-0.20 |25.70 NA 0.084
Forest Laterality
AdaBoost |287.39 [16.95 |13.34 |-0.39 |27.62
Tree 329.05 [18.14 |14.54 |-0.59 |[29.55
~ Linear 218.16 |14.77 |11.85 |0.00 24.12 7.110 0.109
E Regression VA fellow eye (V0)
g SVM 226.55 [15.05 |12.17 |-0.04 |24.58 VA baseline visit (V0) 124.74510.073
E Random 243.21 |15.60 [12.50 |-0.12 |25.47 VA mean of 2 visits immediately 404.341 | 0.068
E = _ Forest post loading
g § <>( 2 Gradient 24447 [15.64 |12.33 |-0.12 |25.53 334.226 | 0.068
% Boosting VA post loading (VP)
g AdaBoost |257.47 [16.05 |12.69 |-0.18 |26.20
% kNN 269.12 |16.40 |13.13 |-0.23 |[26.79
g Tree 377.07 |19.42 |15.16 |-0.73 |[31.71
~ Linear 93.79 9.68 6.95 0.54 15.69 VA mean of 2 visits immediately 344.578 | 0.085
;_g_“ Regression post loading
g kNN 115.84 |10.76 |7.94 |0.44 [(17.44 |VApostloading (VP) 280.414 | 0.079
E § SVM 116.67 |10.80 |8.13 [0.43 |17.50 [VAbaseline visit (V0) 108.635 | 0.083
E 5 % Gradient [118.28 [10.88 |7.75 |043 |17.62 5.119 |0.105
g ? <>t u:U: Boosting VA fellow eye (VO0)
é % Random 123.33 |11.11 |8.09 |[0.40 |18.00
g Forest
o~
T‘g AdaBoost |140.51 |11.85 |8.27 (032 |19.21
g Tree 162.53 |12.75 |9.18 [0.21 |20.66
~ Linear 216.99 |[14.73 |11.79 |0.00 24.05 VA mean of 2 visits immediately 404.341 | 0.081
;_g_v Regression post loading
g SVM 226.33 [15.04 |12.07 |-0.04 |24.57 |VApostloading (VP) 334.226 | 0.078
E Gradient 227.74 [15.09 |12.14 |-0.04 |24.64 124.745 | 0.094
E = E _ Boosting VA baseline visit (V0)
g § ZI 2 Random 234.21 [15.30 |12.20 |-0.07 |[24.99 Standard deviation of VA mean, 71.357 [0.173
é z Forest post loading -12 months (VP-V12)
g AdaBoost |254.39 [15.95 |12.59 |-0.17 |26.05 VA fellow eye (V0) 7.110 0.134
i kNN 267.29 |16.35 [13.02 |-0.23 |26.70
<>( Tree 387.89 |19.69 |[15.55 |-0.78 |32.16
c = Linear 72.28 8.50 |[6.06 [0.64 |13.76 VA mean of 2 visits immediately 363.603 | 0.070
g % g Regression post loading
é r_éx % % Random 79.11 8.89 6.23 0.61 14.39 289.351 | 0.070
g = :I a:‘f; Forest VA post loading (VP)
i ;g: z % Gradient 80.65 8.98 6.27 0.60 14.54 111.472|0.074
<>r. “>5 Boosting VA baseline visit (V0)
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kNN 89.70 9.47 6.82 0.56 15.33 Standard deviation of VA mean, 75.171 |0.182
post loading -12 months (VP-V12)

AdaBoost |90.42 9.51 6.43 0.55 15.39 VA fellow eye (V0) 4953 0.106

SVM 97.36 9.87 7.31 0.52 15.97

Tree 132.89 |11.53 |8.04 0.34 18.66
~ SVM 1.46 1.21 0.84 -0.04 VO_OPL 3mm vol 8.667 0.137
E Linear 1.47 1.21 0.84 -0.05 5.297 0.068
g Regression VO_retina min CMT
E AdaBoost |1.61 1.27 0.87 -0.14 VO_GCL min CMT 5.165 0.101
E - o _ kNN 1.72 1.31 0.96 -0.22 VO_GCL Imm CMT 3.430 0.072
g § ;' 2 [Gradient |172  [131 093 |-022 3.158 |0.061
é Boosting VO_IPL 3mm vol
g Random 1.79 1.34 0.94 -0.27
% Forest
< Tree 256|160 |121 |-082
~ SVM 1.57 1.25 0.86 -0.05 VO_OPL 3mm vol 9.550 0.139
E AdaBoost |1.61 1.27 0.88 -0.08 VO_GCL min CMT 4972 0.140
g Gradient 1.62 1.27 0.92 -0.09 4.773 0.099
:;: § Boosting VO_retina min CMT
;u E g % Linear 1.67 1.29 0.95 -0.12 4.075 0.084
g 2 g' ¢ Regression VO_ORLs min CMT
é % Random 1.70 1.30 0.94 -0.14 3.705 0.099
g Forest VO_GCL Imm CMT
g kNN 1.80 1.34 0.97 -0.21
< Tree 288 |1.70 |125 |-093
~ Linear 1.47 1.21 0.84 -0.04 3.513 0.071
jg_“ Regression VP_IPL 3mm vol
g SVM 1.48 1.21 0.84 -0.05 VP_IPL 1Imm CM vol 3.498 0.062
E kNN 1.57 1.25 0.92 -0.12 VP_IRLs 3mm vol 3.173 0.084
E = ] _ AdaBoost |1.66 1.29 [0.88 [-0.18 VP_OPL 3mm vol 2.829 |0.123
g § gl 2 Random 1.84 1.36 0.95 -0.31 2.761 0.113
% Forest VP_IPL min CMT
E Gradient 1.93 1.39 0.96 -0.37
g Boosting
<>t Tree 2.94 1.71 1.24 -1.09
o SVM 1.43 1.19 0.81 -0.04 VP_IRLs 3mm vol 6.221 0.097
% :f: - AdaBoost | 1.47 1.21 0.82 -0.07 VP_IPL 3mm vol 3.517 0.078
£ 3 2 [Linear 1.57 125 |0.88 [-0.15 2977 |0.077
2 = G £
%‘ E 3 EV-: Regression VP_IPL Imm CM vol
f‘ g > g kNN 1.63 1.28 |0.87 [-0.19 VP_GCL 3mm vol 2.831 [0.121
; E 3 Random 1.86 1.36 0.94 -0.36 2.742 0.007
<>( Forest VP_NFL 1mm CM vol

