
Vol.:(0123456789)

SN Computer Science           (2025) 6:278  
https://doi.org/10.1007/s42979-025-03714-x

SN Computer Science

ORIGINAL RESEARCH

Variable Trust Control Setting for Autonomous Vehicle Highway 
Navigation and Improved User Experience

James E. Pickering1  · Jisun Kim1 · Joshua D’Souza1 · Keith J. Burnham1

Received: 10 October 2024 / Accepted: 14 January 2025 
© The Author(s) 2025

Abstract
This paper addresses the development of a model-based design approach to enhance the acceptance of safe manoeuvrabil-

ity of autonomous vehicles (AVs) on highways. A variable trust control setting (TCS) is introduced that empowers users to 

'feel in control' of the AV, potentially increasing confidence in, and acceptance of, the technology. This setting is grounded 

in deontological ethics and utilises virtual boundaries (VBs) to guide driving decisions, i.e., the distance between two AVs 

interacting with one another. The approach is simulated using a dynamic bicycle model that represents each AV, controlled 

through an adaptive model-predictive control (MPC) algorithm. The paper outlines the MPC approach, the dynamic bicycle 

model, and the associated velocity control algorithm. Metrics are introduced to quantify safety of specific AV manoeuvres 

during interactions with other AVs, enabling the examination of various scenarios. A novel simulation package has been 

developed to investigate the impact of the proposed variable TCS, focusing on how VBs and steering limitations influence 

the safety and comfort of AVs during overtaking manoeuvres. The findings demonstrate the effectiveness of this approach, 

showing that it could potentially allow users to actively manage the safety and comfort aspects of AV operation.

Keywords Control engineering · Autonomous vehicles (AVs) · Model-predictive control (MPC) · Navigation algorithms · 

Variable trust control setting (TCS) · Vehicle safety

Introduction

Literature Review and Outline of Problem

The UK Government has developed a 25-year strategy, 

detailed in [1], with the aim to foster a greener and more 

sustainable nation. In 2022, the Government published a 

document focusing on responsible innovation in autonomous 

vehicles (AVs), emphasising ethics, safety, and transpar-

ency in the development of navigation algorithms, see [2]. 

Concurrently, the UK is endeavouring to become a leader 

in the development and implementation of AVs [3]. Such 

developments have led to the increasing adoption of cyber-

physical systems (CPSs) in both AVs and broader transporta-

tion system networks. CPSs are complex, multidimensional 

systems that integrate sensors and actuators through wire-

less communication networks and computing, thereby con-

necting the cybernetic and physical environments [4]. This 

approach shows great potential for improving the safety, 

environmental sustainability, and efficiency of transporta-

tion systems [5].

The above introduces the possibility for a fleet of AVs 

within which an individual AV can ‘behave’ differently 

based on a predefined user setting. If there is low trust in 

AV technology, then the AV does not enter the proximity of 

other AVs. It is conjectured that this may increase the adop-

tion of the technology. Due to user defined variability, the 

on-board navigation algorithms will need to be programmed 

to consider user preferences and factor-in safety and ethical 

considerations. This will ensure that AV navigation algo-

rithms are justiciable, reasonable and understandable by 

the users. Simulation models can be used to explore novel 

navigation algorithms as they are safer and less expensive, 
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see [6] and [7]. Determining how an AV will perform in 

simulation is a crucial step as it enables different navigation 

algorithms to be explored and any potential defects to be 

highlighted and considered at the design stage.

Trust is an important element for users and occupants 

of AVs due to the likelihood of entering vulnerable situa-

tions whereby the users entrust faith in the system [8]. Trust 

can have an impact on the decision of users to embrace the 

deployment of such automation [9]. Trust is defined as the 

“attitude that an agent will help achieve an individual’s goals 

in a situation characterised by uncertainty and vulnerability” 

[10]. It is also described as the “willingness of a party to 

be vulnerable to the actions of another party based on the 

expectation that the other will perform a particular action 

important to the trusting party, irrespective of the ability 

to monitor and control that other party” [11]. For there to 

be trust in the automation, the multifaceted construct that 

embraces performance, process and purpose must be estab-

lished. Performance is related to consistency, stability, and 

desirability of automation. Process indicates the operators’ 

knowledge of the underlying algorithms that govern behav-

iour of the system. Purpose represents the producers’ inten-

tion in creating the system [12]. The introduction of AVs is 

expected to be accompanied by user uncertainty, resulting 

in varying levels of trust among users. This variability in 

trust will raise questions about how AVs behave in specific 

scenarios, such as, for example, executing a lane change to 

exit at a junction. Consequently, it is anticipated that during 

the initial phase of AV deployment, user trust levels could 

differ significantly. This implies the possibility of mismatch 

between the capability of AVs and users’ expectations that 

are shapedbased on their previous driving experiences. The 

mismatch could lead to reduced task effectiveness and effi-

ciency that can be detrimental in the driving context. This 

warrants the need to calibrate trust in AVs [13]. Hence, it is 

proposed that trust should be a variable within the design of 

AV navigation algorithms. Trust in AVs is a crucial aspect 

which may limit their adoption and integration into society. 

