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ABSTRACT  25 

The post-acute sequelae of COVID-19 (PASC) poses a significant health challenge in the post-26 

pandemic world. However, the underlying biological mechanisms of PASC remain intricate and elusive. 27 

Network-based methods can leverage electronic health record (EHR) data and biological knowledge to 28 

investigate the impact of COVID-19 on PASC and uncover the underlying biological mechanisms. This 29 

study analyzed territory-wide longitudinal electronic health records (from January 1, 2020, to August 30 

31, 2022) of 50296 COVID-19 patients and a healthy non-exposed group of 100592 individuals to 31 

determine the impact of COVID-19 on disease progression, provide molecular insights, and identify 32 

associated biomarkers. We constructed a comorbidity network and performed disease-protein mapping 33 

and protein-protein interaction network analysis to reveal the impact of COVID-19 on disease 34 

trajectories. Results showed disparities in prevalent disease comorbidity patterns, with certain patterns 35 

exhibiting a more pronounced influence by COVID-19. Overlapping proteins elucidate the biological 36 

mechanisms of COVID-19's impact on each comorbidity pattern, and essential proteins can be 37 

identified based on their weights. Our findings can help clarify the biological mechanisms of COVID-38 

19, discover intervention methods, and decode the molecular basis of comorbidity associations, while 39 

also yielding potential biomarkers and corresponding treatments for specific disease progression 40 

patterns. 41 

 42 

Keywords: network science, comorbidity, network medicine, post-acute sequelae of COVID-19 43 

 44 

Word count: 4513 (5598 including figures and tables)  45 
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The accurate identification of comorbidity patterns associated with elevated COVID-19 46 

infection risk is essential for effective medical resource allocation, prioritizing care, and 47 

supporting patient recovery. This study delved into the biological mechanisms underlying post-48 

acute sequelae of COVID-19 by analyzing the comorbidity network. Key proteins and 49 

significant biological pathways were identified through Protein-Protein Interaction network 50 

analysis and Gene Ontology enrichment analysis. These insights not only contribute to 51 

understanding the fundamental mechanisms of post-acute sequelae but also hold potential as 52 

biomarkers and therapeutic targets, laying the groundwork for the development and 53 

repurposing of drugs to benefit COVID-19 patients. 54 

 55 

INTRODUCTION 56 

The global pandemic of Coronavirus Disease 2019 (COVID-19), caused by severe acute respiratory 57 

syndrome coronavirus 2 (SARS-CoV-2) infection, has impacted billions of people, resulting in millions 58 

of deaths, and leaving tens of millions suffering from persistent symptoms and signs after the acute 59 

phase of COVID-191. This phenomenon, referred to as post-acute sequelae of COVID-19 (PASC), is 60 

gradually coming to an end2,3. PASC exhibits heterogeneous manifestations and severity4, impacting 61 

various organ systems including cardiovascular5,6, mental7, metabolic8, and renal systems9. However, 62 

the underlying biological mechanisms of PASC remain intricate and elusive. 63 

 64 

Current research on the potential biological mechanisms of COVID-19 and PASC primarily involves 65 

small patient cohorts and concentrates on the relationship between COVID-19 and diseases in specific 66 

systems or organs individually2,10–12. Investigations involving large patient cohorts and associations 67 

between COVID-19 and diseases across multiple organs and systems can aid in uncovering the 68 

biological mechanisms of multimorbidity present in PASC and pre-existing diseases influenced by 69 

COVID-19. Comorbidity and multimorbidity13 refer to the co-occurrence of two or more diseases in an 70 

individual. If the frequency of co-occurrence of diseases exceeds the frequency of disease combinations 71 

selected by chance, multimorbidity exists among these diseases. Research on multimorbidity 72 

associations with PASC has shown that pre-existing multimorbidity may drive PASC10,14. The 73 

underlying mechanisms of multimorbidity are complex, potentially involving shared genetic or 74 
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environmental factors or resulting from the treatment or intervention for one disease leading to the 75 

development of another14. Studies on multimorbidity relations in PASC have considered the influence 76 

of demographic factors15,16 like sex, age, race, COVID-19 vaccine injection, and patient electronic 77 

health records (EHR) diseases. However, the underlying biological mechanisms of these multimorbidity 78 

relations influenced by COVID-19 remain unclear. 79 

 80 

Our research utilized territory-wide EHR data from the Hong Kong Hospital Authority to investigate 81 

the impact of COVID-19 on PASC. We employed network-based methods to assess the influence of 82 

COVID-19 on multimorbidity across multiple organs and systems in PASC. Individuals with specific 83 

pre-existing diseases may have a higher risk of developing certain diseases included in PASC due to 84 

the effects of COVID-19. To explore the underlying mechanisms of these particular multimorbidity 85 

relations, we incorporated biological knowledge from the protein-protein interaction (PPI) network17 86 

and Gene Ontology (GO) enrichment analysis18 to identify the most affected and essential proteins that 87 

could serve as potential targets for future interventions, such as preventive measures. 88 

