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Abstract: The construction industry is facing issues worldwide, particularly worker fatali-
ties and injury rates. Construction safety requires careful attention and preparation across
the project’s entire lifecycle, from design to demolition activities. In the digital era, Building
Information Modeling (BIM) has emerged as a transformative technology in the construc-
tion industry, offering new opportunities to enhance safety standards and reduce accidents.
This study examines the influence of BIM on construction safety, particularly its capacity to
transform safety protocols, enhance danger identification, and minimize accidents during
the construction project’s duration. The review approach used is based on PRISMA. Scopus
and Web of Science were the databases used to search for qualifying publications. From
an initial cohort of 502 papers, 125 were chosen as relevant to the scope of this research.
A thorough analysis of the existing literature was conducted to examine the processes by
which BIM helps to improve safety, such as early hazards identification, conflict detection,
virtual safety simulations, and improved communication and collaboration among project
stakeholders. This study examined the following knowledge gaps: integration with safety
regulations and standards, a comprehensive safety dimension in BIM, BIM for real-time
safety monitoring, and a BIM-driven safety culture. The following potential future research
directions were highlighted: enhanced BIM applications for safety, longitudinal studies
on BIM and safety outcomes, BIM for post-construction safety and maintenance, and BIM
for safety training and simulation. In conclusion, the integration of BIM into construction
safety protocols presents significant potential for mitigating risks and improving safety
management over the asset lifecycle. As the industry increasingly adopts digital technology,
BIM will be crucial in establishing safer and more efficient construction environments.

Keywords: construction safety; building information modeling (BIM); digital technologies;
construction industry; hazard detection

1. Introduction
On construction sites, the main priority is the safety of the workers. Given the inherent

complexities and hazardous characteristics of construction sites, ensuring the safety of
construction workers remains a primary concern. Several studies have highlighted the
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high risks associated with such environments [1]. Compared to other industries, the con-
struction industry has the highest accident rate due to the wide range of human behaviors,
the unpredictability of job site conditions, and a lack of effective safety protocols [2]. As a
result, planning and attention throughout the construction project lifecycle are critical to
construction safety, from design to maintenance and end-of-life (EOL) activities. According
to the Census of Fatal Occupational Injuries (CFOI), there were 4384 workplace injuries
in the United States in 2022; 10% of these were attributed to the hazardous nature of the
environment [3]. Japan reported more than 26,000 accidents on construction sites the same
year [4]. According to the Korea Occupational Safety and Health Agency (KOSHA), worker
movements on construction sites accounted for 20% of construction-related incidents [5].
In 2023, Malaysia recorded 8994 accident cases, the highest number in recent years [6].
Similarly, from 2008 to 2020, the construction sector experienced the highest number of
workplace accidents in the European Union (EU) [7]. To address these accidents, the use
of digital technologies like Building Information Modeling (BIM) is crucial. According to
Borkowski [8], BIM is defined as “a model of information about a building that contains
complete and sufficient information to support all lifecycle processes and is directly in-
terpretable by computer applications”. It includes information about the building and its
components, as well as qualities such as function, shape, materials, and building lifecycle
processes. BIM is currently experiencing slow expansion in construction processes such as
operation, management, planning, and end-of-life activities [9]. Over time, the construction
sector has integrated BIM, which enhances the visualization and execution of construction
projects [10,11].

BIM has markedly enhanced safety in recent construction projects through increased
hazard assessment, risk mitigation, and real-time collaboration [12]. A significant break-
through is the capability to perform clash detection during the design process, thereby
mitigating risks related to structural, mechanical, and electrical conflicts. Projects such as
Crossrail in the UK employed BIM-based clash detection to avert site accidents resulting
from inadequately coordinated installations [13]. BIM mitigates the risk of worker injury
from unforeseen site alterations by detecting and addressing issues prior to construction.
A significant enhancement is 4D BIM simulation, which integrates planning with the 3D
model. This enables construction teams to view each project phase prior to execution,
detect high-risk activities, and implement preventive measures [14]. Furthermore, these
simulations allow for the identification of the safest sequence for construction activities,
guaranteeing that high-risk operations, such as crane lifts and deep excavations, are per-
formed with less risk. Furthermore, BIM enhances safety training through the development
of virtual reality (VR) and augmented reality (AR) simulations, enabling workers to adapt
to site circumstances prior to entering perilous zones [15]. This interactive training method
has demonstrated greater efficacy than conventional approaches, resulting in a decrease in
workplace incidents.

Analyzing BIM implementation across several countries can provide a comprehensive
understanding of its efficacy. In the UK, the use of BIM in the operation and management
stages of building projects is limited due to its early adoption stage [16]. However, there is
a prevailing belief that the use of BIM in building contracts will continue to expand. The
initial financial advantages are emphasized as crucial for those currently implementing
BIM [17]. Moreover, several nations within the European Union, including Cyprus, Ro-
mania, Belgium, Greece, and Hungary, have not yet formulated a plan to adopt BIM [18].
However, 25% of EU countries have already made the use of BIM mandatory and have
set specific dates for its implementation. In Malaysia, the implementation of BIM in con-
struction projects is limited to only 20% of architectural firms [19]. Meanwhile, the French
government has decided to construct 500,000 dwellings using BIM, leading to 65% of
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construction enterprises in France adopting BIM [20]. In Asia, the Singapore government
has been proactive in adopting the BIM process, making it one of the few Asian countries
with significant BIM usage in construction projects. The rate of BIM adoption in Singapore
is significantly higher compared to other countries [21].

