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Abstract: Seismocardiography (SCG) and Gyrocardiography (GCG) use lightweight, minia-
turized accelerometers and gyroscopes to record, respectively, cardiac-induced linear accel-
erations and angular velocities of the chest wall. These inertial sensors are also sensitive
to thoracic movements with respiration, which cause baseline wanderings in SCG and
GCG signals. Nowadays, accelerometers and gyroscopes are widely integrated into smart-
phones, thus increasing the potential of SCG and GCG as cardiorespiratory monitoring
tools. This study investigates the accuracy of smartphone inertial sensors in simultaneously
measuring instantaneous heart rates and breathing rates. Smartphone-derived SCG and
GCG signals were acquired from 10 healthy subjects at rest. The performances of heartbeats
and respiratory acts detection, as well as of inter-beat intervals (IBIs) and inter-breath
intervals (IBrIs) estimation, were evaluated for both SCG and GCG via the comparison with
simultaneous electrocardiography and respiration belt signals. Heartbeats were detected
with a sensitivity and positive predictive value (PPV) of 89.3% and 93.3% in SCG signals
and of 97.3% and 97.9% in GCG signals. Moreover, IBIs measurements reported strong
linear relationships (R2 > 0.999), non-significant biases, and Bland–Altman limits of agree-
ment (LoA) of ±7.33 ms for SCG and ±5.22 ms for GCG. On the other hand, respiratory
acts detection scored a sensitivity and PPV of 95.6% and 94.7% for SCG and of 95.7% and
92.0% for GCG. Furthermore, high R2 values (0.976 and 0.968, respectively), non-significant
biases, and an LoA of ±0.558 s for SCG and ±0.749 s for GCG were achieved for IBrIs
estimates. The results of this study confirm that smartphone inertial sensors can provide
accurate measurements of both instantaneous heart rate and breathing rate without the
need for additional devices.

Keywords: gyrocardiography; seismocardiography; heartbeat detection; respiration; heart
rate; breathing rate; smartphone; accelerometer; gyroscope; cardiorespiratory monitoring

1. Introduction
Cardiac monitoring is one of the commonly used analyses in a comprehensive picture

of an individual’s health and its evolution, and it is generally performed via the analysis
of electrocardiography (ECG) signals. However, ECG signals do not carry information
on the mechanical functioning of the heart, for which ultrasounds are used as an elec-
tive modality. Previous research demonstrated that it is possible to extract heart-related
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mechanical features examining other types of signals, such as seismocardiograms and
gyrocardiograms [1–14]. Seismocardiography (SCG) and Gyrocardiography (GCG) are
non-invasive techniques that record, unlike ECG-based electrical monitoring, small vi-
brations of the chest wall generated by heart contractions via inertial sensors [4–6,15–17].
SCG and GCG use lightweight, miniaturized, three-axis accelerometers and gyroscopes,
respectively, to monitor cardiac-induced linear accelerations and angular velocities of the
precordium [12,13,18,19]. Since they are applied onto subjects’ chests, these sensors are also
capable of monitoring thoracic movements induced by respiration [20–26]. For this reason,
relevant information about both cardiac and respiratory activity, primarily one’s heart rate
and breathing rate, can be extracted from accelerometric and gyroscopic signals [27–30].

Monitoring the heart and breathing rates is a crucial aspect of a more complete view
of a patient’s health, and the literature is plenty on the topic. By analyzing the heartbeat,
cardiac disorders, such as heart failure and arrhythmias, can be recognised. Moreover,
changes in the breathing rate can indicate both respiratory and cardiac issues, such as heart
failure or asthma. Among the most common tests based on the observation of respiration
is sleep analysis, which is useful for detecting, for example, sleep apnoea [31,32], so moni-
toring must be constant in order to diagnose and treat potential disorders. Heartbeats are
usually detected on SCG and GCG signals by locating specific peaks and valleys, which
mainly correspond to the opening and closure of heart valves, while respiration is obtained
by capturing baseline wanderings in accelerometric and gyroscopic signals [4–7,12].

