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Upper-limb gesture identification is an important problem in the advancement of robotic prostheses. Pre-
vailing research into classifying electromyographic (EMG) muscular data or electroencephalographic (EEG)
brain data for this purpose is often limited in granularity of gestures classified, the extent to which generali-
sation is demonstrated, and methodological rigour.

This work proposes three architectures for multimodal fusion of EMG & EEG data in gesture classification,
including techniques grounded in literature precedent and a novel “Hierarchical” strategy. Classification sys-
tems of these architectures are designed via Combined Algorithm Selection & Hyperparameter Optimisation
(CASH) to ensure comparisons between the approaches are unbiased; likely this methodology’s first applica-
tion to the biosignal classification domain. All architectures are demonstrated suitable for use in a same-hand
multi-gesture classification problem less separable than seen in much Brain-Computer-Interface research.

Fusion of EMG & EEG is shown to provide significantly higher (p<0.05) subject-independent classifi-
cation accuracy (73.4%) than an equivalent single-mode EMG model, when tested on unseen individuals’
data. Subject-independent single-mode EEG classification achieved accuracies (51.9%) competitive with
those reached by many subject-specific systems in the literature on similar, or more separable, problems.
The efficacy of CASH optimisation as a means of determining modelling choices — over inferring such deci-
sions from literature — is also evidenced.

A desire to minimise the burden placed on potential prosthesis users motivates investigation of cross-
subject and cross-session classification. Strategies for minimising per-session calibration, including through
transfer learning, are explored. Results demonstrate that less session-specific data is needed to adapt a model
pre-trained on an individual’s previous-session data than would be needed to train a session-specific classifier
to a similar accuracy (85%). Domain transfer using data collected from other individuals as the basis for
adaptation is proven capable of accuracies (83%) nearing those of the subject-specific approach, laying the
groundwork for future developments in low-calibration gesture classification systems.

Keywords:
Biosignal Fusion, Hybrid Brain Computer Interface (hBCI), Gesture Classification, Robotic Prostheses,
Machine Learning, Multimodal Classification, Cross-Subject Learning, Inter-Session Calibration, Data Fu-
sion, Hand Gesture Recognition
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Introduction

1.1 Context & Motivation

At least 1 in 190 — more than 1% — of the U.S. population are believed to have experienced the loss of
a limb [2], a proportion believed similar worldwide. Much of society and the built environment is designed
for an imagined “typical” individual and inaccessible to those falling outside this narrow definition, thus for
many amputees (among other disabled people) day-to-day life is made more difficult. The term “Activities
of Daily Living” (ADLs) is used to describe a number of tasks thought necessary for individuals to live
independently [3]. Though used with unfortunate frequency used to imply a “deficit” on behalf of those
disabled individuals who cannot perform them or an inherent lesser quality-of-life [4], a framing which this
work categorically rejects, ADLs can be a convenient shorthand for the types of activities with which an
amputee may struggle without appropriate support.

The choice of language here and throughout the work is deliberate. The term “amputee” is used in this
work to refer specifically to those who have experienced limb loss, through surgical or traumatic amputation.
Those born with a limb difference, a condition known as “amelia”, are at times described as “congenital
amputees”. Such individuals tend not only to present physiological or neuroanatomical differences compared
to those who have undergone amputation (they do not, for example, typically experience phantom limb
sensations [5]), but are frequently less likely to desire use of prosthesis, having been accustomed to their
limb difference since birth and often not conceiving of it as something in need of “fixing”, instead considering
themselves as a group with distinct needs and priorities. Further, some literature in contrasting amputees
with non-amputees describes individuals of the latter group with terms such as “intact”, “healthy”, or even
“normal”. As a disabled individual, the author of this thesis is distinctly uncomfortable with such a portrayal
implying — intentionally or otherwise — disabled people as somehow incomplete, unhealthy, or abnormal.
Used instead are terms such as “non-amputee”, “individual(s) without limb differences” (notwithstanding the
aforementioned distinction between those with congenital and acquired limb differences), and “able-bodied”1.

For many upper-limb amputees, support comes in the form of prosthetic limbs: accessibility devices
worn by an amputee which replicate in some way the functionality of a biological limb. While the earliest
functional artificial limbs date back centuries to the devices of sixteenth-century surgeon Ambroise Paré [6],
it is only within the last hundred years that more dextrous control has become possible, with the advent

1The latter it should be stressed is meant solely as a shorthand for “not disabled in ways relevant to the specific topic
discussed”, and not intended to imply erasure of those who are multiply disabled or who, while not being amputees, would
nonetheless not consider themselves “able-bodied”.

1
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of electrically powered prostheses. Dr. Reinhold Reiter in 1948 pioneered the use of naturally occurring
electrical activity in the muscles known as Electromyography (EMG) as a means of prosthesis control, with
the Elektrokunsthand [7]. Such myoelectric prostheses have become prevalent in the decades since, however
despite advancements in their ergonomics [8] and aesthetics [9], the sophistication of their control mechanisms
has remained largely static for some time.

1.1.1 Prevailing approaches

In the United Kingdom, the National Health Service has begun offering EMG-controlled prosthetic arms to
amputees as standard, where previously such devices were available only to military veterans & other patients
provided with cosmetic or mechanical limbs [10]. These are at least in part facilitated by OpenBionics, whose
flagship Hero Arm is generally recognised as state-of-the-art among affordable, accessible, commercially-
available robotic prostheses but is nevertheless limited. While the Hero Arm is capable of executing a range
of different gestures and grip patterns [11], these are not available to an amputee simultaneously. Instead they
are achieved through mode-cycling, with a number of individual operational modes available each restricted in
dexterity to the opening and closing of a single pre-defined gesture through a Direct Control mechanism [11].

Direct Control refers to a common prosthesis control paradigm, described as the “clinical standard of
care” [12], wherein the amplitude of an individual’s measured electromyographic signal acts as the control
signal for actuation. Activity over a threshold by one muscle results in robotic actuation in one direction,
such as opening a hand, and activity by an opposing muscle triggers the opposite actuation, such as closing
it [13,14]. The speed of actuation is in some cases made a function of the level of muscle force applied, thus the
scheme is sometimes alternatively named Proportional Control [12]. Pattern Recognition systems — those
employing machine learning algorithms to classify between defined gestures from measured biological data,
and actuating a prosthesis accordingly — have been the focus of extensive research but rarely seen deployment
in the “real world”. This is despite much research indicating their suitability. Wurth & Hargrove [12] found
a simultaneous multiclass pattern recognition system to provide better control in a cursor-steering task than
both a “sequential” (mode-cycling) pattern recognition approach and a conventional proportional control
scheme. Kuiken et al. [15] also found mode-switching systems to be inconvenient for users and that they
would often alternate operational modes unintentionally [15]. Their participants however, who had lived
experience of Direct Control prostheses, noted difficulty in learning to consistently perform multiple distinct
movements as required by the Pattern Recognition approach [15]; research by Resnik et al. [16] has likewise
found Direct Control to be preferred on some metrics, though the potential confounding factor of familiarity
should again be noted.

While there is clearly further research to be done on gesture classification for prosthesis control appli-
cations, it should be acknowledged that this approach is not entirely without commercial precedent. Esper
Bionics offer a robotic hand apparently capable of a wide range of gestures — to which users can add
additional custom movement classes [17] — and purport an adaptive cloud-based gesture recognition algo-
rithm [18], though provide only sparse technical details.
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1.1.2 Why prostheses? A note on alternatives

There are, of course, alternatives to robotic prostheses. The need for more naturalistic control of replacement
limbs is such that much research has been done into the transplanting of biological arms and hands from
human donors to amputees: Dubernard et al. achieved the first bilateral arm transplant in 2000, with positive
results [19]. The surgical approach is naturally not a sustainable solution at scale. Even disregarding the
obvious challenges in sourcing suitable donor limbs, ongoing personalised treatment is needed post-surgery
to manage the body’s attempts to reject donor skin, and even with such immunotherapy further medical
complications are common [20].

Some work has also been done on the development of bionic limbs — prostheses enabling direct sensory
feedback by a two-way surgical interface [21]. Skeletal implants have allowed amputees to feel the presence,
firmness, and force applied on an object [22]. Though not bidirectional, another surgical approach which
has seen recent success involved grafting muscle fibers to peripheral nerves in an amputee’s residual limb to
amplify the natural bioelectric signals, enabling intuitive multi-gesture prosthesis control [23]. This latter
example illustrates a key limitation of such advanced surgically-installed prostheses however: the implants
required specialist adjustment within a year of operation. While an impressive duration among surgical
approaches, this nevertheless presents an inconvenience to users beyond the already significant undertaking
of the initial surgical implantation — and the time, cost, and specialist expertise required for their installation
& maintenance naturally make such approaches difficult to deploy at scale.

1.2 Prosthesis User Needs

Among research on prostheses much is unfortunately said about, rather than by, the amputees using them.
Data on the needs and opinions of prosthesis users is frankly sparse. Biddiss et al. in reviewing literature
of the late 20th century found that mechanical (or “body-powered”) arms were rejected or abandoned by
amputees at a higher rate than EMG-based ones, by 26% to 23% in adults but by a much wider margin (and
at higher rejection rates overall) among children of 45% to 35% [24]. Their later primary research likewise
found body-powered arms to be rejected by many more (50%) of their respondents than myoelectric (39%).
This survey also illuminated desirable properties in prosthesis design, with reductions in weight and cost
routinely among the highest priorities. Improvements in dexterity were a key priority among users of EMG
prostheses [25]; though as discussed above, such individuals would be most likely to have experienced Direct
Control systems than Pattern Recognition. Kyberd et al. found that among frequent users of upper-limb
prostheses, the type used (between cosmetic, body-powered, and EMG) was not correlated with amputees’
experiences of encountering issues with their devices, but rather with the level of dexterity required for their
work. The level of limb loss also had a significant effect — those with below-elbow (“transradial”) amputations
were more likely to use myoelectric prosthesis than above-elbow (“transhumeral”) amputees [26]. This is most
likely due to the former group’s likelihood of retaining some control over residual forearm muscles key to
dexterous hand movements, as outlined in Chapter 2.

Engdahl et al. explored the opinions of upper-limb amputees — both those who used prostheses and those

3



M. Pritchard, PhD Thesis, Aston University, 2024 CHAPTER 1. INTRODUCTION

who didn’t — regarding the importance of certain levels of functionality and the interest in potential control
mechanisms [27]. EMG systems appealed to 83% of respondents, but surgical approaches saw much less
interest, at approximately 65% for strategies involving muscle surgery and 39% for the use of a brain implant.
Perhaps unsurprising given the extensive surgery amputees will have already undergone, qualitative responses
regularly indicated surgery as a significant deterrent. Even advanced levels of hypothetical functionality had
only a slight impact on systems’ attractiveness; for example those not drawn by a cortical implant which would
provide only basic hand movements remained largely uninterested in one capable of enabling tactile sensation.
In fact, the higher levels of functionality were not perceived as being of great importance; an ability to perform
basic grasps was regarded most important. Cordella et al. likewise found grasp capabilities a particular need
of myoelectric prosthesis users. Their review defined the most important gesture functionalities as the lateral,
pinch, hook, spherical, cylindrical, and centralised grips (all noted as key to performing ADLs), along with
both a flattened hand and a more natural “neutral” pose [28]. It is worth noting though the common focus
on “necessity” and “required” functionality among such work — Engdahl et al.’s survey for example discussed
importance not desirability. It is not hard to imagine that asking the latter question may offer different results
& provide for an interesting comparison.

Researchers’ understanding of prosthesis users’ experience evidently needs to be developed further in
many areas. For example, errors in a multiclass system can present in many different ways; a datapoint
belonging to a given class could be misclassified as any one of the remaining classes. Misclassifications could
thus result in a number of different types of incorrect actuation, but it stands to reason they would not all
be of equal severity. Rather, they could plausibly be assumed context- and task- dependent: a prosthetic
hand erroneously releasing a cup of hot liquid would likely be more problematic for a user than one which
sporadically moved while intended to be at rest. Unfortunately this topic is under-reported by the literature;
such specificity does not seem to have been a particular focus of any of the sparse research on the needs and
desires of prosthesis users. In the absence of such data, examples more nuanced than this extreme illustrative
case cannot be reasonably guessed by those without lived experience of prosthesis use. As with so many
fields of study, especially those involving marginalised communities, there clearly remains much to be done
in furthering direct user-involvement in prosthesis research. To enable systems to be developed better suited
to prosthesis users’ needs, it is paramount that their views on acceptable rates and categories of errors be
centred in future work in the domain. Bringing patients into the design loop could have many other beneficial
impacts. Patient-first design can result in a lower likelihood of needing to recall products and a greater chance
of their being successful (both in terms of patient outcomes and commercially) [29]. Of course, patients are
not unanimous and to do such user-centred design justice a sizeable enough dataset would need be recruited
— this is ultimately the central reason it is considered out-of-scope here. It is wholly acknowledged that
such steps would be necessary for the findings of this research to be translated to the “real world”, and no
implication to the contrary is intended.
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1.3 Research Foci & Contributions

It is clear from the discussion above that further research is needed on the development of suitable control
strategies for prosthetic limbs — that is, on suitable methods for using biological signals in classification of
gestures. Of course, as revealed by studies on prosthesis users’ needs this is not all that is needed to advance
the field, and is not even necessarily viewed as the singular most pressing priority. It is not the intention of this
work to suggest its findings are the only or the most urgent improvement to be made in the field of upper-limb
prostheses; as Kyberd et al. state: “Every part of the process of fitting a prosthesis can be improved, which will
have an effect for some of the population who use their devices regularly. There is, however, no single factor
that would bring greater improvement to all users” [26]. Much important work is being done in the domain
by both academia and industry on comfort, usability, cost, and various other factors. Nevertheless, gesture
classification is a vitally important component in the progression towards higher-quality robotic upper-limb
prostheses, and is where this research contributes.

In particular, research on amputees’ needs highlights the need for greater distinction between grasping
hand gestures, while both overcoming the limitations of conventional myoelectric approaches but avoiding the
need for surgically-implanted sensors. This thesis hence explores the simultaneous use of electromyography
with electroencephalography, a non-invasive technique for measuring brain activity, for classification of mul-
tiple types of right-handed grasp motion (as outlined in Chapter 2, much can be gleaned regarding an
individual’s intended movements from the electrical signals in the brain’s motor cortex).

The experiments in Chapter 5 form the core of this research, proposing and evaluating three architectures
for such multimodal classification: “early” fusion at the feature-level, “late” fusion at the decision-level, and
a novel “hierarchical” strategy which synthesises the two. Its rigour in minimising the risks of bias and data
leakage through careful application of techniques such as Combined Algorithm Selection & Hyperparameter
optimisation to this problem set it apart from many works in the domain [30, 31], as discussed in Chapter
3. The fusion architectures’ viability is demonstrated and validated by their generalisation to data of novel
subjects.

The barriers of cost and convenience faced by prosthesis users then motivate the investigations of Chapters
6 and 7. The former assesses the extent to which EMG & EEG data gathered from a wider population could
supplement classification models tailored to individual subjects, and whether such cross-subject learning
could lessen the data collection burden on new users of a system. Chapter 7 explores similar principles in
considering a “real world”-aligned paradigm of gesture classification on the basis of data local to individual
recording sessions. In finding strategies to reduce the level of necessary calibration, it paves the way for future
work to develop multimodal gesture recognition systems more robust to changes in data distributions, and
thus eventually to more reliable and dexterous multi-gesture robotic prostheses.
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Background

In its exploration of biosignal-based classifiers a number of biological and anatomical concepts are discussed
throughout this thesis. This chapter introduces some of the key relevant concepts and phenomena. Addition-
ally an introduction is given to some of the techniques and considerations in the measurement of bioelectric
signals and their application to gesture recognition systems. This is intended as a high-level overview of the
topics at hand and is simplified in areas; a deep understanding of the underlying biological mechanisms at
play in voluntary motor control is not strictly necessary to follow the work.

2.1 Biological Principles

2.1.1 Model of voluntary upper-extremity movement

Voluntary movement of skeletal muscles in the body, or “motor activity”, is initiated in the brain. Cells known
as “motor neurons” are comprised of a cell body (also called the perikaryon or soma), situated in the brain,
and an axon, which connects them via the spinal cord to the muscle fibres they control1; the neuron and the
muscle fibres it innovates are together referred to as a Motor Unit. When an organism moves, an electrical
impulse is transmitted by the relevant motor neurons, travelling down their axons to reach the innervated
muscle fibres and actuating them. Multiple motor units moving together can cause a muscle to contract or
expand, and thus move a connected body part.

The fingers of the human hand are not wholly actuated by muscles located within the hand or fingers
themselves. Rather, the phalanx finger bones are connected via long tendons to a number of muscles housed
largely in the forearm. A movement of a hinge joint such as those in the fingers typically involves the
contraction of one muscle or group thereof, which by shortening “pulls” the joint to the desired position,
and the expansion of an opposing muscle whose controlled lengthening stabilises the movement and allows
the new position to be maintained. These two muscles are described as the “agonist-antagonist pair” for a
given movement. In a curling of the index finger for example the flexor digitorum profundus, located in the
anterior compartment of the forearm (the “underside”2), acts as the agonist, while the extensor digitorum

1This is a simplified model for ease of comprehension; an understanding of the particulars of synaptic transmission pathways
is not required for this work.

2“Anterior” strictly means “towards the front”, and “posterior” the opposite. By convention, in the context of the human body
these terms are relative to the “standard anatomical position”. This resembles a typical standing posture but with the palms of
the hands turned to face forwards. The underside of the forearm is hence considered “anterior” in anatomical terms, regardless
of the position at which an individual’s arm is held.

6



M. Pritchard, PhD Thesis, Aston University, 2024 CHAPTER 2. BACKGROUND

communis in the posterior compartment (the “top” side) is the antagonist [32]. The arrangement of these
forearm muscles can be seen in Figures 2.1a and 2.1b.

(a) Anterior compartment displaying deep muscles including flexor digitorum profundus

(b) Posterior surface displaying superficial (surface) muscles including extensor digitorum communis

Figure 2.1: Anatomical diagrams of musculature of the left forearm. Public domain work as taken from Henry Gray’s
Anatomy of the Human Body [32].

One resulting property of this anatomical structure is that an absence of the fingers or hand does not
necessarily imply an absence of the muscles which would typically control them. That is, following a traumatic
or surgical amputation of the hand, an individual may retain some ability to voluntarily control those muscles,
dependent on various factors including the degree of forearm remaining post-amputation; from such muscle
movements it can be possible to intuit the intended movement of the absent hand.

2.1.2 Neural Physiology

The cerebrum is the largest part of the human brain and is broadly divided into a number of geographical
regions, called lobes, which perform different functions and serve different purposes. The frontal lobe is the
section of the brain responsible for most voluntary activity including movement, decision-making, planning,
executive and higher cognitive functions. Physical activity in particular is controlled in the main by the
Primary Motor Cortex, where the aforementioned Motor Neurons are located. This is situated at the very
posterior of the lobe immediately in front of the central sulcus (the large transverse groove separating the
anterior and posterior sections of the brain), as depicted in Figure 2.2.

On the other side of the central sulcus is the parietal lobe, largely responsible for measuring and in-
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Figure 2.2: Location of the Motor and Somatosensory Cortices, highlighted green and purple respectively [33], used
under CC-BY 3.0 [https://creativecommons.org/licenses/by/3.0/deed.en]

Figure 2.3: Cross-sectional view of the Motor Cortex, with “cortical homunculus” illustration of its somatotopic mapping
[34], used under CC-BY 4.0 [https://creativecommons.org/licenses/by/4.0/]

terpreting sensory information. At the very anterior of the parietal lobe lies the primary somatosensory
cortex. This cortex monitors tactile information, i.e. the sense of touch, and runs parallel to the motor
cortex as seen in in Figure 2.2; the two cortices together are referred to as the brain’s “sensorimotor area”.
The cerebrum is divided longitudinally by the longitudinal fissure into distinct left and right hemispheres,
with certain brain functions being lateralised to one hemisphere or the other. Many functions related to the
body, including motor control, are typically thought of as "contralateral"; the left hemisphere controls and
processes information regarding the right side of the body, and vice versa.

The arrangement of the motor cortex itself is heavily somatotopic; distinct locations on the cortex are
associated with the control of different parts of the body as seen in Figure 2.3. The somatosensory cortex is
similarly somatotopically arranged; the brain location responsible for moving a particular body part is hence
typically in close physical proximity to the location responsible for sensing it.
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2.2 Bioelectric Activity

2.2.1 Muscular Signals

2.2.1.1 The nature of muscular bioelectrical activity

The electrical impulse in a Motor Unit when it is actuated is known as a Motor Unit Action Potential (MUAP)
[35]. Such a signal is measurable and has a distinct characteristic pattern formed from the superposition of
individual Action Potentials3 in each of the muscle fibres in the Motor Unit, as illustrated in Figure 2.4.
Identifying every MUAP in an organism could thus provide a complete picture of their muscles’ movements.

Figure 2.4: Illustration of Action Potentials in n muscle fibres of a single Motor Unit, and the Motor Unit Action Po-
tential observed by their measurement. ©2012 Ignacio Rodríguez-Carrenño, Luis Gila-Useros, and Armando Malanda-
Trigueros. Adapted from [36]; originally published under CC-BY 3.0 license. Available from: doi.org/10.5772/50265.

Measuring individual MUAPs in isolation however is challenging, as the highly localised nature of the
signal requires a sensor of very high spatial fidelity or the use of sophisticated data processing techniques to
reverse-engineer them from coarser data. For many applications though it is ultimately unnecessary. While
the properties of a MUAP can indeed be of medical relevance — it has for example been characterised as
distinct in individuals who have experience a stroke [35], and found to be affected differently by neuropathic
& myopathic conditions [37] — for characterising or identifying movements, the activity of a whole muscle

3The word “potential” here refers to its meaning in electronics, as in “electric potential difference” commonly referred to by
its unit as “voltage”.
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is of greater interest than any particular clusters of the fibres constituting it, and thus a less spatially
granular observation can suffice. Such a measurement captures a superposition of MUAPs from a number
of geographically local Motor Units, forming what is commonly referred to as an Electromyographic (EMG)
signal [38, 39]. EMG data, though inherently coarser than MUAP-level measurements, can provide rich
information regarding the level, timings, and characteristics of physical movement. By assessing the properties
of the measured electrical signals, the nature and extent of a muscle’s contraction or expansion can be
estimated. At the simplest level, the amplitude of EMG is indicative of the degree of muscle activity —
a movement of greater force results in recruitment of more motor units, thus more MUAPs are present to
superpose into a stronger signal. The degree of activity in different muscles, such as the agonist-antagonist
pair at a joint, at a given point in time can hence be predicted and the joint’s movement inferred.

2.2.1.2 The measurement of muscular bioelectrical activity

Electromyography of a high spatial resolution can be carried out by the use of intramuscular “needle” elec-
trodes surgically implanted into the body [40,41], referred to in some cases as Implantable Myoelectric Sensors
(IMES) [42] but more generally as Implanted or Intramuscular EMG (iEMG). This approach can give very
high-fidelity data, and can indeed enable decomposition of the recorded signal into individual MUAPs, differ-
entiable by Motor Unit according to specific characteristics of each MUAP [37]. An invasive approach such
as this however carries significant challenges which preclude it from seeing widespread use. The burden on a
user is high; although the medical risk is minimal the likelihood for discomfort and the general inconvenience
of further surgical procedures may well be too great to be considered worthwhile. This is particularly relevant
considering amputees will have already undergone extensive surgery; Engdahl et al.’s 2015 survey of upper-
limb amputees found approximately 40% of respondents neither “likely” nor “very likely” to consider any of
three surgical prosthesis control techniques, even if they enabled fine motor control and the sensation of touch
in the limb [27]. Even notwithstanding users’ aversion to the technique, the process of inserting electrodes
naturally requires the expertise and time of a trained specialist, and further support may be required for
postoperative care, presenting financial barriers. Needle electrodes are also not always designed to be used
for more than a single session before removal, and those that are may not be suitable for prolonged use;
Waris et al. in 2018 found iEMG electrodes which remained in participants’ muscles to notably degrade in
performance over the course of just a week, and that this degradation was particularly significant for those
amputees with a smaller residual limb [43].

Due to such obstacles the more common approach is Surface Electromyography (sEMG4), wherein the
muscular signals are instead measured by electrodes placed on the surface of the skin. Such electrodes can
take the form of single-use adhesive pads containing a conductive electrolyte gel such as in the commonplace
“Ag/AgCl” silver chloride electrodes [44], dry metal electrodes for greater convenience such as those stainless
steel electrodes used in the now-discontinued Thalmic Labs “Myo” armband [45, 46] which has seen much
use in research [47–50] and in prosthesis applications [51], and even conductive textiles designed for low-

4Referred to frequently as just “EMG” throughout the work by convention, other than where specifically discussing the
contrast between sEMG and other types of EMG such as in this section.
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cost applications [52]. While the benefits of sEMG as a noninvasive method are self-evident, it also carries
challenges by comparison to the iEMG approach. Various factors can degrade the quality of the measured
signal, due primarily to the fact that the measurement electrodes are significantly further from the generating
source (the muscles) of the signals they are attempting to record. That gap is filled nonuniformly with different
biological materials such as bone, fatty tissue, other muscles, and the skin itself — all of which have varying
electrical properties and can attenuate and add noise to an EMG signal. Additionally, activity in muscles
located near to the target muscle an electrode seeks to measure, including those situated between the electrode
and the target muscle, can be picked up in a recorded signal as electrical interference or “crosstalk”.

The proper placement of EMG electrodes is thus important to obtaining high quality EMG data. The
prevailing recommendation as outlined by Zipp in 1982 is for electrodes to be placed in most cases over
the thickest part of a muscle (its “muscle belly”) [53]. Recent work such as that of Takala & Toivonen [54]
has reinforced the importance of these standards with regard to the forearm muscles described in 2.1.1, and
extended them to recommend a “through-forearm setting” wherein electrodes are placed over both the agonist
and antagonist muscles of a given joint to be measured simultaneously.

The intensity of a muscular contraction also affects the nature of a measured EMG signal. In broad
terms the degree of muscle force applied during a movement has a linear correlation with EMG amplitude
(though this simplification does not account for the unique properties of different muscles nor that a given
joint movement may involve actuation of a number of muscles simultaneously [55]). This presents a challenge
to gesture-recognition systems relying solely on Electromyography, as one cannot guarantee that a user will
perform a motion with the same degree of muscular force in each attempt. Those developing such systems,
or indeed the individuals contributing muscular data to them, may plausibly be inclined to perform gestures
at or near their maximum exertion (a “Maximal Voluntary Contraction”) under the naïve belief this would
best represent an “ideal”representation of the gesture. However a classifier trained on gestures performed at
a given level of force is not always able to recognise stronger or weaker variants of those same gestures. Such
variation can pose challenges in the design and training of EMG-based systems, particularly considering that
the level of muscle force applied is itself frequently used to determine the actuation speed for a device such
as a robotic prosthesis [56] (as in the Proportional Control approach mentioned in 1.1.1).

Another difficulty with EMG-based systems is muscular co-contraction. As discussed above, a typical
movement of a joint involves the contraction of the agonist muscle and the simultaneous extension of its
antagonist. Co-contraction however occurs when both the agonist and antagonist muscles of a given joint
contract at the same time. This is not inherently a problematic phenomenon and in fact frequently occurs in
natural movements such as to freeze or lock a joint, or to regulate its movement for stability by stiffening a
limb under strain, among other functions.In amputees however, the newly arranged biomechanics following
surgery can cause changes in co-contraction patterns or even involuntary co-contractions of muscles. Seyedali
et al. [57] found that among trans-tibial (below-knee) amputees, co-contraction was greater in their residual
(amputated) limb than the intact limb while walking using passive (unpowered) prosthetic feet. Interestingly
this applied to both the knee joint which was above the amputation site, and the ankle musculature despite
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the amputation of the foot & ankle itself5. They also noted that the degree of co-contraction may vary with
a movement’s speed or force, posing further challenges to systems reliant solely on electromyographic data.

2.2.2 Neural Signals

2.2.2.1 Cortical activity and motor-control relevant phenomena

Electrical activity in the brain is typically oscillatory in nature, driven either by repeated patterns of activity
within individual neuronal cells, or through the transmission of electrical signals between networks of cells in
a “loop” connecting different parts of the brain, such as the thalamocortical connections between the cerebral
cortex and the thalamus [58] or the cerebello-thalamo-cortical network formed by the motor & premotor
cortices, the thalamus, and the cerebellum [59, 60], with neighbouring neurons’ osicllations superposing into
a measureable electrical signal in either case.

These oscillations can occur at varying frequencies; a measured neural oscillation, or “brainwave”, will
contain a range of frequency components. Much as different physical locations of the brain are responsible
for different functions, neural signals at different frequencies are variously associated with different activity.
Measured brainwaves are commonly discretised into a number of frequency bands, with their relative band-
powers & the dominance of any given component taken as an indicator of the type of neural activity occurring.
The Alpha wave for example is defined as approximately 8 – 12 hertz6; a high level of activity in the Alpha
region (colloquially described as “high Alpha waves”) often presents most strongly when an individual’s eyes
are closed and can indicate a state of wakeful relaxation7. Table 2.1 describes the five brainwaves as they
are commonly framed in discussion of neural activity, their approximate corresponding frequency bands, and
indicative (though non-exhaustive) examples of activity associated with high relative bandpowers in each.

Brainwave Frequency Band Associated Activities
Delta 0.5 - 4 Hz Deep sleep [66,67], learning learning [68], decision-making [69]
Theta 4 - 8 Hz Memory retrieval, Spatial navigation [61]
Alpha 8 - 12 Hz Wakeful relaxation (especially with closed eyes), some sleep stages [63]
Beta 12 - 35 Hz Waking consciousness, continuance of current cognitive or motor activity [70]

Gamma 35 - 150 Hz Various including Sensory Perception & Processing [71]

Table 2.1: Brainwave bands and their implications

5Akin to the finger-joint musculature being primarily located in the forearm as described in 2.1.1, many ankle-controlling
muscles are situated in the lower leg & so would remain, in varying degrees, following trans-tibial amputation.

6Whilst there is much scientific consensus as to the approximate frequency band of each brainwave, there is inconsistency
among literature regarding the specific cut-off points between each band. The Alpha wave for example is variously reported as
8-13 Hz [61], 8-12.25 Hz [62], and 8-12 Hz [63], among other definitions. It has been suggested [64] that the most discriminative
brainwave cutoff frequencies may vary between individuals, and may even not be wholly consistent within any given individual.

7Understanding of the Alpha, and indeed all brainwaves, has and continues to evolve over time and is far from complete. High
Alpha waves were previously thought to indicate an idle, nonspecific brain state but are since understood to present during a
range of neural activities [65]. A deep knowledge of all possible functions of the various brainwaves is not required to understand
this work as a whole & more specific details of relevance will be introduced where they are discussed.
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In the context of motor activity however another signal known as the Mu (or µ) rhythm is often of particular
interest. While the body is at rest, individual neurons within the motor cortex generate electrical impulses,
or “fire”, synchronously. They do so approximately 10–12 times a second, i.e. they take the form of a 10–12Hz
oscillation — though as with other brainwaves the exact frequency range is debated, and has been suggested
to present also in the Beta band [64] or even to manifest nearer 20Hz in the motor area and 10Hz in the
somatosensory [72,73]. These oscillatory electrical impulses, regardless of their precise frequency bounds, act
as point sources originating in each neuron, such that they superpose into a measurable signal in the order
of microvolts: the Mu wave.

When an individual performs a physical movement, the motor neurons related to the Motor Units required
to elicit that movement fire in accordance with the intended timings of the movement, rather than at their
natural resting rate. This results in fewer neurons oscillating synchronously, and thus the superposed signal
observably attenuates, a phenomenon known as Mu desynchronisation, or Mu suppression. When performing
a motor action with one side of the body this desynchronisation presents contralaterally, and is accompanied
by a event-related synchronisation (i.e. an increase in amplitude of the µ) in the corresponding motor neurons
in the ipsilateral hemisphere. Considering the aforementioned somatotopic nature of the motor cortex (Figure
2.3), the location of such Mu desynchronisation can be taken as indicative of which specific motor unit(s)’
associated motor neurons are active, and thus the nature of the resultant muscular movement. Such precise
spatial localisation of the Mu’s attenuation is difficult without invasive measures as discussed below, but the
differing patterns of desynchronisation elicited by different movements will nevertheless naturally result in
different effects on the measurable superposed Mu wave. Though complex and potentially subtle in nature,
machine learning can be employed to distinguish these and thus estimate an individual’s physical movements
from their measured neural activity.

Crucially to many Brain-Computer-Interface applications, the process of imagining the physical sensations
of moving, Kinaesthetic Motor Imagery (KMI), elicits patterns of electrical activity in the brain which are
remarkably similar to those induced when a genuine movement (Motor Execution) is made [64], and the
extent of this similarity is correlated with the subjective vividness of the imagery [74]. Though KMI-induced
electrical activity can be more difficult to accurately classify than that arising from ME [75], this means that
even where an individual has undergone amputation of a body part, through measuring neural activity while
KMI is performed, their intended movement of that body part may still be identifiable. KMI has additionally
been shown to elicit measurable electromyographic activity in the muscles corresponding to the imagined
movement. This, while much weaker than the EMG signals that would be present during Motor Execution,
was similar in nature — and was found to be correlated in magnitude to the imagined physical effort of the
movement task, akin to the aforementioned relationship between EMG magnitude and muscle force during
genuine physical movement [76].

2.2.2.2 The measurement of brain activity

Electrical activity of individual motor neurons can be measured through intracortical microelectrodes inserted
into the brain’s motor cortex. Perhaps unsurprisingly this is a technique not widely adopted; the majority
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of its application in research is in studies on monkeys & other non-humans. Even setting aside the financial
cost and medical risk of the brain surgery required to install such devices, their instability over long-term use
diminishes their suitability [77]; studies in vivo have seen fewer than 40% of samples work function properly
for prolonged periods [78]. This degredation in quality is thought to be in part due to the damage caused
during their insertion but also to continued interactions between cortical tissue and the electrodes while they
are in place; the brain’s natural reactive response to foreign bodies results in a “sheath” somewhat akin to scar
tissue being formed around the needles, which affects the quality of the electrical signals they can record [79].

Electrocorticography (ECoG) is another invasive neuroimaging technique which makes use of electrode
arrays placed directly on the surface of brain, rather than within it. Being less severely invasive than the
intracortical implantation of electrodes [77] ECoG is more common in humans, though still decidedly rare.
Research studies which use this technique routinely recruit participants in whom ECoG electrodes had already
needed implanting, for monitoring health conditions such as certain types of epilepsy [80,81]. Although ECoG
electrodes are only placed on the outside of the brain they nevertheless require intracranial surgery for their
implantation, and they can damage surrounding tissue [79], so for obvious ethical reasons this technique is
not widely carried out on subjects for whom it is not medically necessary.

Given this, and indeed the strong aversion among prosthesis users to invasive systems even were such
technologies able to improve prosthesis dexterity [27], noninvasive measurements of neural activity are signif-
icantly preferred. Electroencephalography (EEG) is a noninvasive method of measuring the brain’s electrical
activity through use of electrodes placed on the scalp8), first devised by Hans Berger in 1929 [82]. While other
noninvasive neuroimaging techniques exist and do see use in research, such as functional Magnetic Resonance
Imaging (fMRI) and Magnetoencephalography (MEG), these often require immobile, extremely expensive
equipment. EEG devices are not only often much cheaper but can be made wireless [83], powered by battery
and transmitting data via Bluetooth or similar protocols, thus allowing for portability.

The most widely recognised standard for placement of EEG electrodes originates with the International
Federation of Clinical Physiology’s 10–20 system pioneered by Herbert Jasper [84], so named because the
distances between the electrode sites are variously 10% and 20% of the skull’s length. This has since been
extended by adding electrodes midway between those of the 10–20, this higher-density arrangement being
thus named the 10–10 or “10%” system [85]. As is implied by the labelling system of the original 10–20 (certain
numbers were “left out” to be later “filled in”), Jasper anticipated such an extension [86]; it is perhaps for this
reason that despite the resultant imprecision of its title these additional electrode locations have been adopted
back in to the International 10–20 system [87]9. While originally utilising 81 electrodes, implementations of
the extended 10–20 system typically use 64 or 32, or at times some other quantity where there is particular
focus on a specific brain region or where cost reductions are a motivating factor. A further extension of yet
higher electrode density, the 10–5 system [88], also sees occasional use. This has been critiqued however as
being of such high density that the location of any given electrode, when actually positioned upon the head,

8It is thus also occasionally called “scalp EEG”, in contexts where ECoG is referred to as “intracranial EEG”, but this is not
convention; simply “EEG” will be used throughout this thesis.

9Properly this version is called the “Extended 10–20 system”, but such a distinction is rarely drawn in literature due to the
extended system’s overwhelming prevalence.
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is often within standard deviations of its neighbours’ intended locations [89].
The use of EEG over invasive measures, while clearly preferable as discussed above, can nevertheless

present challenges. One intrinsic challenge in the measurement of EEG is that of volume conduction. Just as
in sEMG, EEG electrodes are situated far from the sources of the signals they are used to measure, and in
travelling this distance signals encounter various materials of differing electrical properties which can distort,
attenuate, and noise them [90]. The issue of volume conduction has even been found to impact the temporal
resolution of EEG [91], as the time signals take to travel from their originating sources to the scalp electrodes
can obfuscate the exact time at which a neural activity itself occurred, which can be problematic when such
precise timings are of interest to researchers. In addition, there is somewhat of a topological mismatch;
neurons in the brain are distributed in a three-dimensional space, but an array of EEG electrodes is framed
largely as a two-dimensional surface [92] (as exemplified by Figure 4.2 below). A signals being measured at
a given EEG electrode hence may not always necessarily indicate the location of the source from which it
originates [92, 93]; up to half of the measured neural activity at a given scalp electrode has been found in
simulation to be crosstalk [90] originating from interfering sources outside a 3cm radius [93, 94]. A number
of source localisation techniques have been established for solving the “inverse problem” [95] by essentially
projecting or “beamforming” [96, 97] recorded scalp EEG data into a dimensional space better representing
the brain’s structure [98]. Despite this, many studies opt not to perform such projections and nevertheless
see success in classifying EEG data.

Another challenge in the application of brain data — regardless of neuroimaging technique — to contexts
such as prosthesis control is the neural rearrangement which can take place in the brains of amputees.
In short, the motor and somatosensory cortices of amputees can reorganise themselves post-amputation.
Residual limb muscles located immediately nearby the site of amputation can end up with motor cortex
representations which expand or move into the region previously associated with the amputated body part
[99, 100]. This may be due to the cortex’s somatotopy: remaining muscles situated near the amputation
site are generally controlled by motor neurons nearby those which controlled the removed or “deafferented”
muscles themselves, however in some cases the hand-controlling region has after amputation been remapped
to control of the lip [101] despite these appendages’ non-adjacency in the cortex (Figure 2.3). It should be
noted that phenomenon presents only among those with a surgical or traumatic amputation and not those
with a congenital limb difference, and is thought related to the phenomenon of the “phantom limb”, which
the latter group do not experience [5]. It may even be associated with the degree of phantom limb pain
(PLP) an amputee experiences, though research is yet inconclusive on this topic [99, 102] nor the extent to
which prosthesis use may exacerbate PLP, alleviate it through accelerating remapping, or have a no effect
but simply noncausal association, as those experiencing PLP are often less likely to use their residual limb
with or without a prosthesis [103]. In fact much of the nature and mechanism of cortical remapping is not
yet fully known; some results have even found the cortical map of the residual limb to be no different to
that of the homologous intact limb, suggesting that such a shift did not occur at all [104]. While the specific
implications that neural reorganisation may have on prosthesis control, such as any potential long-term drift
in amputee’s EEG data, are well beyond the scope of this work, it is certainly a factor which highlights the
limitations which can arise in systems using neural data alone for gesture recognition.
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Literature Review

3.1 Approaches to multimodal gesture classification

The term “Hybrid Brain-Computer Interface” was coined by Pfurtscheller et al. in 2010 [105] to refer pri-
marily to systems comprising two or more electroencephalography-based BCIs working in tandem, but also
encompassing systems which use data of multiple sensing modalities. While Pfurtscheller et al. gave only
the heart rate and eye gaze as examples of such other data sources, a number of studies since have sought
to leverage multiple different bioelectric signals (often neural and muscular activity, but at times others or
even non-biosignal data [106,107]) for the classification of human physical activity. The approaches by which
these multimodal data are used in a hybrid system however vary significantly among the literature [108].
To review the range of fusion approaches among biosignal gesture classification literature, a search was con-
ducted of the Scopus and IEEE Xplore databases as sources of information. Inclusion criteria for considering
a publication were the availability of a full-text article in English, a publication date between 2010 & 2022,
and the following boolean search operator being met among the publication’s Title, Abstract, or Keywords:

(((("EMG" OR "electromyo*") AND ("EEG" OR "electroencephalo*")) OR "biosignal") AND ("fusion" OR "multimodal")).

Studies describe gesture classification with various similar phrases (e.g. “movement intention”) which could
not be exhaustively anticipated, therefore instead of restricting the search by mandating such terms appear,
articles with titles including the terms “emotion” or “sleep” were excluded as not relevant. After excluding
duplicates, the titles & abstracts of identified publications were manually reviewed for relevancy. Additional
articles discovered organically from other sources, or falling outside the inclusion criteria, were considered if
judged to be of particular relevance. This highlighted a number of schools of fusion algorithm, which Table
3.1 summarises.
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Approach Synchronicity of data modalities Purpose for which modalities are used
Sequential
(Gated)

Upstream component using one modal-
ity activates an independent downstream
component, which subsequently performs
classification using other modality.

Upstream component typically uses simple
decision-making (e.g. activity threshold)
and does not contribute to the actual
class discrimination.

Sequential
(Cascaded)

Upstream component using one modality
performs coarse classification.
According to the upstream decision, one
of multiple independent downstream com-
ponents using the other modality subse-
quently performs fine classification.

Both modalities used to classify, though
system’s final class decision is output by
downstream component. Can thus be used
to construct multi-class system from binary
component classifiers.

Decoupled
(Error-
Correction)

Upstream component using one modality
performs classification.
Independent downstream component uses
other modality to identify errors in up-
stream classification.

Downstream error detection can be used
to prompt re-attempted classification or to
abort action taken in response to upstream
decision - but does not itself contribute
to classification.

Decoupled
(Components)

Independent components using different
data modalities simultaneously perform
separate tasks.

Tasks may both involve classification but
are typically not directly related, e.g.
classifying movement at different joints.

Decoupled
(Mode-
Switching)

Independent components using different
data modalities can be selected between, to
perform equivalent or separate tasks.
Only one component performs classification
at a time, though a simultaneous “moni-
tor” may identify a “trigger” command to
cycle between the modes.

Components may provide alternate mech-
anisms for performing the same classifi-
cation task.
Alternatively, different components can be
used to classify different possible gestures,
expanding total range of classifiable ges-
tures at expense of simultaneanity.

Joint (Early) Single component uses both data modali-
ties together to perform classification task.

Both modalities contribute directly to
classification.

Joint (Late) Ensemble of independent components
each using different data modalities simul-
taneously perform a classification task.

Both modalities used to perform equiva-
lent classification tasks. Components’ out-
puts are combined.

Table 3.1: Overview of categories of biosignal fusion architecture precedented among literature for gesture classification

3.1.1 Sequential contribution

Some, such as Rocon et al. [107], utilise the signals on a sequential basis. Rocon et al. constructed a
hierarchical system involving EEG, EMG, and Inertial Measurement Unit (IMU) data to characterise tremors
in 12 patients. When their EEG-based Brain-Computer-Interface (BCI) detected activity in the motor cortex
that was classified by bayesian classifiers as indicating “movement intention”, a 128-channel EMG sensor
was used to detect the onset of physical movement by measuring the width of peaks in the EMG signal.
At movement onset, the IMU data was subsequently used to measure the kinematic characteristics of the
movement, and filter voluntary movement components from those caused by the tremor. While such data
can be of great use in the development of tremor suppression strategies with technologies such as Functional
Electrical Stimulation (FES), the reduction of EEG & EMG information to be used solely as indicators
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of movement intention and onset respectively is of limited use to the classification of gestures for control
purposes.

A sequential paradigm of multimodality such as this could be described as “gated”, in that it is charac-
terised by some modalities of data contributing to the system when and only when certain characteristics
have been observed in other modalities.

Sarasola-Sanz et al. used a similar gated strategy to enable control of a robotic upper-limb exoskeleton by a
stroke patient [109]. A Linear Discriminant Analysis model continuously classified EEG data as representing
either attempted movement or a lack thereof; where movement intention was identified, the exoskeleton
would actuate, with its speed & direction partially determined by the EMG data. As Sarasola-Sanz et al.
describe, this reduces the risk of an unintended movement by the robot — which is certainly a desirable
property, particularly for an exoskeletal device wherein actuation in opposition to the movement of the body
part within could undoubtedly be hazardous. It is again limited is usefulness however; while the patient’s
EMG affected the kinematics of the exoskeleton’s movement, this was ultimately through modifications to a
predetermined target, and only primarily enabled opening and closing of the hand.

Khan and Khan. [110] reported joint use of EMG & EEG in the real-time control of a robotic hand by
both able-bodied individuals and amputees. A measure of subject’s “concentration” levels was computed
from their Beta-band neural activity, collected with NeuroSky’s commercial MindWave EEG device, and the
robotic hand actuated only when this focus exceeded a given threshold. While the users’ EMG activity did
affect the nature of these robotic movements, it was used only to determine the number of fingers actuated
— three to pick up an object requiring less grip strength, and five for one requiring more — on the basis of
EMG amplitude. This simplistic control mechanism appears motivated by the resulting reductions in sensor
costs and computational requirements, both meritworthy goals in their own right. However it precludes the
approach from being suitable for the identification of multiple distinct gestures for a more naturalistic control
of the device.

A similar use of EMG data to determine the force or intensity of a movement following its detection via
EEG can be seen in in the work of Du et al. [111], in the context of lower-limb activity. Here, the presence
and direction of a leg movement were identified from a subject’s EEG data with a neural network. Only if
this model predicted forwards motion, and a fibre-optic sensor corroborated this, did an EMG-based Bayesian
classifier attempt to distinguish between walking and running.

There have been some more sophisticated variations on this strategy which do draw more fully on the
information captured by Electromyographic and Electroencephalographic signals by using both in machine
learning algorithms. These extend the “gated” system architecture to a “cascaded” design. This can be
thought of as a tree-like structure, with branch nodes closer to the root relying on one data type to place
datapoints in broad categories and, dependent on these decisions, those nodes “further down” a path from
root to leaf discriminating between specific classes with data of the other modality.

Hooda et al. [112] proposed a cascaded system for lower-limb movement classification. Their system in-
corporated a bagged Decision Tree predicting the presence or absence of movement from EEG data, and in
the case of movement a Support Vector Machine using EMG to distinguish between plantar flexion (“down-
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wards”) and dorsiflexion (“lifting”) of the right or left foot. This strategy was more accurate than the use of
either data modality individually, and outperformed the use of a single SVM to classify both EMG & EEG
data combined at the signal level before feature extraction.

Ozdenizci et al. [113] were able to apply a similar approach to classify upper-limb gestures, with the
addition of a layer of joint decision-making. For a given hand movement, EEG data alone were used to
predict it as belonging to the right or left hand. EMG and EEG were then together used to identify this
movement as an opening of the hand or as belonging among one of four grasp types, and these grasping
motions themselves were subsequently discriminated between on the sole basis of EMG data.

3.1.2 Decoupled contribution

In certain studies which do in fact use multiple sensor modalities in parallel, these data still serve separate
roles, being used for wholly decoupled tasks.

3.1.2.1 Error-correcting

One approach of this nature is the use of EEG as a supplementary measure to monitor or error-correct an
EMG classification system. Kiguchi et al. developed an assistive exoskeletal robotic arm, which provided
task-specific assistance to users through EMG-based movement detection and task identification via a stereo
camera [114]. Error correction was facilitated first through EMG; when a user resisted the robot’s movement,
their work against it would require sudden high levels of muscular activity. Kiguchi et al. found that
additionally monitoring users’ brain activity via EEG could help detect this resistance more reliably. Förster
et al. similarly identified the benefit of using EEG for error-correction, through the observation of signals
known as error-related potentials (ErrP) [115]. These patterns of neural activity naturally present when an
individual observes an unexpected error, and were hence observable in participants when an EMG-based
classifier incorrectly identified the gesture they were performing. The use of ErrP signals as an indicator for a
system to automatically re-attempt classification in efforts to correct it improved the classification accuracy
by almost 10%.

In an interesting inversion of the paradigm, Riccio et al. implemented EMG-based error-control for an
EEG “speller” BCI [116]. The P300 speller BCI is an established methodology that enables letter-by-letter
communication by sequentially highlighting letters on a screen and observing occurrence of the “P300” brain
signal which presents itself in a subject when their “target” stimulus appears among successive non-target
visual stimuli [117] — in the case of the speller, after their intended letter is highlighted [118,119] — after a
delay of approximately 300ms when measured by EEG, thus giving it its name. Riccio et al.’s system involved
an implementation of a P300 speller in which the "backspace" was controlled by a single-channel EMG sensor
(placed on a bespoke muscle site in accordance with a user’s residual voluntary movement capability) rather
than being an ordinary option among the speller system’s input characters. They found that in six healthy
subjects, and one individual with tetraplegia (below-neck paralysis) and dysarthria (motor-related speech
difficulties), the EMG-backspace not only significantly improved the error rate of a spelling task, but reduced
both the time taken to complete it and the burden on users as measured by the NASA Task Load Index [120].

19



M. Pritchard, PhD Thesis, Aston University, 2024 CHAPTER 3. LITERATURE REVIEW

3.1.2.2 Discrete movement components

Kiguchi et al. later proposed [121] (though did not implement) an alternative system design involving the
use of an EEG-based neural network to estimate the angle of a subject’s arm during pronation or supination
of the wrist in tandem with an earlier system which could enable control of a robotic elbow joint by EMG
measurement of the biceps and triceps brachii (the upper-arm muscles which move a biological elbow joint).
Ruhunage et al. [122] enabled control of a robotic limb by a similar strategy. In their work the elbow
joint was likewise actuated in response to movement of the bicep and tricep as identified from EMG data.
Their EEG component was responsible for the opening and closing of the hand, though rather than any
classification of actual or imagined movements from motor cortex data, Ruhunage et al. used the Steady-State
Visually-Evoked Potential (SSVEP). The SSVEP is a well-known pattern of brain activity often described
as a “resonance phenomenon”, wherein upon observing an optical stimulus which oscillates at a frequency in
the order of a few tens of hertz, areas such as the visual cortex of a subject’s brain will exhibit electrical
potentials of the same frequency [123, 124]. By mounting a blinking LED of a known frequency onto the
prosthetic hand, a measurable cortical potential of that frequency could be induced in a subject when they
looked at it. Ruhunage et al. simply filtered the EEG data gathered at only one electrode (other than the
reference) for the LED’s 6Hz frequency, and commanded the hand to close when this signal’s bandpower
exceeded a threshold. This method is certainly admirable for its simplicity but ultimately does not offer a
great range of dexterity to the user. It is also unlikely to be robust in a “real-world” setting; under experimental
conditions the presence of external stimuli can be carefully controlled, but in a user’s day-to-day environment
they might encounter any number of visual stimuli that happened to oscillate at approximately 6Hz, which
could pose a severe risk of unintended actuation by the hand.

While seemingly limiting in the range of possible control gestures enabled, a “divison of labour” of the
constituent parts of a limb movement between sensing modalities such as is employed in these studies could
provide an interesting means by which to potentially make systems more robust to the complexity of com-
pound movements. This is an important topic of research unto itself, particularly if gesture recognition
systems are to be reliable enough for everyday activities. In a task as ostensibly simple as for example throw-
ing a ball, an individual is likely to perform the same hand gesture at a range of elbow angles. Whether the
decoupling of data modalities in this way is in fact an appropriate solution to this challenge however remains
to be found.

3.1.2.3 Mode-switching

Zhang et al.’s 2019 study [125] presents an interesting example of an approach which while technically
multimodal in its use of EMG, EEG, and Electrooculography (EOG) in the identification of nine distinct
gestures, does not in fact “fuse” the data per se by using them in any form of simultaneous classification.
Rather, Zhang et al. implement a mode-alternating strategy. Two rapid eye blinks, detected via EOG, cycle
the system between three states each defined by the data modality used: an EEG mode distinguishing between
Kinaesthetic Motor Imagery of the right or left hand, an EOG mode identifying an eye movement looking
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to the right or left, and an EMG mode classifying five hand gestures with the “Myo” armband [46]1. While
each of these nine total input gestures were mapped to distinct behaviours for a robotic hand to perform, the
mode-switching approach prevents them all from being simultaneously accessible by a user. Zhang et al. make
effort to mitigate this usability issue by using the control actions easiest to perform to the robotic gestures
deemed most important or used most frequently, but this is undermined by the resultant unintuitiveness of
the mapping — with, for example, KMI of the right hand resulting in a “close fist” command to the robot,
but a closing of the user’s actual fist, classified in the EMG mode, resulting in a “ball pinch” (spherical grasp).

3.1.3 Joint contribution

That Ozdenizci et al.’s study [113] described above was one of few which classified between distinct same-hand
gestures, and did so by incorporating a small degree of simultaneous use of the multimodal biosignals for
gesture identification, suggests such parallel use to be more informative than the division of tasks between
data types. Indeed, simultaneous usage of EMG & EEG data is a more common paradigm among prior
attempts at fusion in this domain.

3.1.3.1 Early Fusion

One school of approach to the simultaneous use of multimodal data in classification problems is to combine
the data in some way prior to learning from it, referred to as “early” fusion [127]2.

This is often described among literature as “data-level” or occasionally “signal-level” fusion and in certain
cases the multimodal biosignals are indeed combined at such a stage. While Gordleeva et al. [128]’s work in
distinguishing movement of the right or left foot from a resting limb was carried out primarily in the EMG
and EEG domains separately, i.e. on a “unimodal” rather than multimodal basis, it did also trial multimodal
classification on an offline basis. (Weak unimodal EEG performance led them to collapse their problem to a
two-class one for the multimodal case, identifying only the presence of a movement in either foot regardless of
which, rather than seeking to classify between them.) Their early fusion approach involved the processing of
both EMG and EEG data jointly with a Common Spatial Pattern filter algorithm, an established technique in
the field of EEG classification (discussed further in 4.2.5.1 below), providing the resultant processed features
to a single Linear Discriminant Analysis classifier. This was found only to achieve accuracies between those
reached by their unimodal EMG and EEG classifiers on an equivalent two-class problem. Aly et al. [129]
used a Convolutional Neural Network to classify the EMG & EEG dataset gathered by Li et al. [130] of
four transhumeral (above-elbow) amputees attempting four gestures: opening and closing of the hand, and
pronation and supination of the wrist. These signals were jointly provided as raw time-series data to the
CNN, in effect allowing its first hidden convolution layer to identify informative characteristics from the

1A commercial EMG device produced previously by Thalmic Labs Inc. [45] but since discontinued [126].
2A variation of early fusion wherein data are first transformed to share a common space is described by Pawłowski et al. [127]

as “Sketch”, but appears more applicable when dealing with data modalities vastly different in nature, such as text and images.
While some biosignal fusion research does involve projecting data into shared spaces, given that EMG & EEG whilst distinct are
both multivariate time-series measurements of electrical potential, such manipulations are not considered to be in line with the
intended definition of the “Sketch” paradigm. They are hence for simplicity included among other early fusion strategies here.
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merged data, with no distinction drawn as to the origin of each data modality.
Another strategy for signal-level combination of data is the direct analysis of the functional relationship

between EMG & EEG activity. Corticomuscular coherence (CMC), an established measure of the syn-
chronicity between brain & muscle activity [131,132], has been used to identify the onset of movement [133]
and to discriminate between movements of different muscle groups, such as the left and right hand [134],
and has been used by Lou et al. [135] to classify between pairs of finger movements with greater accuracy
than a model based solely on EEG. Other measures such as the Correlation between Band-limited Power
Time-courses (CBPT) have also been proposed which, in contrast to CMC, are able to consider phenomena
which occur synchronously in EMG and EEG but at different frequencies in each. Measures such as CMC
and CBTP are primarily relevant however to the context of stroke rehabilitation applications, wherein the
interaction between the motor cortex and the muscles is of specific interest in monitoring patients’ develop-
ment [134, 136]. The application of this approach to the context of prosthesis control, wherein multiclass
problems of particular interest, is less established.

The more common form of early fusion however is for such combination to actually take place not with raw
biosignal data, but after informative features have been extracted from them; thus more accurately described
as fusing at the “feature-level”.

Aly et al.’s earlier work [137], again using Li et al. [130]’s dataset of 64-channel EEG and 32-channel EMG,
extracted time-domain, frequency-domain, and entropy-related features from each signal and additionally
included coefficients of autoregressive models describing said signals’ behaviour [138]. These features, in
various combinations, were provided to a single machine learning model for the classification of gestures.
While their reported classification accuracy is undoubtedly impressive, the extreme width of the feature arrays
used poses potential risks both of overfit and excessive computational load. Also, that this approach was
compared neither against alternative fusion strategies nor against a non-fusion (i.e. unimodal) system makes
it difficult to ascertain the extent to which the early fusion itself contributed to the system’s performance.

Li et al. themselves provided time-domain features of both EMG & EEG data to a single LDA classifier
[130]. Unlike many others, they did trial broadly equivalent unimodal systems for comparison, along with
various different combinations of EMG & EEG channels with a view to optimising the number of electrodes
required. They found the multimodal system to classify gestures more accurately than models using either
EMG or EEG data alone, and that this was the case even when the fused system used only 10 maximally
informative channels each of EMG and EEG recordings. Al-Quraishi et al. [139] similarly extracted time-
domain features from EMG and EEG, but performed Discriminant Correlational Analysis [140] to transform
these into a single combined feature vector which was provided to their classifiers. While they found this
feature-fusion system consistently more accurate than a single-mode EEG model, including where the EMG
signal quality was decreased by muscle fatigue induced through physical exercise, they did not verify whether
a system relying on EMG alone could have reached similar accuracies or been similarly robust to the fatigue.

Tryon et al. [141] supplied both EMG & EEG data corresponding to elbow movements of varying speed
and force to a single Support Vector Machine (SVM), finding it able to classify between movement and rest
with equivalent mean accuracy to a unimodal SVM trained solely on EMG, but with a slightly lower spread —
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they concluded fusion be capable of enable greater robustness to variations in such kinematic characteristics.
Subsequent expansions of this work in Tryon & Trejos [142] and Tryon et al. [143] found respectively that an
SVM provided with fused EMG & EEG data was as also capable of predicting the muscle force as an EMG-
SVM, and that feature-level fusion could also be performed by the use of a Convolutional Neural Network
to classify both spectographic (frequency domain) and signal images generated from the EMG & EEG data
and combined in various ways.

3.1.3.2 Late Fusion

The alternative approach known as “late” or “decision-level” fusion [127] involves the processing & synchronous
classification of each data modality with wholly separate models. The predictions made by that ensemble
of models for a given datapoint are combined in some way to determine the system’s overall decision. The
various strategies for the fusing of these can be broadly categorised into two groups: those which implement
some form of static rule for combining the modalities’ predictions, and those do so with an additional machine
learning algorithm “stacked” onto the end of the classification process.

In binary systems, rule-based fusion algorithms can take forms as simple as Boolean operators [144].
Gordleeva et al. [128], in their aforementioned offline multimodal identification of the presence of foot move-
ment from a resting state, also trialled a system which predicted movement when a datapoint was classified as
such by either the EEG-LDA “OR” the EMG-LDA, and one which did so only when movement was predicted
in both EEG “AND” EMG domains. While the accuracies of these strategies were similar to that of their
data-level fusion approach, and likewise were well below that of a classifier modelled on EMG data alone, the
OR rule was able to achieve the greatest True Positive Rate, and the AND rule the lowest False Positive Rate.
Tryon et al. [141]’s work on multimodal “move-vs-rest” classification of elbow joint movement also trialled
Boolean OR & AND operators for decision-level fusion, finding neither to be the most accurate of the various
attempted fusion methods. In particular the OR rule’s inherent susceptibility to the decisions of the EEG
classifier, itself the weaker of the two data modalities, was noted as a likely cause of its poor classification
accuracy — though their results indicate an apparent side-effect of the OR rule’s accuracy being less variant
over different levels of muscular force than most of the other fusion algorithms.

Naturally, Boolean rules do not readily lend themselves to multiclass problems. In such cases, classifier
predictions corresponding to different data modalities are better combined if output in the form of classwise
probability estimates, providing richer data than simply a single class label. Probability distributions can be
fused with similarly simple rules; Cui et al. [145] implemented the “Max” rule, classifying each datapoint with
the class label assigned the single highest probability among all the ensemble’s classifiers, but found it consis-
tently the weakest fusion method among all two-modal combinations of EEG, EMG, and Mechanomyogram
(MMG) data and the second weakest in a three-modal system.

More common among biosignal literature implementing rule-based decision fusion is for a “fused” prob-
ability distribution to be calculated mathematically through some method of averaging those produced by
the independent data modalities’ classifiers. Leeb et al. in 2010 fused EMG & EEG data in the classification
between movement of the right and left hands by computing the arithmetic mean of the two models’ predicted
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probability distributions, in one of the seminal works in the field of biosignal fusion [146]. They found this
to significantly outperform single-modality models, and the incorporation of EEG data in this way was also
thought to partially compensate for the impact on classification accuracy of muscular fatigue — simulated by
attenuating the amplitude of the EMG signals by various degrees — though as the effect of such fatigue on
their unimodal EMG model was not investigated this cannot be claimed with certainty. The various works
of Tryon et al. mentioned above also explored such averaging as a method of decision-level fusion in both
move-vs-rest classification problems [141] and identification of the weight being lifted by a subject (and thus
the degree of muscle force being applied) [142]. They trialled the mean as in Leeb et al. [146] alongside other
static weightings, with variations biased at a ratio of 3 to 1 both in favour of EMG and of EEG. While
no fusion approach at the feature- or decision-level outperformed unimodal EMG classification in detecting
the presence of movement [141], their most accurate late fusion strategy (the equally-weighted average) did
significantly outperform an EMG system at the α = 0.05 level, albeit by a small margin of approximately
2.5%, in the weight classification task. [142].

There is also some precedent for the distributions output by models corresponding to different data sources
being combined in ways informed by estimates of the reliability of their respective unimodal classifiers. Leeb
at al.’s aforementioned study included a Bayesian method of fusion based on computing the two modalities’
classwise predictive performance over the training data, finding this to reach accuracies competitive with those
of their equal-weightings averaging [146]. Pritchard et al. [147] trialled a Weighted Average method wherein
modalities’ weights were determined by the accuracies achieved by corresponding unimodal classifiers in
predicting a subset of testing data. Wang et al. [148] determined weights by a similar method but incorporated
a penalty factor for datatypes determined more noisy, successfully classifying between four stages of a grasp-
and-lift motion.

Cui et al. [145] provide one of very few comprehensive prior investigations involving comparison between
a range of biosignal fusion strategies. Such explorations have also been carried out by works such as those of
Tryon et al. [141,142], but Cui et al.’s is distinct from the latter in their classification of movements of wholly
different types, rather than variations in speed or force of the same fundamental motion. Specifically, through
various combinations of EEG, EMG, and MMG data they sought to distinguish between walking, cycling,
and repeated stepping up to and down from a raised surface. As well as attempting the aforementioned
“Max” rule, a Weighted Average with equal weighting distribution (i.e. the mean), and in the three-modal
system only a Majority Voting strategy, Cui et al.’s work is a rare example among multimodal biosignal
gesture classification literature of a “stacked” meta-model being used for late fusion. Each of the candidate
classification algorithms tested for their system’s constituent EMG, EEG, and MMG models were also trialled
as options for this meta-classifier, which attempted to predict system-level classwise probability distributions
on the basis of the probability distributions output by those constituent models. This classification-based
fusion strategy outperformed their rule-based methods (described above) near-universally, and were frequently
more accurate than unimodal systems. The Support Vector Machine (using a radial basis function kernel,
and applying Platt’s method [149] to compute probabilistic outputs) proved repeatedly the most highly-
performing choice of meta-model.
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3.2 Similarity of gestures in biosignal classification

Another limitation of many works in the biosignal literature is in the selection of gestures between which
they seek to classify.

3.2.1 Among Fusion studies

As noted, a number of works using multimodal data do not attempt multi-gesture classification at all.
Gordleeva et al. [128] reduced the specificity of their classification problem when using EMG & EEG to-
gether, on the grounds of their unimodal EEG system exhibiting poor multi-class performance. Hooda [112]’s
classification of foot movements initially attempted to classify between flexion and extension of the left and
right ankles in parallel, but later merged their gestures into a three-class system: movement of any kind in
the left foot, the same in the right foot, and a rest class. While not entirely trivial such a reduced problem
is ultimately much less edifying. The highly somatotopic structure of the motor cortex, and the nature of
motor control as being primarily driven by the contralateral hemisphere of the brain (as covered in 2.1.2),
means this classification task can essentially be reduced to one of identifying which area of the brain — i.e.
which EEG electrode channel — presented a given pattern of neural activity.

Even Ozdenizci et al.’s work [113], one of few fusion studies which does classify between a range of
task-relevant hand gestures, draws on EEG primarily in the earlier stages of their tree-like decision making
process, to discriminate between movement of the right and left hands while leaving the identification of the
movement’s nature to the EMG component of the system. This is as mentioned again a more straightforward
task for an EEG classifier than the actual gesture recognition stage, but more relevantly it would be an entirely
trivial one for an EMG model, which could detect the presence or absence of movement generically in each arm
by as simple a mechanism as an amplitude threshold. Likewise limited are the various works [129, 130, 137]
drawing on the amputee dataset gathered by Li et al. [130]. Although these do indeed use information carried
by the EEG data to contribute to discrimination between gestures of the same limb, the granularity of these
gestures is quite coarse; as noted above the four defined movement classes are the closing & opening of
the hand and pronation & supination (rotational movements) of the wrist. While self-evidently gestures of
relevance to the topic of prosthesis control — indeed, many commercial prostheses do not provide biosignal-
controlled wrist rotation — wrist movements and finger movements rely largely on distinct muscle groups.
Grasping motions of the hand are mainly carried out by the various flexor and extensor digitorum muscles
as discussed in 2.1.1, while the wrist is largely rotated by the flexor carpi ulnaris and radialis in tandem
with their respective extensors. These muscles are also located in the forearm, and their activity certainly
less immediately distinguishable through EMG than, for example, movement of the right hand is from that
of the left, but with sufficiently dense, properly placed EMG electrodes are not easily confused for the finger-
controlling muscles3. More crucially however than than the potential lesser challenge of the classification
problem in such cases is the resultant limitation in the system’s capabilities, offering an imagined user only

3Notwithstanding complexities arising from compound movements, nor the influence of muscles which play a dual role such
as the flexor digitorum superficialis which is used mainly in finger flexion but can assist some wrist motions.
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one type of grasping gesture at any given time despite the range of hand shapes necessary for everyday
activities.