In this specific context, substantial research has been carried out on the application
of BIM in the management of construction safety issues. For example, Sidani et al. [22]
conducted a detailed analysis to highlight the latest technologies and methodologies
for BIM-based augmented reality. Another study aimed to assess the collaboration and
associated risks involved in using BIM [23]. A recent literature review study sought to
improve occupational health and safety by combining BIM and focusing on increasing
productivity, resulting in a stronger link between production and safety [24]. Furthermore,
Rodrigues et al. [25] explored the application of BIM in construction safety, focusing on
minimizing falls from heights. Akram et al. [26] investigated the significance of BIM in
construction safety for developing countries and identified safety factors, but they were
unable to suggest mitigation strategies. In addition, a systematic review was undertaken to
improve construction safety by applying BIM techniques; however, it did not succeed in
identifying best practices [27]. Although some reviews specifically examine the integration
of certain management areas with BIM, such as sustainability [28] and risk management [29],
there is a scarcity of studies offering a comprehensive analysis of the use of BIM features
in the field of safety management [30], Design for Safety (DfS) tools, and the relationship
between BIM and DfS. Their research findings show that BIM has the potential to achieve
DfS. A recent systematic review examined the current status and emerging research trends
in construction safety management technologies [31]. In addition, as digital technologies
become increasingly prevalent in architecture and infrastructure development, concerns
have emerged regarding their impact on construction safety. This study elucidates the
digital potential of BIM, with the aim of fostering and directing future research in this field.
As a result, the objective of this study is to address the following research questions to
enhance the understanding of the impact of BIM on construction safety within the existing
body of knowledge.

RQ1. How can construction site accidents be prevented by using BIM?

RQ2. How can the implementation of BIM enhance the safety performances during the pre-
construction, construction, and post-construction phases?

RQ3. What are the knowledge gaps and future research requirements for BIM in the context of
construction safety?

To address the aforementioned research questions, a systematic review was conducted.
A systematic review provides a rigorous and comprehensive analysis of the existing re-
search on a certain topic. Numerous researchers have previously used this method to
answer research questions. For example, Xia et al. [32] performed a systematic literature
study to identify the future agenda for combining construction risk management and
stakeholder management. Recent research was carried out to investigate the development
of research about construction productivity [33]. In light of these facts, the significance of
systematic reviews has not been neglected. Systematic reviews advance knowledge in a
certain field by synthesizing existing research, identifying research gaps, and suggesting
new directions for future research [34]. Conducting a thorough literature review on BIM
and construction safety provides valuable insights into the growing body of knowledge on
the subject, informing practice, policy, and future research endeavors.

The subsequent sections of this paper are organized in the following manner. Section 2
outlines the research methodology. Section 3 presents the analysis and results. Section 4
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elaborates on discussion followed by limitations and recommendations. The final section
concludes this study with final remarks.

2. Research Methodology
This systematic review was conducted using the Preferred Reporting Items for Sys-

tematic Reviews and Meta-Analyses (PRISMA) methodology, as used in several stud-
ies [27,35–37]. PRISMA is an evidence-based reporting framework for systematic reviews
and meta-analyses. PRISMA provides a standardized framework for reporting systematic
reviews, ensuring transparency and consistency in the presentation of the methods, results,
and conclusions [38,39]. By following PRISMA guidelines, researchers enhance the credibil-
ity and reproducibility of their systematic review findings. Furthermore, PRISMA-guided
systematic reviews are designed to minimize bias and errors at every stage of the review
process [40,41]. By clearly specifying the inclusion and exclusion criteria, conducting com-
prehensive literature searches, and transparently documenting study selection and data
extraction procedures, researchers can reduce the risk of bias and ensure the reliability of
their review findings. In addition, PRISMA encourages rigorous study selection and data
extraction processes to ensure that only high-quality, relevant studies are included in the
review [35,42]. Furthermore, using the PRISMA-based systematic review method ensures a
rigorous process for defining keywords, selecting databases, including or excluding articles,
and creating a research timetable. As a result, future researchers will be able to easily
identify the specific contributions and limitations of this study [43].

The literature search was performed utilizing two online databases, Scopus and Web
of Science (WoS), due to their technical strength, wide range of content, and substantial
size, particularly in the areas of construction safety, technology, and building [44,45].
The following keywords were used for the literature search in the Scopus and Web of
Science (WoS) databases, respectively, with the following query string: TITLE-ABS-KEY
(“Building information modeling*” OR “Building information modeling*” OR “visual
design and construction” OR “3D modeling” OR “BIM*” AND “construction safety” OR
“safety management” OR “safety”). A total of 312 papers were obtained from Scopus and
190 from the WoS database, for a total of 502 publications.

This research exclusively focused on articles and reviews due to their typically higher
quality compared to other types of materials, such as conference papers. This is largely due
to the stringent peer review process that articles and reviews usually undergo [46]. Addi-
tionally, papers that were not written in English, did not pertain to the area of engineering,
and did not explicitly address the topics of construction safety were removed based on spe-
cific inclusion and exclusion criteria. After applying these criteria, the following items were
removed: 70 duplicate articles, 60 irrelevant articles, 92 articles unrelated to construction
safety, 72 conference papers, 5 non-English publications, and 78 articles outside the field
of engineering. After implementing the screening procedures, a total of 125 articles were
identified as relevant and suitable for further study. Figure 1 presents a thorough summary
of the process.
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Figure 1. PRISMA-based systematic review flow diagram. 