Cardiorespiratory diseases and their consequences still affect a considerable percent-
age of the population; therefore, health monitoring can benefit by seamlessly extracting
information from commonly used personal devices towards a quicker recognition of acute
conditions or developing pathologies. This allows the general population to become
more informed, better manage their physical conditions, and maintain more autonomy.
Smartphones have become a daily companion alongside daily life activities, the most
used personal devices this far, and it is possible to exploit electronic components already
present within these devices to evaluate subjects’ physical conditions outside clinical set-
tings [33,34]. SCG- and GCG-based monitoring can be performed using accelerometers
and gyroscopes integrated into any smartphone. To acquire these signals, the smartphone
trivially needs to be placed on a subject’s chest. The use of a smartphone as a monitoring
device allows subjects not to carry additional hardware, thus being more convenient and
cost-effective; indeed, there is no need to purchase further devices. This approach also
benefits doctors, who can remotely monitor patients’ cardiorespiratory activity in real time
by taking advantage of data transmission over the network. In the case of anomalies, the
doctor can act more quickly by having a complete overview of patients’ health conditions.
The possibility to perform intermittent measurements during daily life is crucial for pa-
tients because, in the case of cardiovascular disorders, such as atrial fibrillation, a timely
intervention is necessary since the duration of an arrhythmic event is short and difficult
to record. Indeed, consulting a specialist and undergoing periodic measurements do not
guarantee that atrial fibrillation episodes will occur during the check-up [35–37].

The use of smartphone inertial sensors has been investigated in recent years for the
acquisition of cardiomechanical signals, particularly SCG and GCG [1,33,34,38]. Various
studies have been presented to monitor vital signs, mainly the heart rate and breathing
rate, from smartphone-derived SCG and GCG signals [18,19,39]. Of these, some studies
focused only on heart rate estimation [2,34,40]; other studies only addressed breathing
rate estimation [41]. Moreover, a comparison between accelerometers and gyroscopes in
terms of the estimation accuracy of both the heart rate and breathing rate has never been
carried out. Furthermore, some studies provided only measurements of the mean heart
rate [42,43] or mean breathing rate [44]. In addition, many studies are lacking in accurate
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performance analysis with respect to reference techniques [41,45,46]. Finally, some studies
proposed rather complex approaches to detecting heartbeats or respiratory acts in SCG or
GCG signals [2,17,44].

To the best of our knowledge, the use of smartphone inertial sensors to simultaneously
measure the instantaneous heart rate and breathing rate from both accelerometric and
gyroscopic signals has never been proposed. This study addressed this issue. To this end,
experimental tests were carried out on a cohort of 10 healthy subjects at rest in a supine
position under quiet breathing. Smartphone-derived accelerometric and gyroscopic signals
were recorded using an open-source app. The performances of heartbeats and respiratory
acts detection, as well as of inter-beat intervals (IBIs) and inter-breath intervals (IBrIs)
estimation, were evaluated against reference techniques via statistical analyses. Specifically,
ECG signals were assumed as the reference for cardiac activity, while respiration belt signals
were the ground truth for respiratory activity.