320



M. K. Gupta, DOptom Thesis, Aston University, 2024

Gradient 1.89 1.37 0.98 -0.38
Boosting
Tree 2.68 1.64 1.19 -0.95
SVM 1.61 1.27 0.84 -0.14 VO_vol_choroid_and_outer_layers | 2.081 0.250
£ B
£ 3 Random |165 |1.28 [086 [-0.17 2003 [0.261
€ B
] Forest VO_vol_drusenoid_ped
< E (%]
E G .g Tree 1.66 1.29 0.91 -0.18 VO_vol_neurosensory_retina 1.352 0.172
o o g
£ s % L AdaBoost | 1.67 1.29 0.91 -0.19 VO_vol_fibrovascular_ped 1.096 0.170
w % 8 5
'-g 8 < s] = Gradient 1.72 1.31 0.90 -0.22 0.954 0.217
8§83 49 |7
2 o Y e Boosting VO_vol_rpe
o B o
Z £ 5 Linear 2.88 1.70 [1.18 [-1.04
> =
£ 5 Regression
gJD =
2 3 kNN
@© —_
< (o]
o - (error)
SVM 1.45 1.20 0.81 -0.01 VO_vol_drusenoid_ped 2.618 0.281
.
., ©
S 2 Random 1.58 1.26 [0.88 |-0.09 1.827 0.282
£ o 9
§ w9 Forest VO_vol_choroid_and_outer_layers
£ & X
E @ 2 " § Gradient 1.58 1.26 [0.89 |-0.10 1.517 0.167
= o >
-‘E g < '<Z£ % Boosting VO_vol_neurosensory_retina
—_ [ 3 8 bt
g 8 _g S, v Linear 1.59 1.26 [0.87 |-0.10 0.903 0.442
a § ¥ o 2
<>t -?;:J & = 5 Regression VO_vol_epiretinal_membrane
+| o
N [%]
'E a 8 kNN 1.63 1.28 0.92 -0.13 VO_vol_serous_ped 0.566 0.488
@ ks
s £ g Tree 207 |144 |099 |-0.44
(&} =} =]
E AdaBoost |2.14  |146 |113 |-0.48
AdaBoost |2.44 1.56 1.02 -0.73 VP_vol_neurosensory_retina 4.778 0.087
s %
s 8 Tree 3.25 180 (154 |-1.31 VP_vol_subretinal_fluid 4.104 0.276
€ B
< ¢ SVM 4.20 2.05 1.76 |-1.98 VP_vol_vitreous_and_subhyaloid |2.091 0.185
= w|
% S % Random 4.36 209 |179 |[-2.10 1.456 0.222
S o 8
E g g u Forest VP_vol_rpe
[T T
& J <
5 © g g = Gradient 7.12 267 |2.14 |-4.06 1.060 0.326
he) Y
o
z _;;'j 'Fg gl Boosting VP_vol_intraretinal_fluid
& T 9
s g g Linear 7.24 269 [211 |-4.14
o
> o E
£ 5 Regression
(] <
g = kNN
< o~
o - (error)
kNN 1.88 137 (099 |-0.27 VP_vol_neurosensory_retina 4.531 0.204
o _§ o SVM 1.47 1.21 |0.83 |0.00 VP_vol_subretinal_fluid 3.279 |0.357
T 3 £
S =% < Gradient 1.90 1.38 0.98 -0.29 1.875 0.252
- O o ¥ >
é £ 5 '<Z£ E Boosting VP_vol_vitreous_and_subhyaloid
S Q I
S g 4 9 v |AdaBoost [225 |1.50 |1.18 |-0.53 VP_vol_epiretinal_membrane 1412 |0.483
£ 1 7 o 2
g T 9= 5 |Tree 2.03 143 [1.01 |-0.38 VP_vol_rpe 1.124 [0.235
C - |
2 S 2 Linear 1.60 1.26 0.87 -0.08
o E g
Regression
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Random 1.81 1.34 0.95 -0.22
Forest
Linear 1.46 1.21 0.84 -0.04 NA 0.286
o
)
<+ o g Regression Fellow eye activity
s § ©
é I SVM 1.80 134 [1.02 [-0.28 Anti-VEGF drug type NA 0.153
© ol =
> 2 :‘: _‘% kNN 1.90 1.38 0.97 -0.35 Age At First Injection NA 0.136
= o > =]
-‘E g by g _ Gradient 2.02 1.42 0.99 -0.44 NA 0.109
~ 6 9 o 2 . -
o O g £ Boosting Ethnicity
S ¢ &H o
[T ©
<>t -g = Random 2.03 143 1.01 -0.44 NA 0.069
I )
- |
'E 5 8 5 Forest Sex
w — gl O
=
5 £ ¢ AdaBoost |2.28 |1.51 |1.06 |-0.62
(&} =} =]
E Tree 2.35 1.53 1.12 -0.67
kNN 1.52 1.23 0.90 -0.06 Fellow eye activity NA 0.212
“
., ©
<+ 2 é Linear 1.52 1.23 0.86 -0.07 NA 0.182
£ o 9
§ _3 9 g Regression Anti-VEGF drug type
£ © o ¥
o 9 2 _‘g 3 SVM 1.57 1.25 (0.88 |-0.10 Age At First Injection NA 0.168
£ g > S 3
-f.g 2 g 8 Gradient 1.65 1.29 (092 |-0.16 NA 0.124
=2 c =] v
g 8 _g 2 » | Boosting Sex
o g 5 8 2
g -; & %, *g’ Random 1.69 130 (093 |-0.19 NA 0.085
N [%]
R~ aE) Forest Time interval 1st to 3rd injection
< % o
=
5 2 o AdaBoost |201 [142 [1.00 [-0.41
(&} =} =]
E Tree 207 |144 |104 |-045
Linear 1.48 1.22 (0.84 |-0.05 1.727 0.090
<
E 2 Regression VA fellow eye (VO0)
E Y
o E, SVM 1.62 1.27 [0.88 |-0.15 VA baseline visit (V0) 19.571 |0.083
= (%!
% %S %' AdaBoost | 1.66 1.29 (091 |-0.18 VA post loading (VP) 23.528 |0.061
S o 8
£ & % kNN 1.76 133 094 |-0.25 VA mean of 2 visits immediately 18.775 |0.058
W v o
'-f.% _rs g < 3 post loading
o
~ 5 § Gradient |1.85 |1.36 |0.95 |-032
8 T 3
S @ = .
<>r. § E Boosting
£ 5 h Random 1.89 1.37 0.98 -0.34
(] <
:E: 3\ Forest
< o~
o - Tree 2.82 1.68 1.23 -1.01
Linear 1.29 1.14 0.80 0.06 16.981 |0.080
o
' o
s g é Regression VA baseline visit (V0)
£ o 9
§ _3 g SVM 1.36 1.17 0.79 0.00 VA post loading (VP) 15.123 | 0.065
IS © k=
E g 2 g kNN 1.51 123 |0.88 |-0.10 VA mean of 2 visits immediately 11.156 |0.066
= o >
-"é = g 5 % post loading
—_ c =) Nt
% 8 g = v |Gradient |1.65 129 [091 [-0.21 4.957 |0.108
2 5 ¥ o
< g & _‘g' Boosting VA fellow eye (VO)
po
N 1%
= S 9 Random [1.70 [130 [0.94 [-0.24
@ < T
g *g .QEJ Forest
E AdaBoost |1.84 1.36 0.94 -0.35
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Tree 2.56 1.60 1.16 -0.87
Linear 1.46 1.21 0.83 -0.04 Standard deviation of VA mean, 44,587 |0.179
< B
§ 2 Regression post loading -12 months (VP-V12)
E Y
< E, SVM 1.51 123 (0.84 |-0.08 VA post loading (VP) 23.528 |0.057
=y
E S .g AdaBoost | 1.59 1.26 0.90 -0.13 VA baseline visit (VO) 19.571 |0.080
o o g
£ _g‘ % > kNN 1.75 132 (092 (-0.24 VA mean of 2 visits immediately 18.775 |0.053
£a3c |= loadi
-‘E = 3 9 = post loading
[ <
E g Y <>( Gradient 1.78 1.33 0.94 -0.27 1.727 0.123
o B o
= g £ Boosting VA fellow eye (VO)
> [S .
£ 5 - Random 1.82 1.35 0.97 -0.29
gJD <
2 3 Forest
@© —_
< (o]
o - Tree 2.45 1.56 1.22 -0.74
Linear 1.04 1.02 0.70 0.20 Standard deviation of VA mean, 59.316 |0.121
“
., ©
::r g E Regression post loading -12 months (VP-V12)
o o
g _3 S Random 1.09 1.05 0.70 0.17 14.992 |0.068
£ © o
E @ ;E E Forest VA post loading (VP)
= 7]
','g g < E 8 SVM 1.12 1.06 0.71 0.15 VA baseline visit (V0) 14.821 |0.094
=2 c =] = v
g ] _g :(’I v Gradient 1.16 1.08 0.71 0.12 VA mean of 2 visits immediately 10.457 |0.071
a g ¥ > 2
< -?;:J & *g’ Boosting post loading
R
'E a g kNN 1.21 1.10 0.76 0.08 VA fellow eye (V0) 4.125 0.103
@ ks
s 2 d AdaBoost |129 |1.14 |073 |0.01
(&} =} =]
E Tree 154 |124 |083 |-017
SVM 1.13 1.07 0.78 -0.02 VO_retina min CMT 9.107 0.081
“—
., ©
<+ g *2 Linear 1.16 1.08 0.80 -0.05 6.674 0.137
£ o 9
€ % 9 Regression VO_OPL 3mm vol
xR
3]
E 3 ‘g’ Random | 1.30 114 |0.86 |-0.18 5.379 |0.074
= 7]
}'g E -Fg g _ Forest VO_retina 1Imm CM vol
g 8 2 g' 2 [AdaBoost |1.31 115 |0.85 |-0.19 VO_retina 1mm CMT 5.212 |0.074
a G ¥
<>t -; & Gradient 1.35 1.16 0.87 -0.22 4981 0.063