  

Figure 1. PRISMA-based systematic review flow diagram.
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3. Analysis and Results
3.1. Annual Research Publication Trend

Figure 2 depicts the rapid growth in publications about the adoption of BIM in con-
struction safety, with the aim of enhancing safety in building practices. Starting in 2019,
there was a substantial rise in the number of published works. The publications reached
their highest point in 2023. Figure 2 illustrates the growing importance of BIM in enhanc-
ing construction safety. This development offers substantial prospects for advancements
in safer building practices. Furthermore, it is essential to note that the total number of
publications in 2024 includes the period up to April, when the literature searches were
conducted.
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Figure 2. Number of publications.

3.2. Geospatial Collaboration of Research Articles on BIM and Construction Safety

Figure 3 displays that China, the United States, Australia, the United Kingdom, and
Malaysia are the top five nations in this collaborative network. China has a strong partner-
ship with four important contributors, followed by the United States, Australia, the United
Kingdom, and Malaysia. Considering that the bulk of BIM publications come from China,
it was expected that there would be a strong collaboration with other nations. Furthermore,
China has escalated its research endeavors on BIM in recent years as a direct reaction to
the substantial concerns regarding building safety [47]. Conversely, the United Kingdom
appears to have limited collaboration with other nations. To address these discrepancies in
collaboration and enhance overall cooperation, the implementation of collaborative digital
platforms is advised. These platforms can enhance information exchange and promote the
sharing of best practices among stakeholders in the BIM community. Serving as central
points for the dissemination of information, the exchange of ideas, and the promotion of
collaboration on safety efforts, these platforms can eventually facilitate collective action
towards implementing safety standards.
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4. Discussion
This section provides a detailed interpretation and discussion of BIM in the domain

of construction safety, addressing the prevention of construction site accidents, the BIM
dimensions that have received the most scrutiny, the benefits of BIM implementation across
different construction phases, and the knowledge gaps and future research requirements in
this context.

4.1. Construction Safety Accidents Prevented by BIM

The construction industry is affected by numerous accidents due to the inadequate
implementation of safety protocols [48]. To address the challenges stemming from pop-
ulation growth, construction projects are initiated to fulfill the increasing demand [49].
Researchers worldwide have identified the construction industry as the most hazardous
industry [50]. As a result, safety emerges as a critical component within the construction
industry, characterized as one of the most dangerous endeavors, often associated with
many fatalities. Numerous investigations have discovered that the largest number of
accidents and fatalities can be attributed to a variety of issues, including low skill levels
among construction workers, weather effects, and unskilled management [51,52]. Falls
from heights are the most common cause of accidents in construction projects. Research
indicates that 60% of construction site injuries are due to falls from heights, highlighting
a major concern. Falling from heights is consistently recognized as a perennial hazard in
construction safety [53]. It was found that reducing accidents caused by falls from heights
can be achieved through the implementation of appropriate safety measures [54]. Similarly,
slip–trip–fall accidents are recognized as the most common unintentional hazard in con-
struction safety. They have been identified as the leading cause of fatalities and injuries in
the field. Slip–trip–fall incidents are estimated to account for 20–40% of all occupational
injuries in the United States, United Kingdom, and Sweden [55,56].

The ability of BIM to produce complex digital models of construction projects fa-
cilitates the detection and alleviation of potential risks during the design stage, thereby
reducing the probability of onsite accidents. Research by Tran et al. [57] revealed that BIM
enhances safety by improving the visualization of construction projects, enabling teams to
anticipate potential risks prior to their occurrence. This proactive strategy can significantly
reduce workplace accidents, such as falls from heights and slip–trip–fall incidents, by
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enabling safety managers to implement essential modifications during the initial design
and construction phases. A recent study by Salzano et al. [58] examined safety incidents
over a two-year period, collecting 24 months of data before and after BIM implementation.
The findings revealed a significant decrease in average monthly safety incidents, from
10 (standard deviation of 2) pre-BIM to 5 (standard deviation of 1.5) post-BIM. Notably,
there was a 70% reduction in severe incidents following BIM adoption, underscoring its
substantial impact on mitigating high-risk occurrences. Moreover, the integration of exten-
sive datasets from various construction projects facilitates the creation of comprehensive
statistical models to evaluate accident rates across diverse geographies, construction types,
and degrees of BIM adoption [59]. Multivariate analysis techniques can evaluate the inter-
actions and influences of numerous factors, including BIM maturity level, project duration,
and the participation of safety professionals in BIM-based workflows, on accident rates [60].
This method offers an evidence-based framework that transcends anecdotal assertions and
bolsters the legitimacy of BIM’s contribution to accident reduction.

Furthermore, digital technology, particularly BIM, plays an important role in ad-
dressing safety concerns [61]. BIM is a vital tool for enhancing construction safety and
mitigating accidents, as it facilitates the development of intricate virtual models of con-
struction projects before the initiation of physical construction [62]. This capability enables
stakeholders to identify potential safety hazards, clashes, and risks during the design phase,
helping to address these issues proactively before they arise on the construction site. In
addition, BIM can be used to strategically organize and enhance site logistics, including
the layout of goods, equipment, and temporary structures [63]. Through the use of virtual
simulations, building sequences and logistics can be replicated, thereby reducing safety
hazards associated with congestion, access limitations, and material handling. BIM tools
include functionalities for modeling construction processes and analyzing safety hazards
related to specific operations [64]. Project teams can use this process to analyze poten-
tial hazards, assess safety measures, and apply proactive methods to reduce risks before
construction begins [65]. In addition, BIM improves communication and collaboration
among project stakeholders by providing visualizations and 3D models that facilitate a clear
understanding of safety standards and procedures. Clear and understandable visuals assist
employees and managers in better understanding safety plans, protocols, and emergency
procedures. Furthermore, BIM can be used for safety training and education purposes,
providing immersive and interactive learning experiences for construction workers and site
supervisors [66]. Virtual simulations and scenario-based training exercises enable workers
to familiarize themselves with safety protocols and procedures in a controlled environment.
BIM platforms facilitate the integration of various data sources, including safety-related in-
formation, such as incident reports, near misses, and hazard evaluations [67]. By analyzing
these data within the BIM environment, project teams can identify patterns, trends, and
areas for improvement, thereby enhancing safety performance over time [68].