2. Materials and Methods
2.1. Signals Acquisition and Pre-Processing

Ten healthy subjects (eight males and two females, aged 25.75 ± 4.96 years) were
involved in this study, who signed informed consent. The participants were asked to
breathe at their natural pace while lying supine on a bed in a horizontal position. SCG and
GCG signals were recorded using an iPhone 8 smartphone (Apple, Los Altos, CA, USA)
placed on the subjects’ chest along the midline. An open-source app, namely, Phyphox
(RWTH Aachen University) [47], was used to acquire three-axis accelerometric (ACC) and
gyroscopic (GYR) signals from the smartphone inertial measurement unit at a sampling
frequency of 100 Hz. Simultaneously, ECG lead II and respiration signals were acquired
using a WelchAllyn Propaq® Encore monitor and an electro-resistive band (ERB) [48],
respectively, to provide reference measurements. The ECG and ERB signals were recorded
via a National Instrument NI-USB6212 DAQ board (National Instruments Corp., Austin,
TX, USA) at a sampling frequency of 10 kHz and 16-bit precision. Synchronization between
the signals acquired via the smartphone (ACC and GYR) and the signals acquired via
the acquisition board (ECG and ERB) was obtained by causing a brisk motion artifact.
The motion artifact was generated by giving a small and sudden push to the subject’s body.
Thus, both ACC and ECG signals were strongly corrupted by a short and large transient.
Then, the first heartbeat after the transient was localized in both ACC and ECG signals,
thus allowing for a beat-wise alignment of the two signal groups. This procedure allowed
the same starting heartbeat to be recognized in the two signal groups. This ensured that
all the following cardiac inter-beat and respiratory inter-breath intervals were aligned and
suitable for comparison via the statistical analyses. Figure 1 shows the measurement setup
adopted in the experimental tests. Specifically, the dorso-ventral z-axis ACC signals and
the cranio-caudal y-axis GYR signals were considered for cardiac activity, while the cranio-
caudal y-axis ACC and GYR signals were considered for respiratory activity. These signals
were linearly interpolated at 10 kHz via the Matlab® function “interp1” to obtain the same
temporal resolution of ECG and ERB signals. Moreover, the ECG signal was first band-pass
filtered in the 0.5–40 Hz frequency range via a fourth-order zero-lag Butterworth filter; then,
a notch comb filter was used to remove the 50 Hz powerline interference and its higher
harmonics. In this study, Matlab® R2022a (The MathWorks, Inc., 1 Apple Hill Drive, Natick,
MA, USA) was used for all processing operations.
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Figure 1. (a) Measurement setup: the subject lies supine on a bed in horizontal position while 
breathing at a natural pace. The smartphone is placed onto the subject’s chest along the sternum. 
The ERB is secured around the upper abdomen of the subject. ECG electrodes are positioned on the 
subject to record the ECG lead II via an ECG monitor. Triaxial ACC and GYR signals are acquired 
by the smartphone and, simultaneously, ECG and ERB signals are acquired via a separate data 
acquisition board. Examples of acquired signals are also depicted. (b) Two photos: on the left, a top 
view, and on the right, a side view of an actual subject equipped with the measurement setup. 

2.2. Cardiac Activity Analysis 

Figure 1. (a) Measurement setup: the subject lies supine on a bed in horizontal position while
breathing at a natural pace. The smartphone is placed onto the subject’s chest along the sternum.
The ERB is secured around the upper abdomen of the subject. ECG electrodes are positioned on the
subject to record the ECG lead II via an ECG monitor. Triaxial ACC and GYR signals are acquired
by the smartphone and, simultaneously, ECG and ERB signals are acquired via a separate data
acquisition board. Examples of acquired signals are also depicted. (b) Two photos: on the left, a top
view, and on the right, a side view of an actual subject equipped with the measurement setup.

2.2. Cardiac Activity Analysis

The z-axis SCG and y-axis GCG signals were obtained by band-pass filtering, respec-
tively, the raw z-axis ACC and y-axis GYR signals via a second-order zero-lag Butterworth
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band-pass filter with cut-off frequencies of 7 and 30 Hz. To localize heartbeats on SCG
and GCG signals, an ECG-free template matching method, widely presented in previous
studies [49–55], was used. This technique involves selecting a heartbeat template from
the signal to be analyzed and calculating the normalized cross-correlation (NCC) function
between the selected template and the whole signal as a similarity measure. In this study,
the template was manually selected from SCG and GCG signals, including both systolic
and diastolic cardiac complexes, as in [49–55]. Specifically, the template was selected from
two to three oscillations before the systolic peak (local maximum), where the amplitude
of the oscillations was significantly reduced compared with the amplitude of the systolic
peak and ended just after the last oscillation of the diastolic complex. High NCC values
indicate high similarity between the selected template and the signal chunks; therefore,
the NCC local maxima were considered as heartbeats’ fiducial points. On the other hand,
to obtain reference heartbeats, R-peaks were located on the ECG signal using the well-
known Pan–Tompkins algorithm [56], which is implemented in RunBioSigKit Matlab®