Trust has been addressed as a factor that needs calibration, 

see [14] and [15]. The methods utilised for calibrating trust 

have been used for designing human-machine-interfaces 

(HMIs). Also, this is to enhance system transparency and to 

provide information on system capabilities and limitations, 

see [14] and [15]. However, these approaches do not con-

sider the behaviour of AVs and their related control. Recent 

literature has highlighted the multidimensional nature of 

trust, encompassing factors such as reliability, safety, trans-

parency, and user experience. In [16], the authors empha-

sise the significance of reliability in shaping trust percep-

tions, as any errors in performance could lead to critical 

safety issues, thus negatively affecting users’ initial level of 

trust. However, reliability in this context is contingent upon 

robust technical infrastructure and effective maintenance 

protocols. Safety is another fundamental determinant of 

trust in AVs. Research in [17] indicates that users prioritise 

safety features and accident prevention mechanisms when 

assessing their trustworthiness and also when evaluating 

the potential AV features that would be most attractive to 

the public. The perceived level of safety is influenced by 

the vehicle's decision-making processes, collision avoid-

ance strategies, and response to unforeseen circumstances. 

Transparency emerges as another key factor in fostering trust 

between users and AVs. In [18], the authors state that gain-

ing proper trust would require transparent communication 

of AVs' intentions, capabilities, and limitations. Providing 

users with insights into the vehicle's algorithms, sensor data 

interpretation, and decision rationale could enhance their 

understanding and acceptance of autonomous technologies.

Scenario Considered in this Research

In this research, the scenario involves the use of a two-lane 

highway, with vehicles on the approach to a roundabout, 

see Fig. 1. The highway and roundabout considered in this 

research is representative of a typical configuration in the 

UK. The highway section model excludes details such as 

gradient, camber and wheel slip. The highway speed limits 

shown in Fig. 1 are, 31.29m∕s (70mph ) on the main stretch 

of the highway, 22.35m∕s (50mph) as the roundabout is 

approached and 13.41 m∕s (30mph ) for the first exit of the 

roundabout. In Fig. 1, the initial scenario consists of two 

AVs, denoted AVa and AVb , for Autonomous Vehicle a and 

Autonomous Vehicle b , respectively. In this scenario, AVb 

Fig. 1  Typical Highway and Roundabout Road Set-Up in the UK
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is in the right-hand lane and is performing an overtaking 

manoeuvre on AVa , before both AVs then plan to exit the 

highway via the first exit of the roundabout. The reference 

(waypoints) for each of the AVs are given, i.e., blue for AVa 

and red for AVb.

To provide a baseline for comparison, as detailed above, 

the initial problem considers the interaction of the two AVs 

when performing the overtaking manoeuvre on the approach 

to a roundabout. The aim is to develop navigation algorithms 

that consider deontological ethical principles, based on met-

rics involving safety. This is then used to develop a variable 

trust control setting (TCS) and to evaluate the effectiveness 

of the algorithm via a derived safety measure, or metric. 

Research presented in [19] has involved the development of 

a simulation package that estimates the collision probability 

and harm. In this research, a similar approach has been taken 

in the development of the proposed variable TCS. In [20], 

a coordinated control approach using model predictive con-

trol (MPC) for ethical manoeuvres of AVs is developed – a 

similar approach is adopted in this research. In addition to 

this, the effect of passenger comfort will also be investigated, 

i.e., assessing the effect that an increasing/decreasing pas-

senger comfort has on the variable TCS in an increasing/

decreasing manner.

Hypothesis, Contributions and Outline of Paper

Based on the premise alluded to in Section Literature Review 

and Outline of Problem, the paper is motivated by the fol-

lowing hypothesis: Incorporation of user defined TCSs into 

the navigation algorithms of AVs can significantly enhance 

user trust and adoption rates of the technology, by dynami-

cally adjusting the vehicle's operational behaviour according 

to individual comfort and safety preferences. These adjust-

ments will lead to measurable improvements in user satisfac-

tion, and overall trust in AV technology. This hypothesis is 

grounded in the idea that personalising AV behaviour based 

on user preferences and trust levels, as determined through 

user settings, will directly impact the perception and effec-

tiveness of AVs in real-world scenarios. By aligning the 

operational characteristics of AVs with user expectations 

and ethical considerations, it is anticipated that users will 

be more inclined to trust and adopt this technology, thus 

enhancing the overall safety and efficacy of autonomous 

transportation systems.