N (%
‘E <~ 8 Boosting VO_GCL min CMT
w Ty
<
_fCCU £ Y kNN 1.38 1.18 0.90 -0.25
(@) [S——
E Tree 2.03 1.43 1.10 -0.84
SVM 1.20 1.09 0.79 -0.04 VO_retina min CMT 7.438 0.096
o
' o
<+ Q2 ‘2 Gradient 1.24 1.11 0.84 -0.08 7.425 0.149
£ o 9
E v 9 Boosting VO_OPL 3mm vol
E 8 §
(O
] 2 3 AdaBoost |1.25 1.12 0.82 -0.09 VO_OPL 1mm CM vol 5.230 0.088
S g > 2
B =T g 5 E Random 1.28 1.13 0.85 -0.12 5.025 0.055
o 7} Y (&)
L c 3 O v
2 8 2 < v | Forest VO_GCL min CMT
s g 9 > g
< < & 5 Linear 1.31 1.15 0.87 -0.14 4.727 0.078
> 2 I o
=
° E 3 Regression VO_retina 1mm CM vol
@0 ks
s £ d kNN 140 [118 [090 [-0.22
o o =
E Tree 2.02 1.42 1.07 -0.76
O £ o > a|ls« HSVM 1.13 1.06 0.79 -0.02 VP_GCL min CMT 3.333 0.037
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Linear 1.14 1.07 0.80 -0.03 3.010 0.102
Regression VP_IPL min CMT
kNN 1.22 1.10 0.85 -0.10 VP_IPL 3mm vol 2.329 0.082
AdaBoost |1.23 1.11 0.83 -0.11 VP_GCL 3mm vol 2.128 0.113
Random 1.34 1.16 0.87 -0.21 1.922 0.056
Forest VP_NFL 3mm vol
Gradient 1.35 116 |0.87 |-0.22
Boosting
Tree 1.99 1.41 1.09 -0.80
SVM 1.14 1.07 0.79 -0.06 VP_RPE 3mm vol 4811 0.060
o
. ©
<+ 2 *2 Linear 1.21 1.10 0.82 -0.13 3.550 0.110
£ o 9
§ w9 Regression VP_IRLs 3mm vol
E © T
= 2 2 3 AdaBoost | 1.26 1.12 0.81 -0.17 VP_IPL 3mm vol 3.194 0.081
S © > 2
% 2 g £ [Random [130 [114 083 [-0.21 3.007 |0.125
o 2 3 o (]
g S _g o » | Forest VP_GCL 3mm vol
a § 7 = 2
< -; & *8” kNN 1.30 114 (0.83 |-0.21 VP_ORLs 3mm vol 2.938 0.058
c =~ 9
o N g Gradient 1.32 115 |(0.84 |-0.23
w Ty
c <= .
s 2 ¢ Boosting
o o =
E Tree 209 |145 |110 |[-0.95
AdaBoost | 1.12 1.06 0.78 -0.01 VO_vol_drusenoid_ped 4.885 0.320
c ey
Q oo
-g 3 SVM 1.12 1.06 0.76 -0.01 VO_vol_fibrovascular_ped 1.364 0.202
<
é s Random 1.13 1.06 [0.77 |-0.02 1.046 0.167
o Y
€ 4@ Forest VO_vol_neurosensory_retina
o~ o)
g k) ‘2 = Tree 1.16 1.08 0.78 -0.04 VO_vol_epiretinal_membrane 0.974 0.470
> ¢ 9 <
2 E = ) = |Gradient |[1.18 1.09 |0.80 |-0.06 0.821 |0.313
£ T W OI =
3 g 2 o Boosting VO_vol_subretinal_hyper_reflect
s o 3 -
3 o Linear 1.37 117 |0.83 |-0.24
s 2 )
(=] Regression
s
S Z, kNN
= o
SG (error)
SVM 1.14 1.07 |0.80 |-0.02 VO_vol_drusenoid_ped 5.125 0.277
w B
E 2 Linear 1.21 1.10 0.82 -0.07 1.353 0.329
(e} Y-
f‘ ;, % Regression VO_vol_subretinal_hyper_reflect
- = .
5 6 3 3 Random 1.23 1.11 0.83 -0.09 1.056 0.142
g g 8 = 8
> o 3 i_ £ Forest VO_vol_neurosensory_retina
5 9 g 5 o
S 3 i OI v Gradient 1.24 1.12 0.85 -0.11 1.003 0.490
—_ o o o g
§ % 3 = 5 Boosting VO_vol_epiretinal_membrane
S el ;C__‘ o
£ g e kNN 1.25 1.12 |0.81 |-0.11 VO_vol_serous_ped 0.787 0.482
(]
[Y) o
S 5 AdaBoost |1.27 1.13 0.85 -0.13
6 <
3 Tree 1.55 1.25 0.93 -0.38
- < AdaBoost |1.56 125 |094 |-041 VP_vol_neurosensory_retina 5.998 0.096
o — S -
géa g = 8 gl 3 Tree 2.20 148 |1.26 |-0.99 VP_vol_subretinal_fluid 3.068 0.315
s = g =
S £ SVM 2.61 1.62 139 |-1.36 VP_vol_vitreous_and_subhyaloid |2.731 0.176
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Random 2.71 1.65 1.42 -1.45 1.456 0.216
Forest VP_vol_choroid_and_outer_layers
Linear 3.42 1.85 1.50 -2.09 1.427 0.224
Regression VP_vol_rpe
Gradient 3.46 1.86 1.55 -2.13
Boosting
kNN
(error)
SVM 1.19 1.09 0.78 -0.02 VP_vol_neurosensory_retina 3.206 0.194
o 0
s 8 Linear 126 [112 [0.83 [-0.08 2.001 [0.236
e B
E o | Regression VP_vol_vitreous_and_subhyaloid
8 £ g
5 B 3 3 Random 1.35 1.16 0.87 -0.16 1.486 0.422
3 2 8 ¥ |3
> g 8 2 £ Forest VP_vol_subretinal_fluid
€2 4G | ¢
S 3 i o, 0 Gradient 1.39 1.18 |(0.85 |-0.19 1.376 0.237
= © o o Q
§ s 5 > E  |Boosting VP_vol_rpe
> 2 g °© -
£ s & AdaBoost |1.41 1.19 0.88 -0.21 VP_vol_choroid_and_outer_layers | 1.359 0.249
(]
[V o
S S kNN 1.46 1.21 (091 |-0.25
5 <
5 Tree 181 |134 [1.00 |-0.55
Linear 1.15 1.07 |[0.78 |-0.04 NA 0.213
A
g s Regression Fellow eye activity
(e} Y-
1)
E v g _g kNN 1.50 122 [0.92 |-0.35 Anti-VEGF drug type NA 0.151
i = B—
5 %5 9 r_‘g Gradient 1.52 1.23 (090 |-0.37 NA 0.122
2 o 8 S
g. _8‘ 3 g Boosting Age At First Injection
5 < =
S 3 i 2 & SVM 1.54 1.24 (096 |-0.39 Sex NA 0.082
= T o 2
2 % § t% Random 1.58 1.26 [0.95 |-0.42 NA 0.064
2 % g 8
g 2 3 uE, Forest Laterality
g 88932
S S Tree 1.72 131 (099 |-0.56
6 <
5 AdaBoost |1.77 |1.33 |097 |-0.60
kNN 1.12 1.06 0.82 -0.02 Fellow eye activity NA 0.237
w B
£ 8 Linear 113|106 [0.78 |[-0.03 NA 0.191
(e} Y-
1)
f‘ u g _:‘2_" Regression Age At First Injection
— = =
5 %5 o % 2 |svMm 1.20 1.09 [0.81 [-0.09 Anti-VEGF drug type NA 0.163
2 o & S >
o
z &9 2 € |Gradient [121 [1.10 |083 |-0.10 NA 0.103
2 35 4 7]
3 g > ¢ o | Boostin Sex
S o g5 |2 &
@© =
3 2 3 g 5 [Random (123 111 [0.85 [-0.12 NA 0.081
$ % g 8
s 2 3 § Forest Laterality
3 8932
S 5 AdaBoost |1.40 1.18 0.90 -0.28
6 <
3 Tree 1.56 1.25 0.96 -0.42
Linear 1.14 1.07 0.78 -0.03 2.574 0.111
>
'E § o Regression VA fellow eye (V0)
W © | < =
_«C% T g = 2 [svm 1.17 1.08 [0.80 [-0.05 VA baseline visit (VO) 48.674 |0.108
c 2
> kNN 1.39 1.18 |0.86 [-0.26 VA post loading (VP) 3.984 |0.067
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Random 1.40 1.18 0.87 -0.27 VA mean of 2 visits immediately 1.581 0.063
Forest post loading
Gradient 1.41 1.19 0.87 -0.27
Boosting
AdaBoost |1.44 1.20 (0.88 |-0.30
Tree 2.23 1.49 1.13 -1.02
Linear 0.81 0.90 |0.64 |[0.23 34.362 |0.085
n B
g 3 Regression VA baseline visit (V0)
(e} Y=
13)
f‘ v g SVM 0.88 094 |0.66 [0.16 VA fellow eye (V0) 5.850 0.112
- = £
§ S § ? kNN 1.01 1.01 |0.73 |0.03 VA post loading (VP) 2.065 0.065
) Q +|
= _8' 3 8 Gradient 1.05 1.02 0.74 0.00 VA mean of 2 visits immediately 0.406 0.071
5 v g < v
S 3 i = 4 Boosting post loading
s o o 2
2 5 3 S [Random |110 [105 |0.76 |-0.05
£ % g 3
£ 2 4 Forest
% S °
S S AdaBoost |[1.23 111 (0.80 |-0.17
< <
© 3 Tree 149 [122 |091 |-043
Linear 1.13 1.06 0.78 -0.02 Standard deviation of VA mean, 64.576 |0.141
A
g 2 Regression post loading -12 months (VP-V12)
(e} Y-
1)
E v g SVM 1.18 1.09 |(0.80 |-0.06 VA baseline visit (V0) 48.674 [0.099
- = £
s © 3 AdaBoost |1.28 1.13 0.84 -0.15 VA post loading (VP) 3.984 0.065
2 o 8
o >
> _8‘ 3 2 Gradient 1.29 1.14 (085 |-0.17 2.574 0.121