 89 

METHODS 90 

Study design and population 91 

All electronic datasets included in this research are from the Hong Kong Hospital Authority (HKHA) 92 

database. Based on the COVID-19 record (based on rapid antigen test [RAT] or polymerase chain 93 

reaction [PCR] test in throat swab, nasopharyngeal aspirate, or deep throat sputum specimens), patients 94 

are divided into two groups: exposure and non-exposed groups. (Supplementary Figure 4) 95 

 96 

For the exposure group, the diagnose records within 730 days before COVID-19 and 180 days after 97 

COVID-19 are retained. We then exclude all diagnose records within 28 days (acute-phase of infection) 98 

after COVID-19. For each individual, diseases appearing before COVID-19 were considered as pre-99 

existing diseases, and new emerging diseases appearing after COVID-19 were considered as post-100 

infection diseases.  101 

 102 
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For the non-exposed group, we applied the same procedure to identify the pre-existing and post-103 

infection diseases for each individual by treating the date 180 days before the last record date as the 104 

simulated COVID-19 infection date.  105 

 106 

To investigate the influence of COVID-19 on PASC, we compared the differences in comorbidity 107 

patterns between the exposure group (people with first COVID-19 in 2022) and the non-exposed group 108 

(people without COVID-19). To ensure a fair comparison, we employed propensity score matching19 109 

to select a non-exposed group with pre-existing disease records similar to the exposure group. In the 110 

matching process, we considered not only individual EHR data denoted by 3-digital ICD-9 codes from 111 

the baseline period, but also demographic data (age, sex) and vaccine information (vaccine number). 112 

After matching, we calculated the standardized mean difference (SMD) to quantify the balance for each 113 

confounder. An SMD value below 0.1 serves as a threshold to determine whether the confounder is 114 

well-balanced. 115 

 116 

Propensity Score Matching 117 

We included all disease related 3-digital ICD-9 CM codes from pre-existing diseases in both non-118 

exposed and exposure groups. Each appearing ICD-9 code serves as a feature in the Propensity Score 119 

Matching. The number of vaccinations received prior to COVID-19 is included as a feature. For each 120 

individual in the exposure group, we select the two nearest neighbors from the non-exposed group based 121 

on the processed propensity score, which is obtained by applying a logit function. After propensity 122 

score matching, the COVID-19 and non-exposed groups include 50296 and 100592 patients 123 

respectively, from 58753 in the COVID-19 group and 488670 in the non-exposed group. (details are 124 

shown in Supplementary Table 2) In the following comorbidity patterns’ coefficient computation part, 125 

we considered patients with at least one new disease and excluded patients without new post-infection 126 

diseases. 127 

 128 

Comorbidity network construction 129 

According to COVID-19 infection date for each individual in the exposure group (simulated for the 130 

non-exposed group). We first define pre-existing diseases as those diagnosed before COVID-19, and 131 
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post-infection diseases as new emerging diseases diagnosed >28 days after COVID-19. We generated 132 

disease pairs by selecting the first disease from all pre-existing diseases and the second disease from all 133 

post-infection diseases and applied Pearson correlation coefficient and relative risk to quantify the co-134 

occurrence of two diseases composing each disease pair. 20 To reduce bias from data and computation 135 

methods, we used both values to identify co-occurring disease pairs combining with chi-square and 136 

fisher exact test. 20  We identified disease pairs appearing in the exposure group with Pearson correlation 137 

coefficient > 0 and relative risk > 1 as comorbidity patterns. To investigate comorbidity patterns 138 

influenced by COVID-19, we selected comorbidity patterns according to the three requirements: (1) 139 

comorbidity patterns are significantly more frequent (Fisher exact test or chi-square test, p-value < 0.05) 140 

in the exposure group than in the non-exposed group. (2) the count number of each comorbidity pattern 141 

in the exposure group is at least 10. (3) the Pearson correlation coefficient and relative risk of each 142 

comorbidity are larger in the exposure group than in the non-exposed group. Selected comorbidity 143 

patterns are used for comorbidity network construction. In the comorbidity network, each node 144 

represents a disease, and each directed edge from a pre-existing disease to a post-infection disease 145 

represents a comorbidity pattern indicating higher prevalence in the exposed group than in the non-146 

exposed group. For instance, an edge like (disease A, disease B) suggests that individuals with pre-147 

existing disease A face an elevated risk of developing disease B following COVID-19, compared to 148 

those without COVID-19 exposure. The difference in Pearson correlation coefficients and relative risk 149 

for each comorbidity pattern between exposure group and non-exposed group are considered as 150 

additional attributes for edges.   151 

 152 

Relative Risk denoted by 𝑅𝑅𝑖𝑗 represents the relative risk between disease 𝑖 and disease j. 𝐶𝑖𝑗 is the 153 

number of co-occurrence incidences of disease 𝑖 and disease j, 𝐼𝑖 is the number of incidences of disease 154 