Kurzynski’s 2013 work [150] should be noted as a rarity among multimodal studies in its choice of task-
relevant, similar, same-hand gestures. By taking a Weighted Average of three separate classifiers which used
EMG, EEG, and Mechanomyogram (MMG, the measurement of acoustic vibrations generated by muscle
movement with a microphone placed on the skin) data respectively, Kurzynski was able to classify between
six distinct grasp gestures. While the classification accuracy is not reported, Kurzynski notes that the fusion
approach offered performance statistically significantly greater than that of unimodal classifiers in over 75%
of the trials.

3.2.2 Among Unimodal studies

In discussing Zhang et al.’s mode-switching system [125] above (3.1.2.3) it was noted that unlike many
others this approach did enable control of nine distinct robotic gestures — but that this came at severe
cost to usability, with the relationship between gesture inputs and robotic actuation being unintuitive. Such
concerns are far from limited to Zhang et al.’s work, and in fact represent a trend across much of the biosignal
literature.

With regard to EMG systems, Kim et al. [151] discuss the Repeatability and Separability Indices of
gestures, metrics of the within-class and between-class variability (based on similarity in measured signals
— they acknowledge that incorporating anatomical information regarding the muscle groups involved in
different movements & the human musculoskeletal structure more broadly would be a meritworthy extension
of their work). Their study suggests that minimising the former while maximising the latter ought to be the
basis upon which input gestures are chosen. While in an abstract sense this is indeed a desirable property
of a system, it ought to be recalled that Kim et al. largely discuss EMG-based gesture recognition in the
context of everyday “consumer” human-computer interaction: their example applications include interfacing
with software such as Microsoft PowerPoint and Google Earth. In such situations the relationship between
a gesture input and its resultant command will inherently be loose; while facets of the design language may
aid intuitivity, such as emulating the “pinch zoom” gesture common in touchscreen devices, the notion of
naturalistic control does not apply. It is only a minor concern if choosing gestures chosen on the basis of
maximal seperability results in them being non-representational.

In the context of prosthesis control however, determining input gestures solely on this basis could in fact
be a significant hindrance to the quality of users’ experience, if the selection of highly distinct gestures results
in an unintuitive mapping of input to action. An accessibility device ought to minimise the demand it places
on its user, lest it become itself a source of inaccessibility; properties such as the range of recognisable input
gestures ought to be based primarily on users’ needs, capabilities (given the variation in dexterity of control
over residual limb muscles among amputees), and comfort. This means the framing of the problem ought
to be inverted from the angle by which Kim et al. approach it. If intuitive control is desirable, rather than
simply choosing gestures which are easily separable, more pressing is to find classification systems which can
accurately identify gestures of lower intrinsic separability. Of course, the feasibility of accurate classification
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will nevertheless be a factor in gesture selection, and separability & repeatability are naturally beneficial to
enabling this. Kim et al.’s framework may well provide an interesting way by which system designers can
assess the feasibility of a potential suite of gestures. However it also serves to highlight the extent to which
unintuitiveness in gesture recognition systems is problematic even among those solely using EMG — which
are typically thought of as capable of much finer granularity in gesture definition than other approaches.

This issue is however much more prevalent among EEG-based systems, with many such studies in the
literature classifying between imagined or executed movements which are not only highly dissimilar from one
another, but also from the resultant system action they induce. Many works discriminate between broad
categories of movement by different parts of the body, such as arm movement versus leg movement [58].
While the direction & speed of movements have been sometimes identified from EEG for applications such as
remote control of a quad-copter [58], such systems also often lack intuitiveness; one common control scheme
maps the simultaneous KMI of both right and left hands to the quad-copter’s z-axis ascent [152–154]. This is
perhaps unsurprising — not only are more physically distant appendages likely to present more geographically
separable patterns of neural activity due to the motor cortex’s somatotopy, but they also may be easier for
participants to engage with. Many EEG studies situate themselves in contexts of stroke rehabilitation,
paralysis, and similar cases wherein individuals’ capacity for voluntary motor control is limited. Even if
the participants of these studies are themselves able-bodied, this context motivates the choice of gesture
classes. Similarly, in keeping with such intended applications the gestures themselves are often performed
as Kinaesthetic Motor Imagery rather than genuine muscular movement. KMI is to some degree a learned
skill [155–157]; novice users of EEG-BCIs are not always able to imagine the physical sensations of movement,
as opposed to simply a conceptual notion of it, in such a way as consistently elicits motor cortex activity like
mu desynchronisation. Given this, it is certainly plausible to expect highly distinct gestures, such as those
of wholly separate muscle groups, to be less arduous for a subject to perform KMI of than those which differ
more subtly. Such limitations exacerbate the issue of gesture selection seen in fusion research. By failing
to investigate the potential usefulness of EEG in classifying between multiple same-hand gestures, the use
of such gestures in multimodal biosignal studies is demotivated not through an established understanding of
systems’ incapability, but through a lack of confidence arising from the sparsity of evidence.

Nevertheless, some works have indeed attempted to classify between similar gestures of the same ap-
pendage with EEG data. Ofner et al. [75] used Linear Discriminant Analysis classifiers to identify six types
of arm movement (hand opening & closing and wrist pronation & supination as in [130] among others, and
also flexion and extension of the elbow) from EEG signals filtered to a very low frequency range of 0.3–3Hz.
In the six-class “move-vs-move” problem they achieved a peak mean accuracy across subjects of 42%, and
in classifying an aggregated “movement” class from a resting state a peak of 81%; exceeding the chance
level in both cases by a statistically significant margin. As may be expected considering the motor cortex’s
somatotopic structure, errors in the multiclass system presented frequently in the form of movements being
misclassified as their “opposites”. This was most evident among hand movements. Finger flexion and exten-
sion while often confused were more likely to be classified as an hand movement of some form than as either
a wrist or an elbow movement; the latter two were more often confused for one another than for movements
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of the hand. As seen in Figure 2.3, the motor cortex region associated with finger movements is both larger
than those associated with the elbow and wrist and more distant from them than they are from each other.
Not assessed in Ofner et al.’s work was the ability of a model to discriminate between multiple gestures and
a rest class simultaneously, or the nature of errors in one which attempted to do so. Jochumsen et al. like-
wise used LDA models but in the classification between palmar, pinch, and lateral grasps of the right hand,
gestures of much higher similarity. Curiously, as with Ofner et al. above they also did not include a rest class
among their multiclass problem [158], though attempted most other conceivable tasks: move-vs-rest with an
aggregated “movement” class, separate move-vs-rest tasks for each of the three gestures, pairwise gesture-
vs-gesture classification, and a three-class problem between all grasp types. In the latter of these, the most
interesting for applications such as prosthesis control where dexterity is desirable, accuracies averaging 63%
were achieved with the use of frequency-domain EEG information. Spectral EEG features were also found
useful by Xiao et al. [159] and subsequently Xiao, Liao, et al. [160] in the classification of individual finger
movements. In the former, Xiao et al. reached a mean accuracy of 45% across six subjects in identification
of the specific finger being moved, i.e. a five-class problem, with a Support Vector Machine [159]. The latter
co-authored study classified instead between pairs of finger movements (e.g. “thumb-vs-index”), again with
SVM models, achieving a mean accuracy of 77% across all subjects and movement pairs. Alazrai et al. [161]
were able to go further by implementing a two-layer system of SVMs, which identify first the finger being
moved, and subsequently used that finger’s corresponding specialist SVM to discriminate between types of
movement, such as flexion or extension. While their reported accuracies of each SVM are impressive they do
not discuss the system’s overall accuracy, considering that a motion classified as being of the wrong finger at
the first layer will inherently be incapable of being accurately classified at the second.

Some other works have explored the classification of different grasping movements — common motions
involved in various Activities of Daily Living — though rarely reaching accuracies notably greater than those
of Jochumsen et al. [158]. Agashe et al. trialled the use of Multiple Kernel Learning models in classifying
five distinct gestures defined by the hand shapes used to hold five everyday objects of varying size and shape:
three whole-hand grips (a drinks can, a CD, and a screwdriver) and two precision-pinch grips (a coin and
a bank card). Mean accuracy across these five grips was only 40% but varied according to grip type: the
True Positive rate among whole-hand grips averaged nearly 50% whilst for the precision-pinch grips it was
below 30%, suggesting the greater number of motor units recruited for the gestures which used more muscle
groups may have lead their associated patterns of EEG activity to be more distinct. Their proposed Joint
Angle Decoding technique however, involving the direct relating of measured EEG to angular velocities of the
finger joints, was able to be used in real-time by an amputee to perform a reach-and-grasp task, though only
enabling two grip types (a cylindrical whole-hand grasp for a bottle, and a lateral precision-pinch for a bank
card). Iturrate et al. also focused on the distinction between whole-hand and precision-pinch grasps [162] of
the right hand. Finding EEG electrode channel C3 of the 10–20 System [84] to be maximally informative
in their early experiments, unsurprising given its placement over the hand-relevant part of the motor cortex
in the left hemisphere (see Figures 2.3 & 4.2), they were ably to use LDA models to classify between these
grasps using just eight channels of EEG from the contralateral motor cortex at an impressive mean accuracy
of 76% over 10 subjects. Schwarz et al. [163] achieved similar results with EEG-LDAs, achieving a mean of

28



M. Pritchard, PhD Thesis, Aston University, 2024 CHAPTER 3. LITERATURE REVIEW

74% accuracy on the most separable pair of gestures among a whole-hand cylindrical grasp (for a cup), a
precision-pinch (a needle), a lateral pinch (a key), and a fourth class of a reaching motion with no grasp,
though accuracy fell to 66% when considering these gestures together as a multi-class problem. They did
however find, akin to Iturrate et al., that systems with as few as 15 selected relevant EEG channels could
be considered usable. An interesting alternative means of expanding the range of identifiable grasp types
can be seen in the work of Mohseni Salehi et al. [164]. Here four task-relevant gestures were defined by the
movement components comprising them: whether the four fingers (taken together) were flexed or extended,
and whether the thumb was abducted or adducted. While less granular than the individual finger flexions
classified by Alazrai et al. [161], they were likewise classified with a cascaded system, discriminating first
between movements of the right and left hands, then identifying the flexion or extension of the fingers, and
lastly the position of the thumb. Their reported accuracy of 64.5% across five participants demonstrates that
while such an approach shows promise, there remain strides to be made in multi-class same-hand gesture
recognition.

It ought to be acknowledged that the higher-resolution measurements of neural activity provided by
electrocorticography (ECoG) have been used to successfully discriminate between similar hand gestures [58].
The higher spatial density of ECoG electrodes than EEG allow for better distinction between nearby motor
neurons; by extension studies using intracortical electrodes — rarely carried out with human subjects —
can achieve still greater fidelity, even at the level of individual neurons [165]. Schalk et al. [77], Miller et
al. [166], and Kubanek et al. [80] among others have used ECoG in the identification of individual finger
movements, and Pistohl et al. [167,168] were able to classify between a precision-pinch and whole-hand grasp
types, including when such grasps were combined with an arm reaching motion. Despite these efforts ECoG,
being an invasive procedure is as discussed in 2.2.2.1 less suitable for widespread use, and indeed research
such as that of Engdahl et al. [27] makes clear that even if it enabled more dexterous, naturalistic prosthesis
control, amputees are significantly deterred by the surgery required for such an approach.

3.3 Other limitations

While the limited depth of multimodal approaches explored, and the unintuitive & constrained range of
gesture classes defined, are perhaps the most crucial limitations of much research in the field of biosignal-
based gesture classification and the areas to which the research in this thesis makes its primary contributions,
this work seeks also to improve upon two further aspects which it would be remiss not to mention.

3.3.1 Cross-subject generalisation

Among biosignal gesture classification research most studies,including the vast majority of works on multi-
modal classification [128, 129, 141, 145, 147, 169], focus their attention on subject-specific systems — or even
restrict their data universe to that of one recording of the bioelectric signals, a “single trial” [93, 170]. This
individualised nature of systems may be defended as being aligned with the typical paradigm of prosthesis
acquisition, wherein amputees generally receive close supervision and support from prosthetists and other

29



M. Pritchard, PhD Thesis, Aston University, 2024 CHAPTER 3. LITERATURE REVIEW

specialists to aid in the fitting of and adaptation to the prosthesis. In the case of a prosthesis controlled by
gesture recognition, the selection and training of classification algorithms would naturally be a part of this
process. Categorically, no attempt is made here to imply that such dedicated clinical care should not be given,
or that a reduction in the support provided would be desirable. However if reducing the subject-dependence
of gesture classification systems could enable such processes to be streamlined, through better foreknowledge
of suitable models or a reduced need for subject-specific training data, this would certainly merit exploration.

While the fundamental underlying principles discussed in Chapter 2 are consistent, the particular charac-
teristics of biosignal data vary between individuals, and even between data collected from the same individual
at different points in time. This can be viewed as a domain shift; when attempting to classify on a cross-
subject basis, i.e. with training data and testing data being gathered from different subjects, these datasets
may be of different distributions [171]. Works which approach this problem have done so by various means.
One strategy which allows for true subject-independence — generalisation of a trained model to wholly novel
individuals — is to trial systems on a “Leave-One-Participant-Out” basis. This is in effect a specialised
variation of k-fold cross-validation, wherein data are split into k subsets and, for each k in turn, a model
trained on all folds except for k and used to predict k. Rather than a random split however as is typical of
k-fold cross-validation, the data are split by individual: data of all subjects except for k used for training,
and the model tested on k’s data. Lu et al. [172] were able to use a Naïve Bayes classifier to distinguish four
gestures from EMG data on this basis, at a mean accuracy of 89% across 20 subjects4. These gestures were
an opening & closing of the hand and flexion & extension of the wrist. The discussion in 3.2 highlighted the
need for further research on the classification of gestures more subtly distinct than these; this serves as a
reminder that the limitations of prior research discussed in this chapter cannot be fully addressed in isolation
but in fact interplay. Benalcázar et al. [173] used a k-Nearest Neighbours model to classify a similar suite of
gestures, with the addition of a thumb-to-index-finger “pinch” grasp and a rest class. They reached only 54%
subject-independent accuracy over 10 participants, the more complex classification task likely contributing to
their poorer performance than Lu et al.’s system. Castellini et al. [174] performed cross-subject classification
on a one-to-one basis, rather than a leave-one-participant-out, but interestingly reported similar mean accu-
racies when classifying between much more similar gestures — three types of grasp — both when subjects’
arms were still (52%) and when the grasps were combined with other arbitrary motions of the forearm (54%).
Fazli et al. [64] reported the first subject-independent zero-calibration EEG-based classifier, discriminating
between Kinaesthetic Motor Imagery of the left and right hands with an ensemble of LDA models using a
similar leave-subject-out cross-validation scheme. Their baselines with no subject-specific learning achieved
an accuracy of 71% & their proposed strategy for subject-dependent adaptation reached up to 73% accuracy
when tested on data from novel individuals. While undoubtedly significant achievements, much as with the
aforementioned work of Lu et al. this should be considered in the context of the challenges in similar-gesture
classification outlined in 3.2 above. The use of a “Leave-One-Participant-Out” strategy for exploring the
cross-subject classification ability of various systems will be explored further in Chapter 5

As referenced with regard to Fazli et al.’s work, some studies have also trialled strategies for calibrating
4This is calculated from only those gestures classified by the EMG component of their system, so is marginally below the

reported headline accuracy in [172]
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or otherwise adapting a base “generic” gesture classification system on a subject-specific basis. Works such
as those of Du et al. [175] & Ketykó et al. [171] explored such domain adaptation in the classification of
EMG data with Convolutional Neural Networks (CNN), the former notably adopting an interesting method
of continual “online” model adaptation. Transfer learning strategies explored among EEG-based works have
often focused on attempts to generalise the Common Spatial Pattern, a popular signal processing technique
discussed further in 4.2.5.1 below which is highly subject-specific in nature. Various strategies have been
trialled to regularise these [176,177], devise them in a way which considers other subjects’ EEG data [178,179],
or model them for multiple subjects simultaneously [180, 181], in efforts to reduce the degree of necessary
subject-specific calibration [182]. Other approaches have looked instead at the featurespace of subjects’ data;
Joadder et al. assessed the similarity of features’ distributions between subjects to seek those most useful in
Leave-One-Participant-Out classification [183], while Azab et al. [184] likewise assessed featurespace similarity
but instead to identify for each novel subject the most similar individuals in their dataset, from whom learned
model parameters could be transferred. In the EMG domain, Gonzales-Huisa et al. [185] considered subjects’
featurespaces not to assess similarity but to explore style transfer techniques with which their data could
be projected such that they were sufficiently aligned for effective cross-subject classification. Methods for
cross-subject transfer learning as a means by which to potentially reduce the subject dependence of gesture
classification systems while retaining the benefits of subject-specific learning through calibration are the focus
of Chapter 6, and the precedent among literature of various techniques will be discussed further therein.

It should also be noted that very few works explore classification between distinct sessions even of the
same individual. Here, the term “session” is used to mean a single occassion upon which sensors were fitted
to a participant and their data recorded [171]; typically separate “sessions” would take place on different days
but this is not strictly a factor.

3.3.2 Validity & Data Leakage

Poor practice in data handling, a misuse or lack of statistical analysis, and other related methodological issues
are pervasive in Machine Learning research, having been described as fuelling a reproducibility crisis [186], and
studies applying Machine Learning to biomedical contexts such as biosignal classification are unfortunately
no exception [187].

Lotte et al. [30,152] describe that many BCI studies are undermined by the presence, or at least appear-
ance, of bias. Choices of models and their hyperparameters are often not justified adequately (or at all) by
researchers, calling into question the validity of the claims & comparisons made between systems. Due to
this lack of transparency, the rigour of methodologies cannot be assessed and the possibility that such choices
were made manually by “cherry-picking” results to find those which lead to high testing accuracies cannot be
ignored.

This is ultimately a form of data leakage. Leakage is typically conceived of as a duplication of datapoints
between training and testing datasets leading to artificially high classification accuracies, but while this is
clearly a potential source of leakage it is not the only one. In discussing the prevalence of such issues among
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studies on brain data, Hosseini, Powell, et al. [31]5 outline the risks posed by over-optimisation. Among
studies that provide some justification for their hyperparameter choices (which not all do [143]), it is not
uncommon for it to be stated that values were found through k-fold cross-validation or some other optimisation
procedure, with few further details being offered [75, 160, 161], including a number of the already relatively
scarce research on multimodal biosignal fusion [137,139,145]. In other cases it is even explicitly demonstrated
that such selection was done on the basis of optimising test set performance [189]. While in such cases it is
reasonable to expect that care was taken to avoid direct leakage by ensuring separation train and test data in
the final model, an inherent leakage of information arises from the learning within that optimisation process.
The model configuration used for testing to generate the headline classification accuracies reported is already
known to be suitable for classifying the test data, giving it an unfair advantage and potentially leading to an
inflation in the accuracies reported, by comparison to those it would achieve if provided genuinely novel data.
Abreu et al.’s work on identifying sign language gestures from electromyographic data demonstrates exactly
this, achieving vastly higher accuracies in offline cross-validation than could be achieved when classifying
novel data [47].

It is worth highlighting explicitly here the way by which this is problematic. While generally speaking
any machine learning model is typically expected to be capable of classifying “new” data when it is deployed,
given that as discussed above (3.3.1) many studies limit their horizons to the data gathered in a single “trial”
it may be tempting to dismiss this as a non-problem. However, even if a specific model is only intended to be
used in the context of a given data sample in a specific study, the findings of that research — matters such
as the suitability of the methods trialled for the given classification problem — are most useful if applicable
beyond it. This is of course not say that research which does not go far enough on this point is wholly without
merit or incapable of being influential and informing the direction of further research in the field. Likewise
it is not even the intention to suggest that all studies which are not comprehensively outline how they have
avoided such data leakage are compromised — such opacity could arise inadvertently through any number of
unintentional oversights — but as Lotte et al. state it is not possible to categorically rule out bias in such
cases. It is as such nevertheless a notable weakness of many works and one which the research presented in
this thesis makes particular effort in its attempts to avoid.

Hosseini, Powell, et al. discuss various ways by which this problem can be mitigated. One strategy is
the replacement of cross-validation with nested cross-validation — for each outer fold k, performing a further
cross-validation on the non-k folds for optimisation purposes while k remains untouched, and only then testing
on k. This has some precedent among biosignal literature; Pistohl et al. for example in classifying ECoG data
optimise hyperparameters with a nested cross-validation over each 9-fold training set in their larger 10-fold
cross-validation routine [168]. Hooda et al. take similar care to highlight that their 10-fold cross-validation
is carried out only using the 80% of their data designated for training in their 80/20 train/test split [112].
Garrett et al. go somewhat further, dividing their five trials in every possible combination of a 3:1:1 ratio,
with three used for training, one used as the optimisation target, and the last an unseen test dataset. This
use of unseen data is ultimately the key recommendation of Hosseini, Powell, et al. [31]; they suggest that a

5Co-first authors, both named here in keeping with the principle of moving towards a better acknowledgement the collaborative
nature of research [188].
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portion of data be reserved throughout the entire experimental process, to be used only for final validation.
This, as described in 4.2.3 below, is exactly what this work does — and in fact goes beyond. Here, not
only are some data reserved but whole subjects are held out from experimentation. This not only allows for
greater confidence in the validity of findings but for an indication of their generalisability to novel subjects,
which is of clear importance in the seeking of gesture classification approaches which could be deployed for
contexts such as prosthesis control at scale.

It should also be noted that such reservation of data need take place — as it does in this work —
throughout all stages of the modelling pipeline, even those prior to optimisation. Whelan et al. [190] highlight
how performing procedures such as the selection of informative features or of prospective modelling candidates
on the basis of a whole dataset undermines any subsequent attempt at separation, stating that: “restricting
analyses to regions of interest that were determined in an initial analysis that included all participants will
render invalid the subsequent cross-validation” [190]. This is particularly pertinent to the context of biosignal
data given the popularity of data-driven techniques such as the Common Spatial Pattern. The CSP, discussed
further in 4.2.5.1 below, involves a supervised identification of suitable transformations for EEG data. If such
transformations are learned on the basis of all available data, any subsequent divisions of the transformed
data will not offer genuine separation of the information in the training % testing sets [191]. Even simpler,
commonplace techniques such as the data normalisation can, if care is not taken to consider the level of
information which ought to be available to a model and signals or features are instead normalised over the
whole datastream as in [143], risk causing leakage in this way; 5.3.2.1 outlines the measures taken to mitigate
that risk in this work.

The matter of temporal leakage should also be highlighted here. In the kinds of contexts relevant to
prosthesis control, gesture information is not typically thought of as temporally correlated: an individual’s
hand gesture at a given point in time is not necessarily likely to be predictive over the next gesture they per-
form (without further contextual information as to their broader activity). Biosignal data are non-stationary
however and time-correlated within narrow snapshots of time; it has been demonstrated that a model fit to
EEG data of a given time t0 may be able to predict data of a subsequent time unit t1 not on the basis of
any task-discriminant properties but simply on that temporal association [192]. This means that even when
care is taken in the handling of differently assigned divisions of data, that data splitting process can itself
be a source of leakage. Biosignal studies frequently do not specify the granularity at which they split data.
Though some like Lu et al. [172] do specify that data were split according to “repeats” — that is, individuals
“trials” or “performances” of a given gesture — in many more cases this is not made clear. If data are split
randomly at the level of individual dataset instances, and time-adjacent samples are thus distributed between
training, testing, and validation sets, this temporal leakage will undermine the separation of those sets; they
will not be sufficiently independent [193]. As with the other matters of validity and leakage discussed here,
the experiments in this work take particular care to avoid this pitfall, as is described in 5.2.3.
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Dataset, Processing, and Feature Extraction

4.1 Overview

The experimental work of this thesis comprises three lines of investigation, each building on the previous,
into the classification of gestures from multimodal biosignal data. This chapter serves to lay the foundation
for those investigations by introducing the facets of the experimental conditions which are consistent between
them — primarily the secondary data itself which is used, the steps taken for its processing, and the feature
extraction procedure applied. Such topics are fields of research unto themselves and undoubtedly of great
relevance to the quality of a gesture classification system, but are not the foci of this work’s investigation and
are hence controlled throughout it.

4.1.1 Selection of Dataset

As 3.2 describes, much biosignal research is hampered by the selection of gesture classes on the basis of high
separability with little regard for their intuitiveness, with many studies not even going as far as to classify
gestures of the same limb. In a context such as prosthesis control however a system’s dexterity and ease-of-use
are of great significance, as evidenced by the higher rates of abandonment of body-powered “hook” prostheses,
inherently limited in their dexterity & unintuitive in their control, than of robotic ones [25]. Evidently there
is much to be gained from further research into multimodal classification of naturalistic same-hand gestures
of the categories most useful to prosthesis users, such as grasp variations [28], thus a multimodal dataset
containing such gestures was sought.

Section 3.3.1 discussed the infrequency with which much of the biosignal gesture classification literature
explores cross-subject classification. This is undoubtedly of significant interest to the field; progress towards
achieving subject-independence may lead to gesture identification systems which are better able to classify
data of naïve users, lowering the “barrier to entry” and thus potentially enabling such systems to be more
readily used by those who need them. The stability of gesture classification models across subjects and the
extent to which systems can benefit from cross-subject data is the focus of Chapter 6’s investigation and thus
the dataset’s sample size was a characteristic of particular interest for reasons beyond simply the presence of
more potential replicates.

Likewise, a classification system’s generalisation ability across sessions of the same subject is obviously of
great import in the context of prostheses. It would be distinctly unwieldy for a system to require complete
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retraining with new data on any given occasion upon which an individual wished to use it. A great deal of
biosignal research does not however obtain data from the same participants across multiple sessions — more
often, a single data collection session is treated as the entire “data universe” of the experiment [147,184]. To
enable the experiments on cross-session classification presented in Chapter 7, the retention of participants for
multiple data recording sessions was also a desirable criterion in the selection of a dataset.

Some domain-standard single-modality biosignal datasets do possess some of these qualities. Among
the BCI Competition sets of neurological data [194] are variously EEG motor imagery data (albeit not
of distinct same-hand gesture classes) collected from nine subjects on each of two days (set 2a), ECoG
data corresponding to individual finger movements of the same hand (set 4), and Magnetoencephalographic
(MEG) data of two subjects performing four distinct movements of the right wrist (set 3). The NinaPro
electromyographic datasets meanwhile comprise mainly EMG, often accompanied by kinematic data, from
typically multiple tens of individuals performing up to 52 classes of hand movement, including some data
gathered from transradial amputees [195].

With multimodal classification being much less precedented however, fewer multimodal biosignal datasets
are available [196], and certainly none as well-established as the aforementioned BCI Competition or NinaPro.
Li et al.’s 2017 dataset [130], utilised by a number of others in the field such as Aly et al. [129,137] as noted
in 3.1.3.1, captures data from four transhumeral amputees, each in a single session. While five same-limb
gestures are included (closing and opening of the hand, pronation and supination of the wrist, and a rest class),
these are coarser in nature than the kind of task-relevant same-hand gestures this work seeks to discriminate
between. Pritchard et al. [147] — prior work of the author of this thesis — collected a small quantity of
primary data, but as a proof-of-concept only coupled EMG and EEG activity which were simultaneous but
otherwise unrelated. Tryon et al. [141]’s EMG & EEG data collected from 18 subjects is another dataset
which has seen some re-use [142, 143]. The subjects’ movements however are not of sufficient relevance to
the problems of interest in this work — rather than distinct gestures, classes were defined by the speed
and force of flexion and extension motions at the elbow joint. Luciw et al.’s WAY-EEG-GAL dataset [197],
while capturing hand-grasping and releasing movements performed by its 12 subjects, similarly primarily
investigated not a range of gestures but the nature of the single “grasp-and-lift” motion, by modifying the
mass and surface friction of the stimulus participants were tasked to pick up.

The multimodal dataset ultimately identified as suitable for use in this research is that published by
Jeong et al. in 2020 [198, 199]1. This meets the various criteria described: both EMG & EEG data were
collected from twenty-five individuals performing a range of gestures of the right hand on each of three
separate occasions, and is described further in 4.2 below.

4.1.1.1 Regarding the use of subjects without limb differences

It is acknowledged here that despite the application of gesture recognition in robotic prosthesis control
providing the key context in which much of this work is discussed, and motivating various decisions made
throughout it, the data used is collected not from amputees but from able-bodied individuals.

1 [198] is Jeong et al.’s paper presenting their work; the dataset itself is available at [199].

35



M. Pritchard, PhD Thesis, Aston University, 2024 CHAPTER 4. DATA & FEATURES

This is in part a pragmatic necessity — as discussed, the availability of multimodal same-hand gesture
data is somewhat sparse, and this applies considerably moreso for data gathered from amputees. It is also
however a conscious choice. Put simply, amputees are not a monolithic group and a range of factors which
vary from individual to individual can cause significant heterogeneity among biosignal data collected from
this group, plausibly moreso than among those without limb differences for whom many such factors do not
apply. Scheme & Englehart note that differences both in scar tissue and in the geometry of the muscles
remaining in am amputee’s residual limb can affect the nature of their electromyographic activity [14]. While
such factors will undoubtedly be partially dependent on the exact amputation site and the degree of residual
limb remaining, it seems unlikely that even those who have undergone surgically similar amputations would
for example develop scar tissue in exactly similar ways. The electromyogram is not the only bioelectric signal
which may be unpredictably modified by amputation — as noted in 2.2.2.1, amputees frequently experience
“cortical remapping” [5]. This reorganisation of the structure of the sensorimotor cortex (described in 2.2.2.2)is
not wholly consistent in nature across individuals [101, 103, 104] and will naturally have an impact on the
electroencephalographic signals measured.

Given the exploratory nature of this research, it was felt that the potential for greater variance among
amputee data — which would be likely to be particularly impactful considering the smaller sample sizes
typical of amputee datasets — would present too great an uncertainty to the experimental work. The author
looks forward with much anticipation to seeing how future research can translate the experiments and findings
presented in this thesis to work directly involving amputee participants.

Despite this, Scheme & Englehart’s work [14] further found that while the classification accuracy of
amputees’ gestures from EMG data trended lower than of able-bodied participants, when comparing possible
classification algorithms, the ranking of candidate models’ performances was largely consistent across both
groups. This clearly suggests that findings regarding suitable modelling choices and system architectures
for biosignal gesture classification can generalise between able-bodied individuals and amputees. Of course
the extent and reliability of such generalisation is not fully known and will undoubtedly be a topic of great
interest to future research.

Such work may even find it possible to manipulate the data of able-bodied individuals like the subjects
in Jeong et al.’s dataset [199] to artificially resemble that of amputees more closely. Research such as that
of Campbell et al. [13] has successfully characterised some of the key population-level differences between
amputees’ and non-amputees’ recorded EMG. While clearly the acquisition of further multimodal amputee
datasets is paramount for the field, in the absence of this data there may be merit to making use of such
transformations as, in a sense, a form of style transfer — though the exploration & application of such
techniques is decidedly beyond the scope of this work.
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4.2 Dataset description

4.2.1 Overview

The biosignal data used in this research were collected by Jeong et al. in 2020 [198]. The dataset comprises
Electromyographic, Electroencephalographic, and Electrooculographic signals recorded from 25 participants,
all right-handed and all inexperienced with Brain-Computer-Interfaces, performing both real movements
(Motor Execution, ME) and Kinaesthetic Motor Imagery (KMI) of a range of upper-limb activities.
Participants gave informed consent to the study and for their data to be shared anonymously for reuse in
future work such as this, and its methodologies were “approved by Institutional Review Board (IRB) at Korea
University (1040548-KU-IRB-17-181-A-2)” [198]. The use of secondary data in this work is consistent with
the dataset’s Terms of Use2 and has been reviewed by the Aston University College of Engineering and
Physical Sciences Research Ethics Committee & given a favourable ethical opinion [ID EPS21031].

In this work the data of interest are the Motor Execution of Hand Grasping tasks, wherein subjects were
instructed to pick up one of three common objects with their right hand and in doing so performed one of
the following three grasp types:

• Cylindrical Grasp to pick up a glass cup, wherein the thumb and fingers are flexed while the thumb is
abducted, i.e. the thumb and palm are in opposition;

• Lateral Grasp to pick up a credit card - style card, wherein the thumb is flexed following flexion of the
fingers such that side opposition [200] is formed between the adducted thumb and index finger;

• Spherical Grasp to pick up a cricket ball, wherein the thumb is abducted and flexed, and the fingers
splayed out and flexed to different degrees.

Figure 4.1: Illustration of the three grasp types (Left-to-right: Cylindrical, Lateral, and Spherical)

2http://gigadb.org/site/term
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4.2.2 Procedure

In each task, participants were first shown a visual cue indicating a gesture to be performed, and given three
seconds of preparation time. A second visual prompt was given instructing them to perform the gesture,
which they did for four seconds, after which a final visual cue prompted them to put down the object and
return their hand to a neutral resting position, which was maintained for a further four seconds before the
next cue indicating the next gesture to be performed. In total they performed each of these three grasping
gestures 50 times, in a randomised order, during the data collection procedure.

Each of the 25 subjects took part in three such data collection sessions, each separated by a one week
interval. A total of 450 gesture performances, 150 of each grasp type, were thus collected from each participant.

The same procedure was followed in the recording of KMI data, with the distinction that rather than
physically performing the commanded movement, subjects instead imagined the sensation of doing so. While
KMI has been found in some research to induce trace EMG activity [76] such signals are weak in comparison to
the EMG signals associated with genuine movement; given that ordinary EMG activity from Motor Execution
tasks are available in Jeong et al.’s dataset, the inclusion of KMI would add little value to this work’s
investigation of multimodality and it is hence unused here. Future research may well focus more specifically
on the needs of those amputees with severely limited control over their remaining muscles near the site of
amputation, and so may find the EMG & EEG data from the KMI tasks to be of interest for this purpose.

On the same days as the above the subjects additionally performed wrist rotation tasks, involving prona-
tion and supination of the wrist ("palm down" and "palm up" orientation, respectively), and arm reaching
tasks, wherein the arm was moved up, down, left, right, forward, or back relative to the body hence incorpo-
rating movement at the shoulder and elbow joints. As with the Hand Grasping tasks, both Motor Execution
and Kinaesthetic Motor Imagery of these activities were carries out. Such gestures are not within the scope
of this work however subsequent studies may take interest in the inclusion of such movements, or of exploring
more complex, naturalistic movements composed of multiple types of gestures; for example a task involving
both a hand grasping and arm reaching component.

Between each ME or KMI task subjects were provided rest breaks, and longer breaks were allowed where
subjects self-reported any physical or mental fatigue or other discomfort, in efforts to reduce any impact
of fatigue, particularly muscular fatigue, on the recorded signals. During these rest breaks, the impedance
of measurement electrodes were checked and appropriate steps taken, such as the injection of additional
electrolyte gel, to ensure it was kept < 15kΩ to maintain signal quality.

4.2.3 Holdout Data

Section 3.3.2 discussed the issues of validity prevalent among much biosignal research due to cross-validation
leakage & a failure to verify findings on unseen data. The experiments of Chapters 5, 6, & 7 explore many
approaches for designing multimodal gesture classification and draw comparisons between them. As outlined
below in 5.2.1, an optimisation procedure is used to determine classification systems’ configurations in an
unbiased way, free from “cherry-picking” in the selection of models and hyperparameter values [152]. This
process however results in an intrinsic “baking-in” of information learned about the data used to optimise.
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Total Participants 25
Gender

Male 15 (60%)
Female 10 (40%)

Age (mean) 27.8
Development Set 20
Gender

Male 12 (60%)
Female 8 (40%)

Age (mean) 27.8
Holdout Set 5
Gender

Male 3 (60%)
Female 2 (40%)

Age (mean) 27.8

Table 4.1: Demographic composition of dataset splits

The resultant systems would have an inherent artificial advantage when classifying; systems would have been
“pre-selected” on their suitability for classifying datapoints seen during optimisation, even if those instances
were not present among the final systems’ training datasets. Claims regarding systems’ relative superiority
made on the basis of such tests, without validation on unseen data, would risk generalising no further than
the dataset used for optimisation, and their apparent classification accuracies risk being unduly inflated.

Therefore, to enable fair and valid comparisons between systems, five participants (20%) of the dataset
were reserved throughout experimentation and used exclusively for verification, hereafter referred to as the
“Holdout” Dataset, and the remaining 20 treated as the “Development” Dataset upon which modelling deci-
sions would be made.

It should be stressed that the term “hold-out” is used throughout this work to mean “data excluded
from all parts of analysis, modelling, and testing, not being accessed until such time as they are used to
verify observations or test specific hypotheses” as outlined. This is described by Hosseini, Powell, et al. —
whose 2020 paper “I tried a bunch of things: The dangers of unexpected overfitting in classification of brain
data” [31] illustrates the principle (though not the specific structure of the experiments in this work) in its
5th Figure — as a “Lock-Box ” dataset on the grounds of “hold-out data” being defined inconsistently among
the literature. Notwithstanding this concern however, the reserved data is referred to as “hold-out” in this
work on the assumption it will be a more familiar framing to the reader.

Held out were participants 1, 6, 11, 16, and 21. These were chosen to preserve a consistent mean age (27.8
years) and proportion of female participants (40%) across both Development and Holdout Sets, as presented
in Table 4.1, in efforts to control for any potential influence these factors may have on the generalisation
ability of a system. For transparency & to enable replicability, the reader is advised that these Holdout
subjects continue to be identified as participants 1, 6, 11, 16, and 21 throughout the work,
rather than being relabelled e.g. as subjects 1 - 5 in any way.
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4.2.4 Data Collected

Biosignal data were recorded from 70 Ag/AgCl electrodes, all sampled at 2500Hz by the same BrainAmp
digital signal amplifier and passed through a 60Hz notch filter to reduce power-line interference. Three
additional electrodes provided a ground and two reference signals. Of these 60 electrodes were used to collect
Electroencephalographic data, arranged in accordance with the International 10-20 system and its 10-10
extension [84, 89]; the ground electrode was situated at Fpz and the primary reference at FCz. While a
64-channel array is conventional, Jeong et al. excluded electrodes FT9, FT10, TP9, and TP10. These four
were repositioned to instead measure Electrooculographic activity, at three sites around the right eye and
one at the left eye, for the purposes of artefact removal.

In this work, the EEG data collected by Jeong et al. were trimmed to 20 channels situated near brain
regions relevant to the planning, execution, and sensation of movements (see 2.2.2.1). Reducing the number of
required EEG channels could enable a gesture recognition system to be deployed at lower cost, a clear benefit
to prosthesis users & a factor routinely reported as important to them [25,27]. While the minimisation of EEG
channel count & the optimal selection of channels is a field of research unto itself [112, 201], precedent from
works such as Schwarz et al. [163] & Iturrate et al. [162] (who as described in 3.2 were able to discriminate
grasps with as few as 15 and 8 motor-relevant EEG electrodes respectively) among others [145, 146, 158,
201–203] demonstrates the viability of reducing a system’s total EEG channel number in a way informed by
established knowledge of the motor cortex structure, as is done here. Electrodes FC1-6, Cz-6, and CPz-6
were thus retained as highlighted in Figure 4.2.

Figure 4.2: Placement of EEG electrodes used according to International 10-10 system [87], shaded purple. Adapted
from [204]; originally published under CC0 1.0 [https://creativecommons.org/publicdomain/zero/1.0/deed.en].
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Six electrodes were positioned over muscles of the right forearm, namely the extensor digitorum, extensor
carpi ulnaris, flexor carpi radialis, flexor carpi ulnaris, triceps brachii, and biceps brachii (shown in Figure
4.3 as EMG1 - EMG6 respectively), to record EMG data. EEG electrodes Fpz and FCz remained the ground
and reference respectively for EMG recordings, though a final electrode was placed at the elbow to provide
an alternative reference. In Jeong et al.’s work the EMG signals were not used for modelling, rather to
demonstrate the presence of muscular activity during Motor Execution tasks and its absence during KMI.

Figure 4.3: Sites of EMG electrodes used. © Jeong et al. 2020. Published by Oxford University Press GigaScience
in [198] under CC-BY 4.0 [https://creativecommons.org/licenses/by/4.0/deed.en].

4.2.5 Data Preprocessing

Data were preprocessed in Mathworks MATLAB R2020a [205] with a script adapted from those provided
by Jeong et al. [199], and the version of the Berlin Brain-Computer Interface (BBCI) Toolbox provided
in their repository. For each recording, EEG signals were bandpass filtered from 2 - 30 Hz with a 4th-
order Butterworth filter. EMG data were filtered from 10 - 500 Hz using a 5th-order Butterworth bandpass
filter. Being an Infinite Impulse Response filter, a Butterworth filter introduces a phase delay which can
differ at different frequencies. While MATLAB offers zero-phase IIR filtering via its filtfilt() function, this is
implemented by forward-backward filtering of a waveform and thus requires the entire signal be available [206].
That would be achievable in the offline experiments of this work, but not in the kind of real-time gesture
control contexts which motivate it. Filtering is thus instead performed with MATLAB’s filter() function; the
phase shift is accepted as an unavoidable by-product, which a developed classifier would need to handle.3

Figures 4.4a and 4.4b provide illustrative examples of raw and pre-processed EMG & EEG data respectively.
As these figures also show, no specific measures were taken to identify and remove eyeblink artefacts in

3For completeness, the effect on EEG-based classification (the modality more significantly encoded in the frequency domain)
of replacing this filter with a zero-phase equivalent was investigated and found to be negligible, outlined in Appendix B.
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the EEG data. Conventional methods for this involve decomposing signals into Independent Components,
eliminating those ICs similar to measured Electrooculography (EOG) signals, and projecting the remaining
components back into the scalp space to reconstruct the EEG data [207], and Jeong et al. provide EOG
recordings for this purpose [198]. Though much research into eyeblink artifact elimination has been con-
ducted there is not yet a domain-established adaptation of the technique for real-time processing4. Those
strategies proposed though often successful vary in effectiveness and efficiency [208, 209], and many increase
the computational load or can introduce additional delay to the processing of EEG signals, even in the order
of hundreds of milliseconds [210]. Given these limitations, and that there is no reason to anticipate eyeblinks
as being class-dependent in the dataset used for these experiments, their removal was not a priority in this
work. Figure 4.4b additionally demonstrates that while eyeblinks do remain present in the preprocessed EEG
signal, due to their slow rhythm the 2–30 Hz bandpass filter suppresses them significantly.

(a) EMG (b) EEG

Figure 4.4: Representative examples of EMG (left) and EEG (right) signals before and after data pre-processing.
Regions shaded grey correspond to periods of hand movement. NB: Pre-processed EMG seen here is before rectification.

In both EMG and EEG, individual gesture performances and rest periods were extracted from the record-
ings, each of a three second duration. While the gestures were as noted performed for four seconds, extracting
from these a three-second epoch allows for some mitigation of the impact of any minor variability in subjects’
reaction times or gesture durations between performances. This demarcated the 50 performances of each
grasp type and approximately 150 distinct rest periods (each following a gesture performance). To ensure
balance between classes, a pseudorandom sample5 of 50 rest periods was taken. The resultant dataset thus
comprised a total of 200 gesture performances, inclusive of rests, per participant for each session — 600
gesture performances in total per subject.

4Both this and zero-phase filtering could in theory be applied separately to each “window” of data processed in real-time. This
would however add significant computation, and be limited in effectiveness — for a window of length T , the Rayleigh frequency
1
T

dictates the lowest identifiable frequency component, and thus would limit the achievable lower cut-off of the bandpass filter.
5determined using a combination of the participant and session IDs of the recording as a seed, to ensure the same sample

was taken of both EMG and EEG despite independent processing
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4.2.5.1 On Common Spatial Patterns

A popular (though not ubiquitous) signal processing & feature extraction technique among EEG literature
is the use of the Common Spatial Pattern algorithm. This is a data-driven process by which spatial filters
are learned and then used to project the raw EEG signals into components which are more discriminative
with respect to a given condition — in the case of motor cortex studies, the gesture being performed.
Often multiple CSP filters are used, selected to minimise within-class variability while maximising separation
between classes [182]. This filtering aids in addressing the limitations of spatial resolution in typical EEG by
identifying components of interest among the data which may not be easily detected otherwise, such as those
electrical signals originating from point sources which do not align spatially with individual electrodes, or
which are otherwise obfuscated by the volume conduction through the head [211]. This technique was used
by Jeong et al. in their classification of the EEG data collected [198], and given its prevalence as a domain-
standard technique was initially considered for use in this work. However, both exploratory investigations
and theoretical reasoning suggested it unsuitable.

The CSP is a supervised data-driven method [152]; the projections it makes from EEG data and the
transformations it learns to produce them are dependent on and unique to the characteristics of that data.
Indeed it is generally applied not only on a single-subject basis [93], but within the context of a single
continuous datastream from one recording session [170]. This is not itself an inherent weakness of the
method; it is in line with the experimental paradigm of most EEG studies, which as noted in 3.3.1 often
devise and test classification models on a subject-specific basis. The resultant dissimilarity between separate
CSP projections would however be likely to risk amplifying cross-subject and cross-session variance in EEG
data, impeding the ability of models to generalise across subjects, or even across data gathered from the
same individual on multiple separate occasions. As put by Lotte et al., the CSP “[does] not perform well
with a large quantity of heterogeneous data recorded from other subjects or other sessions” [152]. Given the
specific interest this work takes in exploring the possibility of subject-independent and session-independent
classification, applying CSP in the traditional manner would evidently not be suitable.

This unsuitability is evidenced by preliminary experimentation. Figure 4.5 visualises t-distributed stochas-
tic neighbour embeddings (t-SNE), a dimensionality reduction technique which plots similar datapoints near
each other & dissimilar ones farther away [212], of the EEG data both where CSP processing had been applied
before feature extraction (outlined below) and where it had not. It should be noted that only EEG data of
20 subjects designated for model development are used here; as outlined in 4.2.3 the remaining subjects had
been excluded from analysis at this stage to ensure modelling decisions were made without foreknowledge of
the data used to verify results. Where CSP has been used, approximately 60 highly separable clusters can
be seen. These are not present where features have been extracted from raw EEG. Recall that subjects each
contributed 3 sessions to this dataset; across the 20 aforementioned subjects this equates to a total of 60
distinct data collection sessions. It certainly appears that process of Common Spatial Pattern projection did
indeed introduce an artificial degree of separation between data originating from different recording sessions.

Further evidence for this separation can be seen by modelling & visualising t-SNEs on a per-subject basis
rather than across all 20. Figure 4.6 present t-SNEs of EEG featuresets, both with and without the use of
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(a) With CSP (b) Without CSP

Figure 4.5: t-SNEs of EEG over all Development Set subjects

CSP, belonging to three subjects selected as illustrative examples. In each, the case where CSP has been
applied can be seen to display a distinctly separable clustering of the data by the three recording sessions.

There has been some work, by Kang et al. [176], Lu et al. [177], and Guar et al. [178] among others, in
despecifying Common Spatial Pattern filters to reduce the propensity to overfit. These approaches typically
involve regularising the per-class covariance matrices estimated during the learning process towards predeter-
mined matrices, such as the identity matrix (unit matrix) or a ”generic” matrix constructed from covariance
matrices of other subjects’ data. The latter of these has also been extended to involve pre-selection of the
“other” subjects with whom to regularise the learning of the new subject’s CSP filters for a more tailored
variation [182]. Such techniques however are both less firmly established, and still reliant upon the availability
of EEG recorded from the target subject or session. The CSP filters they find are somewhat less specialised
than is conventional but are nevertheless data-driven; they are not universally generalisable to wholly novel
data. The quantity of subject- or session-specific data required to effectively find even regularised CSPs ought
not to be ignored. As with any other modelling process, to avoid a classifier’s ostensible performance from
being undermined by data leakage [191], the CSP projections applied to the data used to train it should
not be found over the entirety of a given EEG recording. Rather, the spatial filters must be learned from
training data (or a portion thereof) and those specific filters applied to otherwise unseen testing data6. This
learning is likely to be a source of overfit in cases where only a small amount of such data is available, and
thus to hinder systems’ accuracies in investigations into cross-subject & cross-session classification, precluding
regularisation of CSPs from being an appealing strategy here.

Given both the theoretical justification for its unsuitability and the preliminary evidence of a likely
detrimental impact, Common Spatial Pattern filtering was not, despite being a well-precedented technique
in BCI literature, applied to EEG data in this work.

6This is well illustrated in Figure 2 of [213], but is unfortunately not a universally applied principle in EEG studies.
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(a) With CSP (b) Without CSP

(c) With CSP (d) Without CSP

(e) With CSP (f) Without CSP

Figure 4.6: t-SNEs of EEG produced on a within-participant basis for subjects 8, 15, and 23
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4.3 Feature Extraction

4.3.1 Time-Window Segmentation

While there is some precedent, at least in the EMG domain, for raw sensor readings to be used as input data
for a classifier [214], bioelectric signals are typically understood to be stochastic in nature and instantaneous
measurements of signal amplitude to carry minimal information [215]. The more common approach is to
generate informative attributes for modelling by the extraction of statistical features from successive “win-
dows” of the time-series data, describing the nature of a given signal over that time period [216]. Typically
these windows are made to overlap by some percentage; with a period of x and an overlap of 50%, the first
window w0 would span from time t0 to tx and the second window w1 from tx

2
to t 3x

2
. This is generally done

for two purposes: to mitigate the loss of information which would otherwise be lost at the border between
adjacent windows, and to improve the information rate of real-time systems by enabling a “new” window to
be processed at, in the given example, a periodicity of x

2 rather than x [216,217].
The appropriate length of such time windows, and the suitable degree of overlap between them, varies

much among the biosignal literature. In EEG for example, choices have ranged from windows of 1 second
with only a 50 millisecond offset (i.e. a 95% overlap) by Toriyama et al. [74], to 1 second with a 50% overlap
in Bird et al. [218], to 250 milliseconds with a 150 millisecond overlap by Rimbert et al. [219], to 500 and 100
milliseconds with no overlap at all as in Gordleeva et al. and Yang et al. [220] respectively, among various
others. While there appears little consensus, window dimensions are in part a task-dependent decision — this
range of precedented choices is actually relatively narrow in the wider biosignal classification context; Candra
et al. [221], for example deem windows of 3 – 12 seconds appropriate for EEG-based emotion recognition.
Given Farrell et al. [222]’s finding of the optimal delay between control and actuation of a prosthesis to be
in the order of 100ms7, such extended durations would evidently be unsuitable for gesture recognition; all of
the aforementioned window sizes used in motor cortex studies are by comparison vastly more viable.

Such variation is similarly found among EMG studies. Dolopikos et al. [223] use 1 second windows with
a 500 millisecond overlap, Shahzaib et al. [224] non-overlapping windows of 200 milliseconds, Khushaba
et al. [225] 150 millisecond windows with a 50 millisecond overlap, and Atzori et al. [226] used windows
of 200 milliseconds offset only by 10 milliseconds, using parallelisation to extract features from multiple
successive windows simultaneously to enable prompt availability for classification. Some studies have sought
to specifically investigate the effect of the window length in EMG classification. Zardoshti-Kermani [227]
found that the error rate in the classification of an above-elbow amputee’s muscle force by a k-Nearest-
Neighbours model dropped as window lengths were increased from 10 to 200 ms, and that this was the case
for a range of different features trialled. Menon et al. [228] similarly found in the classification of gestures
from able-bodied, transradial, and partial-hand amputees’ EMG data, that the window length was negatively
correlated with error rate when trialling windows from 10 to 550ms — but that the degree of overlap between
adjacent temporal windows had no effect in any limb condition group. Smith et al. [229] meanwhile found

7It should be noted that [222] refers to a Proportional Control prosthesis (see Chapter 1) wherein a user may plausibly need
a device to have an especially rapid response to enable them to adjust their muscle force in real-time.
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that when trialling windows between 50 and 550 milliseconds in length, those 150ms or longer provided
greater offline classification accuracy, but windows longer than 450ms resulted in lower completion rates of a
real-time movement task by the participants. This again highlights the relationship between window length,
prediction rate, and real-time suitability, though whether reducing the time-to-prediction by increasing the
overlap between windows could mitigate here was not explored.

In this work, time-series data of each gesture performance were divided into windows of one second in
length, with a 500 millisecond (50%) offset overlapping consecutive windows. The effects of window properties
not being a focus of the current study, values were chosen which lie within the bounds of those precedented
in literature. They have also specifically seen prior use in conjunction with the scripts8 this work uses for
feature extraction from both EMG [230] & EEG [218] data.

Using these scripts, a number of features (detailed in 4.3.2.2 below) were computed from each window
of data. Features from a window were joined with those of the immediately consecutive window to form
samples which each corresponded to 1.5 seconds of raw signal data. Thus four datapoints were extracted
from each three-second gesture performance, each of which (except the first of the given performance) shared
one window with its predecessor and so introduced 500ms of novel data. This is illustrated in Figure 4.7.

Figure 4.7: Illustrative sketch of time-window segmentation procedure.

In a deployment setting wherein live biosignal data were being measured for classification, this windowing
would be performed sequentially in real-time. At a given time t0, data from time t−1.5 to t−0.5 would form
the first window from which features were extracted, and data from t−1 to t0 the second; thus at each 500
millisecond interval (or more generally at each half-period interval of T

2 , should an alternative window-length
be used) a new datapoint would be generated for classification.

8Script adapted from that available at https://github.com/fcampelo/EEG_Classification_, itself adapted from that first
pioneered in [218].
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4.3.2 Feature Ensemble

4.3.2.1 Precedent

A number of popular feature choices for EMG data are outlined by Hudgins et al. [215]: Mean Absolute Value
& Mean Absolute Value Slope are respectively measures of the signal’s rectified amplitude and the rate of
change of the same, Zero Crossing and Slope Sign Change both capture information related to signal frequency,
and Waveform Length is a measure which also incorporates periodicity. While these specific features have
themselves seen extensive use among EMG-related literature [49,50,109,112,130,145,224,231–235], alternative
measures of the properties they capture have also proven popular such as for example the Root Mean Square
as an amplitude measure [231,232,234,236] or the Wilson Amplitude (the number of times in a given window
that two consecutive samples differ in amplitude by more than a set threshold) as a means of assessing
the rate of amplitude change [50]. Other established feature choices include measures of signal amplitude’s
distribution over the given window such as the standard deviation [236, 237] or variance [50, 238], or even
higher-order statistical moments [225, 239], and the extrema — the signal’s maximum and minimum value
— within the window [237, 238]. In some cases the assessment of the rate of change in amplitude has been
extended to consider also the difference in standard deviation between subdivisions of a signal [189].

While many of these features are in the time-domain, frequency-domain EMG information is also used
in classification tasks. The Zero Crossing and Slope Sign Change mentioned above have seen extensive
use but other measures of spectral characteristics such as band powers of signal components at certain
frequencies [240], the mean of frequencies weighted by their magnitudes (“spectral centre of gravity”), and the
ratio between high and low frequency components [241]. Time-frequency-domain features including wavelet
based decomposition [138,242,243] and the Short-Time Fourier Transform [38] have been found useful [244],
and noted to be of potential benefit in the identification of the Motor Units recruited during a muscle
movement when considered in conjunction with known properties of the relevant muscle fibers [245].

Many more features have seen successful use but are less frequently adopted; interesting examples include
the Irregularity Factor, a ratio of the number of “ascending” zero-crossings to the number of positive “peaks”
in the signal [225], and coefficients related to analysis of the “quefrequency” or “cepstrum” — the result of
performing an inverse Fourier transform on the logarithm of frequency-domain data [241,246].

While time-domain features dominate the EMG literature, EEG information by contrast is largely un-
derstood to be primarily encoded in the frequency domain and this is a much more common category of
feature to be found among EEG studies [158–160]. As discussed in 2.2.2.1 the relative powers of EEG signal
components at various established frequency bands are often taken to indicate the nature of neural activity;
per 2.2.2.1 the power of the µ wave in the motor cortex & its event-related desynchronisation are typically
of particular interest in classification of motor or motor imagery tasks [202,247,248].

Nevertheless a number of works have found time domain features of EEG signals to provide useful infor-
mation for classification. Jochumsen et al. [158] used the mean amplitude of EEG signals along with spectral
bandpowers in the classification of hand gestures, and Schwarz et al. [163] were able to achieve promising
accuracy in the identification different grasping actions from only time-domain EEG features (primarily a
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moving average). Al-Quraishi et al. [139]’s classification of ankle movements likewise found success in the
use of time-domain features including the aforementioned Mean Absolute Value and Root Mean Square ex-
tracted from both EEG and EMG data. Works such as that of Siuly et al. [249] have also evidenced the
cross-correlation between EEG signals to be another informative property which can be of use in classifying
motor imagery.

4.3.2.2 In this work

Given this precedent, this study thus sought to extract time-domain, frequency-domain, and correlation-
based features from both EMG and EEG data. Key popular feature choices incorporated included measures
of signals’ amplitude and its rate of change, of distribution and extrema, and of their powers at certain
frequency bands. The ensemble of features presented in Table 4.2, which has been found informative in
previous work in the classification of both EEG [218] and EMG [223,230], encompasses many of the features
noted above as established in one or both domains. While not all the features comprising it are domain-
standard for both data modalities, for simplicity (and given the featureset’s aforementioned precedent), in
this work all the listed features were extracted from each time window of both EMG and EEG data9.

Following the formation of datapoints by the joining of features from consecutive epochs as described
above, a small number of features which overlapped between those adjacent windows were then purged from
the ensemble, namely:

• the mean, maximum, and minimum of the leading window’s third quarter, which equate to those of the
trailing window’s first quarter;

• the mean, maximum, and minimum of the leading window’s fourth quarter, which equate to those of
the trailing window’s second quarter;

• the forward difference in mean, maxima, and minima between the initial window’s third and fourth
quarters, which equate to the forward differences in the same between the adjoining window’s first
and second quarters.

The final dataset thus comprised EMG & EEG features extracted from 4 samples drawn from each of 4
gestures, each repeated 50 times in each of 3 sessions by each subject, i.e. Nsamples ∗Ngestures ∗Nrepetitions ∗
Nsessions = 2400 datapoints per subject.

To enable synchronisation and later stratification of EMG and EEG datasets, each instance was addi-
tionally assigned identifying attributes corresponding to the participant number, recording session, repetition
count of the gesture within that recording session, epoch start time, and epoch end time, which were all later
removed before data were used for any modelling.

9Due to inconsistent literature definitions of the µ frequency cutoffs, and some work indicating a presence of µ activity in the
low-Beta band as well as the Alpha with which it is typically thought to coincide, neural oscillations were binned into only the
five most “established” bands rather than risk misleading implications of labelling any as the specifically motor-relevant µ.
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Mean µ of all signals y1, y2, y3, ...yn µn = 1
N

∑︁N
i=1 yni

Standard deviation σ of all signals y1, y2, y3, ...yn σn =
√︂∑︁N

i=1(yni − µn)2

Skewness γ of all signals γn =
∑︁N

i=1(yni−µn)
3

N(σn)3

Kurtosis κ of all signals κn =
∑︁N

i=1(yni−µn)
4

N(σn)4
− 3

Maximum value of all signals ynmax = max(yn)
Minimum value of all signals ynmin = min(yn)

Backward difference in mean µ between first & second
half-windows h1, h2 of all signals

∇µn = µh2n − µh1n

Backward difference in standard deviation σ between
half-windows of all signals

∇σn = σh2n − σh1n

Mean µ of each quarter-window qk ∈ {q1, q2, q3, q4} of all signals µqkn = 1
N

∑︁N
i=1 ynqk i

Forward difference in mean µ of paired quarter-windows for all
signals

∆abµn = µqan − µqbn

Backward difference in maximum value between half-windows ∇ynmax = max(yh2n)− max(yh1n)

Maximum value of each quarter-window qk yqknmax
= max(yqkn)

Forward difference in maxima of paired quarter-windows ∆abynmax = max(yqan)−max(yqbn)
Backward difference in minimum value between half-windows ∇ynmin = min(yh2n)− min(yh1n)

Minimum value of each quarter-window qk yqknmin
= min(yqkn)

Forward difference in minima of paired quarter-windows ∆abynmin = min(yqan)− min(yqbn)
Lower triangular elements of the covariance matrix of all signals -

Eigenvalues of the covariance matrix -
Lower triangular elements of matrix logarithm of the covariance

matrix
-

Signal bandpowers corresponding to neural oscillations Cutoff Frequencies (Hz):
(computed by binning FFT components) Delta: 0.5 < f ≤ 4

Theta: 4 < f ≤ 8

Alpha: 8 < f ≤ 12

Beta: 12 < f ≤ 35

Gamma: 35 < f

Table 4.2: Feature ensemble extracted from each window of raw EMG or EEG data

This feature extraction procedure was performed independently on the EMG & EEG datasets. This
enabled the two data modalities to be treated wholly separately throughout the modelling pipeline until
merged in accordance with the various fusion strategies outlined in 5.3.1, giving confidence that any impact
of the multimodal approach was indeed due to said fusion. It additionally ensured any differences in magnitude
between the EMG and EEG signals did not unduly influence any subsequent feature scaling process.

Further work however may find merit in investigating a joint feature extraction approach, enabling fusion
at the signal-level (see 3.1.3.1); through the inclusion of the covariance matrix this would allow the mea-
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surement of any joint variability between EEG and EMG signals. Given that muscular electrical activity
as measured by EMG is the direct result of synaptic transmission from the motor neurons innervating the
muscle, i.e. that the measured electrical signals could be said to "originate"10 in the brain’s motor cortex,
such covariance could be expected in principle to be strong and indeed correlation-based fusion approaches
have shown some merit [134]. Scalp EEG does not measure at the level of individual motor neurons and
likewise surface EMG is not easily decomposed into constituent Motor Unit Action Potentials; it may be
that this coarseness of measurement precludes such relationships from being readily identifiable. Further,
the highly somatotopic mapping of the motor cortex may suggest that such a relationship as unlikely to be
influenced by the nature of a movement being performed; for two movements using the same muscles, the
link between those muscles’ fibers & their associated motor neurons is unlikely to vary between them, and
hence EMG-EEG covariance may be of low informativity with respect to class in this case. Nevertheless,
evaluating this empirically may prove insightful.

10See 2.2.1 for a more complete description of this mechanism.
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Strategies for Multimodal EMG-EEG Fusion
in Same-Hand Gesture Classification

5.1 Aims & Overview

To investigate the impact of leveraging Electromyographic & Electroencephalographic data simultaneously
in upper-limb gesture recognition, suitable systems which can use such data to classify gestures need to be
established. Chapter 5 therefore seeks to identify viable candidate systems for this problem.

As discussed in Chapter 3 the literature on biosignal classification is vast and while in certain contexts
some trends and conventions in modelling choices do arise, a wide range of approaches have been used for
this task with limited evidence as to the superiority of any over another and it is thus prudent to explore a
variety of options.

This work proposes and compares the following three fundamental architectures (described fully in 5.3.1
below) for fusing EEG & EMG data in gesture classification:

• Feature-level, wherein EEG & EMG data are considered together by a single model to predict gestures.

• Hierarchical, wherein the predictions of a lower-level model based on one data modality are considered
alongside data of the other modality by a higher-level model to make the final prediction.

• Decision-level, wherein EEG & EMG data are classified in parallel by separate models, and the predic-
tions of each used to determine a system-level prediction.

The first and last of these are derived from domain-precedented methods of early and late fusion respectively;
the Hierarchical approach is believed a novel strategy in this domain.

In the first stage of this investigation, an unbiased determination of suitable modelling choices — those
which lead to highly-performing systems — is made for each of the proposed architectures. This is treated as
a Combined Algorithm Selection & Hyperparameter Optimisation process [250] over a selection of candidate
modelling choices informed by the biosignal literature as detailed in 5.3.3. This enables a fair assessment
of the fusion architectures by providing equivalent opportunity for each to use its respective "best-in-class"
arrangements, thus offering a more thorough comparison between a broader range of fusion strategies than
that which has been done before in the domain (see 3.1).
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This process additionally illuminates properties of the various models and techniques being considered,
providing insights which can aid future research in the field. Some such findings establish a systematically
identified underpinning of evidence to certain trends which, while having precedent in literature, have previ-
ously appeared to rely on a priori assumptions or to be a result of “herding” [251] as researchers opt to use
popular techniques over new ones. As noted by Lotte at al. [30] among others, comparatively few studies on
Brain-Computer-Interfaces draw objective comparisons between classifiers tested on the same problem while
keeping other factors such as participants and feature extraction methods consistent, and many are insuffi-
ciently transparent — or even at risk of bias — in their modelling decisions. Indeed Lotte et al. [30]’s seminal
work on BCIs states in conclusion that: “One difficulty encountered in studies concerns the lack of published
objective comparisons between classifiers. Ideally, classifiers should be tested within the same context, i.e.,
with the same users, using the same feature extraction method and the same protocol. Currently, this is a
crucial problem for BCI research.” [30]. Through its application of CASH optimisation to this domain and
the unbiased, objective comparisons between systems enabled by doing so, this work addresses precisely that
limitation. The use of CASH further provides an evidential basis, which much of the field is lacking, for
design decisions taken in the work.

In the second stage of experimentation, the optimiser-identified configurations of the fusion systems
are assessed on their ability to generalise to unseen subjects. This emulates the real-world use case of a
complete gesture recognition system being provided to novel users, and hence provides an indication of the
systems’ suitability for hypothetical deployment. The systems are established as capable of being used by
new subjects, and the extent to which each system can generalise to new individuals is evaluated & compared
across system categories (for example between best-in-class Multimodal Fusion and Unimodal classification
systems). This establishes strong candidate gesture classification systems on which to ground subsequent
areas of investigation which form the following chapters, namely exploring the extent of the need for user-
specific training in Chapter 6, and the evaluation of per-session calibration procedures in Chapter 7.

5.1.1 Aims

The overarching purpose of this chapter’s experimental work is to identify a suitable system configuration(s)
for classification of same-hand gestures using noninvasive biosignal, which performs accurately over multiple
individuals. From this, the following subsidiary Aims are derived:

• Aim 5.1 Establish whether a multimodal system can offer better performance than a unimodal one

– Aim 5.1.1 Establish whether the fusion architecture impacts system quality, & identify performant
fusion architectures

• Aim 5.2 Identify modelling choices which can contribute to a multimodal or unimodal system achieving
high classification accuracy

• Aim 5.3 Establish a pipeline for the unbiased identifying of a performant multimodal system
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5.1.2 Deployment Approaches

In a real-world situation the user of a deployed gesture-recognition system, such as a prosthesis wearer, would
need confidence that the system would perform well for them. A system could be deployed in one of two
potential opposing approaches (or some middle ground as explored later in Chapter 6), according to which
two categories of system were developed.