toolbox [57]. Figure 2 shows an example of heartbeats’ localization on ECG, SCG, and
GCG signals from subject #5. True positives (TPs), false positives (FPs,) and false negatives
(FNs) were annotated for both SCG and GCG signals with respect to reference R-peaks.
In detail, heartbeats detected on SCG/GCG signals that corresponded to R-peaks on ECG
signals were considered as TPs, heartbeats identified on SCG/GCG signals that did not
correspond to R-peaks on ECG signals were marked as FPs, and missed heartbeats on
SCG/GCG signals at locations where R-peaks were identified on ECG signals were counted
as FNs. Finally, IBIs were calculated for the three signals as time differences between their
consecutive heartbeat fiducial points (see Figure 3).
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and gyroscope-derived respiration (GRG), were obtained, respectively, from the raw y-
axis ACC and y-axis GYR signals by capturing their baseline wanderings due to 
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Figure 2. Some excerpts of ECG (blue line), NCC (light green line), and (a) SCG signal (orange line),
(b) GCG signal (green line) from subject #5. Red and black points mark the locations of R-peaks and
NCC-peaks, respectively.
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Figure 3. An example of IBI estimation in ECG and SCG signals of subject #5. For the ECG sig-
nal, the IBI is estimated as the temporal distance between two consecutive R-peaks (violet double
arrow), while the same IBI is estimated for the NCC signal as the temporal distance between the
two corresponding successive NCC-peaks (blue double arrow).

2.3. Respiratory Activity Analysis

Purely respiration signals, referred to as accelerometer-derived respiration (ARG) and
gyroscope-derived respiration (GRG), were obtained, respectively, from the raw y-axis ACC
and y-axis GYR signals by capturing their baseline wanderings due to respiratory-induced
thoracic movements. These movements cause changes in the inclination and angular veloc-
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ity of the smartphone accelerometer and gyroscope, respectively. These large respiratory
components were extracted by applying third-order Savitzki–Golay filters [58], with frame
lengths ranging from 1.5 to 10 s. This procedure helps to maintain the true shape of the
ARG and GRG signals, unlike simple low-pass filtering, which may eliminate important
higher-frequency components, particularly during forceful inspirations or expirations,
and introduce artifacts into the resulting signals. The same processing was applied to
the ERB signal, which was filtered via a third-order Savitzky–Golay filter with a frame
length corresponding to about a 1.5 s interval. Then, respiratory acts were located on the
three signals via the MATLAB® function “findpeaks” by appropriately setting the minimum
peak prominence and distance. Figure 4 shows an example of respiratory acts detection
on the ERB signals and ARG and GRG signals. A comparison with respect to reference
respiratory acts was performed for both ARG and GRG signals to annotate TPs, FPs, and
FNs. In particular, respiratory peaks on ARG/GRG signals that matched references peaks
on ERB signals were marked as TPs, respiratory acts on ARG/GRG signals that did not
match reference peaks on ERB signals were annotated as FPs, and missed respiratory peaks
on ARG/GRG signals with respect to reference peaks on ERB signals were counted as FNs.
Finally, IBrIs measurements were obtained from the three signals by computing the time
differences between consecutive respiratory acts, as depicted in Figure 5.
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Figure 4. Some excerpts of ERB (purple line) signal and (a) ARG signal (black line), (b) GRG signal
(green line) from subject #5. Blue points mark the locations of respiratory peaks on ERB/ARG signals,
while red points mark the locations of respiratory peaks on ERB/GRG signals.
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Figure 5. An example of IBrI estimation in ERB and ARG signals of subject #5. For the ERB signal, the
IBrI is estimated as the temporal distance between two consecutive respiratory peaks (violet double
arrow), while the same IBrI is estimated for the ARG signal as the temporal distance between the
two corresponding successive respiratory peaks (blue double arrow).