𝑖, 𝐼𝑗 is the number of incidences of disease j, and 𝑁 is the number of patients included in the dataset (for 155 

the non-exposed group and exposure group).  156 

𝑅𝑅𝑖𝑗 = 𝐶𝑖𝑗/(𝐼𝑖𝐼𝑗/𝑁) (1)  157 

Pearson correlation is another common method to evaluate the strength of diseases’ connection. The 158 

Pearson correlation between disease 𝑖 and disease j is denoted by 𝜙𝑖𝑗, and the formula is the following:  159 
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𝜙𝑖𝑗 = [(𝑁 𝐶𝑖𝑗) −  𝐼𝑖𝐼𝑗]/𝑠𝑞𝑟𝑡 (𝐼𝑖𝐼𝑗(𝑁 −  𝐼𝑖)(𝑁 −  𝐼𝑗)) (2) 160 

 161 

Disease pairs with Pearson correlation coefficient > 0 and relative risk > 1 imply that these diseases are 162 

more likely to occur than by chance. 163 

 164 

Protein-Protein Interaction (PPI) network and SARS-CoV-2 human proteins 165 

The protein-protein interaction network used in this study was assembled from 21 public databases by 166 

Barabási21. The final interactome used in our study contains 18,505 proteins and 327,924 interactions 167 

between them. For SARS-CoV-2 human proteins, we used related data detected by Gordon22. To 168 

quantify the distance between the post-infection and pre-existing diseases, we utilized node-node 169 

distances for each protein pair on the largest connected component of the protein-protein interaction 170 

network, which contains 18446 nodes and 327868 edges. All proteins are represented by their encoded 171 

genes (Entrez ID and Symbol ID). 172 

 173 

ICD code and Gene/Protein association data 174 

Data were derived from the DisGeNET23,24 database and the OMIM25,26 dataset. These datasets 175 

encompass information about proteins and diseases, as well as their interrelationships. Utilizing these 176 

datasets, we were able to identify proteins associated with each disease. The distances between diseases 177 

were determined based on the distances between their associated proteins. From the DisGeNET 178 

database and the OMIM dataset, we assigned associated proteins to 537 diseases, each disease identified 179 

by an ICD-9 code and each disease-associated protein identified by its encoded gene (Entrez ID and 180 

Symbol ID). 181 

 182 

Distance Measure 183 

Disease-protein relations are utilized to map each disease, denoted by an ICD-9 code, to the protein-184 

protein interaction (PPI) networks. Diseases are represented by protein groups, which are sets of 185 

proteins associated with a specific disease. The topological distance between corresponding protein 186 
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groups in the PPI networks measures the distance between two diseases. A shorter distance between the 187 

protein groups indicates a closer relation between the diseases. 188 

For example, if we have a pre-existing disease A and a post-infection disease B, we can map them to 189 

the PPI networks and find their corresponding protein groups. Then, we can calculate the distance 190 

between them as 𝑑𝐴𝐵, where 𝑑(𝑎, 𝑏) represents the shortest path from protein a to protein b in the PPI 191 

networks. 192 

〈𝑑𝐴𝐵〉 =
1

‖𝐵‖
∑ min

𝑎∈𝐴
𝑑(𝑎, 𝑏)

𝑏∈𝐵

(3) 193 

To compute the distance between a pre-existing disease A with COVID-19 and a post-infection 194 

disease B, we need to integrate proteins associated with COVID-19 (denoted by C) and 195 

proteins associated with disease A. The computation formula is as follows:  196 

〈𝑑𝐴𝐵
𝐶 〉 =

1

‖𝐵‖
∑ min

𝑎∈𝐴∪𝐶
𝑑(𝑎, 𝑏)

𝑏∈𝐵

(4) 197 

The distance change (denoted by ∆𝑑𝐴𝐵) for a pre-existing disease A and a post-infection 198 

disease B with and without the addition of proteins associated with COVID-19 is as follows: 199 

∆𝑑𝐴𝐵 = 〈𝑑𝐴𝐵〉 − 〈𝑑𝐴𝐵
𝐶 〉 (5) 200 

 201 

We also apply the following methods to compute disease distances for sensitivity analysis: 202 

〈𝑑𝐴𝐵〉 =
1

‖𝐴‖‖𝐵‖
∑ ∑ 𝑑(𝑎, 𝑏)