The first type of systems are subject-dependent in nature: trained solely on biosignal data of a single
given individual and intended for exclusive use by that individual, being tested only on their ability to
classify that individual’s data. We hence call such subject-specific systems “Bespoke”. Such an approach
could be intuitively presumed to maximise a system’s accuracy by virtue of being specialised to the user, but
would would carry practical challenges in the time, cost, convenience, and accessibility implications of said
specialisation. It should be noted that while any given Bespoke system trialled in these experiments is trained
and tested on data from each individual subject separately, the system-level configuration of such a Bespoke
system is not subject-specific. That is, the selection of Bespoke systems’ component machine learning models
and the tuning of their hyperparameters is not itself tailored uniquely to each Development Set subject —
rather a single configuration is found for use with all subjects. This is motivated by a desire to achieve what
is described here as “portability” of a Bespoke system — the identification of a model which can be trained
on and subsequently used to predict data belonging to unseen individuals, on a subject-specific basis each
time. This could potentially mitigate the resource implications of a Bespoke deployment, by avoiding the
need for custom designing of a gesture classification system from the ground up for each novel user. Instead
it provides a more “universally” applicable classifier configuration, which need only be trained on the new
user’s biosignal data.

At the opposite end of the spectrum the second category, referred to here as “Generalist” systems, are
subject-independent — intended to classify data of a novel subject without any prior access to that individual’s
data for modelling. As implemented here these systems employ a “Leave-One-Participant-Out” approach,
being trained on data provided by all participants except for a given individual, and tested on the accuracy
with which they make predictions based on that unseen individual’s data. They are thus measured on their
ability to generalise to a new end-user with no adaptation, additional training, or calibration to the user’s
data. These hence mimic a hypothetical "off-the-shelf" use case, wherein a novel user could make use of the
pre-trained system with a minimal barrier to entry, at the expense of sacrificing any potential performance
gains arising from specialisation.

As was discussed in Chapter 3, systems of the subject-specific or “Bespoke” nature are vastly more com-
mon among literature and particularly dominant among previous studies on multimodal biosignal classifi-
cation [128, 129, 141, 145, 147, 169]. While some work has seen varying degrees of success in developing
user-independent EMG-based gesture classification systems [172–174], and to a lesser extent EEG-based
systems [64], achieving strong generalisation performance remains a present challenge for research in this
domain [171]. This work’s experiments with its “Generalist” systems seeks to further the boundaries of
subject-independent biosignal gesture classification and establish its possibility in a multimodal context.
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5.2 Methodology

5.2.1 Overview

The overriding aim of this aspect of the research is to develop a gesture identification system that could be
used successfully by a naïve subject, be that as it may a pretrained Generalist system the subject could use
out-of-box or a Bespoke system to be trained on the subject’s data.

Unbiased determination of candidate classification systems is a particular contribution of this work which
has been noted as lacking among biosignal literature as discussed in 3.3.2. Lotte et al. [152] for example in
reviewing the state of EEG Brain-Computer Interfaces state that: “many studies did not compare the studied
DNN1 to state-of-the-art BCI methods or performed biased comparisons, with either suboptimal parameters for
the state-of-the-art competitors or with unjustified choices of parameters for the DNN, which prevents us from
ruling out manual tuning of these parameters with knowledge of the test set”. This work makes specific effort
to avoid such pitfalls and present fair, unbiased explorations of the approaches to noninvasive biosignal-based
gesture classification included within its scope.

To enable modelling choices to be determined in an unbiased way, the system configurations for each
fusion architecture to be compared were found through Automated Machine Learning [252]. Rather than
select classification models solely on the bases of a priori assumptions or their dominance among literature, it
is acknowledged that no technique could ever plausibly be universally ideal [252]. Instead a range of possible
modelling choices (described in 5.3.3 below) were established, and an automated algorithm used to explore
these candidate options & identify those which lead to the highest classification accuracy. Similarly the
hyperparameters defining the properties of those candidate models were not tuned manually, but likewise
chosen through an automatic assessment of a defined range of options. Some fusion architectures comprise
multiple machine learning classifiers. It cannot be guaranteed however that an EMG-based classifier, for
example, which has been tuned to perform well in isolation will necessarily be a suitable component of a mul-
timodal system. Optimising the different possible algorithms separately, and assembling an ensemble from
those tuned models, could not only be an inefficient allocation of optimisation budget but risk overlooking
combinations of modelling choices which are individually suboptimal but jointly effective. The processes of
selecting classifiers and setting their hyperparameters, for all models constituent in a given system, were there-
fore performed simultaneously in a procedure known as Combined Algorithm Selection And Hyperparameter
(CASH) optimisation [250].

This CASH optimisation was performed independently for each of the fusion architectures explored in
these experiments. This enabled fair comparison between the fusion architectures each on the basis of their
respective “best-in-class” systems as identified by the optimisation process, as it was assumed likely that one
candidate fusion architecture may be more or less suited to different modelling choices than another. Bespoke
and Generalist systems were also considered separately; their distinct natures likewise believed to make it
unlikely that the same modelling choices would be optimal in both cases.

1While the passage quoted focuses on Deep Neural Networks, the trend Lotte discusses here and in their earlier work [30] to
which [152] was a follow-up is not exclusive to studies proposing usage of DNNs
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These optimisation routines rely on evaluating the predictive power of various different combinations of
modelling choices; the CASH optimisation itself learns from the data used to train and test candidate options
and tailors a system’s configuration to that data. For this reason it would not be a valid assessment to compare
fusion architectures using their “best-in-class” systems solely on the basis of the data used to identify those
optimal system designs; this would be a source of data leakage [190, 191]. While such comparisons may be
informative they could not be confidently said to generalise beyond the specific data used in the optimisation
due to the inherent risk of overfit [31]. Therefore as detailed in 4.2.3 above, a portion of the dataset was
reserved for verification of such comparisons as the “Holdout” data, and the remainder (the “Development”
data) used for identification of the suitable system configurations. For each fusion approach, the most
performant combination of models and their hyperparameters found during CASH optimisation with the
Development data was taken as that approach’s optimal configuration, and the resulting systems compared
on the unseen Holdout data.

5.2.2 Procedure

As noted, the search space describing systems’ configurations included both model selection hyperparame-
ters determining the choice of classification algorithms used, and model-level hyperparameters describing the
particular nature of the instantiated instances of those selected classifiers. Such model-level hyperparameters
are relevant only to classifiers of their associated types; they hence each only affect the overall assembled
system when the model selection hyperparameters were of specific categorical values. To enable the optimi-
sation algorithm to allocate resources efficiently, it was thus important to ensure it was made aware of this
conditionality. Such capability is inherent to the nature of Tree-Structured Parzen Estimators [253], making
them a suitable choice of optimiser in this case.

In both Bespoke and Generalist cases, for each Fusion architecture a Tree-Structured Parzen Estimator
(implemented in the python package hyperopt [254]) was allocated a budget of 100 iterations over which to
explore the search space and identify appealing hyperparameter choices. This budget was chosen to balance
the benefit of exhaustive exploration of the space and exploitation of individual local minima identified within
it, along with the pragmatic time and resource implications of performing both a Bespoke and Generalist
optimisation task for each architecture, or subtype thereof, described in 5.3.1.

In each given optimisation routine, for every point assessed in the hyperparameter search space — i.e.
each iteration of the optimisation process — a corresponding system with those parameters was assembled.
This system was trained for, and tested on, every participant in the Development Set in turn. The arithmetic
mean of classification accuracies for those 20 participants was taken as the system’s Mean Accuracy, the
complement of which was used as the loss function to be minimised by the optimiser.

For both Bespoke & Generalist versions of each Fusion architecture, the set of hyperparameters which
provided the greatest mean accuracy across the Development Set in this way was considered the “best-in-class”
system. These optimal configurations were then compared to identify the strongest candidate Bespoke and
Generalist fusion systems. These were then verified on the Holdout Set to establish the extent to which the
identified fusion systems could be used by an unseen subject. Unimodal systems (i.e. those using solely either
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EMG or EEG data) were optimised similarly using the Development Set; in both Bespoke and Generalist cases
the strongest unimodal candidates were then competed against the aforementioned winning fusion systems
on their Holdout performance to evaluate the impact of fusion on classification accuracy.

To address Aim 5.3 by assessing the CASH optimisation’s value in identifying suitable system designs,
winning fusion systems’ Holdout Set accuracies were compared to those of gesture classification systems
defined non-algorithmically on inferences drawn from literature (hence referred to as “Literature-Informed”).

(a) Bespoke (b) Generalist

Figure 5.1: Learning process of Bespoke (left) and Generalist (right) systems during CASH optimisation procedure

5.2.3 Data Splitting

5.2.3.1 Optimisation

In the bespoke case, for every assembled system in an optimisation process, the data provided by each
individual participant in the Development Set were divided into training and testing splits. This split was
performed independently in each of the 100 optimiser iterations, to reduce the likelihood of the optimisation
algorithm itself overfitting to a particular subset of participants’ data. A random 67% of a participant’s data
were used to train the system and the remaining 33% reserved for validation. Crucially, this splitting was done
on the basis of gesture performances, — all datapoints from any given execution of a gesture were grouped
together. This ensured that data collected at consecutive time interval of the same gesture performance were
not distributed among the training and testing splits, in efforts to protect against the issues of data leakage
discussed in 3.3.2. Had time-adjacent datapoints been allowed to be divided between training and testing
splits, any time-series correlations in the data would have risked artificially inflating systems’ classification
accuracies, due to models learning temporal artefacts rather than genuine motor activity [192]. The split was
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additionally stratified by class (i.e. the gesture being performed) to ensure an equal and balanced distribution
of gestures appeared in both training and testing splits.

Scaling and selection of features was in each case performed on the training split of a participants’ data
as discussed further in 5.3.2.1 below, and the same transformations applied to their test split. The system
was then modelled on the training split, and the accuracy of its predictions on their test split evaluated and
reported as the classification accuracy for that participant. The arithmetic mean of these per-participant
classification accuracies was as noted above recorded as the architecture’s accuracy for that point in the
hyperparameter search space, and was thus the optimisation target.

Generalist systems were by contrast evaluated on a Leave-One-Participant-Out basis [172, 173] in each
of their optimiser iterations. For each participant N in the Development Set D, all data provided by that
participant N were reserved as the testing set, and all data provided by the remainder of the Development
subjects D − {N} were used for training. Again care was taken to preserve this separation at all modelling
stages: as detailed in 5.3.2.1 training data were standardised and the same transformation subsequently used
to scale N ’s data, and features were selected on the basis of the D− {N} training data with N ’s data being
reduced to those same features. The candidate system, configured according to the hyperparameters at that
iteration’s point in the search space, was then trained on the D− {N} training data, and the accuracy of its
predictions of N ’s data recorded as the per-participant accuracy for subject N . As in Bespoke systems, the
arithmetic mean of all 20 Development subjects’ accuracies computed in this manner was the optimisation
target.

5.2.3.2 Validation

The ultimate evaluation of gesture classification systems, such as the comparing of the most promising fusion
& unimodal systems or between those derived from the optimisation-based pipeline just outlined & those
defined solely by literature inferences, was performed by validating their generalisation ability to wholly
unseen data. In these tests, systems’ classification accuracies on the Holdout Set were hence assessed to
avoid the common pitfall in Brain-Computer Interface research of insufficient validation of findings risking
misleadingly high accuracies being reported, as previously discussed in 4.2.3 above.

It should be noted explicitly here that “systems” being validated does not refer simply to individual
trained classification models being tested on Holdout data. The “findings” of the described experiments with
Development Set data are in the suitable system architectures, configurations, and hyperparameter choices;
it is these which are evaluated as follows.

For Bespoke systems, data from each of the five Held-out subjects were split in the same manner as
described for Development subjects above; 67% of their gesture performances were used for learning —
including scaling and selection of features as well as actual training of the subject-specific model — and the
accuracy of gesture predictions made on the remaining 33% of their data evaluated. To mitigate the random
effect of the random nature of the train/test split, scores for each Holdout subject were calculated as the
mean of 100 repeats of such evaluations. This was carried out separately for each Holdout subject in turn to
establish per-participant Holdout accuracies for each given system configuration being validated in this way.
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In the Generalist case, systems of the configurations-under-validation were assembled and trained on the
entire Development Set of 20 subjects. These trained systems were then used to predict the entirety of the
data provided by each one of the 5 Holdout participants in turn. Here as there was no splitting of data, a
system’s per-subject scores were exactly repeatable, thus Generalist systems needed be tested only once on
each Holdout subject for validation.

5.3 System Design

5.3.1 Fusion Architectures

Three fundamental fusion architectures (some with distinct sub-types) are presented here, drawing on and
extending those with precedent among the biosignal literature. As discussed in Chapter 3, precedent for
multimodal biosignal fusion in this domain is relatively limited; many studies which have drawn on both
EMG & EEG data have done so either in “decoupled” ways, with each data source utilised for distinct
purposes, or at separate “sequential” stages of a process. Of those which truly use multiple types of biosignal
data simultaneously for gesture classification, the more popular strategies could be broadly separated by
the stage of the conventional machine learning pipeline at which the modalities are fused — in particular,
whether this is pre- or post - classification (i.e. “early” or “late” fusion respectively). The architectures
considered here, as outlined below, thus span Early Fusion in the “Feature-Level” approach, Late Fusion in
the “Decision-Level”, and additionally propose the “Hierarchical” strategy — which can be seen as a synthesis
of the two.

5.3.1.1 Feature-Level

In the Feature-Level Fusion architecture, illustrated in Figure 5.2, features derived from EEG & EMG data
are merged prior to their classification by a single model. Such an approach has been explored in various
works including [130, 137, 142], though is at times variously also described as "signal-level" or "data-level".
Here the term "feature-level" is preferred as a more accurate reflection of the stage at which the modalities
are merged, in contrast to approaches such as that of [129] wherein epochs of processed EMG & EEG data
were provided to a CNN whose convolution layer extracted features from the merged data, or similarly [128]
in which Common Spatial Patterns were extracted from a set of joint EEG & EMG data.

Joining the modalities at this stage allows for a “hands-off” approach; the learning process of a system’s
classifier determines the way in which information carried by each datatype is combined, and the extent
to which each is drawn upon. Given that EMG-based gesture classification is typically considered a less
complex problem than EEG, and its class-discriminative patterns are often more clearly identifiable from
fewer features, Feature-Level Fusion systems may be encouraged to prioritise EMG data. This could allow
a system to be less vulnerable to noisy EEG data. However, it may also lead greedier algorithms to pay
insufficient attention to the complex patterns in EEG data during training, and fail to fully exploit the data
available to them.
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Considering this, the Feature-Level Fusion architecture as explored here has two sub-types: Joint Selection
and Separate Selection. In both, data of the two modalities are first processed, and statistical features
extracted, independently. In the Separate Selection variant, informative features are then selected from EMG
and EEG featuresets independently, and joined into a single featureset for model training. This approach
ensures the selected feature ensemble exploits both the available data modalities, though risks a reduction in
the overall information captured in the featureset due to the potential for inclusion of EMG features which
are highly correlated with included EEG features, or vice versa. In the Joint Selection case the features of
both data types are firstly joined, and feature selection is performed on this merged set to determine an
informative collection of features on which to train the subsequent classification model. This approach is
more able to reduce duplication of information through avoiding inclusion of highly correlated features, but
may be susceptible to unduly exploiting one data modality less than the other, as it makes no particular
effort to select an equivalent number of features belonging to each.

Figure 5.2: Feature-Level Fusion Architecture

5.3.1.2 Hierarchical

The architecture described as "Hierarchical" is believed novel, at least in this domain, though it takes in-
spiration in part from the principles of those approaches in literature wherein data modalities serve distinct
consecutive roles in a system (described in Chapter 3 as "gated" or "cascaded") such as that of Du et al. [111]
wherein EEG identified the presence and direction of a movement and EMG its intensity, Hooda et al. [112]
wherein EEG was used to identify the presence of a foot movement and EMG to classify its type, and Ozd-
enizci et al. [113] wherein EEG identified the presence of movement of the right or left hands and distinguished
between them, EEG & EMG contributed together to identifying the broad category of movement, and EMG
alone informed the prediction of the specific hand gesture being performed.

The Hierarchical architecture also incorporates aspects of stacked generalisation techniques. Contrary to
a conventional stacking method, wherein a meta-model is trained on the outputs of multiple base classifiers, in
this approach the outputs of one data modality’s base classifier are joined with the featureset of the other data
modality, to be provided together to the “higher-ranking” model. This is performed on a probabilistic basis;
for each given sample the lower-level model is used to predict its probability distribution over the four classes,
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and this distribution is then used to supplement to the sample’s entry in the featureset (post-feature-selection)
of the higher-level model.

This inherent assignment of rank suggests some interesting properties of a Hierarchical architecture.
The information of the lower-ranked data modality is in effect collapsed into one feature — this classwise
probability distribution. Should the lower-ranking model be extremely reliable, this will be strongly correlated
with the target class; some algorithms may weight such a feature very strongly, and thus if selected for the
high-ranking classifier may actually prioritise the lower-ranking model’s decisions. More commonly however
this consolidation is likely to make the lower-ranked modality easier to “ignore” at the system level. A
hierarchical design could thus be robust to increases in task complexity, where such changes degrade the
performance of one modality more than another — such as in this biosignal context, wherein EMG systems
are typically capable of distinguishing between more gestures than EEG. In such cases, this architecture
could minimise any detriment from a weak EEG component by downgrading that model’s influence, the
system collapsing to a near-unimodal paradigm. Unlike a typical Late Fusion approach however, wherein
both modalities are so condensed before a system-level decision is made, the greater retained depth of the
higher-ranking EMG data could even allow a Hierarchical system to learn more carefully the parts of its
modelling space where EEG can be a valuable component of decision-making, and the parts where it need
be weighted lower. This capability would be of particular benefit if there is low overlap between the data
reliably classifiable with each datatype — allowing one modality to compensate at the residuals of the other
— but where the high-ranking model is “confidently wrong” in its predictions & thus would be given undue
preference in a typical Late Fusion weighting-based approach.

Both possible arrangements of data modalities in this Hierarchical architecture were trialled. The case
illustrated in Figure 5.3 wherein class probabilities predicted by an EEG model were used to supplement
EMG data is referred to hereafter as the "Hierarchical". Domain precedent indicates EMG-based gesture
classification to be a comparatively easier problem than that which is EEG-based, suggesting a high likelihood
of an EMG model outperforming an EEG one. This case, wherein the model which primarily considers EMG
data outranks its EEG counterpart, is thus considered the architecture’s "default" configuration. The opposite
orientation, wherein probability distributions obtained from an EMG model are joined with EEG data as in
Figure 5.4, is hence referred to as the "Inverse Hierarchical".

Figure 5.3: Novel Hierarchical Fusion Architecture

To train the higher-ranking classifier, training data were were first split randomly into three folds. For
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Figure 5.4: Novel “Inverse” Hierarchical Fusion Architecture

each fold K, the lower-ranking model was trained on data of its corresponding signal type in the non-K folds,
and used to predict probability distributions for fold K. These probability distributions were then joined
with their corresponding instances of the data modality belonging to the higher ranking model. After all
folds had been used in this way, the higher-ranking modality’s dataset was fully supplemented and could be
used to train the higher-ranking model, with the lower-ranking model being then retrained on all folds of its
full dataset.

5.3.1.3 Decision-level

The decision-level fusion architecture encompasses a range of methods which utilise predictions made by
parallel independent EMG and EEG classifiers to arrive at a final decision, as illustrated in Figure 5.5.

Figure 5.5: Decision-Level Fusion Architecture

By contrast to the “hands-off” approach to combination of Feature-Level Fusion, in this approach a
system is forced to make class predictions using both data modalities, even if those predictions are not always
considered equally in arriving at a final class decision. This may mitigate the risk of a more complex datatype
being unduly ignored during training, depending on the strategy used to combine the two component models’
predictions. In cases where their errors are likely to be statistically independent of one another, consensus
of the components can imply confidence in their predictions. Should their errors overlap, however, this
assumption breaks down as they would be likely to misclassify the same datapoints [255]; instead a more
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effective fusion technique would draw on one modality at points in the modelling space where the other is
known to be less reliable. In the gesture classification context such dependence is difficult to predict — while
the unique properties and differing complexities of EMG and EEG likely cause some independent errors,
others may share a common cause, such as unexpected variations in the movements performed by a subject.
It is hence worthwhile to explore a range of potential strategies for the component classifiers’ combination.

The particular methods used in this work are outlined in Table 5.1 and fall under two schools. The
first use rule-based techniques to merge the lower-level models’ generated distributions into a final system-
level decision.A number of studies in the biosignal literature use simple boolean logic to combine classifier
outputs – logical AND and OR rules [128, 141, 256] – but such methods are naturally more suited to binary
classification tasks [144] such as the detection of movement onset i.e. “move-vs-rest”. Applying these strategies
to a multiclass problem as in this work would require additional computation steps, such as a layer of one-vs-
one ensemble voting; an added complexity thought unlikely to provide sufficient benefit to merit exploration.
A more suitable strategy is the averaging of models’ predicted probability distributions to form a fused
distribution, as in Equation 5.1. The argmax of the fused distribution can then be used to identify the most
likely class label.

P (yfused) =
P (yEMG) ∗ wEMG + P (yEEG) ∗ wEEG

2
(5.1)

Studies as early as Leeb et al.’s 2010 paper calculated fused classwise probabilities as the arithmetic mean of
their constituent EMG & EEG models [146]; multiple subsequent studies have trialled both similarly equal
weightings and various alternative distributions [142, 145, 150, 169, 257]. Here, after [141] among others, the
Mean was trialled alongside a fixed weighting in favour of each data type: EMG predictions being weighted
at 0.75 and EEG at 0.25, and vice versa. Leveraging the opportunity of the CASH optimisation routine, an
additional Weighted Average variant was included wherein the distribution of weights over data modalities
was itself a hyperparameter that could be tuned. The final rule-based decision fusion method included here
was simply the Maximum Rule seen in works such as [145]. This rewards confident models: for each instance,
the prediction of the data modality whose estimated probability distribution assigned the greater probability
to its winner class was used.

The second family of decision fusion methods use an approach akin to stacked generalisation; one of a
range of meta-classifiers is provided the probability distributions with respect to class produced by the lower-
level models, and uses these distributions to predict the subject’s gesture. This approach is underexplored
among biosignal fusion literature, though was attempted by Cui et al. [145]’s work on classifying lower-limb
movements as discussed in 3.1.3.2. Here, two candidate linear meta-models (a Support Vector Machine
with a linear kernel, and a Linear Discriminant Analysis classifier), and one nonlinear model (a Random
Forest) were trialled. To train these meta-models, a system’s training data were split into three random
folds. For each fold K in turn, data of the non-K folds were used to train base EMG & EEG classifiers,
which were then used to make predictions of fold K. After all folds had been predicted in this way the
resultant probability distributions were used to train the meta-model, and the base component classifiers
were subsequently retrained on all folds of their respective full training datasets. In testing such a system
EMG & EEG datapoints were first provided to the low-level models, which generated probability distributions
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Algorithm Description
Mean Arithmetic mean of EMG and EEG probability distributions
Fixed Weighting favouring EMG Weighted average of EMG & EEG with weights (0.75,0.25)
Fixed Weighting favouring EEG Weighted average of EMG & EEG with weights (0.25,0.75)
Fixed Weighting Tunable Weighted average of EMG & EEG distributions wherein the weight

assigned to EEG is a tunable hyperparameter
Maximum Distribution with the highest probability in its respective highest-

scoring class is selected
SVM Stacking Support Vector Machine used to produce a decision based on probabil-

ity distributions produced by EMG and EEG classifiers
LDA Stacking Linear Discriminant Analysis model used to produce a decision based

on probability distributions produced by EMG and EEG classifiers
RF Stacking Random Forest model used to produce a decision based on probability

distributions produced by EMG and EEG classifiers

Table 5.1: Summary of candidate Decision-Level Fusion algorithms

accordingly to be supplied to the meta-model.
In all cases, the decision-fusion algorithm outputs a probability distribution estimating the likelihood of

a given instance belonging to each of the various gesture classes; the aystem’s final classification decision is
determined by the argmax of this distribution.

5.3.1.4 Single-Modality Baselines

As points of reference for later comparison, Bespoke and Generalist systems of two additional architectures
were developed, consisting simply of a single classifier using either EMG or EEG data on a unimodal basis.
This work is exploratory and seeks to identify suitable approaches for fusing these data, not to prove defini-
tively whether such fusion is universally guaranteed to outperform single-mode systems in gesture classifi-
cation. Such baselines were included however to aid in reviewing systems’ performance and judging the merit
of the multimodal fusion strategies proposed. Their respective CASH optimisation procedures may also reveal
insights regarding suitable configuration choices for future unimodal systems.

5.3.2 Feature Engineering

5.3.2.1 Feature Scaling

Following removal of any identifying attributes and the target class label, featuresets were standardised using
scikit-learn’s StandardScaler such that all features had a mean of zero and a unitary standard deviation. Initial
exploratory work had trialled normalisation of features to the range (0,1), standardisation as described, and
the absence of any scaling at all, finding minimal apparent difference in the informativity of the resultant
data; standardisation was chosen as the scaling method here to ensure compatibility with those machine
learning algorithms which assume such a distribution in their training data.

Crucially, for any given modelling process, standardisation was itself performed on only the training data.
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The same transformation — that is, a transformation wherein the mean and standard deviation had been
computed from the training data — was then applied to the test data, to protect against data leakage. It is
acknowledged that, should unseen test data be particularly anomalous from the training data, this approach
may risk test data being scaled to values outside the range encountered by a trained model. This is however
necessary to ensure strict separation of train and test data to protect against data leakage [191], and to
remain analogous to a deployed system of either the Bespoke or Generalist nature. In both cases a deployed
system would be trained, on the users’ data or that of a wider population respectively, prior to use; it would
not be possible to standardise on the join of training and test data. Neither would it be appropriate or
viable to standardise test data within itself in real-time. New data samples would be generated continuously,
the presence of which could affect the consistency of attempted real-time scaling from sample to sample
as the distribution of the total set of test data changed. Such a method would also require a significant
cache of historical test data to be accrued over time. More viable would be to apply a single pre-established
transformation to incoming subject data, as is emulated here. While bioelectric signal characteristics can
vary between individuals, their broad properties discussed in Chapter 2 are consistent at least in orders of
magnitude; it is hence likely that statistical features derived thereof would also be likely consistent in scale.
Thus it is not anticipated that the risk of novel test data being scaled to extreme outlier values is high enough
to be likely to present significant issues, other than perhaps in situations such as sensor breakdown wherein
degradation of system performance would already be expected.

5.3.2.2 Feature Selection

The feature extraction process described in 4.3.2 above results in a total number of features which scales more
than linearly with the number of raw signals in the dataset; while a fixed number of attributes are extracted
from each individual raw signal, the size of the covariance matrix scales quadratically with the number of
signals that form its input vector. To enable efficient modelling and avoid overfitting, features needed to
be reduced to those most informative with respect to the gesture class. While the particular strengths and
limitations of various feature selection methods are not a specific research focus of this work, the decision was
made to take a univariate selection of features on the basis of ranking their individual predictive power over the
class to enable later assessment (in 5.5.7) of the “popularity” of such features — the frequency at which they
were found informative. While transformational methods of feature selection are somewhat more common
choices in biosignal research [258], univariate approaches are far from unprecedented; Tryon & Trejos [142],
who also sought to characterise the frequency with which features were selected across multiple subjects, used
a ranking-based approach (in their case the ReliefF [259]) and indeed found it to be superior to both the
Maximum-Relevance-Minimum-Redundancy (MRMR) and Principal Component Analysis techniques.

In this work six channels of EMG data were used, resulting in a featureset 588 attributes wide. Univariate
feature selection was used to reduce this to a size more appropriate for modelling; the 15% of features ranked
most highly by a one-way ANOVA between feature and class were selected (as implemented with scikit-
learn’s SelectPercentile and f_classif functions) and the remainder discarded, forming a set of 88 features.
The choice of 15% as the threshold here was largely arbitrary, with no particular motivation other than being
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a convenient figure for arithmetic and resulting in a vector of fewer than a hundred features.
The EEG data carried information from twenty individual sensors, more than double the EMG, and hence

generated an ensemble of many more features. Selecting from these on the same basis, the highest-ranked
15%, would result in a still unviable number and in EEG features outnumbering EMG by a factor of at least 4.
It was additionally anticipated that due to inherent mathematical relationships between some of the features,
and the close proximity of EEG electrodes to one another, there may be a high degree of correlation between
some EEG features. This could cause a simple feature reduction method to select features with high levels of
mutual information, and hence risk reducing the breadth of total information captured.Indeed, exploratory
work with univariate reduction indicated a tendency of unimodal EEG models to overfit dramatically, which
was surmised to be in part due to a narrower than anticipated breadth of information carried in the featureset.
EEG features were hence instead reduced by an L1-norm based selection using scikit-learn’s SelectFromModel
and LinearSVC. A linear Support Vector Machine was trained on the data, with a regularisation parameter
C of 0.005 and the L1-norm used for penalisation, so as to result in sparsely assigned coefficients (i.e. to
encourage many features to be zero-weighted). Thereafter, a fixed number of those features with nonzero
coefficients were retained, prioritising those with the greatest coefficients. The training split of each Bespoke
system was 1608 samples long, 67% of the total number of samples belonging to a given participant (2400).
In Bespoke systems EEG were hence reduced to 40 attributes, the approximate square root of the number
of training samples. In a Generalist system, for each subject N under test, the training set comprised all
data from the 19 non-N subjects and was hence a factor of at least 19 larger than that of a bespoke system,
at 45,600 samples. The square root of this sample length, 214, would be an infeasibly large number of
attributes to retain for effective modelling. In Generalist systems EEG were thus reduced to a feature vector
of consistent width with EMG, at 88 features.

To ensure parity of available information between fusion architectures, the merged featureset of Feature-
level Fusion systems was of equivalent size to the sum of the distinct EMG & EEG featuresets seen in the
Decision-level and Hierarchical fusion approaches. In a Bespoke Feature-level Fusion system the joint set
thus totalled (88+40 =)128 features, and in a Generalist (88+88 =)176. For the Separate Selection subtype
88 EMG features and 40 or 88 EEG features (for a Bespoke or Generalist respectively) were selected from
the modalities independently, and these two selections subsequently joined as described in 5.3.1.1. In the
Joint Selection variant, these 128 or 176 attributes were selected from the combined set of all EMG and EEG
features, using the L1-norm based method outlined above.

As outlined in 5.3.2.1 in relation to feature scaling, to preserve separation between training and testing
data the selection of features was in every case performed using only the training set for that particular
system, and the test set reduced to the identified array of features. Bespoke systems hence selected features
from the 67% of subject data being used for training in a given modelling procedure. This both for each of
the the 20 Development Set subjects at each iteration of a CASH optimisation routine, and for each of the
5 Holdout subjects when later verifying generalisability of architectures’ optimal systems. In the Generalist
case where all data from subjects other than the one under test are used for modelling, throughout the
optimisation process the features selected for a subject N were done so based on the data from the 19 non-
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N subjects. For validation of Generalist systems, where an architecture’s optimiser-identified system was
retrained on all 20 Development Set subjects to be tested on each of the 5 Holdout Subjects in turn, features
were correspondingly selected using the data from all 20 Development Subjects.

5.3.3 Classification

Each Fusion architecture proposed in 5.3.1 comprises at least one classifier for which a machine learning
algorithm must be selected and appropriate hyperparameters identified. A range of machine learning models
outlined below, all implemented in scikit-learn [260], were selected as candidates based on those with precedent
in the literature. As noted in 5.2.1, model-level hyperparameters such as the k in a k− Nearest Neighbours
classifier are relevant to system performance only where their associated model is selected; their existence
is conditional on the choice of algorithm. The hyperparameter space can hence be best described by a tree
structure, as illustrated in Figure 5.62.

Figure 5.6: Subsection of the joint algorithm-hyperparameter search space describing the nature of a single classifier.
EMG and EEG models (whether single unimodal classifiers or components of a multimodal system), and the single
models of Feature-Level Fusion systems, each held their own unique but equivalent instances of this hyperparameter
tree within a system’s overall configuration space. Note that many hyperparameters are conditional & hence only
created where the “Classifier” choice is of a given value.

For systems implementing Feature-Level Fusion, and the single-mode EMG and EEG baselines, a single
classifier is selected, tuned, and used to classify EMG, EEG, or merged data and thus the tree in Figure 5.6 de-
picts the full extent of the hyperparameter search space. Hierarchical, Inverse Hierarchical, or Decision-Level
fusion systems however comprise two distinct classifiers, one each for EMG and EEG data3. The constraints
of the various hyperparameters were identical for EMG, EEG, and indeed Feature-Fusion classifiers; the same
candidate models and range of value choices were explored in each. It should be stressed however that the

2Styled after that of [261].
3Strictly, in the Hierarchical and Inverse Hierarchical architectures one classifier is used for EMG or EEG data, and the other

for the remaining data type supplemented by predictions from the first, as described in 5.3.1 above.
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search space itself was not shared between modalities, nor was any learning in the space shared between
fusion architectures, or between Bespoke and Generalist systems of the same architecture. Hyperparameters
well-suited for EMG-based classification may not result in models which exhibit good performance with EEG
data and vice versa, thus for each distinct classifier in a given fusion system a separate instance of the depicted
hyperparameter tree was included within the overall configuration space. In Decision-Level fusion systems
the search space additionally contained hyperparameters used to configure the Decision Fusion algorithm, as
discussed further in 5.3.3.7 below.

It should be noted that the candidate algorithms included, outlined below, are not necessarily an ex-
haustive representation of all schools of machine learning classifier and are not intended to be so. Notably,
only classical models were considered as candidates for selection; while deep learning has been used success-
fully in biosignal research [216], classical models show sufficient promise and precedent to merit continued
exploration and the literature does not indicate a firm trend for deep learning models consistently providing
performance sufficiently superior as to justify their costs. While reviews such as [262] highlight the emerging
topic of “big data” among biosignal research and the suitability of deep learning to such experiments, they
also highlight the necessity of large datasets for training deep networks without overfit — even the work of
Aly et al. [129], who applied deep learning successfully in the fusion of biosignal data, found deep models with
more than just two layers to overfit. Systems in this work, particularly the Bespoke type, are by contrast
of limited dataset size — and experiments in subsequent chapters seek to reduce training data further in
the interests of minimising the burden to users. Lotte et al. [152] corroborate this apparent non-necessity
of Deep Learning models, finding that while popular they do not appear to present notable benefit over
alternatives for classifying EEG data, and that their high complexity can lead to excessively long training
times. Dolopikos [223] further found their Deep Neural Network was beaten not only by a voting ensemble of
classical models in classifying EMG data, but also regularly outperformed by individual Random Forests and
Support Vector Machines. Shallower Artificial Neural Networks such as Multilayer Perceptrons have also seen
some use in BCIs, but similarly do not appear to be routinely worth their additional cost in terms of training,
tuning, and prediction time. Kuzborskij et al. [38] found MLPs not to offer routinely better performance than
Support Vector Machines (using the Radial Basis Function kernel) on the domain-standard NinaPro EMG
dataset [226], and to both be slower and require more intricate hyperparameter tuning.Garrett et al. [263]
found ANNs to marginally outperform LDAs in the classification of abstract mental tasks from EEG data,
but both to be weaker than SVMs, and to be slow and more computationally intensive than the LDA [264].
Hargrove et al. [265] found MLPs to perform no better than LDAs for EMG classification, & Englehart et
al. [242] found LDAs to outperform MLPs with EMG datasets comprising features in both the time and
frequency domains; as described in 4.3.2 above, in this work both time and frequency domain features were
indeed computed from raw biosignal data. Scheme & Englehart [14] observed ANNs to be of neglibible
benefit over kNNs and SVMs and equivalent to or weaker than LDAs and QDAs in classifying 7 gestures
from EMG data with both able-bodied and amputee subjects. Gandolla et al. 2017 [266] used two cascaded
ANNs to successfully identify a pinch, cylindrical grasp, and closed fist from EMG data at an average of 76%
accuracy, though they noted a significant fall in accuracy, by an average of 13%, after electrode removal and
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repositioning – suggesting perhaps a sensitivity to drift in the data.
Similarly, some techniques more dissimilar to those included for investigation, such as recently emerging

approaches using Convolutional Neural Networks to classify image representations of biosignal features as
explored by Qi et al. [267], Ashford et al. [268], and Tryon & Trejos [143] among others, are considered outside
the scope of this work. Indeed, Qi et al. note that “inter-subject differences [exceed] the generalization ability
of CNN[s] ” [267], suggesting an unsuitability for application to the subject-independent systems of interest to
this work, and Tryon and Trejos’ work while demonstrating the potential of CNNs in classifying multimodal
biosignal data did not find the approach to offer significantly more accurate predictions than EMG classifiers
alone.

5.3.3.1 Random Forest

Random Forests [269] are a popular nonlinear classification algorithm which aggregate the predictions of an
ensemble of randomised Decision Trees. They see prominent use in a wide range of applications [270] and
have much precedent in classification of both EMG and EEG data [139, 145, 147, 195, 211, 271], including
in Feature-Level fusion [139], and have in some cases been found to outperform both classical and deep
learning models in the classification of EMG data [145], to be capable of outperforming the widely-used
Linear Discriminant Analysis model in classifying Kinaesthetic Motor Imagery from EEG data [211], and to
be robust to the injection of mis-labelled instances in the classification of Chinese Sign Language gestures
from EMG and accelerometer data [271].

The number of decision trees in a Random Forest frequently has an impact on its ability to generalise to
unseen data, with larger forests typically providing better generalisation performance [269] by virtue of the
greater diversity in the constituent trees (though greater randomness in a forest may not alone guarantee
a defence against overfit [272]). It has however been shown that, in addition to increasing computational
complexity, increasing the number of trees in a forest is not guaranteed to offer improved classification
performance and in fact many datasets will reach a saturation point beyond which the inclusion of further
trees has minimal impact on a forest’s predictive power, even where the numbers of instances or attributes
of the dataset are high [273].
While various biosignal studies which make use of Random Forests provide no details on the choice of forest
size [139, 145, 195], Pritchard et al. [147] used the default value in the Waikato Environment for Knowledge
Analysis (WEKA) toolbox [274, 275] of 100 trees with some success for EMG & EEG classification. Steyrl
et al. [211] investigated this hyperparameter in depth in the context of EEG-BCIs classifying a binary KMI
problem, trialling forest sizes of 10 to 5000 trees while also varying the number of features considered as
splitting candidates (referred to as “data dimensions at each node” in Steyrl et al.’s work). Their findings
suggest diminishing returns from the inclusion of additional trees over 100, where more than 10 features are
considered per node — with the benefit of increasing forest size becoming less significant as the number of
candidate features increased, consistent with the claims of [273].

Here the number of decision trees in a given Random Forest was a conditional hyperparameter, whose
existence was conditional on a Random Forest being used (i.e. it was present only when a Random Forest
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was chosen for classification), with possible values uniformly distributed between 10 & 100 trees, quantised
in discrete steps of 5.

The maximum depth of trees in each forest was 5 nodes, following from early preliminary experimentation.
In accordance with the default configuration of scikit-learn’s RandomForestClassifier, each tree was fit on a
number of samples (drawn with replacement) equal to the length of the training set, splits were considered
on the basis of minimising Gini impurity, and at each juncture a random number of features equal to the
square root of the total number of features were considered as splitting candidates — which is not only the
the scikit-learn default method of calculating the number of features to consider but has precedent in [211]
among others. In EMG and Generalist EEG this computes as

√
88 ≈ 9, in Bespoke EEG as

√
40 ≈ 6,

in Bespoke feature-fusion
√
128 ≈ 11, and in Generalist feature-fusion

√
176 ≈ 13.4 Nodes were split only

where they contained at least 2 samples, and where at least 1 sample would be left on each branch, again in
accordance with the default scikit-learn implementation. Predicted classwise probabilities of the Forest were
computed as the mean of the classwise probability distributions of each of its trees.

5.3.3.2 k - Nearest Neighbours

The k-Nearest Neighbours classifier [276] is a transductive, non-parametric model which classifies data by
identifying the k training datapoints closest in the feature space to the datum under test, and classifying the
instance according to the labels of those k neighbours. While a kNN conventionally classifies by vote of the
selected neighbours rather than probabilistically, to facilitate fusion, probability distributions with respect
to class were obtained from the kNN models; these were reflective of the proportion of the neighbourhood
voting for each class (all neighbours considered were weighted equally).

While a less popular choice in biosignal literature than competing models, kNNs have seen occasional
use in classification of motor activity & KMI from EEG data [145,277,278], extensive use in classification of
EMG data [38, 173, 189, 238, 240, 279], and have even been explored in studies which merge EMG & EEG at
the feature level [137,139].

The hyperparameter k is naturally of great signficance to the predictive power of a kNN model. Prior
studies applying kNNs to biosignal classification do not indicate a consistently superior value of k – indeed
intuitively the optimal k for a given problem is likely to be dependent on the properties of the data being
modelled – and thus k was made a tunable hyperparameter for the CASH optimisation process to explore.
Despite the variation in choices of k among literature, some values appear popular. Kim et al. [238] used
a 5-NN classifier in tandem with a Gaussian Naive Bayes model to identify wrist movements from a single
EMG electrode, though offered no rationale as to this choice of k (such unexplained parameter choices are not
uncommon among the biosignal literature, something which this work strives to avoid). Benalcazar et al. [173]
similarly used a 5-knn to classify EMG, justifying it as the closest larger odd integer to log2(30), 30 being the
size of their training and testing datasets). Chen et al., in classifying Chinese number gestures opt for a 10 -
neighbours classifier on the basis of their dataset comprising 50 samples of 10 gestures from 6 subjects [233];
though not explicitly stated, this k of 10 may be speculated to be derived with a similar juestification to

4See 5.3.2.2 for description of the featureset sizes in various fusion architectures.
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that of Benalcazar et al., in that log2(50 × 10 × 6) = log2(3000) = 11.56. Schlögl [278] meanwhile found
KNNs to be weaker than other models such as SVMs and LDAs in classifying Motor Imagery from EEG
data, but that much higher k values in the order of 50 - 100 offered the best performance. Große Sundrup
and Mombaur [279] remarkably found some success in classifying EMG data with k = 1, applying a unique
approach wherein clusters of neighbours in the featurespace were replaced by a single representative of the
neighbourhood, & calculating the distance to said neighbours with Dynamic Time Warping rather than
more commonplace distance metrics, though noted that where neighbourhoods are not replaced by cluster
representatives, the unitary k value meant distance may be measured to a singular point on the edge of a given
group of neighbours rather than a representation of its central tendency (thus motivating their neighbourhood
representative approach). Others such as Kuzborskij et al. [38], Pritchard et al. [147], and Kim et al.5 [189]
performed optimisation to select their k-values: Kim trialling ks of 1 through 10 neighbours, and settling
again on 5, for classifying wrist movements; Pritchard trialling even-number ks between 2 and 20, finding
k = 2 to be optimal for EMG gesture identification and k = 12 optimal for EEG mental state classification;
and Kuzborskij trialling ks equal to 1 through 7.

Here, the search space for k was the integers 1 through 25, inclusive. In accordance with the default
scikit-learn KNN implementation (“KNeighborsClassifier ”), nearest neighbours were computed with a k -
dimensional tree of leaf size 30, and the distance was measured by the Minkowski metric of the 2nd order,
i.e. the Euclidean distance [280].

5.3.3.3 Linear Discriminant Analysis

Discriminant Analysis classifiers operate by determining decision boundaries which separate data in a multi-
dimensional featurespace (i.e. one where each dimension is one feature of the dataset) in a way that seeks to
maximise distance between classes [281]. The Linear Discriminant Analysis model in particular works under
the assumptions of each class’s feature likelihoods being normally distributed, and of the covariance matrices
of all classes being identical [240,281].

LDAs are well-established as a prevailing algorithm for EEG classification [30] and are likewise well
precedented in the classification of EMG data [38, 237, 282, 283] including that of amputees [14, 228], and
indeed in classifying motor activity from EEG & EMG data merged at the feature level [130].

Sickit-learn implements three methods, or “solvers”, for computing classwise log-posteriors within LDAs:
the Least Squares Solution (LSQR), Eigenvalue Decomposition (which optimises the ratio of distance between
classes to variation within classes), and Singular Value Decomposition. While some such as Mohd Khairuddin
et al. [237] have used the scikit-learn default hyperparameters to successfully classify EMG data, notably
finding LDAs to both train on and predict much faster than competing algorithms, many other works provide
no details on the particular implementation of the LDAs they utilise [228, 283]. Hence all three of these
solvers were trialled in this work, as the permissible values of a categorical hyperparameter within the CASH
optimisation search space.

While the SVD solver bypasses calculation of the covariance matrix, this is a necessary step in both the
5NB: Not the same Kim as that of the aforementioned [238]
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Eigenvalue Decomposition and Least Squares Solution algorithms. Shrinkage can be applied to improve this
estimation of covariance matrices, by combining multiple estimators [284]. In the scikit-learn implementation,
applying zero shrinkage will result in the empirical covariance matrix being used, and with a shrinkage value of
1 it will be estimated wholly from the diagonal matrix of variances, with values between these corresponding
to a proportional combination of these extremes determining the shrunk matrix [285]. Shrinkage is typically
of particular importance in cases where the number of features in a dataset particularly outweighs the number
of samples [198,284]. While the feature selection processes outlined in 5.3.2.2 result in this not being the case
in this work, the use of shrinkage by some biosignal literature [75], including that of Jeong et al. [198] by whom
the dataset used in this work was originally collected, motivate exploring its influence here for completeness.
Therefore where Eigenvalue or LSQR solvers were used, the shrinkage was also a hyperparameter, with a
uniformly distributed search space between 0.0 and 1.0.

5.3.3.4 Quadratic Discriminant Analysis

The Quadratic Discriminant Analysis model is a version of a Discriminant Analysis classifier wherein decision
boundaries are quadratic, rather than linear as in the LDA. While a somewhat less common model among
biosignal literature, QDAs have been found competitive with KNNs and LDAs in classifying the direction
of wrist movements from EMG [189], and to be more robust than LDAs in the classification of Chinese
number gestures [240] again with EMG data; in the latter study they were described as preferable over the
marginally better-performing SVMs on the basis of lesser model complexity. QDAs have also seen precedent
in the classification of arm movements from feature-level fused EMG-EEG data by Aly et al. [137] and as
component parts of decision-level fusion systems in classifying lower limb movements [145].

Unlike the LDA, in the QDA the covariance matrices of the classes are not assumed to be equal [281].
In scikit-learn’s implementation, the Singular Value Decomposition solver is used in all QDAs to enable
estimation of per-class covariances while circumventing the need to explicitly compute the covariance matrix.
In efforts to overcome the same challenges of features outweighing samples (the “singularity problem”) as were
addressable in Linear Discriminant Analysis by applying Shrinkage, in the QDA these per-class covariance
estimates can be regularised by scaling them in a manner biased towards their diagonal elements [281]. As
noted in the discussion of shrinkage in 5.3.3.3, the singularity problem is unlikely to arise in this work, however
for completeness & to minimise a priori assumptions regarding modelling characteristics, the strength of this
regularisation was an optimisable hyperparameter, with a uniformly distributed search space between 0 & 1.

5.3.3.5 Gaussian Naïve Bayes

The Gaussian Naïve Bayes (GNB) algorithm estimates the conditional probability of an instance belonging
to a class, given its feature values, through an application of Bayes’ theorem wherein features are naïvely
assumed independent and their likelihoods with respect to the class assumed to have normal (Gaussian)
distributions.

While GNB models see less frequent use in biosignal literature than some other included candidates, they
have been used successfully in classifying both EMG & EEG data [1, 172, 233, 238]. Of particular interest,
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Bird & Pritchard et al. [1] found a GNB to offer the greatest predictive power for wholly unseen EMG data
out of a range of popular algorithms, providing some motivation for its inclusion here in light of the interest
in Generalist systems.

The assumption of feature independence is unlikely to hold true for the data in this work. Not only is
the likelihood of crosstalk between raw recorded biosignals high, particularly in the case of EEG wherein
electrodes are both in close proximity to one another and located at some distance from the neural point
sources generating the electrical activity they measure, but from each raw bioelectric signal a range of sta-
tistical features were extracted (4.3.2); while the Feature Selection methods for EEG and joint EMG-EEG
data make some effort to avoid selecting highly correlated features (5.3.2.2), some dependence remains likely.
Nevertheless, GNBs are known to often perform at competitive levels even when the assumption of indepen-
dence between features does not hold true; it is suggested that independence can be violated if dependences
are distributed over classes, rather than class-specific [286].

While the GNB has no fundamental tunable hyperparameters, the implementation in scikit-learn allows
for a “smoothing” of the gaussian distributions by which features’ likelihoods are modelled, by adding some
proportion X of the largest of all feature variances to the variance of every feature, in effect widening the
distributions in the interests of stabilising internal calculations. This variance smoothing appears largely
undiscussed in biosignal literature but was here made a hyperparameter within the optimisation search
space. Given scikit-learn’s default X value of 1× 10−9, and that the feature standardisation (5.3.2.1) ought
to have resulted in normally distributed features, the search space for this variance smoothing factor X was
defined as a logarithmic distribution between 1× 10−9 & 1, such that potential values were more likely to be
in similar orders of magnitude to 1× 10−9.

5.3.3.6 Support Vector Machine

Support Vector Machines [287] (SVMs) are natively binary classifiers which operate by seeking a linear decision
boundary, called a hyperplane, with the maximal margin between itself and the closest datapoints to it of
each class (those points being referred to as the eponymous “Support Vectors”). Their extension from binary
classifiers to models capable of multiclass problems is reasonably trivial — scikit-learn’s implementation, itself
based on that of libsvm [288], uses a one-vs-one scheme, i.e. a deconstruction of the problem into a number of
binary problems, one for each possible pair of classes. They are also capable of forming decision boundaries
which are nonlinear in the native feature space by projecting the data into a higher-dimensional space where
it may be more linearly separable [38] and thus a hyperplane able to be found. Such transformation is often
done by application of a kernel function to avoid the need for explicit mapping of the data — known as the
“kernel trick” [289].

While other kernels have been variously used, including linear kernels for classifying the NinaPro EMG
dataset’s [195, 226] many distinct hand gestures by Kuzborskij et al. [38], and linear kernels with L1-
penalisation for classifying ECoG data by Fujiwara et al. [290] , the Radial Basis Function (RBF) has been
found less computationally expensive than other kernels [291] and dominates various uses of kernel functions
among biosignal literature, to the point of being described the “de facto standard” [106]. Indeed RBF-SVMs
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have been routinely used in the classification of gestures from EMG [38,106,141,145,147,174,195,223,292,293]
data, where they consistently prove among the most popular choices of classifier and have been noted as par-
ticularly highly-performing with data from amputees by comparison to competing models [195], and EEG
data [141,145,159,160,291,294], where they have also been applied with some degree of success in attempts
to discriminate individual finger movements of the same hand [159,160].

An SVM’s regularisation hyperparameter C controls, in essence, the trade-off between the width of the
margin formed between classes, and the level of accepted misclassification risk. This is sometimes referred
to as the “hard-” or “soft-”ness of the margin; where a “hard” margin SVM (corresponding to a higher C-
value) determines its discriminative hyperplane on the basis of only those datapoints of each class closest
to that boundary, while a “soft”er margin (a lower C) would consider datapoints farther from the boundary
(and potentially closer to the centre of a class’s cluster in the featurespace) even where this may place some
training datapoints on the “wrong side” of the hyperplane. The C hyperparameter determines the extent to
which this distance between a such a datapoint and its correct margin boundary penalises the SVM. Where
data is not linearly separable, even after projection to a high-dimensional space, tuning this penalty and
hence the level of “slack” which is permitted can be of particular importance to balancing underfit and overfit
in an SVM. The other key hyperparameter of an RBF-kernel SVM, γ, determines the radius of influence of
any given training datapoint chosen as a support vector, with that radius being inversely proportional to γ

— a lower γ encouraging a simpler hyperplane as the influences of many support vectors average out, and a
higher γ encouraging a hyperplane very tightly fit to the support vectors & hence susceptible to overfit.

While many biosignal studies do not detail their selection of C and γ values [143] or simply note them
as having been found through some unspecified optimisation [145, 160], among those that do give further
detail there appears little consensus in either the scope of the space to be searched over or the optimal values
themselves — suggesting perhaps a high specificity to the problem being modelled. Kuzborskij et al. [38]
trialled C values of 20 to 216 for EMG classification, optimising these on a per-subject basis. Yong et al.,
in the identificatation of KMI from EEG, trialled similarly large C values but significantly smaller values
in addition, ranging from 2−15 to 215 [294], again on a subject-specific basis. Others found success with
less extreme values of C: Ameri et al. [292] found an optimal C of 0.2, & that higher values of C were
not beneficial and led to longer prediction times. Pritchard et al. [147] found optimal Cs of 2 for EMG
classification and 6 for EEG, though with a Linear kernel function rather than the RBF, and Tavakolan et
al. [291] tested C values of 0 – 100. Castellini et al. [174], notable for taking a subject-independent approach
to EMG classification in their work, found optimal C values in the region of 101.5.

With regard to γ, Kuzborksij et al. [38] searched over γ = 2−16 to γ = 2−2, and Yong et al. [294] used
values of somewhat similar orders of magnitude, from γ = 2−15 to γ = 23; Dolopikos et al. similarly found
lower γ values superior, with an optimal γ of 10−5 [223]. Castellini et al.’s Generalist approach to EMG
SVMs found the optimal value of γ to be typically around 10−0.5 [174], and Tavakolan et al. [291] trialled
γs of a similar magnitude, ranging from 0 to 3. Garrett et al. [263] trialled SVMs with γ6 values of 0.5, 1,
and 2, finding γ=0.5 to provide the best classification results. Interestingly Ameri et al. [292], rather than

6Referred to in [263] as σ.
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simply optimising over a range of fixed values, determined γ as 1
Nfeatures

. In the systems investigated here,
this formula would equate to 1

88 = 0.0114 for a Bespoke EMG-SVM and 1
40 = 0.025 for a Bespoke EEG-SVM.

In this work Support Vector Machine classifiers using the Radial Basis Function kernel, implemented with
scikit-learn’s SVC, were trialled with the hyperparameter C having a search space logarithmically scaled from
0.1 to 100, & the Kernel coefficient Gamma as a hyperparameter with values logarithmically scaled from 0.01
to 1, clustering values at the lower end of the scale and thus closer to 1

Nfeatures
. For computational feasibility,

ties were broken by arbitrary selection of the first listed class of tied classes, in accordance with the default
configuration in scikit-learn.

It should be noted that SVMs were included as a candidate model only in Bespoke systems. The training
time for the SVMs used here increases dramatically with greater numbers of training samples & the docu-
mentation of scikit-learn itself states that the SVC ’s computation time scales quadratically with the size of
a dataset, further suggesting the model may be unviable where training data exceeds >10,000 samples. In
Bespoke systems the traning dataset is 1600 samples long which is viable, however in Generalist system it
is in the order of 45,000 (and would be higher still where models were retrained on all 20 development set
subjects for use predicting the holdout data); early exploratory work made it evident this high dataset length
did indeed make the SVM unviable for Generalist systems.

Coercion of probabilities from SVMs
As described above, SVMs operate on the basis of constructing decision boundaries are not inherently prob-
abilistic; they do not natively lend themselves to producing probability distributions with respect to class.
Many of the fusion strategies explored in this work however, particularly the Decision-level and Hierarchical
algorithms (5.3.1) assume that class probabilities will be provided. To coerce probability distributions from
SVMs, SVM models were wrapped in scikit-learn’s CalibratedClassifierCV. Using a 5-fold cross-validation
process, five copies of the base SVM were constructed and their outputs calibrated by fitting a logistic regres-
sion model, a method known as Platt’s Scaling [149] used for this purpose in [145,295] among others. When
used to predict new data, the “SVM classifier” ’s resultant overall probability distribution was calculated as
the average of the probabilities estimated by these five calibrated base models.

5.3.3.7 Tunable Decision-Level Fusion Algorithms

In Decision-level Fusion systems, an additional dimension of the hyperparameter configuration space was the
choice of fusion algorithm between the candidate algorithms in Table 5.1. Those classification-based algo-
rithms which incorporate stacking techniques to the system each have their own conditional hyperparameters,
which determine the nature of the meta-model. One rule-based algorithm also made use of a conditional hy-
perparameter, to allow the weighting of a weighted average to be determined by the optimisation procedure.
The search space for decision-fusion hyperparameters is presented in Figure 5.7 & outlined below.

Parameter-Weighted Average
Under this rule-based decision fusion method, the weighting wEEG given to probability distributions predicted
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Figure 5.7: Subsection of the hyperparameter search space describing the algorithm used for Decision-Level Fusion.
Note that this branch of the hyperparameter tree was only extant in optimisation of Decision-Level Fusion systems.

by the EEG component classifier was a conditional hyperparameter with a uniform distribution between 0.0
and 100.0, expressed as a percentage. EMG predictions were in each case weighted by wEMG, calculated as
the complement of the EEG weighting.
Linear Support Vector Machine
The Linear Support Vector Machine metamodel was implemented with scikit-learn’s LinearSVC ; this uses
the liblinear [296] library internally, which is described as better able to scale to large datasets than the
libsvm-based SVC [260]. This was a motivating factor in the use of a Linear SVM as a candidate meta-
model, as it was viable for use in both Bespoke and Generalist systems. The regularisation parameter C had
a logarithmically distributed search space between 0.01 and 100, capable of handling lower values than the
RBF-SVMs of component classifiers due to the simpler kernel. Default scikit-learn values were used for other
parameters — L2 norm penalisation and a loss function defined as the square of the hinge loss — except
that, as recommended by scikit-learn where the number of samples outweighs the number of features, the
algorithm was tasked to solve the primal problem rather than the dual.
Linear Discriminant Analysis
Linear Discriminant Analysis metamodels were given an equivalent search space over which to optimise as
that of the LDAs used for EMG or EEG classification; the Singular Value Decompositon (SVD), Eigenvalue
Decomposition, and Least Squares Solution (LSQR) algorithms were all candidate solvers, and where Eigen-
value or LSQR solvers were used the shrinkage was also a hyperparameter, with a uniformly distributed
search space between 0.0 and 1.0.
Random Forest
As in the case of LDAs, the search space for Random Forest metamodels was the same as that of Random
Forest component classifiers described above: the number of trees was a hyperparameter with values dis-
tributed between 10 & 100 in quantised steps of 5, the maximum tree depth was 5 nodes, each tree was fit on
all samples, splits were considered on the basis of minimising Gini impurity, and at each juncture the square
root of the total number of features were considered as splitting candidates — which here, where the only two
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features were the probability distributions supplied by each lower-level model, corresponds to both features
being considered.

5.3.4 Defining a “Literature-Informed” system

Aim 5.3 seeks to assess whether the Combined Algorithm Selection & Hyperparameter optimisation pipeline
presented here was a helpful tool with which to design a suitable multimodal system. To do so it is necessary
as described in 5.2.1 above to compare the “winner” optimiser-identified Bespoke & Generalist systems to
ones derived non-algorithmically; that is, the best-informed decisions which could be gleaned solely from
literature without performing such an optimisation.

The literature on which one could draw in the identifying of such a system is sparse, and of little unanimity.
As discussed in Chapter 3, among research conducted into multimodal biosignal classification it is relatively
rare that a range of fusion approaches are evaluated on the same problem with the same data (indeed this
is a limitation of much of the wider biogsignal literature [30]), thus making the art of establishing a “best”
candidate more difficult. This is as noted central to the motivation for applying CASH optimisation in
this work, under the principle that even within a given domain such as biosignal gesture classification, no
single model could be expected to prove consistently the most suitable over the totality of all possible unique
problems & datasets [252]. Additionally, 3.2 noted that particularly among those works which do investigate
multiple fusion strategies [128,142,145] few studies seek to classify between multiple gestures performed by the
same limb, and among those that do fewer still distinguish subtly different movements of the same appendage,
often opting instead to define broader movement categories such as flexion & extension of the elbow. They are
thus quite dissimilar to the nature of the multi-grasp classification task being studied here. Some inferences
can be made from works which use EMG or EEG data alone to approach problems more similar to that of this
research. Such studies have been influential in determining the range of modelling options for optimisation
as described in 5.3.3. It is not necessarily a safe assumption however that approaches which can offer best-
in-class performance for unimodal systems will be best suited to being a constituent part of a multimodal
system; while useful in establishing candidates, any inferences of absolute superiority obtainable from such
works will be limited.

A number of studies fusing data at the feature level [129,130,137] make use of the dataset collected by Li
et al. [130] corresponding to opening and closing of the hand and pronation and supination of the wrist. Such
gestures, though much coarser than the three distinct grasps used in this work, are self-evidently relevant to
the context of prosthesis control and so may suggest these works as good sources of design decisions.Works
which both attempt feature-level fusion and compare it to other approaches, however, tend to find that
feature-level fusion while successful was inferior to other strategies, such as boolean combinations of binary
classifier outputs (albeit detecting only the presence or absence of motor activity) as in Gordleeva [128],
or computing weighted averages of classifier probabilities as in Tryon et al. [142]. Thus while Feature-Level
fusion is worthy of its inclusion in this work it does appear the strongest candidate as can be inferred from the
literature alone. In others which investigate multiple fusion strategies, such as Cui et al. [145], the intensity
of a movement rather than its nature defines the classes. Despite this dissimilarity in problem, Cui’s work is
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a rare case wherein not only the rule- or weighting- based decision fusion algorithms as in Tryon [142] and
Gordleeva [128] are applied, but also stacking techniques with meta-classifiers processing the EMG- & EEG-
derived predictions; indeed these were found superior.

Ozdenici et al.’s study [113] was recognised in Chapter 3 as one of few which does indeed aim to distinguish
between grasp types of the same hand, but falls under that set of approaches wherein EEG & EMG are used
in dissimilar ways; they propose a cascaded system with EEG is utilised in movement onset detection and in
identifying which of a subject’s hands is moving, but the subsequent classification between specific gestures
relying on EMG alone. Thus despite the similarity of classification problem, their approach is sufficiently
distinct to those explored in this study as to be of limited benefit in informing system design here.

Cui et al.’s aforementioned finding of an SVM-meta-model as the superior strategy for subject-specific
EMG-EEG fusion [145] motivates its selection as the “Literature-Informed” Bespoke fusion algorithm here.
While Cui states that hyperparameters of some models they tested were determined through cross-validation,
no further details are provided beyond the use of the RBF kernel and of Platt’s scaling for eliciting probability
distributions from the SVM (see 5.3.3.6). Thus the scikit-learn default values for the hyperparameters C and
γ are used, of 1.0 and 1/(n_features) respectively. Both Cui et al.’s work & Tryon et al.’s 2021 study [142]
indicate a preference for RBF-SVMs in the component EMG classifier of their subject-specific Decision-
Fusion models, though again with no further information provided on their hyperparameter choices, the
library defaults must be fallen back upon.

Tryon et al.’s earlier study [141] however, while only distinguishing motion from rest, is particularly
notable as one of few which both attempt fusion in a cross-subject manner and in doing so compare a
wide range of possible fusion algorithms. Their work provides otherwise rare insight as to suitable design
choices for a subject-independent system; they found the Mean rule to offer the greatest accuracy & it is
thus used for the “Literature-Informed” Generalist system here. Similar to their aforementioned subject-
specific work, the component EMG classifier of Tryon et al.’s Generalist was likewise an SVM. While no
hyperparameter details are provided they are described as being implemented with MATLAB ’s Statistics
and Machine Learning Toolbox ; consulting the documentation of this toolbox [297]suggests the Linear kernel
is chosen by default and thus the EMG model within the “Literature-Informed” Generalist system is here a
Linear SVM. With no information on the value of C it is again left to the default in scikit-learn of 1.0.

For systems’ constituent EEG models, notwithstanding the reservations noted above over the extent to
which high unimodal classification accuracy may or may not be necessarily an indicator of suitability as a
fusion component, to dismiss LDAs’ overwhelming popularity in EEG classification [30] would be to wilfully
disregard much of the literature rather than to draw on it. EEG models in both Bespoke and Generalist
cases were hence defined as LDAs using Singular Value Decomposition, the scikit-learn default solver.

The Literature-Informed Default systems are therefore defined in full as in Table 5.2.

78



M. Pritchard, PhD Thesis, Aston University, 2024 CHAPTER 5. MULTIMODAL FUSION STRATEGIES

Design Element Implementation Source
Bespoke

Fusion Algorithm

SVM-metamodel
(Platt’s scaling)

[145]

RBF Kernel [145]
C = 1.0 scikit-learn 0.24.2 default
γ = 1

n_features scikit-learn 0.24.2 default

Component EMG
classifier

SVM (Platt’s scaling) [142,145]
RBF Kernel [142,145]
C = 1.0 scikit-learn 0.24.2 default
γ = 1

n_features scikit-learn 0.24.2 default

Component EEG
classifier

LDA [30]
SVD Solver scikit-learn 0.24.2 default

Generalist
Fusion Algorithm Mean [141]

Component EMG
classifier

SVM (Platt’s scaling) [141]
Linear Kernel MATLAB Statistics and Machine

Learning Toolbox default [297]
C = 1.0 scikit-learn 0.24.2 default

Component EEG
classifier

LDA [30]
SVD Solver scikit-learn 0.24.2 default

Table 5.2: Literature-Derived Baselines
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5.4 Test Procedure Overview

The overall testing procedure by which gesture classification systems were developed, assessed, and compared,
described in further detail throughout Section 5.5, is summarised as follows:

1. CASH optimisation routines, each afforded a budget of 100 iterations, were performed for Bespoke
and Generalist settings of every Fusion architecture and both Unimodal EMG & EEG systems using
Development Set data, with mean per-participant accuracy as the objective function.

2. For each CASH optimisation routine, the configuration of algorithm choice(s) & hyperparameter values
which maximised mean per-participant accuracy was determined as the “canonical” set of modelling
choices for that respective Fusion or Unimodal architecture in that setting.

3. The Fusion and Unimodal architectures whose canonical configurations had achieved the highest pre-
dictive power on the Development Set were chosen to be the “candidate” Fusion and Unimodal systems
for each setting.

4. The candidate Fusion and Unimodal systems of each setting were compared on their ability to predict
the unseen Holdout Set data, using a paired difference test over the 5 Holdout Set subjects.

• In the Bespoke setting these were modelled on a subject-specific basis (with a 67/33 train-test
split) for each Holdout subject.

• In the Generalist setting these were modelled on all 20 Development subjects’ data, and used to
predict the data of each Holdout subject.

5. Baselines derived from literature inferences for each setting were used to predict the Holdout Set data
in the same manner above. These were compared against the CASH-derived candidate Fusion systems
using a paired difference test over the 5 Holdout Set subjects.

