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Abstract
To address the complexities of managing networks of unmanned aerial vehicles (UAVs) and
Just-in-Time problem solving, this study introduces a cutting-edge multi-objective location-
routing optimizationmodel. This model integrates timewindow constraints, concurrent pick-
up and delivery demands, and rechargeable battery functionality, significantly enhancing the
efficiency of UAV operations. It reduces battery consumption and transportation costs while
optimizing delivery times and reducing operational risks. Themodel improves the refinement
of delivery schedules by accounting for uncertain traffic scenarios, thereby increasing its
accuracy and reliability in dynamic environments. Additionally, a Bayesian belief networks
approach for risk assessment introduces a new layer to operational risk management. The
model’s performance and its trade-offs are demonstrated through advanceddata visualizations
such as 3D Pareto fronts, pair plots, and network graphs, with validation via the NSGA-II
approach confirming its reliability and practical applicability. This research represents a
major leap forward in drone routing strategies, focusing on efficiency, adaptability, and risk
management in UAV logistics and provides a comprehensive framework that bridges the gap
between theoretical exploration and practical application.

Keywords Routing problem · Drone delivery · NSGA-II algorithm · Multi-objective
optimization · Bayesian belief networks · Risk assessment

1 Introduction

Unmanned aerial vehicles (UAV) are one of the most intensively studied technologies in
logistics in recent years (Mulumba & Diabat, 2024; Chung et al., 2020; Li et al., 2021; Mah-
moodi et al., 2024). In this system, as a UAV delivers logistics services to customers, it can
also concurrently serve nearby customers. This collaborative delivery system enhances the
overall efficiency of logistics operations (Bi et al., 2024; Luo et al., 2021a, 2021b; Murray &
Chu, 2015). In contrast to other vehicles, UAVs offer several advantages, including lower cap-
ital and operating costs, the ability to take off and land in confined spaces without the need for
costly infrastructure, and the elimination of the requirement for an onboard operator. These
advantages make UAVs highly beneficial for various transportation and logistics activities
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(Wei et al., 2021). Numerous industrial companies, including Amazon, FedEx and DHL are
actively vying to pioneer the implementation of UAV delivery systems (Wang et al., 2024).
These companies integrate technological features aligned with current trends in the trans-
portation industry and society, such as autonomy, flexibility, and agility. The primary goal of
UAV deployment is to reduce overall costs and enhance customer satisfaction through swift
last-mile deliveries. The efficiency of last-mile operations not only impacts the profitabil-
ity of retailing but also influences environmental and social performance criteria, including
emissions and traffic congestion in various regions. The adoption of UAVs in delivery pro-
cesses has a substantial effect on energy consumption and contributes to the reduction of
pollution, including greenhouse gas emissions and carbon footprint (Chi et al., 2023; Sham
et al., 2023).

While the developed UAV system offers advantages, challenges arise in real-time pro-
cesses, including unexpected weather, safety, security of data, limited capacity, and budget
of purchasing equipment and infrastructure. These challenges becomemore prominent when
UAVs need to predict cases and choose optimal routes. However, ongoing development and
testing may soon enable UAVs to deliver packages using AI technology. This encompasses
tasks like launch, navigation, data acquisition, transmission, and analysis. An accurately
designed AI optimization model ensures feasible and efficient operating decisions for UAV
delivery systems (Eskandaripour & Boldsaikhan, 2023; Yu et al., 2022).

In mission platform design models, the comprehensiveness of objectives correlates with
real-world applicability, enabling the model to generate pragmatic solutions. Key objectives
explored in these cases involve minimizing travel time, reducing energy consumption, maxi-
mizing reliability, and lowering operational costs (Kumbhar & Shin, 2022; Wei et al., 2021).