𝑎∈𝐴𝑏∈𝐵

(6) 203 

Testing Method  204 

We employed two statistical tests, the Chi-square test and the Fisher’s exact test, to compare the co-205 

occurrence frequency of disease pairs between the non-exposed and exposure groups. These tests can 206 

assist us in determining whether a significant association exists between two diseases in the presence 207 

or absence of COVID-19. 208 

 209 

Among all 537 diseases which have at least one associated protein, for each pre-existing disease, we 210 

treated selected comorbidity patterns as positive samples and generated negative samples (disease pairs 211 

composed of pre-existing disease and other diseases, which are different from selected comorbidity 212 

patterns). Additionally, we utilized the Wilcoxon signed-rank test to compare the changes of protein-213 
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protein interaction (PPI) distance before and after the addition of proteins associated with COVID-19 214 

to proteins associated with pre-existing disease between each disease pair in the positive group and all 215 

disease pairs with the same pre-existing disease in the negative group. This test can help us evaluate 216 

whether a significant difference exists in the PPI distance between each disease pair in the positive 217 

group and all disease pairs with the same pre-existing disease in the negative sample group, thereby 218 

indicating the impact of COVID-19 on the relationship between two diseases. 219 

 220 

Negative Sample for Z-score Compute 221 

For each pre-existing post-infection disease pair, we conduct a permutation test of 1000 repeats to 222 

compute Z-score. We randomly select proteins from the PPI network, and the selected protein groups 223 

are required to have similar node degree distribution to pre-existing disease and post-infection disease 224 

respectively. Distance differences before and after adding proteins associated with COVID-19 as a part 225 

of pre-existing disease associated proteins are also calculated based on the randomly selected protein 226 

groups, and the mean value and standardized deviation of the result are used to compute Z-score for 227 

each pre-existing post-infection disease pair according to the following formula:  228 

𝑍∆𝑑𝐴𝐵
=

∆𝑑𝐴𝐵 − 𝜇𝑟

𝜎𝑟

(7) 229 

∆𝑑𝐴𝐵 is the distance change of pre-existing post-infection disease pair before and after adding 230 

proteins associated with COVID-19 as a part of pre-existing disease associated proteins. 𝜇𝑟 is the 231 

mean value of the distance change from the permutation test, 𝜎𝑟 is the standardized deviation of the 232 

distance change from the permutation test.  233 

GO enrichment Analysis 234 

GO terms describe the functions of gene products across three primary aspects: biological process, 235 

molecular function, and cellular component. By conducting GO enrichment analysis, we can pinpoint 236 

the GO terms and crucial genes most impacted by COVID-19, thereby enhancing our understanding of 237 

the disease’s underlying biology.18,27–29. We employed Fisher’s exact test for the enrichment analysis 238 

and used the Benjamini-Hochberg procedure to adjust the p-values for multiple testing.30,31. 239 

 240 
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GO Term and Gene Information are from the National Center for Biotechnology Information(NCBI). 241 

These datasets include information on GO terms and the relationships between GO terms, genes, and 242 

proteins. We can also identify proteins associated with each GO term. By utilizing GO enrichment 243 

analysis, we can discover highly influenced GO terms for each disease based on its associated proteins. 244 

 245 

Protein and GO terms Evaluation 246 

The importance of overlapping proteins and GO terms (those associated with both the post-infection 247 

disease and pre-existing disease with COVID-19) is the sum of the coefficients of disease pairs they are 248 

associated with based on TF-IDF metric. 32 We can sort overlapping proteins and GO terms by Relative 249 

Risk (RR), Correlation Coefficient and frequency, respectively. The final index of each item is 250 

determined by the mean index of those three indices. According to the final index, we can identify 251 

important proteins and GO terms. 252 

 253 

RESULTS 254 

Overall pipeline 255 

Using propensity score matching, we construct a non-exposed group (patients without COVID-19 256 

record) and an exposure group (COVID-19 patients) with similar clinical records prior to their 257 

respective first COVID-19 record (simulating infection date for healthy individuals) from January 1, 258 

2020 to August 31, 2022. Then, we construct and analyze the comorbidity network as follows: 259 

• For each individual, we first define pre-existing diseases as those diagnosed within 730 days before 260 

COVID-19, and post-infection diseases as new diseases diagnosed in 28 days to 180 days after 261 

COVID-19. We define the disease pair as a pair of a pre-existing disease and a post-infection 262 

disease in the exposure group. Comorbidity patterns refer to these disease pairs with a positive 263 

Pearson correlation coefficient between pre-existing and post-infection diseases with a relative 264 

risk > 1 (More details are shown in the Method part). 265 

• We then construct a comorbidity network33 consisting of these comorbidity patterns and involved 266 

diseases. In our comorbidity network, each node represents a disease. The existence of a directed 267 

edge from the pre-existing disease to the post-infection disease indicates the comorbidity pattern 268 

is significantly more frequent (p-value < 0.05, larger Pearson correlation coefficient and relative 269 
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risk) in the exposure group than in the non-exposed group. The difference in Pearson correlation 270 

coefficient and relative risk for each comorbidity pattern between the exposure group and the non-271 

exposed group are considered as additional attributes for edges.  272 

• For each comorbidity pattern, as represented by an edge in the comorbidity network, network 273 

analysis and GO enrichment18,34,35 analysis were employed for biological pathways discovery by 274 

utilizing corresponding disease-associated proteins with COVID-19 associated proteins, and 275 

important proteins and GO terms were identified.  276 

 277 
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Figure 1. Data curation and analysis pipeline. To explore the molecular mechanism of Post-Acute 278 