6. Those Fusion architectures which did not attain the highest Development Set accuracy (i.e. all those
other than the previously selected candidates) in each setting were subsequently assessed on their ability
to predict the Holdout Set data. All Fusion architectures were then compared against each other with
pairwise tests in both Bespoke and Generalist settings.
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5.5 Results

This section addresses the various Aims outlined in 5.1.1 in turn. Firstly, Sections 5.5.1 & 5.5.2 address
Aims 5.1 & 5.1.1 respectively, investigating multimodal and unimodal systems’ classification abilities on
Development Set data and verifying findings with the reserved Holdout Set. Sections 5.5.3, 5.5.4, 5.5.5, &
5.5.6 explore Aim 5.2, each looking at the modelling decisions contributing to fusion systems’ configurations
in different contexts; Section 5.5.7 then considers aspects of Aim 5.2 specific to the use of Unimodal EEG
systems. Finally, Section 5.5.8 seeks to investigate Aim 5.3 by evaluating the efficacy and benefit of the
outlined approach involving Combined Algorithm Selection & Hyperparameter Optimisation as a strategy
for devising accurate biosignal fusion systems for this gesture classification task.

5.5.1 The merit of Fusion

From the defined aim of this chapter to "Establish whether a multimodal system can offer better performance
than a unimodal one" (Aim 5.1) we can derive the null hypothesis that: "A multimodal system’s performance
will be no greater than a unimodal one", or more formally:

H0 : µfusion − µunimodal ≤ 0. (5.2)

To test this, candidate multimodal and unimodal systems, each afforded the same optimisation budget, must
be put forwards.

5.5.1.1 Selecting candidate systems

Tables 5.3 presents for each fusion architecture the modelling choices of the best-performing Bespoke system
found in CASH optimisation, and the mean of the classification accuracies reached by that system for each
of the 20 Development Set subjects. Table 5.4 presents the same for Generalist systems.

The highest-scoring architecture over the Development Set is selected from each of these cases for com-
parison against a unimodal approach, to address Aim 5.1. In the Bespoke case this is the Hierarchical Fusion
system, and in the Generalist the Feature-Level Fusion, of the subtype which performed feature selection
after joining EMG & EEG data.
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Architecture Accuracy Modelling choices(mean across subjects)

Decision-level 87.83

Fusion Algorithm: Max
EMG Model: SVM

C: 98.9189
Gamma: 0.0131

EEG Model: Random Forest
Number of trees: 85

Feature-level 86.13 Linear Discriminant Analysis
(Separate selection) Solver: Singular Value Decomposition

Feature-level 86.48 Linear Discriminant Analysis
(Joint selection) Solver: Singular Value Decomposition

Hierarchical 88.98

EEG Model: Quadratic Discriminant Analysis
Regularisation: 0.4559

Supplemented EMG Model: Support Vector Machine
C: 19.4037
Gamma: 0.0138

Inverse Hierarchical 83.68

EMG Model: Quadratic Discriminant Analysis
Regularisation: 0.3325

Supplemented EEG Model: Random Forest
Number of trees: 75

Table 5.3: Peak mean classification accuracy over Development Subjects achieved in CASH optimisation of Bespoke
fusion architectures & corresponding system configurations.
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Architecture Accuracy Modelling choices(mean across subjects)

Decision-level 71.67

Fusion Algorithm: Linear Support Vector Machine
C: 0.0538
EMG Model: Linear Discriminant Analysis

Solver: Least Squares Solution
Shrinkage: 0.2349

EEG Model: Linear Discriminant Analysis
Solver: Eigenvalue Decomposition
Shrinkage: 0.3693

Feature-level
72.03

Linear Discriminant Analysis
(Separate selection) Solver: Eigenvalue Decomposition

Shrinkage: 0.0235

Feature-level
72.30

Linear Discriminant Analysis
(Joint selection) Solver: Least Squares Solution

Shrinkage: 0.1871

Hierarchical 71.68

EEG Model: Linear Discriminant Analysis
Solver: Singular Value Decomposition

Supplemented EMG Model: Linear Discriminant Analysis
Solver: Singular Value Decomposition

Inverse Hierarchical 71.68

EMG Model: Linear Discriminant Analysis
Solver: Least Squares Solution
Shrinkage: 0.0229

Supplemented EEG Model: Linear Discriminant Analysis
Solver: Singular Value Decomposition

Table 5.4: Peak classification accuracy achieved in CASH optimisation of Generalist fusion architectures & correspond-
ing system configurations. NB that both the Hierarchical & Inverse Hierarchical systems noting a mean accuracy of
71.68% is not a typographical error.
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Tables 5.5 and 5.6 present the optimiser-identified Bespoke and Generalist Unimodal systems respectively.
In both cases, the EMG-based systems are the clear winner and hence are chosen as the unimodal candidates
to compete with the above mentioned multimodal systems.

Data modality Accuracy Modelling choices(mean across subjects)

EMG 87.78
Support Vector Machine

C: 4.1725
Gamma: 0.0126

EEG 54.80
Linear Discriminant Analysis

Solver: Least Squares Solution
Shrinkage: 0.038

Table 5.5: Peak Development Set accuracy in Bespoke Unimodal CASH optimisation & corresponding configurations

Data modality Accuracy Modelling choices(mean across subjects)

EMG 68.90
Linear Discriminant Analysis

Solver: Eigenvalue Decomposition
Shrinkage: 0.0744

EEG 49.11
Linear Discriminant Analysis

Solver: Least Squares Solution
Shrinkage: 0.435

Table 5.6: Peak Development Set accuracy in Generalist Unimodal CASH optimisation & corresponding configurations

5.5.1.2 Competing multimodal and unimodal gesture classification systems

For a valid comparison, both the selected fusion and unimodal systems are tested on the same held-out
dataset described in 5.2.3.2. To statistically analyse performances, the five holdout subjects are considered
the test’s sample; as the observations (i.e. the classification accuracies achieved by a system for each subject)
in the systems’ samples are taken from the same set of subjects, they are compared by a paired t-test. The
null hypothesis (5.2) is of a form which specifies direction and thus a one-tailed test performed.

In the Generalist case results as described above in 5.2.3.2 results are exactly repeatable and so here both
systems are tested on each Holdout Subject in the holdout set only once, the results of which can be seen in
Table 5.7.

A paired Student’s t-test assumes a normal distribution of the differences between pairs and a homogeneity
of variances across the conditions; before applying the test these assumptions are verified. The Shapiro-Wilk
test has been found more powerful than alternatives including at small sample sizes [298] for testing normality
of paired differences. This was used here as implemented in R Version 4.2.0 [299]; the resulting W-statistic
is 0.90103 at a p-value of 0.4156. This is well above both the α = 0.05 confidence level, thus the hypothesis
that differences were normally distributed is not rejected & this assumption is satisfied. A simple F-test
using R’s var.test allows comparison of the population variances, with a resulting F-statistic of 0.65033 and
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Subject
System

Unimodal EMG Feature-level Fusion
(Joint selection)

1 0.59333 0.66333
6 0.70875 0.74750
11 0.79333 0.82333
16 0.69708 0.72458
21 0.66375 0.71208

Table 5.7: Candidate Generalist Fusion & Unimodal classification accuracies on Holdout Set

p-value of 0.6869. The null hypothesis, that the ratio of variances is equal to 1, is hence not rejected and the
assumption of equal variances is also satisfied.

The paired one-tailed t-test between candidate Fusion and Unimodal Generalist systems reports a t-
statistic of 5.5761, with a p-value of 0.002535. The estimated mean difference in accuracy was 0.04291667,
with the lower bound of the 95% confidence interval equal to 0.02650891. This suggests we can reject the
null hypothesis (5.2) in the Generalist case, and conclude that the optimised Generalist Feature-level Fusion
system can be expected to offer a performance boost over the similarly-optimised Generalist Unimodal EMG
system in classifying the four same-hand gestures.

In the Bespoke case, the train/test split for each subject was as described in 5.2.3.2 random in nature,
meaning that a given system configuration selected in 5.5.1.1 is liable to achieve slightly different accuracies
for a subject if run multiple times. Therefore as previously outlined each Bespoke architecture was tested on
each Holdout subject 100 times, and the means of these repeat measures presented here in Table 5.8.

Subject System
Unimodal EMG Hierarchical Fusion

1 0.8032 0.8293
6 0.8249 0.8345
11 0.9455 0.9467
16 0.8376 0.8324
21 0.8650 0.8697

Table 5.8: Candidate Bespoke Fusion & Unimodal classification accuracies on Holdout Set (means across 100 trials)

Here we must again verify the assumptions of the one-tailed paired t-test. The Shapiro-Wilk test computes
a W-statistic of 0.93253 at a p-value of 0.6137, failing to reject the null hypothesis thus indicating normality
of the paired differences. Comparing the two systems’ variances results in an F-statistic of 0.81544 at a
p-value of 0.848, again failing to reject the null hypothesis and so suggesting equality of variances.

Here in contrast to the Generalist case, the optimised Bespoke multimodal system is not found to offer
improved performance over the equivalently-optimised Bespoke unimodal system. The paired t-test results in
a t-statistic of 1.3771 with a p-value of 0.1203, above the α = 0.05 threshold indicating the trend observable
among Table 5.8’s results in favour of fusion not to be statistically significant.
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It is worth recalling here that as noted in 4.1.1.1 the participants in Jeong et al.’s dataset used in this work
were all able-bodied individuals [198]. Electromyographic data collected from amputees has routinely proven
more challenging to classify than that of able-bodied individuals: Menon et al. for example found classification
errors for transradial amputees to be 31.5% greater than those of able-bodied participants [228], and Scheme
& Englehart similarly found lower classification accuracies of transradial amputees’ data compared to able-
bodied individuals, across a range of classifiers [14]. This is unsurprising; various factors including the
potential presence of scar tissue [14], the size of residual limb [43] & degree of voluntary control over residual
forearm muscles, and the site of amputation [228] — many of which are highly variant between amputees —
result in an observable reduction in the level of information carried by amputees’ EMG signals [13]. It may
hence be that while subject-specific fusion has provided no significant benefit in classification accuracy over
an equivalent unimodal strategy here, in those amputees for whom the performance of EMG classifiers may be
diminished, a multimodal fusion approach could provide an accuracy boost significant at the 0.05% confidence
level, & indeed greater than the estimated mean difference between fusion and unimodal performances of
0.728% observable here. Indeed one of the seminal works on fusing biosignals for gesture classification, that
of Leeb et al. [146], emulated precisely this effect by artificial attenuation of EMG amplitude, and posited
the inclusion of EEG data to be of value in such situations.

Of course, that Hierarchical Fusion reached accuracies of equivalent levels to the Unimodal system here
is not necessarily a guaranteed indication of its usefulness — it cannot be categorically assured that the
top-level model of the Hierarchical system did not simply learn to disregard the classification probabilities
estimated by its constituent EEG-LDA. Nevertheless these results clearly demonstrate the potential of the
novel Hierarchical architecture for multimodal biosignal fusion, and indicate the merit of further research
exploring the impact of such a fusion strategy in cases where the informativity of EMG data is diminished.

5.5.2 The impact of Fusion Architecture

Having identified fusion systems as capable of surpassing unimodal ones in the Generalist case, and performing
at a similar par in the Bespoke, Aim 5.1.1, to “Establish whether the fusion architecture impacts system quality,
& identify performant fusion architectures” is subsequently investigated.

5.5.2.1 Holdout Set performance of Fusion Architectures

Tables 5.9 and 5.10 present the classification accuracies of the fusion architectures proposed in 5.3.1 for
Bespoke and Generalist cases respectively, each using their optimal configurations as identified in Tables
5.3 and 5.4, on the Holdout dataset (with Bespoke scores again being the means of 100 trials as outlined
above). It is immediately evident that in every architecture the modelling choices determined as suitable by
the CASH optimisation process were able to generalise beyond the Development Set to some degree; scores
are consistently above the chance level in all cases. The theoretical chance level for a balanced 4-class system
is 25%. As noted by Müller-Putz et al. [300] however, in reality the threshold for determining better-than-
chance performance is modified both by the confidence level (α) and the number of trials of each class being
tested. Here, all participants performed each gesture 50 times in each of three recording sessions; a total of
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150 performances of each class. Treating each performance as a single "trial"7 , this means that in Generalist
systems wherein all of a given subject’s data were used for testing, the number of trials per class were 150. The
upper confidence interval of the chance level is hence approximately 29% at the α=0.05 confidence level, and
approximately 30% at α=0.01 [300]. In the Bespoke case, wherein two-thirds of each participants’ data were
used for training, 50 trials per class remained for testing; the upper limits of chance-level results at the 0.05
and 0.01 confidence levels would be approximately 32% and 35% respectively [300]. It is clear from Tables
5.9 and 5.10 that all both Bespoke and Generalist systems of all fusion architectures achieved performance
well above these thresholds for all Holdout Subjects.

Architecture Classification Accuracy
1 6 11 16 21 Mean

Decision-level 0.8125 0.8144 0.9467 0.8292 0.8661 0.8538
Feature-level 0.7812 0.8170 0.8980 0.7891 0.8287 0.8228(Separate selection)
Feature-level 0.7747 0.8101 0.8960 0.7816 0.8114 0.8148(Joint selection)
Hierarchical 0.8293 0.8345 0.9467 0.8324 0.8697 0.8625

Inverse Hierarchical 0.7518 0.7942 0.8900 0.7619 0.7907 0.7977

Table 5.9: Bespoke classification performance of the proposed fusion architectures on Holdout Set data, each using the
respective configurations identified by CASH optimisation in Table 5.3 (scores averaged over 100 trials).

Architecture Classification Accuracy
1 6 11 16 21 Mean

Decision-level 0.6500 0.7408 0.8138 0.715 0.7146 0.7268
Feature-level 0.6729 0.7446 0.8238 0.7158 0.7108 0.7336(Separate selection)
Feature-level 0.6633 0.7475 0.8233 0.7246 0.7121 0.7342(Joint selection)
Hierarchical 0.6721 0.7450 0.8125 0.7021 0.7054 0.7274

Inverse Hierarchical 0.6479 0.7371 0.8213 0.7146 0.7117 0.7265

Table 5.10: Generalist classification performance of the proposed fusion architectures on Holdout Set data, each using
the respective configurations identified by CASH optimisation in Table 5.4.

While classification accuracies for these unseen Holdout Subjects are of broadly similar levels to the
mean accuracies over the 20 Development Subjects reached in optimisation, comparing tables 5.3 and 5.9
shows Bespoke Holdout performance to be weaker than optimisation performance. This is not surprising
and highlights the risk of overfit inherent to the CASH optimisation process. While in every iteration of
any optimisation process data were split such that the specific model configuration being evaluated had no
sight of the test data, the optimiser itself as a higher-level learning process ultimately had knowledge of all

7In actuality, the time-window segmentation procedure (see 4.3) means that each gesture performance contributes multiple
instances to the dataset. For the purposes of determining chance level thresholds, the worst-case assumption is taken here: that
the effective number of trials contributed by each gesture performance is 1. The upper confidence limits of a chance-level result
for larger numbers of trials per class would be closer to the theoretical chance level of 25%.
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20 subjects (per Figure 5.1), and hence its modelling choices may be tailored to those individuals. This is
precisely the over-optimisation phenomenon described by Hosseini, Powell, et al. [31] which — as has been
discussed previously in 3.3.2, 4.2.3, & elsewhere — was a key motivation for the decision to validate findings
using wholly unseen Holdout data as is done here rather thank risk reporting inflated accuracies on the basis
of non-generalisable results.

Given that, it may be surprising that in the Generalist case, through comparison of tables 5.4 and 5.10
it can be seen that mean accuracy was marginally higher in validation across Holdout participants than in
optimisation over Development. It should however be noted that as outlined in 5.2.3.2 above, for verification
each optimiser-identified Generalist system configuration was retrained on all 20 Development Subjects’s data
before being tested on each Holdout Subject in turn. Whereas, during optimisation a Leave-One-Subject-
Out strategy was used: they had in each case been trained on 19 of the Development Subjects and tested
on the remaining one, repeated for each Development Subject in turn. This inclusion of a 20th subject’s
data for training represents a 5.26% increase in the total amount of data available to a system when tested
on a Holdout Subject than on a Development, and also by inclusion of an additional individual among the
training set a widening of the dataset’s diversity. Either or both of these factors may account for this apparent
performance boost.

5.5.2.2 Trends among fusion architecture performance

Considering the first clause of Aim 5.1.1, to “Establish whether the fusion architecture impacts system quality”,
the obvious null hypothesis to be tested is that “fusion architecture does not impact system quality”. However
to fulfil also the Aim’s latter part, to “identify performant fusion architectures”, requires not only testing for
simply the presence of significantly different performances among architectures, but to assess whether some
architectures are stronger or weaker than others. Fusion architectures are hence compared on a pairwise or
“all-vs-all” basis, done here with Tukey’s method in R, controlling for the effect of between-subject performance
variation (discussed further in 5.5.2.3 below) by using the participant number as a blocking factor.

Hypothesis Estimate Std. Error t value p value
decision – hierarch -0.00874 0.00656 -1.333 0.6758
feat_join – hierarch -0.04776 0.00656 -7.284 <0.0001
feat_sep – hierarch -0.03972 0.00656 -6.058 0.0001
inv_hierarch – hierarch -0.06480 0.00656 -9.883 <0.0001
feat_join – decision -0.03902 0.00656 -5.951 0.0002
feat_sep – decision -0.03098 0.00656 -4.725 0.0019
inv_hierarch – decision -0.05606 0.00656 -8.550 <0.0001
feat_sep – feat_join 0.00804 0.00656 1.226 0.7369
inv_hierarch – feat_join -0.01704 0.00656 -2.599 0.1176
inv_hierarch – feat_sep -0.02508 0.00656 -3.825 0.0111

Table 5.11: Pairwise comparisons of Bespoke fusion architectures (implementing optimally-identified configurations),
using mean accuracies per Holdout subject per architecture over 100 trials

88



M. Pritchard, PhD Thesis, Aston University, 2024 CHAPTER 5. MULTIMODAL FUSION STRATEGIES

Figure 5.8: 95% Confidence Intervals of differences in means between fusion architectures in Bespoke systems (mean
accuracies over 100 trials), each using CASH-identified configurations, estimated by Tukey pairwise contrast accounting
for participants as blocks. (Differences are significant if the corresponding interval does not contain 0).

It can be seen from the comparisons presented in Table 5.11 and the visualisations in Figure 5.8 that in
Bespoke fusion, the Hierarchical and Decision-Level architectures both outperformed all except each other. Of
those outlined in 5.3.1, these two architectures are likely among the most able to “de-prioritise” the information
carried by EEG. In the Hierarchical architecture EEG data is in effect condensed into a single feature (the
probability distribution estimates by its component EEG classifier), and the optimal Bespoke Decision-level
system’s use of the Max rule rewarded the more confident constituent classifier, which considering the lower
separability of EEG data may be assumed to more often be the EMG model.

Given the superiority of unimodal EMG systems’ performance to that of unimodal EEG systems (Table
5.5), it would follow that a system more heavily influenced by EMG would plausibly be superior to one which
under-utilises EMG. This is of course not to suggest such systems would be better served by disregarding
EEG data entirely (else an optimised Decision-Level fusion system could never be expected to outperform
its component EMG model, which was not borne out in results). It may however indicate that the subset of
data which was classifiable with information carried by the EMG and that classifiable with the information
captured by EEG were heavily overlapped. That is, datapoints misclassified by an EMG model may be not
likely to be classifiable by an EEG model; the two were not able to compensate for each others’ “blind spots”.

This may suggest that, all other things being equal, the limiting factor in system performance was
less related to the particulars of the machine learning algorithms applied, but could have derived from the
informativity of the features (described in 4.3.2) extracted from the raw biosignal data. Hargrove et al. [265]
found that in EMG classification the choice of appropriate feature vector was often of much more significant
influence than the selection of model itself. Instability in the underlying ground truth from which EMG and
EEG measurements were taken, such as irregular movements by participants, could even be a factor8.

8see further discussion in 5.5.7
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While not done here as it was not a central focus of investigation, future work could seek to track individual
datapoints’ likelihood of correct classification across data modalities & system architectures. This would help
verify whether certain gesture performances proved inherently more difficult to classify by both EMG &
EEG models, and could motivate exploration of modelling approaches which devote particular attention to
residuals, such as gradient boosting methods, to overcome this. Conversely, if different data proved to be
at risk of misclassification by EMG & EEG, such techniques could be adapted into an extension of the
Hierarchical Fusion approach wherein one datatype was used explicitly to focus on the residuals of the other
— a principle not dissimilar to the “error-correcting” approach to multimodality discussed in 3.1.2.1.

Whilst 5.5.1.2 found the candidate Bespoke Fusion system to not significantly outperform a Unimodal
EMG model in this study, as was discussed there is reason to expect such a finding may not necessarily
generalise to amputees. The promise shown by multimodal approaches in performing on-par with the uni-
modal EMG model on unseen data makes it evident that future work on the use of subject-specific biosignal
fusion systems with amputees, ought to explore the Hierarchical & Decision-Level architectures as key lines
of investigation.

Pairwise comparisons between fusion architectures for Generalist systems, again performed with Tukey’s
method, are presented in Table 5.12 and visualised in Figure 5.9. Among subject-independent systems, the
Feature-level Fusion (with joint feature selection), found in 5.5.1.2 to outperform a Unimodal EMG-based
system, did not in fact perform significantly differently from other architectures at the 95% confidence level.
It is though noted that in the observed classification accuracies across Holdout subjects (Table 5.10) no other
architecture outperformed this approach, consistent with its superior mean accuracy on the Development
Set during optimisation (Table 5.4). The magnitude of this dominance however is incredibly small; it may
be that the relatively low sample size in this work precludes such a small effect from being detected with
confidence at the α = 0.05 level.

Hypothesis Estimate Std. Error t value p value
decision – feat_join -0.00733 0.00434 -1.688 0.468
feat_sep – feat_join -0.00058 0.00434 -0.134 1.000
hierarch – feat_join -0.00675 0.00434 -1.554 0.545
inv_hierarch – feat_join -0.00767 0.00434 -1.765 0.425
feat_sep – decision 0.00675 0.00434 1.554 0.545
hierarch – decision 0.00058 0.00434 0.134 1.000
inv_hierarch – decision -0.00033 0.00434 -0.077 1.000
hierarch – feat_sep -0.00617 0.00434 -1.420 0.625
inv_hierarch – feat_sep -0.00708 0.00434 -1.631 0.500
inv_hierarch – hierarch -0.00092 0.00434 -0.211 1.000

Table 5.12: Pairwise comparisons of fusion architectures (using optimally-identified configurations) in Generalist case.

Notwithstanding that possibility, it appears that for a subject-independent system, across and regardless
of fusion mechanism, the incorporation of EEG data can provide greater predictive power than use of EMG
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Figure 5.9: 95% Confidence Intervals of differences in means between fusion architectures in Generalist systems, each
using CASH-identified configurations, estimated by Tukey pairwise contrast accounting for participants as blocks.
(Differences are significant if the corresponding interval does not contain 0).

data alone in classifying same-hand gestures from unseen subjects. While under the given optimisation budget
no fusion architecture was here able to achieve performance better than any other, it is implausible that no
such superior fusion approach exists even if it is not found within the scope of the algorithms trialled in this
work. Given the clear impact of EMG-EEG fusion in improving subject-independent classification ability
demonstrated here, and the various benefits to prosthesis users in terms of to cost, time, and convenience
which achieving subject-independence in gesture classification could enable, these results strongly motivate
future research to assess a wider range of fusion strategies.

Such work should also investigate in depth the impact of the inherent increase in model complexity
caused by incorporation of EEG to a system on prediction speed and required computational load. The
latter is particularly in the context of a potential deployed prosthesis control system wherein component cost
is an important consideration. The potential barriers presented by the cost and convenience implications of
adding EEG to a system should be weighed not only against the degree of meaningful performance boost
achievable by fusion as it relates to day-to-day usage however. If incorporation of EEG can enables better
generalisability of classification systems, this should be weighed also against the barriers to access which
may already be presented intrinsically by subject-specific systems, due to the degree of tailored support
a prosthesis user may need in the setting up of such a system and the compounding effect of healthcare
inequalities, particularly for disabled people, on the timeliness & likelihood of receiving such support. While
well outside the scope of this work and the academic expertise of the author — the insight of researchers
in disability theory and related social sciences, and of amputees with lived experience of prosthesis use, will
doubtless be needed to do such investigations justice — implications such as these are vitally important and
it would be remiss not to give them due acknowledgement.
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5.5.2.3 Variation among participants

As indicated by the per-subject results in Tables 5.9 & 5.10, the various systems’ respective abilities to
generalise to the unseen Holdout Subjects varied by subject. To help highlight such differences Figures 5.10b
& 5.10a present this variation for Bespoke and Generalist cases visually. As a reference, Figures 5.11a and
5.11b similarly present per-subject accuracies of Unimodal systems.

This illuminates some interesting trends. It is immediately apparent for example that Participant 11
routinely outperforms the other Holdout Subjects in both Bespoke and Generalist fusion. Participant 1
meanwhile routinely underperforms in Generalist systems, yet is not dramatically worse than some other
subjects in many Bespoke cases. This gives confidence in the generalisation ability of the Bespoke system
configurations identified by the CASH optimisation. It can be inferred from Figure 5.10a that Participant 1’s
data may differ notably from that of the 20 Development Set subjects used to train the Generalist systems,
hence the diminished ability for their data to be informative in classifying Participant 1. Despite this apparent
difference however, Bespoke systems were indeed able to be trained and utilised with Participant 1. While
they saw a distinctly lesser degree of success they nevertheless achieved accuracies nearing those of their
contemporaries in the Decision-Level and Hierarchical Fusion systems (themselves the two most accurate
architectures for Bespoke fusion on average at the group level, as previously discussed). Thus the optimiser’s
learning of suitable modelling choices from Development Subjects was indeed somewhat transferable even to
Participant 1, even where learning at the level of direct model training (as in Generalist systems) was less so.

(a) Generalist (b) Bespoke

Figure 5.10: Fusion architectures’ accuracies across Holdout Subjects using optimal configurations; note that trends
among fusion algorithms are present but scores are highly modified by subject. (NB datapoints in the Bespoke (right)
case are the mean of 100 trials of a given system with a given subject)

Considering Figure 5.10b together with Figure 5.11b it can be further observed that for Participant 1, both
the Bespoke Decision-level & Hierarchical fusion systems were stronger than the Unimodal EMG baseline.
This is interesting in the context of Participant 1’s Generalist Unimodal EMG baseline being notably weaker
than other holdout subjects’ and, per Figure 5.11b, their Bespoke Unimodal EEG baseline being stronger
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(a) Generalist Unimodal Holdout generalisation performance. (b) Bespoke Unimodal Holdout generalisation performance.

Figure 5.11: Unimodal systems’ accuracies across Holdout Subjects in Generalist (left) and Bespoke (right) cases. (NB
datapoints in the Bespoke (right) case are the mean of 100 trials of a given system with a given subject)

than others in the Holdout Set. These results may suggest that where EMG performance was poor, the
Decision-level & Hierarchical fusion algorithms were able to successfully use the informative EEG data to
supplement EMG predictions, thereby improving overall performance.

Additionally, considering this subject’s status as an apparent outlier with exceptionally high EEG per-
formance and low EMG performance, it should be recalled that systems were optimised for mean accuracy
across all 20 Development Subjects, and hence likely tend towards configurations tailored to a “typical” user
representative of the central tendency of that set. In the optimisation of Bespoke systems, this may lead to a
configuration which is due to preference aggregation equivalently suboptimal for all subjects, while any given
individual would actually be better served by a different system configuration. This is of course a feature,
not a bug, of the CASH optimisation pipeline. The motivation was to identify a system configuration which
could be trained and tested on unseen subjects’ data reliably, and thus avoid the need for a dedicated CASH
optimisation with each new user of a system. It may be however that the optimally-identified systems here
were particularly ill-suited to Participant 1 due to their outlier status, and their gestures could be better
classified by a system which drew on the EMG & EEG data in a different way. In the context of Aim 5.3, to
“Establish a pipeline for the unbiased identifying of a performant multimodal system”9, this is acknowledged
as a potential limitation of the proposed optimisation pipeline.

Despite such stark performances differences between Holdout Subjects trends in the relative accuracies
of architectures do appear to present in similar ways across them, consistent with the statistical analysis of
such inter-architecture differences presented above.

9Discussed further in 5.5.8 below
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5.5.3 On EEG Feature Informativity

Aim 5.2, to “Identify modelling choices which can contribute to a multimodal or unimodal system achieving high
classification accuracy”, is deliberately broad in scope. One category under the umbrella of “modelling choices”
is the design decisions taken prior to any actual selection or training of machine learning models, specifically
the ensemble of features extracted from data. Here, considering the established challenges of multi-gesture
classification from noninvasive neuroimaging data and the distinctly less “solved” nature of this problem by
comparison to EMG-focused research, and the vastly more complex nature of neurological biosignals than
muscular, EEG modelling is considered of greater interest and hence given particular focus. While as discussed
in Chapter 4 the feature ensemble (from which informative features were selected according to 5.3.2.2) was
static throughout the work and not a primary target of investigation, exploring the informativity of some of
the statistical features in Table 4.2 with regard to EEG data reveals some interesting insights.

Feature selection in Bespoke systems was performed separately for each subject as described in 5.3.2.2; in
each case the 40 EEG features chosen were those determined as most informative for that specific subject. The
consistency of various features’ informativity, as a proxy for their importance, can be inspected by reviewing
how frequently they were selected by these subject-specific systems [142]. A number of EEG features were
found consistently informative across subjects in the Development Set during optimisation, being chosen by
a sizeable subset of the population despite the individually tailored nature of this selection.

Figure 5.12: Co-occurrence of Bespoke-selected EEG features, grouped by feature category

Figure 5.12 presents10 the number of Development Set subjects for whom each EEG feature was selected,
labelled “occurrence”, for all those features selected by more than one subjects’ Bespoke Unimodal EEG
system11. Here the Time- and Frequency- domain features outlines in Table 4.2 are grouped into broad
categories: all frequency bandpowers of any signal as “Frequency”; all features relating to the covariance

10styled after [301]
11Features from the lag window (see 4.3) are not counted as occurring twice as this is ultimately the same feature at a shifted

point in time
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matrix, its logarithm, or its eigenvalues as “Covariance”; all features relating to signal means or standard
deviations as “Distribution”, all features relating to the maxima and minima as “Extrema”, and any paired
differences between half- or quarter- windows of a given type of feature as the delta (∆) of that type, as in
e.g. “∆ Distribution”.

Table 5.13 records the occurrence rates of each of these feature categories across all EEG features selected
for any Development Subject’s Bespoke Unimodal EEG system. It is evident that features related to Covari-
ance and to Frequency Bandpowers dominate, consistent with established domain knowledge, as outlined in
2.2.2.1, that much of movement-related neural activity is encoded in the frequency domain.

Covariance 177
Frequency 58
Extrema 42

Distribution 20
∆ Distribution 13
∆ Extrema 3

Table 5.13: Selection rates of EEG feature families in Bespoke Unimodal EEG systems

Dividing these feature families into narrower categories as in Figure 5.13 enlightens that among covariance-
related features, the matrix logarithm of the covariance matrix is more consistently found informative than
the elements of the covariance matrix itself. Additionally the bandpower of the Delta (0.5 < f ≤ 4Hz) wave
proves consistently informative in more than half of the subjects.

Figure 5.13: Co-occurrence of Bespoke-selected EEG features chosen for at least 5 (one quarter) of subjects, grouped
by subdivided category

Figure 5.14 displays the specific individual EEG features most commonly found informative in Bespoke
Unimodal EEG systems across the 20 Development Set participants. The Delta bandpower at electrode #13,
which corresponds to electrode site FC6 of the extended International 10-20 System (Figure 4.2, above) was
among nearly every single subject’s chosen 40 most informative EEG features. The same at electrodes 0, 3,
and 16, 10-20 electrode sites FC5, C5, and C6, were chosen by three quarters of subjects.
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Figure 5.14: Co-occurrence of EEG features selected by ≥ 7 subjects’ Bespoke systems

Table 5.14 presents the occurrence of each feature category among all EEG features selected in Generalist
systems for any development set subject. It should be recalled that the leave-one-subject-out cross-validation
procedure described in 5.2.3 for Generalist systems’ optimisation means that for a given subject N , to avoid
data leakage features were selected based on their informativity over the training set — which for N was
comprised of the data of all 19 subjects except for N . Hence only one-nineteenth of the data differed between
different subjects’ Generalist training sets; they were significantly similar and it is therefore unsurprising that
the inter-subject similarity between selected features is higher here than in Bespoke systems, and hence the
total number of distinct features selected across all subjects fewer.

It is clear that again Covariance-related and Frequency Domain features dominate, again consistent with
prior findings regarding the nature of neural signals. Such preference is more profound here than in the
Bespoke case, with very few Time-Domain features being selected at all. Considering Generalist feature
selection is on the basis of 19 subjects’ data, this suggests that Frequency Domain features are not only more
informative by nature than Time Domain features but also that the manner of their informativity is itself
more consistent across subjects.

Covariance 76
Frequency 45

Distribution 4
Extrema 3

∆ Distribution 2

Table 5.14: Selection rates of EEG feature categories in any subjects’ Generalist Unimodal EEG

Table 5.15 presents those EEG features which were selected in Generalist systems for all 20 Development
Set subjects. Of note these are all either Frequency Domain features or those related to Covariances between
electrode signals.
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Figure 5.15: Occurrence of EEG features selected in Generalist systems for at least 5 (one quarter) of subjects, grouped
by category

Feature
logcovM 4-5 logcovM 3-16 logcovM 3-8 covM 2-2
logcovM 0-3 logcovM 5-5 logcovM 19-19 logcovM 7-19
covM 4-13 logcovM 13-16 logcovM 2-2 logcovM 12-13

logcovM 0-13 sum delta 0 sum alpha 15 sum alpha 13
sum alpha 10 sum delta 5 sum delta 16 sum beta 6
sum delta 13 sum delta 3 sum theta 3 sum beta 4
sum alpha 4 sum beta 9 sum beta 5 sum theta 16
sum delta 1 sum beta 11 sum beta 8 sum alpha 7

Table 5.15: EEG features selected in all 20 subjects’ Generalist systems; presented here in no specific order.

As described above in 5.3.1, there are two feature selection methods in Feature-Level fusion systems. In
the “Separate Selection” subtype, EMG & EEG features are selected independently prior to the datatypes
being joined; the EEG features chosen are hence identical to those precedingly described in Unimodal EEG
systems and so do not warrant further analysis. Under “Joint Selection” however, feature selection was
performed over the join of EMG & EEG featuresets.

As can be seen in Figure 5.16 and Table 5.16, in this latter case Covariance and Frequency Domain
features continued to dominate the regularly-selected EEG features in Generalist systems. Despite this, the
Overlap Coefficient (Equation 5.3) [302] between the set of 69 EEG features selected for at least half of the
subjects in Generalist Unimodal EEG systems and the 54 EEG features likewise selected for at least half
of the subjects in Generalist Feature-Level Fusion systems is only 0.537 — indicating that when considered
alongside EMG, the relative importances of EEG features were different. This perhaps suggests that some
of those EEG features found informative when considering EEG alone, but of lesser interest when EMG
is included, may have high levels of redundancy with the information carried by EMG features. Detailed
analyses of such potential EEG-EMG feature correlations are left for future work.
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Figure 5.16: Occurence rates of EEG features, grouped by category, in Generalist Joint-Selection Feature-Level Fusion.
For legibility EMG features, though present in Feature-Level Fusion, are not plotted here.

overlap(X,Y ) =
|X ∩ Y |

min(|X|, |Y |) (5.3)

Covariance 61
Frequency 41

Distribution 2
Extrema 1

∆ Distribution 1

Table 5.16: Selection rates of EEG feature categories in Feature-Level Generalist. Across all features selected at least
once by any subjects’ Generalist Feature-Level fusion systems, the 106 recorded here were EEG features, and a further
99 were EMG.
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Implications

5.5.3.1 Delta-Band Oscillations

The persistent informativity of the Delta wave here is somewhat surprising. Motor cortex activity such
as the event-related desynchronisation of the mu rhythm is typically found at frequencies corresponding
broadly to the Alpha and low Beta bands [72, 73, 247], while Delta activity in the brain is more often
associated with sleep [67,303], learning [68], auditory sensory processing (including when found in the Motor
Cortex [304]), and even decision-making [69], as discussed in Chapter 2. Nevertheless some studies have
found low-frequency EEG to be informative in discriminating upper limb gestures. Ofner et al. [75] were
able to use EEG filtered between 0.3 and 3 Hz to discriminate between six distinct movements (bicep flexion
& extension, wrist pronation & supination, and hand opening & closing) at up to 42% accuracy, and on
an aggregated move-vs-rest basis at up to 81%, with LDAs. Iturrate et al. [162] were able to distinguish
between two grasp types (a whole-hand cylindrical "power grasp" and a thumb-and-forefinger "precision
pinch" grip) with EEG from just eight electrodes near the contralateral motor cortex filtered in the 1 - 6
Hz range, reporting a 79% average accuracy and distinct observable differences in EEG activity at electrode
C3 between the two classes. Indeed Iturrate’s work followed prior evidence from Pistohl et al. [167] wherein
low frequency neural activity measured by ECoG had been found informative in distinguishing the same two
grasps, though such low-frequency neurosignal components have more often been found, in ECoG as well as
more rarely in EEG or MEG, to carry information regarding the trajectory of movements, i.e. their direction
and speed [59,305,306], rather than the nature or form of a gesture itself. Hamel-Thibault et al. [307] found
contralateral motor cortex Delta oscillations to predict individuals’ choice of hand to move when asked to
perform an arm-reaching movement at high speed. In this work however all movements were performed with
the right hand only [198], suggesting it unlikely that such a discriminatory effect could explain the entirely of
the Delta oscillation’s informativity.Schalk et al. [77] observed apparent correlations between low frequency
neural activity measured with ECoG and the direction of movement of a joystick controller, but posited
that these were in fact highly spatially-localised time-domain amplitude correlations which they named “local
motor potential”s, rather than truly frequency-domain phenomena.

The mechanisms of motor control are complex and it should of course be noted that the apparent in-
formativity of Delta-band oscillations in this study does not necessarily predicate such oscillations playing
a primary role in the control of voluntary upper-limb movements. Considering the encoding of directional
reaching related information in low-frequency motor cortex oscillations, a limitation of this work is the con-
sistency of object placement during data collection; the spatial arrangement objects corresponding to the
three different grasp types was unchanged throughout the study and hence the classes correlated with object
position. While they were in close proximity to one another, and not placed in opposing directions relative
to the participant, it cannot be discounted that the small differences in reach direction when grasping each
object could contribute to the informativity of Delta oscillations here. Taken in the context however of such
grasp-discriminative ability of the Delta wave having been identified in a small number of preceding studies,
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this certainly appears an area worthy of further exploration by subsequent research.

This apparent informativity of low-frequency EEG does potentially present an interesting challenge with
regard to real-time deployment of a gesture identification system. As described in 4.3.2 above, in this work
features were extracted on a time-windowed basis, with windows of one second in length. Even prior to
considerations such as sampling frequency, this presents an absolute theoretical minimum on the frequencies
for which signal components can be accurately identified by the Fast Fourier Transform; only a signal of 1Hz or
greater can complete a full cycle in the one-second window. Delta oscillations however are often characterised
as being within the boundaries of 0.5 - 4 Hz, and indeed neural oscillations below 0.5Hz may prove of interest to
future research in this area — potentially motivating use of a wider time-window for segmentation. Conversely
however a shorter -duration window would allow for more frequent decision-making by the system; this may
prove beneficial in reducing the delay between a users’ movement intention and the system’s response, which
has been suggested to optimally lie around 100 milliseconds for powered prostheses [222], but at cost of
restricting the systems’ ability to identify low-frequency signals.

These two conflicting priorities could perhaps be managed by adjusting the overlap between sequential
time-windows. A window for instance of a 2 second duration, but 95% (190 millisecond) overlap, would
allow for signal components as low as 0.5Hz to be identified while enabling predictions to be made every
100ms, albeit ones based on data significantly similar to that of their immediately preceding and succeeding
neighbours. This approach also would not be without limitations; the widening of windows would decrease
their temporal specificity which may particularly coarsen those features related to signals’ distributions over
that window. Given the short duration of the gesture performances in the dataset used in this work, each being
only 3 - 4 seconds, alternate durations and overlaps of time-windows were not trialled; empirical assessment
of the impact of the considerations discussed here is left for future work in the field.

5.5.3.2 Ipsilateral Activity

The second surprising observation to be noted here is the informativity of signals recorded from electrodes
sites at the ipsilateral hemisphere. It is well-established that, in broad terms, much of the brain is organised
contralaterally — its left hemisphere controls the right side of the body, and vice-versa. It follows therefore
that for movements of the right hand, as in this study, the brain region of most interest would be the
motor cortex’s opposite, left, side12; indeed the relevance of contralateral motor cortex EEG to both real and
imagined movements has been long demonstrated [247].

Certainly, features derived from signals found in the contralateral hemisphere were indeed found infor-
mative; as shown in Figure 5.14 the Delta oscillations at electrodes 0, 3, & 7, corresponding to electrodes
FC5, C5, and CP5 (Figure 4.2) and the Beta oscillation at electrode 5, corresponding to electrode C1 sit-
uated over the contralateral primary motor cortex, were selected by many participants’ Bespoke systems,

12As all gestures in this study were performed with the right hand, anatomy hereafter is described relative to the right hand;
that is, the right side of the brain referred to as “ipsilateral” and the left as “contralateral”. Such use is convention but readers
are nevertheless reminded these terms are inherently relative; where describing, for example, an EEG electrode as measuring
the “contralateral hemisphere” (such as C3, as in Figure 4.2), this should be taken to mean “contralateral to the right hand”.
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and as per Figure 5.15, Delta power at electrodes 0 & 3 and Beta power at electrode 5, along with a great
many other contralateral features including Beta power at electrode 4 (C3, directly over the hand-relevant
area of the motor cortex), were likewise selected in Generalist systems for all subjects. Occuring at similar
rates however, across both Bespoke and Generalist systems, were features derived from ipsilateral electrodes.
Delta bandpower of channels 13 & 16, corresponding to electrodes FC6 & C6 respectively, were among the
most consistently selected features in the Bespoke case. Theta bandpower at electrode 13 (FC6) was selected
for around a third of subjects in Generalist cases; interestingly, while not a popular choice among Bespoke
systems, Theta at electrode 16 (C6) was selected in Generalist systems for all subjects, perhaps suggesting
that its individual informativity was rarely among the highest, but that it was informative in similar ways
across participants.

While as mentioned the bulk of motor control is known to take place contralaterally to a movement,
there is evidence of the ipsilateral hemisphere playing a role [308]. Bundy & Leudhardt, reviewing the nature
of ipsilateral motor activity, noted that “Although the majority of primary motor cortex neurons alter their
firing rate solely with movements of the contralateral hand, a separate small subset of neurons change their
firing rate solely during movements of the same-sided hand ” [309].

Wisneski et al. [310] found movement-related activity ipsilaterally in the premotor cortex, which could
be successfully used in conjunction with contralateral activity in a cursor-control BCI. Fujiwara et al. [290]
found high-frequency (>64Hz) ipsilateral activity, measured with ECoG, to be as informative for decoding
movement as being of the wrist, shoulder, or ankle as contralateral activity, and further that ipsilateral-trained
models were able to generalise to contralateral data, suggesting a similarly structured neural representation of
the body. Ames and Churchland [165] found in rhesus monkeys that while at the neuron level many neurons
were active during movements of both contralateral and ipsilateral arms, and indeed some were more active
in ipsilateral movements than contralateral, when Principal Component Analysis was applied, distinct and
orthogonal subspaces were found across neurons of both hemispheres relating to activity of the left and right
arms; Heming et al. [311] similarly found separability between the neural representations of ipsilateral and
contralateral limbs.

Further, patterns of ipsilateral activity specific to different fingers have been found by Diedrichsen et
al. [312] which were highly similar to those found contralaterally but interestingly did not present during
bimanual movements (simultaneous movements of both hands). Subsequent work by Berlot et al. [313]
evidenced these ipsilateral representations as being related to active movement rather than the accompanying
somatic sensory input13, and that the spatial distribution of such ipsilateral and contralateral activity differed.

It is believed that the movement-related changes in ipsilateral motor activity may be partially explained
by them playing an inhibitive function [314]. Some f-MRI and TMS studies [315–317] have observed decreased
levels of ipsilateral activity in parallel with increased contralateral activity during execution of a movement,
and this effect being more pronounced during movements of an individual’s dominant hand [316, 317]. Like-
wise, event-related desynchronisation of the contralateral mu rhythm is known to be often accompanied by

13Recall as noted in 2.1.2 that the somatosensory cortex lies immediately adjacent to the primary motor cortex; the two are
sufficiently related that they are often together referred to as the sensorimotor area (or even the "sensorimotor cortex" — though
the particulars of debates over neurological terminology are distinctly beyond the scope of this work).
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(a) Bespoke; Contralateral (left side): 61, Ipsilateral (right
side): 59, Central: 16

(b) Generalist; Contralateral (left side): 28, Ipsilateral (right
side): 22, Central: 4

Figure 5.17: Co-occurences of EEG features selected for at least two subjects in Bespoke (left) and Generalist (right)
systems, grouped by hemisphere. NB that due to greater cross-subject consistency in Generalist feature selection, the
total number of Generalist features shown here is lower than the Bespoke, but this is not reflective of the number of
features selected in a given system of the respective natures.

a mu synchronisation in the ipsilateral motor cortex [73,247]. Such effects are thought to be a part of “inter-
hemispheric inhibition” — in essence, the mechanism by which inadvertent movements of the “wrong” limb
are prevented via communication between the brain’s hemispheres [318]. This inhibitive function and the re-
lated interhemispherical communication can not however be said to account for the entirety of the ipsilateral
hemisphere’s role; movements of ipsilateral limbs have been induced in monkeys by electrical stimulation
of the ipsilateral motor cortex even after surgical removal of parts of the contralateral motor cortex [319].
Interestingly, it has been found that among amputees, attempted movements of the residual muscles relevant
to hand movements correlated with ipsilateral motor cortex activity only in those who did not experience
phantom limb pain [320]; the causality of this is not precisely known but given that motor imagery exercises
have been observed to reduce phantom limb pain in some patients it seems plausible that some underlying
mechanism contributes both to the severity of the pain and the irregularity of motor cortex activity.

While it is perhaps not altogether surprising in and of itself that ipsilateral activity could be found
informative in discriminating hand gestures as in this task, it is quite remarkable that ipsilateral activity was
of an informativity seemingly on a par with contralateral activity. As shown in Figure 5.17a, of those EEG
features selected for more than one subject14 in the Bespoke case, 43.4% corresponded to ipsilateral electrodes,
compared to 44.9% deriving from contralateral electrodes (the remainder being associated with centrally-
located electrodes Cz or CPz). In the Generalist case ipsilateral features made up a smaller proportion of the
commonly-selected features, at 40.7% to 51.9% contralateral as in Figure 5.17b, than in Bespoke systems,
but nevertheless a greater contribution than may have otherwise been assumed a priori.

It has been suggested [309,310] that power attenuation in the Gamma frequency band may be of particular
14Excluding features related to the covariance matrix and its derivatives, which cannot be said to relate exclusively to a single

electrode’s signal.
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relevance to the interhemispheric inhibitive effect; it is noted here that Gamma activity at channel 4 (electrode
C4, located most closely to the region of the ipsilateral motor cortex relevant to the hand), while not a
frequently selected feature in Bespoke systems, was selected as informative in Generalist systems for 17 of
the 20 subjects.

What should be noted is that the vast majority of studies mentioned here (and indeed many not explicity
discussed) which have investigated movement-related ipsilateral motor cortex activity have done so only with
neural imaging techniques much higher-fidelity than the scalp EEG used in this work. Functional Magnetic
Resonance Imaging was used by [312, 313, 315, 316]; others utilised ECoG [290, 310, 311], which as [310]
notes offers both a much wider bandwith of measurable frequencies and a much higher spatial resolution
between independent electrode channels (0.125cm separation for ECoG to 3.0cm for EEG), and some studies
involving rhesus monkeys have measured individual neurons at the single-unit level [165]. To identify an
apparent informativity of the ipsilateral motor cortex with regard to hand grasp type from EEG data as
in this work is notable — particularly considering that Delta oscillations, not previously identified as a
fundamentally central aspect of informative ipsilateral activity appear here to be similarly informative to
their contralateral counterparts. This provides a clear motivation for ipsilateral low-frequency EEG to be
considered as a potentially informative source of movement-related information in future work, and for the
exact nature of its contribution to motor control to be investigated more thoroughly.

5.5.3.3 Neural Geography

It is also of note that many features derived from electrodes not situated directly over the primary motor
cortex were seen to be informative here. As discussed, features including particularly the Delta oscillations
at electrodes FC5, C5, C6, and FC6 (Figure 4.2), among other sites, were routinely selected for both Bespoke
and Generalist systems for many subjects; indeed, the Delta bandpower at FC6 was the only individual
feature to be consistently selected in Bespoke systems across all but one participant, as shown in Figure 5.14.
While brain size and shape is certainly variant across individuals, typically in EEG recordings electrodes
C3 and C4 are expected to capture hand-related motor cortex activity in the contralateral and ipsilateral
hemispheres respectively.

For electrodes both more distal (further “left” or “right” from the centre of the body) and more anterior (or
ventral, further to the “front” of the body) to be so informative here then is perhaps initially surprising. Indeed,
there may be mundane explanations — misalignments in the EEG electrode cap placement, or use of an ill-
fitting cap which insufficiently stretches over the head, could plausibly cause primary motor cortex activity
to be measured at unexpected electrodes which had inadvertently ended up lying over it. Given however
that the likelihood of such issues as poor electrode cap fit would intuitively be modified by the particular
size & shape of a participants’ head, it would be surprising for such issues to present systematically across
participants and they therefore are unlikely to have caused this informativity. Additionally, as noted in Table
5.15, many features at the more conventionally expected electrode sites were found informative, particularly
in the Generalist case. Were electrode misalignment to blame here, one could expect the “usual” electrodes
to no longer provide data as informative.
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Rather, it would appear that genuine movement-related activity, discriminative with regard to the type
of hand gesture performed, was indeed being measured outside the primary motor cortex. One of the most
likely contributors to this is the premotor cortex. Located anterior to the primary motor cortex, as shown in
Figure 5.18, the premotor cortex is conventionally known to be involved in the planning stages of voluntary
movements, before motor execution. Premotor cortex activity has not however been found to solely take

Figure 5.18: Location of premotor cortex, highlighted orange (NB: SMA refers to the Supplementary Motor Area) [321].
Used under CC BY-SA 3.0 [https://creativecommons.org/licenses/by-sa/3.0/deed.en].

place at the pre-movement stage. Berlot et al. [313] found that spatial distributions of ipsilateral finger
representations differed from those in the contralateral hemisphere — with contralateral representations being
more localised to Brodmann areas 3a and 3b15, i.e. the primary motor cortex, while ipsilateral representations
were stronger in the premotor cortex. Similarly Wisneski et al. [310] found that while movement-related
contralateral activity was located in the primary motor cortex, ipsilateral activity in the premotor cortex was
relevant to voluntary movements. It is hence wholly plausible that those electrodes situated more ventrally,
i.e. the FCX “row” including FC5, FC3, FC4, and FC6 (channels 0, 1, 12, & 13 respectively) in Figure 4.2,
may well be measuring premotor cortex activity. Indeed, as in Figure 5.19, FC5 and FC6 specifically may be
expected to measure the premotor cortex to some degree.

It is also important to note that the traditional assumption of hand movement neural activity being
local to electrode C3 contralaterally, and C4 ipsilaterally, may itself be less safe than believed. The classical
"cortical homunculus" model of the motor cortex as outlined in 2.1.2 is one of a heavily somatotopic mapping,
as presented in Figure 2.3. According to such a model we would expect hand-related motor activity to be
measurable mainly at electrodes C3 and C4, and signals at electrodes C5 and C6 to be more closely associated
with movements of the face. This association is sufficiently embedded that some works place very significant
focus on C3 activity for hand movement identification [162]. Again it is important to highlight that C3 and

15see 2.1.2 above for more thorough discussions of the neural topology
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Figure 5.19: Standard EEG electrode labels of the 10–10 system (see Figure 4.2), with Brodmann areas 47 (orange),
45 (blue), 44 (yellow), & 6 (green) highlighted. Note that FC5 here is labelled at Brodmann’s area 6 (the premotor
cortex) and adjacent to Brodmann’s area 44, which though typically associated with speech has been found [322] to
be active in the control of hand movements.
Image created through overlaying Fig. 1 of [323], originally published under CC-BY 3.0, and Fig. 6 of [324], originally
published under CC-BY 4.0 and created using BrainNetViewer [325].

C4 were indeed found informative here. Both Beta and Alpha bandpowers at C3 (channel 4), and Alpha
power at C4 (channel 15), were features selected as informative in Generalist systems for all 20 subjects (Table
5.15). The informativity of the more distal C5 and C6 electrodes however is indeed somewhat surprising.
Recent work by Muret et al. [326] may shed some light on this. Assessing relationships between distinct body
parts and regions of the somatosensory cortex, they did indeed find a high degree of univariate selectivity of
cortical regions in keeping with the conventional homunculus model. However when applying multivariate
analysis, they found relevant information, while strongest at the conventional highly selective sites, to actually
be distributed throughout the cortex, as represented in Figure 5.20. While a new model, their findings are
not entirely without precedent; Schieber et al.’s neuron-level measurements in monkeys suggested the hand
area of the motor cortex to be less strictily somatotopic with respect to individual fingers than otherwise
assumed [327] — though other work such as [166] has succesfully spatially discriminated finger movements
in humans with ECoG. Of particular interest to this work are Muret et al.’s observations that:

• "Two movements performed by one body part (e.g., the hand) could be dissociated well beyond its primary
region" ;

• "Two actions done with the same body part can be differentiated in non-primary regions of the homunculus".

Given the focus of the problem in this work is the differentiation of movements performed by the same body
part, it would seem wholly plausible this more distributed somatotopy could account for the informativity of
electrodes such as C5. Clearly this topic is a developing one in the literature and no attempt is made here to
conclude what will doubtless be, as with any proposed revision to a long-established model, a robust debate
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Figure 5.20: Distributed nature of the somatosensory homunculus, according to Muret et al. [326].
Used under CC-BY 4.0 [https://creativecommons.org/licenses/by/4.0/]

investigated much more thoroughly in the near future. Nevertheless, these ideas prove to be insightful lenses
through which to consider the findings of this work relating to EEG informativity.
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5.5.4 Modelling Choices

The trialling of various modelling choices for same-hand gesture classification performed as part of this works’
Combined Algorithm Selection and Hyperparameter optimisation processes allows for an exploration of the
impact of those choices, to better identify suitable modelling strategies for these data as an additional means
of furthering Aim 5.2. The influence of hyperparameters in certain models deemed promising due to their
appearance in optimiser-chosen systems (see 5.5.1.1) is explored here. Appendix A presents, without analysis,
trends in hyperparameters of those algorithms not deemed of particular interest; considering these models’
lesser relevance this is in many cases provided on the basis of Unimodal systems alone.

5.5.4.1 Linear Discriminant Analysis classifiers

Bespoke
As seen in Table 5.5, the single best-performing Bespoke EEG-only system used a Linear Discriminant
Analysis classifier. The LDA is a popular model choice among EEG literature [30] and so its contribution
to the winning configuration here is perhaps unsurprising. It is not uncommon however for EEG studies to
utilise LDAs with minimal justification for their selection; on the basis simply of precedent or unsubstantiated
a priori claims as to their superiority. The CASH optimisation here thus provides an opportunity to explore
such precedence empirically.

Figure 5.21 presents the mean classification accuracy across Development Subjects for each iteration of
the Bespoke Unimodal EEG system’s optimisation routine, grouped by model choice (as outlined in 5.3.3,
unimodal systems consisted of only a single classifier). Individual models’ hyperparameters were conditional
on the choice of classifier; hence while they may influence within-group variation, when comparing between
groups we can consider the model choice to be the defining variable separating them.

Figure 5.21: Mean Development Set accuracies achieved by different models in optimisation of Bespoke Unimodal EEG
system
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By observation LDAs appear to offer consistently higher performance than other classifier types. This
superiority can be verified statistically through pairwise comparisons between classifier choices. Of the various
post-hoc tests for multiple comparisons, options here are limited for multiple reasons. The nature of the CASH
optimisation procedure means that more promising hyperparameter choices were explored with more of the
optimiser’s budget; the six groups here are not of equal sample size. Additionally, it would not be safe
to assume each classifier was equally sensitive to the optimisation of its hyperparameters. Some classifiers’
performances may be more heavily influenced by tuning than others and hence have exhibited a wider range
of performances throughout the optimisation process; the usual assumption of equal variances between groups
is therefore also violated. Finally, considering the previously noted unequal occurrence rates of each classifier
type, given these groups are drawin from only 100 optimisation iterations the sample sizes of some are likely
to be low. The Dunnet T3 test [328] is recommended where variances are unequal and sample sizes both
unequal and low [329] and thus is used here, as implemented in the PMCMRplus package [330] in R [299].
The Dunnett T3 pairwise comparison results presented in Table 5.17 indicate there was indeed a significant
difference at the α = 0.05 level between the performance of LDAs and that of all other algorithms except
Support Vector Machines.

Hypothesis t value p value
GNB – LDA -29.624 <2.22e-16
KNN – LDA -5.099 0.0059
QDA – LDA -4.065 0.0275
RF – LDA -8.697 2.99e-06

SVM – LDA -2.873 0.1717
KNN – GNB -0.545 1.0000
QDA – GNB 7.086 0.0003
RF – GNB 6.876 3.26e-05

SVM – GNB -1.667 0.7542
QDA – KNN 3.239 0.0784
RF – KNN 2.530 0.2737

SVM – KNN -1.472 0.8606
RF – QDA -1.788 0.6809

SVM – QDA -2.428 0.3248
SVM – RF -2.210 0.4316

Table 5.17: Pairwise comparisons of EEG classifier choices in optimisation of Bespoke EEG-Only systems using Dun-
nett’s T3 test for multiple comparisons with unequal variances

As the most promising candidate model for Bespoke Unimodal EEG classification, LDAs were trialled
more frequently in optimisation, accounting for 44 of the 100 iterations. It could hence be posited that this
greater budget for hyperparameter fine-tuning could account for the dominance of LDAs. The relatively low
variance in LDA scores would however indicate this not to be the case; even the weakest LDA was more
accurate than many other models and the performance differential between it & the strongest LDA was low.

Indeed, there did not appear to be any significant effects of the values chosen for hyperparameters (detailed
in 5.3.3.3) of Bespoke EEG-LDAs. A one-way ANOVA between the choice of LDA solver and accuracy
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indicated no significant differences among group means & a pairwise Dunnett T3 comparison between them
verifies a lack of significant effects between paired solver options; for brevity these are presented in Appendix
A as Figure A.1 and Table A.1 respectively. The Pearson Correlation Coefficient (PCC) suggests only a
weak and statistically insignificant (p = 0.134) linear trend between the Shrinkage hyperparameter and
accuracy, & similarly Spearman’s rho suggests no significant monotonic relationship, as per Figure 5.2216.
Both Pearson’s and Spearman’s tests are performed here, and for all other correlation tests of models’
hyperparameters hereafter in 5.5.4 & in Appendix A. To control the risk of a Type I error arising from this
simultaneous testing, Bonferroni adjustments are applied; as there are two hypotheses the reported p-values
are doubled. The Bonferroni correction process is known to be conservative in cases where hypotheses are
themselves related [331, 332], which is likely to apply here — a linear correlation will logically often imply a
rank correlation — and thus the adjusted p-values reported can be considered upper bounds for the actual
p-values.

Figure 5.22: Mean Development Set accuracy against LDA Shrinkage in CASH optimisation of Bespoke Unimodal
EEG system. Reported p-values adjusted by Bonferroni correction.

This apparent insensitivity to the tuning of its hyperparameters suggests that their greater optimisation
budget was not in fact the proximate cause of LDA’s superior performance in Bespoke Unimodal EEG-Only
systems. Rather, these results corroborate the established preference among EEG-BCI literature for the LDA
classifier and provide an evidential basis for their superiority.

16It is not assumed that LDAs using the Least Squares Solution solver and those using Eigenvalue Decomposition would
have notably different relationships with the degree of shrinkage. This hyperparameter was thus shared among both these LDA
subtypes during optimisation as described in 5.3.3.3, and scores from LDAs of these two solvers are pooled when modelling the
effect of shrinkage here and henceforth. For completeness, correlation coefficients separated by solver are presented in Appendix
A as Table A.6.
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Such preference for LDA classifiers is seen also in Bespoke Feature-Level Fusion systems, again both in
terms of their “best-in-class” configurations as in Table 5.3 and by visual inspection of per-classifier group
means: Figure 5.23 presents accuracies grouped by machine learning algorithm for both Separate-Selection
and Joint-Selection subtypes of the Feature-Level Fusion architecture. The Dunnet T3 all-vs-all comparisons
presented in Table 5.18 demonstrate this dominance of LDAs over other Feature-Level Fusion classifiers —
inclusive of SVMs, in contrast to the aforementioned Unimodal EEG systems — to be significant in all cases
except the Quadratic Discriminant Analysis. The QDA it should be recalled is itself a close relation of the
LDA [281], as described above in 5.3.3.4.

(a) Separate selection (b) Joint selection

Figure 5.23: Development Set accuracies achieved by different models in CASH optimisation of Bespoke feature-level
fusion system with separate feature selection (left) & joint feature selection (right)

Hypothesis t value p value
GNB – LDA -23.221 <2.22e-16
KNN – LDA -3.896 0.0093
QDA – LDA -1.633 0.7776
RF – LDA -6.403 1.14e-06

SVM – LDA -3.955 0.0280
KNN – GNB 15.685 8.72e-12
QDA – GNB 9.473 2.47e-05
RF – GNB 19.788 <2.22e-16

SVM – GNB -2.002 0.5467
QDA – KNN 0.663 0.9999
RF – KNN -1.236 0.9561

SVM – KNN -3.530 0.0562
RF – QDA -1.401 0.8946

SVM – QDA -3.617 0.0438
SVM – RF -3.417 0.0677

(a) Separate selection

Hypothesis t value p value
GNB – LDA -20.536 <2.22e-16
KNN – LDA -9.465 4.13e-12
QDA – LDA -1.267 0.9421
RF – LDA -6.631 3.43e-06

SVM – LDA -4.702 0.0084
KNN – GNB 15.840 2.72e-10
QDA – GNB 9.479 1.08e-06
RF – GNB 15.327 6.06e-13

SVM – GNB -3.267 0.0865
QDA – KNN 2.412 0.3240
RF – KNN 1.701 0.7387

SVM – KNN -4.241 0.0176
RF – QDA -1.717 0.7260

SVM – QDA -4.510 0.0114
SVM – RF -4.320 0.0155

(b) Joint selection

Table 5.18: Pairwise comparisons of classifier choices in optimisation of Bespoke Feature-Level Fusion systems with
separate feature selection (left) & joint feature selection (right) using Dunnett’s T3 test
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By contrast, in optimisation of the Bespoke single-mode EMG system LDAs offered mean accuracies not
significantly different to those of other models — except the Gaussian Naïve Bayes which, as the pairwise
Dunnett T3 contrasts seen in Table 5.19 illuminate, was consistently weaker than others. That the superior
accuracy of LDAs in EEG classification is not reflected here in EMG models suggests this effect not to be due
to any unforeseen intrinsic advantage offered to them in these experiments, thus strengthening the support
these results give to the common belief among literature of their suitability to EEG-based modelling.

Hypothesis t value p value
GNB – SVM -5.392 6.12e-05
KNN – SVM 0.134 1.0000
LDA – SVM 0.232 1.0000
QDA – SVM 0.198 1.0000
RF – SVM -0.411 1.0000
KNN – GNB 25.966 < 2.22e-16
LDA – GNB 10.974 1.45e-08
QDA – GNB 17.387 1.11e-15
RF – GNB 27.199 < 2.22e-16
LDA – KNN 0.236 1.0000
QDA – KNN 0.214 1.0000
RF – KNN -2.841 0.1234
QDA – LDA -0.091 1.0000
RF – LDA -1.315 0.9319
RF – QDA -1.992 0.5415

Table 5.19: Pairwise Dunnett’s T3 comparisons of EMG classifier choices in optimisation of Bespoke EMG-Only systems

As in EEG systems, the choice of solver had no significant effect on Bespoke EMG-LDAs’ accuracy
(Figure A.2 & Table A.2 of Appendix A). Unlike their EEG counterparts however Figure 5.24 demonstrates
the shrinkage of Bespoke EMG-LDAs was perfectly negatively correlated with accuracy (Spearman’s ρ = -1).

Figure 5.24: Mean accuracy against LDA Shrinkage in CASH optimisation of Bespoke Unimodal EMG system.
Reported p-values adjusted by Bonferroni correction.
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Shrinkage and performance were similarly correlated for Bespoke Feature-Level Fusion LDAs; with a PCC
of -0.9153 (p<0.0001) in the Separate Selection variant & -0.9222 (p<0.0001) in the Joint Selection as seen in
Figure 5.25. Considering the noted correlation among Unimodal EMG-LDAs and the lack of such an effect
in EEG-LDAs, this could plausibly be due to the presence of EMG among the Feature Fusion dataset.

(a) Separate selection (b) Joint selection

Figure 5.25: Accuracy against LDA Shrinkage in optimisation of Bespoke Feature-Level Fusion systems with Separate
feature selection (left) & Joint feature selection (right)

In the optimisation of both subject-specific Feature-Level Fusion variants, the solver used for LDAs (the
dominant algorithm, as noted above) again did not have a significant effect on their classification accuracy,
as seen in Figure A.3 & Table A.3 of Appendix A. In contrast to the apparent total ambivalence of both
Bespoke EEG and EMG LDAs to the choice of solver however, there does appear to be a slight observable
trend in favour of the Singular Value Decomposition method. While not found to be a statistically significant
(0.1 > p > 0.05) pattern here, it is interesting for both EMG & EEG LDAs to be solver-agnostic yet where
LDAs use EMG & EEG simultaneously there to present the possibility of a preference. Indeed, as seen in
Table 5.3 the single best-performing Bespoke Feature-Level Fusion systems of both subtypes identified in
CASH optimisation utilised the SVD solver. Future work may find interest in exploring the impact of LDA
solver choice on Feature-Level EMG-EEG Fusion in greater depth.