EREE IR 3
8 w 2 < b Boosting VA fellow eye (V0)
T o ¥ >
2 % 5 Random 1.31 1.15 0.85 -0.19 VA mean of 2 visits immediately 1.581 0.063
S B <
s 2 3 Forest post loading
L S °
S S kNN 1.37 1.17 (085 |-0.24
& 4
Tree 2.04 143 1.12 -0.85
Linear 0.63 0.79 0.56 0.37 Standard deviation of VA mean, 72.945 |0.141
c ey
oo
% 3 Regression post loading -12 months (VP-V12)
<
;Cf = Random 0.70 0.84 |0.59 [0.30 33.411 [0.098
c &
8 e Forest VA baseline visit (V0)
~N o °
g 5 g . % Gradient | 0.70 0.84 |0.58 [0.30 4623 |0.115
> 2 9 % £
S. é > g o Boosting VA fellow eye (VO)
2 B 4 | »
3 g 3 g 2 [svMm 0.73 0.86 |0.57 [0.27 VA post loading (VP) 1.802 |0.070
= o > 5
§ o ° kNN 0.80 0.90 |0.64 [0.20 VA mean of 2 visits immediately 0.184 0.070
o— ©
z e post loading
(] [
2 2 AdaBoost | 0.90 095 |064 [0.11
s g
O o Tree 1.19 1.09 0.79 -0.18
Linear 12.47 3.53 2.53 -0.07 |66.68 3.846 0.090
© o C| .
z = g - Regression VO_ONL Imm CMT
S 9 o
£ 3 _Z OI = SVM 13.29 3.65 2.29 -0.14 |68.85 VO_ONL 1mm CM vol 3.800 0.086
v > 5 o A
o0 =
S § é = AdaBoost | 14.08 3.75 2.52 -0.21 |[70.86 VO_INL min CMT 2.065 0.074
- o
© kNN 14.38 3.79 2.69 -0.23 |[71.61 VO_RPE min CMT 1.937 0.043
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Random 14.40 3.80 2.74 -0.23 [ 71.67 1.894 0.058
Forest VO_ORLs min CMT
Gradient 15.19 3.90 2.79 -0.30 [73.59
Boosting
Tree 24.96 5.00 3.45 -1.14 [94.35
" Random 12.82 358 |2.59 |-0.09 |66.67 3.102 |0.104
é j? Forest VO_ONL 1Imm CMT
§ E; ‘2 SVM 13.33 3.65 2.32 -0.14 |68.00 VO_ONL 1mm CM vol 2.838 0.107
g % g b AdaBoost |13.42 3.66 2.47 -0.14 [68.21 VO_INL min CMT 2.825 0.078
g. g‘ § o g Gradient | 13.52 368 |264 |-0.15 |[68.47 2.756 |0.119
3 p % o o | Boosting VO_ONL min CMT
T 3 Y = 2
2 g g § kNN 14.00 3.74 2.72 -0.19 [69.68 VO_IPL 3mm vol 2.221 0.091
i % = linear  |1828 |4.28 |278 |-056 |79.60
_,C% E Regression
© 3 Tree 19.85 |4.46 |3.23 |[-0.69 |82.96
" Linear 12.06 |3.47 |2.47 |-0.03 |[65.59 6.198 |[0.077
é § Regression VP_GCL min CMT
§ E; 2 AdaBoost |13.08 [3.62 |2.44 |-0.12 |68.29 |VP_NFLminCMT 4612 |0.057
g % g Random 13.27 364 |267 |-0.14 [68.78 3.323 0.041
g. E:J‘ 5 5 Forest VP_INL 1mm CMT
£ % 4 O =
E -'3 _E %' = SVM 13.27 364 |233 |-0.14 [68.80 |VP_IRLs Imm CMT 2.875 0.046
% é § kNN 13.43 366 |259 |[-0.15 [69.21 |VP_IRLs Imm CM vol 2.868 |0.039
-i .% g Gradient | 14.97 387 |2.82 |-0.28 |[73.06
_,C‘;', E Boosting
© 3 Tree 2162 |465 |330 |-0.85 [87.80
" SVM 12.65 356 |227 |-0.10 [67.24 |VP_IPL3mm vol 5.069 |0.081
g g Linear 1268 |3.56 |2.57 |-0.10 [67.31 5.044 |0.053
E ;) g Regression VP_NFL min CMT
P g S [Random [1342 (366 |259 |-017 |69.24 4420 |0.124
g. é‘ -'§ 5 é Forest VP_GCL 3mm vol
5 2 g O g
,_‘é _rE _E %l g kNN 13.49 3.67 2.58 -0.17 [69.43 VP_GCL min CMT 3.286 0.062
_% _?;3 5 % AdaBoost |13.51 3.68 2.47 -0.17 [69.48 VP_RPE 3mm vol 2.582 0.074
i % ;‘:3: Gradient |16.18 |4.02 [2.86 |[-0.41 (76.04
_'CC“ E, Boosting
© oz Tree 21.01 4.58 3.25 -0.83 |[86.64
Random 15.47 3.93 3.05 -0.32 [74.28 7.389 0.471
:;_: g = Forest VO_vol_epiretinal_membrane
g E % = SVM 17.38 4.17 2.65 -0.49 |[78.72 VO_vol_neurosensory_retina 1.999 0.158
% :% g § E AdaBoost | 26.95 5.19 [3.33 |[-1.31 |98.04 VO_vol_posterior_hyaloid 1.757 0.412
25 g o g' Tree 2835 [532 [4.10 |[-1.43 [100.54 | VO_vol_rpe 1.498 [0.203
é g E Gradient 33.21 5.76 411 -1.84 [108.83 1.404 0.494
s E Boosting VO_vol_serous_ped
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Linear 131.97 |11.49 |7.22 -10.30 | 216.94
Regression
kNN
(error)
Linear 12.76 3.57 2.49 -0.05 [66.86 5.447 0.501
g — Regression VO_vol_epiretinal_membrane
a o
%‘ < SVM 13.49 3.67 2.31 -0.11 [68.74 VO_vol_neurosensory_retina 2.802 0.236
k) =
E E 3 Random 13.83 372 |2.68 |[-0.14 |69.60 1.615 0.430
Il w >
~>5 @ '<Z£ 8 Forest VO_vol_posterior_hyaloid
k<] o o
é '_o“ OI 4 Gradient 14.41 3.80 2.65 -0.19 |[71.04 1.473 0.230
s g o 2
g é = ‘g’ Boosting VO_vol_intraretinal_fluid
g 2 kNN 1474 |3.84 |2.75 |-0.21 |71.85 | VO_vol_rpe 1351 |0.239
ko] el
§ r_O‘J Tree 16.14 4.02 2.82 -0.33 [75.20
(%]
AdaBoost |19.89 446 |3.33 |-0.64 |[83.48
Tree 23.52 4.85 4.22 -1.01 [91.58 VP_vol_subretinal_fluid 4.707 0.301
o0
% SVM 27.31 5.23 4.42 -1.34 [98.70 VP_vol_neurosensory_retina 3.102 0.098
©
o
E AdaBoost |28.88 5.37 3.82 -1.47 [101.48 |VP_vol_choroid_and_outer_layers |2.547 0.242
9 N
2:_‘;' Random 31.52 561 [4.77 |-1.70 |106.02 2.013 0.252
© -
g é w Forest VP_vol_rpe
< = = -
> 0 s) S Gradient 59.32 7.70 |6.42 |-4.08 |145.45 1.049 0.269
5 £ S, =
c 9 o Boosting VP_vol_drusenoid_ped
Q2 o >
2 ‘g Linear 65.63 8.10 |6.28 |[-4.62 |152.98
s £ )
- Regression
©
T kNN
i
» (error)
Linear 13.25 364 |263 |[-0.08 |67.91 3.268 0.353
§ — Regression VP_vol_subretinal_fluid
a 3
%‘ < SVM 13.91 3.73 [234 |-0.13 |69.58 VP_vol_choroid_and_outer_layers | 2.447 0.258
Q C
f( 8 3 Random 1491 386 |2.84 |[-0.21 |72.05 1.903 0.502
' w >
>
5 £ '<Z£ % Forest VP_vol_serous_ped
c T o bt
s 8 OI 4 kNN 15.17 3.89 2.96 -0.23 [ 72.67 VP_vol_rpe 1.294 0.269
® = a 2
3 é = ‘g‘ Tree 15.29 3.91 2.79 -0.24 [72.96 VP_vol_neurosensory_retina 0.845 0.187
© -
T2 Gradient |16.16 |4.02 [2.89 [-032 |75.01
o el
s E Boosting
&
AdaBoost |19.33 4.40 3.40 -0.57 [82.04
R Linear 12.24 3.50 2.49 -0.05 [66.08 NA 0.230
c
LS g Regression Fellow eye activity
£ c =
g '§ £ kNN 1455 [3.81 [2.83 [-0.25 |72.02 |Anti-VEGF drug type NA 0.170
2 1%
g g o g Gradient 14.63 3.83 2.67 -0.25 [72.24 NA 0.119
2 & £ =
5w S _Lé 2 Boosting Age At First Injection
3 £ g %
g g Ty Random 15.39 3.92 2.77 -0.32 [ 74.09 NA 0.097
o 2° o
© = £
g é 3 Forest Sex
bl SVM 15.87 3.98 2.51 -0.36 [75.24 Laterality NA 0.068
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Tree 18.19 4.26 2.98 -0.56 [80.54
AdaBoost | 19.46 4.41 3.07 -0.67 [83.31
Linear 13.18 3.63 2.55 -0.15 |[68.46 NA 0.264
g — Regression Fellow eye activity
a o
%‘ < g SVM 13.92 3.73 2.39 -0.21 [70.37 Age At First Injection NA 0.179
& € =1
f{ g _*% = |kNN 1430 [3.78 |2.68 |-0.24 [71.33 |Anti-VEGF drug type NA 0.130
' >
> >
5 2 > g [Gradient |1473 [3.84 |278 |-028 |7238 NA 0.122