Sequelae of COVID-19, we stratify patients to the exposure group and the non-exposed group and 279 

define disease pairs based on their electric health records after propensity score matching (step 1). After 280 

filtering disease pairs, we construct a comorbidity network based on the correlation coefficient between 281 

pre-existing and post-infection diseases (step 2). Finally, we utilize the protein-protein interaction 282 

network to identify potential key proteins and biological pathways in comorbidity patterns under the 283 

influence of COVID-19 (step 3).  284 

 285 

Study cohorts 286 

Before matching, the dataset comprised 58753 individuals with COVID-19 and 488670 individuals 287 

without COVID-19 (refer to Supplementary Table 1). Following the matching process (as detailed in 288 

the Methods section), the exposure group contained 50296 observations, while the non-exposed group 289 

contained 100592 observations. The median age for the non-exposed group is 65, compared to 66 for 290 

the exposure group. The non-exposed group was composed of 52.4% males and 47.6% females, 291 

whereas the exposure group consisted of 52.2% males and 47.8% females. Over 50% of the individuals 292 

in both groups are aged 60 years or older. Further details regarding specific diseases are shown in 293 

Supplementary Figure 1 and the SMD of features are shown in Supplementary Table 2. Utilizing the 294 

electronic health records of each individual in the two groups, we were able to construct a directed 295 

comorbidity network, which illustrates the disease trajectories before and after COVID-19. 296 

 297 

Table 1. Summary statistics of the dataset.  298 

  Overall Non-exposed group exposure group 

Num  150888 100592 50296 

Vaccine num, n 
(%) 

0 dose 46013 (30.5) 30880 (30.7) 15133 (30.1) 

1 dose 22015 (14.6) 14564 (14.5) 7451 (14.8) 

2 doses 68563 (45.4) 45705 (45.4) 22858 (45.4) 

3 doses 10903 (7.2) 7248 (7.2) 3655 (7.3) 

4 doses 3394 (2.2) 2195 (2.2) 1199 (2.4) 
Age, median 
[Q1,Q3] 

 65.0 [53.0,76.0] 65.0 [53.0,76.0] 65.0 [53.0,76.0] 

Sex, n (%) 
Female 78933 (52.3) 52682 (52.4) 26251 (52.2) 

Male 71955 (47.7) 47910 (47.6) 24045 (47.8) 
Num of diseases 
before COVID-19, 
mean (SD) 

 4.0 (3.9) 4.0 (4.0) 3.9 (3.7) 
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Num of diseases 
after COVID-19, 
mean (SD) 

 1.8 (1.9) 1.9 (2.0) 1.6 (1.8) 

Num of pre-
existing diseases 
before COVID-19 
for exposure group 
and Non-exposed  
group (simulate), n 
(%) 

1 disease 42406 (28.1) 28405 (28.2) 14001 (27.8) 

2 diseases 30099 (19.9) 20499 (20.4) 9600 (19.1) 

3 diseases 20287 (13.4) 13349 (13.3) 6938 (13.8) 

4 diseases 13823 (9.2) 8951 (8.9) 4872 (9.7) 
more than 5 
diseases 44273 (29.3) 29388 (29.2) 14885 (29.6) 

Num of post-
infection diseases 
after COVID-19 
for exposure group 
and Non-exposed  
group (simulate), n 
(%) 

1 disease 64244 (42.6) 42312 (42.1) 21932 (43.6) 

2 diseases 27835 (18.4) 18907 (18.8) 8928 (17.8) 

3 diseases 12900 (8.5) 8898 (8.8) 4002 (8.0) 

4 diseases 7169 (4.8) 4956 (4.9) 2213 (4.4) 
more than 5 
diseases 12208 (8.1) 8863 (8.8) 3345 (6.7) 

no disease 26532 (17.6) 16656 (16.6) 9876 (19.6) 

Age group, n (%) 

0-20 4228 (2.8) 2927 (2.9) 1301 (2.6) 

20-40 14389 (9.5) 9691 (9.6) 4698 (9.3) 

40-60 35999 (23.9) 23778 (23.6) 12221 (24.3) 

60-80 65776 (43.6) 43552 (43.3) 22224 (44.2) 

80+ 30496 (20.2) 20644 (20.5) 9852 (19.6) 

 299 

 300 

Comorbidity Network Analysis 301 

Our comorbidity network comprises 96 nodes and 161 edges, representing the comorbidity patterns 302 

significantly influenced by COVID-19. Nodes are categorized into 14 disease groups according to their 303 