In addition, tower cranes play a crucial role in construction projects as both vertical and
horizontal transportation tools. However, despite their importance, accidents involving
tower cranes continue to occur [69]. Tower crane accidents pose a significant risk to
construction workers and can result in sudden damage to structures, equipment, and
construction gear. Given their immense scale and extensive reach, tower crane accidents
also pose a significant risk to the safety of pedestrians and other facilities in the construction
area, leading to severe social consequences [70]. Moreover, the safety of tower cranes is
influenced by factors such as misjudgment, operational ignorance, time constraints, and
insufficient training. It has been found that extended periods of work and continuous
operation without breaks can lead to operator fatigue [59]. The framework, as provided
by Lin et al. (2020), includes a decision-making model for selecting tower crane types, an
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optimization model for tower crane selection, and a 4D simulation model for simulating
tower crane operations [71]. Furthermore, it has been discovered that an integrated GIS-BIM
model can begin by identifying viable sites for designated tower cranes [72].

Additionally, personal protective equipment (PPE) is essential for construction workers
to enhance safety on construction sites. The financial burden of accidental incidents, such
as increased insurance premiums, often falls on contractors [73]. Therefore, the utilization
of PPE is a crucial strategy in construction sites. Common PPE components include safety
helmets, gloves, glasses, hats, and boots [74]. Furthermore, PPE’s efficacy in minimizing
accidents can be significantly improved by implementing BIM. It enables the creation
of detailed virtual models of construction projects, allowing the incorporation of safety
data, such as hazard zones, restricted areas, and safety barriers. This information helps
construction teams to identify potential hazards more accurately [75], informing decisions
about the appropriate type of PPE required for different site areas. BIM can visually
represent the construction site and strategically determine the allocation of PPE [76]. Project
managers can use BIM to identify high-risk regions and tasks, ensuring that personnel are
provided with the necessary PPE for their specific roles and responsibilities. In addition,
by utilizing BIM’s functionalities and incorporating safety factors into the construction
process, project teams can optimize the efficacy of PPE in mitigating accidents and injuries
at construction sites. This comprehensive strategy not only enhances safety results but also
enhances overall project efficiency and success [77,78].

Furthermore, BIM can be integrated with safety management systems to streamline
safety processes and ensure regulatory compliance [79]. For example, safety data within
the BIM model, such as hazard identification, PPE requirements, and safety procedures, can
be linked to safety management software for easier tracking and monitoring [80]. Table 1
presents a summary of the key literature focused on construction safety accidents prevented
by BIM.

Table 1. Summary of the literature focused on construction safety accidents prevented by BIM.

Focused Area Contribution References

Digital engineering
Identifying and using the potential of digital
engineering to tackle the known causes
of accidents

[52]

Safety measures are needed for preventing
fall-related accidents before construction starts

Application of automated safety rule-checking
to BIM [62]

Safey risk assessment The integration of safety risk data into Autodesk
Revit allows for the development of BIM systems [64]

BIM visualization
Visualization near misses can help safety
managers identify frequent and severe incidents
on a building site for risk reduction

[67]

BIM-GIS model BM-GIS integrated model for site layout planning [72]

BIM and computer vision integration To monitor workforce safety hazards at
construction sites in real time [76]

4.2. BIM Concept and Dimensions in Construction Safety

BIM is currently considered the most auspicious technology in the construction sector.
The concept of BIM encompasses several dimensions such as 3D—model, 4D—time, 5D—
cost, 6D—facility management, and 7D—sustainability [81–86]. Based on a systematic
literature review of journal papers, some authors launched a European survey to assess
the understanding of these dimensions. The results of this study showed a consensus on
the meaning of 3D, 4D, and 5D between the results of the literature review and the survey.
However, this study revealed an inconsistency for 6D and 7D between practitioners and
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academics. Moreover, no dimension was found beyond 7D [87]. As discussed in this study,
safety management should be associated with 4D and project planning, as suggested by
several authors. By utilizing simulations, safety plans can be reviewed virtually before
their actual on-site implementation, allowing for potential issues to be anticipated in
advance [88–90].

Furthermore, these BIM dimensions have received significant scrutiny and attention
due to their direct impact on project planning, execution, and cost management. An
in-depth examination and effective management of construction safety play a crucial
role in enhancing the strength and resilience of the construction sector. The construction
safety analysis and management system include the use of a 4D structural information
model to identify and address safety hazards during the construction process [91]. The 4D
structural information model enables a precise visualization of the construction procedure
and facilitates the modification of construction plans. In addition, 4D modeling has shown
significant potential in enhancing the construction process during the design and planning
phase [92]. Additionally, a 4D visualization system can be used to detect and visualize
conflicts at construction sites. Furthermore, the utilization of BIM 4D modeling has been
documented as a means to create a logistics planning and control model for the on-site
assembly of engineer-to-order (ETO) prefabricated building systems [93]. This model
aims to understand the collaboration between Lean concepts and BIM. During the project
planning phase, it is crucial to meticulously plan the spatial mobility of construction
workers. In order to ensure construction safety in the event of an emergency, it is imperative
to establish designated escape routes for construction personnel [94]. However, manually
creating evacuation paths for every construction worker would be a burdensome task.
Hence, a 4D BIM integrated framework was introduced to automatically evaluate, produce,
and display evacuation routes for different teams [95].