c O b
.g '_o“ E g Boosting Sex
© Q Q
3 8 4 S |Random |15.76 [3.97 [2.82 |-037 |74.87 NA 0.077
- 2 19) 5
T2 qE) Forest Laterality
3 5 o
§ o AdaBoost |17.90 4.23 2.89 -0.56 [79.79
(%]
Tree 18.87 4.34 3.13 -0.64 [81.93
Linear 11.85 3.44 2.43 -0.01 [65.02 3.786 0.106
g _ Regression VA fellow eye (VO)
a 3
g < SVM 13.26 3.64 2.27 -0.13 [68.76 VA baseline visit (V0) 0.520 0.091
t) c
E 8 kNN 13.58 3.69 2.65 -0.16 |[69.59 VA post loading (VP) 8.256 0.065
S
5 & Gradient |13.94 [3.73 |2.64 |-0.19 [70.51 |VAmean of 2 visitsimmediately 11.621 |0.063
c O < =
2 '_c)‘J > 2 Boosting post loading
© +~
z 8 Random |[14.18 [3.77 [2.77 |-021 |71.12
© -
T2 Forest
T B
s ° AdaBoost [14.79 [3.85 [256 [-027 |7262
(%]
Tree 23.25 4.82 3.60 -0.99 |[91.06
Linear 10.65 3.26 2.31 0.02 62.43 VA mean of 2 visits immediately 6.627 0.067
§ — Regression post loading
a 3
%‘ < kNN 10.81 3.29 2.34 0.01 62.89 VA post loading (VP) 4.134 0.069
Q C
<E( g 3 Gradient 10.92 3.30 2.39 0.00 63.20 2.766 0.130
' >
“>5 2z < % Boosting VA fellow eye (VO)
c O bt
s 8 = 0 AdaBoost |11.33 3.37 2.32 -0.04 [64.38 VA baseline visit (V0) 0.948 0.090
® = 2
3 8 % |Random [11.53 [3.40 [2.44 [-006 [64.95
- £ S
T2 Forest
T B
§ o SVM 12.39 3.52 2.27 -0.14 [67.33
(%}
Tree 16.70 4.09 2.85 -0.53 [78.18
Linear 11.66 3.42 2.55 -0.05 |[56.66 3.977 0.060
z Regression VO_IPL 3mm vol
a 3
g‘ < SVM 12.43 3.53 2.38 -0.12 [58.49 VO_GCL 3mm vol 3.227 0.096
Q C
g g AdaBoost |12.87 3.59 2.57 -0.16 |[59.52 VO_ONL 1mm CM vol 1.717 0.082
SO
5 £ 5 kNN 1320 (363 [272 |-0.19 [60.28 |VO_ONL1mm CMT 1576 |0.085
c O O S
.g r_ou gl ha Random 13.25 3.64 2.75 -0.20 |60.40 1.521 0.070
(1] -
z ¢ Forest VO_INL min CMT
kel —
T2 Gradient |14.89 [3.86 [2.86 |[-0.35 |64.02
S ©
s r_O“ Boosting
&
Tree 19.31 4.39 3.26 -0.75 [72.91
»w + o > ol o 4SVM 12.38 3.52 2.39 -0.10 |[58.29 VO_IPL 3mm vol 0.085
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Gradient 12.45 3.53 2.60 -0.11 |[58.45 0.106
Boosting VO_GCL 3mm vol
AdaBoost | 12.54 3.54 2.44 -0.12 [58.67 VO_INL min CMT 0.089
Random 12.71 3.57 2.65 -0.13 [59.06 0.127
Forest VO_OPL 3mm vol
kNN 13.39 3.66 2.75 -0.19 [60.63 VO_RPE 3mm vol 0.074
Linear 15.70 3.96 2.78 -0.40 |65.64
Regression
Tree 20.08 4.48 3.27 -0.79 [74.25
Linear 11.30 3.36 2.51 -0.02 |[55.78 5.917 0.061
g _ Regression VP_GCL min CMT
a 3
%‘ £ AdaBoost |12.37 3.52 2.44 -0.12 [58.36 VP_INL min CMT 4.007 0.086
t) c
E E SVM 12.37 3.52 2.43 -0.12 [58.36 VP_NFL 1mm CM vol 3.539 0.007
SO
5 L 5 Random 12.80 358 |2.63 |-0.16 |[59.35 3.316 0.084
5 o 5
.§ 3 %' 2 | Forest VP_IPL 3mm vol
© +~
F § kNN 13.02 361 |264 |[-0.18 [59.86 |VP_NFLminCMT 2.994 0.067
© -
-?U 2 Gradient 13.77 371 |270 |-0.25 [61.58
< O
S r_OU Boosting
&
Tree 19.91 446 (337 |-0.80 |74.03
SVM 11.89 345 |241 |-010 [57.50 |VP_NFLminCMT 4.850 0.048
g = Linear 12.21 349 |260 |-0.13 |[58.28 4.748 0.085
Q o
%‘ < Regression VP_IPL 3mm vol
Q C
g 8 b AdaBoost | 12.62 355 |257 |-0.17 |[59.25 VP_GCL min CMT 4.160 0.053
' >
>
5 ® 5 8 kNN 12.78 358 |2.62 |-0.18 [59.62 VP_GCL 3mm vol 4.095 0.134
c T O g
s 3 %I P Random 12.84 358 |274 |[-0.19 |59.75 3.788 0.054
® = 2
2 é ‘g’ Forest VP_RPE 3mm vol
© -
T2 Gradient 1371 [3.70 (275 |[-0.27 [61.73
° B
g Boosting
(%]
Tree 20.28 |450 |3.51 |-0.88 |75.09
Random 12.30 3.51 2.57 -0.11 [58.18 5.378 0.473
o~
i Forest VO_vol_epiretinal_membrane
1]
{=
= SVM 1649 |4.06 |[2.74 |[-0.49 |67.38 | VO_vol_serous_ped 2.897 |0.500
©
< AdaBoost |25.41 5.04 3.48 -1.30 [83.63 VO_vol_neurosensory_retina 1.729 0.180
c
g - Tree 27.93 5.28 [4.18 |[-1.53 |87.68 VO_vol_fibrovascular_ped 1.249 0.252
w
o
<>t é OI =] Gradient 30.41 5.51 4.13 -1.75 [91.50 0.889 0.230
Y o Y
5 o
5 E = Boosting VO_vol_vitreous_and_subhyaloid
.‘§ Linear 118.86 |10.90 |6.89 -9.75 [180.88
[
3 Regression
]
o kNN
8
n (error)
c - o Ol o= ULinear 11.78 3.43 2.55 -0.05 |[56.34 3.994 0.482
© = > k= o
a3 2 °© 3 9 Regression VO_vol_epiretinal_membrane
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Random 12.37 3.52 2.68 -0.10 |[57.74 3.282 0.185
Forest VO_vol_neurosensory_retina
SVM 12.39 3.52 2.40 -0.10 |[57.79 VO_vol_fibrovascular_ped 1.833 0.207
Gradient |13.33 365 |274 |-0.18 [59.93 1342 |0.476
Boosting VO_vol_serous_ped
kNN 13.64 3.69 2.73 -0.21 [60.63 VO_vol_rpe 0.974 0.219
Tree 13.65 369 |273 |-0.21 |60.66
AdaBoost |17.43 [4.18 |[3.18 |-0.55 |68.55
N SVM 21.12 4.60 3.79 -0.91 [76.25 VP_vol_subretinal_fluid 4.524 0.309
z Tree 21.76 4.66 3.90 -0.97 |[77.40 VP_vol_choroid_and_outer_layers |3.298 0.244
% Random 22.77 4.77 3.91 -1.06 [79.18 3.111 0.102
-i Forest VP_vol_neurosensory_retina
g " L AdaBoost | 25.60 5.06 3.71 -1.32 [83.95 VP_vol_drusenoid_ped 2.290 0.302
:;_: -C*g' § E Gradient 45.31 6.73 5.64 -3.10 [111.69 1.464 0.411
g E %l Boosting VP_vol_subretinal_hyper_reflect
E Linear 51.84 [7.20 |555 |-3.69 [119.45
§ Regression
S KNN
g (error)
. Linear 1224 |350 |2.62 |-0.06 |[57.05 3.129 |(0.261
% Regression VP_vol_choroid_and_outer_layers
_g SVM 1250 |3.54 |241 |[-0.08 |57.64 |VP_vol_subretinal_fluid 2.846 |0.420
§ b Random 12.61 355 |272 |-0.09 |[57.90 1.314 |0.208
§ ‘Fg % a;: Forest VP_vol_fibrovascular_ped
g £ §| 2 (kN 1380 [371 |290 |-019 |60.56 |VP_vol_serous_ped 1249|0519
}E - = Tg AdaBoost [14.01 [3.74 [296 |-0.21 [61.02 |VP_vol_drusenoid_ped 1.045 |0.294
§ Gradient |14.46 |3.80 |2.84 |-0.25 |[62.01
-‘g‘j Boosting
& Tree 17.12 4.14 3.05 -0.48 |[67.46
, Linear 11.91 3.45 2.55 -0.08 |[57.25 NA 0.299
% Regression Fellow eye activity
_g _“2’ kNN 13.68 3.70 2.86 -0.24 [61.36 Anti-VEGF drug type NA 0.134
§ ;% Gradient 14.61 3.82 2.83 -0.32 [63.41 NA 0.125
§ ‘C% 5‘ _ Boosting Age At First Injection
g E _é 2 SVM 15.38 3.92 2.64 -0.39 |[65.07 Sex NA 0.083
5 g, Random [15.63 [3.95 [295 [-041 |65.60 NA 0.068
g ‘q:E, Forest Laterality
-‘é AdaBoost |18.83 4.34 3.16 -0.70 |[72.00
g Tree 20.13 4.49 3.31 -0.82 [74.44
s c o v Linear 12.18 3.49 2.54 -0.13 [58.13 NA 0.240
-‘-E :‘% :;_: éo 03 g % Regression Fellow eye activity
g 8 98 EE gsvm 1335 [3.65 [2.44 |[-0.24 |60.86 |Anti-VEGF drug type NA 0.187
331