ICD9 categories. Edges are classified into two groups according to the adjacent nodes: intra-group 304 

edges (source node and target node in the same disease group), inter-group edges (source node and 305 

target node in different disease groups).  306 

 307 

Figure 2 (A) (B) depict the constructed comorbidity network and disease group classifications. The 308 

network is heterogeneously connected, with most disease groups sparsely associated with other disease 309 

groups and a few disease groups more closely related to some other disease groups. More specifically, 310 

among all groups, disease group (001–139 Infectious and Parasitic Diseases) and disease group (460–311 

519 Diseases of the Respiratory System) have a higher frequency than other disease groups. 079 (Viral 312 

and chlamydial infection in diseases classified elsewhere and of unspecified site) and 519 (Other 313 

diseases of respiratory system) are two most frequent diseases among all, indicating that COVID-19 314 

has the most significant impact on the respiratory system. Additionally, the neural, gastrointestinal and 315 

circulatory systems are also frequently affected by the COVID-19, which is aligns with the literature. 316 
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36–38 Diseases such as 276 (Disorders of fluid electrolyte and acid-base balance), 428 (Heart failure), 317 

788 (Symptoms involving urinary system), 272 (Disorders of lipoid metabolism), 294 (Persistent 318 

mental disorders due to conditions classified elsewhere) are also more likely to be involved in the 319 

comorbidity relationships. (Refer to Supplementary Table 3) 320 

 321 

 322 

Figure 2. Visualization of comorbidity patterns. (A) The comorbidity network. (B) The associations 323 

among disease groups. In (A), the size of a node is proportional to its occurrence in our dataset. In (B), 324 

the rectangles in the Sankey diagram correspond to ICD 9 disease categories. The left rectangles 325 

Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t.

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I: 

10
.10

63
/5.

02
50

92
3



represent disease groups of pre-existing diseases. The right rectangles represent disease groups of post-326 

infection diseases. The edge linking a pair of rectangles indicates that the comorbidity patterns are 327 

significantly more frequent among COVID-19 patients as compared to those in the non-exposed group. 328 

The thickness of an edge is proportional to increased occurrence among COVID-19 patients as 329 

compared to those in the non-exposed group. Please refer to Supplementary Table 5 for more details.  330 

 331 

The comorbidity network’s edges suggest more pronounced comorbidity relationships in the exposure 332 

group compared to the non-exposed group. These relationships imply that patients with a history of 333 

respiratory system diseases are at an increased risk of developing further respiratory system diseases 334 

due to COVID-19. Additionally, these patients with a history of respiratory system diseases also 335 

demonstrate a heightened risk for diseases within the circulatory system, genitourinary system, among 336 

others. Patients previously diagnosed with essential hypertension also exhibit a higher risk of 337 

developing respiratory system diseases and lipid disorders due to COVID-19. Patients with a history of 338 

peptic ulcer (site unspecified) are at an increased risk of developing Gastritis and duodenitis (Refer to 339 

Supplementary Table 4). 340 

 341 

Biological Mechanism Explanation 342 

To investigate the biological mechanisms underlying identified comorbidity relations, we utilize the 343 

PPI and GO terms associated with the diseases. We hypothesize that for COVID-19 to influence the 344 

disease comorbidity patterns of patients, its host factors (genes/proteins) should be localized in the 345 

corresponding subnetwork within the human PPI network, either directly targeting the disease-346 

associated genes/proteins or indirectly affecting them through PPIs. Specifically, we hypothesize that 347 

these comorbidity patterns identified from the comorbidity network experience a larger reduction in the 348 

topological distance in the PPI network caused by the inclusion of proteins associated with COVID-19 349 

as additional proteins associated with pre-existing disease. Similar patterns were previously observed 350 

in the relationship between COVID-19 and brain microvascular injury. 39 351 

 352 
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After we eliminated disease pairs without associated protein information, 145 pre-existing disease-353 

post-infection disease pairs, including 84 disease types (74 pre-existing diseases, 37 post-infection 354 

diseases), remained. Then, the network distance from pre-existing diseases to post-infection diseases 355 

is measured on the PPI network. The network distance is measured as the average shortest path length 356 

between each protein associated with post-infection disease and proteins associated with pre-existing 357 

disease. (Equation 3) Next, we measure the change of network distance of pre-existing diseases and 358 

post-infection diseases in the PPI network when treating COVID-19 as an additional pre-existing 359 

disease (Equation 4, Equation 5).We observed that the network distance between the disease pairs 360 

with elevated comorbidity risk after COVID-19 became significantly shorter because of the addition 361 

of proteins associated with COVID-19 in 54 disease pairs among 145 disease pairs (Figure 3). Please 362 

refer to the Method section for details. The result of Wilcoxon signed-rank test about distance change 363 

between exposure and non-exposed groups is shown in Figure 3 (A), Supplementary Figure 2 and 364 