The exploration and adoption of additional dimensions, such as 6D (sustainability
dimension) and 7D (facility management dimension), are gaining traction as the industry
seeks to leverage BIM for broader sustainability goals and improved facility lifecycle
management [96]. The 6D BIM involves the integration of environmental and sustainability
data into the BIM model, allowing stakeholders to analyze energy performance, carbon
emissions, and lifecycle assessments [97]. The 7D BIM focuses on the integration of facility
management information into the BIM model, enabling building owners and operators to
efficiently manage and maintain facilities throughout their lifecycle [98]. These dimensions
have also received scrutiny as they extend the utility of BIM beyond design and construction
phases into operations and maintenance, aligning with broader industry trends towards
sustainable practices and asset lifecycle management [99]. More recently, in the context of
the circular economy, a study investigated the utilization of BIM across the asset lifecycle.
The research proposes three BIM models applicable throughout the lifecycle, emphasizing
sustainable end-of-life (EOL) practices. Additionally, a novel dimension—referred to as
the eighth dimension (8D)—is introduced, specifically addressing EOL activities within
BIM [98]. Table 2 presents a concise overview of the key literature pertaining to BIM in the
field of construction safety.
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Table 2. Summary of the most relevant literature focused on BIM and construction safety.

Focused Area Contribution References

BIM- and 4D-based
integrated solution During construction safety issues can be assessed [100]

BIM-based 3D framework To quantify and analyze quality and safety on
construction projects [90]

Developing visualization
system using 4D

The detection and visualization of construction
sites’ conflicts [101]

Applicability of 4D modeling

To improve the construction process in mega
liquefied natural gas plant construction,
four-dimensional (4D) modeling has gained much
potential

[102]

Using BIM 4D modeling in site logistics
planning and control

To fulfill the growing demand for engineer-to-order
(ETO) prefabricated building systems [103]

4D incorporated with automated generation of
evacuation paths in construction site

To automatically analyze, generate, and visualize
the evacuation paths, a BIM-based 4D framework
has been presented

[104]

4D Construction Safety Information Model
During construction, a new approach for
construction safety for scaffolding systems has been
presented

[105]

4D BIM-based framework in construction Accuracy of workspace problem and workspace
status representation can be improved [106]

4D BIM to assess construction risks For construction site safety, contractors can use the
results of the 4D model on the basis of visualization [107]

Integrated 5D tool for accident identification To detect the potential danger source and anticipate
proactive warnings [108]

BIM-based 6D integrated system To provide the effective way of communication
between all the stakeholders [109]

4.3. BIM Features in Construction Safety

This section discusses the BIM features that are related to construction safety. The BIM
capabilities include visualization, automatic rule-based checking, 4D simulation, tracking,
real-time detection, data coordination, continuous surveillance, position tracking, 3D walk-
throughs, and structural analysis [110–113]. Construction safety is of utmost importance
to the construction sector worldwide. Despite the diligent endeavors of safety experts
and professionals, there has not been a substantial reduction in the number of deaths and
accidents on construction sites, which is a cause for concern. Consequently, the use of visu-
alization technologies at all stages of the construction project lifecycle has seen a substantial
increase [114]. Visualization technologies have enhanced construction safety by enabling
stakeholders to visually inspect construction project sites and identify potential hazards
before the construction phase begins. BIM-based visualization provides many benefits
during construction projects [115], including the improvement in construction safety [116].
Insufficient coordination among construction workers led to numerous mishaps throughout
the construction process. As a result, visualization technology offers a platform for effective
safety instruction. Project information regarding safety is integrated with visualization
techniques to assist construction personnel and facilitate collaboration [117]. Thus, in the
field of construction education, BIM is used as a very effective method for teaching visu-
alization. Additionally, a framework using visualization technologies, position tracking,
and augmented reality (AR) was introduced with the purpose of enhancing construction
safety [118]. Considering this fact, visualization technology might provide reassurance
about safety concerns in construction. Recent advances in visualization technologies have
greatly simplified the creation of construction sites in VR. Furthermore, the use of visual-
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ization techniques in construction projects has led to significant advancements in BIM and
GIS, which has had a positive impact on predicting building progress [119,120].

Similarly, the location of construction workers can be determined by applying the
Global Positioning System (GPS) [121]. GPS technology facilitates real-time tracking and
accurate location data, thereby considerably mitigating safety risks linked to construction
activities. GPS significantly improves safety by enabling the monitoring of heavy machinery
and equipment, ensuring that operators remain aware of their environment, which aids in
preventing incidents like collisions with workers or other machines [122]. Furthermore, GPS
can be combined with other technologies, such as machine control systems, to automate
operations, thereby reducing human error and minimizing the chance of accidents resulting
from improper equipment operation. GPS is essential during the construction phase
by delivering precise site surveys and facilitating real-time monitoring of construction
progress [123]. Project managers can utilize GPS to monitor the location of materials and
confirm their positioning in accordance with design standards. This enhances both the
safety and efficiency of the construction process by minimizing errors in material placement
and averting hazardous situations resulting from mismatched components [124]. Moreover,
wearable devices can monitor workers’ locations on the construction site, facilitating
compliance with safety zones and notifying supervisors if a worker enters a dangerous
area. This improves human safety by prohibiting workers from accessing hazardous areas,
such as those with active heavy machinery operations or unstable structures [125].