The main contributions of this article are as follows:

 i. Introduction of a variable TCS that allows users to 

dynamically control the virtual boundaries (VBs) and 

maximum steering rate of AVs. This feature uniquely 

enables users to adjust how the AV operates based 

on their personal comfort and trust in the technology, 

offering a customisable user experience.

 ii. Empirical investigation into how variations in the trust 

setting affect risk metrics such as the relative collision 

metric (RCM) and duration of risk imposed (DRI). 

This study is among the first to quantitatively link trust 

variation with measurable safety outcomes in AVs.

The article is organised as follows. The simulation model 

is formulated in Section Simulation Model, with the simu-

lation results presented and discussed in Section Results 

and Discussion. Conclusions of the research as well as an 

outlook are presented in Section Conclusions and Future 

Outlook

Simulation Model

A simulation model considering AVa and AVb navigation is 

developed using a CPS approach, see Fig. 2a, with further 

details given in the following sub-sections.

The simulation model is based on the following initial 

assumptions:

 i. AVs can communicate (e.g., known position and 

velocity) using vehicle-to-vehicle (V2V) communi-

cation.

 ii. AVs are equipped with onboard sensors (e.g., cameras) 

to allow other AVs in each localised vicinity to be 

identified.

 iii. AVs adhere to maximum speed limits of 26.82m∕s 

(60mph ) in the left-hand lane and 31.29m∕s (70mph ) 

in the right-hand (overtaking) lane.

Rule-Based Trajectory Algorithms and Operation 

of Virtual Boundaries

This section presents the concept of VBs and outlines their 

application in the design of AV deontological navigation 

algorithms with a variable TCS, previously developed in 

[21]. These algorithms expand upon the framework previ-

ously established in [22].

Considering the scenario introduced in Section Sce-

nario Considered in this Research, the navigation algo-

rithms are designed for the following situations:

1. Highway lane behaviour (longitudinal control)

2. Lane changing behaviour (lateral control)

3. Entering a decision point (roundabout junction)
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Fig. 2  Architecture Framework of the Simulation Model (a), Dynamic Bicycle Model (b) and Adaptive Model-Predictive Control (MPC) (c)
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Virtual Boundaries

The VBs are used to provide a framework for the safe opera-

tion of AVs, whilst considering the navigation algorithm 

design. The VBs represent distances set-up from the centre 

of each AV, denoted Cn (where the subscript n denotes the 

Vehicle ID, i.e., Vehicle a or b ), to quantify the potential 

risks, see Fig. 3a.

The VBs to the side of an AV are set-up to ensure that 

AVs travel in the centre of a given lane, see Fig. 3. The VBs 

to the side of a vehicle are given by:

• Side denoted Snl and Snr for the left and right (where n is 

the Vehicle ID) of a given vehicle, respectively. Vehicles 

should avoid entering each other’s ‘Side’ VB. In Fig. 3a, 

the Sar distance, denoted d , for AVa is given, denoted dSar
 . 

The value given for both Snl and Snr is 2 m, i.e., half the 

width of the lane.

The VBs to the front and rear of a vehicle, which relate 

to the speed dependent braking distances, are given by the 

three-tiered layers:

• Lower Limit (LL) denoted Lnf  and Lnr for the front and 

rear of a given vehicle, respectively. The LL is a VB that 

must be avoided by any AV – entering this will possibly 

involve a collision. Whilst unavoidable collisions are not 

considered here, research in this area may be found in 

[23] and [24]. In Fig. 3, the Laf  distance, denoted d , for 

AVa is denoted dLaf
.

• Middle Limit (ML) denoted Mnf
 and Mnr

 for the front and 

rear of a given vehicle, respectively. The preferred oper-

ation of an AV is to avoid entering this VB. In Fig. 3, the 

Mar
 distance, denoted d , for AVa is denoted dMar

.

• Upper Limit (UL) denoted Unf
 and Unr

 for the front and rear 

of a given vehicle, respectively. The UL is a VB that other 

AVs can manoeuvre into safely. However, the AVs should 

aim to leave as soon as possible. The UL VB considers a 

safety margin, i.e., sufficient braking distance that will main-

tain satisfactory comfort levels to the occupants on-board a 

given AV, and other AVs involved. In Fig. 3, the Uar
 dis-

tance, denoted d , for AVa is denoted dUar
.

The initial VBs for this research are given in Table 1. 

The VBs are based on the stopping distances between two 

vehicles (these being functions of velocity), recommended 

by the Department for Transport and the Driver and Vehicle 

Standards Agency (DVSA) in the UK, see [25].