Supplementary Table 6. The result of Z scores about the distance change within exposure groups is 365 

shown in Figure 3 (B), Supplementary Figure 3 and Supplementary Table 7. The sensitivity analysis 366 

is shown in Supplementary Figure 5,6,7 and Supplementary Table 12,13,14,15. 367 

 368 

Further GO analysis of involved proteins reveals that COVID-19 introduced additional mechanistic 369 

pathways towards post-infection diseases, effectively increasing the risk of developing post-infection 370 

diseases. Please refer to Supplementary Table 8, 9 for a list of frequent GO terms associated with these 371 

proteins.  372 

 373 

Among the involved proteins, overlapping proteins (those associated with both the post-infection 374 

disease and pre-existing disease with COVID-19) play a major role in shortening the distance between 375 

the disease pairs. The distance of each disease pair reflects the likelihood that proteins associated with 376 

post-infection disease are influenced by the abnormal expression of proteins associated with pre-377 

existing disease with COVID-19 via the PPI network. These proteins representing biological functions 378 

are linked to the phenotype of post-infection disease. For example, in Figure 4, the overlapping proteins 379 

associated with both the post-infection disease (272) and COVID-19 all involved in lipid metabolism, 380 
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the abnormal expression of the proteins may lead to a perturbance of lipid metabolism related biological 381 

functions resulting in the phenotype Disorders of lipoid metabolism40. Please refer to the Supplementary 382 

Materials for a list of the most frequent overlapping proteins (Refer to Table 2, Supplementary Table 383 

10, 11). GO enrichment analysis reveals that, in addition to the roles in COVID-19 and following 384 

inflammatory response, the expression disorder of these overlapping proteins is leading towards other 385 

diseases involving cardiovascular system, urinary system, and respiratory system. 386 

 387 

Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t.

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I: 

10
.10

63
/5.

02
50

92
3



 388 

Figure 3. Visualization of PPI distance. (A) The distribution of the distance changes from the 389 

corresponding disease to other comorbidities in the positive sample and negative sample (including 390 

Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t.

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I: 

10
.10

63
/5.

02
50

92
3



significant (p<0.05) disease pairs in Wilcoxon signed-rank test). (B) Z score of comorbidity pairs 391 

(including significant disease pairs in T test). The bar is thicker, and the Z score is larger. In (A), red 392 

(blue) rectangles represent pre-existing disease groups in the positive (negative) sample. In (B), each 393 

bar in the plot represents a comorbidity pair with the wider segment part mapping to the pre-existing 394 

disease in a disease pair, while the narrower part mapping to the post-infection disease. 395 

Table 2. Top 10 most important overlapping proteins. 396 

Symbol ID Type Associated biological functions 
ACE Enzyme Involving in blood pressure regulation and electrolyte 

balance 
PDYN Preproprotein Proteolytically processing to form the secreted opioid 

peptides beta-neoendorphin, dynorphin, leu-enkephalin, 
rimorphin, and leumorphin. 

GNAS Protein Playing a key role in the classical signal transduction 
pathway linking receptor-ligand interactions with the 
activation of adenylyl cyclase and a variety of cellular 
responses 

GSTP1 Enzyme Playing an important role in detoxification by catalyzing the 
conjugation of many hydrophobic and electrophilic 
compounds with reduced glutathione 

IL1B Cytokine Acting as an important mediator of the inflammatory 
response, and involving in a variety of cellular activities, 
including cell proliferation, differentiation, and apoptosis 

SCGB1A1 Secreted 
Proteins 

Involved in numerous functions including anti-
inflammation, inhibition of phospholipase A2 and the 
sequestering of hydrophobic ligands 

PLAT Protease Converting the proenzyme plasminogen to plasmin, a 
fibrinolytic enzyme 

NOS3 Enzyme Playing an important role in detoxification by catalyzing the 
conjugation of many hydrophobic and electrophilic 
compounds with reduced glutathione 

HMOX1 Enzyme Involved in heme catabolism, cleaving heme to form 
biliverdin 

GDF15 Ligand Acting as a pleiotropic cytokine and participateing in the 
stress response program of cells after cellular injury. 
Increased protein levels are associated with disease states 
such as tissue hypoxia, inflammation, acute injury and 
oxidative stress. 

 397 

Figure 4 illustrates the interplays between a representative disease comorbidity pair, from 401 (Essential 398 

hypertension) to 272 (Disorders of lipoid metabolism), which has an elevated risk because of the 399 

COVID-19 infection. We find that the overlapping proteins (orange and purple circles) associated with 400 
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both the post-infection disease (272) and pre-existing diseases (401 and COVID-19) play an important 401 

role in the development of disease comorbidity. There are five additional overlapping proteins (orange 402 

circles) because of the COVID-19 infection: NEU1, INHBE, NPC2, AGPS and  GLA.41,42 Specifically, 403 

NEU1 has a significant effect on lipid metabolism and inflammatory processes and is a potential drug 404 

target for decreasing atherosclerosis. 43,44 INHBE activates energy expenditure through brown/beige 405 

adipocyte activation, and it can be a potential drug target for obesity therapy. 45,46 NPC2 is essential for 406 

the pathways involved in glucose and lipid metabolism, helping the egress of lipids from the lysosome. 407 