In addition, the use of automated rule-based verification has received significant
attention from academics in their studies. An automated safety checking system was
created to assess potential fall hazards during the planning phase [126]. Likewise, a 3D
walkthrough model was created to monitor the progress of interior construction. Therefore,
the 3D walkthrough application is an excellent tool for identifying dangers, providing
safety training, and facilitating effective communication among construction workers [127].
Nevertheless, the workload associated with 3D walkthroughs is considerably minimal.
Consequently, drawing attention to the 3D walkthrough model can improve construction
safety [128].

4.4. BIM Implementation in Safety Throughout the Asset Lifecycle

Construction projects consist of three stages: (a) pre-construction phase, (b) construc-
tion phase, and (c) post-construction phase, as seen in Figure 4. Construction safety must
be considered at every stage of the building lifecycle, from the construction phase to the
demolition phase. Implementing BIM can assist stakeholders in achieving construction
safety in construction projects. The design phase of a building is widely regarded as the
most crucial aspect of construction projects [129]. During the design phase, the use of BIM
facilitates a more thorough and comprehensive understanding of the design. The adoption
of BIM has increased the efficiency of the design process by enabling rapid model simula-
tion and performance assessments [130]. During the construction phase, BIM is employed
to simulate construction processes and detect potential risks linked to the execution of
each operation. By integrating BIM with 4D scheduling, project managers may view the
construction process and identify potential concerns regarding worker movement, equip-
ment interaction, and material handling. This information can enhance the construction
site plan, ensuring that hazardous areas are distinctly marked and that suitable safety
protocols are implemented. Moreover, VR tools combined with BIM enable workers and
safety managers to engage in training within virtual replicas of building sites, significantly
mitigating the risk of accidents. BIM significantly enhances safety during the operation
and maintenance phase of the asset lifecycle. Facility managers can utilize BIM to obtain
comprehensive information regarding the building’s systems, allowing them to predict
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maintenance requirements and mitigate the risks linked to equipment failure or malfunc-
tion. Access to as-built BIM data enables managers to schedule preventive maintenance
actions more efficiently, ensuring that essential systems receive regular servicing to avert
accidents caused by system breakdowns. BIM facilitates safety training for facility per-
sonnel by offering virtual walkthroughs and simulations of emergency scenarios, hence
improving their readiness for actual emergencies.
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Moreover, BIM’s function in safety encompasses the decommission stage of an asset’s
lifecycle. During the decommission or demolition of a building, the presence of precise
BIM data guarantees that all safety aspects concerning structural demolition, hazardous
material removal, and site clearance are pre-emptively addressed. The capacity to obtain
comprehensive knowledge regarding the structure and its elements allows demolition
crews to recognize possible hazards, including the existence of asbestos or other toxic
substances, and devise secure removal strategies. The incorporation of BIM into safety
management throughout the asset lifecycle yields significant advantages in risk mitigation
and accident prevention. BIM facilitates the early identification of dangers, optimization of
construction processes, enhancement of safety training, and support for good maintenance
practices, from the design phase to decommissioning. As the adoption of BIM expands



Buildings 2025, 15, 828 14 of 25

within the construction sector, its capacity to enhance safety outcomes will likewise escalate,
fostering safer work environments and more sustainable asset management methods.

In addition, the BIM-integrated framework gathers relevant data on safety measures to
prevent falls from heights during the construction phase, which can then be evaluated [131].
In order to ensure the safety of construction workers during the pre-construction phase, the
idea of Prevention through Design (PtD) was introduced. This concept aims to eliminate
safety concerns at the start of a construction project [132]. The PtD knowledge base can
be used to identify and store current safety rules, safety documentation, and construction
safety issues with pre-control methods. This information can then be used to assess safety
issues throughout the design phase of construction [133].

The construction industry has increasingly embraced the concept of PtD to enhance
safety management. This approach is also known as Design for Construction Safety
(DfCS) [134], Design For Safety (DFS) [135], and Construction Hazard Prevention through
Design (CHPtD) [136].

Hence, it is important to address the challenges of effectively using BIM to enhance
safety in construction projects. During the BIM development process, designers often lack
safety expertise and are reluctant to prioritize construction safety [137]. The primary chal-
lenges of implementing BIM in construction for safety improvement include the following:
safety managers face multiple challenges in utilizing BIM technologies, such as the need
for additional funding for the development of BIM models, lack of knowledge, and tech-
nical issues such as the absence of safety equipment and elements in the BIM application
library [138–142]. Given the increasing complexity of building projects, it is necessary to
develop BIM to comprehensively support the design, construction, and post-construction
phases. The adoption of BIM technologies in construction projects facilitates collaboration
between stakeholders on a shared platform. The use and integration of BIM can assist
proprietors, designers, contractors, and construction managers in executing construction
projects more efficiently [143]. During the post-construction phase, the integration of BIM
with the Internet of Things (IoT) can be used in several applications, including health and
safety, building automation system (BAS) control, and security [143].

From Figure 5, it is evident that digital engineering has received the most research
attention, with 24.2% of papers, accounting for the largest proportion. This indicates
that researchers have extensively focused on leveraging digital technologies to improve
construction safety, enhance productivity, and optimize project workflows. The high
number of studies suggests a strong interest in digital transformation in the construction
sector. Following closely, the BIM 4D construction safety framework theme has 21.2%
of papers, indicating significant interest in integrating BIM with time-based (4D) project
planning for safety management. This suggests that research efforts have prioritized safety
planning through BIM’s advanced capabilities, such as real-time risk identification and
proactive hazard mitigation. The safety risk assessment theme has been covered in 16.7%
of papers, which reflects the importance of assessing and mitigating construction-related
risks. The high number of studies highlights the role of BIM in improving safety standards
and reducing on-site accidents. The BIM visualization theme, represented by 11.4% of
papers, suggests considerable research interest in using visualization techniques to enhance
construction planning and stakeholder collaboration. This aligns with industry trends
emphasizing the need for better communication and decision-making through BIM-based
visualization tools. Furthermore, the BIM-GIS model and BIM-based 3D framework themes
have each been covered in 8.3% of papers, suggesting that while these areas are gaining
interest, they are still emerging compared to the dominant themes. The integration of
BIM and GIS has potential applications in urban planning and infrastructure management,
while 3D frameworks play a role in enhanced modeling and design. The BIM and computer
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vision integration theme, with 9.8% of papers, indicates an increasing research focus on
incorporating AI and ML for progress monitoring and quality control. This theme has
significant potential to expand further as AI-driven solutions become more advanced and
widely adopted in construction safety.
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4.5. Integration of BIM and Construction Safety