As the VB distances are set-up from the centre of each 

vehicle, the front and rear lengths of the vehicle, denoted D , 

are defined, see Table 1. In this work, D is 1.4 m , i.e., so that 

the overall length of the vehicle is 2.8 m . In the simulation 

model, the UL VB is programmed to emulate the stopping 

Fig. 3  Virtual Boundaries (VBs) for Highway Driving (a), VB Over-

lap for Deontological Algorithm Design when Overtaking (b) and 

Details of how the Separation Distances are Determined (c)

Table 1  Length of Virtual Boundaries (VBs) as Functions of the 

Autonomous Vehicle (AV) Velocity

Velocity 

[ mph]

Virtual Boundaries

Lower Limit 

(LL), Lnf and

Lnr[m ] 

Medium Limit 

(ML)

Mnf
 and Mnr

 [ m ] 

Upper Limit (UL)

Unf
 and Unr

 [ m ] 

0 D+ 0.00 D + 0.00 D+ 0.00 

10 D+ 1.14 D+ 2.29 D+ 4.58 

30 D+ 5.72 D+ 11.43 D+ 22.86 

50 D+ 13.34 D+ 26.67 D+ 53.34 

70 D+ 24.00 D+ 48.01 D+ 96.01 
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distances, with the ML and LL VBs initially being 50% and 

25% of the stopping distances, respectively, see Table 1. 

These VB lengths are further investigated in Section Results 

and Discussion via an initial sensitivity analysis.

Deontological Ethics

In deontological ethics, an action is morally good if it fol-

lows a predetermined set of rules or moral values, see [26]. 

Considering Fig. 1, the AV being overtaken is subject to 

the actions and/or consequences of the AV performing the 

overtaking manoeuvre, with both AVs adopting the driving 

rules (DRs) as follows:

1. Highway lane behaviour: All AVs on the highway should 

maintain an acceptable distance to the AV ahead, behind 

and to the sides.

2. Lane changing: Lane changing of a given AV on a high-

way should be undertaken given there is acceptable 

space to minimise disruption to other AVs, and to avoid 

accidents.

3. Entering a decision point: When entering a decision 

point, an AV should only proceed forward if there are 

acceptable distances to other AVs ahead or to the sides.

In terms of the VBs, the ‘acceptable distance’ is based on 

the UL of the two AVs, see Fig. 3b. The DRs have the same 

maxim applied (a maxim is a rule that connects an action 

to the reasons for the actions), hence: act in such a way as 

to minimise impact to other road users (i.e., not effecting 

another AVs journey time, respecting human lives, and not 

causing damage to other AVs) and the environment.

Variable Trust Control (VTC) Setting

The proposed variable TCS, which is demonstrated in simu-

lation in Section Results and Discussion, is based on the 

VB lengths given in Table 1, and the maximum steering 

rate, see Section Sensitivity Analysis involving Maximum 

Steering Rate.

It is proposed that an operator/user of the AV has an 

option to select from a range of TCSs. In this paper, five 

trust settings are considered. These are no trust, little trust, 

medium trust, medium-to-high-trust and complete trust, see 

Table 2. In this work it is assumed that the setting can be 

specified upon entering the AV or adjusted during usage, 

i.e., the setting can be adjusted if the users trust level of the 

AV technology changes. A setting of 0% implies no trust in 

the AV technology and 100% implies complete trust in the 

AV technology. In this work, the level of trust is associated 

with a perceived risk, as was considered in [14]. Essentially, 

varying the level of trust in the AV will result in varying the 

distances of the VBs or the maximum steering rate.

The variable TCS values, denoted T  , for the five settings 

are given in Table 2. These settings correspond to the user 

preferences (i.e., no trust, little trust, medium trust, medium-

to-high-trust and complete trust). The associated values of 

variable TCSs, in the range 1.20 to 0.80 are used to adjust 

the VB lengths, with a medium trust setting of 1.00 cor-

responding to the nominal VB lengths given in Table 1 

implying no adjustment. In the case of complete trust the 

VB lengths are reduced by a factor of 0.20 and in the case 

of no trust the VB lengths are increased by a factor of 0.20.

The above initial variable TCSs which affect VB lengths 

and steering rates are investigated further to assess vehi-

cle comfort and safety via a sensitivity analysis in Sec-

tion Results and Discussion.

Control Strategy

This section introduces the dynamic bicycle model for rep-

resenting AVs within a global coordinate system, focus-

ing on controlling the steering angle to follow a reference 

trajectory. It also provides an outline of an adaptive model 

predictive control (MPC) algorithm that optimises real-time 

trajectories and a velocity control algorithm that regulates 

vehicle speeds based on interactions, ensuring safe naviga-

tion. In addition, the section introduces metrics for assessing 

collision risk and potential harm.