2.4. Statistical Analyses

To assess the accuracy of heartbeats and respiratory acts detections with respect to
reference ECG and ERB signals, the sensitivity and positive predictive value (PPV) were
considered as performance evaluation metrics and computed according to the follow-
ing equations:

Sensitivity (%) =
TP

TP + FN
100 (1)

PPV (%) =
TP

TP + FP
100 (2)

where TP, FP, and FN indicate the number of true positives, false positives, and false
negatives, respectively. Linear regression, correlation, and Bland–Altman analyses [59]
were carried out to compare IBIs obtained from SCG and GCG signals with those provided
by reference ECG and IBrIs obtained from ARG and GRG signals with those provided by
reference ERB signals. These analyses were performed by using the MATLAB® function
“bland-altman-and-correlation-plot” [60]. IBIs and IBrIs corrupted by FPs and FNs were
excluded from these analyses.

3. Results
3.1. Performance of Heartbeats’ Localization

Table A1 in Appendix A reports the number of TPs, FPs, and FNs detected on SCG
signals for each subject, along with the number of reference R-peaks. This table also
indicates the number of compared IBIs. Across all subjects, 5660 heartbeats were identified
in the reference ECG signals, while 5048 TPs, 360 FPs, and 608 FNs were recognized in
the SCG signals. Therefore, the SCG signals scored a sensitivity of 89.3% and a PPV of
93.3%. Moreover, 5370 IBIs were compared via the correlation, linear regression, and Bland–
Altman analysis. The regression and correlation analysis yielded a unitary slope and an
intercept of 0.041 ms, with a coefficient of determination R2 > 0.999, as shown in Figure 6a.
The Bland–Altman analysis revealed an LoA of ±7.33 ms and a non-significant bias (p-value
of 0.142), as shown in Figure 6b. The results of the statistical analyses are also summarized
in Table 1.
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Table 1. Results of statistical analyses performed on IBIs obtained from SCG and GCG signals.

SCG GCG

Sample size Subjects 10 10
Compared IBI 4710 5370

Performance of heartbeats detection
Sensitivity (%) 89.3 97.3

PPV (%) 93.3 97.9

Results of regression analysis
Slope 1.00 1.00

Intercept (ms) 0.041 −0.648
R2 0.9996 0.9998

Results of correlation analysis r 0.9998 0.9999

Results of Bland–Altman analysis Bias (ms) 0.075 0.032
LoA(ms) 7.33 5.22
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On the other hand, a total of 5506 TPs, 119 FPs, and 154 FNs were identified in the
GCG signals, and 5370 IBIs were considered for correlation, linear regression, and Bland–
Altman analysis. The results of the heartbeats detection per subject are shown in Table A2
in Appendix A. The GCG signals achieved a sensitivity of 97.3% and a PPV of 97.9% in
heartbeats detection. Furthermore, the regression and correlation analysis on IBIs resulted
in a unitary slope and an intercept of −0.648 ms (R2 > 0.999), as depicted in Figure 7a.
The Bland–Altman analysis reported an LoA of ±5.22 ms and a non-significant bias (p-value
of 0.378), as illustrated in Figure 7b. A summary of these results is also provided in Table 1.
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3.2. Performance of Respiratory Acts Localization