The construction industry is intrinsically hazardous and characterized by numer-
ous risks arising from elevated labor, heavy equipment operation, material manipulation,
and fluctuating site circumstances. Notwithstanding progress in safety standards and
legal frameworks, accidents continue to pose a significant concern [144]. Conventional
safety management methods frequently depend on manual inspections, safety checklists,
and compliance audits, which are inherently reactive and susceptible to human mistakes.
Nonetheless, the emergence of digital technology has positioned BIM as a transforma-
tive tool that is redefining construction safety through proactive hazard assessment, risk
mitigation, and real-time monitoring systems [145]. BIM, historically recognized for en-
hancing project visualization and communication, is now being incorporated with safety
management frameworks to foster safer work conditions via simulation, automation, and
predictive analytics [146].

BIM’s most notable contribution to construction safety is its capacity to detect dangers
during the pre-construction phase. In contrast to conventional methodologies that identify
risks post-construction initiation, BIM allows project teams to perform virtual safety plan-
ning prior to worker site entry. BIM employs 3D modeling and 4D time-based simulations
to enable stakeholders to examine work sequences and see potential safety risks in a virtual
setting [147]. Clash detection techniques in BIM software can pinpoint hazardous scaffold
placements, structural conflicts, or perilous access routes that could jeopardize worker
safety. Moreover, automatic safety rule-checking algorithms linked into BIM platforms
can identify non-compliance issues throughout the design phase, ensuring that safety
considerations are incorporated into the project from the outset. These proactive measures
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substantially diminish the probability of incidents resulting from design deficiencies or
neglected risks [148].

In addition to safety assessment, BIM significantly contributes to risk mitigation
by improving construction planning and execution. Four-dimensional BIM, integrating
the temporal dimension, allows project managers to simulate building sequences and
evaluate the risks linked to various activities [134]. This is especially beneficial in high-risk
activities like excavation, demolition, and heavy lifting, where sequencing mistakes can
result in significant accidents. Through the analysis of digital simulations, project teams can
modify construction timelines, enhance site logistics, and execute risk mitigation strategies,
including the installation of temporary barriers or the restriction of access to dangerous
areas [149]. BIM enhances collaborative safety planning by consolidating several disciplines
into a singular digital platform, ensuring that safety managers, engineers, and contractors
collaborate effectively to reduce risks [150].

The integration of the IoT (Internet of Things) with BIM has significantly improved
safety management through the facilitation of the real-time surveillance of construction
sites. IoT-enabled wearables, such smart helmets, vests, and wristbands, can monitor
worker movements, identify fatigue, and assess vital signs [151]. These wearables relay
data to BIM platforms, where AI algorithms assess worker behavior and ambient variables
to detect potential safety hazards. For example, if an employee accesses a high-risk area
without permission or displays signs of fatigue, the system can activate fast notifications
to supervisors, facilitating prompt intervention and accident avoidance [152]. Likewise,
IoT sensors integrated into construction machinery can identify mechanical malfunctions
or hazardous working conditions, hence minimizing the risk of casualties associated with
equipment. Integrating IoT data with BIM-based visualizations enables safety managers
to obtain a thorough, real-time comprehension of site circumstances and implement pre-
emptive measures to safeguard worker safety [153].

BIM is revolutionizing safety training and worker education with virtual reality (VR)
and augmented reality (AR) simulations. Conventional safety training techniques fre-
quently depend on classroom instruction and printed materials, which may inadequately
equip workers for actual threats. VR-based safety training immerses workers in simulated
construction environments, allowing them to practice responding to potential risks in a
risk-free digital context [154]. For example, employees may encounter situations such
as working at elevated positions, operating heavy gear, or executing evacuations during
emergencies, thereby cultivating essential safety competencies prior to engaging in a real
construction environment. Moreover, AR applications allow employees to superimpose
real-time safety information onto their actual environment, offering immediate direction on
safe practices, hazard alerts, and regulatory obligations [155]. BIM-driven immersive train-
ing markedly diminishes the probability of on-site incidents by boosting safety awareness
and preparation [156].

In the post-construction phase, BIM remains essential for long-term safety via fa-
cility management, maintenance planning, and risk mitigation. The post-construction
phase includes structural inspections, system maintenance, and disaster preparedness,
during which BIM-based digital twins and predictive analytics substantially improve safety
protocols [157]. BIM enhances evacuation planning and emergency response by supply-
ing real-time information on building configurations, egress pathways, and occupancy
statistics. During a fire, earthquake, or security threat, emergency responders can utilize
BIM-based safety models to navigate buildings effectively, facilitating rapid and secure
evacuations [158].
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5. Limitations and Recommendations
The application of BIM in construction safety yields significant benefits, but various

limitations must be noted. All stakeholders, including architects, engineers, and construc-
tion workers, must have advanced skills and training in order to implement BIM effectively.
Another challenge is the significant financial investment required for BIM deployment,
which includes costs for software, hardware, and training programs. Smaller construction
firms or projects with limited finances may have challenges in implementing these technolo-
gies, thereby aggravating the safety performance gap between big and small companies.
Furthermore, while BIM provides extensive visualization and conflict detection, it is not
perfect, as some hazards may remain elusive or unreplicated in the virtual environment.
The BIM model may not adequately represent dynamic site conditions, such as abrupt
weather swings or human errors.