Dynamic Bicycle Model

A dynamic bicycle model is used to represent each of the AVs, 

within a global position given by X and Y  , see Fig. 2b. The 

vectors from the bicycle model, denoted vx and vy represent the 

longitudinal and lateral velocity, respectively. The vehicle’s 

longitudinal acceleration is assumed to be in a quasi-steady 

state, i.e., gradual longitudinal acceleration changes resulting 

in the approximation of steady state responses at each instan-

taneous state [27]. The aim of the dynamic bicycle model is 

to follow a reference trajectory denoted Yref  , given by the red 

Table 2  Linguistic Terms and how these Correspond to the Variable 

Trust Control Settings (TCS), T 

Trust [%] Linguistic terms Variable 

TCS, T
[1.20–

0.80]

0 No trust 1.20

25 Little trust 1.10

50 Medium trust 1.00

75 Medium to high trust 0.90

100 Complete trust 0.80



SN Computer Science           (2025) 6:278  Page 7 of 14   278 

SN Computer Science

circle on the orange line in Fig. 2b. The reference trajectory 

is obtained by controlling the steering angle, denoted 𝛿 . The 

yaw angle output, denoted 𝜓 , and reference yaw angle, denoted 

𝜓ref  , are determined with reference to the horizontal axis. On 

this basis, the dynamic model is initially adopted from [28] 

and is given by:

where Vx denotes the longitudinal velocity at the vehi-

cle’s centre of gravity (CoG), m denotes the vehicle mass, 

Iz denotes the vehicle’s yaw moment of inertia, If  denotes 

the longitudinal distance from the CoG to the front tyres, Ir 

denotes the longitudinal distance from the CoG to the rear 

tyres, Cf  denotes the cornering stiffness of the front tyres, 

Cr denotes the cornering stiffness of the rear tyres, 𝛿 denotes 

the vehicle’s input front steering angle and y denotes the 

vehicle’s lateral position output. Simulation model param-

eters are given in Table 3, including maximum acceleration 

and deceleration values, denoted amax and amin , respectively.

Considering Eq. (1), the state space model does not account 

for the global lateral position as a state variable, denoted Y  . 

Therefore, this is determined using the following [29]:

Using small angle approximations i.e., sin𝜓 ≈ 𝜓 and 

cos𝜓 ≈ 1 , and considering the notation Vx = ẋ, Eq. (2) can be 

rewritten as follows:

The state space model for the 2 degrees of freedom is 

then given by:

(1)

d

dt

⎡
⎢
⎢
⎢
⎢
⎣

ẏ

𝜓

�̇�

y

⎤
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

−
2Cf +2Cr

mVx

0 −Vx −
2Cf lf −2Crlr

mVx

0

0 0 1 0

2lf Cf −2lrCr

IzVx

0 −
2l2

f
Cf +2l2

r
Cr

IzVx

0

1 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

ẏ

𝜓

�̇�

y

⎤
⎥
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎣

2Cf

m

0
2lf Cf

Iz

0

⎤
⎥
⎥
⎥
⎥
⎦

𝛿

(2)Ẏ = ẋsin𝜓 + ẏcos𝜓

(3)Ẏ = Vx𝜓 + ẏ

Using the dynamic bicycle model, Ẋ is derived from the 

following equation of motion, see [29]:

Using small angle approximations, and considering the 

notation Vx = ẋ , Eq. (5) can be rewritten as follows:

Model-Predictive Control

An adaptive model-predictive control (MPC) algorithm is 

developed for each AV, see Fig. 2c. MPC is a predictive 

control method that utilises a dynamic model of the system 

to optimise future trajectories, enabling the vehicle to make 

informed decisions in real-time. MPC is able to take into 

account constraints on control action and system dynamics, 

making it particularly well-suited for the inherently dynamic 

nature of AV navigation, see [30] and [31].

By predicting future system states using a mathematical 

model and optimising control inputs to minimise deviations 

from a given desired reference trajectory, while respecting 

constraints, MPC is able to steer the AV towards the desired 

trajectory. At each time-step, an optimisation problem is 

solved to determine the appropriate control action, with the 

process continuously repeating using updated state informa-

tion. This continuous prediction, feedback and adaptation 

ensures that the AV effectively follows the desired path.

The MPC algorithm was tuned manually to produce an 

acceptable value for the integral of absolute error (IAE) by 

adjusting the control and prediction horizons to be 3 and 20, 

respectively. The bicycle model adopted here for each of the 

vehicles is constructed based on the references (waypoints) 

given in Fig. 1. The constraints are: maximum steering of 30 

degrees and for driving comfort the rate of change of steer-

ing angle is limited to 15 degrees/second. Further details 

of the MPC algorithm used in this research can be found 

in [32].

Velocity Control

In a scenario as in Fig. 1, the velocities of AVa and AVb 

would be influenced by the presence of other vehicles, 

therefore velocity control is required. For AVa, the aim 

of the deontological algorithm (see Section Deontologi-

cal Ethics) is to maintain a velocity of 26.82 m∕s(60 mph ) 

(4)

d

dt

⎡
⎢
⎢
⎢
⎢
⎣

ẏ

𝜓

�̇�

Y

⎤
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

−
2Cf +2Cr

mVx

0 −Vx −
2Cf lf −2Crlr

mVx

0

0 0 1 0

2lf Cf −2lrCr

IzVx

0 −
2l2

f
Cf +2l2

r
Cr

IzVx

0

1 Vx 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

ẏ

𝜓

�̇�

Y

⎤
⎥
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎣

2Cf

m

0
2lf Cf

Iz

0

⎤
⎥
⎥
⎥
⎥
⎦

𝛿

(5)Ẋ = ẋcos𝜓 − ẏsin𝜓

(6)Ẋ = Vx − ẏ𝜓

Table 3  Simulation Model 

Parameter Values
Model 

parameter

Value [units]