Across all subjects, a total of 1315 respiratory acts were identified in the reference ERB
signals, while 1190 TPs, 67 FPs, and 55 FNs were detected on the ARG signals reported,
which scored a sensitivity of 95.6% and a PPV of 94.7%. The results of the respiratory
acts detection per subject are indicated in Table A3 in Appendix A. Moreover, 1198 IBrI
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measurements were statistically compared. In detail, a unitary slope and an intercept of
0.0017 s were found in the regression and correlation analysis, with an R2 value of 0.976,
as shown in Figure 8a. The Bland–Altman analysis reported an LoA of ±0.558 s and
a non-significant bias (p-value of 0.423), as depicted in Figure 8b.
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On the other hand, 1154 TPs, 100 FPs, and 52 FNs were detected in the GRG signals,
thus achieving a sensitivity of 95.7% and a PPV of 92.0%. The details are shown in Table A4
in Appendix A. The correlation and linear regression analysis, performed on 1211 IBrIs,
reported a slope of 0.986 and an intercept of 0.065 s, with an R2 value of 0.968, as shown in
Figure 9a, while an LoA of ±0.775 s and a non-significant bias (p-value of 0.461) resulted
from the Bland–Altman analysis, as illustrated in Figure 9b. A summary of these statistical
findings is provided in Table 2.
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Table 2. Results of statistical analyses performed on IBrIs obtained from ARG and GRG signals.

ARG GRG

Sample size Subjects 10 10
Compared IBrI 1198 1211

Performance of respiratory acts detection Sensitivity (%) 95.6 95.7
PPV (%) 94.7 92.0

Results of regression analysis
Slope 1.00 0.986

Intercept (s) 0.002 0.065
R2 0.976 0.968

Results of correlation analysis r 0.988 0.984

Results of Bland–Altman analysis Bias (s) 0.007 0.008
LoA(s) 0.558 0.749
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4. Discussion
This study demonstrated that instantaneous heart and breathing rates can be accu-

rately estimated from accelerometric and gyroscopic signals acquired via inertial sensors
embedded in a smartphone. Specifically, heartbeats were identified on these signals via
an ECG-free template matching method, well-documented in previous studies [49–55],
while respiratory acts were monitored by tracking thoracic movements, which reflect on
accelerometric and gyroscopic signals as baseline wanderings. The results of the correla-
tion and regression analyses showed a high degree of correlation between the inter-beat
intervals estimated from smartphone-derived SCG and GCG signals and those obtained
from simultaneous ECG signals (R2 > 0.999 for both SCG and GCG). Moreover, the Bland–
Altman analyses reported non-significant biases and limits of agreement of ±7.33 ms for
SCG and ±5.22 ms for GCG, thus suggesting that accurate measurements of instantaneous
heart rate can be obtained from both SCG and GCG signals recorded via a smartphone,
without the support of a concurrent ECG tracing. Similarly, the results of correlation and
regression analyses performed on the inter-breath intervals scored R2 values of 0.976 for
ARG and 0.968 for GRG with respect to those provided by simultaneous respiration signals,
while the Bland–Altman analyses reported non-significant biases and limits of agreement
of ±0.558 s for ARG and ±0.749 s for GRG, indicating that smartphone-derived accelero-
metric and gyroscopic signals also provide high accuracy in the estimation of instantaneous
breathing rates.

These findings highlight that a smartphone can be used as a personal monitoring de-
vice. Indeed, it offers a user-friendly, cost-effective, and comfortable solution for obtaining
relevant information about cardiorespiratory activity and accurately monitoring two vital
signs, i.e., heart rate and breathing rate, without the need for additional, more expensive
and obtrusive instruments. No other studies in the literature addressed the simultaneous
estimation of instantaneous heart and breathing rates from both smartphone-derived SCG
and GCG signals. Indeed, some studies focused only on mean heart rate or breathing rate
estimation [1,33,36,40,44,61], and other studies measured only instantaneous heart rate or
breathing rate alone, also obtaining much larger limits of agreement [2,34,41–43], while
further studies did not even compare with reference techniques or provide the results of
the performance analysis [40,41,46,62].