47,48 AGPS is an ether lipid generating enzyme which is important for the balance of structural and 408 

signaling lipids.49 GLA is a polyunsaturated fatty acid that can reduce lipid deposition.40  The addition 409 

of these five overlapping proteins representing biological functions related to lipid metabolism 410 

potentially explains the mechanism of how COVID-19 elevated the risk of developing the post-infection 411 

disease (272). 412 

 413 

 414 
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 415 

Figure 4. PPIs underlying the comorbidity pattern between ICD 401 and ICD 272. A hexagon 416 

represents a disease. A circle represents a protein. An edge between circles represents the existence of 417 

protein-protein interaction. An edge between a hexagon and a circle represents the protein associated 418 

with the disease.    419 
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DISCUSSION 421 

Our study, leveraging population-based EHR and a wealth of biomedical data, stands as a pioneering 422 

quantitative analysis of the complex molecular mechanisms underlying the comorbidity patterns 423 

associated with COVID-19. This research is not merely an exploration but a comprehensive 424 

examination of the data, aiming to unravel the progression of the disease and the evolution of 425 

comorbidity patterns resulting from a COVID-19 infection. 426 

Our findings provide a deeper understanding of the phenomenon known as PASC; a disease 427 

characterized by lingering symptoms after recovery from the acute phase of COVID-19 that has been 428 

a global concern for healthcare professionals. Our research illuminates the elevated-risk comorbidity 429 

patterns associated with PASC, significantly contributing to the existing body of knowledge on this 430 

subject. 431 

Central to our study are the key proteins we identified, which play a pivotal role in increasing the risk 432 

of these comorbidity patterns. These proteins are not merely markers but potential targets for therapeutic 433 

intervention, laying the groundwork for the development of new drugs and the repurposing of existing 434 

ones. (More details are shown in Supplementary Table 10, 11) The ultimate goal is not only to reduce 435 

the risk of COVID-19 re-infection but also to prevent the onset of PASC, offering hope to millions of 436 

patients worldwide. 437 

 438 

The practical applications of our study are extensive. Using the comorbidity patterns, we discovered 439 

and the wealth of data from electronic health records, we can identify patients who are at high risk for 440 

PASC. This information is crucial for the effective allocation of medical resources, ensuring prompt 441 

care for those who need it most. Moreover, it aids in the recovery process of patients from COVID-19, 442 

providing a roadmap for their journey back to health. Our study, therefore, stands at the intersection of 443 

research and real-world application, contributing to the fight against this global pandemic. 444 

  445 

Our study has limitations. First, our analyses were based on the topology of the PPI network. The PPI 446 

network serves as a “skeleton” of the biological signaling circuitry in the human body. However, PPI 447 
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network cannot fully represent the pharmacokinetics and pharmacodynamics (PK/PD) associated with 448 

drugs. Future research is needed to incorporate the PK/PD models for a better understanding of the 449 

effects of drugs on the human body. Secondly, our population EHR data was obtained from public 450 

hospitals in Hong Kong. Although our data is among the most complete for a population, there is an 451 

inevitable under-reporting problem, especially for young patients. Third, although we have tried our 452 

best to build a comprehensive mapping between diseases and proteins in the PPI network. The 453 

mapping may still be subject to bias because of the lack of such data. Further biological research is 454 

needed to enrich and complement existing databases. The causative relationship between proteins in 455 

molecular mechanisms remains elusive. Validating these connections necessitates strategic planning 456 

of randomized controlled trials (RCTs) or the application of Mendelian randomization. Additionally, 457 

advanced methodologies in social network50 and gene regulation network analyses51–53, coupled with 458 

the acquisition of supplementary biological datasets, are essential for substantiating these causal 459 

connections. 460 

Conclusions 461 

In conclusion, our study significantly advances the understanding of the intricate molecular mechanisms 462 

and comorbidity patterns associated with COVID-19. By leveraging extensive population-based 463 

electronic health records and biomedical data, we have provided a comprehensive analysis that 464 

elucidates the progression of the disease and the evolution of comorbidity patterns resulting from a 465 

COVID-19 infection. Our findings identify the critical role of specific proteins in increasing the risk of 466 

these comorbidity patterns, identifying them as potential targets for therapeutic intervention. This paves 467 

the way for developing new treatments and repurposing existing drugs, ultimately aiming to reduce the 468 

risk of COVID-19 re-infection and prevent the onset of PASC. The practical implications of our 469 

research are extensive. By identifying high-risk patients through comorbidity patterns and electronic 470 

health record data, we can ensure a more effective allocation of medical resources and provide timely 471 

care to those most in need. 472 

 473 

  474 
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The supplementary materials contain additional figures and tables of the analytical results. 476 
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