Cf  19,000 [ N∕rad]

Cr 22,000 [ N∕rad]

mn 2400 [ kg]

vn 0 to 31.29 [ m∕s]

lf  1.2 [ m]

lr 1.6 [ m]

Iz 1575 [ kgm2]

r 140 [Ns∕m] 

amax 10[m∕s2] 

amin -6 [m∕s2] 
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and to decelerate to 13.41 m∕s (30 mph ) when 274 m away 

from the roundabout. If at any point in time, the VB UL is 

not respected (i.e., from another vehicle overtaking), AVa 

is programmed to decelerate to a lower velocity of 24.59 

m∕s (55 mph ), see Fig. 4a. This velocity is held until the 

VB UL is again respected by other vehicles. Regarding 

the velocity control of AVb with the deontological algo-

rithm, an initial velocity of 31.29 m∕s(70 mph ) is held 

while overtaking AVa in Lane 1 with the VB UL being 

respected, see Fig. 4b. Once this condition is met, AVb will 

then decelerate to the driving speed of 26.82 m∕s (60 mph ) 

in Lane 1. In a similar manner to AVa,AVb will decelerate 

to 13.41 m∕s(30 mph ) as the roundabout is approached 

whilst constantly respecting the VBs.

Reference Logic

From Fig. 1, AVa must remain in Lane 1 for taking the 1st 

exit at the roundabout. Similarly, AVb also aims to take the 

1st exit. Hence, decision making algorithms are required to 

account for the lane changing manoeuvre of AVb into Lane 1. 

Because AVb is programmed to follow the DRs, it is permit-

ted to change lane only if the ML VBs of the two AVs are 

respected, see Fig. 5.

Relative Collision and Potential Harm Metrics

The lateral and longitudinal separation distances between 

two vehicles, as illustrated in Fig. 3c, are given, respectively, 

by:

Fig. 4  Velocity Control Algorithm for AVa with a Deontological Navigation Algorithm (a), AVb with a Deontological Navigation Algorithm (b)

Fig. 5  Reference Logic for AV
b
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where ys and xs denote the lateral and longitudinal separa-

tion distances between the vehicles, ya and xa denote the 

lateral and longitudinal position of AVa at time t  , and yb 

and xb denote the lateral and longitudinal positions of AVb , 

respectively.

Equations (7) and (8) are used with the VBs to quantify 

the risk presented between the two vehicles. The RCM, 

denoted C , provides an approach to quantifying risk and 

is given by:

Equation (9) outputs values between 0 and 1. A value 

0 indicates zero risk, (no overlap of the VBs) hence, no 

risk of a collision. A value tending towards 1 indicates an 

increasing risk. If a value of 1 is recorded for the RCM, 

this is likely to result in a collision.

The potential harm metric (PHM), denoted H , provides 

an approach to quantifying risk and is given by:

where Δvn denotes the difference in the velocities of two 

vehicles, Δvmaxn
 denotes the maximum velocity difference 

between two vehicles and ± is used to denoted direction, i.e., 

positive for vehicles moving towards each other, negative for 

vehicles moving apart and a value of zero for vehicles trav-

elling at the same velocities (i.e., identical magnitude and 

direction). The difference in vehicle velocities is commonly 

used for estimating harm, see [33] and [34]. Equation (10) 

provides a numerical value to determine risk, i.e., between 

0 (no risk) and 1 (high risk).

Results and Discussion

The results are now detailed for the deontological algo-

rithm in Section Deontological Algorithm (Nominal case 

with TCS, ), as well as two initial sensitivity study analy-

ses in Section Sensitivity Analysis involving Variable 

Trust Control Setting (TCS) for a variable TCS, and in 

Section Sensitivity Analysis involving Maximum Steering 

Rate for a maximum steering rate.

(7)ys = yb − ya

(8)xs = xb − xa

(9)C =

[
1 −

xs

Unf + Unr

][
1 −

ys

Snl
+ Snr

]

(10)H = ±

[
Δvn

Δvmaxn

]

Deontological Algorithm (Nominal case with TCS, 

T = 1.00)

Simulation results for the deontological algorithm (as detailed 

in Section Deontological Ethics) corresponding to the nominal 

case of medium trust, with a TCS value of unity, are pro-

vided in Fig. 6. The graphical output of velocity versus time 

for the two AVs is given in Fig. 6 (Upper-Left). Recall from 

Fig. 1, AVa is travelling in the left-hand-lane, initially at the 

maximum velocity (i.e., 60mpℎ or 26.82m/s). AVb is travelling 

at the maximum speed in the right-hand-lane, i.e., 31.29m/s 

(70mpℎ). At approximately 30s, AVb performs an overtak-

ing manoeuvre on AVa, with both AVs then travelling at their 

maximum speeds, i.e., in the left-hand- lane, 26.82 m/s and 

in the right-hand lane 31.29m/s. The speed of both AVs (with 

AVb now being ahead of AVa) then decreases as the speed limit 

approaching the roundabout sets-in, i.e., 13.41m/s (30mpℎ). 