Furthermore, as outlined in 5.3.3.3 the shrinkage parameter of an LDA controls the degree of estimation
involved in its computing of covariance matrices; in the case of zero shrinkage the entire empirical covariance
matrix is used, while with a shrinkage of 1 it is estimated from the diagonal matrix of variance [284,285]. An
LDA using the SVD solver however calculates log-posteriors while bypassing computation of the covariance
matrix entirely; the shrinkage technique is not used. This possibility that SVD solvers may be preferred for
Feature-Level Fusion, when taken together with the finding that lower shrinkage values were preferred for
non-SVD solvers, could imply that in this case the diagonal matrices of variances were poor estimators of
the covariance matrices — and thus the more these were relied on by Feature Fusion LDAs, the more their
performance was degraded.
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Generalist
Table 5.4 shows that remarkably LDAs were the consistent single favourite machine learning model in all
Generalist Fusion architectures. It should be recalled here that as discussed in 5.3.3.6, for pragmatic reasons
Support Vector Machines (a popular choice among Bespoke systems for classifying EMG data, as per Table
5.3), were excluded from consideration by Generalist optimisation. Interesting is that making a typically
high-performing nonlinear model17 unavailable in this way did not result in Generalist systems preferring
other nonlinear models such as the Random Forest, but rather the LDA, a linear classifier. While the impact
of models’ linearity is not a focus of this work, future research could investigate this further by exploring the
use of kernelised nonlinear extensions of the LDA, such as the kernel Fisher Discriminant Analysis [333].

In optimisation of Generalist Unimodal EEG systems, consistent with their Bespoke equivalents, LDAs
not only provided the single best-performing configuration but proved significantly more accurate than other
classifier choices, as demonstrated by Table 5.20’s Dunnett T3 test results.

Figure 5.26: Accuracies achieved by different models in
optimisation of Generalist Unimodal EEG classifier

Hypothesis t value p value
GNB – LDA -80.311 < 2.22e-16
KNN – LDA -11.184 3.11e-06
QDA – LDA -5.405 0.0020
RF – LDA -41.049 < 2.22e-16

KNN – GNB -0.210 1.0000
QDA – GNB 4.437 0.0090
RF – GNB 42.334 < 2.22e-16

QDA – KNN 3.457 0.0213
RF – KNN 5.689 0.0009
RF – QDA 0.473 0.9999

Table 5.20: Pairwise comparisons of classifier choices in
CASH optimisation of Generalist Unimodal EEG sys-
tems using Dunnett’s T3 test

Interestingly here a correlation between shrinkage and performance is found despite none having been
observable in Bespoke EEG-LDAs, with a PCC of -0.9189 significant at the α = 0.05 level. As seen in Figure
5.27 the relationship does not appear wholly linear, nevertheless Spearman’s ρ indicates a rank correlation
coefficient of 0.8828. As in the Bespoke case however, the accuracy of Generalist EEG-Only LDAs continues
to not be significantly influenced by the choice of solver (Appendix A, Figure A.4 & Table A.4).

17While not inherently nonlinear, the SVM is made capable of nonlinear modelling by use of the RBF kernel (see 5.3.3.6).
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Figure 5.27: Development Set accuracy correlated against LDA Shrinkage in optimisation of Generalist Unimodal EEG
system. Reported p-values adjusted by Bonferroni correction.

As seen in Figure 5.28, in EMG LDAs likewise offered more accurate Generalist single-mode classification
than all other model types, and similar to the Bespoke EMG case described above the GNB model was
consistently outclassed. Table 5.21 demonstrates that these were in fact the only significant trends among
Generalist Unimodal EMG systems. Again a negative correlation between shrinkage & performance (PCC
of -0.9194, p<0.0001) was found. The only significant effect among solvers of Generalist EMG-LDAs was a
preference for SVD over the Least Squares Solution; neither were significantly different from the Eigenvalue
Decomposition method. These can be seen in Appendix A, Figure A.6 & Table A.5.

Figure 5.28: Accuracies achieved by different models in
optimisation of Generalist Unimodal EMG classifier

Hypothesis t value p value
GNB – LDA -43.600 < 2.22e-16
KNN – LDA -5.331 0.0022
QDA – LDA -6.143 0.0005
RF – LDA -12.674 2.08e-14

KNN – GNB 4.561 0.0060
QDA – GNB 11.200 1.64e-06
RF – GNB 29.348 < 2.22e-16

QDA – KNN 1.649 0.6538
RF – KNN 2.611 0.1756
RF – QDA 1.322 0.8511

Table 5.21: Pairwise comparisons of EMG classifier
choices in optimisation of Generalist Unimodal EMG sys-
tems using Dunnett’s T3 test

The Dunnett T3 pairwise comparisons in Tables 5.22a and 5.22b demonstrate LDAs were the statisti-
cally significantly superior choice for Generalist Feature-Level Fusion. Tables 5.23a and 5.23b indicate that
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Hypothesis t value p value
GNB – LDA -37.403 <2.22e-16
KNN – LDA -7.137 0.0001
QDA – LDA -5.404 0.0015
RF – LDA -14.335 3.60e-14

KNN – GNB 3.856 0.0204
QDA – GNB 7.076 7.47e-05
RF – GNB 18.210 <2.22e-16

QDA – KNN 1.842 0.5168
RF – KNN 2.680 0.1507
RF – QDA 0.364 1.0000

(a) Separate selection

Hypothesis t value p value
GNB – LDA -80.336 <2.22e-16
KNN – LDA -7.702 2.56e-05
QDA – LDA -6.047 0.0005
RF – LDA -30.827 <2.22e-16

KNN – GNB 4.778 0.0028
QDA – GNB 9.788 1.48e-06
RF – GNB 30.486 <2.22e-16

QDA – KNN 2.327 0.2317
RF – KNN 1.621 0.6731
RF – QDA -1.634 0.6650

(b) Joint selection

Table 5.22: Pairwise comparisons using Dunnett’s T3 test between classifier choices in optimisation of Generalist Joint
Selection (right) and Separate selection (left) Feature-Level Fusion

where EMG & EEG features were selected independently prior to joining the data there were no significant
differences in accuracy between LDA solvers, but where selected from joint data the SVD was weaker.

Hypothesis t value p value
LSQR – SVD -1.193 0.5712
Eigen – SVD -1.716 0.2574
Eigen – LSQR 0.613 0.9007

(a) Separate selection

Hypothesis t value p value
LSQR – SVD 9.555 8.66e-12
Eigen – SVD 8.645 0.0002
Eigen – LSQR -0.156 0.9980

(b) Joint selection

Table 5.23: Pairwise Dunnett T3 comparisons of LDA solvers in optimisation of Generalist Feature-Level Fusion
systems with Separate (left) & Joint (right) feature selection

Here there was again a clear negative correlation between LDAs’s Shrinkage and predictive performance
in both Separate (PCC: 0.8959, p<0.0001) and Joint Selection (PCC: 0.8411, p<0.0001) cases, as per Figure
5.29. Given that the overlap coefficient between EEG features selected separately and those appearing in
joint selections was approximately 0.5 (discussed in 5.5.3 above), it is interesting that the impact of both
solver choice and shrinkage differs between LDAs of the two Feature-level Fusion subtypes. Such impacts of
feature selection strategies on Feature-Level Fusion are left for future work to explore in greater depth.
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(a) Separate selection (b) Joint selection

Figure 5.29: Development Set Accuracy against LDA Shrinkage in optimisation of Generalist Feature-Level Fusion
systems with Separate (left) & Joint (right). Reported p-values adjusted by Bonferroni correction.
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5.5.4.2 Support Vector Machines in EMG

Figure 5.30 presents the classification accuracies achieved by different machine learning algorithms in optimi-
sation of the Bespoke single-mode EMG-only system. While the single “best-in-class” configuration for this
baseline architecture made use of a Support Vector Machine (Table 5.5), it is notable that as seen previously
in Table 5.19 there was no significant difference in group means between SVMs’ accuracies and those of other
models, except the GNB which consistently underperformed.

Figure 5.30: Accuracies achieved by different models in optimisation of Bespoke Unimodal EMG system

It should be noted however that EMG-SVMs’ accuracies were highly dependent on their hyperparameters
— sufficiently so that as seen in Figure 5.30 they provided both the overall highest and lowest Unimodal EMG
classification accuracies when initialised with different configurations of hyperparameter values. Figures 5.31a
and 5.31b show that while there was no discernible trend in classification accuracy according to the C value,
γ had a clear influence on the SVMs’ performance and appears to account for much of the variance in their
scores. A narrower range for gamma, such as an exclusion of values > 0.2, could perhaps have resulted in an
improved EMG-SVM performance which was consistently within or exceeding the interquartile range seen in
these results (Figure 5.30), i.e. > 70%, and that the variance in accuracy would accordingly be so reduced as
to result in SVMs systematically outperforming other models18. It may be pertinent to note that while not
wholly consistent, as there is an observable downtick in performance among the very lowest values of γ in
Figure 5.31b, in general the better-performing lower γs are closer in value to that which would be obtained
by the γ = 1

Nfeatures
method of γ determination (which would here = 0.1136) used by Ameri et al. [292] as

noted in 5.3.3.6.
This high susceptibility to hyperparameter tuning, taken alongside the evident ability of EMG-SVMs to

reach high performance levels, perhaps suggests that despite the lack of significant difference among group
18Similar trends (a lack of influence of C and a negative correlation between performance and γ) are reflected in Feature-Level

Fusion, and even in Unimodal EEG SVMs, as can be seen in A.1.1.4
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(a) C (b) gamma

Figure 5.31: Influence of SVM hyperparameters C (left) and gamma (right) on Bespoke Unimodal EMG-SVM accuracies
in optimisation.
Reported p-values adjusted by Bonferroni correction.

means (Table 5.19), SVMs may well be a strong candidate for EMG classification — just one which may
require more hyperparameter tuning to reach competitive levels.
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5.5.5 Preferences in top-level models among Hierarchical systems

As a less established fusion strategy the Hierarchical (& Inverse Hierarchical) architecture, while not found
to provide the most accurate classification here, merits some inspection for the benefit of any future work
which seeks to develop or extend this approach further.

Of particular interest is the “higher-ranking” or “top-level” classifier of such a system — whether that be
an “EMG+” model primarily classifying EMG but supplemented with EEG predictions as in the Hierarchical
Fusion case (Figure 5.3), or an “EEG+” model where EEG is supplemented with EMG as in the Inverse
Hierarchical (Figure 5.4) — and the effect of its model choice on performance. The extent of a Hierarchical
fusion system’s ability to fully exploit the information provided by both its data modalities will depend upon
the ability of this top-level model to learn neither to ignore the classwise probabilities predicted by the lower-
ranking model, nor to be beholden to them, but instead to use them in conjunction with its other features
in such a way that they are drawn upon when likely to be reliable and have lesser influence when not.

(a) Hierarchical (where EMG is top rank) (b) Inverse Hierarchical (where EEG is top rank)

Figure 5.32: Mean accuracies across Development Subjects achieved by different top-level models in CASH optimisation
of Bespoke Hierarchical & Inverse Hierarchical systems

(a) Hierarchical (where EMG is top rank) (b) Inverse Hierarchical (where EEG is top rank)

Figure 5.33: Mean accuracies across Development Subjects achieved by different top-level models in CASH optimisation
of Generalist Hierarchical & Inverse Hierarchical systems
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Figures 5.32 and 5.33 present visually the accuracies reached throughout optimisation by various different
higher-ranking classifiers in the Bespoke and Generalist cases respectively, and Tables 5.24 & 5.25 the results
of pairwise Dunnett T3 comparisons between classifiers.

Hypothesis t value p value
GNB – SVM -5.540 2.98e-05
KNN – SVM -0.302 1.0000
LDA – SVM 0.534 1.0000
QDA – SVM -0.313 1.0000
RF – SVM -0.185 1.0000
KNN – GNB 20.072 2.22e-16
LDA – GNB 11.501 2.78e-10
QDA – GNB 10.433 5.20e-07
RF – GNB 24.861 <2.22e-16
LDA – KNN 1.683 0.7522
QDA – KNN -0.078 1.0000
RF – KNN 0.586 1.0000
QDA – LDA -1.368 0.9227
RF – LDA -1.517 0.8469
RF – QDA 0.335 1.0000

(a) Hierarchical (where EMG is top rank)

Hypothesis t value p value
GNB – RF -3.223 0.0678
KNN – RF -16.336 <2.22e-16
LDA – RF -3.267 0.0745
QDA – RF -8.410 1.44e-05
SVM – RF -6.917 0.0003
KNN – GNB -7.877 2.27e-06
LDA – GNB -0.656 0.9999
QDA – GNB -4.029 0.0093
SVM – GNB -4.938 0.0030
LDA – KNN 5.525 0.0010
QDA – KNN 3.095 0.0870
SVM – KNN -1.095 0.9793
QDA – LDA -2.735 0.1624
SVM – LDA -4.189 0.0086
SVM – QDA -2.565 0.2399

(b) Inverse Hierarchical (where EEG is top rank)

Table 5.24: Pairwise comparisons of top-level models in optimisation of Bespoke Hierarchical (left) & Inverse Hierar-
chical (right) systems using Dunnett’s T3 test

Hypothesis t value p value
GNB – LDA -25.681 <2.22e-16
KNN – LDA -6.143 0.0005
QDA – LDA -9.242 4.62e-07
RF – LDA -8.802 1.68e-07
KNN – GNB 2.949 0.0941
QDA – GNB 8.933 5.81e-08
RF – GNB 16.719 <2.22e-16
QDA – KNN 1.648 0.6554
RF – KNN 3.501 0.0380
RF – QDA 3.538 0.0207

(a) Hierarchical (where EMG is top rank)

Hypothesis t value p value
GNB – LDA -5.272 0.0003
KNN – LDA -15.902 <2.22e-16
QDA – LDA -12.973 <2.22e-16
RF – LDA 1.716 0.6018
KNN – GNB -5.341 0.0005
QDA – GNB -2.368 0.2425
RF – GNB 6.473 3.06e-05
QDA – KNN 5.811 9.00e-05
RF – KNN 17.706 <2.22e-16
RF – QDA 15.042 1.71e-13

(b) Inverse Hierarchical (where EEG is top rank)

Table 5.25: Pairwise Dunnett T3 comparisons of top-level models in optimisation of Generalist Hierarchical (left) &
Inverse Hierarchical (right) systems

Immediately observable is that the pattern of classifier-wise performance in the Bespoke Hierarchical case
(Figure 5.32a), wherein the higher-ranking classifier primarily received EMG data, is remarkably similar to
that of the Bespoke Unimodal EMG system (Figure 5.30). A similar resemblance can be seen between the
Generalist Hierarchical’s “supplemented” EMG models (Figure 5.33a) and the Generalist Unimodal EMG
(Figure 5.28). Indeed as seen in 5.5.1.2 the top-level models of the optimal Hierarchical systems implemented
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classifiers of the same types as the optimal Unimodal EMG systems in both Bespoke and Generalist cases;
the Hierarchical optimisation has selected for models well-suited to classifying EMG data.

This suggests a degree of indifference in Hierarchical systems to their component EEG classifiers; that
in effect the top-rank model is learning to ignore the EEG predictions. In Appendix A, Figures A.13a and
A.14a demonstrate that consistent with this inference there were no significant identifiable effects of the
lower-ranking EEG classifier choice over Hierarchical systems’ accuracies. It may be that the collapsing of
information carried by EEG data into classwise probabilities, which considering Unimodal EEG systems’
lesser accuracies than those of Unimodal EMG (Table 5.5) are likely to be somewhat low in predictive power,
allows it to be more easily “ignorable” than in a strategy such as the Feature-Level Fusion wherein classifiers
see EMG features alongside a less condensed representation of EEG.

Not explored here is the possibility that the low-rank classifier choice could have local effects specific to
a given high-rank classifier option; that certain top-level classifiers were better served by certain types of
lower-ranked model. To enable such an investigation in depth a more exhaustive combinatorial search of the
low- and high- rank model choices would be necessary; this seems an obvious place for future research into
Hierarchical Fusion strategies to begin investigation.

Performance differences between top-level classifier choice in the Inverse Hierarchical architecture, seen
in Figure 5.32b & Table 5.24b for the Bespoke case and Figure 5.33b & Table 5.25b for Generalist systems,
were more dramatic. Interestingly these trends do not reflect those observed in Unimodal EEG classification
(Tables 5.17 & 5.20) to the same extent that trends among Hierarchical top-level modelling choices reflected
those of Unimodal EMG, though some features such as the suitability of LDA classifiers are observable.

It would follow from this that the ways by which an Inverse Hierarchical system’s top-level classifier are
learning from its available data are distinct from those of a Unimodal EEG system. This can reasonably be
assumed to be due to the presence of the low-level EMG classifier’s predictions, which are as noted likely to
be of reasonable accuracy. Indeed, Figures A.13b and A.14b illuminate that the component EMG models did
have an influence over Inverse Hierarchical systems’ accuracies in a way that component EEG models did not
over the Hierarchical.

This is not to suggest however that Inverse Hierarchical systems’ performance was driven solely by the
accuracy of their lower-ranking EMG classifier. The overally mean Development Set accuracy of both Bespoke
& Generalist optimiser-identified systems was greater than that of their respective EMG component models.
In the Bespoke Inverse Hierarchical system, whose mean system-level accuracy was 83.68 per Table 5.3,
the constituent EMG-QDA had a marginally lower classification accuracy of 82.11% (congruous with the
performance of Bespoke Unimodal EMG-QDAs seen in Figure 5.30). In the Generalist case, where the
Inverse Hierarchical system’s mean fusion accuracy was 71.68 as per Table 5.4, the accuracy of the constituent
EMG-LDA was 68.83% — a difference nearly double that of the Bespoke case.

Perhaps noteworthy is that across both Hierarchical and Inverse Hierarchical architectures, non-linear top-
level models were preferred for Bespoke systems (a Random Forest and an RBF-kernelised SVM), whereas
linear models (an LDA in both approaches) were optimal in the Generalist case. It is interesting that
this distinction is along the Bespoke – Generalist line, rather than Hierarchical – Inverse. Considering
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the relatively high accuracy of Unimodal EMG systems, and thus the expected high informativity of their
predicted class probabilities, it could be speculated that the Inverse Hierarchical optimisation would be
expected to recognise this & hence prefer nonlinear top-level models capable of capturing the subtleties of
the EMG-derived probability distributions. Of course, nonlinearity of a selected top-level model would not
necessarily guarantee it not to risk insufficiently prioritising the EMG-based predictions — nor indeed to
avoid overfitting by modelling primarily around the EMG predictions and using EEG features only to add
complexity to the model which would not generalise to new data.
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5.5.6 Decision-Level Fusion

5.5.6.1 Decision Fusion Algorithms

Figures 5.34a and 5.34b present the scores achieved by the various decision fusion algorithms in optimisation
of Bespoke and Generalist Decision-Level Fusion systems.

(a) Bespoke (b) Generalist

Figure 5.34: Mean Development Set accuracies achieved in CASH optimisation of Decision-Level Fusion systems
grouped by Decision Fusion algorithm

Here, all trials using each given fusion algorithm are grouped together. However, in reality it is not
necessarily a safe assumption that the various algorithms would interact with different EMG & EEG classifier
options in the same way. Hence to assess the presence of performance differences between fusion algorithms,
the EMG & EEG classifier choices need be treated as blocking factors. They are thus modelled as random
effects in a linear mixed-effects model, and Tukey’s Honestly Significant Difference test used for post-hoc
pairwise comparison between fusion algorithms using the glht function of R’s multcomp package. As presented
in Tables 5.26a and 5.26b, Tukey’s HSD demonstrated significant differences in accuracies to be found only
between certain algorithms (for brevity, those not found significant are omitted here but can be seen in
Appendix A).

Unsurprisingly given the respective performances of single-mode EMG & EEG classifiers (5.5.1.1), a
Weighting Average fixed in favour of EEG is routinely a weak choice of decision fusion algorithm here; a
result consistent with the findings of Tryon et al. [141] wherein this strategy performed poorly in identifying
the onset of elbow movement. Beyond this, other trends are somewhat less clear. Those stacking-based
algorithms which use linear meta-models — and not the nonlinear Random Forest — appear more suitable
than various rule-based algorithms for Generalist systems, but this strength seemingly does not translate
to the Bespoke. While further investigation would be needed to draw conclusive inferences, it is speculated
that this strength of stacking algorithms could indicate a polarisation of the informativity of EMG in the
Generalist case. Suppose that EMG-based probability distributions were liable to either be highly accurate or
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Hypothesis Estimate Std. Err p value
3:1 EEG – Max -0.10617 0.03053 0.0114

3:1 EMG – 3:1 EEG 0.14185 0.03213 <0.001
LDA – 3:1 EEG 0.16790 0.03842 <0.001
Mean – 3:1 EEG 0.13214 0.03608 0.0055
RF – 3:1 EEG 0.14428 0.03610 0.0016

SVM – 3:1 EEG 0.16705 0.03240 <0.001
Tuned WA – 3:1 EMG -0.10004 0.03119 0.0281

Tuned WA – LDA -0.12609 0.03651 0.0124
SVM – Tuned WA 0.12525 0.03140 0.0016

(a) Bespoke

Hypothesis Estimate Std. Err p value
3:1 EEG – Max -0.07725 0.01769 <0.001

LDA – Max 0.07235 0.01987 0.0062
3:1 EMG – 3:1 EEG 0.09392 0.01764 <0.001

LDA – 3:1 EEG 0.14998 0.01766 <0.001
Mean – 3:1 EEG 0.06401 0.01393 <0.001

Tuned WA – 3:1 EEG 0.05626 0.01700 0.0201
RF – 3:1 EEG 0.09805 0.01610 <0.001

SVM – 3:1 EEG 0.10440 0.01379 <0.001
Mean – LDA -0.08597 0.01650 <0.001

Tuned WA – LDA -0.09372 0.01937 <0.001
SVM – Mean 0.04038 0.01221 0.0199

SVM – Tuned WA 0.04813 0.01512 0.0300

(b) Generalist

Table 5.26: Pairwise comparisons using Tukey’s HSD test of Decision-fusion algorithms in optimisation of Generalist
(right) and Bespoke (left) Decision-level Fusion systems. Pairs in which significant effects (p < 0.05) were identified are
included here; all pairs not presented saw no significant differences. Full pairwise comparisons, including corresponding
z-values (omitted here for brevity), can be found in Appendix A, Tables A.7 & A.8.

highly inaccurate, rather than a moderately accurate “reasonable guess”. If in some of those cases where EMG
data were uninformative, the EEG data offered greater predictive power, an algorithm which could learn to
identify when EMG probabilities were likely to be unreliable and could “choose between” the EMG & EEG
models’ decisions may be more suitable than a rule-based method which combined them mathematically.

For the purposes of this work the CASH optimisation procedure was used to allow modelling choices to
be made in a fair, unbiased, & algorithmic way rather than to determine conclusively a superior approach.
That these tests do not reveal an unambiguous groupwise “winner” decision algorithm is thus not of particular
concern. Ultimately as in Tables 5.3 & 5.4 the Max rule has been selected for Bespoke Decision-Level Fusion
systems and the Linear SVM for Generalists; these selections are not predicated on the chosen algorithms
being consistently significantly more performant than all others. It does however preclude more nuanced
conclusions from being drawn from these comparisons of decision-fusion algorithms. Nevertheless, in the
context of prior work such as that of Cui et al. [145], which successfully fused EMG & EEG with both
rule-based and metamodel-based methods to classify the intensity of lower limb movements, these results
indicate the need for further research into Decision-Level Fusion methods for gesture classification. That
these Decision-Level Fusion systems proved able to achieve accuracies commensurate with those of their
competitor architectures demonstrates the merit of the approach. Future work may consider evaluating the
methods used here along with other established late fusion strategies such as Bayesian fusion [334,335] further.
An exhaustive gridsearch for optimisation may enable assessment of algorithms’ compatibilities with different
combinations of EMG & EEG classifier choices.
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5.5.6.2 Component Models

By the same mechanism described above for the Decision Fusion algorithms, Tukey’s method can further
be used to assess the effects of EMG & EEG classifier choices on Decision-Level Fusion systems’ accuracies,
as presented in Tables 5.27 and 5.28. Again only significant effects are shown here; the complete pairwise
comparisons can be seen as Tables A.9 and A.10 of Appendix A.

Hypothesis Estimate Std. Err z value p value
GNB – SVM -0.08720 0.02393 -3.643 0.0036
KNN – GNB 0.11150 0.03092 3.606 0.0042
LDA – GNB 0.09967 0.03181 3.134 0.0206
QDA – GNB 0.10469 0.03010 3.478 0.0065

(a) Bespoke

Hypothesis Estimate Std. Error z value p value
GNB – LDA -0.10299 0.01244 -8.276 <0.001
KNN – LDA -0.03978 0.01228 -3.240 0.0103
RF – LDA -0.06069 0.01211 -5.010 <0.001

KNN – GNB 0.06321 0.01534 4.121 <0.001
QDA – GNB 0.08160 0.01507 5.414 <0.001
RF – GNB 0.04229 0.01521 2.781 0.0422
RF – QDA -0.03930 0.01410 -2.788 0.0413

(b) Generalist

Table 5.27: Significant differences (p < 0.05) identified by pairwise Tukey comparisons between EMG classifier choices
on Bespoke (left) and Generalist (right) Decision-Level Fusion systems’ mean Development Set accuracy in optimisation.
Pairs not presented saw no significant differences; for full pairwise results see Appendix A Tables A.9a & A.9b.

Hypothesis Estimate Std. Err z value p value
GNB – RF -0.10988 0.02720 -4.039 <0.001

SVM – GNB 0.08575 0.02911 2.945 0.0361

(a) Bespoke

Hypothesis Estimate Std. Err z value p value
GNB – LDA -0.07840 0.01428 -5.488 <0.001
KNN – GNB 0.06796 0.01757 3.869 <0.001
QDA – GNB 0.04344 0.01585 2.741 0.0464
RF – GNB 0.09413 0.01469 6.410 <0.001
RF – QDA 0.05069 0.01322 3.834 0.0011

(b) Generalist

Table 5.28: Significant differences (p < 0.05) identified by pairwise Tukey comparisons between EEG classifier choices on
Bespoke (left) and Generalist (right) Decision-Level Fusion systems’ mean Development Set accuracy in optimisation.
Pairs not presented saw no significant differences; for full pairwise results see in Appendix A Tables A.10a & A.10b.

In the Bespoke case, the use of a GNB for the component EMG model routinely resulted systems sig-
nificantly less accurate than those using alternative EMG classifiers. The effects of other EMG classifiers
were however not separable at the 95% confidence level; this is interestingly in keeping with their impact
on Unimodal EMG accuracy as seen in Table 5.19 above. In the Generalist case meanwhile, systems using
EMG-GNBs were again consistently the weakest classifiers, those with EMG-LDAs outperformed all but the
use of EMG-QDAs. This likewise is coherent with earlier observations from Generalist single-mode EMG
(Table 5.21 and indeed Feature-Level Fusion systems (Table 5.22).

Curiously, when considering the influence of EEG classifier choice on Bespoke Decision-Level Fusion,
the only significant differences were systems using EEG-RFs or EEG-SVMs both outperforming those with
EEG-GNBs. Among Generalist Decision-Level fusion systems the EEG-GNB, much as the EMG-GNB did,
appeared the weakest choice of classifier. The EEG-RF, while appearing in the single most accurate system,
contributed to Decision-Level Fusion systems only significantly stronger than those using the EEG-QDA.

Evidently it was not the case here that the “best-in-class” unimodal classifiers (EMG-SVM & EEG-LDA
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in Bespoke, and LDAs for both datatypes in Generalist, per Tables 5.3 & 5.4) were necessarily always best
suited as components of a Decision-Level Fusion system. This supporting the design decision that had
been made to not take this assumption, and instead optimise for all three choices (EMG classifier, EEG
classifier, and Fusion Algorithm) simultaneously. While the potential influence of random effects cannot
be disregarded, this distinction suggests the various classifier types as having properties which made them
more or less suited to certain late fusion approaches. A rule-based algorithm which combines probability
distributions mathematically for example may be better served by an EEG classifier which when incorrect
produces flatter, less peaked distributions rather than one which is “confidently wrong’. This could reduce
the risk of the incorrect EEG distribution drastically hindering the typically more reliable EMG distribution.
Likewise a fusion algorithms whose operation is more akin to a selection between the EMG & EEG models’
outputs could perhaps, as speculated above, be best served by an EEG model which even if itself suboptimal,
provided correct classifications localised in parts of the dataset where EMG models were less accurate. This
possibility could motivate exploring alternate fusion strategies altogether such as by training an EEG model
specifically on the residuals of a unimodal EMG system, though such investigations are left for future work.
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5.5.7 Unimodal EEG performance & subject-independence

While the primary driving focus of this work is the multimodal fusion of both EMG & EEG data, as discussed
in Chapter 3 the challenge of achieving subject-independence in unimodal EEG classification of motor activity
remains somewhat under-researched and distinctly unsolved. The results in Table 5.6 indeed indicate that
systems in this work using solely EEG were not able to reach usable classification accuracies. However, the
accuracy of approximately 50% across four same-hand gestures is significantly above the chance level — which
as noted in 5.5.2 is 29% at the α = 0.05 confidence level for these Generalist systems — motivating further
exploration and contextualisation here.

Subject Generalist EEG Accuracy
1 0.5638
6 0.4850
11 0.5234
16 0.4871
21 0.5367

Mean 0.5192

Table 5.29: Holdout Set accuracy of CASH-optimisation-identified Generalist Unimodal EEG system

As seen in Table 5.29, this mean classification accuracy of approximately. 50% persisted when generalising
to unseen held-out subjects. That is, when the optimal Generalist EEG configuration (identified in Table
5.6 as a Least Squares Solver LDA) was as outlined in 5.2.3 trained on the data of all 20 Development
Set subjects, this trained model predicted each Holdout Subjects’ gestures in turn at a mean accuracy of
52%. Among literature it has been observed that discrimination of specific gestures from EEG is often much
more difficult a task than identifying the presence or absence of movement. Such can be inferred from the
frequency with which EEG studies seek only to identify movement onset, or to distinguish between highly
separable gestures such as movements of different sides of the body [58], and has been noted to impact
intuitiveness of EEG-BCIs for users [152]. This trend has been explicitly encountered in studies such as [128],
wherein multiclass accuracy was sufficiently low as to motivate simplifying the EEG classification problem to
a move-vs-rest paradigm.

An accuracy of approximately 50% across the four gesture classes in this work (Figure 4.1) could conceiv-
ably be achieved by a system unable to actually discriminate between gestures, but highly accurate in iden-
tifying the rest class. To demonstrate with the logical extreme, consider a theoretical system which correctly
identified all Rest gestures, and otherwise made a perfectly random guess between the three grasp types. With
a balanced dataset such a system would have an expected classification accuracy of 25

1 + 25
3 + 25

3 + 25
3 = 50%.

Inspecting the per-subject confusion matrices of the optimiser-identified Generalist Unimodal EEG system’s
Holdout validation however, as presented in Figure 5.35, reveals this not to be the case here. Certainly in
some subjects the Rest class was most reliably identifiable and the grasps more often confused, this is unsur-
prising given the greater similarity in hand-shape between the three grasps than between any one of them
and the hand at rest. Misclassifications are far from exclusive to the grasp classes however, and even among
poorer-performing subjects such as Participant 16 (Figure 5.35d), the attempted between-grasp classification
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is clearly at least somewhat more accurate than a random guess. The Generalist Unimodal EEG system’s
accuracy can thus be concluded not to be driven solely by its ability to distinguish movement from rest.

Additionally of some note is the frequently superior classwise accuracy of the Lateral grasp, in compar-
ison to those of the Cylindrical and Spherical grasps. This can be plausibly assumed to be due to greater
dissimilarity in the handshape of this gesture to those of the other grasps. As described in 4.2 & illustrated
in Figure 4.1, the latter two gestures involve abduction of the thumb such that it is in opposition to the
palm, while the Lateral grasp instead sets up side opposition between the thumb & forefinger with the thumb
remaining adducted.

(a) Subject 1 (b) Subject 6

(c) Subject 11 (d) Subject 16 (e) Subject 21

Figure 5.35: Confusion matrices for optimal Generalist Unimodal EEG system in prediction of Holdout data

This subject-independent accuracy is notable in the context of that achieved in prior work. Gordleeva
et al. [128] as mentioned ultimately simplified the EEG component of their Decision-Level EMG-EEG fusion
to identify only the presence of movement. Their attempted three-class prediction between no movement,
movement of the right leg, and movement of the left however achieved a mean accuracy of 51.31% (standard
deviation 17.14%) across eight subjects, lower than that reached in a four-class problem here. Ofner et al. [75],
while able to distinguish movement from rest at an accuracy of 85±5%, reached an average accuracy of 44±7%

over 15 subjects in move-vs-move classification of six gestures of the same limb (elbow flexion/extension, wrist
pronation/supination, & hand opening/closing).

Two key dissimilarities between such studies and this work should be recalled. Firstly, that movements of
the right & left legs as in the case of Gordleeva et al., and indeed of the elbow, wrist, and hand as in Ofner et
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al., are more dissimilar than those gestures solely of the right hand used in this study. The right & left legs
use wholly different muscle groups from one another — as do the elbow, wrist, and fingers — and accordingly
are primarily controlled by geographically separable locations in the motor cortex. Indeed as can be seen
in Figure 5 of Ofner et al.’s paper [75], misclassification in their work was more frequent between gestures
involving the same muscle groups (e.g. a “hand open” was more likely to be mislabelled as a “hand close”
than an “elbow extension”), suggesting performance was partly driven by their system’s ability to distinguish
the muscle groups being utilised.

Secondly, the models in the mentioned studies were subject-specific in nature. Here, comparable or even
greater accuracy levels were reached with a subject-independent model. This second distinction is perhaps
the most crucial. In experiments by Jeong et al. [198] which accompanied their publishing of the dataset
used in this work, multiclass accuracies in the order of 40-50% were achieved by LDAs in identifying grasp
types from EEG data, but these were again on the basis of subject-specific models. Even the work of Iturrate
et al. [162], notable for achieving a mean accuracy of 75.9% across 10 subjects in discriminating between
same-hand “power” and “pinch” grasps (loose correlates of the Cylindrical and Lateral grasps in this work)
from EEG data — which approaches the accuracies achieved in works using Electrocorticography [167, 168]
for similar tasks — did so considering subjects separately on a single-trial [170] basis. Likewise Cho et al. [336]
who classified four similar grasp gestures from EEG data at an average accuracy of 68% used subject-specific
models. Their strategy is founded on using EMG data to supplement model training (albeit not requiring
EMG at the testing stage) and so their results may not be a wholly fair comparison with the Unimodal EEG
accuracies obtained here. It should also be noted that Cho et al.’s offline experiments do not appear to be
tested on withheld data, limiting their use given the methodological concerns noted in 3.3.2 regarding data
leakage; their later online tests while ostensibly more suitable comparators risk bias by being carried out only
on those subjects whose offline accuracies were highest.

The work of Fazli et al. [64] was noted in 3.3.1 as one of few EEG studies employing a leave-one-subject-
out approach as used by the Generalist system here. While their subject-independent accuracy reached an
impressive 73%, exceeding that of this work, it should of course be noted that their model classified between
movements of the left and right hands — a problem, as discussed, inherently less difficult than the four-gesture
multiclass task of this work.

Subject Bespoke EEG Accuracy
1 0.5916
6 0.5425
11 0.5681
16 0.4691
21 0.5730

Mean 0.5489

Table 5.30: Holdout performance of CASH-optimisation-identified Bespoke Unimodal EEG system (means of 100 trials)

It is acknowledged that the Bespoke Unimodal EEG accuracies achieved here (Table 5.30), while well above
the chance level and outperforming some studies including the aforementioned works of Gordleeva et al., Ofner
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et al., & Jeong et al., do not reach such heights as some of those found among literature such as Iturrate
et al., Cho et al., and others. What should be recalled however is that as outlined in 5.1.2, the Bespoke
systems of this chapter while trained on a within-subject basis are not themselves designed in a subject-
specific way. Rather they are intended to be “portable” configurations. By contrast to some studies, wherein
model selection & hyperparameter tuning were done on a per-subject basis, or chosen according to their
predictive power across all subjects, here the subjects held-out for validation were excluded from all stages of
modelling. This means a configuration was selected for to its predictive power on the Development Subjects,
then provided to novel users (the Holdout Set), to be trained and tested in a subject-specific manner as a
true test of the configuration’s generalisability. There is no means by which Bespoke models’ configurations,
in terms of the classification algorithms used or their corresponding hyperparameters, are tailored to the
Holdout subjects at any point. This may account for some part of the difference in performance between this
work and those studies where EEG system configurations were themselves tailored to be subject-specific.

(a) Subject 1 (b) Subject 6

(c) Subject 11 (d) Subject 16 (e) Subject 21

Figure 5.36: Confusion matrices for optimal Bespoke EEG system’s Holdout Set predictions (over 100 trials)

Broadly similar trends in distribution of misclassifications, in terms of the classes more accurately iden-
tifiable for each participant, can be seen with Bespoke Unimodal EEG systems in Figure 5.36 as had been
seen in the Generalist case above. That a subject’s errors were similarly distributed when systems were
trained on their own data as when trained on others’ may suggest a key limiting factor in Unimodal EEG
performance, beyond the suitability of the candidate models & their capacity to learn relevant information
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from this dataset, as being the dataset itself. This could be for example in the informativity of the feature
ensemble used in the work (Table 4.2), or even the preprocessing applied to the data (4.2.5), if discriminative
information was encoded in EEG at a frequency which was filtered out.

Given the multiclass accuracies reached by Jeong et al. [198] were of a similar level to those seen here, such
a limitation could alternatively be simply in the in the amount of discriminative information carried in the
unprocessed EEG data. Limitations in sensor fidelity or experimental protocol, or even subjects’ inexperience
with BCIs, could affect the richness of the information captured in the dataset. Subject compliance and
consistency of behaviour could even be a factor. While Jeong et al.’s use of consistent objects as stimuli
across participants will likely have helped to eliciting similar grasps, even properties such as the size of
subjects’ hands may have influenced the specific hand-shapes they formed when grasping the objects and
hence potentially affected inter-subject consistency. Though Jeong et al. do not report any observed issues
with participants’ adherence to the task, neither do they mention in their paper any specific measures to
monitor within-subject consistency of hand shapes & to consequently discard any dissimilar gestures. Of
course in principle, a system would be best served by encompassing all possible subtle variations in the way
by which a user may perform a gesture. With EEG being a coarser measurement, in comparison to invasive
neuroimaging techniques, such slight variations may in fact be minimally distinct. The time-windowing of
data outlined in 4.3 may also aid in robustness to any such minor gestural inconsistencies which were time-
limited in nature. However, with only 150 performances of each gesture obtained from each participant
it is unknown how much unexpected within-gesture variation could be tolerated. Outside the controlled
experimental conditions of the lab, individuals cannot be reasonably expected to exactly repeat gestures with
consistent precision. There would be value in future biosignal classification research specifically investigating
the tolerance of models to minor variations in gesture performances.
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5.5.8 Verifying usefulness of the CASH pipeline

Aim 5.3, to “Establish a pipeline for the unbiased identifying of a performant multimodal system”, motivates
assessing whether the CASH optimisation pipeline proposed in this work was a valuable technique for deter-
mining system configurations. To enable this, the optimal Bespoke & Generalist fusion systems established
by the CASH pipeline are here competed against fusion systems derived from literature precedent, which are
detailed fully in 5.3.4. The null hypothesis of such a comparison is that "A fusion system established by the
CASH optimisation pipeline will be no more accurate than one defined on the basis of synthesising biosignal
literature", or formally:

H0 : µpipeline − µliterature ≤ 0. (5.4)

The is hypothesis is tested in both Bespoke and Generalist contexts. Being similar in nature to hypothesis
5.2 above, a paired one-tailed t-test continues to be applied for statistical analysis here.

Subsequently, this chapter of the thesis is concluded by briefly identifying areas wherein the results
presented have indicated that the hyperparameter search space for CASH optimisation can be reduced in
complexity by eliminating ill-suited modelling options.

5.5.8.1 Comparing pipeline-identified systems to a “Literature-Informed default”

Table 5.31 presents accuracies achieved for each Holdout Subject by both the Bespoke Fusion system identified
in Table 5.3 as the most accurate in optimisation on the Development Set, and the Literature–Informed
“default” system defined in 5.3.4 above.

Subject Bespoke System
Literature Default Fusion Pipeline-derived Hierarchical Fusion

1 0.7551 0.8293
6 0.8072 0.8345
11 0.9280 0.9467
16 0.7996 0.8324
21 0.8071 0.8697

Mean 0.8194 0.8625

Table 5.31: Bespoke performance on Holdout of Literature Default & Pipeline Derived

As in 5.5.1.2, the one-tailed paired t-test’s assumptions are virst verified. The Shapiro-Wilk test resulted
in a W-statistic of 0.89702 at a p-value of 0.3936; failing to reject its null hypothesis thus indicating normality
of paired differences. Comparing variances gave an F-statistic of 0.59767 at a p-value of 0.6303; again the
null hypothesis is not rejected indicating the assumption of equality of variances holds true.

The paired one-tailed t-test between the CASH-pipeline-determined Fusion system and that derived from
literature reports a t-statistic of 4.0222, at a p-value of 0.007918. The estimated mean difference in accuracy
was 0.0431 (lower bound of the 95% confidence interval = 0.0203). The null hypothesis can hence be rejected;
the pipeline enabled a subject-specific multimodal fusion system with a significantly higher accuracy than
that reachable had the system been designed solely on the basis of inferences from biosignal literature.
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Per-Holdout-subject accuracies achieved by the best-performing optimised Generalist fusion system (Table
5.4) and the literature-informed “default” Generalist defined in 5.3.4 are presented in Table 5.32.

Subject
Generalist System

Literature Default Fusion Pipeline-derived Feature-level Fusion
(Joint selection)

1 0.6829 0.6633
6 0.7338 0.7475
11 0.8317 0.8233
16 0.6983 0.7246
21 0.7038 0.7121

Mean 0.7301 0.7342

Table 5.32: Generalist performance on Holdout of Literature Default & Pipeline Derived

Reviewing again the one-tailed paired t-test assumptions, normality of paired differences is indicated by
the Shapiro-Wilk test’s W-statistic of 0.97264 & p-value of 0.8919, and a comparison of variances producing
an F-statistic of 0.96258 at a p-value of 0.9714 indicates the assumption of equal variances is also valid.

Here however, the paired one-tailed t-test did not inidicate a significant difference in accuracy between
the pipeline-determined subject-independent fusion system and that based on literature insights, with a t-
statistic of 0.50315 at a p-value of 0.3207. Though an estimated mean difference of 0.0041 (lower 95% CI:
-0.0132) was found, the high p-value indicates this was not statistically significant at the α = 0.05 level.
While CASH optimisation resulted in a fusion system more accurate than equivalently-optimised Unimodal
EMG for subject-independent classification, it was no better than a fusion system with characteristics inferred
from literature. Considering the equivalent accuracies of different Fusion architectures for Generalist systems
discussed in 5.5.2 above this may indicate the most suitable design for a subject-independent EMG/EEG
fusion remains to be found and lies outside the modelling space defined in this work. Alternatively, it
may indeed be that despite there being very little literature precedent upon which to draw, the subject-
independent system configuration defined in 5.3.4 was indeed particularly suitable. Modelling choices being
synthesised from their performances on subjects outside the dataset used in this work could plausibly lead
to their being well-suited for cross-subject classification. In Bespoke systems, which are advantaged by their
ability to consider specific characteristics of subjects’ data in optimisation, such synthesis may have come at
the expense of this tailoring — though it should be recalled that the Bespoke systems of this chapter are
designed for “portability” in their configurations, and their optimisation is done with no sight of Holdout
data.
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5.5.8.2 Learning from these results for a narrowed modelling space

Following from the findings outlined in 5.5.4 and 5.5.6, certain axes of the hyperparameter search space pre-
viously presented in Figures 5.6 and 5.7 can be adjusted or removed for experiments in the work’s subsequent
chapters. This is done in a subtractive way. Rather than allowing only the highest-performing options to
persist, here only those cases where a hyperparameter value appeared to consistently lead to significantly
worse accuracy are removed. Where competing options were equivalent or reasonably competitive they are
not ruled out here, to allow for the possibility that alternative configurations may be optimal for the subtly
different problems explored by the following chapters.

To enable further chapters’ experimentation to be similarly verified with the unseen Holdout Set, as was
done here in 5.5.1.2, these decisions are made on the basis of models’ performance over the Development
Subjects — as has been the case throughout Section 5.5 other than where results were explicitly noted
as relating to the Holdout Set. This ensures the isolation of the Holdout data is preserved and it is not
used to influence the modelling decisions. Had subsequent experiments been informed by knowledge of
hyperparameters favoured by the Holdout Set, this would render such separation invalid [190] and be a
significant source of data leakage [191]. As discussed throughout the thesis, this work takes particular effort
to avoid the data leakage issues which Hosseini, Powell, et al. [31] among others note to be common among
much biosignal research.

The resultant reduced search spaces can be seen in Figures 5.37 and 5.38 for Decision-Level Fusion
Algorithms and for component EMG & EEG Classifiers respectively.

Figure 5.37: Subsection of the hyperparameter search space describing the algorithm used for Decision-Level Fusion,
reduced from that of Figure 5.7 following findings described in 5.5.6.
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Figure 5.38: Subsection of the hyperparameter search space describing the nature of EMG and EEG classification
models used & their conditional hyperparameters, reduced from that of Figure 5.6 following findings in 5.5.4.

5.5.9 Conclusions

The results of these experiments clearly demonstrate the potential of the early, late, and novel Hierarchical
approaches to multimodal EMG-EEG fusion presented in 5.3.1 for both subject-specific (“Bespoke”) and
subject-independent (“Generalist”) multiclass gesture classification.

The proposed Combined Algorithm Selection & Hyperparameter optimisation pipeline, novel to the do-
main, proved capable of identifying suitable model configurations for such systems, in the Bespoke case
producing a more performant system — implementing a novel “Hierarchical” fusion architecture — than
could be reasonably inferred from literature precedent as demonstrated in 5.5.8. The fusion of EMG & EEG
was demonstrated to provide more accurate Generalist classification than the best-performing single-data-
modality system given an equivalent optimisation budget. In a number of its findings, such as the suitability
of the Linear Discriminant Analysis model for EEG-based gesture classification discussed in 5.5.4.1, this re-
search provides a sound evidential basis to corroborate trends which are prominent but not always evidenced
among the Brain-Computer Interface literature.

Given its successful use in determining “portable” system designs here — configurations suitable for
bespoke modelling with novel users — a strategy based on this work’s CASH approach could have a trans-
formative impact on the process of deploying gesture-recognition based prostheses in the real world. It may
be viable, for instance, to extend the method to allow some degree of automated personalisation. An offline
CASH optimisation over a large multiple-subject pre-existing dataset could provide an initial baseline system
which was then further customised according to an individual user’s data. Computation could be offloaded
from the prosthesis itself to a cloud — or a paired mobile device if privacy concerns motivated data being
kept local — which would pick up the optimisation routine to continually fine-tune models’ hyperparameters
with longitudinal biosignal data collected over the device’s use.
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The use of CASH optimisation also enabled a fair comparison between the fusion architectures, with
modelling choices configured through a systematic, transparent, unbiased evaluation of their potential. This
places the work in stark contrast to much of the literature on BCIs, noted by Lotte et al. to frequently be
weak in the rigour of its tests and to present unqualified modelling decisions which cannot be confidently
said to be free from bias [30]. The care taken to validate results on wholly unseen data, rather than risk
reporting classification accuracies artificially inflated by over-optimisation, also sets this work apart from
many contemporaries — as discussed in Chapter 3 such issues, and problems of data leakage more broadly,
have been found by Hosseini, Powell, et al. [31], Li et al. [192], and others to be prevalent among biosignal
studies.

This research also goes beyond many prior investigations into multimodal EMG-EEG fusion in its applica-
tion of fusion techniques to a more complex task than typically attempted before. Where others have sought
to classify between movements of different limbs [112, 139, 146], different joints of the same limb [130, 137],
or movements of different intensities [141–143,145], here fusion was successfully used in a multiclass problem
consisting of three similar right-hand grasps and a rest class — which has been seen only before in a few
works such as [113] and does not appear to have been previously done on a subject-independent basis. This
subject-independence was also notable in the Unimodal EEG classification performed here. Section 5.6 dis-
cussed that the mean Generalist accuracy achieved, while not yet at a usable level for real-world deployment,
was competitive with many studies’ attempts to classify similar problems on a subject-specific basis. This
indicates promising steps towards a reduction in the subject-dependence of gesture classification systems, and
the potential benefits in terms of cost & convenience to users which would follow.
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Leveraging Cross-Subject Learning in Gesture
Classification

6.1 Aims & Overview

Chapter 5 investigated two opposed ways by which data from a given user of a system (hereafter “Same-Subject
data”) and data from other individuals (hereafter “Other-Subject data”) could be utilised, and found that a
well-trained Bespoke system could not be outclassed by a Generalist allocated equivalent optimisation budget.
This might initially be taken to indicate a wholly subject-specific approach as the universally more viable
option for designing a biosignal-based gesture classification system. However, those presented in Chapter 5
are not the extent of possible approaches for combining these data. The motivation for further exploration
of cross-subject generalisation of biosignal classification is strong — any mechanisms which may be able to
reduce the need for subject-specific training data would naturally lessen the burden on an end user of a
system. Making a system more convenient to use in this way is both a meritworthy goal in its own right, and
could also have a potential beneficial impact on the rejection rate of devices such as robotic prostheses. It
may also be possible for cross-subject transfer learning to improve a gesture classification system’s accuracy
beyond that which could be achieved with a given amount of subject-specific data.

This chapter essentially seeks to explore in further depth that potential benefit of leveraging data belonging
to “other” subjects in the classification of a given individual’s data, and to identify suitable strategies for doing
so. The Aims being investigated in the chapter are hence as follows:

• Aim 6.1 Can inclusion of other-subject data boost performance above that achievable with same-subject
data alone?

• Aim 6.2 Can inclusion of other-subject data allow the same level of performance to be obtained with a
reduced amount of same-subject data?

While the majority of studies in the biosignal literature focus solely on within-subject classification (see
3.3.1), there have been a number of strategies explored for attempting to reduce subject-dependence. This
chapter explores two possible ways by which data from a given subject and data from other individuals can
be integrated:
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• Dataset Augmentation — a subject’s data is pooled with data from other individuals prior to learning,
and models fit to that merged dataset

• Model Transfer — a subject’s data is used to adapt models previously fit to data from other individuals

Previously in Chapter 5 the Generalist system was defined as being fully subject-independent, having no
sight of a target user’s data. The Bespoke system meanwhile was defined in a “portable” way: its modelling
decisions were made on the basis of multiple subjects’ data through the Combined Algorithm Selection &
Hyperparameter Optimisation process, but the resultant system was trained solely on data belonging to each
given subject-under-test in turn. In this chapter by contrast a “fully” bespoke system, in which modelling
decisions are made through CASH optimisation performed solely on the basis of each individual subjects
data, is considered as the baseline from which other-subject data may be incorporated. While increasing the
computational load of the experiments, as per-subject optimisation is required, this may have the potential
to enable systems to be more specialised to each subject-under-test.This increased computational expense
further motivates exploration of the extent to which one could reduce the level of same-subject data required
by a system to achieve an equivalent classification performance. Not only would this reduce the data collection
burden on an end user of a theoretical deployed system, but the resultant decrease in size of the dataset would
lead to faster convergence in the optimisation process. In addition to trialling various levels of subject-specific
data, it is valuable to assess the impact of integrating varying amounts of supplementary other-subject data.
Were a system deployed in the “real world” to rely upon the collection of data in advance from a number
of individuals other than the end user, it would be beneficial to know how much data is required for this
purpose to avoid unnecessary expense in terms of the time and cost required to recruit said individuals and
collect & process their biosignal data.

6.2 Methodology

Deriving from the Aims outlined above, the purpose of Chapter 6’s experiments are to assess whether:

• Incorporating other-subject data improves a system’s classification accuracy for a subject [Aim 6.1].

• Incorporating other-subject data allows a system with access to less same-subject data to achieve the
same classification accuracy as one with more (i.e. whether it can enable a reduction in the data
collection requirements for a subject) [Aim 6.2].

• Dataset Augmentation or Model Transfer appears a more suitable approach for such incorporation of
other-subject data.

There are essentially three independent variables which hence arise: the level of same-subject data pro-
vided to a system, the level of other-subject data incorporated to it, and the approach used for combining
those data. To explore their impact, the predictive power of systems with access to a range of quantities of
Same-subject and Other-subject data are investigated for each of the two combinatorial approaches. As with
Chapter 5’s experiments, this initial exploration is conducted with five subjects (Subjects 1, 6, 11, 16, and
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21 as outlined in 4.2.3 above) being again held out, to be used for validating the observations made from
experimentation & the extent to which the findings generalise.

For given quantities QS and QO of Same- and Other- Subject data,with each of the Augmentation
and Model Transfer approaches a subject-specific system is created and tested in turn for each subject N

among the the 20 Development Set subjects. Considering Subject N as the “subject-under-test”, 33% of
N ’s data is reserved for testing the system. A portion QS of the remaining 67% unreserved same-subject
data, and a portion QO of the data from the other 19 subjects, is then used for modelling. The resulting
system is used to predict the reserved 33% of N ’s data and the accuracy of those predictions evaluated; the
process is subsequently repeated with subject N + 1 et cetera in the same way. The mean of these subject-
specific accuracies is computed to quantify the predictive ability of that given combinatorial approach at that
particular combination of same- and other- subject data levels. This procedure is outlined in Algorithm 1.
Systems’ classification performances are then analysed to evaluate the extent of the impact of incorporating
other-subject data to systems with access to varying degrees of subject-specific data, and to compare the
performance of the two different approaches in doing so.

Algorithm 1 Procedure for exploration with the Development Set

The Holdout Set is then used to verify the specific observations arising from this exploration, as outlined
in Algorithm 2. Here each Holdout subject is considered in turn individually, with all 20 of the Development
subjects treated as the “other-subject”s from whom data is available to supplement a Holdout subjects’ system.
That is, no data is shared between Holdout subjects; they are assessed in isolation and have an identical pool of
other-subject data from which to draw, to enable the fair assessment. The mean subject-specific classification
accuracy over the five Holdout subjects is calculated for each system under test.
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Algorithm 2 Procedure for verification with the Holdout Set

6.3 System Design

6.3.1 Overview

Figure 6.1 illustrates the generic structure of an Other-Subject-Supplemented system. In every subject-specific
system a random 33% of the Subject’s data is initially reserved for testing as previously noted, ensuring the
final evaluation is an assessment of the system’s performance on unseen data from the subject. This split is
stratified by the type of gesture being performed, to ensure a balanced of classes in the resultant dataset.
Data is split on the basis of whole-gesture performances to minimise data leakage, by ensuring time-adjacent
samples are not distributed between training and testing sets as explained in 5.2.3.

6.3.1.1 Data Combination

The remaining unreserved 67% of the Same-Subject data is scaled according to QS , and combined with
data from the other 19 Development Subjects scaled according to QO; both of these downsamplings are
stratified by class. Dagois et al.’s work on Motor Imagery classification was able to estimate similarity
between subjects’ data, and use this to select specific “best match” subjects with whom to augment a given
user’s dataset [337]. The possible benefit however of such an approach over alternative selection methods, or a
random selection of augmentation data, is not assessed. Additionally while Dagois et al.’s study is multimodal
in nature, the modalities it makes use of alongside EEG is functional Transcranial Doppler ultrasonography
(fTCD), a measurement of blood flow in the brain via ultrasound [338]; both data sources capture neural
activity, by contrast to the use of muscular and neural signals in this work. Other work utilising similar
approaches such as that of Azab et al. [184] wherein other-subjects’ influence is weighted according to a
metric of similarity between their Common-Spatial-Pattern-filtered EEG data based on Kullback-Leibler
divergence [339], and Lotte & Guan [182] wherein the class covariance matrices used within the CSP & LDA
algorithms incorporated data from a subset of additional subjects chosen on the basis of uncalibrated cross-
subject classification performance, similarly make use only of neurological data. It is unlikely to be a valid
assumption that similarity in neural data between certain subjects would necessarily indicate a similarity in
their muscle data and vice-versa, thus to incorporate such a “screening” technique to this study would require
EMG & EEG to be handled separately, and potentially each supplemented by different subjects. This could
not only add significant additional computation but could pose various challenges to the functioning of the
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Figure 6.1: Illustration of data flow for a generic cross-subject learning system, of a given Development Set subject at
a given combination of Same-Subject and Other-Subject data levels.

systems, most notably impeding meta-model based fusion algorithms which require training on synchronous
EMG- & EEG- predicted class probability distributions (as described in 5.3.1.3).

It should additionally be noted that with a sample of just 20 individuals in the Development set, there
is likely to be significant variation in the similarity between subjects’ data and the data selected to augment
them with; some subjects may have closer (and hence more beneficial) “best matches” than others. This factor
could be difficult to assess and control for, so would present challenges in aggregating subjects’ results for
evaluation. Thus while future work may indeed take interest in exploring the merits of doing so, “screening”
of the other-subject data was not considered to be of sufficient likely benefit here to justify the added system
complexity which it would necessitate. The downsampling of Other-Subject data was therefore instead
stratified by subject, such that the resulting Other-Subject dataset used to supplement a system held equal
contributions from all 19 (or 20, in the case of Holdout verification) subjects not-under-test. This minimises
any risk of bias arising from variations in the degree of similarity between subjects’ biosignal data.
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6.3.1.2 Feature Scaling & Selection

For practical implementation reasons, features were scaled according to the Same-Subject data in all cases.
The Same-Subject data QS present after downsampling were standardised to have a mean of zero and standard
deviation of 1, and the same scaling transformation applied to any Other-Subject data QO present which
supplemented it. This transformation was also later applied to the reserved 33% Same-Subject testing split,
ensuring the test set was scaled according to data which can be assumed likely to be similar to it, thus
potentially reducing the risk noted in 5.3.2.1 of unseen data being scaled to novel values outside a model’s
expected range.

Informative features are selected from the merged Same-and-Other-Subject dataset using the methods
described in 5.3.2.2 above, & the reserved Same-Subject test data reduced to that same feature ensemble.
Here EEG data were reduced to 40 features as in a Bespoke system (see 5.3.2.2) — this figure was chosen for
consistency with experiments in Chapter 5 and to ensure consistency across the experiments in this chapter
rather than introduce a potential confounding variable, but otherwise arbitrary1.

6.3.1.3 Optimisation & Modelling

The resulting combination of same- and other- subject data can then be used for learning, of which as in
Chapter 5 there are essentially four stages: Feature Selection, Model Selection, Hyperparameter Optimisation,
and Model Training. As in Chapter 5, Model Selection & Hyperparameter Optimisation are performed
in parallel through a Combined Algorithm Selection and Hyperparameter optimisation (CASH) routine to
identify a suitable system configuration.

The work in Chapter 5 found that in Bespoke systems, the Decision-Level and Hierarchical fusion algo-
rithms proved significantly stronger than other approaches (see 5.5.2), albeit not able to exceed a Unimodal
EMG approach. By contrast in Generalist systems these two algorithms were no better or worse than their
competitors, but did outperform the Unimodal EMG system (5.5.1). While systems in this chapter draw on
both same- and other- subject data and are hence neither strictly Bespoke nor Generalist in the same manner
as those in Chapter 5, it can be inferred from these results that Decision-level and Hierarchical fusion algo-
rithms are promising candidates. For simplicity, Decision-Level Fusion is adopted as the system architecture
from hereon, though future work may find merit in exploring the problem of cross-subject generalisation with
Hierarchical fusion systems.

It should be acknowledged explicitly here that this selection of Fusion Architecture is carried out on the
basis of their performance on the Holdout Set. Section 5.5.8.2 noted the potential for such an evaluation to
be problematic and indeed to risk jeapordising the isolation of the Holdout data if knowledge of its properties
is used to inform experimental parameters & focus on areas of interest which ought not to be known [190].
What is distinct here however is that the choice of Fusion Architecture is no longer a part of the problem
to be solved; it is neither a dependent variable being investigated in these experiments nor is it explored
algorithmically (e.g. within the CASH optimisation), it is simply made static. This foreknowledge of the

1NB that even at the highest level of Other-Subject data investigated (see 6.3.4.2), merged datasets in these experiments
were significantly smaller than those of the Generalist models which in Chapter 5 necessitated a wider feature array.
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suitable Fusion Architecture thus does not risk undermining the separate investigation here into transfer
learning mechanisms.

Section 5.5.8.2 also used the findings of Chapter 5 to allow a narrowing of the search space for CASH
optimisation, ruling out less promising candidates to enable the optimisation process to converge its explo-
ration more quickly and hence have greater potential capacity for exploitation. While the optimal model
& hyperparamer configuration for a system is not the investigatory focus of this chapter — rather a means
of enabling a fair comparison of systems, by affording each different subject-specific system an equivalent
optimisation budget — it is nevertheless a significant part of the procedure. A hyperparameter space tailored
to the Holdout set could perhaps be assumed to give all systems trialled in this chapter an equal artificial
“boost” but would nonetheless boost them, and would certainly impede the extent to which Holdout perfor-
mance could imply generalisation of the findings beyond this study. For this reason, as highlighted in 5.5.8.2,
these evaluations were specifically on the basis of the Development Set performance explored in 5.5.4 & 5.5.6.
Figure 5.37 presents the updated hyperparameter space for Decision-Fusion Algorithms and Figure 5.38 that
for the component EMG & EEG classifiers. Not all of these candidate models are capable of being adapted
post-training; some are hence incompatible with the Direct Model Transfer approach for merging same- and
other- subject data. Subsection 6.3.3 below discusses this further and presents in Figure 6.4 the alternative
hyperparameter space over which Model Transfer systems optimise.

After the removal of the 33% reserved for testing, the maximum amount of same-subject data available
to a system to learn from is 67% (400 whole gestures) before any downsampling. There is meanwhile a
maximum of 11400 other-subject gestures which could be made available to a Development Set subject’s
system (600 from each of the 19 remaining Development subjects) — which rises to 12000 when testing with
a Holdout subject (which as noted above can draw from all 20 Development subjects). The levels of available
same-subject and other-subject data evidently differ greatly and the same-subject data risks being dominated
by other-subject data in a merged dataset. This dominance will be exacerbated by the downsampling of data
as the ability of a systems to perform well with less subject-specific data is investigated. To ensure the same-
subject data is used effectively even when only present in very low quantities, or only representing a small
proportion of the merged dataset, in all cases the optimisation target of a CASH optimisation procedure is
defined by its predictive power over same-subject data only. For a given CASH optimisation routine, in each of
the optimiser’s 100 iterations a random 33% of the Same-Subject data within the merged “Learning” dataset
is held as the “optimise-test” split of that iteration. The rest of the merged dataset is available for training
the candidate model which was configured according to the iteration’s selected point in the hyperparameter
search space. The manner in which this training takes place corresponds to the Approach used to learn from
the two data sources, as outlined below in 6.3.2 & 6.3.3). The optimiser’s loss function was the error rate of
the candidate’s predictions of the aforementioned “optimise-test” split.

Of those 100 optimisation iterations, the hyperparameter configuration which maximised Same-Subject
classification accuracy in this way is taken as the winner. The winner system is then re-trained on the
entirety of the “Learning” dataset in the manner prescribed in 6.3.2 or 6.3.3, and this trained model used to
predict the gestures of the unseen 33% of Same-Subject data which was previously reserved. The accuracy
of its predictions is evaluated and recorded as the accuracy of the given Approach at the particular given
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combination of Same- and Other-Subject data levels for the subject-under-test. The mean accuracy across
each Development subject’s subject-specific model for a given Approach at given data levels is taken to
determine the overall performance of that Approach at that data level, as per Algorithm 1.

Other practical considerations, such as the training procedure for meta-model-based Decision Fusion
algorithms & the coercion of probability estimates from Support Vector Machines, are carried out as they
were described in Chapter 5.

6.3.2 Augmentation Approach

Under the approach defined here as Dataset Augmentation, data from the subject-under-test (“same-subject”
data) and data from the remaining subjects (“other-subject” data) are merged together to form a new dataset
before any learning takes place. This can be seen as a form of transductive transfer learning: the sys-
tem has access to both the “source” (other-subject) and “target” (same-subject) data from which to model
characteristics.

Dagois et al.’s aforementioned work [337] adopts augmentation as a form of transfer learning in the classifi-
cation of Kinaesthetic Motor Imagery from EEG data, selecting five non-target subjects with whose data to
supplement that of the subject-under-test based on assessing the similarity of their feature distributions, and
subsequently classifying with QDAs, LDAs, and SVMs. Interestingly they find this augmentation to enable
a potential decrease in the required amount of subject-specific data to achieve the same level of classification
accuracy, strongly motivating the exploration of this approach in this work given the stated Aim 6.2. Azab
et al. also quantified similarity in featurespaces between subjects, in their case with regard to the Common
Spatial Pattern filters derived from subjects. Rather than use this to select subjects for inclusion however
it instead determined the weighting assigned to each when modelled together with a Logistic Regression
classifier. Their study found that where the degree of subject data present in a system was “sufficient” then
a subject-specific approach was preferred (being variously either stronger or achieving equivalent accuracy
with lesser complexity than the augmented systems), but when this was not the case the augmentation did
indeed improve a weaker classifier’s accuracy. Kobylarz et al. [230] used an augmentation approach in the
context of classifying three hand gestures from EMG data with a Random Forest. In an inversion of the
framing of those works previously discussed, they initially developed a subject-independent model trained on
data from multiple individuals, and upon finding it to perform poorly with both novel users and repeat users
during subsequent sessions, sought to address this by incorporating some calibration data. They found that
including an additional 5 seconds of data per gesture class from the target subject & retraining a model on
this augmented dataset could improve classification accuracies to usable levels. The extent to which these
augmented models actually benefited from the presence of the initial other-subject data was not explored
however. Benalcázar et al. [173] meanwhile found that a wholly subject-independent EMG classifier using
a Leave-one-subject-out approach, akin to that of the Generalist presented in Chapter 5, was not able to
achieve usable classification accuracies. An augmentated system however, in which an equal quantity of data
from each subject was used to train the model, offered vastly improved performance.

In the optimising of Augmentation systems in this work, for each iteration, after one third of the same-
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subject data within the combined “Learning” dataset was held as the “optimise-test” set, one third of the
other-subject data was temporarily discarded. The candidate model was being assessed was trained on
the remaining two-thirds of the same-subject data along with two-thirds of the other-subject data. The
proportion of same-subject to other-subject data within a candidate model during optimisation was hence
the same as the proportion within the full “Learning” dataset later used to train the winner model, thus
ensuring a closer match between the problem being optimised for and the problem to which the optimisation
result was applied. Without such a consideration the dominance of other-subject data over same-subject in
a candidate model would be exaggerated, potentially motivating the optimiser to find a configuration which
paid undue attention to other-subject data. Figure 6.2 presents an Augmentation-specific derivation of the
generic system overview seen in Figure 6.1 above, illustrating the nature of the data splitting during CASH
optimisation.