This study has some limitations. Data were collected from a small cohort of healthy
subjects. The performance of the proposed monitoring method should be assessed on a
larger cohort of subjects, possibly also including pathological subjects with cardiac and
respiratory impairments. In addition, measurements were obtained only from subjects at
rest, in supine position during quiet breathing. Securing the smartphone to the subjects’
chest, e.g., via an elastic band, could improve the robustness regarding motion artifacts
and also allow for its use in various activities of daily living, involving different body
postures and movements. Moreover, all data acquisitions were only performed via an
iPhone8 smartphone. Further tests should be carried out on various smartphone models to
ensure that accurate results could be obtained with any smartphone. This could enable the
potential use of the proposed smartphone-based approach by a large number of smartphone
users. As an example, this could be used in emergency situations by paramedics to obtain
information about subjects’ health conditions in a timely manner. Another limitation
is that the template matching approach requires the manual selection of the heartbeat
template, which depends on the expertise of the operator. A promising future direction
is the development of a fully automated template matching algorithm, which could also
be integrated into a dedicated smartphone app in order to provide measurements of
instantaneous heart rate and breathing rate in real time.
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Appendix A

Table A1. Number of R-peaks detected in ECG signals, TPs, FPs, and FNs identified in SCG signals,
along with the number of compared IBIs.

Subject ID# R-Peaks TP FP FN Compared IBI

1 863 810 16 51 775
2 861 860 0 1 857
3 649 578 68 71 517
4 403 400 3 3 396
5 646 646 0 0 645
6 420 359 148 61 310
7 331 309 3 21 289
8 496 492 0 4 486
9 401 396 0 5 390

10 590 198 122 391 45
Total 5560 5048 360 608 4710

Table A2. Number of R-peaks detected in ECG signals and TPs, FPs, and FNs identified in GCG
signals, along with the number of compared IBIs.

Subject ID# R-Peaks TP FP FN Compared IBI

1 863 863 0 0 862
2 861 859 0 2 855
3 649 514 83 135 408
4 403 396 8 7 391
5 646 646 0 0 645
6 420 417 5 3 412
7 331 331 14 0 329
8 496 489 4 7 481
9 401 401 1 0 399

10 590 590 4 0 588
Total 5660 5506 119 154 5370
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Table A3. Number of respiratory peaks detected in ERB signals and TPs, FPs, and FNs identified in
ARG signals, along with the number of compared IBrIs.

Subject ID# Reference Respiratory Acts TP FP FN Compared IBrI

1 196 195 0 1 193
2 116 98 15 3 111
3 238 232 3 4 230
4 40 23 5 6 21
5 158 158 0 0 157
6 104 94 5 5 94
7 56 40 9 7 43
8 153 116 16 25 108
9 125 122 3 0 124
10 129 112 11 4 117

Total 1315 1190 67 55 1198

Table A4. Number of respiratory peaks detected in ERB signals and TPs, FPs, and FNs identified in
GRG signals, along with the number of compared IBrIs.

Subject ID# Reference Respiratory Acts TP FP FN Compared IBrI

1 196 187 5 4 188
2 116 94 19 3 109
3 238 230 4 4 234
4 40 22 13 2 34
5 158 151 7 0 157
6 104 92 6 5 98
7 56 54 1 1 53
8 153 115 16 20 113
9 125 110 8 7 113
10 129 99 21 6 112

Total 1315 1154 100 52 1211

Appendix B
In this study, several acronyms are used. Table A5 presents a complete list of the

acronyms used.

Table A5. Complete list of acronyms and their meanings.

Acronym Full Form

ACC Accelerometer
ARG Accelerometer-derived Respiration
ECG Electrocardiography
ERB Electro-resistive Respiratory Band
FN False Negative
FP False Positive
GCG Gyrocardiography
GRG Gyroscope-derived Respiration
GYR Gyroscope
IBI Inter-beat interval
IBrI Inter-breath interval
LoA Limits of Agreement
NCC Normalized Cross-Correlation
PPV Positive Predictive Value
SCG Seismocardiography
TN True Negative
TP True Positive
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