The lateral displacement versus longitudinal displacement 

graphical output for AVa and AVb is initially given, see Fig. 6 

(Upper-Right). Note that the overtaking manoeuvre takes 

place at around 350m. The graphical outputs for the longitu-

dinal and lateral separation of the two AVs are given in Fig. 6 

(Upper-Middle-Left and Upper-Middle-Right, respectively). 

Note that the longitudinal separation distance remains con-

stant once AVb has completed the overtaking manoeuvre on 

AVa. The graphical outputs for RCM and PHM for the two AVs 

are given in Fig. 6 (Lower-Middle-Left and Lower-Middle-

Right, respectively). For the RCM, the peak RCM and DRI are 

labelled, with values of 0.22 and 9.15s being captured, respec-

tively (see Table 4). Both values are relatively low as the rules 

within the deontological algorithm were respected. The RCM 

is high for a short duration (approximately 9.15s) due to the 

velocity control applied to AVb , resulting in AVb travelling at 

a velocity of 70mpℎ when overtaking AVa, and returning to 

the desired velocity of 60mpℎ once AVa has been overtaken. 

The PHM during the same time-period is also relatively low, 

with a positive value of 0.14, see Table 4. Finally, the lateral 

acceleration of the overtaking vehicle (i.e., AVb ) is given, see 

Fig. 6 (Lower-Left), with the values for the peak and positive 

mean acceleration recorded in Table 4. Note that a first order 

filter was applied to the acceleration versus time data with a 

filter transfer function of:

Sensitivity Analysis involving Variable Trust Control 

Setting (TCS)

The results of the sensitivity analysis for the variable TCS, 

as detailed in Section Variable Trust Control Setting, are 

(11)G(s) =
1

0.1s + 1
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presented in Fig. 7. The model has been used to examine 

the impact of variable TCSs, involving adjustments to the 

ML length of the deontological AV’s VBs, as shown in 

Table 2 of Section Variable Trust Control Setting. Figure 7 

displays the RCM outcomes across various trust settings, 

with the PHM and DRI values being given in Table 5. As 

expected, if the level of trust increases, resulting in lower 

TCSs, hence smaller ML VBs, then the occupants’ risk 

increases. Conversely, lower values of trust, leading to 

higher TCSs, leading to a larger ML VBs, then the occu-

pants risk decreases. Transitioning the trust setting from 

'no trust' to 'complete trust' leads to a 19% increase in the 

RCM and a 22% increase in the DRI. Thus, the 'complete 

trust' setting exposes occupants to higher levels of risk 

over a longer duration. Hence, the more confident the user 

is with the technology, the more risks the user is prepared 

to take. This will ironically lead to a greater number of 

risk takers as the technology matures, with this leading 

to reduced safety. As anticipated, the peak PHM remains 

constant, due to the AVs' effective velocity control system. 

Fig. 6  Deontological Algorithm 

Design Results

Table 4  Deontological Algorithm Design Results (Nominal Case, 

where T = 1.00) 

Maximum 

Relative 

Collision 

Metric 

(RCM),C 

Maxi-

mum 

Potential 

Harm 

Metric 

(PHM),H 

Duration 

of Risk 

Imposed 

(DRI) 

[Seconds]

Peak 

Accel-

eration 

apeak[m∕s] 

Positive 

Mean 

Accel-

eration 

ameanp
[m∕s] 

T = 1.00

(Medium 

Trust)

0.22 0.14 9.15 0.0056 0.0037
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Fig. 7  Sensitivity Analysis 

Results for the Variable Trust 

Control Setting (TCS)

Table 5  Sensitivity Analysis Results for the Variable Trust Control Setting (TCS)

Maximum Relative Colli-

sion Metric (RCM),C 

Maximum Potential 

Harm Metric (PHM),H 

Duration of Risk 

Imposed (DRI) [Sec-

onds]

Peak Accelera-

tion apeak[m∕s] 

Positive Mean 

Acceleration 

ameanp
[m∕s] 

1.20 (No Trust) 0.13 0.14 7.05 0.0056 0.0037

1.10 (Little Trust) 0.18 0.14 8.15 0.0056 0.0037

1.00 (Medium Trust) 0.22 0.14 9.15 0.0056 0.0037

0.90 (Medium-to-

High-Trust)

0.27 0.14 10.15 0.0056 0.0037

0.80 (Complete Trust) 0.32 0.14 11.15 0.0056 0.0037
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This ensures compliance with velocity limits during over-

taking and maintaining lane discipline in both the left-

hand and right-hand lanes. This result indicates that the 

peak acceleration values remain constant. Note that Row 3 

in Table 5 corresponds to the results presented in Table 4.