Figure 6.2: Illustration of the splitting of data within the optimisation of an Augmentation system
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6.3.3 Model Transfer Approach

The approach defined here as Model Transfer makes use of inductive transfer learning principles: a system
is trained initially on subjects other than the one under test which are treated as the source domain, and
the trained model subsequently adapted the hitherto unseen domain of the subject-under-test. The system
can thus potentially both reap the benefit of accessing a larger, more diverse source dataset while also being
fine-tuned to specialise on the target subject.

While transfer learning of this more direct kind has been approached in various ways among the biosig-
nal literature such works typically focus on enabling the transfer of information during the modelling of a
dataset’s feature encoding, rather than at the stage of model training itself. Kang et al. [180] classified bi-
nary Kinaesthetic Motor Imagery problems from the gold-standard “BCI Competition” EEG datasets using
LDA models following Common Spatial Pattern feature extraction. These are both well-established domain
techniques but Kang et al.’s work addressed the challenges presented by the highly session-specific nature of
CSP filtering [152] (as discussed in Chapter 4) by a transfer learning scheme. CSP filters for each subject
were found simultaneously on the basis of modelling subjects’ data as sharing a latent space, thus allowing
for CSP projections which were somewhat aligned across subjects — extending their prior work’s attempting
of a similar concept through clustering subjects’ CSP spatial patterns, which facilitated information transfer
within clusters (ie between subjects with similar spatial patterns) [181] but did not enable group-wide char-
acteristics to be captured [180]. Guar et al. [178] in a similar vein used other-subjects’ EEG data to directly
influence a system’s modelling of a subject’s CSP through derivation of features from the data’s tangent space
for subsequent use with both linear [178] and logistic regression classifiers [179]. Such featurespace-focused
transfer learning is not constrained to modelling of CSPs however. Min et al. [340] took a quite unique
approach in motivating a Long-Short-Term-Memory (LSTM) Neural Network to explicitly model character-
istics which did not directly provide class-relevant information but helped in predicting to which individual
from among the dataset a datapoint belonged. Aspects of a model trained to identify the user were used to
modify a gesture-predicting model, encouraging it to pay attention to such characteristics when classifying
new data. Joadder et al. also eschewed the use of CSPs and instead explored the suitability of a range
of statistical features to subject-independent KMI classification with a leave-one-subject-out method [183],
essentially evaluating the extent to which the distributions of such features in the source and target domains
were equivalent [341]. Gonzales-Huisa et al.’s recent work [185] is one example of similar techniques being
applied in the classification of EMG data. They made use of correlational alignment (CORAL) to transform
subjects’ data such that their feature distributions matched, enabling SVM models to be applied across both
source and target domains, and used the direct model adaptation approach, akin to that which is applied in
this work, with their LSTM classifiers. Ketykó et al. [171] similarly domain-shifted their EMG data, apply-
ing transformations to account for the variation between subjects & subsequently classifying the data via a
2-stage Recurrent Neural Network. 50% of a target-subject’s data was used for this domain adaptation, and
they also investigated the impact of using that 50% instead a pre-trained RNN, though the most suitable
modelling choices for the latter technique were underexplored.
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By contrast to the Augmentation systems outlined previously, the training procedure for a Model Transfer
system in this work intrinsically incorporates a stage of specialisation to the subject-under-test’s data; same-
and other- subject data are not pooled at the point of model training. The risk of an imbalance between
same-subject and other-subject data causing a system to pay insufficient attention to the same-subject data
is thus much reduced. Hence, during the optimisation of Model Transfer systems it was not necessary to
discard a third of the other-subject data; candidate systems were trained initially on all the other-subject
data available in the merged “Learning” dataset, and adapted using the two-thirds of the same-subject data
which were not held for testing that iteration’s candidate system configuration. This procedure can be seen
in Figure 6.3.

Figure 6.3: Illustration of the splitting of data within the optimisation of a Model Transfer system
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Of those classification algorithms included as candidates in 5.3.3, only the Random Forest and Gaussian
Naïve Bayes, in their sickit-learn implementations, have functionality enabling a pre-trained model to be
updated. The Random Forest is capable of a “warm_start”. An already-fit Forest can be provided new data
upon which it will fit new Decision Trees, and add them to the pre-existing ensemble. In these experiments,
the number of additional trees to be fitted to the same-subject data was arbitrarily fixed at 10, regardless of
the size of the initial Forest. The Gaussian Naïve Bayes classifier implements a “partial_fit” method, with
which the classwise feature means and variances of the GNB are updated. Chan et al.’s algorithm [342] for
computing the joint mean and variance of two datasets from their respective means, variances, and occurrence
rates is used to incorporate the same-subject data into the GNB’s underlying gaussian likelihood estimations.
It is noted that the GNB model had previously been eliminated from the hyperparameter space following weak
classification performance in Chapter 5’s experiments (see 5.5.8.2). Nevertheless the promising generalisation
performance to unseen subjects observed in previous work [1], and the merit of widening the CASH search
space in the interests of discouraging overfit, motivate its inclusion here. The search space for the GNB’s
Smoothing hyperparameter is adjusted for EMG models to be a logarithmic distribution between 1 × 10−9

& 0.5, rather than 1× 10−9 & 1. This follows from the aforementioned experimental results which indicated
a drop in Unimodal EMG-GNBs’ accuracies at high Smoothing values as can be seen in full in Appendix
A.1.1.3. This trend was much weaker in Generalist Unimodal EEG systems and was absent entirely from
Bespoke Unimodal EEG systems (Figures A.7d & A.7c respectively), thus the boundaries of the Smoothing
hyperparameter in EEG models is unchanged.

6.3.3.1 Logistic Regression

The limited range of transfer-capable models in the search space also motivates exploring the inclusion &
merits of another model, to allow the potential of the Model Transfer approach to be better exploited and
ensure a sufficiently wide search space as to discourage overfit. As a popular probabilistic linear classifier
in various Machine Learning applications, here the Logistic Regression (LR) model was chosen. A Logistic
Regression classifier fits logistic (sigmoid) curves [343] to model the relationships between the probabilities of a
datapoint belonging to the various classes and the values of its features. While the Logistic Regression sees less
frequent use among biosignal literature than some of the candidates covered in 5.3.3 [344] it nevertheless has
precedent in both EMG [230,345–348] and EEG [179,184,249,349–352] applications, and has been observed to
offer performance competitive with the domain-standard LDA model for certain EEG classification problems
[350].

All the LR models in this work determined feature coefficients using the Stochastic Average Gradient
descent [353] as the solver, an algorithm suitable for large datasets and for being applied to multiclass
problems by fitting a multinomial regression; rather than treating each class as a binary problem, the cross-
entropy loss over the whole probability distribution is fit & classwise probability predictions determined via
the softmax function. The coefficients of a Logistic Regression classifier can be regularised to discourage the
model from overfitting to its training data, not altogether dissimilar to the regularisaton of a Support Vector
Machine as described in 5.3.3.6. Here the L2 norm was used as the penalty for regularisation with the primal
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formulation — that is, the sum of squares of the coefficients was suppressed — as per the default scikit-learn
implementation.

The hyperparameter C defines the strength of this regularisation2. Various works among the EEG liter-
ature give no indication of including a regularisation term in their Logistic Regression models [249,351], and
others such as that of Halme & Parkkonen [354] and Tomioka et al. [350] note it as having been determined
empirically, such as through cross-validation over their training data, but without providing the resultant
value. Cene et al.’s work applying Logistic Regression classifiers to EMG data does state the selected reg-
ularisation constant, stating that a value of approx. 1x10−5 was empirically found most suitable [346], but
offers little detail on the precise mechanism by which it was determined or the range of choices explored. Lee
et al.’s 2022 study by contrast notes that values of 1, 0.1, 0.01, 0.001, and 0.0001 were trialled across both
L1- and L2- norm penalisation. In cases where the L2 norm was selected, the optimal regularisation constant
was 1 [355]. In this work C was made a tunable hyperparameter of the CASH optimisation search space,
with possible values distributed logarithmically between 0.01 & 10. As the prevention of overfit is naturally
of great importance to the problem of cross-subject generalisation, lower C-values (and thus more heavily
regularised models) were made a more frequently explored region of the search space.

The Logistic Regression classifiers enabled transfer learning by means of a "warm_start". A model is
initially fit to all the other-subject data it is provided. The solution of this fit, i.e the learned attributes, are
subsequently used as the initialisation point to fit a new multinomial regression to the same-subject data.

6.3.3.2 Decision-Fusion Algorithms

Of the metamodel-based Decision-Level Fusion Algorithms outlined in 5.3.3.7, only the Random Forest facil-
itates model transfer and thus it is the only candidate metamodel retained.

The results in Tables 5.26a & 5.34b demonstrated that in Chapter 5’s experimental results there did not
appear to be notable significant differences among the performances of the three candidate classifer-based
Decision Fusion algorithms. For this reason it is not expected that the Logistic Regression model would be
likely to offer notably different classification performance as a Decision-Level fusion algorithm; it is thus not
implemented as such and is only a candidate model for the component EMG & EEG classifiers of a system
as previously outlined.

Those decision algorithms which are rule-based i.e. involving no learning, and therefore for which the
notion of transfer learning is inapplicable, are also retained (exclusive of the EEG-biased Average & Tunable
Weighted Average which had been eliminated as discussed previously in 5.5.8.2).

The resultant search space for systems of the Model Transfer approach is thus as presented in Figure 6.4.

2Sometimes referred to as λ, as in [346,352].
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Figure 6.4: Hyperparameter optimisation space for systems using Model Transfer.
Note that as in Chapter 5, EMG and EEG classifiers did not share a hyperparameter space in optimisation but rather
each held a copy of a near-identical space, presented together here for brevity.

150



M. Pritchard, PhD Thesis, Aston University, 2024 CHAPTER 6. CROSS-SUBJECT LEARNING

6.3.4 Data Subsampling

6.3.4.1 Same-Subject Data

With a total of 600 individual gesture performances in each subject’s dataset (per 4.2.5), following the
reservation of 33% of a target subject’s data for testing a given subject-specific system there remained a
maximum of 400 gestures from that subject available to the system for modelling.

To explore Aim 6.2, the extent to which systems can perform well with access to lower levels of subject-
specific training data (and thus hypothetically reduce the data collection requirements for a potential user of
a deployed system) is investigated by downsampling this remaining same-subject data to a quantity QS as
mentioned above.

The scaling factor for this downsampling was initially defined as a linear spacing of five values over the
interval [0.01,1]. It was not however possible to use a scaling factor of 0.01; this downsampled to a QS of 4
gesture performances, one per class, which was insufficient to divide between the optimise-train and optimise-
test data subsets within a CASH optimisation routine whilst representing all possible gesture types in each
split. Instead to explore the performance of systems with access to very low levels of subject-specific data,
the factors 0.05 & 0.1 were included. These scaling factors can be found in Table 6.1 along with the numbers
of training gestures per class, and the total number of training gestures QS , for each subject, to which they
correspond. This is additionally represented visually in Figure 6.5 to convey the distribution of these values.

Figure 6.5: Visualisation of the levels of Same-Subject data tested

Scaling Factor 0.05 0.1 0.2575 0.505 0.7525 1
Approx Gestures per class 5 10 25 50 75 100
Approx Total Gestures QS 20 40 100 200 300 400

Table 6.1: Quantities of Same-Subject data & corresponding scaling factors

6.3.4.2 Other-Subject Data

Similarly, in any given case not all of the data belonging to subjects other than the target subject-under-test
was used to supplement the subject’s system; the other-subject data was downsampled to the quantity QO.
Since none of the other-subject data were reserved for testing, the full 600 gesture performances from each
other-subject were available; a maximum of 11400 gestures in the case of a Development subject wherein 19
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not-under-test subjects could be drawn from, and of 12000 for a Holdout subject which could make use of
the entire Development set. In either case, the range of QO values was chosen primarily on the basis of the
number of gestures per class per other-subject to which they corresponded, rather than the sum total of other-
subject gestures, to ensure the supplementing other-subject data could be appropriately balanced according
to subject. These values were initially [0, 1, 3, 11, 15, 25, and 50] as in Figure 6.6 which corresponded to
scaling factors of [0, 0.00666, 0.02, 0.075, 0.1, 0.166, and 0.33]. An additional scaling factor of 0.05263 was
included which, in experiments with the Development Set, would reduce the total quantity of other-subject
data to approximately 600 gesture performances — as many as had been collected from any single subject
individually.Table 6.2 details the scaling factors used, the number of gestures per class contributed by each
non-target subject to which they corresponded, and the resultant quantity QO of other-subject data in a
Development Set experiment (drawing from 19 subjects) and a Holdout Set test (drawing from 20).

It should be noted that the use of 50 supplementing gestures per class per non-target subject resulted in
datasets sufficiently large so as to make Support Vector Machines an infeasibly slow option for classification
of EMG or EEG data (as discussed above in 5.3.3.6). Rather than avoid attempting such high levels of QO,
the hyperparameter search space for Augmentation systems3 of this scale (Figure 5.38) was adjusted to not
include SVMs; this inability to use a potentially highly performant model4 being considered part of the cost
of using such high levels of other-subject data to augment the subject-specific dataset.

Figure 6.6: Visualisation of the levels of Other-Subject data tested

Scaling Factor 0 0.00666 0.02 0.05263 0.075 0.1 0.166 0.33
Approx Gestures per class per other-subject 0 1 3 8 11.579 15 25 50

Approx Total Gestures QO (Development) 0 76 228 608 836 1140 1900 3800
Approx Total Gestures QO (Holdout testing) 0 80 240 640 880 1200 2000 4000

Table 6.2: Quantities of Other-Subject data & corresponding scaling factors

3As noted in 6.3.3 the SVM is not a candidate classifier for Model Transfer systems.
4See Chapter 5 for exploration of the SVM’s potential strengths in this problem.
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6.4 Other Approaches

6.4.1 “Generalist”

Comparisons between systems in this chapter at times use a Generalist system as a point of reference. While
a given Generalist model in Chapter 5 is itself subject-independent in nature — that is when tested on a
subject N , the specific trained model has in no way accessed any of subject N ’s data nor used it in Feature
Selection — the hyperparameter optimisation and selection of its component model configuration was done
on the basis of maximising performance across all Development Set subjects. At each optimisation iteration
the corresponding candidate Generalist system was assessed by a Leave-One-Subject-Out evaluation, being
trained on D − {N} and tested on N for each N in turn; the aggregation of this assessment over the 20
Development subjects thus means that the Generalist’s construction incorporated knowledge of the properties
of all their data and they were not truly “unseen”5.

By contrast, when a Generalist system was tested on Holdout subjects, their data had not contributed in
any way to its development — in any discussion of tests using the Holdout data, the Generalist systems can
indeed be truly said to be subject-independent.

Intuitively, it may be expected that the chosen Generalist system in Chapter 5 would hence be a configu-
ration particularly suited to classifying Development Subjects’ data, and that its performance on their data
may be artificially boosted in comparison to unseen subjects. This was not however borne out in experimental
results as can be seen by comparison of tables 5.4 and 5.10 and is discussed in 5.5.2. Indeed as noted in 5.5.8.1
the chosen optimised Generalist system was not significantly more performant than one chosen solely from
literature inferences (and hence with no sight of any subjects’ data); the optimisation appeared to provide
no such benefit.

It would in principle be possible, for a fairer comparison, to develop a “true” Generalist system — akin to
the “truly” Bespoke nature of the subject-specific systems of this Chapter as discussed in 6.1. This could be
measured by taking the mean performance of 20 Generalist systems: a unique system for each Development
Subject which did not consider that subject’s data during optimisation, but instead found an optimal by a
Leave-One-Subject-Out validation over the remaining 19, as in Algorithm 4. Indeed such systems could be
thought of as subject-specific after a fashion, but by omission — as each would use all data except that of the
subject-under-test — and would thus perhaps be a more direct comparator to the subject-specific systems
which this chapter’s experiments otherwise consider. To develop such systems however would dramatically
increase the required computation time over that of Chapter 5’s Generalist, by a factor of approximately 20.
Given that the advantage of subject-inclusive optimisation appears to be minimal, and that the Generalist is
included in comparisons here largely as a reference point rather than a competitor system design unto itself,
it was not considered that this would add sufficiently worthwhile nuance to the discussion, though it may
well be an area future work could seek to explore in more depth.

The Generalist system used here is thus the winning Generalist configuration with respect to Development
set accuracy per Table 5.4; Feature-Level Fusion with features selected jointly from EMG & EEG.

5See 5.2.3 for a more complete explanation.
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Algorithm 3 Generalist optimisation procedure as
performed in Chapter 5, incorporating data of all
Development Subjects into the selection & optimi-
sation of system configuration.

Algorithm 4 Optimisation procedure for developing
unique Generalist systems for Development Subjects,
each totally naïve to the given subjects’ data at all
stages including optimisation.
Note this requires a near twentyfold increase in
computation by comparison to the procedure of
Chapter 5 & therefore was not undertaken.

6.4.2 Synthetic Augmentation

In this chapter transfer learning is discussed in the context of supplementing a system with data collected
from other human subjects. Undergoing such data collection naturally carries a time implication, financial
costs, and indeed the burden of actually recruiting individuals from whom to collect said data — while in
this work these factors were not of direct consequence as the data had been already collected by Jeong et
al. [198], their impact should not be ignored. Reductions in these costs which avoid negatively affecting the
performance of developed systems would naturally be of great interest not only to future research but to
those seeking to deploy biosignal gesture classification systems in the “real world”.

The author’s prior work [1] evidenced that Generative A.I. models (specifically OpenAI ’s Generative Pre-
trained Transformer 2 [356]) could produce artificial raw, continuous biosignal data of sufficient apparent
quality to be of demonstrable value in augmenting both EMG and EEG classification tasks. This work was
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notable as being believed the first study to evidence GPT-2’s capability for this application (subsequently
corroborated by [357]), and the only demonstration of GPT-2-generated fake EEG which verifies the time- and
frequency- domain characteristics of the synthetic signals [358], The classification tasks to which it applied
the synthetic augmentation however were coarser, more easily separable problems than the same-hand grasp
types explored in this work. It remains to be found whether generative AI can learn characteristics of
biosignal data with such specificity that the synthetic data produced would be discriminable between such
similar gestures as these grasps. Additionally, the application of the synthetic augmentation approach to
both EMG and EEG data in [1] served to explore the possible capabilities of the method in distinct but not
wholly dissimilar domains; the two classification problems were in themselves unrelated and the findings give
no guarantee of its applicability to a multimodal problem such as in this work wherein EMG & EEG data
need be synchronous.

It should also be noted Jeong et al.’s dataset which is used in this work comprises 25 human subjects [199]
which, while certainly a small sample of the global human population, is of comparable scale to many standard
datasets used in BCI research. The work of Bird, Pritchard, et al. [1] did not explore comparatively the
extent to which models could be positively impacted by augmentation with GPT-generated data and by
augmentation with additional human subjects. Plausibly it could be assumed that where real human data is
available, this would offer greater benefit to a system, though the potential for generating large amounts of
artificial subject-specific data should not be ignored.

There would evidently be great merit in future work investigating the applicability of GPT-generated
synthetic data augmentation to multimodal systems and to those with more similar gestures than the ones
explored in [1]. Indeed there would likewise be significant benfit of reviewing the relative merits of augmen-
tation by synethesisation of data against those of augmentation by subject recruitment and collection and
the cost-benefit analyses involved therein. Considering the various differences between the classification tasks
trialled in [1] and that of this work however, and the ready availability of a good number of additional human
subjects in [198] with whose data a system can be supplemented, these lines of investigation are considered
out-of-scope of the current work; the synthetic augmentation approach was not applied here6.

For the reader’s interest however, given its clear relevance to the topic of biosignal augmentation discussed
in this chapter, portions of the aforementioned are included with this work as Appendix C. In accordance
with the co-first-authors’ mutual agreement on accreditation of the work (see Collaboration Acknowledgements
above) only those parts related to its application with EMG data are covered; the remainder can be found
in the work in full [1].

6It should perhaps also be considered that while the participants in Jeong et al.’s study gave their clear and full consent
for their biosignal data to be published and re-used in future research [198], the ethical climate with regard to generative AI
models has shifted rapidly in recent years. At the time of the dataset’s publication the possibility of their data being used to
train generative AI was unlikely to have been a prominent consideration of the participants. Indeed even at the time of the
author’s prior work in Bird, Pritchard, et al. [1] being carried out, the topic was significantly underdiscussed. In 2024 however
there is much recent discussion, and indeed many ongoing legal cases, regarding the ethical implications in sourcing of the data
used to train generative AI. A study applying this method in the current climate, or indeed any which makes its participants’
data publicly available for use by others in the research community, ought perhaps to consider carefully the need to seek express
permission from its participants regarding use of their data in this way.
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6.5 Results

6.5.1 Experimentation with Development set

Figure 6.7 presents, for all combinations of same-subject and other-subject data quantities QS & QO, the
mean classification accuracy across Development set subjects obtained by both the Dataset Augmentation
and Direct Model Transfer approaches.

Figure 6.7: Mean classification accuracies achieved with different levels of Same-Subject and Other-Subject data by
Augmentation and Model Transfer systems.
NB that as discussed in 6.4.1 the “Generalist” seen here was not fully subject-independent, as it incorporated Same-
Subject data into the model selection & optimisation process.

A number of trends are immediately evident. Aim 6.1 sought to identify whether learning from other-
subject data could boost a subject-specific system’s performance. The results in Figure 6.7 certainly indicate
that, provided a system has access to a sufficient quantity QS of same-subject data, the inclusion of data
from other subjects by either of the two approaches does not appear to result in a meaningfully improved
classification performance. Those systems with access to 300 or greater same-subject gestures were in fact
largely degraded by incorporating other-subject data. It may be noted here that this finding is reinforced
in [180] which, while using a distinct technique for transfer learning to those trialled here, similarly found
that systems with sufficient data belonging to a target subject were not notably improved by inclusion of
data from other subjects. Systems with access very low levels of data belonging to the target subject however
were indeed improved by the presence of other subjects’ data, though this impact appeared to rapidly reach
a saturation point beyond which further other-subject data was of little to no additional benefit, and does
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not seem to frequently achieve accuracies notably higher than a baseline Generalist model (albeit noting the
caveats to this comparison outlined in 6.4.1 above).

It should also be noted that those Augmentation systems with datasets sufficiently large as to preclude the
use of SVMs as noted above in 6.3.4.2 were generally weaker than their equivalents with fewer data; given the
apparent strength of the SVM for this problem seen in Chapter 5, particularly with regard to the component
EMG classifier of a system, this is not altogether surprising. In the majority of cases other than this exception
however, the difference between the score of a Dataset Augmentation system and a Model Transfer one with
access to equal levels of subject-specific and other-subject data was minimal; the two approaches performed
equivalently well on the whole, though there appears a slight preference for Model Transfer among systems
with minimal subject-specific data and for Augmentation among those with large quantities.

Aim 6.2 asked if “inclusion of other-subject data [can] allow the same level of performance to be obtained
with a reduced amount of same-subject data”. At no point in Figure 6.7 does the plot of a system with
access to a lesser quantity of same-subject data surpass that of one with more, suggesting that cross-subject
supplementation was not able to meaningfully reduce the data requirements for a subject in this way. Figure
6.8 presents the same data as Figure 6.7 but with the x and colour axes essentially swapped; systems are
grouped by the quantity of other-subject data QO to which they had access & thus the trends related to
the same-subject data levels are more easily visible. This highlights that the level of same-subject data QS

is in fact the dominant factor in a system’s performance by a significant degree; the level of data used to
supplement the system has a much lesser observable impact. The response of systems to increasing levels
of same-subject data in distinctly similar in nearly all cases, with the notable exceptions of Augmentation
by one-third of the available other-subject data (the aforementioned case wherein dataset size disqualified
SVMs) and those systems which were wholly subject-specific with no form of transfer learning. The latter
were notably weaker than their competitors when given access to very low quantities of same-subject data;
this is hypothesised to be in part due to their total amount of modelling data being simply too low for the
system to learn patterns which generalised well beyond that training data. It does appear however that such
a reduction of same-subject data can actually be achieved without transfer learning. The beneficial effect of
increasing the level of subject-specific data provided to systems appears to begin to saturate at approximately
300 same-subject gestures.
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Figure 6.8: Mean classification accuracies achieved with different data levels by Augmentation and Model Transfer
systems, as in Figure 6.7, presented instead by level of Same-Subject data.

The key observations from these results which can help inform design of gesture classification systems are
formalised as follows, to enable their validation upon unseen data from the Held-out subjects:

• The benefit to system accuracy of increasing the amount of same-subject data available for learning
saturates once a system has access to approximately 300 same-subject gestures

• Where the benefit of additional same-subject data has saturated, inclusion of other-subject data will
not improve system accuracy

• At such levels of same-subject data, direct use of Model Transfer is no stronger a method of transfer
learning from other-subject data than simply using such data to Augment the dataset (provided the
resultant dataset is not infeasibly large), though neither are more performant than a subject-specific
system

• Where the level of same-subject data accessible to a system is very low, incorporation of other-subject
data will improve classification accuracy

– Such improvement will reach accuracies no better than a Generalist system (i.e. one with no access
to a subject’s data) would
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6.5.2 Validation of findings with Holdout data

The above outlined observations are validated in turn using the Holdout dataset. For any given system
discussed, every Holdout Subject is tested in isolation, with all 20 Development Subjects considered other-
subjects from which to draw data.

6.5.2.1 Same-Subject Saturation

Verifying the saturation in accuracy of adding more same-subject data can be done simply by assessing the
response of Holdout-subject-specific systems to increasing levels of same-subject data, the result of which is
presented in Figure 6.9. These results are taken as the mean of five trials at each quantity of same-subject
data QS , in efforts to reduce the risk of the variation in the random selection of 33% of a subject’s data, or the
randomness of the subsequent downsampling of the subject-specific learning data to QS , unduly influencing
the results.

It should be noted that classification accuracy trends lower in Holdout subjects than in Development.
Chapter 5 had similarly found Holdout subjects’ Bespoke accuracy to be lower than that of Development
subjects (see 5.5.2), suggesting this perhaps to be a facet of the inherent seperability of the underlying
data. It should also be noted though that as discussed in 6.3.1.3 above, the narrowing of the optimisation
hyperparameter space in 5.5.8.2 was on the basis of considering the various options’ performance with regard
to accurate classification of Development subject data. It is plausible that in doing so the search space had
specialised to those subjects, thus accounting for a slight artificial boost in performance. Nevertheless Figure
6.9 clearly demonstrates that the trend here was distinctly similar to that observed with the Development Set;
in both cases the classification accuracy is a monotonic increasing function of the quantity of same-subject
data available, and likewise the saturation of each is clearly similar.

Figure 6.9: Classification accuracies of subject-specific systems with access to varying amounts of same-subject data.
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6.5.2.2 Merit of inclusion of Other-Subject Data

To verify the lack of benefit from including other-subject data at this saturation point, a candidate augmen-
tation system & model transfer system need be put forward to compete against the unaugmented subject-
specific system. To ensure a valid comparison this selection cannot be made with prior knowledge of the
Holdout set’s performance. In the Development set, the Augmentation approach offered greatest performance
with 608 other-subject gestures and the strongest Model Transfer system made use of 1900 other-subject ges-
tures (Figure 6.7). The equivalents of these QO values (as per Table 6.2) in the context of a Holdout subject
are 640 & 2000 gestures respectively. Table 6.3 presents the classification accuracies of such configurations
with the Holdout data.

Subject
Candidate System under test (& quantity of Other-Subject data)

Saturated Subject-Specific Augmentation Model Transfer
(640 Other-Subject gestures) (2000 Other-Subject gestures)

1 0.729798 0.780303 0.768939
6 0.819444 0.813131 0.747475
11 0.939394 0.904040 0.901515
16 0.741162 0.804293 0.789141
21 0.862374 0.825758 0.816919

Mean 0.818434 0.825505 0.804798

Table 6.3: Classification accuracy per Holdout subject of winner candidate Augmentation & Model Transfer systems,
and of the wholly subject-specific approach, where systems have access to 301 subject-specific gestures for modelling.

Both the Augmentation and Model Transfer systems are of greater complexity than the Subject-Specific
approach, and both rely on the advance collection of biosignal data from a significant number of individuals
with which to supplement the same-subject data. This additional expense means that such approaches only
merit use if they outperform the subject-specific system. If they are only equivalently accurate their adoption
would not be worthwhile; were these systems able to obtain equivalent with fewer subject data that reduced
burden to an end-user may justify them, but as noted above this was not the case. The following null
hypotheses are thus derived from Aim 6.1 (whether “inclusion of other-subject data [can] boost performance
above that achievable with same-subject data alone”) and a paired one-tailed t-test used to test each:

• “the candidate Augmentation system will not provide classification accuracy significantly greater than
that achieved with the subject-specific approach (6.1)”

• “the candidate Model Transfer system will not provide classification accuracy significantly greater than
that achieved with the subject-specific approach (6.2)”.

H0 : µaugmentation − µsubject−specific ≤ 0. (6.1)

H0 : µmodel transfer − µsubject−specifc ≤ 0. (6.2)
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Considering first the system Augmented by 640 Other-Subject gestures, the t-test’s assumptions of nor-
mality of differences and equality of variances are initially verified with the Shapiro-Wilk test (W = 0.84921,
p = 0.192) and an F -test (F = 3.4479, p = 0.2578) respectively. The result of the t-test between the
Augmentation & Subject-Specific systems in Table 6.3 is t = 0.33486, p = 0.3773. The test’s null hypothesis
is not rejected, indicating that Augmentation was not significantly better than the un-supplemented system.

Subsequently testing the Model Transfer system, again the t-test’s assumptions are verified with a Shapiro-
Wilk result of W = 0.86563, p = 0.2492 indicating normality of differences and the F-test resulting in
F = 2.1225, p−value = 0.484 suggesting there is indeed equality of variances. The result of the t-test between
the candidate Model Transfer system & the Saturated Subject-Specific is t = 0.5666, p − value = 0.6994.
This null hypothesis is also not rejected; the candidate Model Transfer system was also not significantly more
accurate than the Subject-Specific approach.

6.5.2.3 Model Transfer vs Augmentation

The subsequent finding, that “direct use of Model Transfer is no stronger a method of transfer learning from
other-subject data than simply using such data to Augment the dataset”, provided sufficient same-subject
data is made available to a system, is assessed by comparing the classification accuracies over the Holdout
subjects of both approaches in at the saturation point of QS ≈ 300. That the Model Transfer approach does
not outperform the Augmentation approach is then verifiable simply by observation of Figure 6.10 which
plots these results7.

Figure 6.10: Augmentation and Model Transfer systems with 301 Same-Subject gestures & varying levels of Other-
Subject data

7With the exception of the case where QO = 3800, preventing the use of SVMs in Augmentation systems as previously de-
scribed (6.3.4.2), which is included in Figure 6.10 for completeness but otherwise discounted from this comparison of approaches.
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6.5.2.4 Supplementation in cases of scarce Same-Subject data

Experiments with the Development Set gave rise to two observations regarding systems with access to low
levels of subject-specific data (i.e. those with 10 or fewer same-subject instances per gesture). The first of
these, that in such cases the incorporation of data from other subjects will improve classification accuracy,
is verified by observation of Figures 6.11a and 6.11b. These present respectively the results of Augmentation
and Model Transfer systems with access to various levels of other-subject data wherein the quantity of same-
subject data QS ≤ 40. It can be clearly seen that all supplemented systems outperformed those which were
unaugmented8.

The second aspect of this observation, that such supplemented systems would nevertheless fail to out-
perform a subject-independent Generalist, appears likely from a simple comparison of means — none of
these systems’ mean classification accuracies across the Holdout subjects surpassed that of the Generalist.
It should be recalled here that as discussed above in 6.4.1 the Generalist of Chapter 5 is indeed legitimately
subject-independent with respect to the Held out subjects.

Subject
System

Chapter 5 Augmentation Model Transfer
Generalist (640 Other-Subject gestures) (880 Other-Subject gestures)

1 0.66333 0.67298 0.63131
6 0.74750 0.68687 0.72980
11 0.82333 0.82828 0.84217
16 0.72458 0.70707 0.68056
21 0.71208 0.72854 0.67046

Mean 0.73416 0.72475 0.71086

Table 6.4: Classification accuracy per Holdout subject of winner candidate Augmentation & Model Transfer systems
with access to 40 Same-Subject gestures

To ensure the veracity of this apparent lack of superiority however the claim can be tested statistically,
with the null hypotheses that:

• “The best attempt at an Augmentation system with access to 40 or fewer subject-specific gestures will
not reach classification accuracy greater than that achieved by a Generalist model (6.3)”

• “The best attempt at a Model Transfer system with access to 40 or fewer subject-specific gestures will
not reach classification accuracy greater than that achieved by a Generalist model (6.4)”.

H0 : µaugmentation − µgeneralist ≤ 0. (6.3)

H0 : µmodel transfer − µgeneralist ≤ 0. (6.4)

As before, for a valid test the candidate systems are selected on the basis of their Development Set results as
seen in Figure 6.7; the strongest Augmentation system of those where QS ≤ 40 being one utilising 40 same-

8NB that while Model Transfer systems by definition cannot make use of no other-subject data, as some is required for
constructing the initial models which the same-subject data is used to adapt, the scores in Figure 6.11b can be compared to
those of the subject-specific unaugmented systems in Figure 6.11a, which they readily exceed
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subject gestures and 608 other-subject (which corresponds to 8 per subject per class and thus QO = 40 for
a Holdout subject, per Table 6.2), and the strongest Model Transfer system drawing similarly on 40 subject-
specific gestures but 1140 other-subject gestures (15 per subject per class thus 1200 total for a Holdout
subject). The subject-wise classification accuracies of these candidate systems for the held out subjects can
be seen in Table 6.4.

Following the same process as in 6.5.2.2 the hypotheses 6.3 & 6.4 are similarly tested with paired one-
tailed t-tests. In the case of Augmentation, following confirmation of differences being normally distributed
with a Shapiro-Wilk test (W = 0.85033, p−value = 0.1956) and of variances being equivalent with an F-test
(F = 0.90535, p− value = 0.9255), the t-test between the candidate Augmentation system & the Generalist
of Chapter 5 resulted in a t-statistic of -0.6719 at a p-value of 0.7308. This is well above the alpha = 0.05

significance level and thus the null hypothesis is not rejected; the Augmentation system’s accuracy was no
greater than that of the Generalist. Likewise with the candidate Model Transfer system, after normality of
differences & equality of variances are confirmed (Shapiro-Wilk W = 0.85394, p − value = 0.2072; F-test
F = 0.51834, p− value = 0.5401), the t-test is performed with a resultant t-statistic of -2.0252 and p-value
of 0.9436. This again indicates the null hypothesis not to be rejected and that the Model Transfer approach
was not significantly more accurate that the subject-independent Generalist system.
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(a) Augmentation at low levels of Same-Subject data

(b) Model Transfer at low levels of Same-Subject data

Figure 6.11: Response of Augmentation and Model Transfer systems with low quantities of subject-specific data to
increasing levels of other-subject data with which to supplement
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6.5.3 Conclusions

It appears from these results that in this gesture classification task the incorporation of data from other
individuals through transfer learning, either by augmentation of a dataset or a direct model transfer, is of
minimal benefit to a gesture classification system — provided that sufficient data from the subject for whom
the system is being developed is available. In systems with only a very small quantity of subject-specific
data, no approach (including that of a wholly subject-specific model) was able to make effective use of such
a low amount of data; a system which did not use it was equivalently good. If the most user-specific data
that can be collected for tailoring a system is such a small amount, there seems to be no merit in doing so.

Given the interest among literature in cross-subject classification, these results are perhaps surprising.
Among works attempting cross-subject transfer learning however it is very rare for both cross-subject and
subject-specific approaches to be directly compared [359]. The omission of such tests makes it hard to
confidently state that the cross-subject learning in such works meaningfully contributed to their performances.
By contrast this chapter’s experiments assessed the impact of transfer learning on systems permitted different
levels of subject-specific data, observing that it was indeed beneficial, but only when a subject’s data were so
sparse that greater accuracies could be obtained by forgoing subject-specificity altogether — corroborating
findings that systems with sufficient subject-specific data may be unaffected by transfer learning [180].

While in Chapter 5 reasonable subject-independent performance could be achieved, this seemingly did not
reliably translate into effective cross-subject calibration here. This may indicate that the cross-population
trends learnable from the biosignal data were very distinct from those trends which were most predictive within
any given individual’s data; an algorithm could learn to model either sample-wide patterns or subject-localised
ones, but they did not complement one another well. It may even be that some algorithms when trained on an
augmented dataset simply model each subject’s data separately in distinct parts of the modelling space, and
thus gain little from the inclusion of multiple. This may suggest some stratification is needed for cross-subject
transfer learning to be of maximal use. As discussed in 6.3.1.1 & 6.3.3, certain studies have selected sources
of augmentation data on the basis of empirical similarity to a target subject’s biosignals [182, 184, 337], and
others have used preprocessing techniques to align data across subjects [178,180,185]. Both methods however
have limited suitability for a real-world system; applying such selection or manipulation to novel real-time
data would be likely infeasible. Demographic similarity could plausibly be a viable proxy for selecting data
with which to augment a system, but to investigate this robustly would require much larger datasets than
are currently available to the biosignal research community.

These findings thus have implications for the design of biosignal-based gesture recognition systems, in
that the suitable choice of approach is highly dependent on the anticipated use case. Where it is expected
that a significant quantity of user-specific data will be able to be collected, such as in the case of a prosthesis
user receiving specialist care during the rehabilitation process, a wholly subject-specific system appears more
appropriate. By contrast in a scenario where such support is unavailable, and a system is required to operate
“off-the-shelf” and a user may be unwilling or unable to undergo extensive data collection routines for its
calibration, the collection of a small quantity of calibration data would be of insignificant benefit and the
system could be simplified by being made a fully subject-independent Generalist.
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Cross-Session Classification: An Exploration
of Strategies for Reducing Calibration Burden

7.1 Aims & Overview

Having established the necessity of subject-specificity in Chapter 6 it is important to consider the perspective
of a deployed system’s end user. A user would naturally expect a device such to classify their intended gestures
accurately on each occasion they used it, while requiring minimal effort on their part to elicit such levels of
performance; an accessibility device should not in itself present unnecessary barriers to use. Biosignal data
collected on different occasions however may differ in distribution [360]. While variation in data obtained
from the same subject is generally lesser than it is between individuals [171], a number of factors can affect
within-subject consistency. Environmental conditions such as the level of background electromagnetic activity
can add noise, to which EEG is particularly sensitive. Changes in a subjects’ physiology can also be impactful
— in the longer term changes in muscle mass and fat distribution among other factors can affect EMG data,
and even shorter term phenomena like perspiration levels can alter the electrical impedance between the skin
and electrodes placed upon it, degrading the quality of recorded signals. Unintentional inconsistencies in the
placement of electrodes, or adjustments to them once fit, likewise have an effect [361].

Data obtained within a given session is hence likely to be the most predictive of further data from that
same session. This could logically motivate ensuring a system’s per-session accuracy by way of per-session
modelling: requiring, on each occasion it were utilised, an individual to supply sufficient labelled session-
specific data to train a model then used to classify data of only that specific usage session. Thus arises a
potential conflict between the desired goals of maximising a system’s accuracy and minimising the burden
placed upon its user. An ideal system would be one better able to generalise to novel sessions while minimising
the required amount of training data needed from each — or eliminating such a need entirely by classifying on
a wholly cross-session basis. It may even be that per-session training is not necessarily the most performant
mechanism by which to use a subject’s session-specific data, if data sourced by other means could be leveraged
effectively.
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Literature on cross-session learning is limited; whether by deliberate choice or a necessity resulting from
constraints on available data, many studies operate on a single-session basis [147, 184], including the over-
whelming majority of notable multimodal biosignal studies discussed in 3.1 [129, 130, 139, 141, 145, 146].
Ozdenizci et al. [113] is one rare exception, having trialled their cascaded approach to EEG-EMG fusion on
an uncalibrated cross-session basis by attempting to predict data of a target session using a model trained on
all data from a given subject’s preceding sessions. Though results were highly variable between participants,
this reached only a mean accuracy of 28.8% for multimodal classification. Techniques for model adaptation
or other forms of calibration were not explored; thus highlighting the challenges in naïve cross-session classifi-
cation. Seeland et al. [295] did explore an adaptive strategy for cross-session classification. A model trained
on out-of-session EEG data used EEG data of the designated test session to predict whether an individual
was moving their left hand, right hand, or remaining at rest. An EMG-based thresholding mechanism was
incorporated to detect movement onset and used as a source of “ground truth” to supervise the EEG classifier.
Their incoming EEG data at testing time were thus labelled by this EMG algorithm, such that they could
be subsequently used to retrain the EEG model. This strategy was found capable of improved classification
accuracies over unadapted systems, by a greater margin in those cases where baseline cross-session accuracy
was lower. However, such an approach hinges on the reliability of the EMG model as a source of accurate
labels. In their case since only movement onset was being detected this was naturally very high; the approach
would unlikely be well-suited to a multi-gesture problem wherein EMG-based classification were itself more
challenging. These studies it should be noted were severely limited in sample size, with Ozdenizci et al.’s
sample consisting of three subjects [113] and Seeland et al’s only one [295]; this work by contrast uses Jeong et
al.’s dataset of twenty-five subjects [198]. While only three sessions are available from each of the twenty-five
— compared to five sessions in [113] and fourteen in [295] — by assessing a wider range of strategies over a
larger population, this work offer a more extensive and thorough exploration of cross-session adaptation in
multimodal biosignal gesture classification than those which have gone before.

Some insights into within-subject cross-session classification approaches can be gleaned from single-data-
modality studies, though again this is a somewhat underexplored area of literature [182]. As was the case
for the cross-subject problem of Chapter 6 some proposed techniques focus on the adaptation of Common
Spatial Pattern filters, such as the development of of “prototypical” spatial filters ostensibly requiring little-to-
no calibration in new sessions by Krauledat et al. [362]; as CSPs are not used in this work, per the discussion
in 4.2.5.1, such strategies not of great relevance here. Li et al. [363] proposed a method of semi-supervised
SVM modelling, training initially on a subset of EEG data corresponding to the first three characters of a
subject’s attempted use of a “P300 speller” Brain-Computer-Interface1 and using subsequent characters to
successively retrain, a form of direct model adaptation. Du et al. [175] applied a somewhat similar principle
to inter-session transfer learning in the continual unsupervised adaptation of a Convolutional Neural Network
for classifying a range of gestures from EMG data, noting a significant increase in cross-session accuracy over
an unadapted CNN. Raza et al. [213]’s work explored unsupervised adaptation in classifying Motor Imagery
from EEG. Their system used Covariate Shift Estimation to identify drift in the data incoming to a model

1see 3.1.2.1 for a description of the P300 speller
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pretrained on out-of-session data, and subsequently a Probabilistic-Weighted KNN to determine if such novel
data & its predicted label should be incorporated to the training dataset — if so, a new algorithm modelled on
the expanded dataset was added to their classification ensemble. In this way previous learning did not strictly
need to be modified but rather embellished or in effect augmented by the novel information. Abu-Rmileh et
al. [364] saw success in updating EEG classifiers with a “batch” approach: retraining LDAs regularly on only
subjects’ most recent attempts at a motor imagery task performed over four consecutive days, finding this led
to improved accuracies over the continued use of models trained on data of the first day. In subjects’ earlier
trials of each session, models were trained on both data of that day and the previous — this can be seen as
akin to a dataset augmentation approach using both out-of-session and within-sesion data. In all these cases
the caveat should of course be noted, as it was in 5.3.4, that strategies’ success in unimodal systems may not
necessarily indicate their suitability for multimodal ones.

The dataset used in this work comprises biosignals recorded from twenty-five subjects each on three
separate occasions, each a week apart [198].The Bespoke systems seen in Chapters 5 & 6 shuffled all data
belonging to a given user, selecting a stratified random third to be tested upon, with the remainder available
for modelling; both their training and testing datasets contained data collected from each of a subject’s three
recording sessions. Such offline classification as performed earlier in the work therefore does not fully align
with a deployment setting, wherein models would classify data of only one session at any given point in time.

Here, a range of possible options for cross-session learning are instead considered. One such approach
(detailed in 7.3.3.1) does indeed involve learning directly from data of multiple sessions, akin to the modelling
of previous chapters’ Bespoke systems. Other strategies are introduced however, their choice particularly
informed by hypothetical use-cases of a deployed system & characteristics which could potentially be desirable
in such scenarios. Certain approaches for example use no session-specific data for training or calibration at
all, and instead model on data collected from the subject in prior sessions. They thus allow for a “pick-up-
and-play” mode of use at the expense of requiring the user to provide training data in advance of to a usable
system being deployable. Others avoid drawing on such out-of-session data, relying only on that which is
session-specific or was contributed by other individuals entirely, eliminating the need for advance collection of
a subject’s data before deployment. Systems are evaluated across a range of possible levels of session-specific
data, to explore both explore their ability to perform with minimal calibration, and the upper extent of their
achievable classification accuracies should the quantity of calibration data not be a barrier.

The chapter’s key focus is the aforementioned desire to reduce the burden, in terms of time and effort,
placed on the user of such a potential system. This burden manifests most obviously as the time spent
providing the amount of labelled session-specific calibration data required for training or adapting a given
system. Certainly this is a critical element, considering that a new “session” for a user would constitute to
each “wear” of a prosthesis & hence could well mean multiple daily calibration sessions. The data collection
time however should not be viewed as the only contributing factor. A system’s need to determine suitable
modelling choices (e.g via data-driven Combined Algorithm and Hyperparameter (CASH) optimisation) on a
per-session basis will naturally also result in a lengthier modelling process over one which does not carry out
this step, a potential additional delay to the system being ready for use. For this reason both approaches which
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undertake session-specific CASH optimisation, and those which predetermine a “static” model configuration
by other means and “port” it to new sessions, are explored here.

That Jeong et al.’s dataset includes three repeat data collection sessions for each participant [198] enables
an ancillary investigation into uncalibrated cross-session classification. The respective accuracies of systems
trained on data gathered two weeks before a designated testing session and those using data collected one week
in advance are assessed. Should a notable difference in performance be found this could imply limitations in
the longevity of cross-session classification systems. Likewise explored is the extent if any to which learning
from data collected on multiple prior occasions, rather than a single one, improves models’ generalisation to
a novel session. Having access to a greater diversity of data could result in models more robust to further
variation in factors such as sensor fit & environmental conditions that can affect biosignal properties —
which may be indicative of appropriate training strategies for future gesture classifier development. These
experiments are conducted first; their findings assumed a suitable proxy indicator of the appropriate out-of-
session data on which to draw in calibrated cross-session systems.

The work in this Chapter is more exploratory in nature than that of previous, as is reflected in its Aims
outlined below:

• Aim 7.1 Investigate the impacts of data diversity and source–target time delay on uncalibrated cross-
session biosignal gesture classification.

• Aim 7.2 Explore strategies for session-specific gesture classification which do not require prior collec-
tion of subject-specific biosignal data.

• Aim 7.3 Explore the impact of the amount of session-specific biosignal data available to gesture classifi-
cation systems on the accuracy of their gesture classifications of a target session’s data.

• Aim 7.4 Identify suitable approaches for session-specific gesture classification with access to different
quantities of target-session biosignal data.
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7.2 Methodology

7.2.1 Overview

The broad structure of the experiments in this chapter is not altogether dissimilar to that of Chapter 6.
Classification systems, each implementing one of a number of approaches and which are both subject- and
session-specific in nature, are created for each subject N in turn. These systems are designed with the subject’s
third and final data collection session as the session-under-test, with one third of this target session’s data
being reserved for testing.

Each system is provided with one or more of the following categories of data for modelling, according to
its associated learning strategy (defined fully in 7.3):

• Session-specific / “calibration” data: Unreserved Session 3 data belonging to the subject in one of a
range of quantities;

• Out-of-session data: Data collected from the subject in recording sessions other than the session-under-
test (i.e. Sessions 1 and/or 2);

• Other-subject data: Data collected from subjects other than N .

A portion of the unreserved Session 3 data (i.e. that which is remaining after the aforementioned desig-
nation of one-third as test data) is defined as the “Calibration” data QC

2. This is made available to those
systems which learn from session-specific data in varying quantities, to allow exploration of the necessary
amount of such data — and hence burden placed on a user — for accurate target-session classification.Various
systems draw also, or instead, on data from other sources. A number of approaches make use of data collected
from the subject N in one or both of the sessions prior to the session-under-test (Session 3), and some learn
from data belonging to subjects other than N .

Their sources of data are not all that distinguish systems; the different modelling approaches presented
in 7.3 also vary in the ways in which they learn from such data & the aspects of modelling for which
they use data of different sources. Fundamentally however, each carries out the same multi-stage learning
process with which the reader will be familiar from Chapters 5 & 6. From its modelling data, a system
identifies an array of informative features, selects a model configuration and tunes its hyperparameters through
Combined Algorithm Selection & Hyperparameter optimisation, and finally trains a model of the determined
configuration with which to predict the reserved 33% of the subject N ’s Session 3 data. Those except Model
Transfer systems use the search space defined in Figures 5.37 & 5.38. Model Transfer approaches optimise
instead over hyperparameter space in Figure 6.4.

Each system (at each given level QC of Session 3 data, where applicable) is trialled for all subjects, with
the mean session-specific classification accuracy across the subjects taken as the given system’s accuracy (at
that level of session-specific data QC). As per the methodology of Chapters 5 and 6, approaches are then

2This data is labelled QC for “Calibration” throughout this chapter including when it is in fact the only data seen by a given
system. This is both for consistency and to avoid potential confusion arising from referring to “Subject-specific” data as QS in
Chapter 6 and “Session-specific” data as QS here.
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compared on the basis of these scores as evaluated over the Development Set, and the findings of these results
subsequently verified through application of relevant systems to the unseen Holdout Set (as described in
5.2.3.2) and thus an evaluation of the extent to which those findings generalise.

7.2.2 Data Splitting & Sampling

The third data collection session was determined as the “target” session on the basis of avoiding temporal data
leakage, a flaw in machine learning research which can arise when models are trained offline using data from
a later point in time than the data they are asked to make predictions about, giving them an undue insight
into the “future” which would not be replicated in a real-world case [191]. Strictly speaking there is little
reason to expect such temporal leakage to be problematic in this work. There is not an inherent temporal
association in the biosignal data nor the experimental procedure which would plausibly lead to, for example,
a subject’s Session 3 data to be more predictive of their Session 2 data than the inverse. Rather, temporal
leakage has been identified as an issue in biosignal classification at the within-session level. Li et al. [192]
noted that where prompts given to participants were grouped in blocks rather than randomised, classifiers
learned temporal correlations from EEG data rather than patterns genuinely related to different states of
neural activity. The stimuli used in collecting the multimodal hand gesture dataset by Jeong et al. [198]
were presented in a random order however, & regardless there is no mechanism by which temporal trends in
brain state that persisted between sessions and were discriminable with respect to the class (i.e. the physical
gesture being performed at a given point in time) could arise. Nevertheless, selecting the chronologically last
session as the target is in keeping with convention and certainly best replicates a real-world case wherein a
model at the point of gesture prediction could of course not have access to data from a future point in time.

Each data collection session of any subject in Jeong et al.’s dataset [198] contributes 50 performances of
each of the three same-hand grasp types, to which are added 50 “rest” gestures as described in 4.2.5 for a
total of 200 gestures. In keeping with the 67/33 proportion used for train/test splits elsewhere in the work,
here a random 33% of gestures in the session-under-test (Session 3) are reserved for testing to evaluate a
system’s accuracy, which equates to 66 gestures leaving a total of 134 session-specific gestures remaining
to be learned from. Whenever performed, this is a pseudorandom split using scikit-learn’s train_test_split
function, stratified by class. However, as per 4.2 there are four defined gesture classes in the dataset used in
this work; because 4 ∤ 66 and 4 ∤ 134, the training and testing datasets split in this way will not be exactly
balanced. This has the result that the testing dataset of any given trial will contain one “extra” gesture from
each of two random classes; they will thus differ very slightly in distribution according to class. This variation
will only be 2/66, or approximately 3%, of the dataset3, and more importantly will not be systematic. The
random 67/33 split of the Session 3 data is performed afresh for each given system being tested, at each
calibration level QC to which the unreserved 67% will be downsampled, and of course for each subject N . It
is hence anticipated that by the law of large numbers such minor unevenness in classwise distributions of the
reserved testing data will ultimately balance out when aggregated results are considered. Even should there

3The class imbalance may be larger, albeit only slightly, in the event the two “extra” gestures are of the same type
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be inherent differences in the ease of classifying each gesture type which could cause the individual accuracy
of a given set of classifications of a slightly class-imbalanced dataset to misrepresent a system’s true accuracy,
which itself is not a guarantee, the impact of this on the variation in systems’ mean predictive power across
subjects and across calibration levels is expected to be very low.

To correct for this oversight and compensate for any risk posed by imbalance issues in the unreserved
Session 3 data, in all cases the quantity of session-specific data made available to any given system for
modelling is a multiple of 4. The downsampled target-session learning (or “calibration”) data QC is thus
always balanced. This means that in practice the, maximum number of target-session gestures which can
be made available to a classification system is 132. The other chosen values trialled for QC are primarily
linear spacings of 20 gestures (5 of each class): 20, 40, 60, 80, 100, and 120 in total, with an additional value
of 72 gestures included to give greater precision to a region indicated as being of potential interest by early
provisional experiments. Extreme cases of 1 and 2 gestures per class (thus 4 and 8 target-session gestures
in total respectively) were additionally included, to enable a measure of systems’ ability to perform with the
absolute minimum session-specific data, thus reducing their potential burden on a user as far as physically
possible. The range of values for QC trialled, and the number of gestures per class to which they correspond,
are captured in Table 7.1, and visualised in Figure 7.1.

Gestures per class 1 2 5 10 15 18 20 25 30 33
Total Gestures QC 4 8 20 40 60 72 80 100 120 132

Table 7.1: Quantities of Session 3 calibration data

Figure 7.1: Visualisation of degrees of calibration tested

As described further in the explanation of each approach below, in many cases the CASH optimisation
procedure’s target is typically defined by the accuracy of a candidate configuration’s predictions over one
third of the total quantity QC of target-session data which has been made available for modelling. In the
aforementioned extreme cases however where a system has access to only a very low amount of session-specific
data, this cannot be split 67-33 while preserving the grouping of data by whole gesture performances to avoid
leakage and ensuring each gesture type is represented in either portion of the split.

Where only 8 of the Session 3 gestures in total are made visible to a system, within the CASH optimisation
iterations these are split 50–50 rather than 67–33; one unique session-specific performance of each gesture
type is used for optimisation-training and one for optimisation-testing.
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Where the Same-Session data is reduced to a total of just 4 gestures, only one of each class, these 4
are all used as the optimisation-test data and no target-session data is incorporated into the optimisation-
training split. It should be noted that in where the optimisation process includes a transfer learning stage,
as in 7.3.3.2, a system would be unable to perform such model calibration with no target-session data in the
optimisation-training split, and therefore this value of QC is not trialled in such systems.
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7.3 Approaches

7.3.1 Baselines

The set of approaches presented here are “zero-calibration”, i.e. making use of no session-specific data in any
way. A system with knowledge of session-specific data which is no more accurate than one without such data
is unlikely to be of any great merit; the burden on a user of providing session-specific training data would
not be worthwhile. These uncalibrated systems are hence intended primarily as point of reference by which
to contrast other approaches.

7.3.1.1 Out-of-session learning with no adaptation

On the ground of Chapter 6’s finding that, provided sufficient subject-specific data is available, there is
minimal benefit to including other-subject data, the most pertinent choice of zero-calibration system would
be one which makes use of data collected from the subject prior to its intended deployment. This baseline
approach thus draws on a subject’s out-of-session data for all aspects of learning, to construct a system
intended to classify their Session 3 data.

Figure 7.2 presents the structure of such a system, the fundamental sequence of which follows the familiar
pattern broadly reminiscent of those in Chapter 6 with a three-stage modelling process: selection of informa-
tive features, determination of system configuration via Combined Algorithm Selection and Hyperparameter
(CASH) optimisation, and the training of a final model to be evaluated.

Figure 7.2: Structure of zero-calibration, out-of-session system
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Feature Selection is carried out on the basis of all the out-of-session data which is present. The CASH
optimisation is then performed on the hyperparameter search space defined in Figures 5.37 and 5.38 for
100 iterations, with a random 33% of the out-of-session data being held for testing in each iteration. This
determines the optimisation target; that configuration achieving the highest accuracy is selected as the winner.
A system of this winning configuration is subsequently trained on all the present out-of-session data, and
used to classify one third of the Session 3 data4. This is repeated for each Development Set subject N in
turn, and the mean classification accuracy across subjects computed as a measure of that variation of this
approach’s performance.

Ancillary Investigation: Effects of Time Delay & Data Diversity on Cross-Session Classification
In the version of this approach illustrated in Figure 7.2, all of a subject’s prior data (Sessions 1 and 2) are

used for these purposes. In the dataset from [198] however there are a total of three sessions each of 200
gestures (including the rest class and following balancing, see 4.2.5), each collected a week apart. It is of
interest to a system designer to know whether all this data is necessary. Under the framing of the 3rd session
as our “deployment” scenario for the system to be used in, training on all of this out-of-session data would
require carrying out individual data collection sessions with any new user on two separate occasions, and
would incur the corresponding time & monetary costs to both developer and user. If a system could be
equivalently performant when based on only one prior recording session, or where these sessions were reduced
in size, that would certainly be an attractive property of the system. In other words, it would be useful
to understand whether the diversity or quantity of out-of-session data used in a system of this approach is
particularly influential.

The temporal separation of the data collection sessions also allows us to consider whether the timing is
impactful. Dissimilarity in biosignal data recorded from the same subject in different sessions may be caused
by a number of factors. While many of these such as the exact placement and fit of sensors and the level of
background electromagnetic activity in an environment are likely to be largely random over time, some such
as changes in the subject’s physiology and musculature are more plausibly time-variant. Research typically
finds such time-correlated variations to be relevant on the order of years or longer [365] — characteristics like
the buildup or loss of fatty tissue or muscle mass, which can both affect electromyographic signals measured
at the skin’s surface (see 2.2.1), do not often see pronounced changes in the course of a week. Shorter-term
temporally-dependent drift in biosignals has generally been found as a result of physiological changes at the
site of surgically implanted sensors [43,78,79]. Nevertheless should there be such time-correlated effects on a
system’s performance this could affect the longevity of a system, especially one which does not incorporate
any session-specific learning, and thus have implications for their design. The presence of two potential
sources of training data, each recorded one week apart, provides an opportunity to explore any potential
relationship between classification accuracy and the time delay between the recording of training and testing
data.

To control for and enable assessment of these effects of data quantity, diversity, and time, four variations
4The remainder of the Session 3 data goes unused; for parity with those systems which do learn from Session 3 data these

unreserved two thirds are not used to test the model.
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of the cross-session pretrained baseline system were hence trialled for each subject:

• System has access to all data previously collected from the subject across both prior recording sessions
(400 gestures total)

• System has access to all data recorded in the subject’s Session 1, two weeks prior to the target session
(200 gestures total)

• System has access to all data recorded in the subject’s Session 2, one week prior to the target session
(200 gestures total)

• System has access to random 50% subsample, stratified by class, of the gestures from each of a given
subject’s Session 1 and Session 2 data. (200 gestures total, balanced equal contributions from both
prior data collection sessions)

7.3.1.2 Generalist (proxy)

The opposing extreme in specificity is a Generalist system; one which is wholly subject-independent in nature.
The Generalist as presented in Chapter 5 was for each Development Set subject tested on all of their data
across all three recording sessions, and its accuracy reported on this basis. Systems in this chapter, where
Session 3 is specifically designated as the target session of interest, are by contrast tested on a reserved
random 33% of a subject’s Session 3 data as previously described. The accuracies of Chapter 5’s Generalist
systems are thus determined by their predictive power over a test dataset different in nature to those used in
evaluating this chapter’s systems; it would not be fair to draw a direct comparison between them.

However neither would it be appropriate to simply re-test the Chapter 5 Generalist system on a random
third of each Development Subject’s Session 3 data. Section 6.4.1 above discussed extensively the caveats of
the Generalist’s subject-independence with regard to the Development Set: while for a given subject N the
final Generalist system was trained only on non-N subjects, and indeed feature selection performed without
any of N ’s data, the CASH optimisation of the system configuration was guided by a loss function averaged
over all Development Set subjects, and in that way some knowledge of their data was “baked in” to the overall
learning process. Using this Generalist to predict a portion of each subject’s Session 3 data would thus not
be free of cross-session data leakage and not be a wholly like-for-like comparison with the other systems of
this chapter. In the context of Development Set results, the “Generalist ” results presented should thus be
taken only as a proxy.

With regard to the Holdout Set however, as again outlined in 6.4.1 the Generalist system as it is defined
in Chapter 5 has at no point had sight of any Holdout data. 5.2.3.2 describes that a Generalist system whose
configuration had been selected on the basis of Development Set performance and which was trained, using
features selected on the sole basis of Development Set data, on the data of the entire Development Set, was
then used to predict data belonging the the Holdout Subjects. There is thus no risk of leakage of subject- or
session- specific data and it was possible to re-test the Generalist on a random 33% of each Holdout subject’s
Session 3 data, providing a consistent performance measure suitable for comparison with the other approaches
in this chapter at the Holdout validation stage.
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7.3.2 Session-specific learning

The approaches here proposed for systems which are tailored in some form to the specific target session in
which they’re asked to classify data are grouped into two categories.

In this first category are approaches wherein the entirety of a system’s direct modelling — that is, the
Training stage of the learning process — is done on the basis of data from the target session. The two subtypes
presented here differ however in their strategies for undertaking the other stages of learning: defining the
configuration of the system & selecting the features which will be used to train it.

7.3.2.1 Within-Session Learning

Under the Within-Session learning scheme, all aspects of modelling draw solely on data from same session as
that which the model will be tasked to classify, i.e. a subject’s third data collection session. Data from the
other two recording sessions data go entirely unused in this approach; a Within-Session system thus allows
for a potential “immediate” deployment, wherein no additional data need be collected from a user in advance
of the system’s intended use session.

The quantity QC of a subject’s Session 3 data which was made available for modelling is used for Feature
Selection, for CASH optimisation, and for Training of the chosen system, as illustrated in Figure 7.3. Within
each iteration of the CASH optimisation a random 67% of QC used to train a model of the candidate
configuration, which is then tested on the remaining 33% — with the error rate of these predictions being
defined as the loss function for the optimisation algorithm to minimise. The configuration determined as
optimal on this basis is then retrained on the entirety of QC , and used to predict the reserved 33% of the
Session 3 data. For each value of QC , this procedure is trialled across all Development Set subjects, and their
mean accuracy taken as the accuracy of this approach at the given level of session-specific data QC .

This is as previously discussed perhaps the most common form for a subject-specific classification to take
among the literature; the challenges of recruiting participants to attend the lab on multiple repeat occasions
evidently precluding many studies from doing otherwise. It is however not ideal for a typical deployment
scenario; the requirement for modelling decisions to be made on a per-session basis would not be conducive
to use unsupervised by a developer, without the inclusion of a CASH optimisation procedure such as that of
this work (or some equivalent process) to the software shipped on a device. Such optimisation would need to
both be largely automated with little need for user input beyond the provision of the session-specific data,
and sufficiently fast so as to avoid undue inconvenience or delays to a user’s ability to operate the system.
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Figure 7.3: Structure of within-session system

On the challenges of within-session optimisation
It should be noted that in this approach, very low levels of session-specific data QC present challenges to the
CASH optimisation process beyond those discussed in 7.2.2. Not only is there a likely potential for increased
susceptibility to overfit, as the “optimise-test” split of the modelling data used as the optimisation target
will naturally be very small, but the total quantity of data available to the system is simply too low to be
compatible with certain combinations of hyperparameters.

In particular, where QC = 8 Support Vector Machines are excluded from the optimsation search space. As
noted in 7.2.2 at QC = 8, data is divided 50/50 for the optimise-train and optimise-test splits of each iteration
of the CASH optimisation, rather than the usual 67/33, such that both portions contain a single gesture of
each class. The strategy for coercing probabilistic predictions from SVMs outlined in 5.3.3.6 however relies
on a five-fold validation process; while this split, unlike most in the work, is on the basis of individual time-
windowed instances (see 4.3) in the dataset, rather than on whole gesture performances, a single performance
of each gesture does not contribute sufficient total datapoints to divide into five while ensuring all classes are
represented in each split.

Additionally, at this level the upper bound of the kNN’s hyperparameter k is reduced to 10 (from its usual
25 as per Figure 5.38). While there are indeed be more than 10 datapoints in the training set, the size of the
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neighbourhood is so reduced to enable evaluation of metamodel-based Decision-Level Fusion schemes during
the CASH optimisation. As outlined in 5.3.1.3 such metamodels are trained on predictions of lower-level
EMG & EEG classifiers generated through three-fold cross evaluation. If the CASH optimisation process
trials a metamodel fusion algorithm in combination with a kNN EMG model5, the temporary kNNs set up
to enable metamodel training could have a theoretical maximum neighbourhood size of 11 (4 total gestures
in the optimise-train split, each contributing 4 instances for a total of 16 datapoints, two-thirds of which as
per the three-fold cross-evaluation is 10.67 ≈ 11 instances for training the EMG-kNN).

Additionally, this approach is simply unviable at QC = 4. A training set comprising only four gestures
is insufficient to be able to split, in keeping with the practice of splitting on the basis of whole gestures, into
“optimise-train” and “optimise-test” subsets during CASH optimisation while ensuring each split contained
data belonging to all possible classes.

7.3.2.2 Within-Session Learning with Ported Configuration (from prior data)

These limitations on the capabilities of the CASH optimisation routine which arise in a wholly session-specific
system when attempting to minimise the required level of session-specific training data QC motivate efforts
to find alternative means by which to determine system configuration.

The “Ported” Within-Session strategy draws on a subject’s out-of-session data for this purpose. Where
the previously outlined within-session approach had optimised for target-session accuracy, this approach
instead explores the supposition that a configuration which performs well when trained and tested on a given
individual’s data at one point in time may well be suited to learning from their data at another point in
time, even though the final trained model is not itself the same across those domains. It identifies a single
configuration using certain subject-specific data & views this as “portable” to other data belonging to the
same subject. This can be seen as a parallel to the subject-agnostic nature of the configuration of the type
of “Bespoke” systems seen in Chapter 5 systems, but considering the extent of the data universe as data
provided by a specific individual, and the unit of generalisation as the recording sessions in which those data
were gathered, rather than looking across subjects.