M. K. Gupta, DOptom Thesis, Aston University, 2024



M. K. Gupta, DOptom Thesis, Aston University, 2024

Gradient 13.41 3.66 2.73 -0.25 [61.00 NA 0.163
Boosting Age At First Injection
kNN 13.81 3.72 2.76 -0.29 [61.90 Laterality NA 0.084
Random 14.49 381 |2.85 |-0.35 [63.40 NA 0.082
Forest Sex
Tree 1695 |4.12 |3.10 |[-0.58 |68.58
AdaBoost |17.23 4.15 3.04 -0.60 [69.14
~ Linear 11.23 3.35 2.47 -0.02 |55.60 1.724 0.096
‘:'J Regression VA fellow eye (V0)
% SVM 11.80 3.44 2.26 -0.07 |[57.00 VA baseline visit (V0) 8.539 0.081
'E Random 12.29 3.51 2.64 -0.11 |[58.16 7.484 0.055
g " 2 Forest VA post loading (VP)
:;_: 'C‘g ; E kNN 12.53 354 (264 |-0.13 |58.74 VA mean of 2 visits immediately 10.993 |0.055
g E §I post loading
E Gradient |12.85 358 |266 |-0.16 |[59.46
§ Boosting
'g AdaBoost | 13.09 362 |257 |-0.18 |[60.04
& Tree 2006 (448 |332 |-0.81 [74.31
. Random 9.37 3.06 |223 |0.07 |[52.12 7.496 |0.083
% Forest VA baseline visit (V0)
_é Gradient 9.45 3.07 2.24 0.06 52.33 VA mean of 2 visits immediately 6.451 0.067
§ 3z Boosting post loading
§ 'F; E a;: AdaBoost |9.49 3.08 2.14 0.06 52.45 VA post loading (VP) 3.880 0.066
g E ZI u:vl Linear 9.90 315 |228 |0.02 |[53.58 2.225 0.109
E - = % Regression VA fellow eye (VO0)
g kNN 9.97 316 |224 |0.01 |[53.76
‘;5 SVM 1071 [3.27 |213 |-006 |55.73
& Tree 1488 |386 |273 |-047 |6569
. SVM 191.37 |13.83 |10.66 [0.00 |[1196.72 |VO_retina min CMT 11.533 |0.064
% Linear 202.36 |14.23 |10.87 |-0.05 |1230.62 8.965 0.021
_g Regression VO_IPL 1mm CM vol
§ AdaBoost |231.26 |[15.21 |11.67 |-0.20 |[1315.54|VO_IPL Imm CMT 7.968 0.034
§ é g _ Random 233.11 |15.27 [11.86 |-0.21 |1320.81 7.268 0.072
g E g' 2 Forest VO_INL 3mm vol
E - Gradient 238.90 |15.46 [11.86 |-0.24 |1337.11 6.775 0.065
g Boosting VO_retina 1mm CM vol
-;g kNN 246.45 |15.70 [12.32 |-0.28 |1358.05
& Tree 375.57 |19.38 [14.98 |-0.95 |1676.49
< - SVM 189.03 |13.75 |10.28 |0.02 1317.41 | VO_retina min CMT 11.379 |0.098
:«E 5 ﬁl - qé AdaBoost |198.49 |[14.09 |10.46 |-0.03 |[1349.97 |VO_retina 1mm CM vol 7.584 0.088
% E E 2' “:’, Gradient 206.25 |14.36 [10.84 |-0.07 |1376.10 7.379 0.070
-‘é “>6 § > g Boosting VO_OPL 1mm CM vol
g 3 kNN 229.52 (15.15 |11.78 |-0.19 |1451.66 |VO_IPL 1mm CM vol 7.363 0.023
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Random 232.68 |15.25 [11.59 |-0.20 |1461.63 7.287 0.089