In this research to enhance the UAV delivery system, we create a comprehensive multi-
objective optimization model. The aim was to devise an advanced transportation scheme
addressing four pivotal objectives: Minimizing operational cost, reliable delivery time esti-
mation, imposed risk, and battery consumption. These factors were identified as crucial for
optimizing the delivery system. The optimization is represented through an integratedmixed-
integer non-linear program (MINLP) problem in the objective function, framing the decision
problem to determine the optimal location and routing for a fleet of UAVs (Yakıcı & Karatas,
2021). In this scenario, there is a set of demand points, UAV fleets, and candidate distribution
centers (DCs) considered. While not all demand points need to be visited, each visited point
yields a specific benefit. The primary objective is to maximize the overall operational benefit
obtained by visiting these points. The simultaneous execution involves selecting allowed
stations, assigning UAVs to these stations, and assigning UAVs to DCs. Additionally, the
authors address an extension of this problem, allowing demand points to have time windows
for UAV visits and enabling UAV takeoff and landing at assigned DCs and different demand
points. The model focuses on location, routing, and prize (benefit) collection, contributing
significant advancements to each aspect of the optimization goals (Sham et al., 2023). Below
the contributions featured in this article:

This paper makes significant strides in UAV logistics through a series of interconnected
contributions, starting with its sophisticatedmathematical formulation that tackles the UAVs’
location-routing problem with dual objectives of minimizing operational costs and maxi-
mizing customer satisfaction, as innovatively proposed by Ning and You (2019). It further
introduces a nuanced battery consumption model, highlighted by Torabbeigi et al. (2020),
which smartly integrates the payload’s effect on battery life into the operational planning,
balancing efficiency with cost-effectiveness. The inclusion of a risk assessment model,
as explored by Jiao et al. (2022), introduces a fourth objective function using Bayesian
belief networks to proactively manage the operational risks associated with increasing UAV
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usage, enhancing system reliability and airspace security. Lastly, the application of a genetic
algorithm validates the model’s effectiveness, demonstrating UAVs as a time-saving and
environmentally friendly alternative for package delivery. Collectively, these contributions
not only advance the academic discourse onUAV logistics but also provide tangible, practical
solutions for real-world challenges in the delivery sector, setting new standards for efficiency,
reliability, and sustainability (Yang et al., 2023).

The remaining sections of our paper are organized as follows. In Sect. 2, we provide an
overview of existingmodels related to theUAV routing problem, highlighting their distinctive
features. Section 3 is dedicated to elucidating the formulation of our model and detailing its
components. Moving on to Sect. 4, solutions are presented, addressing various aspects of the
model through the application of a reinforcement algorithm. In Sect. 5, numerical results are
presented, followed by Sect. 6, which provides a comparative analysis and validation of the
optimization results. Finally, Sect. 7 concludes the paper, offering a summary of the entire
research structure.

2 Literature review

Optimizing UAV routing has become a focal point for researchers in recent times. Numerous
research teams have undertaken thorough examinations of contemporary studies related to
UAV delivery and operations. Notably, Rojas et al. (2021) and Marcina et al. (2020) have
conducted reviews focusing on generic UAV routing issues and parcel delivery, respectively.
The common thread in these studies is the assumption that minimizing delivery completion
time or costs constitutes a primary optimization objective for UAV delivery models. The
landscape of modern transportation is rapidly evolving, posing a complex challenge for
conventional routing methods originally designed for traditional vehicles. Nonetheless, there
is a promising subset of solutions embracing a rigorous analytical approach. These solutions
employmathematical calculations to discern optimal routes while simultaneously addressing
multiple objectives (Kumbhar & Shin, 2022).