Sensitivity Analysis Involving Maximum Steering 

Rate

The results of the sensitivity analysis for the maximum 

steering rate of change, set against a fixed ML VB (i.e., 

T = 1.00 , medium trust), are presented in Fig. 8. The simu-

lation model is now utilised to explore the user experience 

under AV operations that employ deontological algorithms 

with a variable TCS related to the maximum steering rate. 

Steering rates ranging from 0.10 rad∕s and 0.30 rad∕s are 

applied in 0.05 rad∕s increments, representing levels from 

no trust to complete trust, respectively. Key findings relating 

to the RCM and DRI from Fig. 8 are presented in Table 6.

As the variable TCS decreases, indicating maximum trust 

and thus the highest steering rate, the risk imposed, as 

expected, indicates an increased risk to the occupants. 

Fig. 8  Sensitivity Analysis Results for Maximum Steering Rate
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Conversely, as the TCS increases, indicating minimum trust 

with the lowest steering rate, the risk imposeddecreases. 

Adjusting the trust setting from 'no trust' to 'complete trust' 

leads to a slight increase in the RCM, while the DRI remains 

unchanged. As expected, the peak PHM remains constant, 

owing to the effectiveness of the AV's velocity control sys-

tem; both AVs adhere to speed restrictions during overtaking 

and maintain their position within their designated lanes. 

However, it should be noted that the peak acceleration, 

denoted as apeak, diminishes with increasing trust. The posi-

tive mean acceleration, denoted ameanp
 , is also analysed, 

showing an increase as the trust level increases. This indi-

cates that higher TCSs result in lower peak accelerations, 

but these accelerations prevail over a longer duration.

Conclusions and Future Outlook

This paper has presented a novel approach to enhancing 

the safe and ethical manoeuvrability of autonomous vehi-

cles (AVs) on highways. It has described the integration 

of driving rules based on deontological ethical principles 

with the application of virtual boundaries (VBs) for AVs. 

An adaptive model-predictive control (MPC) algorithm, 

in conjunction with a dynamic bicycle model, has been 

utilised to model each AV and to facilitate the tracking of 

desired trajectories. The study has introduced a methodol-

ogy for continuous risk evaluation, grounded on the inter-

action between two AVs. The findings demonstrate how 

the risk imposed can be effectively integrated into a novel 

user specified variable trust control setting (TCS) for use 

on AVs. It can be observed that increased user trust from 

0 to 100%, thereby reducing the VB lengths of the AVs, 

results in an increased value of a relative collision metric 

(RCM) and an extended duration of risk imposed (DRI). 

This observation suggests that the variable TCS could 

empower AV users to feel more in control, enabling them 

to engage more fully with the technology. This engage-

ment is anticipated to foster greater confidence and better 

acceptance of the technology as it continues to evolve.

Adoption of a user-centric scheme for AVs, such as the 

variable TCS proposed here, is considered to represent a 

stepping-stone towards enhancing the overall comfort and 

perceived safety of AVs during their early release phase. 

However, as AV users become more confident with the tech-

nology, they are likely to become less risk averse and it is 

anticipated that the variable TCSs will allow closer running 

of AVs as the technology matures.

While the results are promising, they also indicate signifi-

cant opportunities for further research. Future work could 

include extending the simulation environment to incorpo-

rate dynamically changing conditions, which would offer a 

more realistic approach to modelling. Additionally, employ-

ing high-fidelity proprietary tools, such as, e.g., CarMaker, 

could facilitate the implementation of developed algorithms 

in real-time scenarios. This would allow for more compre-

hensive testing and refinement of the control strategies under 

a wider variation of realistic driving conditions, thus further 

advancing the field of AV technology research.
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Table 6  Sensitivity Analysis Results for Maximum Steering Rate

Maximum Relative Colli-

sion Metric (RCM),C 

Maximum Potential 

Harm Metric (PHM),H 

Duration of Risk 

Imposed (DRI) [Sec-

onds]

Peak Acceleration 

apeak[m∕s] 

Positive Mean 

Acceleration 

ameanp
[m∕s] 

 ± 0.10 rad/s
(No Trust)

0.22 0.14 9.15 0.0062 0.0036

 ± 0.15 rad/s
(Little Trust)

0.22 0.14 9.15 0.0060 0.0036

 ± 0.20 rad/s
(Medium Trust)

0.22 0.14 9.15 0.0058 0.0037

 ± 0.26 rad/s
(Medium-to-

High-Trust)

0.22 0.14 9.15 0.0056 0.0037

 ± 0.30 rad/s
(Complete

Trust)

0.23 0.14 9.15 0.0055 0.0038
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