Out-of-session data belonging to a subject is used for CASH optimisation to determine the system’s
configuration. As seen in Figure 7.4 this data is also used for the Feature Selection stage; that same array
of attributes is later taken from the session-specific data QC to ensure the resultant system is trained on the
same features as its configuration was optimised using. It would in principle be possible to reverse this: to
find the most informative features of the session-specific data QC and reduce the out-of-session data to those
features prior to CASH optimisation, potentially allowing for greater specialisation to the target session.
However this would hinder the portability of the configuration & require a discrete optimisation routine to
be performed for each novel usage session, undermining one of the key potential benefits of the approach to
usability. The selection of features on a dataset larger than those which would be seen at very low quantities
of QC may also mitigate somewhat the risk of overfit presented by learning from a very small dataset.

At each stage of the CASH optimisation, a random 67% of the out-of-session data, stratified by class, is
5The kNN has already been excluded for EEG classification, as per 5.5.8.
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used to train a system of the candidate configuration, and that system’s accuracy in predicting the remaining
third is used at the quality metric for the optimiser. The winning configuration is the one which maximised
this accuracy. This winning configuration is then used on a within-session basis: copies of the system are
trained on varying amounts of session-specific data QC , & each used to predict the reserved 33% of Session
3 data. In this way the approach allows the training stage itself to be session-specific & is able to reap
any potential benefits of that, while addressing the challenges to attempting CASH optimisation at reduces
quantities of provided target-session data. The mean accuracy of these predictions across all Development
Set subjects for each possible value of QC is taken as the approach’s accuracy at that level.

Figure 7.4: Structure of Within-Session system with “ported” configuration

Potential effects of the diversity & quantity of the out-of-session data used for feature selection and CASH
optimisation were explored by trialling the following three strategies for sourcing this data:

• All data from both of the subject’s prior sessions;

• All data from a single one of the subject’s prior sessions6;

• A stratified 50% subsample of each of the subject’s prior sessions, such that the total out-of-session
data was the equivalent of a single recording session (200 gestures).

6Specifically Session 2, on the basis of it on average providing greater uncalibrated cross-session predictivity over a subject’s
Session 3 data than their Session 1 data did, as covered in 7.4.1 below.
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Contrasting the first and last of these options allows investigation of the impact of data quantity, and
comparison of the latter two options enables investigating the benefit of undertaking both data collection
sessions while controlling for quantity.

In addition, it was considered that there may in fact be a benefit to including target-session data in
the Feature Selection & CASH Optimisation stages over carrying these out with other data, but that this
benefit could be overshadowed in 7.3.2.1 by the potential insufficiency of optimisation data where QC is
low. Therefore a fourth strategy was trialled wherein the session-specific data was “topped up”: at each
level of QC , a stratified random subsample of the subject’s out-of-session data were added of a size inversely
proportionate to QC . This meant that there were a consistent total of 200 gestures with which to perform
Feature Selection and CASH optimisation, with QC controlling the proportion of those data which belonged
to Session 3. The winner configuration was then retrained on solely QC for a more equivalent comparison
to the other aforementioned variations of this approach (and to maintain a distinction in nature from the
approach presented below in 7.3.3.1). The direct modelling was still on the basis of target-session data and
the optimiser was also able to learn from it, but the problems of insufficient data with which to optimise
encountered in 7.3.2.1 were thus addressed.

7.3.3 Cross-session learning

This second category of the two covers approaches wherein both session-specific and out-of-session data are
directly used in the actual modelling of a classifier, and are thus referred to as incorporating “cross-session”
learning. These two data sources are drawn on in a variety of ways, including strategies which parallel those
previously used to merge same- and other- subject data in the experiments of Chapter 6.

7.3.3.1 Augmentation

The Augmentation approach, much akin to that seen in in Chapter 6 (6.3.2), simply uses data collected from
the subject prior to their third session to supplement the dataset and thus allow a system to model on a
greater quantity of data. In this way it relies on the expectation that a subject’s out-of-session data will bear
sufficient similarity to that of the target session so as to be of use in modelling.

Here the downsampled target-session data available for modelling, QC , is augmented with the entirety
of the data collected from the subject prior in Session 1 & 2, and this joint cross-session dataset is then
used for all stages of the learning process. Informative EMG & EEG features are first selected from the
merged data in accordance with the Feature Selection strategies outlined in 5.3.2.2. For each iteration in
the CASH optimisation routine, one third of the Session 3 data present within the merged set is held for
testing. Correspondingly, one third of the Sessions 1 & 2 data are temporarily discarded for that iteration,
to preserve the relative proportions of session-specific and out-of-session data within the optimise-train split
and the overall learning dataset7. The iteration’s candidate model (constructed according to its point in the
hyperparameter search space) is hence trained on the remaining two-thirds of the merged dataset, and then
used to make predictions over the held third of the merged set’s Session 3 data. Of the 100 optimisation

7see 6.3.2
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iterations, the combination of models and hyperparameters which made those predictions most accurately
is taken as the winner; thus the determined system configuration is optimised for maximising classification
accuracy of Session 3 data.

A system of this winning configuration is then retrained on the entirety of the cross-session learning
dataset, and is finally used to predict the reserved 33% of the subject’s Session 3 data. The accuracy of
these predictions is computed; the mean accuracy across the 20 Development Set subjects is taken as the
Augmentation approach’s accuracy at a given level of session-specific data QC . Figure 7.5 presents a visual
outline of this approach.

Figure 7.5: Structure of augmentation system

7.3.3.2 Model Transfer

Under the Model Transfer strategy, the training of a system is itself a two-step process: models are initially
fit to data collected from a subject in sessions other than the target Session 3, and subsequently adapted to
the portion of their Session 3 data which was provided to the system QC . This again is somewhat similar
in nature to Chapter 6’s Model Transfer strategy described in 6.3.3, with the scope of the data universe
reduced to that of a single individual. Much as the Augmentation above does, this approach operates on
the basis that a subject’s out-of-session data may be assumed to provide some level of class-discriminable
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information to a machine learning model, but that a discrete process of specialisation on data from the
session-under-test will enable models’ refinement and lead to higher classification accuracy. By forcing a
model to pay deliberate attention to the target-session data, this strategy may avoid such session-specific
information being deprioritised which may be a particular risk in, for instance, an augmentation system with
significant imbalance between session-specific and out-of-session data.

As depicted in Figure 7.6, here features were again selected from the join of a subject’s out-of-session
data and the amount of their Session 3 data QC made available to the system for calibration. The system’s
configuration was determined through exploration of the hyperparameter search space suitable for direct
model transfer applications defined in Figure 6.4. At each CASH optimisation iteration, the configured
model was initially trained on solely the out-of-session data. Two-thirds of the session-specific data present
QC were then used to adapt this trained model to the target session8, and the adapted model was used to
predict the remaining third of QC , with the accuracy of those predictions defining the optimisation algorithm’s
loss function.

Figure 7.6: Structure of model transfer system including session-specific optimisation. Note parallels to Fig.6.3

8See 6.3.3 for a description of the mechanisms of domain adaptation of each eligible classification algorithm.
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A system of the “winner” hyperparameter configuration which minimised the error rate in its predictions
of this 33% of QC was then trained afresh on the out-of-session data, and adapted using this time all of QC .
This calibrated model’s accuracy in predicting the reserved 33% of the subject’s Session 3 data was taken
as the system’s accuracy for subject N at the given quantity for QC . The mean of these accuracies over
Development Set subjects was determined, as previously described, for each possible value of QC defined in
7.2.2 to measure the performance of this approach.

7.3.3.3 Model Transfer with static configuration ported from prior user data

As discussed above, in 7.3.2.1 and elsewhere, the inclusion of a Combined Algorithm Selection & Hyperpa-
rameter optimisation stage to determine a suitable configuration on a per-session basis may present distinct
inconveniences in a deployed system.

This variation on the Model Transfer strategy therefore, by contrast to 7.3.3.2, performs model adaptation
following a single, one-time optimisation routine the outcome of which is applied across all levels of calibration
data QC . While the dataset used in this work contains data of only three sessions for each subject, the
principle of this approach is that the resultant chosen configuration would continue to be ported to any
further sessions, without additional session-inclusive optimisation. If achievable this could suggest a much
streamlined experience for the end user of a system, and a more lightweight software it. Rather than requiring
a system’s component models and their hyperparameters to be determined uniquely for each given session,
here these stages might be for example a part of the pre-deployment “setup” of a device — a customisation
process carried out by the supplier & prosthesetist for each novel user before it is put into use — and yet
the system would be able to benefit from bespoke tailoring to each new session through adaptation of the
pretrained model to some amount (QC) of session-specific calibration data.

Much as outlined in 7.3.2.2, which applies the same notion of portability to a within-session system, this
operates on the expectation that the suitability of a given system configuration is a property transferable,
at least in some large part, between different sessions of a given user’s data — and thus that sufficiently
appropriate models & hyperparameter values can be selected on the basis of data collected outside the target
session.

Additionally it should be noted that the approach in 7.3.3.2 optimises, in principle, for a configuration
well-suited to undergoing model adaptation. Here no such efforts are made. The system instead operates
on the belief that a model which performs well in classifying data in the source domain, and is capable
of undergoing domain adaptation, will be good at that domain adaptation — and will thus perform well
in classifying data in the target domain following the transfer learning. While this is very likely a naïve
assumption it is necessary to enable the elimination of session-specific CASH optimisation from the process.
The divergence between the metric is being optimised for (performance of an unadapted model on data of
the same session(s) upon which it was trained), and that which the system is being used for (performance of
an adapted model on data of the session to which it was adapted) is certainly a potential weakness of the
technique and one which may be interesting to investigate the impact of.

As can be seen in Figure 7.7, under this approach features are selected on the sole basis of the subject’s
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Figure 7.7: Structure of Model Transfer system with “ported” configuration

Session 1 and Session 2 data. The same are then used for performing the CASH optimisation, with a stratified
random 33% of this out-of-session data used to evaluate the quality of the prospective hyperparameter
configuration at each of the 100 optimiser iterations, and that which provided the greatest accuracy being
considered the “winner”. Both feature selection & CASH optimisation are hence each performed only once.

Varying levels of calibration data QC from the session-under-test are then trialled in turn. A system of the
chosen configuration is trained initially on all the out-of-session data, then adapted using the session-specific
QC , and finally used to predict the reserved 33% of the subject’s Session 3 data. As with those approaches
outlined previously, this is repeated for each subject N in turn at every defined quantity of calibration data
presented in 7.2.2, and the mean accuracy of these predictions over all Development Set subjects is taken as
this approach’s accuracy for the given level of QC .

This approach’s avoidance of a session-specific optimisation stage in conjunction with its ability to adapt
a previously trained model not only allows for smoother use but sets up the possibility of an “online” or
“adaptive” calibration strategy. While such a strategy was not explored here experimentally, an approach
of this nature could be extended to give a user some input interface with which to signal that the system’s
previous classification attempt was incorrect, and thus trigger it to further adapt its classification algorithms
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“on-the-fly” on the basis of that residual, not altogether dissimilar to the principles motivating Gradient
Boosting algorithms. The adaptation mechanism of the Gaussian Naïve Bayes classifier as implemented in
scikit-learn, described in 6.3.3, lends itself particularly well to such incremental training. Such a method could
perhaps even be automated: Förster et al. [115] had success in adaptive correction of an EMG-based classifier
by using EEG measurements to detect a pattern of brain activity known as the error-related potential (ErrP)
which presents when an individual recognises an erroneous or unexpected response to a situation, and Seeland
et al. [295] were able to incrementally retrain an EEG classifier by repeatedly introducing “buffered” EEG
data which were labelled according to the cotemporaneous predictions of an EMG classifier.

7.3.3.4 Model Transfer from Generalist

In the Model Transfer approaches above, given that each system is adapted to data from the specific target
session, it is essentially expected that it primarily learns “coarse” properties from the source domain data,
with the “fine” patterns derived from session-specific data. While this is a simplified framing, an interesting
question can be found in extending this logic further — by exploring whether that initial learning could be
adequately done using data not only of a different session, but which is not even specific to the subject N

under test.
While Chapter 6 did not find incorporation of other-subject data to be of aid to a system which had access

to sufficient subject-specific data, Chapter 5’s findings in the success of both its Generalist and its “portable”
Bespoke approaches suggest there to be much learning which could be generalised across individuals to at
least a certain degree, even if less beneficial than subject-specific learning as Chapter 6 would imply.

There is certainly a clear motivation for exploring this if it were to prove viable. Eliminating the need for
the user-specific setup of a system prior to its deployment could have disproportionately great accessibility
implications than simply the time and cost reduction. The impact of such factors in terms of barriers to
access can perhaps be best thought of as them imposing a high “activation energy” , in that a system with
no pre-deployment requirements will be vastly more accessible than one with minimal. Even the shortest
imaginable data collection session, for example, requires the availability of suitable space, facilities, labour,
and expertise to carry it out.

In this strategy therefore the Feature Selection, CASH optimisation, and initial (or “cold”) training of
the system’s accordingly selected model & hyperparameter configuration is carried out using data collected
exclusively from subjects other than N .

This other-subject data, for pragmatic reasons9 and for greater equivalence with the other systems of
this chapter, was downsampled to be of equivalent quantity to the amount of out-of-session subject-specific
data which would be available to other cross-session learning systems, and which this approach avoids the
need to collect. This totals 400 gestures (200 from a subject’s Session 1 and 200 from their Session 2), which
are correspondingly taken from the pooled Sessions 1 and 2 of the non-N subjects. This downsampling
was stratified by class, and as far as was possible by participant such that a similar quantity of data was

9Primarily training & testing speed, but see also e.g. 5.3.3.6 & 6.5.1 on the impact of using datasets too large for certain
algorithm choices to be viable options.
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contributed by each non-N subject. Where this approach was applied for tests with Holdout Set subjects,
all 20 Development Set members were available as non-N subjects to draw from, and so an exact balance
was possible (as 400 | 20). In the experimentation with the Development Set however, where there were 19
subjects not-under-test at any given time, there was a slight imbalance of contributions. This imbalance is
assumed to be random.

Figure 7.8: Structure of a Transfer From Generalist system. NB depicted here is the system when used with a
Development Set subject thus leaving 19 “other” subjects available.

As depicted in Figure 7.8, all of these 400 other-subject gestures were used for Feature Selection. In
each iteration of the CASH optimisation process, a random 33% of them were used as the test data by
which the optimisation target was determined. It should be highlighted here that this random splitting
into optimise-train and optimise-test was performed across all of the downsampled other-subject data; the
optimisation target was not determined by any separation of the data belonging to different non-N subjects
from one another. Thus while as shorthand this approach is referred to as transferring “from a Generalist”, the
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hyperparameter configuration was not itself optimised on the basis of cross-subject classification performances
as it was in the “Generalist” systems elsewhere in the work. Akin to the strategy described in 7.3.3.2 above,
this optimisation was done only once for a given subject (though as noted, on the basis of data which did
not include their own). A system of the determined configuration is then, for each value of QC , trained on
the 400 other-subject gestures with the array of informative features found from them. The trained model is
subsequently adapted to the subject-under-test’s Session 3 using QC , and used to classify the reserved 33%
of the subject’s Session 3 data. Again, the mean classification accuracy over all Development Set subjects
for each defined quantity of calibration data QC was computed to determine the accuracy of this approach
at that level of calibration.

188



M. Pritchard, PhD Thesis, Aston University, 2024 CHAPTER 7. CROSS-SESSION CLASSIFICATION

7.4 Results

The performances of these various approaches are assessed and comparisons drawn between them. Initially,
the Development Set data is used to identify the most promising & interesting candidates from among the
strategies outlined. Observations made of these systems’ performances when provided with varying quantities
of calibration data QC are subsequently tested by their application to the Holdout dataset.

It should be recalled here that as noted above (7.1), this part of the work was exploratory in nature and
the investigation of some of the systems here motivated the inclusion of variations thereof which were not
initially planned. Certain parts of these results are thus presented in a fashion not strictly linear in terms of
the chronology of the experimentation. For example, 7.4.1 finds Session 2 to provide superior uncalibrated
cross-session classification ability than Session 1, and this result informs the choice to use Session 2 in any
subsequent systems which sought to draw on only one of a subject’s non-target data recording sessions.

Any such iterative, result-informed a posteriori design choices occurred only at the exploration stage of
these experiments with the Development Set. Any and all verification of trends and results with Holdout
subjects, and the determination of particular findings to assess in this way, were done subsequently. The
design of the experiments and tests discussed in 7.4.3 was in no way shaped by any advance knowledge of
Holdout Set performance. As has been discussed in 5.2.1 and elsewhere throughout the work, care has been
taken to avoid the pitfalls common to much biosignal research [30,152], and indeed machine learning research
more broadly [191] of introducing bias or leakage to the selection of systems, comparisons between them, or
any other stage of experimentation.

7.4.1 Uncalibrated cross-session baselines

Aim 7.1 of this chapter was to “Investigate the impacts of data diversity and source–target time delay on un-
calibrated cross-session biosignal gesture classification”. As described in 7.3.1.1 above, four variant strategies
for developing a pre-trained, zero-calibration system were investigated, defined by the data to which they had
access: all of a subject’s “Session 1” data, all of their “Session 2” data, all data collected across both these
sessions, and a downsampled set containing a random 50% of their data from each recording session. Figure
7.9 presents the classification accuracies achieved by these variations of the pre-trained baseline on the 20
Development Set subjects.

7.4.1.1 Impact of data diversity & quantity

It can be immediately seen that systems with access to both sessions’ data achieved greater accuracies than
those modelled on only one. That the “downsampled” system had a higher mean and median classification
accuracy across subjects than either of the single-session approaches suggests this effect cannot be wholly
ascribed to an increase in the total data seen by a system. Rather the presence of this effect after controlling
for data quantity suggests that systems did indeed benefit from having a more diverse training dataset. Such
diversity is likely to have led models to identify trends among the biosignal data which generalised across
both recording sessions and were thus more likely to remain robustly generalisable to a third session, where
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Figure 7.9: Comparison of pre-trained baseline systems with access to no session-specific data

by contrast a single-session model may have been more susceptible to overfit.
The impact of the overall data quantity appears less pronounced; comparing the baseline with access to

all prior user data and that modelled on only half of it, the two reach similar mean accuracies and the latter’s
median accuracy is marginally greater. The all-prior-data baseline however was much more accurate for its
weakest subject than the downsampled system, at 52.65% to 40.15% respectively. This increased robustness
motivates its adoption as the de facto out-of-session pre-trained baseline system from hereon.

7.4.1.2 Impact of time delay

Interestingly, on average data from a subject’s second recording session was a distinctly better predictor of
their third session than data from their first session was. While impossible to verify with certainty, this is
believed to be a random effect. In the longer term, time-correlated changes in the physiology of an individual
may result in a “drift” in the properties of their biosignal data. As an individual ages for example their muscle
tone and fat distribution among other factors, which can as noted in 2.2.1 affect electromyographic signals,
will naturally change, as does the underlying behaviour of their body’s Motor Units [365]. It would certainly
be plausible for this to mean an individual’s biosignal data on a given day was more closely correlated with
that from the previous day than from the previous year (as an illustrative example). A subject’s three
recording sessions in this dataset however were spaced apart by only a week each. Even considering factors
such as health and exercise level which could well lead to more rapid physiological changes than ageing, a
time differential of a single week between Sessions 1 and 2 seems unlikely to lead to such notably weakened
predictive power in the more distant session. Where a notable shift in the nature of recorded muscular
biosignals has been observed over the course of just a week, this has been due to degradation in the quality
of implanted sensors as a result of their prolonged presence in the body, rather than any fundamental change
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to the underlying bioelectrical activity [43].
Other temporal effects are perhaps more plausible, though none appear particularly compelling in the

absence of further evidence. Modifications to the experimental procedure, measurement equipment, or en-
vironment of the data collection sessions could certainly be reasoned to affect the nature of the bioelectric
signals recorded. While Jeong et al. [198] report no such deliberate changes it cannot be wholly discounted
that conditions such as the level of background noise from ambient electronic equipment in the vicinity could
have changed over time in ways which escaped the researchers’ notice. It should be considered however that
Jeong et al. do not imply the one-week time delay between sessions to be anything other than relative with
respect to each individual subject. It is not stated that all subjects’ first recording sessions were carried out
in the same week and all completed a week before any subject’s second; given the time and labour required
for data collection & the total number of participants this seems ultimately unlikely. Were there any inad-
vertent changes to the experimental conditions over time these would almost certainly have been correlated
with actual time and not occurred between each separate subject’s second and third data collection sessions
individually.

Potentially more plausible is the possibility of a gradual change in subjects’ behaviour. Whilst the impact
of user’s progressively increasing experience with Brain-Computer Interface usage is more likely to have been
relevant to the Kinaesthetic Motor Imagery data also recorded by Jeong et al. than the genuine Motor
Execution data used here, what is perhaps possible is an experiential effect in terms of the physical gestures
being carried out. Through repetition and familiarity, it could be posited that subjects’ performances of the
three grasping gestures became more consistent with regard to the hand shape during the grasp and the
specific motions performed to reach it. This would hence result in less variable patterns of bioelectric activity
which could lead to the observed greater forwards generalisation performance of the Session 2 data. That
Jeong et al.’s paper makes no mention of an observable “learning curve” in participants’ gesture performances
certainly indicates this to be relatively unlikely to have occurred but it remains possible. Whether the
apparent time-related increase in predictive power of the subjects’ biosignal data is a non-random effect
would not be possible to ascertain without data from a greater number of successive recording sessions, but
if it were, then an increasing consistency over time in the precise hand shapes being performed seems the
most plausible explanation.

There would be great merit in the further assessment of time-variant effects on systems’ accuracy in
future work. The challenges of recruitment & retention of participants in longitudinal studies means that
within-subject, cross-session biosignal data is scarce, particularly in the order of months or years as would
perhaps be most valuable in distinguishing physiological, environmental, behavioural, and other potential
effects. Such work could however be of significant benefit to informing the design of cross-session or session-
agnostic gesture recognition systems intended to be deployed for long-term use, and in quantifying or even
reducing the extent of the need for continued maintenance.
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7.4.2 Comparing session-targeted approaches

The mean classification accuracy across the 20 Development Set subjects of all the approaches trialled which
have access to some level of session-specific data QC — those outlined in 7.3.2 and 7.3.3 — are presented in
Figure 7.10. Additionally included as a reference are the out-of-session baseline (according to the conclusions
reached in 7.4.1 above, only the variation with access to all of a subject’s prior data is included here) and
the Generalist system of Chapter 5, which as discussed above in 7.3.1.2 should be viewed only as a proxy
measure with respect to Development Subjects.

Figure 7.10: Mean Development Set accuracies of all approaches at increasing levels of session-specific data QC

NB Figures 7.11 & 7.12 separate these results according to their modelling approach.

Visible also in Figure 7.10 and others hereafter is an additional axis representing the quantity of Session
3 data used QC in units of time, with each discrete gesture performance corresponding to 3 seconds. Three
seconds is the duration of each gesture performance extracted from the recorded data as outlined in Chapter 4;
in actuality the participants of Jeong et al.’s study performed gestures for approximately 4 seconds each [198].
In addition the calibration routine of a real-world system may need to incorporate breaks between gesture
inputs, and account for the possibility of an incorrect or mis-timed gesture from the user potentially requiring
some repetition or correction. The time spent learning from this calibration data, whether that involves only
model training or adaptation or includes the process of determining a system’s configuration & tuning its
hyperparameters, is also not captured here. This will not only vary between systems and their variations,
but is likely to also be a function of the total quantity of data provided to the system. Estimates of training
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time taken from the offline experiments performed here would not be a good measure of the time required
for such modelling by a deployed system with different hardware limitations, and the other potential sources
of time delay mentioned are not quantifiable within the scope of this work. Rather than attempt unfounded
estimations of such factors, the “time” axis is thus presented simply as the total duration of the session-specific
data QC used, giving an indicative visualisation of only an theoretical absolute minimum required calibration
time which in practice would likely be much greater.

The many approaches and versions thereof seen here differ in numerous ways not only on the means
by which they learn from data but on the data to which they have access. To simply identify the most
accurate system and present it as a singular universal recommendation would be a naïve comparison of their
properties and performances. Rather, approaches of the two categories previously defined, those wherein
model training is session-specific (7.3.2) & those in which it is not (7.3.3), are explored below in turn, with a
view to refining this collection of strategies into a selection of viable “candidates” which differ in interesting,
application-relevant ways, from which observations can be made and subsequently verified using the unseen
Holdout dataset.

7.4.2.1 Session-Specific Training

Firstly those systems described in 7.3.2 which are trained solely on target-session data are assessed. Figure
7.11 displays the classification accuracies of these systems averaged over the 20 Development Subjects, at the
various quantities of Session 3 data QC on which they were trialled.

Figure 7.11: Mean Development Set performance of approaches wherein model training is based on session-specific
data
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Immediately visible is an almost logarithmic trend, consistent across all strategies, in their performance
with respect to QC . While the benefit of additional session-specific data appears to begin rolling off, in many
cases after approximately 80 total gestures (20 gestures of each class), in every approach there is a sharp
decay in accuracy as the level of Session 3 data declines much below this point as the models most likely
overfit to the few datapoints they have to learn from.

It is perhaps unsurprising that this presents most dramatically in the wholly within-session approach, and
that this system consistently trends among the weakest overall. Under this particular strategy, wherein the
classification system’s modelling choices are determined bespoke using only the target-session data available,
a severely reduced QC will be unlikely to provide sufficient data for a robust CASH optimisation — the chosen
configuration is itself liable to be overfit to the specific Session 3 data used. Despite this underperformance,
the within-session approach is, with sufficient data, seemingly able to reach predictive capabilities broadly
commensurate with those of its peers. For this reason, and as the only strategy not reliant on any other
sources of biosignal data, it is retained as a candidate of interest.

Those techniques outlined in 7.3.2.2 which avoid this pitfall by drawing on other data to determine their
modelling choices all achieve remarkably similar mean performance across the various levels of QC upon
which they are trained. That these largely exceed the accuracy reached by the pretrained baselines of 7.4.1
(provided sufficient training data), and that the variation which incorporates QC into the CASH optimisation
procedure, suggests similarity between source and target domains of training data to be of greater importance
here than that of the data used to determine a system’s configuration. There seems no consistent benefit of
including session-specific data at the optimisation stage and so this technique can be “disqualified” from the
consideration of candidate systems.

This “elimination” has the additional benefit of discounting the second of the two approaches seen here
which rely on a per-session optimisation of modelling hyperparameters; the remaining three to be discussed
are alike in their use of a “static”, predetermined system configuration and differ only in the data with which
it is found. While as noted the distinction between these systems’ scores is minimal, the variation which
draws solely on Session 2 data for CASH optimisation trends marginally weaker. The prior exploration of
out-of-session performance suggests a benefit to learning from diverse data, and while not testable with these
data it stands that such diversity could be plausibly anticipated to lead models to generalise better to further
novel sessions of a given subject. This is thus also disregarded as a potential candidate. Unlike in the case
of the wholly out-of-session baselines however, here the reduction in quantity of joint Sessions 1 & 2 data to
200 total gestures does not appear to notably degrade performance in the main. The system drawing on all
of a subject’s prior data for optimisation did offer greater accuracy than its downsampled counterpart where
QC = 20, but at such low levels of session-specific data neither variation exceeded the accuracy attained
by the out-of-session baseline, indicating that with such low session-specific data the prior data is put to
better use by being used for all stages of learning, making the superiority of the all-data approach moot and
thus motivating its elimination in favour of the similarly performant strategy which requires only half the
out-of-session data.
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7.4.2.2 Cross-Session Learning

Subsequently explored are the approaches involving cross-session model training described in 7.3.3. The mean
accuracies of these systems at varying levels of session-specific data QC are shown in Figure 7.12.

Again it can be seen that the systems of this category present relatively similar trends to one another
in their response to increasing quantities of session-specific data. While these approaches do diminish in
classification ability at very low levels of QC , comparison to Figure 7.11 highlights that this rolloff is much
less steep than for those systems discussed above which relied solely on QC for training. That the cross-session
systems, at such low quantities of calibration data, tend to outperform systems trained exclusively on target-
session data regardless of whether the latter’s configuration were optimised using that small dataset QC or
using a subject’s out-of-session data, suggests that both the training and optimisation stages contributed to
session-specific systems’ overfit in these cases. Both of these elements of the learning process were undermined
by the low quantity of calibration data QC available in 7.4.2.1 and are here benefitted by being given access
to more data, that benefit seemingly outweighing the impact of divergence of dataset’s origin.

Figure 7.12: Performance of approaches incorporating some degree of direct cross-session modelling

Albeit only by a small degree, the Augmentation strategy routinely underperforms by comparison to
those which use direct model transfer. The introduction of the classifier adaptation stage — the eponymous
“transfer” step in a Model Transfer system as they are defined here — forcibly directs a system’s component
machine learning algorithms to pay dedicated attention to data belonging to the target session. Assuming
that calibration data taken from the target session will be more similar to (and hence more predictive of)
the reserved target-session testing data than out-of-session data will, a learning process tailored to such
target-session data ought to reasonably be expected to lead to higher classification accuracy than one which
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is not, other things being equal. The Augmentation approach however does not distinguish between session-
specific and out-of-session data at the training stage; its only mechanism for encouraging such focus is in
the use of calibration data QC as its target during CASH optimisation. Not only is it thus less tailored to
the target session, but the stage at which it is tailored, the determination of the system’s hyperparameter
configuration, is as previously discussed posited to be a more transferable aspect of the learning process —
hence the viability of strategies which “port” their system configurations” — and thus one which may be only
minimally benefited by giving specific attention to target-session data.

This interestingly stands in contrast to the findings of Chapter 6’s experiments on cross-subject classifi-
cation. As noted in 6.5.2.3 and elsewhere, in that context the direct adaptation of trained models to a novel
subject was no better a strategy than the augmentation of a subject’s data with that of other individuals.
This is perhaps explainable by the expected greater homogeneity in data collected from a single subject on
different occasions than that of data collected from different individuals. In the cross-session case of Chap-
ter 6, provided there was not significant imbalance between source and target domain data, an augmented
system wherein subjects’ data were dissimilar may still have been able to fit the data in such a way that it
modelled class-relevant patterns in the biosignal data of various subjects, even if quite distinct patterns were
identified in each. Supposing such dissimilarity between subjects’ data however, a model transfer system
trained initially on data of subjects not under-test may struggle to adapt its fitted classifiers to an unseen
and potentially unalike subject’s data. In the cross-session context however, wherein the data universe is
limited to that of a single subject, the “cold”-trained fit of a classifer in a Model Transfer system may be more
readily adapted to the subject’s target-session data; the greater similarity between source and target domains
meaning it has less “distance to travel”. Plausibly, it may even unadapted be a better predictor of the target-
session data than an unadapted cross-subject model would be of the target-subject. In this way a Model
Transfer approach appears more suited than an Augmentation strategy to the within-subject cross-session
classification problem, where such strengths were not found in a cross-subject paradigm; Augmentation is
thus not considered further as a “candidate” cross-session approach.

Of the two Model Transfer approaches which draw on prior subject-specific data, that which incorporates
calibration data into the CASH optimisation process, and in doing so ostensibly optimises for a system
configuration well-suited to calibration as discussed in 7.3.3.2 and 7.3.3.3 above, in fact appears generally
no more accurate in classifying Session 3 data than that which uses a static configuration determined solely
on out-of-session data. This indicates that, contrary to expectations, a system configuration selected on
the basis of its post-adaptation performance in classifying target-session data was no more suitable than
one selected on the basis of offline performance with out-of-session data. This gives further credence to the
notion that, at least within the scope of a given subject’s data, model selection & hyperparameter tuning may
be reasonably transferable system properties, corroborating the related findings in 7.4.2.1 on optimisation
strategies of systems trained solely on target-session data.

The only notable exception to this similarity in performance is at particularly low levels of calibration
data QC . The static configuration variant performs unsurprisingly poorly here, presumably due to over-
adaptation to such a small dataset resulting in classifiers which are in fact so overfit to QC that the model
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transfer process degraded their performance from that which they achieved unadapted (i.e. at QC = 0).
The variant which incorporates per-session optimisation is seemingly able to compensate for this, perhaps
by finding a system configuration which leads models to be less malleable in their adaptation and hence
less susceptible to the domain transfer resulting in such overfit. Regardless, this distinction presents only
in systems with access to such little session-specific calibration data that they fail to exceed the pre-trained
baseline; there is no apparent benefit in these cases of performing model transfer at all over simply using
the subject’s out-of-session data for training. Given the lack of relevant distinction between the classification
abilities of these two systems, the approach which utilises a preselected system configuration and hence avoids
the noted inconveniences to a user of determining this on a per-session basis is clearly preferable, and will be
retained as a candidate cross-session strategy.

It will no doubt be of interest in future research to expand on this approach to investigate appropriate
techniques for its longer-term deployment. For example, it may be that a “clean” copy of the pretrained model
ought simply to be adapted to every novel usage session. However alternatively, a single model which was
successively adapted to each new session it encountered could potentially have a greater ability to adapt to
gradual drift in the properties of the biosignal data, by maintaining a shorter “distance” between its learned
properties and the new data, assuming some linearity to such drift. To explore this in adequate depth would
require a multimodal dataset collected from subjects over a greater number of recording sessions, ideally
spaced over a longer period of time — further reason that the expansion of the limited range of multimodal
EMG/EEG gesture datasets made available to the biosignal research community is paramount.

Perhaps unsurprisingly the Model Transfer strategy which carries out the selection of features, optimisa-
tion, and initial training on data not collected from the subject-under-test (the “Transfer from Generalist”
(7.3.3.4)) is consistently the weakest among these approaches. Nevertheless it demonstrates a clear ability
to specialise on the target subject’s Session 3 data and responds better when it has greater quantities of
this data upon which to adapt its component classifiers. It even begins to narrow the gap in attainment
between it and the approaches which access to subject-specific data for these stages of learning; sufficient
target-session data QC enables it to compensate in part for the lack of prior subject data. Evidently this
is an attractive property of the approach, and one the possibility of which motivated its inclusion in the
experiments: that both the system configuration & initial training stages may be partially transferable across
subjects through calibration to a target session, allowing for classification accuracies nearly competitive with
the other investigated techniques to be reached without any need for a subject’s involvement in advance of a
system being put to use. Thus, while it does indeed achieve the lowest mean accuracy of these cross-session
learning strategies, this apparent viability in a use-case of particular interest motivates it being retained as a
“candidate” approach.
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7.4.2.3 Resultant candidates

The above refinement of the array of potential session-specific gesture classification approaches has identified
four candidates, selected on the bases of either their superior classification accuracies, or attractive use-case-
relevant properties such as the source of the data which they leverage. The mean Development Set accuracies
of these four, along with the most performant zero-calibration baseline as identified in 7.4.1 and the Generalist
— which as noted in 7.3.1.2 should here be taken only as an indicative proxy measure of subject-independent
performance — can be seen in Figure 7.13. Table 7.2 presents numerically both these mean accuracies10

and the Standard Deviation in those accuracies across Development Subjects, at each trialled level QC of
session-specific calibration data.

Figure 7.13: Mean accuracies over Development set of candidate session-targeted systems

10Recall that as outlined in 7.2.1, individual classifiers of each given approach (at each level of QC) were developed for every
Development Subject — the mean of a given approach is calculated over those 20 unique systems’ subject-specific accuracies,
not a single model’s attempt at classifying different subjects’ data.
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Qc Within-Session Transfer from Transfer from Within-Session
user data Generalist (Ported config)

Mean Std Mean Std Mean Std Mean Std
0 - - 0.7407 0.1178 0.6521 0.1142 - -
4 - - 0.6894 0.1017 0.6536 0.1319 - -
8 0.4570 0.1812 0.7078 0.1130 0.6805 0.1443 0.5875 0.1465
20 0.5402 0.1605 0.7786 0.1035 0.7375 0.1392 0.6691 0.1152
40 0.7475 0.1325 0.8195 0.0930 0.7646 0.1395 0.7905 0.0947
60 0.7991 0.1220 0.8388 0.0852 0.7972 0.1120 0.8244 0.0919
72 0.8229 0.1050 0.8470 0.0832 0.8074 0.1049 0.8339 0.0847
80 0.8284 0.1028 0.8470 0.0875 0.8116 0.1058 0.8402 0.0843
100 0.8280 0.1197 0.8509 0.0855 0.8208 0.0973 0.8523 0.0835
120 0.8350 0.1001 0.8538 0.0884 0.8305 0.0964 0.8553 0.0871
132 0.8532 0.0891 0.8551 0.0869 0.8331 0.0965 0.8576 0.0827

Prior No Yes No YesData?

Table 7.2: Means and Standard Deviations in Development Set classification accuracies of candidate systems at differing
levels of calibration data QC .
Proxy Generalist Baseline: Mean Accuracy = 0.7230, Std. Dev = 0.0733
Out-of-session Baseline: Mean Accuracy = 0.7475, Std. Dev = 0.1131

From these results a number of key observations can be made which warrant validation on held-out data:

• That the inclusion of session-specific calibration data improves systems’ classification accuracy

• That of those systems trialled with access to no out-of-session subject data:

– With only a small amount of calibration data, they will not surpass an uncalibrated Generalist
system; there is no merit to attempting such calibration

– With sufficient calibration, performance surpassing that of an uncalibrated subject-independent
system can be achieved

• That of those systems trialled which do have access to data previously collected from a subject:

– When only a small amount of target-session data is made available, it is better used to adapt a
pre-trained model via transfer learning than to train a session-specific model of a configuration
identified using out-of-session data

– With sufficient target-session data, either one of these strategies can be applied to similar degrees
of success

• There is merit to collection of user-specific data in advance of a system’s intended use to be used as a
basis for transfer learning, over collecting data from other individuals for this purpose.
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7.4.3 Verifying findings with holdout data

Approaches’ classification abilities when applied to the Holdout Dataset, consisting of data collected from
subjects hitherto completely unseen by these systems, can be used to verify these findings in turn. The reader
is advised that the candidate approaches presented above are hereafter sometimes referred to collectively as
“calibration” systems, including those which do not strictly calibrate a pre-existing model but rather
construct a model using exclusively target-session data. This is in part for convenience and consistency with
the description of such data as “calibration data” as noted in 7.2.1, and to reduce the potential for confusion
to arise from grouping them under terms such as “cross-session” or “session-specific” previously used in 7.3.3
and 7.3.2 to describe specific subcategories of approach.

7.4.3.1 Demonstrating the benefit of calibration

The first and most significant observation noted above is “That the inclusion of session-specific calibration
data improves systems’ classification accuracy” — directly addressing Aim 7.3: to “Explore the impact of the
amount of session-specific biosignal data available to gesture classification systems on the accuracy of their
gesture classifications of a target session’s data”.

This can be assessed by comparing systems’ performances at low and high levels of session-specific cali-
bration data QC . On the basis of those results in Figure 7.13 it can be seen that at levels of QC fewer
than 20 gestures (i.e. QC = {0, 4, 8}), systems were unable to perform with any greater accuracy than the
zero-calibration baseline modelled on prior subject-specific data. It should be noted that this is not intended
to assert the threshold of 20 target-session gestures to be universally applicable. Rather it is posited that
such a quantity of session-specific data which enables systems to surpass a zero-calibration baseline exists,
and that of those quantities trialled here this appears to be no fewer than 20 for this dataset. Where systems
were provided with the maximum amount of calibration data however (132 gestures, or 33 of each class),
they all comfortably outperformed the baseline’s accuracy. There appears remarkably little variation between
their scores other than the “Transfer from Generalist” being weaker than the rest, suggesting that in cases
where such a level of calibration data is deemed acceptable by a designer or user, the approaches are equiv-
alently performant and could be selected on the basis of their other properties such as computational and
data requirements.

The first aspect of this can be verified with a many-to-one test. At low levels of QC a session-targeted
approach would only be of particular interest if it can outperform a zero-calibration system; if they reached
the same accuracy, the simpler pre-trained model would be preferable. The null hypothesis of this test is
that: “there will be no difference in mean classification accuracy between the proposed calibration systems with
access to 8 or fewer target-session gestures and the uncalibrated system modelled on out-of-session data”11,
or more formally:

H0 : µzero−calibration − µcalibrated (QC≤8) = 0. (7.1)

11The discrete values of QC trialled, as per 7.2.2, mean that an observation on the basis of “fewer than 20” gestures can only
confidently be stated to apply at “8 or fewer”; QC = 19, for example, was not assessed.
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The candidate approaches’ classification accuracies with regard to the 5 Holdout Subjects are evaluated
for quantities of calibration data QC ≤ 8.

The impact of the choice of approach is then modelled in R, as a linear mixed effects model using the
lme4 package. The effects of variation in performance between subjects, and of the level of session-specific
data QC , are treated as blocks by modelling random intercepts for each.

Subsequently Dunnett’s multiple comparison procedure is used via the multcomp package’s glht function,
with the zero-calibration results as the control to which other systems are contrasted. From the results of
this test in Table 7.3 it can be seen that there was indeed no measurable difference when compared to the
model pre-trained on a Holdout subject’s prior data for all approaches but the wholly within-session strategy,
which was in fact significantly worse by some margin.

Linear Hypotheses Estimate Std Error z value p value
within_opt_prior – prior_pretrain -0.06072 0.05538 -1.097 0.568
within_session – prior_pretrain -0.20542 0.05538 -3.709 <0.001
xfer_gen – prior_pretrain 0.00043 0.04203 0.010 1.000
xfer_prior – prior_pretrain 0.01215 0.04203 0.251 0.995

Table 7.3: Dunnett all-vs-one contrast of Holdout Set performance of calibration systems with 8 or fewer session-specific
gestures against zero-calibration baseline

The second aspect, regarding system’s performance with high levels of calibration data, is more interest-
ingly assessed with a pairwise test, in that if such systems do exceed an uncalibrated baseline it would be
valuable to identify whether any one approach makes better use of this calibration data than another — or
if, as the Development Set results appear to indicate, they are largely equivalent. Here the null hypothesis is
thus that: “There will be no differences in mean classification accuracy among the proposed calibration systems
with access to 132 target-session gestures nor the uncalibrated system modelled on out-of-session data”.

Again, a linear mixed-effects model was used to model effect of the system’s approach on classification
accuracy while accounting for variation between Holdout subjects as blocks. As here all the approaches were
tested at only a single level of calibration data (QC = 132), and the zero-calibration is inherently not a
function of QC , this was not a necessary factor to model as a random effect.

Unlike some pairwise post-hoc tests performed previously in the work, wherein the homogeneity of vari-
ances between groups being observably violated motivated the use of Dunnett’s T3 pairwise test (as one of
few multiple comparison procedures capable of controlling Type I errors when usual assumptions are vio-
lated [366]), here there is no reason to anticipate a lack of homoscedasticity between the approaches. Tukey’s
test, as the more common method, is thus used — again via multcomp’s glht.

Table 7.4 presents the results of this comparison. While it is clearly found that the model transfer from
prior user data approach and both variations of the within-session learning strategy significantly outperform
the uncalibrated baseline, this was not the case for the model transfer system which adapted from other-
subject data (p = 0.12). There is nevertheless a clearly observable difference between this strategy’s mean
Holdout performance and the baseline. It may be that the effect size here is simply insufficient to be of
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Linear Hypotheses Estimate Std Error z value p value
within_opt_prior – prior_pretrain 0.13182 0.04159 3.169 0.0132
within_session – prior_pretrain 0.13333 0.04159 3.206 0.0118
xfer_gen – prior_pretrain 0.09924 0.04159 2.386 0.1191
xfer_prior – prior_pretrain 0.13939 0.04159 3.351 0.0072
within_session – within_opt_prior 0.00152 0.04159 0.036 1.0000
xfer_gen – within_opt_prior -0.03258 0.04159 -0.783 0.9356
xfer_prior – within_opt_prior 0.00758 0.04159 0.182 0.9998
xfer_gen – within_session -0.03409 0.04159 -0.820 0.9247
xfer_prior – within_session 0.00606 0.04159 0.146 0.9999
xfer_prior – xfer_gen 0.04015 0.04159 0.965 0.8707

Table 7.4: Tukey pairwise comparison of mean Holdout Set performance of calibration systems with 132 session-specific
gestures and zero-calibration baseline

statistical significance, particularly given the low sample size of the Holdout dataset. If there is a high degree
of variance between so few subjects, as indeed Figures 5.10 & 5.11 and the related discussion in 5.5.2.3 would
suggest, this would lead to a lower likelihood of significant effects being found than if that same variance
applied over a larger dataset. Visualising the pairwise comparison as in Figure 7.14 further demonstrates
the strength of evidence that this effect may in fact be present, and that further tests with larger sample
sizes may find it significant, or demonstrate it more conclusively to not be genuine — again highlighting
the need for greater quantities of multimodal same-limb gesture performance data by the biosignal research
community.

Figure 7.14: 95% Confidence Intervals of differences in means between systems at maximum level of session-specific
calibration (QC = 132), estimated by Tukey pairwise contrast

Notwithstanding this, it should also be noted that the pairwise comparison did indeed find no significant
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differences among the various calibration systems12, seemingly verifying this phenomenon observed from
Development Set data. As mentioned, it is acknowledged that the small size of the Holdout Set here is
likely to reduce the statistical power of these tests & thus make small differences difficult to distinguish,
leaving open the possibility that effects were present but simply not identifiable with this test. The estimates
differences in means between the systems however can be observed from Table 7.14 to be very low, below
even their Standard Error; it is thus not likely that there were any meaningful differences to be found. The
supposition thus holds that these approaches can, when provided with such a high level of target-session data
for calibration, be considered of broadly equivalent classification ability over further target-session data.

Additionally by demonstrating these systems to have been no more accurate than the baseline when
provided only 20 or fewer calibration gestures, but to have exceeded it when provided the maximum available
quantity of 132 QC (with the single aforementioned exception), the broader finding that these systems’
predictive power is greater with more session-specific data than with less is verified.

7.4.3.2 Systems without prior user data

Among these candidate systems, two approaches (and one baseline) make use of no subject-specific biosignal
data other than that collected in the target session. Here by investigating these we seek to address Aim
7.2: to “Explore strategies for session-specific gesture classification which do not require prior collection of
subject-specific biosignal data”.

The first observation noted regarding such systems’ performances on Development Set data was stated
informally as a finding that “With only a small amount of calibration data, they will not surpass an uncalibrated
Generalist system”, though noting the significant caveats to the proxy measurement of Generalist performance
on the Development Set outlined in 7.3.1.2. Figure 7.13 reveals that the level of target-session QC below or
equal to which neither the wholly within-session strategy nor the model adaptation from other subject’s data
approach notably exceeded the proxy estimate of the Generalist was again 20 gestures, thus leading to the
formalised null hypothesis:

H0 : µsubject−independent − µno prior user data (QC≤20) = 0. (7.2)

As with 7.4.3.1 it should be stressed here that this specific value is not claimed to be a universal threshold,
merely that which appears relevant to the particular dataset upon which these experiments are conducted.

In a similar fashion to the previous tests against the subject-specific out-of-session baseline, a Dunnett
contrast can provide a suitable many-to-one test between the two “calibration” systems with no access to prior
data collected from a user, and the Generalist which has access to no user data at all. As 7.3.1.2 describes,
in the context of the Holdout Set a Generalist system is fully subject-independent and thus can be fairly
compared here. Again the effect of a system’s choice of approach on its performance is modelled with a linear
mixed effects model, and variation between Holdout subjects and different quantities of calibration data QC

accounted for as blocks in the manner previously described.
12Interestingly including the Model Transfer from Generalist, though there is a greater measured difference in mean accuracy

between it and others.
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Hypothesis Estimate Std Error z value p value
within_session – generalist_proxy -0.21112 0.06008 -3.514 0.0008

xfer_gen – generalist_proxy -0.06357 0.05259 -1.209 0.3083

Table 7.5: Dunnett contrast of mean Holdout Set performance of strategies without prior subject-specific data with
access to 20 or fewer session-specific gestures against baseline Generalist system

The results of this test in Table 7.5 verify that neither strategy outperformed the Generalist at such
levels of calibration data, and indeed that the wholly within-session approach was statistically weaker. It
is notable that the “Transfer from Generalist” approach was competitive with the Generalist itself, given
that the former draws on a much reduced total quantity of other-subject data. While this corroborates the
findings presented in 6.5.2.4 (that systems with only few subject-specific data were unable to tailor a model
developed on other-subject data with it to be any more accurate than an unadapted Generalist), the lack
of significant performance differences here is particularly interesting in light of the systems’ vastly different
data requirements. It suggests that equivalent levels of accuracy can be attained either by more extensive
gathering of initial biosignal data from a range of individuals before a system’s deployment, or by collection
of far less other-subject data and the incorporation of a per-session calibration routine. The relative costs
and benefits of these two undertakings will no doubt differ according to the intended use-case of a system and
the priorities of its users and developers but is evidently a factor to be considered, and certainly motivates
further research into the degree to which session-specific calibration can enable a reduction in upfront data
requirement and vice-versa and the extent to which this relationship generalises across datasets.

The second observation specific to these systems, that “with sufficient calibration, performance surpassing
that of an uncalibrated subject-independent system can be achieved ”, identified no singular superior system
and so is again most aptly investigated with an all-vs-all test.

Here the approaches’ classification accuracies when applied to Holdout data at all levels of Session 3 QC

defined in 7.2.2 greater than 20 are evaluated. The effects of variation between Holdout subjects and between
different levels of QC are again modelled as random effects. As in 7.4.3.1 pairwise testing is again performed
with Tukey’s method, the results of which can be seen in Table 7.6.

Hypothesis Estimate Std Error z value p value
within_session – generalist_proxy 0.028281 0.036697 0.771 0.711

xfer_gen – generalist_proxy 0.027397 0.036697 0.747 0.726
xfer_gen – within_session -0.000884 0.018303 -0.048 0.999

Table 7.6: Tukey pairwise comparison of mean Holdout Set performance between within-session learning and model
transfer from other-subject data systems each with access to more than 20 target-session gestures, and with baseline
uncalibrated Generalist system.

Somewhat surprisingly neither of the calibrated systems here significantly outperform one with access to
no subject-specific data, though in both there appears to be a small measured superiority over the latter, to
a similar degree for each. The aforementioned variance in the ease of classifying Holdout subjects’ data may
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explain this in part, if it is indeed leading to effect sizes too small to be of significance at the α = 0.05 level
with so few samples to average over. It may also be pertinent to recall that, in Chapter 5, Generalist systems
were found to perform slightly more accurately with Holdout subjects than they were with Development,
and Bespoke systems the opposite. It is not implausible that, through random chance, there is lower within-
subject similarity in the data of Holdout subjects than in that of Development. That is to say that, through
either a groupwise trend or the strong influence of individual members, a random sample of a Holdout
subjects’ biosignal data is on average less predictive over a reserved third of their Session 3 data than is the
case for Development subjects. If so, the benefit to a calibrated system of receiving increasing amounts of
target-session data would be dampened for Holdout subjects by comparison to Development; there would be
less gained from such specificity. Such a greater intra-subject inconsistency could also make Holdout subjects’
systems on average more heavily influenced by the random downsampling of Session 3 data to a given level
of QC , and have potential to exacerbate the variance between subjects.

Certainly further research with a wider number of subjects would be needed to investigate these possi-
bilities in depth. The clear superiority seen among the Development Set of approaches without prior user
data but which can access session-specific data over the Generalist which cannot, and the presence of a small
measurable effect of a similar nature in held-out subjects’ data, evidences the possibility that session-specific
calibration could be of assistance in enabling gesture recognition systems which do not rely on individualised
tailoring to each novel user prior to deployment. The scope for increased convenience and ease-of-access
resulting from such properties of a system clearly motivate their continued exploration in future studies on
the basis of the potential viability shown in this work.

7.4.3.3 Systems with access to prior subject-specific data

Having considered those approaches which forgo advance subject-specific data collection, it naturally follows
to review those which do have access to such data. The two candidate approaches of this kind make use of
subjects’ out-of-session data in distinctly different ways — in one case solely for determining the appropriate
system configuration & feature ensemble for a session-specific model, and in the other as an initial stage of
training of the final model itself — it would be useful to establish if either technique is the superior option.

From the exploratory Development Set results, it was as observed above that while the two strategies were
similarly performant when provided with high quantities of target-session data, the Model Transfer approach
provided greater classification accuracy at lower levels of QC , thought to be a result of the session-specific
model having insufficient training data to avoid overfitting.

Through comparing these system’s performances on the Holdout Set, the two aspects of this finding can be
verified. Reviewing firstly their performances where smaller amounts of Session 3 data QC are available, Figure
7.13 indicates the two approaches’ mean classification accuracies over Development Subjects to converge at
QC = 60. Of course, as previously discussed this value will not necessarily be a universal one, as datasets
of different subjects whose recorded biosignals have different properties may exhibit different responses to
increased levels of calibration. Nor, it should be noted, is this threshold claimed to have been found with
absolute certainty even for this dataset. Modelling QC as a continuous variable would have inflated the
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computational load of these experiments to an impractical degree, and while the range of discrete values
trialled for QC (as presented in 7.2.2) are expected to give sufficient coverage to broadly understand its
impact, their precision when taken as a scale will for most cases13 only give an indication to within ± 20
gestures; the performance of a system with one more or one fewer gesture per class, i.e. 56 or 64 gestures
total, was not assessed. Nevertheless, to assess such a finding the “lower” and “higher” quantities of calibration
data must be demarcated in some way, and the Development Set results provide the only suitable grounds
upon which to do so while preserving the integrity of the test. To make such a determination instead on the
basis of reviewing any visible trends in systems’ Holdout Set performance would undermine the validity14.

Thus, the accuracies of these systems with the five Holdout Subjects were computed for all cases where
40 or fewer session-specific gestures were made available. Similar to previous tests, the relationship between
system choice and accuracy achieved was modelled as a linear mixed-effects model, accounting for both
subject and calibration data quantity QC as blocks. The null hypothesis for this test is that “Where each
has access to 40 or fewer target-session gestures of a given subject, there will be no difference in accuracy
between a system using those data to adapt a model trained on data previously collected from that subject,
and one which uses the data to train a model of a configuration determined by previously-collected data”, or:

H0 : µmodel transfer (QC≤40) − µported−config session−specific (QC≤40) = 0. (7.3)

Although here there is only one pair of systems to be compared, for practical convenience this was again
tested with Tukey’s Honestly Significant Difference pairwise method; for two groups this will be essentially
equivalent to a conventional t-test of the single hypothesis.

Hypothesis Estimate Std Error z value p value
within_opt_prior – xfer_prior -0.02386 0.01954 -1.221 0.222

Table 7.7: Tukey pairwise comparison of mean Holdout Set performance between the two candidate systems with
access to prior subject-specific data at levels of QC ≤ 40. (NB for a single pair this is functionally equivalent to testing
as one linear hypothesis, but is performed here with Tukey’s method for consistency in format of results.)

Table 7.7 shows that surprisingly there was no significant difference in these systems’ performances,
and while the Model Transfer approach’s mean accuracy was observably greater than that of the ported-
configuration within-subject strategy this was only by a very small margin. This indicates that, contrary
to the apparent performance differences seen with Development Set data, here the use of Holdout Subject’s
Session 1 & 2 data for “cold” training of models was of no meaningful benefit; this approach was not able
to compensate for the potential overfit of systems trained only on session-specific data. Again, this could
potentially be explained by a difference in the within-subject informativity of Holdout subjects’ data and
Development subjects’; the Holdout Set may be only marginally benefitted by learning from out-of-session
data. It may be that such data was sufficiently dissimilar that the “cold”-trained models were in greater
need of extensive adaptation than was able to be carried out with the low quantities of target-session data

13Notwithstanding the nonlinear spacing of a few QC values
14See also 6.5.2.2 and other parts of 6.5.2 wherein candidate systems were similarly selected according to Development Set

results, regardless of their performance on Holdout Subjects.
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QC without high risk of overfit. It also bears mentioning that at increasingly low levels of calibration data,
the Development Set results of Figure 7.13 & Table 7.2 indicate an uncalibrated pre-trained model as being
an increasingly attractive option where a subjects’ prior data is accessible, over either of the approaches
considered here. Among Development Subjects the “model transfer from prior data” strategy drops below
baseline performance where QC ≤ 8 and the “within-session using ported configuration” where QC ≤ 20;
though these specific thresholds are unlikely universal, it may be that in some cases the two systems’ accuracies
are only separable at such low levels that they area both outclassed anyway.

Subsequently these systems’ performances at 60 or more target-session gestures were assessed by the same
process; the null hypothesis itself being not dissimilar to (7.3):

H0 : µmodel transfer (QC≥60) − µsession−specific with ported config (QC≥60) = 0. (7.4)

Hypothesis Estimate Std Error z value p value
within_opt_prior – xfer_prior -0.0001263 0.00063428 -0.02 0.984

Table 7.8: Tukey pairwise comparison of mean Holdout Set performance between the two candidate systems with
access to prior subject-specific data at levels of QC > 60. (NB for a single pair this is functionally equivalent to testing
as one linear hypothesis, but is performed here with Tukey’s method for consistency in format of results.)

The results of this test as seen in Table 7.8 demonstrate that as had been observed with Development Set
data, these systems do indeed offer equivalent classification accuracy when provided with sufficient quantities
of calibration data QC . While in the case of Development Set results this was a convergence and here with
regard to the Holdout Set it is a continuation of the system’s comparable performances, it can nonetheless
be concluded that they are equivalently suitable on the basis of target-session accuracy. A potential choice
between the approaches could thus be made according to other considerations without adversely affecting
performance. While both are similar in that they do indeed rely on some form of per-session calibration,
and on obtaining subject-specific data on multiple occasions before a system can be used, the session-specific
strategy wherein that prior data is used only for Feature Selection and CASH optimisation allows for such
in-advance data collection sessions to be shorter in duration, and may well be viewed as preferable for this
reason.
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7.4.3.4 The merits of collecting subject-specific data for session-specific transfer learning

The final key observation made regarding the candidate approaches concerned the two Model Transfer ap-
proaches. These differ by the source of the data upon which they carry out the initial stages of the learning
process — in one this is performed using data collected from the subject-under-test, and in the other using
data from a number of unrelated individuals. From the Development Set results it appeared that subject-
specific data was of greater benefit here. The merits of each approach on a practical basis in terms of their
application in a deployed system, and the extent to which a given expected improvement in classification
accuracy justifies the potential cost of one approach over the other, are subjective design decisions which
cannot be answered here. Nonetheless it is of note that the approach using subject-specific data as the
source domain for its transfer learning outperformed that which drew on other subjects’ data by a clear and
remarkably consistent degree. This was not unexpected considering it was in line with Chapter 6’s findings
that there was much less to be gained from inclusion of other-subject data by comparison to incorporation
of additional subject-specific data, but warrants verifying here with the Holdout Dataset.

It should be noted that 7.4.3.1 already hypothesised, and indeed confirmed, that at very low levels of
calibration data (QC < 20) these two systems could not outperform a baseline trained on out-of-session
data. Similarly, 7.4.3.2 found the “Model Transfer from Generalist” approach to be no more accurate than
a true subject-independent Generalist when only such small quantities of calibration data were available.
In either of these systems’ use-cases therefore — that where subject-specific data has been collected and
that where other-subject data has been — there is no merit to performing target-session calibration if fewer
than 20 gestures are available for this purpose; an uncalibrated system, which will inherently be of greater
convenience, can perform just as well. Therefore these approaches were compared only on the basis of their
performance at quantities of QC ≥ 20, as their classification abilities below this level are irrelevant.

The previously described linear mixed-effects model, blocking for the impact of the subject and the
quantity of target-session data QC by modelling random intercepts, was used to assess the effect of the choice
of approach on system accuracy. As in 7.4.3.3, for convenience the single null hypothesis:

H0 : µtransfer from user (QC≥20) − µtransfer from others (QC≥20) = 0 (7.5)

was tested with Tukey’s post-hoc method of multiple comparisons.

Hypothesis Estimate Std Error z value p value
xfer_gen – xfer_prior -0.01705 0.01480 -1.152 0.249

Table 7.9: Tukey pairwise comparison of mean Holdout Set performance between the two candidate systems which
perform model transfer from different sources at QC ≥ 20. (NB for a single pair this is functionally equivalent to
testing as one linear hypothesis, but is performed here with Tukey’s method for consistency in format of results.)

As seen in Table 7.9, the expected consistent advantage of using subject-specific data as the basis for the
model transfer was not found to be significant here & this finding could not be verified. While there was
a groupwise difference in means observed this was much smaller than appeared typical of the Development
Set results in Figure 7.13. It is again anticipated that this could partially be ascribed to a relatively low
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informativity of Holdout Subjects’ out-of-session biosignal data over their Session 3 data. If this is the case for
at least some of the held-out subjects, it would plausibly diminish the extent to which their own Session 1 &
2 data is of greater benefit than that of other subjects, weakening the predictive power of the “Transfer from
prior data” approach. That there was at least some measurable difference between the systems’ performances
in both Development and Holdout sets, and that there appears a possible explanation for this effect being
so diminished among Holdout subjects, evidences the merit further investigation in future work with a less
limited sample size.

It is again apparent that the scarcity of public multimodal EMG/EEG datasets, particularly of same-limb
gesture performances and for multiple-session data, is a significant limitation on the capacity of research in
this area. It takes little imagination to conclude such challenges to be a motivating factor in the limited
statistical validity of many works in the domain. While the dataset published by Jeong et al. [198] is by
no means intended as a target of criticism here, there is no doubt that future research which can provide
datasets of a similar nature larger in scope, or even approaching the scale and depth of the kind of gold-
standard datasets which exist for unimodal biosignal research such as the NinaPro EMG datasets [195] or
the “BCI competition” EEG datasets [194] will be of great benefit to the field.
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7.4.3.5 Further evaluation of Holdout performance

A recurring trend among these tests was that a number observations made on the Development Set data failed
to generalise to the Holdout Set, or only presented as weak trends which were not statistically significant.
It appears that when systems were trialled with the Holdout data there were ultimately far fewer significant
differences between the accuracies they reached than was expected. One hypothesised contributing factor for
this was a greater variation, on average, of Holdouts Subjects’ data on a within-subject basis. That is, that
the informativity over a random reserved 33% of an individual’s Session 3 data of any given other portion of
their data, whether taken from the same session or a previous, was lower on average for the Holdout Subjects
than it was the Development. The apparent effect of this, if it was indeed the case, being both that increased
quantities of calibration data were of a diminished benefit, and that reliance upon out-of-session data was
likewise less useful.

To explore this, and to further review Holdout performance on the whole, mean classification accuracies
over the five Holdout subjects of all the candidate systems at all applicable quantities of target-session data
QC are presented in Figure 7.15 & Table 7.10.

Figure 7.15: Performance of candidate systems on Holdout subjects
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Qc Within-Session Transfer from Transfer from Within-Session
user data Generalist (Ported config)

Mean Std Mean Std Mean Std Mean Std
0 - - 0.7068 0.0527 0.6818 0.0495 - -
4 - - 0.6076 0.1942 0.5985 0.1500 - -
8 0.4530 0.1306 0.6652 0.1194 0.6689 0.1027 0.5977 0.0801
20 0.5091 0.1198 0.7174 0.0700 0.7197 0.0469 0.6902 0.0638
40 0.7273 0.1468 0.7561 0.0827 0.7614 0.0446 0.7356 0.0631
60 0.7182 0.0949 0.7682 0.0978 0.7636 0.0586 0.7841 0.0603
72 0.7280 0.0970 0.7864 0.0765 0.7773 0.0741 0.7886 0.0655
80 0.8159 0.0652 0.7939 0.0570 0.7705 0.0733 0.7977 0.0628
100 0.7500 0.1248 0.8023 0.0649 0.7727 0.0687 0.8023 0.0626
120 0.8227 0.0857 0.8167 0.0615 0.7795 0.0734 0.8015 0.0681
132 0.8121 0.0785 0.8182 0.0631 0.7780 0.0806 0.8106 0.0754

Table 7.10: Means and Standard Deviations in Holdout Set classification accuracies of candidate systems at differing
levels of calibration data QC .
Generalist Baseline: Mean Accuracy = 0.7462, Std. Dev = 0.0640
Out-of-session Baseline: Mean Accuracy = 0.6788, Std. Dev = 0.0669

For transparency, it must be acknowledged here that these results were obtained before the statistical tests
outlined above were performed; these means are calculated from the exact same subject-wise classification
accuracies which were assessed in those tests. The decision to refrain from presenting them in this format
until after those discussions was to ensure it was clear to the reader that design and construction of the
tests, and formulation of their hypotheses, was done solely on the basis of Development Set data — not with
any advance knowledge of Holdout Set performance. It also reflects the author’s own experience, in that in
striving to minimise the risk of inadvertently biasing any tests these data went genuinely unseen, and the
mean results over holdout subjects not visualised in a comparative plot like that of Figure 7.15, until after the
tests had been carried out. As has been discussed throughout the work, that many biosignal studies [30,192]
(and indeed much Machine Learning research across domains [186, 191]) are undermined by weak statistical
practices and unrecognised data leakage, meant careful and transparent handling of data was considered
paramount in this work and is a significant strength of it over many in the field.

By comparison of Figures 7.15 and 7.13 it can be immediately seen that systems’ accuracies when tri-
alled with Holdout subjects trended lower than those of Development Set experiments. Most strikingly, the
zero-calibration baseline trained on out-of-session data was notably weaker for Holdout subjects than for
Development, not even reaching a mean classification accuracy of 70%. This gives credence to the notion
that Holdout subjects’ data, on average, were more heterogeneous on a within-subject basis than that of
Development subjects. The average predictive power of their Sessions 1 & 2 data over that of their 3rd
session was evidently lower, though as discussed above further investigation would be needed to ascertain
whether this is due to a group-wide trend or the presence of outlier subjects.

This, as hypothesised in 7.4.3.4 above, seems to have a knock-on effect on the accuracy of the other
approach which uses out-of-session data for training. Where in Development Set experiments the “Model
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Transfer from prior data” strategy consistently outperformed the “Model Transfer from Generalist”, here it
has no such advantage unless provided with significant quantities of calibration data. In cases where fewer
than 80 target-session gestures were provided, data previously collected from a Holdout subject proved no
better a basis for model transfer than data belonging to other subjects entirely. It may be noted that the mean
accuracy of an unadapted Generalist was higher for Holdout subjects than for Development — though as
discussed in 7.3.1.2 this is unlikely to be a true representation of a subject-independent system’s performance
for the latter — but this is only by a small margin. Certainly it could be that this equivalence of the two
Model Transfer variants at low quantities of QC is influenced not only by Holdout subjects’ prior data being
of less benefit, but of them benefiting more from other-subject data than Development subjects did (perhaps
as suggested in 5.5.2 due to Holdout subjects having a wider range of “other-subjects” from which to draw).
However this is unlikely to account for the full extent of the performance difference of the “Transfer from prior
data” system between Holdout and Development subjects, given that the out-of-session baseline’s reduced
accuracy for the Holdout Set already evidences a lesser within-subject consistency for Holdout subjects.