It is recommended to examine the utilization of emerging technologies such as artificial
intelligence (AI), machine learning, and AR in combination with BIM to improve safety.
These technologies have the potential to offer predictive safety analysis, automated hazard
detection, and improved safety training. Longitudinal studies on BIM and safety outcomes
in construction can play a crucial role in reducing accidents by providing insights into the
long-term effects of implementing BIM technologies and processes on safety performance.
It is essential to conduct longitudinal studies to measure the long-term impact of BIM on
construction safety outcomes [159]. This research could provide empirical evidence on how
BIM reduces accidents, improves safety compliance, and contributes to overall project suc-
cess. In addition, longitudinal studies enable researchers to evaluate the impact of specific
safety interventions or BIM applications on accident prevention. For example, researchers
can assess the effectiveness of virtual safety training programs, real-time safety monitoring
systems, or clash detection tools in improving safety outcomes over an extended period.

BIM is highly beneficial for post-construction safety and maintenance as it offers a
comprehensive digital representation of the building, including detailed information about
its components, systems, and infrastructure. BIM serves as a centralized repository for
accurate as-built documentation, including updated plans, drawings, specifications, and
manuals. This information is essential for facility managers and maintenance personnel to
understand the building’s design and configuration for safe operation and maintenance.
Further exploration is needed on how BIM can enhance safety during the operational
phase of buildings, including facility management, safety inspections, emergency response
planning, and evacuation. It is recommended to investigate the use of BIM in safety
training through VR and AR simulations. This area has potential for immersive safety
training scenarios that can better prepare workers for on-site risks. By integrating BIM into
safety training and simulation, the occurrence of accidents in construction can be greatly
diminished. This is achieved by offering workers immersive and realistic customized
training experiences that boost their understanding of potential dangers and enhance their
capacity to effectively address safety risks. BIM enables the creation of highly detailed
3D models of construction sites, including buildings, infrastructure, and equipment. By
visualizing these models in VR or AR environments, workers can immerse themselves in
realistic simulations of construction tasks and identify potential hazards more effectively
than traditional training methods.

6. Conclusions
In conclusion, this study examines the significant impact of BIM on construction safety

in the digital age. By conducting a thorough examination of the current literature, numerous
valuable insights were discovered, emphasizing BIM’s role in improving safety measures
throughout the entire building process. This study revealed that accidents can be prevented
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by using BIM as a catalyst for proactive safety measures, allowing for the identification
and mitigation of potential hazards at various stages of the construction project. BIM
helps teams in anticipating dangers, optimizing designs, and implementing preventative
measures more efficiently by providing stakeholders with comprehensive visualizations,
simulations, and collision detection capabilities. Furthermore, the exploration of BIM
dimensions extends its use beyond the design and construction stages to encompass
operations, maintenance, sustainability, and facility management. This study identified
the need for further investigation into the BIM tool for PtD and construction safety and
the appropriate BIM dimension. In addition, it was observed that BIM implementation is
still in its early stages in many countries worldwide. To improve BIM implementation, it is
necessary to develop and implement effective BIM strategies.

This study also presented knowledge gaps and future research directions for policy-
makers, researchers, stakeholders, and practitioners to encourage BIM usage and improve
construction safety. BIM has evolved as a critical tool for construction safety, offering im-
proved collaboration, visualization, and risk management capabilities. Nonetheless, several
knowledge gaps and areas require further research to expand the use of this technology for
safety improvements. Three critical areas require more research.

First, although BIM has the potential to facilitate compliance with safety regulations,
common frameworks for integrating these standards into BIM procedures are currently
lacking. Research is needed to design approaches that synchronize BIM with safety stan-
dards and regulatory requirements. In addition, existing BIM tools generally lack built-in
techniques to ensure that safety rules are followed during the modeling process. Develop-
ing frameworks or plug-ins that seamlessly incorporate safety standards at every stage of
BIM development is recommended.

Secondly, the inclusion of a safety dimension in BIM is not as prevalent as the usual
dimensions of 4D (time) and 5D (cost). Research could investigate methods to establish a
resilient safety component in BIM, enabling the integration, visualization, and monitoring of
safety data and processes throughout a project. In addition, BIM can enhance the efficiency
of construction sequencing and phases to reduce safety hazards on the construction site.
Through the utilization of 4D visualization (combining a 3D model + time), stakeholders
can detect and resolve potential safety issues related to site logistics, access, and workflow
of the site.

Then, although BIM is excellent for pre-construction planning, its use in real-time
safety monitoring during construction is limited. There is a need for research into integrat-
ing BIM with real-time data sources (e.g., IoT sensors) to improve site safety. Furthermore,
BIM could connect with Internet of Things (IoT) sensors positioned at the construction site
to monitor environmental factors, including temperature, humidity, air quality, and noise
levels. Safety managers can detect potential safety risks, such as excessive noise or poor air
quality, by analyzing real-time sensor data. Moreover, there is a gap in understanding how
to use BIM to foster safety-oriented behaviors and attitudes within construction teams. It is
recommended that research focusses on strategies for leveraging BIM for building a robust
safety culture.
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