Forest VO_retina 1Imm CMT

Linear 277.44 |16.66 |11.87 |-0.44 |1596.02

Regression

Tree 380.52 [19.51 |15.45 |-0.97 |1869.14
\ SVM 190.56 |13.80 |10.63 [0.01 1194.17 | VP_ORLs 3mm vol 4.908 0.020
% Linear 196.17 |14.01 |10.95 [-0.02 |1211.64 4.259 0.020
_g Regression VP_RPE 3mm vol
§ AdaBoost |203.54 |[14.27 |11.08 |-0.06 |[1234.18 |VP_GCL min CMT 4.018 0.067
§ é g _ kNN 21495 (14.66 |11.55 |-0.12 |1268.31|VP_NFL3mm vol 3.396 0.072
g E %I 2 Random 215.86 [14.69 |11.17 |-0.12 |1271.00 3.358 0.107
= -
® Forest VP_IPL min CMT
g Gradient 225.60 [15.02 |11.69 |-0.17 |1299.34
-'-E Boosting
g Tree 360.79 [18.99 |14.73 |-0.88 |[1643.18
. SVM 184.81 |13.59 |10.31 [-0.01 |898.20 |VP_RPE 3mm vol 5.462 0.060
% AdaBoost |[214.58 |14.65 |[10.86 [-0.17 |967.85 |[VP_IPL min CMT 4.547 0.162
é\ Linear 217.32 (14.74 |11.58 |-0.19 [974.02 4.018 0.057
§ 3 Regression VP_ORLs 3mm vol
§ % g g kNN 22495 |[15.00 |11.38 |-0.23 [990.96 |VP_IRLs min CMT 3.168 0.096
g 5 gl %’ Random 229.35 [15.14 |11.60 |-0.26 |1000.60 3.140 0.124
kS 5 Forest VP_GCL 3mm vol
< 3
g Gradient |232.02 [15.23 |11.47 |-0.27 |1006.42
-‘.;G Boosting
g Tree 364.09 [19.08 |14.53 |-0.99 |[1260.72

Random 199.26 |14.12 |11.02 |[-0.04 |1221.14 5.771 0.259
g Forest VO_vol_drusenoid_ped
g SVM 203.15 [14.25 |11.11 |-0.06 |[1233.02| VO_vol_subretinal_hyper_reflect |1.912 0.282
é Tree 245.55 |[15.67 |12.24 |-0.28 |1355.58 | VO_vol_epiretinal_membrane 1.675 0.456
i 0 g AdaBoost |246.17 [15.69 |11.89 |-0.28 |[1357.29| VO_vol_fibrovascular_ped 1.567 0.181
%‘ '7:{ g E Gradient 246.93 |[15.71 |12.22 |-0.29 |1359.39 1.044 0.140
f_‘L‘; 3 gl Boosting VO_vol_neurosensory_retina
‘2 Linear 389.71 [19.74 |15.17 |-1.03 |1707.76
‘a Regression
3 kNN
© (error)
~ SVM 195.38 |13.98 |10.79 [-0.01 |1509.21 | VO_vol_drusenoid_ped 5.546 0.262
g “E’ - Linear 202.54 |14.23 [11.09 |-0.05 |1536.61 2.546 0.290
E E g qé Regression VO_vol_subretinal_hyper_reflect
g E g “:’, AdaBoost |212.15 |[14.57 [11.26 |-0.10 |1572.62| VO_vol_epiretinal_membrane 1.450 0.481
Z g g' ;E kNN 213.29 |[14.60 |11.16 |-0.11 |[1576.85| VO_vol_subretinal_fluid 1.321 |0.260
‘!C.j, é 3 Random 216.53 |14.71 |[11.62 |-0.12 |1588.79 0.965 0.481
g Forest VO_vol_serous_ped
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Gradient 233.86 |15.29 [(11.72 |-0.21 |1651.13
Boosting
Tree 275.06 |16.58 [12.77 |-0.43 |1790.68
AdaBoost |315.94 (17.77 |14.29 |-0.64 |[1537.65|VP_vol_neurosensory_retina 7.080 0.125
g Tree 44544 |21.11 [18.12 |-1.32 |1825.79 | VP_vol_vitreous_and_subhyaloid |2.787 0.219
E
é Random 522.28 |22.85 [19.71 |-1.72 |1977.00 2.015 0.327
c
g Forest VP_vol_subretinal_fluid
§ . w SVM 526.74 [22.95 [19.98 [-1.74 |1985.43 | VP_vol_epiretinal_membrane 1.652 |0.490
© c <
Pl 'G = Linear 607.81 |24.65 [20.69 |-2.16 |2132.74 1.420 0.421
£ 3 s 3
® 2 2 Regression VP_vol_posterior_hyaloid
(1]
§ Gradient 639.35 |[25.29 |21.50 |-2.33 |[2187.38
c .
° Boosting
2
= kNN
O
(error)
c SVM 202.02 |14.21 [10.92 |0.00 1307.28 | VP_vol_neurosensory_retina 2.654 0.213
o
& Linear 216.96 |14.73 |11.42 |-0.07 |[1354.75 2.327 0.491
wv
=
§ Regression VP_vol_epiretinal_membrane
E 3 Random 227.15 |[15.07 |11.53 |-0.12 |[1386.20 1.751 0.273
— w >
® 2 <Z( E Forest VP_vol_vitreous_and_subhyaloid
Z 3 9] o
3 8 o, v Gradient 237.24 |15.40 |11.57 |-0.17 |1416.67 1.367 0.275
o a Q
E > E Boosting VP_vol_rpe
" o
z AdaBoost |242.56 |15.57 |11.88 [-0.20 |1432.46|VP_vol_posterior_hyaloid 1.330 0.439
gﬁ kNN 246.54 [15.70 |12.31 |-0.22 |1444.17
(1]
S Tree 294.84 (17.17 |12.78 |-0.46 |1579.30
c Linear 196.60 |14.02 |10.68 [-0.02 |1212.96 NA 0.267
g Regression Fellow eye activity
wv
<
‘é _“2’ Gradient 24255 [15.57 |11.86 |-0.26 |1347.27 NA 0.144
=}
f‘ r_*_g Boosting Age At First Injection
— ©
>
® 2 o Random 24413 [15.62 |11.88 |-0.27 |1351.65 NA 0.106
23 |2 |3
3 @ 2 = Forest Anti-VEGF drug type
O © <
©c %
f_g b7 kNN 246.91 |[15.71 |12.21 |-0.28 |[1359.32| Ethnicity NA 0.097
n o
z § SVM 253.16 [15.91 [13.00 |-0.32 |1376.42| Sex NA 0.074
gﬂ Tree 283.98 |16.85 [13.12 |-0.48 |1457.81
©
S AdaBoost |291.71 [17.08 |13.35 |-0.52 |[1477.52
" Linear 193.63 [13.92 |10.65 |-0.03 |1047.16 NA 0.271
<
% Regression Fellow eye activity
[
£ >
~ B kNN 202.83 [14.24 |11.14 |-0.08 |1071.75 | Age At First Injection NA 0.162
— = o
“i 2 s “g’ SVM 202.84 [14.24 [11.22 [-0.08 |1071.76 | Anti-VEGF drug type NA 0.126
2w c I
§ § °3 g Random 203.57 |14.27 [11.19 |-0.08 |1073.70 NA 0.081
= = 4
g E g % Forest Sex
= W 0 =}
; g ° Gradient 217.36 |14.74 [11.50 (-0.15 |1109.47 NA 0.077
[ (3]
@ o Boosting Time interval 1st to 3rd injection
©
5 AdaBoost |231.98 [15.23 |11.84 |-0.23 |[1146.16
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Tree 258.78 |16.09 [12.60 (-0.37 |1210.56
c SVM 194.09 |13.93 |10.88 [-0.01 |1205.18 | VA baseline visit (VO) 60.685 |0.123
ug Linear 198.43 |(14.09 |10.82 |-0.03 |1218.60 2.947 0.100
% Regression VA fellow eye (V0)
E Gradient 232.22 (15.24 |11.71 |-0.21 |[1318.26 | VA mean of 2 visits immediately 1.547 0.061
; g Boosting post loading
g3 | < |3
§ § h Random 239.38 [15.47 |11.97 |-0.25 |1338.44 0.441 0.061
E Forest VA post loading (VP)
E AdaBoost |242.24 [15.56 |12.12 |-0.26 |1346.41
gﬂ kNN 24275 [15.58 |11.83 |-0.26 |1347.84
g Tree 393.14 [19.83 |15.55 |-1.05 |[1715.27
c Linear 96.57 9.83 |7.09 |0.46 |835.17 41.942 |0.108
% Regression VA baseline visit (V0)
g Random 125.63 |11.21 |8.34 0.29 952.56 5.311 0.124
é E Forest VA fellow eye (V0)
*i _EE’ % Gradient 127.73 |11.30 |8.25 0.28 960.50 | VA mean of 2 visits immediately 2.149 0.064
‘:Eé E § a:U.: Boosting post loading
Té % SVM 132.08 |11.49 |8.75 [0.26 |[976.70 |VA post loading (VP) 0.733 0.067
2 kNN 133.82 |11.57 |8.57 [0.25 |983.13
gﬁ AdaBoost [134.48 |11.60 |8.56 [0.24 |985.55
g Tree 209.02 |14.46 |10.57 |-0.18 |[1228.68