Such heterogeneity within Holdout subjects’ data may also explain the non-monotonic nature of the mean
within-session Holdout Set performance. Assuming a sample of data (QC) of a given subject’s 3rd recording
session is likely to share properties with other data taken from that same session (the 33% reserved for
testing), one would expect this approach’s accuracy to be an increasing function with respect to QC , or at
least to not present such sharp decreases as are visible in Figure 7.15. If however the extent of this similarity
is highly inconsistent among datapoints, the downsampling of the target-session data to QC could introduce
a signficant random component — if not all the available data is of broadly equal informativity, then an
increased quantity of data will not necessarily mean an increased quantity of useful data, as this will be in
part defined by the random chance of the informative data being found among the sample. Of course a larger
size for QC will (assuming an unbiased downsampling process) increase the likelihood of informative data
being captured within it, hence there still being a clear positive correlation between QC and accuracy for this
system, but the random noise introduced may account for the coarseness of that relationship.

Despite this the Holdout results here do overall present some broadly similar trends to those seen with
the Development Set. Systems have a similar rate of improvement in accuracy in response to increasing levels
of calibration data and, though at a much higher threshold of QC , do demonstrate an ability to outperform
a pretrained model when provided sufficient target-session data (albeit not statistically significant at the
α = 0.05 level in all cases, as per 7.4.3.1 & 7.4.3.2). All the candidate approaches — except the “Transfer
from Generalist” which reaches a lower peak accuracy — appear to begin saturating at a similar classification
accuracy to one another, including those session-specific strategies which are notably less performant due to
overfit at low quantities of QC .
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7.4.4 Conclusions

These experimental results clearly demonstrate the potential viability of a number of strategies for classifying
same-hand gestures from EMG & EEG data of a specific recording session. While session-independent, zero-
calibration approaches showed strengths they were outclassed by ones which were targeted in some way on the
session-under-test. Wholly session-specific systems however were undermined by reductions in the quantity
of available target-session biosignal data, and thus may be less suited to use-cases where minimisation of the
burden placed on a user by per-session calibration is desirable. More robust were strategies which drew on both
session-specific calibration data and biosignal data collected from other sources. Exploratory experimental
results showed evidence that incorporation of cross-session subject-specific data may be more successful in
enabling a reduced calibration need than a similar use of other-subject biosignal data, though the signficance
of this could not be confirmed with the limited amount of multimodal, multi-session, same-limb biosignal
data available for use in the work.

That such use of data from other individuals was nevertheless capable of measurably benefiting minimally-
calibrated systems has particularly interesting implications when considering that this approach could, in a
“real-world” system, require much less (if any) user-specific setup prior to deployment than many of the
competing strategies attempted here. Their viability demonstrated, the resultant potential improvements in
affordability and ease-of-access of such systems over the conventional bespoke nature of many systems in the
field clearly motivate their continued exploration in future research. Particularly, the extent to which such
subject-independent systems can be improved through per-session calibration by a novel user could not be
verifiably measured here and will naturally be of great interest to subsequent work.

This latter question was one of a number which the tests in 7.4.3 were unable to confirm with confidence;
trends were measurable both in initial experimental results and when using wholly unseen data, but were
not found to statistically significant when measured over the five subjects held out from the dataset during
exploratory investigation. As highlighted in discussion throughout the chapter, this does not undermine the
findings of this research but is in fact evidence of the work’s strength. Large portions of the literature on EMG
& EEG gesture classification are susceptible to the flaws of much current Machine Learning research: poor
experimental design, lack or insufficiency of statistical tests, unjustified modelling choices in which bias or
“cherry-picking” cannot confidently be ruled out, and more lead many studies to unreproducible claims of the
superiority of certain models over others which are not genuinely supported by their results [30,31]. Whilst this
work certainly does not claim to be wholly free of such faults — it is unlikely that any research ever truly could
— approaching the problem with sound, unbiased experimental, statistical, and data handling practices, and
transparency over them, has been a consistent and deliberate focus throughout. Thus while acknowledging
that certain findings were unverifiable here — there is no intention to claim or imply significance where it
was not found — these results highlight a number of areas as clearly worthy of further detailed investigation,
particularly when larger multimodal datasets similar to that of Jeong et al. [198] are available.

The limitations of available biosignal datasets also restrict the extent to which the calibration strategies
explored here, or in prior works, can be assessed. As discussed in 7.1, a number of both short and long
term factors can lead to inter-session data drift. While multi-session datasets are limited to the order of
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a few weeks as in the case of that collected by Jeong et al. [198], only some of these — such as sensor
positioning, environmental conditions, and minor changes in the subjects’ physiology or fatigue levels —
can be reasonably expected to vary between data collection sessions. Other potential contributors like the
effects of ageing [365], muscle build-up or atrophy, and pertinent to prosthesis contexts the natural cortical
re-mapping which can take place following amputation [99], could only be captured by longitudinal studies,
and thus the capability of the proposed calibration strategies to handle such concerns would require further
investigation to assess. This is a limitation of many works in the field; in many cases data were recorded on
consecutive days [113,364], or a similar order of weeks to the data used in this work [175]. Seeland et al. [295],
who notably found that sufficient out-of-session data could alleviate the need for calibration, and Krauledat
et al. [362] who similarly found significant quantities of historical data to aid session-to-session transfer,
unfortunately do not characterise the time differential between sessions. It is thus hard to ascertain whether
their approaches, grounded respectively in self-supervised model retraining and computation of CSP filters
usable across sessions, could be more or less suited to long-term use than this chapter’s proposed strategies of
using out-of-session data to augment datasets, train models for adaptation, or determine suitable modelling
choices via CASH optimisation. It is clear that the creation of longitudinal biosignal datasets is vital for the
advancement of cross-session transfer learning techniques to establish the confidence with which they can be
employed in real-world prosthesis systems.

7.4.4.1 Implications: On the trade-offs in time, burden, and accuracy

As a final note, it would be pertinent to consider further the “real-world” implications of the calibration
discussed extensively throughout this chapter.

Aim 7.4 outlined the intention to “Identify suitable approaches for session-specific gesture classification
with access to different quantities of target-session biosignal data”. This research does not claim to have
found a singular universally superior strategy for using such data. While there are differences in performance
among the candidate approaches, as discussed throughout 7.4.3 these differences are often marginal and were
not all found to be statistically significant at the α = 0.05 level, and thus may not be of great relevance. The
comprehensive analysis of the results however paves the way for future researchers and system developers to
consider the trade-offs between data requirements and achievable accuracy not only between, but also within
systems — and to compare systems on the appeal of their various best-suited use-cases.

The candidate systems vary not only in the data required for their “initial” setup, but also in their response
to alterations in the quantity of available calibration data. Consider the scenario presented in Figure 7.16.
Here we imagine that a user or developer of a system wishes to reduce the per-session calibration burden
by five minutes15, and judges a resultant reduction in classification accuracy of no more than 2.5% to be
acceptable. Figures 7.16b and 7.16c demonstrate that these criteria could not both be met, and present
two possible outcomes dependent on which criterion is prioritised. The reader will note that these trade-
offs are considered on the basis of the “Model Transfer from prior subject-specific data” approach, as the

15For simplicity factors other than the recording of labelled calibration data which, as discussed above in 7.4.2, may also
contribute to the total required calibration time are not considered for the purposes of this illustrative discussion, but should
not be disregarded as unimportant.
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strategy found most performant at reduced levels of calibration data QC . Should a system be designed for
an alternative use-case such as to avoid the need for advance data collection from the subject who will use
it, its response to a scarcity of calibration data will be different, and hence so will the achievable reduction
in calibration time at a given level of acceptable loss; this itself is a property which a designer must take
into consideration. Of course no attempt is made to be prescriptive here — the example criteria given in
7.16a are purely illustrative, and would ultimately vary according to the priorities of the individual using a
deployed gesture-classification-based prosthesis system; Figure 7.17 illustrates examples of both stricter and
more forgiving criteria, which would each encourage the selection of different calibration strategies. Neither
are these response curves themselves claimed to be necessarily universal. Figure 7.15 demonstrates that even
within the context of the dataset used in this study, while both Development and Holdout subjects clearly
displayed similar trends in their systems’ responses to varying quantities of calibration data, they were not
exactly the same. While the Development Set results are presented here for illustrative purposes, but this is
naturally a property the developer of a system would need to characterise.

The ramifications of a change in the required calibration time of a system ought also to be stressed
here. It would be easy for a reduction of five minutes, as in Figure 7.16a, to instinctively seem academic.
Particularly to an able-bodied researcher, for whom the real-world application of a gesture recognition system
such as that in a prosthetic limb may feel distant, the impact of a system on the people who use it & their
quality of life can be difficult to fully consider. Indeed some research has even advocated against tailoring of
gesture recognition systems to users on the grounds that the users will themselves adapt their behaviour to
the algorithm [367]; such positions are certainly not highlighted here to suggest ableist beliefs on the part of
their authors in any way, but they can serve as a reminder of the risks of not duly considering the effect of a
system or device on its user.

One could choose to position systems’ required calibration times as relative to their expected usage. In
such a light, a five minute data collection procedure for calibration purposes could be framed as a near-trivial
price if it improved the accuracy of a system which went on to be used for a “session” lasting multiple hours.
The able-bodied reader is invited however to consider a comparison, albeit a highly imperfect parallel, to a
device they use on a regular basis for multiple hours at a time. Many, one imagines, would undoubtedly find
it difficult to accept a lengthy daily calibration process — if they could countenance any at all — for their
smartphone, laptop, or other devices used for work or leisure.

An accessibility tool, such as in this context a prosthesis, ought to be inobtrusive and any burden it
places on its user minimised — lest it risk becoming an access barrier unto itself, rather than a means of
their dismantling.
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(a) An example set of desired characteristics for a reduction in calibration time

(b) The resultant loss in achievable accuracy if calibration
time were so reduced

(c) The achievable reduction in calibration time while not
exceeding the defined acceptable loss in accuracy

Figure 7.16: Tradeoffs in accuracy and calibration data burden
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(a) A more stringent set of tradeoff criteria

(b) A more generous set of tradeoff criteria

Figure 7.17: Alternative tradeoff criteria
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Conclusion

8.1 Findings & Contributions

This work has demonstrated the viability of using multimodal fusion of electromyographic and electro-
encephalographic data in the classification of same-hand gestures.

Chapter 5 investigated the efficacy of three distinct fusion architectures: a “Feature-Level” early fusion, a
“Decision-Level” late fusion (including by stacked meta-models), and a novel “Hierarchical” approach which
incorporates principles of both early and late fusion strategies. The abilities of classification systems imple-
menting these architectures, each designed via Combined Algorithm Selection and Hyperparameter (CASH)
optimisation, to accurately predict gestures from biosignal data were compared against one another and
against “unimodal” classifiers modelled on only one data modality.

In a subject-specific classification scheme, wherein models were trained and tested on data belonging to
single individuals, the proposed Hierarchical fusion architecture reached a mean accuracy of 88.90% across 20
subjects, surpassing that of any other approach. Performance remained high, at a mean of 86.25% accuracy,
in validation of the CASH-optimised system by its training & testing on 5 unseen subjects whose data had
not contribute to the selection of machine learning algorithms nor tuning of hyperparameters. The value of
the CASH optimisation routine in determining the configuration of a biosignal classification system was also
demonstrated. The CASH-identified Hierarchical system offered significantly higher classification accuracy
(p = 0.0079) than the most suitable subject-specific EMG-EEG fusion design which could be gleaned solely
from surveying the literature.

A Leave-One-Subject-Out training scheme was used to implement subject-independent models. In this
setting all the proposed fusion architectures proved more accurate than equivalently-optimised unimodal sys-
tems. Subject-independent single-mode EEG models, while indeed outperformed by multimodal approaches,
reached mean classification accuracies of up to 51.92% over held-out subjects. As 5.5.7 discusses this exceeds
accuracies achieved in a number of previous works on multiclass EEG classification, despite many such works
using subject-specific models [75, 128, 198]. While some works such as [64] have reported higher subject-
independent accuracies (73%), this was for binary classification between movements of distinct body parts,
a less complex problem than the multi-class hand gesture discrimination attempted here.

The use of CASH optimisation in designing classification systems — the methodology’s first application in
the field — enabled these comparisons to be fair, affording competing systems equivalent resource with which
to establish suitable modelling choices, and unbiased by any cherry-picking or manual tuning of models,

218



M. Pritchard, PhD Thesis, Aston University, 2024 CHAPTER 8. CONCLUSION

thereby addressing an established weakness among literature on Brain-Computer-Interfaces [30]. Further,
the model configurations identified through this optimisation were validated through their application to
a “Holdout” dataset consisting of subjects withheld from all stages of development. A standard of rigour
rarely seen in the field [31], this ensured findings’ generalisability could be demonstrated & that reported
classification accuracies were not unduly inflated by data leakage.

Chapter 5’s ancillary investigations illuminated the suitability of various specific modelling decisions
in biosignal gesture classification. Detailed analysis of trends revealed by the CASH optimisation process
provided a firm evidential underpinning for trends often “taken as read” among biosignal literature, such
as the strength of the Linear Discriminant Analysis algorithm in classifying EEG data. Inspecting the
informativity of different statistical features extracted from EEG data found predictive power in Delta-band
activity in the ipsilateral motor cortex typically seen only with invasive measures such as electrocorticography.

Having demonstrated the viability of subject-independent classification, but found it routinely weaker
than the subject-specific paradigm, Chapter 6 then investigated strategies for cross-subject learning. Both
augmentation of a given subjects’ dataset with data of other individuals, and the use of transfer learning
to directly adapt a model trained on others’ data to the subject, demonstrated an ability to classify an
unseen portion of the subject’s data, with increasing accuracies as the quantity of subject-specific data was
increased. Neither of these strategies however offered peak accuracy significantly different from that of a
subject-specific system modelled on an equivalent level of the subject’s data. Though they did demonstrably
achieve greater accuracies where subject-specific data was scarce, these were not significantly greater than
those reached by a wholly subject-independent system. This implied future gesture classification systems to
be better served by subject-specific modelling where significant quantities of subject data are available, and
by subject-independent modelling where it is not; that calibration by the techniques explored here was not
of benefit.

Finally Chapter 7 approached the problem from a cross-session perspective, somewhat rare among research
but highly relevant to the context of prosthesis control. Given the importance of an accessibility device being
itself accessible, there is a strong motivation to minimise the burden placed upon users by session-specific
calibration. Here a number of potential approaches for such calibration were proposed and their ability to
accurately classify a subject’s gestures when provided varying levels of session-specific data explored. Zero-
calibration approaches were outperformed by those which utilised session-specific data in all but the most
extreme cases where sufficiently little calibration data were available that such adaptation caused models to
overfit. The use of either cross-subject data, or data collected from the same subject in previous sessions,
as the source domain for a transfer learning process were much more robust to reductions in the session-
specific data than models trained solely on said data. While performing such a domain transfer from a
subject’s own data proved capable of more accurate classification than doing so from others’ data, both
showed promising results. The latter’s viability is notable given its distinct use-case, and the savings in time,
cost, and convenience which could be made for a user by avoiding the need to collect biosignal data from
them in advance of a system’s deployment.
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8.2 Recommendations for future work

A natural extension of Chapter 7’s demonstration various per-session calibration strategies’ viability is their
trialling in experiments designed with an increased verisimilitude. Given the motivation of such approaches
to positively impact users’ experience of a system, there would be value in better relating offline experiments
to real-world BCI operation [193]. In particular, the calibration data available to a system would logically be
that collected earliest in its operation within a given session. In this work, calibration data were selected by a
stratified sample — on the basis of whole gestures so as to avoid temporal data leakage [191,192] — in varying
quantities. The properties of calibration data sampled at the beginning of a session ought not in principle
to differ notably from that taken from random points throughout it as in the offline tests conducted here,
but the randomness of this sampling may add some variability which would not be reflected in a real-world
system.

The potential effect of fatigue may also warrant consideration. While controlled for by inclusion of rest
periods in the dataset collected by Jeong et al. [198] used in this study, some works have induced fatigue
in participants [139] or simulated in processing their muscular data [146] and found it to impact the quality
of gesture classification. Drift between calibration data collected at the start of a session & fatigued data
collected after a system’s extensive use may impact the longevity of the calibration process’s impact; future
research intending to extend this work to better resemble real-world applications must not ignore this factor.

Assessing system’s real-time performance would also be of benefit in enabling the translation of this
research to prosthesis applications. Online classification accuracy is naturally the ideal test of this but work
such as [223] has been able to emulate real-time classification in offline testing. The sliding time-window
approach to feature extraction discussed in 4.3 essentially places a limit on the classification speed of a
system; the 1-second windows with 50% overlap used here would result in a maximum prediction rate of
two per second. While not a focus of this study, increasing the overlap between successive windows could
plausibly lead to more frequent predictions, provided the underlying feature extraction & classification were
sufficiently fast or parallelised [234]. This could be used to enable a “smoothing” of a prosthetic limb’s
actuation decisions: determining gesture intent as, for instance, a vote of 10 predictions each made 100
milliseconds apart (i.e. a 90% overlap between neighbouring windows) could plausibly mitigate the impact
of individual misclassifications.

Real-time classification could further enable the extension of the per-session calibration strategies pre-
sented in Chapter 7 to a continuous adaptation paradigm. As discussed in 7.3.3.3, some algorithms such
as the Gaussian Naïve Bayes classifier are suitable for incremental training; a mechanism could be imple-
mented for on-the-fly “correction” of a system’s predictions. In its simplest form this would involve a model
updating when manually prompted by a user, though more advanced methods could include leveraging the
EEG data for automatic detection of unexpected actuation as in [115], or retraining algorithms continually
throughout a system’s usage as in [175]. Such adaptation may even prove useful as a means of mitigating the
aforementioned potential effect of temporal drift between calibration & test data.
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The three types of grasp which defined this work’s gesture classes are among the movements noted by [28]
as most valuable to prosthesis users due to their frequent use in Activities of Daily Living. Though both
biosignal literature and commercial prostheses frequently define only generic “hand close” and “hand open”
gestures, the spherical, lateral, and cylindrical grasps are subtly but importantly distinct in their purposes
and not easily interchangeable. It would be difficult to justify, for example, offering only a whole-hand
cylindrical grasp and expecting it to meet a prosthesis user’s needs in more delicate tasks. By virtue of being
all right-hand movements they are not only more task-relevant but also fundamentally less distinct than the
gestures used in many studies. The same muscle groups generally act in each, controlled by the same region
of the motor cortex, thus making their classification a more difficult task than those of works wherein classes
correspond to different body parts such as the right and left hands, or more dissimilar same-limb gestures such
as the separation of wrist from elbow movements. The work could be extended however by also considering
such types of movement. One avenue for doing so would be simply integrating them into the suite of available
gestures, and attempting a wider multiclass problem. Perhaps more valuable, and better representative of a
“real-world” use case, would be to embed a recognition of the fact that everyday human gestures are not often
strictly delineated between individual movements of isolated body parts, but rather more combined. Consider
for example the motions involved in opening a locked door. One could break this down as: grasp the key,
rotate it, release the key, grasp the handle (with a different hand-shape than the key was held with), rotate it
while pushing the door, release the handle, perform the same in reverse — but these would typically be done
in a more fluid way. There might hence be merit in expanding a system not into a more complex multiclass
problem but into one of multi-label classification, identifying in parallel whether for example a change in
gesture state was required in the fingers and thumb, wrist, and even elbow1, at a given point in time. From
these movement components a prosthesis’ resultant robotic response could be either selected from among
pre-programmed multi-degree-of-freedom actuation routines, or even synthesised combinatorially. Having
demonstrated a number of systems’ viability for classifying similar same-limb gestures this work motivates
further research in such a direction, to lead towards more naturalistic control for gesture-recognition based
prostheses.

The acquisition and dissemination of more extensive multimodal biosignal datasets is paramount for
furthering research in the domain. The limited availability of multiple-session data constrains the continued
exploration of systems’ robustness to changes in sensor fit, environmental conditions, and any longer term
time-related data drift. Datasets of larger samples of participants are also necessary to ensure the quality and
generalisability of future research. In this work to ensure sufficient data were available for modelling, only
five subjects were reserved for the validation necessary to avoid the pitfalls of over-optimisation and data
leakage common to Brain-Computer-Interface research [31]. Such a small population of this held-out dataset
naturally limits the sensitivity of tests performed with it; 5.5.2.3 discussed the subject-wise variation in
systems’ classification accuracies, and as noted in 7.4.3 this may have affected the extent to which significant
effects could be identified.

1In the case of transhumeral amputees — though the absence of residual forearm muscles may affect the fidelity of systems
for this group.
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Wider population samples may also open lines of investigation into cross-subject learning which were
not viable here. As discussed in 6.3.1.1, some prior works have “screened” the data used to augment a
subject-specific system by identified individuals whose biosignal data were similarly distributed [182,184,337].
Requiring sight of novel users’ data to assess said similarity however precludes such a strategy from use in a
context which minimises pre-deployment setup such as a wholly subject-independent system or one applying
per-session calibration to a baseline “generalist” model as proposed in 7.3.3.4. While steps towards subject-
independence could be of clear benefit, with the potential to reduce access barriers to users in terms of time,
cost, and availability (given the lesser need for bespoke customisation of classifiers), it is no surprise that their
reduced specificity routinely leads to lower accuracies. They may well have the most to gain from pre-selecting
suitable data for augmentation but doing so with data-driven techniques evidently undermines their practical
benefits. However, with sufficient quantity and diversity of data from which to draw in cross-subject learning,
there may be alternative means of selection, such as by some measure of demographic similarity. Aging, for
instance, is known not only to affect individuals’ musculature physically, but also to modify the nature of the
motor unit recruitment (see 2.1.1) involved in their movement [365]. Some work has similarly found differences
in bioelectric signal properties between different genders [368]. Trends of this nature are of course relevant
largely at the population-level, and are limited in nuance — for example, as is unfortunately the case in many
fields the biosignal literature on gender-related differences rarely considers those whose gender does not fall
under the binary categories of “male” and “female”, nor the experience of binary transgender individuals who
may or may not have received gender-affirming care2. Nevertheless, broad demographic trends could be used
to provide some degree of tailoring — it is plausible for example that a child may see greater success in using a
gesture classification system trained wholly or partially on data of other young people than of those advanced
in age, and vice versa. Under a wholly subject-independent mode of deployment, one could then envisage a
user being able to select an appropriate system from a range pre-trained on different age groups. Given the
high variance between individuals however, proper investigation of such effects, let alone the development
of “tailored” pre-trained systems, would require datasets of vastly higher participants numbers. Indeed this
applies also to unimodal datasets — while some established public datasets such as various NinaPro EMG
sets have up to 77 participants (including one dataset of over 10 upper-limb amputees) [226], many of the
BCI Competition datasets considered gold-standard in the EEG domain contain fewer than 10, or in some
cases fewer even than 5, subjects’s data [194].

2Some work should be recognised here as having considered such matters, such as Künzel et al. in investigating the impact
of Hormore Replacement Therapy on the sleep EEG of transgender women [369], & Hazin et al.’s exploration of EMG measured
from pelvic floor muscles before & after gender-affirming surgery [370].
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8.3 Concluding thoughts

Of course, the most important population to consider in translating the findings of this research into real-
world advances in robotic prosthesis control applications is amputees themselves. As exploratory research
this work was deliberate in its choice to use data collected from individuals without upper-limb differences;
4.1.1.1 discussed the motivation for this decision and indeed the evidence from Scheme & Englehart for trends
found with non-amputee data to be reflected in that of amputees.

Nevertheless before systems evidenced here as viable could be put into use they would need further explo-
ration no only using amputees’ data but in conjunction with them as meaningful contributors to development.
Individuals with lived experience of prosthesis use are naturally best-informed as to their desirable charac-
teristics. As has been made clear throughout this thesis no attempt is made here to speak for amputees, nor
suggest its contributions to the field of gesture classification as having necessarily guaranteed some sweeping
transformation to their lives. The true potential impact of findings beyond academia could only ever be
fully judged by amputees who use gesture-recognition prostheses; “Nothing About Us Without Us” is a well-
established philosophy in the disability rights movement [371] and while the author is themselves disabled,
as a non-amputee their understanding of amputees’ needs is necessarily incomplete.

Perhaps the most significant aspect of the systems explored in this work on which better research of am-
putees’ opinions is needed is actually one of the most fundamental: the merits of using neural data measured
by Electroencephalography to supplement traditionally Electromyographic gesture recognition. Certainly the
motivation for investigating the approach is clear — as has been discussed earlier in the work the capabilities
of EMG-based prostheses are often limited, offering low dexterity due to the challenges of reliable gesture
recognition. In particular, that amputees have varying levels of precision in the voluntary control of resid-
ual limb muscles, yet can perform Kinaesthetic Motor Imagery of the amputated hand, makes EEG as a
non-invasive means of measuring the motor cortex an appealing option. Further, Chapter 5’s evidence that
inclusion of EEG data can lead to higher subject-independent accuracy than the use of EMG alone demon-
strates the potential of the technique to lead to more accessible systems of lower burden to users in terms
of time and mass-availability. EEG itself however is not without inconvenience. Changes in environmental
conditions can affect the quality of data, and the technology involved in its measurement (though rapidly
advancing with recent developments in high-density configurations [372], sensors which avoid the cost and
inconvenience of conductive electrolyte gel [373], and electrodes better-suited for individuals with natural,
coarse, and curly hair [374,375]) is not inexpensive. Further analysis of the costs and benefits of multimodal-
ity in biosignal classification, while outside the scope of this work, will certainly be of great merit — and
must as discussed be conducted in conjunction with prosthesis users and indeed with amputees who have
not sought or been able to acquire prostheses due to systemic ableism & the resultant structural or financial
barriers placed upon them.
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A.1 Supplementary Data for Chapter 5

A.1.1 Post-hoc analysis of modelling hyperparameters

A.1.1.1 Linear Discriminant Analysis Solvers

Figure A.1: Development Set accuracies achieved by dif-
ferent LDA solvers in CASH optimisation of Bespoke Uni-
modal EEG system

Hypothesis t value p value
LSQR – SVD 0.475 0.9508
Eigen – SVD -0.991 0.6966
Eigen – LSQR -1.306 0.5028

Table A.1: Dunnett’s T3 comparisons of LDA solvers in
Bespoke Unimodal EEG system

Figure A.2: Development Set accuracies achieved by dif-
ferent LDA solvers in CASH optimisation of Bespoke Uni-
modal EMG system

Hypothesis t value p value
LSQR – SVD -1.571 0.4837
Eigen – SVD -2.712 0.3669
Eigen – LSQR 0.858 0.7884

Table A.2: Dunnett’s T3 comparisons of LDA solvers in
Bespoke Unimodal EMG system
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(a) Separate selection (b) Joint selection

Figure A.3: Development Set accuracies achieved by different LDA solvers in CASH optimisation of Bespoke Feature-
Level Fusion system with separate feature selection (left) & joint feature selection (right)

Hypothesis t value p value
LSQR – SVD -2.560 0.0994
Eigen – SVD -2.793 0.0973
Eigen – LSQR 0.664 0.8781

(a) Separate selection

Hypothesis t value p value
LSQR – SVD -2.639 0.0803
Eigen – SVD -2.936 0.0685
Eigen – LSQR -1.883 0.2436

(b) Joint selection

Table A.3: Pairwise comparisons of LDA solvers’ Development Set accuracies in CASH optimisation of Bespoke
Feature-Level Fusion systems with separate feature selection (left) & joint feature selection (right), using Dunnett’s
T3 test.

Figure A.4: Development Set accuracies achieved by dif-
ferent LDA solvers in CASH optimisation of Generalist
Unimodal EEG system

Hypothesis t value p value
LSQR – SVD -0.883 0.7593
Eigen – SVD -1.964 0.2268
Eigen – LSQR -1.605 0.3543

Table A.4: Dunnett’s T3 comparisons of LDA solvers in
Generalist Unimodal EEG system

264



M. Pritchard, PhD Thesis, Aston University, 2024 APPENDIX A. SUPPLEMENTARY DATA

Figure A.5: Development Set accuracies achieved by dif-
ferent LDA solvers in CASH optimisation of Generalist
Unimodal EMG system

Hypothesis t value p value
LSQR – SVD -2.925 0.0242
Eigen – SVD -1.985 0.1802
Eigen – LSQR -1.018 0.6759

Table A.5: Dunnett’s T3 comparisons of LDA solvers in
Generalist Unimodal EMG system

A.1.1.2 Shrinkage in LDAs

Figure A.6: Development Set accuracy against LDA Shrinkage in CASH optimisation of Generalist Unimodal EMG
system. Reported p-values adjusted by Bonferroni correction.
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System Solver Pearson’s R Spearman’s Rho
r p ρ p

Bespoke Unimodal EEG Least Squares Solution -0.2088 0.8114 -0.0877 1.0
Eigenvalue Decomposition -0.5835 0.3380 -0.3214 0.9641

Bespoke Unimodal EMG Least Squares Solution -0.9177 0.5202 -1.0 <0.0001
Eigenvalue Decomposition N/A* N/A*

Bespoke Feature Fusion Least Squares Solution -0.9276 0.0018 -1.0 <0.0001
(Separate Selection) Eigenvalue Decomposition -0.9735 0.0021 -0.9429 0.0096

Bespoke Feature Fusion Least Squares Solution -0.9783 <0.0001 -0.9500 0.0002
(Joint Selection) Eigenvalue Decomposition -0.9612 0.0011 -0.9643 0.0009

Generalist Unimodal EEG Least Squares Solution -0.8872 <0.0001 -0.8594 <0.0001
Eigenvalue Decomposition -0.9640 0.0002 -0.9524 0.0005

Generalist Unimodal EMG Least Squares Solution -0.9856 <0.0001 -0.9658 <0.0001
Eigenvalue Decomposition -0.9445 <0.0001 -0.9607 <0.0001

Generalist Feature Fusion Least Squares Solution -0.9113 0.0002 -0.9294 0.0001
(Separate Selection) Eigenvalue Decomposition -0.9595 <0.0001 -0.9257 <0.0001

Generalist Feature Fusion Least Squares Solution -0.8585 <0.0001 -0.5155 0.0043
(Joint Selection) Eigenvalue Decomposition -0.8398 0.0361 -0.9643 0.0009

Table A.6: Correlation coefficients between LDA shrinkage & Development Set accuracy, broken down by LDA solver.
Reported p-values for each system type adjusted by Bonferroni correction.
NB: As shrinkage was optimised across both of these solvers together, we cannot assume any distinctions are genuinely
related to the solvers having different interactions with shrinkage.
* Only two LDAs using the Eigenvalue Decomposition solver were trialled in Bespoke Unimodal EMG optimisation;
correlational analysis is not suitable here.
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A.1.1.3 Smoothing in Gaussian Naïve Bayes Models

(a) Bespoke EMG (b) Generalist EMG

(c) Bespoke EEG (d) Generalist EEG

Figure A.7: Development Set accuracy against Gaussian Naïve Bayes Smoothing in CASH optimisation of Unimodal
EMG (above) and EEG (below) systems in both Bespoke (left) and Generalist (right) cases.
Reported p-values adjusted by Bonferroni correction.
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A.1.1.4 C and γ in non-EMG Support Vector Machines

(a) C (b) gamma

Figure A.8: Influence of SVM hyperparameters C (left) and gamma (right) on Development Set accuracy in CASH
optimisation of Bespoke Unimodal EEG system. Reported p-values adjusted by Bonferroni correction.
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(a) C (b) gamma

(c) C (d) gamma

Figure A.9: Influence of SVM hyperparameters C (left) and gamma (right) on Development Set accuracy in CASH
optimisation of Bespoke Feature-level Fusion with Separate (above) and Joint (below) feature selection.
Reported p-values adjusted by Bonferroni correction.
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A.1.1.5 k in k- Nearest Neighbour models

(a) Bespoke EEG (b) Generalist EEG

(c) Bespoke EMG (d) Generalist EMG

Figure A.10: Influence of neighbourhood size hyperparameter k on Unimodal EEG (above) and EMG (below) kNNs’
Development Set accuracy in CASH optimisation of Bespoke (left) and Generalist (right) cases.
Reported p-values adjusted by Bonferroni correction.
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A.1.1.6 Regularisation in Quadratic Discriminant Analysis models

(a) Bespoke EEG (b) Generalist EEG

(c) Bespoke EMG (d) Generalist EMG

Figure A.11: Influence of Regularisation hyperparameter on Unimodal EEG (above) and EMG (below) QDAs’ Develop-
ment Set accuracy in CASH optimisation of Bespoke (left) and Generalist (right) cases.
Reported p-values adjusted by Bonferroni correction.
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A.1.1.7 Number of trees in Random Forests

(a) Bespoke EEG (b) Generalist EEG

(c) Bespoke EMG (d) Generalist EMG

Figure A.12: Influence of number of trees (forest size) on Unimodal EEG (above) and EMG (below) Random Forests’
Development Set accuracy in CASH optimisation of Bespoke (left) and Generalist (right) cases.
Reported p-values adjusted by Bonferroni correction.
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A.1.2 Lower-level model choices in Hierarchical & Inverse Hierarchical systems

(a) Hierarchical (where EMG is top rank)
ANOVA: f=0.2805, p=0.9227

(b) Inverse Hierarchical (where EEG is top rank)
ANOVA: f=3.6649, p=0.0045

Figure A.13: Mean accuracies across development set subjects achieved by different lower-level models in optimisation
of Bespoke Hierarchical & Inverse Hierarchical systems

(a) Hierarchical (where EMG is top rank)
ANOVA: f=2.0657, p=0.0914

(b) Inverse Hierarchical (where EEG is top rank)
ANOVA: f=6.2277, p=0.0001

Figure A.14: Mean accuracies across development set subjects achieved by different lower-level models in optimisation
of Generalist Hierarchical & Inverse Hierarchical systems
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A.1.3 Decision-Level Fusion

A.1.3.1 Full pairwise comparisons of Decision-Level Fusion algorithms

Hypothesis Estimate Std. Err z value p value
3:1 EEG – Max -0.10617 0.03053 -3.477 0.0114
3:1 EMG – Max 0.03568 0.02319 1.539 0.7799

LDA – Max 0.06173 0.03083 2.002 0.4715
Mean – Max 0.02597 0.02916 0.891 0.9864

Tunable Weight – Max -0.06436 0.02962 -2.173 0.3603
RF – Max 0.03811 0.02937 1.298 0.8962

SVM – Max 0.06088 0.02429 2.506 0.1872
3:1 EMG – 3:1 EEG 0.14185 0.03213 4.415 < 0.001

LDA – 3:1 EEG 0.16790 0.03842 4.371 < 0.001
Mean – 3:1 EEG 0.13214 0.03608 3.662 0.0055

Tunable Weight – 3:1 EEG 0.04181 0.03627 1.153 0.9426
RF – 3:1 EEG 0.14428 0.03610 3.997 0.0016

SVM – 3:1 EEG 0.16705 0.03240 5.156 < 0.001
LDA – 3:1 EMG 0.02605 0.03182 0.819 0.9917
Mean – 3:1 EMG -0.00971 0.03050 -0.318 1.0000

Tunable Weight – 3:1 EMG -0.10004 0.03119 -3.207 0.0281
RF – 3:1 EMG 0.00243 0.03112 0.078 1.0000

SVM – 3:1 EMG 0.02520 0.02575 0.979 0.9765
Mean – LDA -0.03576 0.03678 -0.972 0.9773

Tunable Weight – LDA -0.12609 0.03651 -3.454 0.0124
RF – LDA -0.02362 0.03665 -0.645 0.9981

SVM – LDA -0.00085 0.03205 -0.026 1.0000
Tunable Weight – Mean -0.09033 0.03493 -2.586 0.1559

RF – Mean 0.01214 0.03507 0.346 1.0000
SVM – Mean 0.03492 0.03148 1.109 0.9531

RF – Tunable Weight 0.10247 0.03534 2.900 0.0704
SVM – Tunable Weight 0.12525 0.03140 3.989 0.0016

SVM – RF 0.02277 0.03103 0.734 0.9958

Table A.7: Tukey of all decision fusion algs for Bespoke
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Hypothesis Estimate Std. Error z value p value
3:1 EEG – Max -0.07725 0.01769 -4.367 < 0.001
3:1 EMG – Max 0.01667 0.01964 0.849 0.9896

LDA – Max 0.07235 0.01987 3.661 0.0062
Mean – Max -0.01323 0.01576 -0.840 0.9903

Tunable Weight – Max -0.02098 0.01844 -1.138 0.9460
RF – Max 0.02080 0.01770 1.175 0.9360

SVM – Max 0.02715 0.01609 1.688 0.6859
3:1 EMG – 3:1 EEG 0.09392 0.01764 5.325 < 0.001

LDA – 3:1 EEG 0.14998 0.01766 8.492 < 0.001
Mean – 3:1 EEG 0.06401 0.01393 4.595 < 0.001

Tunable Weight – 3:1 EEG 0.05626 0.01700 3.309 0.0201
RF – 3:1 EEG 0.09805 0.01610 6.089 < 0.001

SVM – 3:1 EEG 0.10440 0.01379 7.573 < 0.001
LDA – 3:1 EMG 0.05606 0.01933 2.899 0.0698
Mean – 3:1 EMG -0.02991 0.01571 -1.904 0.5377

Tunable Weight – 3:1 EMG -0.03766 0.01857 -2.028 0.4527
RF – 3:1 EMG 0.00413 0.01757 0.235 1.0000

SVM – 3:1 EMG 0.01048 0.01604 0.653 0.9980
Mean – LDA -0.08597 0.01650 -5.210 < 0.001

Tunable Weight – LDA -0.09372 0.01937 -4.838 < 0.001
RF – LDA -0.05193 0.01816 -2.860 0.0779

SVM – LDA -0.04558 0.01672 -2.726 0.1107
Tunable Weight – Mean -0.00775 0.01477 -0.525 0.9995

RF – Mean 0.03404 0.01245 2.734 0.1083
SVM – Mean 0.04038 0.01221 3.307 0.0199

RF – Tunable Weight 0.04179 0.01686 2.478 0.1980
SVM – Tunable Weight 0.04813 0.01512 3.184 0.0300

SVM – RF 0.00635 0.01465 0.433 0.9999

Table A.8: Tukey of all decision fusion algs for Generalist
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A.1.3.2 Component EMG & EEG classifiers

(a) Bespoke (b) Generalist

Figure A.15: Mean Development Set accuracies achieved in CASH optimisation of Decision-Level systems grouped by
EMG classifier

(a) Bespoke (b) Generalist

Figure A.16: Mean Development Set accuracies achieved in CASH optimisation of Decision-Level systems grouped by
EEG classifier
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Hypothesis Estimate Std. Err z value p value
GNB – SVM -0.08720 0.02393 -3.643 0.0036
KNN – SVM 0.02429 0.02546 0.954 0.9291
LDA – SVM 0.01247 0.02637 0.473 0.9969
QDA – SVM 0.01748 0.02506 0.698 0.9813
RF – SVM -0.02935 0.02627 -1.117 0.8695

KNN – GNB 0.11150 0.03092 3.606 0.0042
LDA – GNB 0.09967 0.03181 3.134 0.0206
QDA – GNB 0.10469 0.03010 3.478 0.0065
RF – GNB 0.05785 0.03213 1.800 0.4555

LDA – KNN -0.01182 0.03215 -0.368 0.9991
QDA – KNN -0.00681 0.03127 -0.218 0.9999
RF – KNN -0.05364 0.03281 -1.635 0.5653

QDA – LDA 0.00501 0.03237 0.155 1.0000
RF – LDA -0.04182 0.03388 -1.234 0.8137
RF – QDA -0.04683 0.03222 -1.453 0.6853

(a) Bespoke

Hypothesis Estimate Std. Error z value p value
GNB – LDA -0.10299 0.01244 -8.276 <0.001
KNN – LDA -0.03978 0.01228 -3.240 0.0103
QDA – LDA -0.02139 0.01239 -1.727 0.4117
RF – LDA -0.06069 0.01211 -5.010 <0.001

KNN – GNB 0.06321 0.01534 4.121 <0.001
QDA – GNB 0.08160 0.01507 5.414 <0.001
RF – GNB 0.04229 0.01521 2.781 0.0422

QDA – KNN 0.01839 0.01452 1.266 0.7075
RF – KNN -0.02092 0.01432 -1.461 0.5828
RF – QDA -0.03930 0.01410 -2.788 0.0413

(b) Generalist

Table A.9: Full pairwise comparisons between EMG model choices in optimisation of Decision-Level Fusion systems,
tested with Tukey’s HSD.

Hypothesis Estimate Std. Err z value p value
GNB – RF -0.10988 0.02720 -4.039 <0.001
KNN – RF -0.05795 0.02556 -2.267 0.1989
LDA – RF -0.05335 0.02915 -1.830 0.4335
QDA – RF -0.07209 0.02863 -2.518 0.1131
SVM – RF -0.02412 0.02009 -1.201 0.8293

KNN – GNB 0.05192 0.03274 1.586 0.5958
LDA – GNB 0.05652 0.03569 1.584 0.5970
QDA – GNB 0.03778 0.03613 1.046 0.8973
SVM – GNB 0.08575 0.02911 2.945 0.0361
LDA – KNN 0.00460 0.03441 0.134 1.0000
QDA – KNN 0.01414 0.03365 -0.240 0.9982
SVM – KNN 0.03383 0.02738 1.236 0.8114
QDA – LDA -0.01874 0.03622 -0.517 0.9952
SVM – LDA 0.02923 0.02936 0.996 0.9152
SVM – QDA 0.04797 0.02930 1.637 0.5612

(a) Bespoke

Hypothesis Estimate Std. Err z value p value
GNB – LDA -0.07840 0.01428 -5.488 <0.001
KNN – LDA -0.01044 0.01428 -0.743 0.9446
QDA – LDA -0.03496 0.01405 -2.639 0.0611
RF – LDA 0.01573 0.01325 1.571 0.5077

KNN – GNB 0.06796 0.01757 3.869 <0.001
QDA – GNB 0.04344 0.01585 2.741 0.0464
RF – GNB 0.09413 0.01469 6.410 <0.001

QDA – KNN -0.02452 0.01594 -1.538 0.5287
RF – KNN 0.02617 0.01368 1.914 0.3024
RF – QDA 0.05069 0.01322 3.834 0.0011

(b) Generalist

Table A.10: Full pairwise comparisons between EEG model choices in optimisation of Decision-Level Fusion systems,
tested with Tukey’s HSD.
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On Zero-Phase EEG Filtering

B.1 Confirmation of negligible impact of zero-phase EEG filtering

As discussed in 4.2.5 this work does not use zero-phase filtering to process biosignal data, as it would
be unsuitable for the target applications of the research wherein real-time classification is required. For
completeness, the impact of applying zero-phase filtering is briefly verified here, to give confidence that the
work’s findings are not unduly impacted by the Butterworth filter used.

Though efforts are not made to fully characterise the conventional Butterworth filter’s group delay here,
a cursory investigation of a randomly selected EEG recording was performed by finding the maximum cross-
correlation coefficient between raw and Butterworth-filtered signals, i.e. the point at which they are best
aligned. This suggested a delay of approximately 58ms — very low a proportion of the 1000ms windows used
in feature extraction (see 4.3).

B.1.1 Modelling Performance

Firstly, any effects of the filtering technique on the modelling capabilities of the resultant EEG data are
checked for. CASH optimisation routines for Unimodal EEG classifiers were performed equivalent to those
of Chapter 5, using Development Set EEG data but bandpass filtered from 2 – 30 Hz with the zerp-phase
MATLAB filtfilt() function, rather than the conventional filter().

Table B.1 presents the accuracies achieved and the optimal configurations of Unimodal zero-phase EEG
in both Bespoke and Generalist settings, compared against their “conventional” equivalents from Chapter 5
(see Tables 5.5 & 5.6). It can be seen that the difference in peak mean accuracy is low in both cases.

Setting Conventional Zero-Phase
Accuracy Configuration Accuracy Configuration

Bespoke 54.80
Linear Discriminant Analysis

52.61
Support Vector Machine

Solver: Least Square Solution C: 1.8767
Shrinkage: 0.038 γ: 0.0281

Generalist 49.11
Linear Discriminant Analysis

46.34
Linear Discriminant Analysis

Solver: Least Squares Solution Solver: Eigenvalue Decomposition
Shrinkage: 0.435 Shrinkage: 0.1265

Table B.1: Peak Development Set accuracy in Unimodal EEG CASH optimisation & corresponding configurations
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Figures B.1 and B.2 further demonstrate this equivalence in performance. The relative capabilities of
the assorted candidate classification algorithms were similar across both the conventional Unimodal EEG
experiments and the zero-phase EEG. It is thus considered highly unlikely that the performance of the
Unimodal EEG classifiers developed in Chapter 5 was unduly influenced by the choice of filtering method.

(a) Conventional (reproduced from Figure 5.21) (b) Zero-Phase

Figure B.1: Development Set accuracies achieved by different models in CASH optimisation of Bespoke Unimodal EEG
system with conventional (left) & zero-phase (right) Butterworth filtering

(a) Conventional (reproduced from Figure 5.26) (b) Zero-Phase

Figure B.2: Development Set accuracies achieved by different models in CASH optimisation of Generalist Unimodal
EEG system with conventional (left) & zero-phase (right) Butterworth filtering

B.1.2 Feature Informativity

Given that a Butterworth filter’s phase delay can differ by frequency, it could be speculated that such delay
had different impacts on the information carried in different frequency bands, and thus may have contributed
to the findings in Section 5.5.7 regarding EEG feature informativity. This possibility is thus also investigated
and discounted here.

The similarity in sets of features commonly selected in Unimodal EEG systems utilising the different
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filtering techniques is presented in Figures B.3 & B.4, demonstrating that the same types of features were
frequently found informative in both conventionally filtered and zero-phase EEG. Further, Tables B.2 & B.3
indicate that many of the same specific features were identified in both cases, including importantly the
Delta frequency bandpower at electrodes 0, 3, 13, and 16 (10-10 sites FC5, C5, FC6, and C6), the significance
of which is discussed in 5.5.3. It is thus not likely that the informativity of these features is an artificial
by-product of the conventional Butterworth filter’s phase delay.

(a) Conventional (reproduced from Figure 5.12) (b) Zero-Phase

Figure B.3: Occurrence of EEG features selected in multiple subjects’ Bespoke systems, grouped by feature category

(a) Conventional (reproduced from Figure 5.15) (b) Zero-Phase

Figure B.4: Occurrence of EEG features selected in Generalist systems of at least 5 subjects, grouped by category
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Feature Occurrence Rate
sum delta 13 19
sum delta 16 15
sum delta 3 15
sum delta 0 15

log covM 0-13 13
sum delta 7 9
log covM 4-5 9

log covM 13-16 9
sum beta 5 8

log covM 5-5 8
log covM 0-3 7

(a) Conventional (data presented previously in Fig. 5.14)

Feature Occurrence Rate
sum delta 13 18
sum delta 16 15
sum delta 0 15

log covM 0-13 15
sum delta 3 14
log covM 4-5 12
log covM 5-5 11
sum delta 7 10

sum theta 13 8
sum beta 5 7
sum beta 4 7

log covM 7-7 7

(b) Zero-Phase

Table B.2: EEG features selected by ≥ 7 subjects’ Bespoke Unimodal EEG systems with conventional (left) & zero-
phase (right) Butterworth filtering. Features uniquely selected in one processing technique or another in bold.

Feature
logcovM 4-5 logcovM 3-16 logcovM 3-8 covM 2-2

logcovM 0-3 logcovM 5-5 logcovM 19-19 logcovM 7-19
covM 4-13 logcovM 13-16 logcovM 2-2 logcovM 12-13
logcovM 0-13 sum delta 0 sum alpha 15 sum alpha 13
sum alpha 10 sum delta 5 sum delta 16 sum beta 6
sum delta 13 sum delta 3 sum theta 3 sum beta 4
sum alpha 4 sum beta 9 sum beta 5 sum theta 16
sum delta 1 sum beta 11 sum beta 8 sum alpha 7

(a) Conventional (reproduced from Table 5.15)

Feature
logcovM 5-5 logcovM 3-8 logcovM 0-13 logcovM 6-10
logcovM 4-5 logcovM 19-19 logcovM 2-2 covM 2-2

logcovM 0-12 kurtosis 13 sum beta 8 sum alpha 18
sum alpha 13 sum theta 16 sum delta 16 sum delta 11
sum alpha 4 sum gamma 4 sum beta 9 sum delta 10
sum beta 6 sum delta 0 sum alpha 10 sum beta 4
sum beta 5 sum alpha 16 sum alpha 7 sum delta 3
sum delta 1 sum beta 11 sum beta 3 sum delta 13
sum theta 3 sum delta 5 ∆ std dev 13 ∆ std dev 16

(b) Zero-Phase

Table B.3: EEG features selected in all 20 subjects’ Generalist Unimodal EEG systems with conventional (above) and
zero-phase (below) Butterworth filtering. Features uniquely selected in one processing technique or another in bold.
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On Synthetic Augmentation: Selected
extracts from “Synthetic Biological Signals
Machine - Generated by GPT-2 Improve the
Classification of EEG and EMG Through
Data Augmentation” [1]
(Bird, Pritchard, et al. in IEEE Robotics and
Automation Letters ©2021 IEEE)

This work was a collaboration between myself and Dr. Jordan J Bird (as co-first authors), and Prof. Aniko
Ekárt & Drs. Antonio Fratini and Diego Faria who provided supervision and gave feedback on the manuscript
prior to corrections and submission to IEEE Robotics and Automation Letters.

Dr. Bird’s PhD research interests focused more significantly on Electroencephalography than Electro-
myography and the focus of his contribution to the paper was in this area. The EEG experiments were
included in his PhD thesis [376] and thus do not appear among the excerpts of the paper presented below.

Select passages, marked in bold for convenience, discuss aspects of the work which applied to both the
EEG and EMG experiments; the reader is advised that these hence appear in both Dr. Bird’s thesis and in
the below extract.
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Excerpts from:
Synthetic Biological Signals Machine-generated by GPT-2
improve the Classification of EEG and EMG through Data

Augmentation
© 2021 IEEE

Jordan J. Bird1, Michael Pritchard1, Antonio Fratini2, Anikó Ekárt3, Diego R. Faria1∗

1 Introduction

When presenting their Generative Pretrained Transformer (GPT) model, researchers at OpenAI hy-
pothesised that language models are unsupervised multitask learners [1]. At the current state-of-the-art
this claim has been consistently argued through applications such as fake news identification [2], patent
claims [3], and stock market analysis [4] to name just a few in a rapidly growing area of research. In
this work, we follow those before us in exploring the capabilities of these models in a brand new field
of application: the generation of bio-synthetic signals (in our case Electroencephalographic (EEG) and
Electromyographic (EMG) activity). In detail, we aimed at exploring whether or not GPT-2’s self-
attention based architecture was capable of creating synthetic signals, and if those signals could improve
the performance of classification models used on real datasets. Enabling better results for the deduction
of a physical action or mental thought allows for a higher degree of certainty when it comes to an un-
seen subject. That is, for example in electromyographically controlled robotic prosthetic limbs, a more
improved experience for the user of such a robotic device. Our scientific contributions and results suggest that:

1. It is possible to generate synthetic biological signals by tuning a language transformation model.

2. Classifiers trained on either real or synthetic data can classify one another with relatively high accuracy.

3. Synthetic data improves the classification of the real data both in terms of model benchmarking and classification
of unseen samples.

2 Related Work and Background

In this section, we describe how previous work has demonstrated the benefits of augmenting biological signal datasets to
improve classification results, since it has been noted that augmentation is a useful technique to overcome data scarcity
in such domains [5]. A common approach is to generate synthetic signals by re-arranging components of real data.
Lotte [6] proposed a method of "Artificial Trial Generation Based on Analogy" where three data examples x1, x2, x3
provide examples and an artificial xsynthetic is formed which is to x3 what x2 is to x1. A transformation is applied to x1
to make it more similar to x2, the same transformation is then applied to x3 which generates xsynthetic1. This approach
was shown to improve performance of a Linear Discriminant Analysis classifier on three different datasets. Dai et al. [7]
performed similar rearrangements of waveform components in both the time and frequency domains to add three times
the amount of initially collected EEG data, finding that this approach could improve the classification accuracy of a
Hybrid Scale Convolutional Neural Network. This work showed that data augmentation allowed the model to improve

∗J.J. Bird and M. Pritchard are co-first authors
1Equations for Lotte’s EEG generation technique can be found in [6]
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the classification of data for individual subjects that were specifically challenging in terms of the model’s classification
ability. Dinarès-Ferran [8] decomposed EEG signals into Intrinsic Mode Functions and constructed synthetic data frames
by arranging these IMFs into new combinations, demonstrating improvements of classification performance of motor
imagery based BCIs while including these new signals. Other researchers have proposed data augmentation techniques
commonly used in other domains such as image classification techniques with positive results. As an example Shovon
et al. [9] applied conventional image augmentation techniques e.g. rotation, zoom, and brightness to spectral images
formed from EEG analysis to increase the size of a public EEG dataset. This ultimately led to an improvement over
the state-of-the-art.

Current research shows great impact can be derived from relatively simple techniques. For example, Freer [10]
observed that introducing noise into gathered data to form additional data points improved the learning ability of several
models which otherwise performed relatively poorly. Tsinganos et al. [11] studied the approaches of magnitude warping,
wavelet decomposition, and synthetic surface EMG models (generative approaches) for hand gesture recognition, finding
classification performance increases of up to +16% when augmented data was introduced during training. More recently,
data augmentation studies have begun to focus on the field of deep learning, more specifically on the ability of generative
models to create artificial data which is then introduced during the classification model training process. In 2018, Luo
et al. [12] observed that useful EEG signal data could be generated by Conditional Wasserstein Generative Adversarial
Networks (GANs) which was then introduced to the training set in a classical train-test learning framework. The authors
found classification performance was improved when such techniques were introduced. Likewise, Zhang and Liu [13]
applied similar Deep Convolutional GANs (DC-GAN) to EEG signals given that training examples are often scarce in
related works. As with the previous work, the authors found success when augmenting training data with DC-GAN
generated data. Zanini and Colombini [14] provided a state-of-the-art solution in the field of EMG studies when using
a DC-GAN to successfully perform style transfer of Parkinson’s Disease to bio-electrical signals, noting the scarcity of
Parkinson’s Disease EMG data available to researchers as an open issue in the field [14]. Many studies observed follow
a relatively simple train/test approach to benchmarking models.

A limitation of many techniques is that they are not temporal in their generative natures. Each block of signal
output has no influence on the next, and, as such, a continuous synthetic signal of unlimited length cannot therefore be
generated. Our approach allows for infinite generation of temporal wave data given the nature of GPT-2; a continuous
synthetic raw signal is generated by presenting some of the previous outputs as input for the next generation. We
then benchmark the models through k-fold cross validation, where each fold has synthetic data introduced as additional
training data. Moreover, for the first time in the field, we show the effectiveness of attention-based models at the signal
level rather than generative based models at the feature-level for both training and unseen data. We then finally show
that real-time gesture classification towards direct control of a robotic arm is improved following our data augmentation
framework.

2.1 GPT-2 and Self-Attention Transformers

Self-Attention Transformers are based on calculating scaled dot-product attention units, and generate new data by
learning to paying attention to previous data generated [15]. Scaled dot-product attention is calculated for each unit
within the input vector, e.g. words in a sentence, or, in this case, signals in a stream. The attention units are input with
a sequence and output embeddings of relevant tokens. Query (Wq), key (Wk), and value (Wv) weights are calculated
as:

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V, (1)

where the query is an entity within the sequence, keys are vector representations of the input, and the values are derived
by querying against keys. The term self-attention comes from the fact that Q, K and V are received from the same
source, and generation is an unsupervised. GPT-2 architecture follows the concept of Multi-headed Attention:

MultiHead(Q,K, V ) = Concat(head1, ..., headh)W
O

headi = Attention(QWQ
i ,KWK

i , V W V
i ).

(2)

That is, a deep structure of hi attention heads in order to inter-connect multiple attention units. Fundamentally, the
GPT and GPT-2 algorithms do not differ. The main advantages of GPT-2 are based on it being many times more
complex than the GPT with 1.5 billion parameters and being trained on a large dataset of 8 million websites.
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Figure 1: Initial training of the GPT-2 model and then generating a dataset of synthetic biological signals.
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Full	dataset

Synthetic	Data

GPT-2
Signal	Generator

Fold	1 Fold	2 Fold	K Synthetic	Data

Fold	1 Fold	2 Fold	K Synthetic	Data

Train

Test

Figure 2: The standard K-Fold cross validation process with the GPT-2 generated synthetic data being introduced as additional
training data for each fold.

3 Method

3.1 Data Collection, Pre-processing and Feature Extraction

The EMG dataset used in this study was initially acquired by Dolopikos et al. in [16]. EMG data corresponding to
the opening and closing movements of the right hand were collected from fifteen able-bodied participants (9 male, 6
female, mean age 26) using a Thalmic Labs Myo armband. The participants performed the gestures after a cue from an
instructor. The recorded data corresponding to the time before the onset of physical activity (muscular background tone)
was extracted and compiled into a third "neutral" class. To assess contraction and relaxation of muscles, information
can be extracted by the simple analysis of an EMG signal’s smoothed rectified envelope [17]. The data was indeed first
rectified and then low-pass filtered using a peak detection algorithm [18], interpolating between local maxima with a
separation of at least 20 samples (equivalent to 0.1 seconds at the Myo’s natural sample rate of 200Hz).

Whilst the data was provided to GPT-2 in its raw format, an ensemble of features was extracted
from each dataset to enable classification. The feature set has previously proven effective, providing sufficient
information to discriminate both between focused, relaxed, and neutral brains [19], and closed, open, and neutral
hands [16]. Features are extracted from a sliding window of 1 second in length, at an overlap of 0.5 seconds. These
windows are further sub-divided into halves and quarters, enabling extraction of the following ensemble of statistical
features2.

3.2 Generating and Learning from GPT-2 Generated Signals

GPT-2 models are initially trained on each class of data for 1,000 steps each. Then, for n classes, n
GPT-2s are tasked with generating synthetic data and the class label is finally manually added to the
generated data. This process can be observed in Figure 1 where the generative loop is prefixed by the
latter half of the previously generated data3. The synthetic equivalent of 60 seconds of data per class
are generated (30,000 rows per class of raw signal data).

To benchmark machine learning models, a K-fold cross validated learning process is followed and
compared to the process observed in Figure 2 where training data is augmented by the synthetically-
derived data at each fold of learning. The testing set does not contain any of the artificial signal data. This

2Feature extraction code available athttps://github.com/jordan-bird/eeg-feature-generation
3Example code can be found at: https://github.com/jordan-bird/Generational-Loop-GPT2
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process is performed for both the EEG and EMG experiments for six different models: Support Vector
Machine (SVM), Random Forest (RF), K-Nearest Neighbours (KNN, K = 10), Linear Discriminant
Analysis (LDA), Logistic Regression (LR), and Gaussian Naïve Bayes (GNB). These statistical models
are selected due to their differing nature, to explore the hypothesis with a mixed range of approaches.
As was explored in [20], it was found that unseen signal classification can be improved through calibration via inductive
and supervised transductive transfer learning. That is, tuning a model by providing a small amount of calibration data
to the training set.

4 Observations and Results
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Figure 3: Comparison of GPT-2 generated (Left) and genuine recorded (Right) EMG data across "Closed", "Open", and "Neutral"
hand classes.

Figure 3 compares samples of real and synthetic EMG data. It was noted that all synthetic data was unique
compared to the real data. Interestingly, natural behaviours, such as the presence of characteristic
oscillations, can be observed within data, showing that complex natural patterns have been generalised
by the GPT-2 model. The GPT-2 generated waves are seemingly less natural than their human counterparts;
although natural wave patterns do emerge, they are more erratic and prone to spiking unlike the signals recorded from
a human forearm. The Power Spectral Densities, computed with Welch’s method [21], of the GPT-2 generated and real
data are presented in Figure 4. Across all classes the synthetic data has significantly more power in its high frequency
components than the real data, despite the real EMG dataset having been low-pass filtered before being used to train
GPT-2; this phenomenon is likely due in part to the aforementioned erratic nature of the synthetic EMG signals.

4.1 Classification of real-to-synthetic data and vice-versa

Table 1 shows the ability to classify real EMG data by learning from synthetic data and vice versa. The Naïve Bayesian
model when trained on only real data can classify the synthetic data with 62.36% accuracy, whereas the K- Nearest
Neighbours model can classify the real dataset with 78.24% accuracy when trained on only synthetic.

M. Pritchard, PhD Thesis, Aston University, 2024 APPENDIX C. SYNTHETIC AUGMENTATION

286



0 20 40 60 80 100
Frequency (Hz)

0

20

40

60

Po
w

er
/F

re
qu

en
cy

 (
dB

/H
z)

Synthetic: Close Hand

0 20 40 60 80 100
Frequency (Hz)

0

20

40

60

Po
w

er
/F

re
qu

en
cy

 (
dB

/H
z)

Real: Close Hand

0 20 40 60 80 100
Frequency (Hz)

-40

-20

0

20

40

Po
w

er
/F

re
qu

en
cy

 (
dB

/H
z)

Synthetic: Open Hand

0 20 40 60 80 100
Frequency (Hz)

-40

-20

0

20

40

Po
w

er
/F

re
qu

en
cy

 (
dB

/H
z)

Real: Open Hand

0 20 40 60 80 100
Frequency (Hz)

-40

-20

0

20

40

Po
w

er
/F

re
qu

en
cy

 (
dB

/H
z)

Synthetic: Neutral Hand

0 20 40 60 80 100
Frequency (Hz)

-40

-20

0

20

40

Po
w

er
/F

re
qu

en
cy

 (
dB

/H
z)

Real: Neutral Hand

Figure 4: Comparison of Power Spectral Densities of GPT-2 generated (Left) and genuine recorded (Right) EMG data. For
readability, only the PSD computed from electrode EMG1 is shown.

Table 1: Classification results when training on real or synthetic EMG data and attempting to predict the class labels of the other
(sorted for real to synthetic).

Classifier Training and Prediction Data

Real to Synthetic Synthetic to Real

Gaussian Naïve Bayes 62.36 64.39
10 Nearest Neighbours 62.07 78.24
Random Forest 61.78 71.23
Linear Discriminant Analysis 50.00 60.69
Logistic Regression 37.36 71.71
Support Vector Machine 35.63 71.27
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4.2 EMG Classification

Table 2: Comparison of the 10-fold classification of EMG data and 10-fold classification of EMG data alongside synthetic data as
additional training data.

Classifier Without GPT-2 With GPT-2 Data

Random Forest 93.62 (0.8) 93.90 (0.59)
Logistic Regression 93.75 (1.04) 93.86 (1.05)
Support Vector Machine 93.42 (0.89) 93.46 (0.94)
Linear Discriminant Analysis 91.95 (1) 92.59 (1.05)
10 Nearest Neighbours 91.23 (0.89) 91.11 (0.88)
Gaussian Naïve Bayes 77.73 (1.39) 74.46 (1.38)

Table 2 shows the results for EMG classification. The best model was the Random Forest which scored 93.9% (deviance
0.59) during the k-fold benchmarking process in which GPT-2 synthetic data was introduced as additional training
data.

Table 3: EMG classification abilities of the models on completely unseen data with regards to both with and without synthetic
GPT-2 data as well as prior calibration.

Classifier Uncalibrated Calibrated

Vanilla Synth. Vanilla Synth.

Random Forest 67.33 69.31 74.26 75.25
Logistic Regression 60.40 87.13 60.40 87.13
Support Vector Machine 39.60 62.38 44.55 46.53
Linear Discriminant Analysis 65.35 67.33 86.14 79.21
10 Nearest Neighbours 75.25 75.25 78.22 78.22
Gaussian Naïve Bayes 95.05 94.06 96.04 97.03

Table 3 shows the abilities of the models when predicting the class label of completely unseen EMG data. Interest-
ingly, the Gaussian Naïve Bayes model outperformed all others consistently. The best Gaussian Naïve Bayes model at
predicting completely unseen data was when it was also trained with calibration and GPT-2 synthetic data alongside
the dataset, at an accuracy of 97.03%.

4.3 Real-time EMG Prediction

The results in Figure 5 show the process of a user performing hand gestures for three minutes (124 data objects). The
best-performing EMG prediction model was applied (Gaussian Naïve Bayes + GPT-2), which predicted real-time data
with 89.5% accuracy. All of the erroneous predictions occurred during state transitions, which was expected given
that models were trained on concrete gestures and had not been exposed to transitional behaviours of the arm muscles
when shifting between gestures. The best predictive model on the dataset without GPT-2 augmentation scored 68.29%
accuracy. The 95% Wilson confidence interval for the augmented model’s accuracy was [82.89, 93.77], and for the
non-augmentation model was [59.62,75.86]. No calibration was performed, that is, the models were never exposed to
data from this user. Thus, GPT-2 biosignal data augmentation leads to a model which can classify data from unseen
subjects with a higher rate of success. Figure 6 shows the confusion matrix for this experiment.
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Figure 5: Real-time execution of gestures for three minutes predicted with the augmented EMG model (89.5%) and non-augmented
EMG model (68.29%).

O
PE

N

N
E
U
TR

AL

C
LO

SE
D

OPEN

NEUTRAL

CLOSED

0.976 0.024 0

0.098 0.902 0

0.171 0.024 0.805

Figure 6: Confusion Matrix for real-time EMG classification

5 Conclusions and Future Work

To conclude, this study has presented multiple experiments with real and synthetic biological signals in order to ascertain
whether classification algorithms can be improved by considering data generated by the GPT-2 model. Although the
data are different, i.e., real and synthetic data were unique, a model trained on one of the two sets of signals can
strongly classify the other and thus the GPT-2 model is able to generate relatively realistic data which holds useful
information that can be learnt from for application to real signals. For EEG, an SVM trained on synthetic data could
classify real data at 74.71% accuracy and a KNN algorithm could do the same for real EMG classification at 78.24%
accuracy, training on only synthetic data. We then showed that several learning algorithms were improved for both
EMG and EEG classification when the training data was augmented by GPT-2. The main argument of this work is
that synthetic biosignals generated by an attention-based transformer hold useful information towards improving several
learning algorithms for classification of real biological signal data. In future, larger datasets could be used and thus
deep learning would be a realistic possibility for classification following the same process. Given that this work showed
promise in terms of the model architecture itself, similar models could also be benchmarked in terms of their ability
to create augmented training datasets e.g. BART, CTRL, Transformer-XL and XLNet. Another unoptimised level of
detail is the amount of synthetic data that is added to the training set for augmentation, future work could explore the
level of data needed for apt improvements to the models.

Our suggested model for EMG, the GNB approach trained with human-sourced GPT-2 generated synthetic signals,
was powerful in terms of predictive ability and required relatively little computational resources given its simplistic
nature. Additionally, the approach did not require further calibration, as many state-of-the-art approaches do (including
the Myo software itself), instead correctly predicting the behaviours of a new subject from the point of wearing the
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device. Given these attributes, the model is apt for usage on-board within wearable EMG devices for real-time prediction
of gesture.
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