SVM 195.57 [13.98 |10.84 |-0.02 |1209.77 | Standard deviation of VA mean, 68.979 |0.107
S post loading -12 months (VP-V12)
:Cf Linear 196.43 |14.02 |10.78 [-0.02 |1212.43 60.685 |0.098
é Regression VA baseline visit (V0)
g o 2 AdaBoost |225.66 |15.02 |11.72 [-0.17 |1299.52 | VA fellow eye (VO) 2.947 0.094
_:% %’, ; s Random 228.68 [15.12 [11.62 |-0.19 |1308.20 | VA mean of 2 visits immediately 1.547 |0.064
f_Pé 3 §I Forest post loading
g Gradient |237.82 [15.42 [11.60 |-0.24 |1334.08 0.441 |0.065
‘a Boosting VA post loading (VP)
_rccu kNN 238.89 |15.46 [11.79 |-0.24 |1337.08
© Tree 405.12 |20.13 |15.54 |-1.11 |[1741.20

Linear 74.62 8.64 6.19 0.57 702.32 | Standard deviation of VA mean, 61.515 |0.150
g Regression post loading -12 months (VP-V12)
:‘:i Random 95.95 9.80 6.99 0.45 796.37 42.590 |0.103
é Forest VA baseline visit (V0)
o~ 8
o o 2 3 Gradient 98.98 9.95 7.05 0.43 808.85 3.880 0.119
_% %{ ;I § Boosting VA fellow eye (V0)
f_% 3 <>r. g kNN 106.40 |10.32 |7.55 0.39 838.63 | VA mean of 2 visits immediately 2.916 0.069
g 3 post loading
'E AdaBoost |107.56 |10.37 |7.38 0.38 843.17 | VA post loading (VP) 0.968 0.073
g SVM 120.63 |10.98 |8.23 0.30 892.94
© Tree 162.45 |12.75 |9.17 0.06 1036.22
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c Linear 334.84 |18.30 [15.39 |-0.01 |32.00 10.625 |0.136
qg Regression VO_OPL 3mm vol
% SVM 340.69 |18.46 [14.90 |-0.03 |32.28 VO_GCL 3mm vol 7.830 0.153
E Random 375.01 [19.37 |16.03 |-0.14 |[33.86 3.776 0.105
F:g' é’ g _ Forest VO_IRLs min CMT
g § g' 2 [knN 383.86 |19.59 |16.18 |-0.16 |[34.26 |VO_IPL3mm vol 3.569 |0.107
‘_g AdaBoost |425.44 [20.63 |16.85 |-0.29 |36.07 VO_IPL min CMT 3.555 0.144
E Gradient |437.64 |20.92 |17.05 |-0.32 |[36.58
gﬂ Boosting
g Tree 669.44 |25.87 |20.34 |-1.03 |[45.24
c Gradient |313.55 |17.71 |14.25 |0.08 |[30.79 9.698 0.166
% Boosting VO_OPL 3mm vol
g Random 316.48 |17.79 |14.39 |0.07 |[30.93 8.106 0.164
é 3 |Forest VO_GCL 3mm vol
‘i 2 5 % SVM 350.29 |[18.72 |15.14 |-0.03 [32.54 |VO_IPL3mm vol 4.480 0.109
;5; E ;' % AdaBoost |[367.27 |19.16 |15.38 [-0.08 |33.32 VO_IPL min CMT 3.820 0.114
f_é % kNN 379.21 |19.47 |15.85 |-0.11 [33.86 |VO_IRLs min CMT 3.409 0.115
z Tree 558.78 |[23.64 |19.00 |-0.64 |[41.10
gﬁ Linear 561.81 |23.70 |18.47 |-0.65 |[41.21
g Regression
c Linear 332.81 [18.24 |15.36 |-0.01 |[31.90 1.568 0.055
% Regression VP_retina 3mm vol
g SVM 34473 |18.57 |15.02 |-0.04 |[32.47 |VP_retinalmmCMT 0.654 0.064
E Random 381.26 [19.53 |16.03 |-0.15 |[34.14 0.561 0.064
:r;' '2_5‘ 5 _ Forest VP_retina 1mm CM vol
'% E ;l 2 kNN 39453 (19.86 |15.94 |-0.19 |[34.73 VP_retina min CMT 0.628 0.067
© Gradient |423.02 |20.57 [16.25 |-0.28 |35.97 0.727 0.110
E Boosting VP_NFL 3mm vol
gﬂ AdaBoost |426.23 |20.65 |16.34 [-0.29 |36.10
g Tree 598.76 |24.47 |19.83 |-0.81 |[42.79
c AdaBoost |325.68 |[18.05 [13.90 |0.01 31.30 VP_GCL 3mm vol 17.652 |0.160
«E SVM 330.41 |18.18 [14.38 |-0.01 |31.53 VP_IRLs 3mm vol 16.852 |0.164
g Random 354.75 |18.83 [15.28 |-0.08 |32.67 15.605 |0.105
é g Forest VP_IPL 3mm vol
§ ‘OE) 5 % Gradient 366.53 |19.15 [15.29 |-0.12 |33.21 7.691 0.156
E E g' .;v; Boosting VP_OPL 3mm vol
g _‘g' kNN 382.27 |19.55 [15.51 |-0.16 |33.91 VP_retina 3mm vol 6.191 0.113
Z Linear 423.41 |20.58 |16.34 |[-0.29 |35.69
gﬂ Regression
g Tree 529.88 |23.02 [18.17 |-0.61 |39.93

336



337
M. K. Gupta, DOptom Thesis, Aston University, 2024



Appendix 9:Combined cluster and column charts of clustering showing distribution of injections

received per month
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Cluster 3
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