2.1 UAV routing problem utilizing amulti-objective hybrid optimization framework

The literature on UAV-based product delivery has seen numerous studies, significantly con-
tributing to the advancement of routing and location problems associated with distribution
centers (DCs) (Wang et al., 2024). Some studies have introduced innovative routing models,
proposing operations that involve both UAVs and trucks. In a recent investigation, Bhuiyan
et al. (2022) delved into the optimization of UAV deployment for direct goods delivery within
specified time windows. They presented a multi-objective model, employing a novel mathe-
matical optimization-based decision-making approach. This model assists business owners
in optimally routing their UAV fleets by minimizing total energy consumption, required fleet
size, and the number of additional batteries needed. In addition to them, Hashemi et al.,
(2021, 2022) in another research focused on location and routing problems within the supply
chain, involving manufacturers, distributor candidate sites, and retailers. The objective is to
minimize delivery times and system costs for retailers, with a focus on determining opti-
mal routing and distributor locations. The study employs unique criteria, considering factors
such as simultaneous deliveries and pickups, soft and hard time windows for retail services,
and various costs including transportation, distributor construction, vehicle acquisition, and
manufacturing. The conceptual model is developed and modeled, and solutions are explored
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using General Algebraic Modeling System software (GAMS), as well as Multiple Objec-
tive Particle Swarm Optimization (MOPSO) and non-dominated sorting genetic algorithm II
(NSGAII) algorithms in small dimensions (Freitas et al., 2022).

Another noteworthy contribution comes fromMahmoodi et al., who pioneered a combined
parcel delivery routing problemwith the aim ofminimizing total delivery time, cost, and time.
Their model incorporates realistic features of UAV delivery networks, considering routing
limitations, costs, various distance metrics for UAVs, and risk assessment based on the Spe-
cific Operations Risk Assessment (SORA) standard. This study proposes a multi-objective
location-routing optimization model that addresses time window constraints, simultaneous
pick-up and delivery demands, and the potential for recharging used batteries. The objec-
tives include reducing transport costs, delivery times, and estimated risks. The optimization of
delivery time also accounts for uncertain conditions in potential traffic scenarios. Risk assess-
ment follows the SORAstandard, aligningwith the approach of previous studies (Zhang et al.,
2022).

They present a groundbreaking approach to enhanceUAV logistics through a sophisticated
multi-objective hybrid optimization model. The framework is meticulously crafted, draw-
ing inspiration from the SORA standards, to elevate the performance of advanced delivery
systems. They made a noteworthy contribution by addressing a combined parcel delivery
routing problem, minimizing total delivery time, cost, and time. Their model incorporates
realistic features of UAV delivery networks, considering routing limitations, costs, various
distancemetrics forUAVs, and risk assessment based on the SpecificOperations RiskAssess-
ment (SORA) standard. This study proposes a multi-objective location-routing optimization
model, addressing timewindow constraints, simultaneous pick-up and delivery demands, and
the potential for recharging used batteries, with objectives encompassing reduced transport
costs, delivery times, and estimated risks (Mahmoodi et al., 2022).

Millar et al. (2023) introduced a novel concept involving the coordinated operation of
multiple Unmanned Aerial Vehicles (UAVs) under the guidance of a manned "Tender" air
vehicle equipped with a pilot and flight manager(s). The paper also addresses trajectory
optimization for UAVs tasked with collecting data from sensors in a continuous space. The
path-planning problem is formulated for a cooperative swarm of UAVs, aiming to maximize
data accumulation within flight time constraints and minimize potential risks. Risk assess-
ment is conducted using a Specific Operation Risk Assessment—Bayesian belief network
approach, and the resulting analysis is weighted through an analytic hierarchy process rank-
ing model. The proposed network architecture demonstrates the capability of UAVs to make
optimal movement decisions while addressing various objectives (Sajid et al., 2022).

An UAV-based routing problem with multiple objectives, including minimizing distance
traveled, increasing customer satisfaction, and reducing the number of used UAV has been
tackled (Macrina et al., 2020). Their study resulted in obtaining the Pareto Front (Janik et al.,
2021; Nguyen et al., 2023). In a different approach, adapted a strategy from the traveling
salesman location routing problem to determine the UAV’s shortest route. They utilized the
ant algorithm to identify the optimal route and select an ideal location for DCs (Chauhan
et al., 2020).

2.2 Cost-integrated UAV routing problem

We improve upon the multi-routing delivery problem by incorporating pick-up services.
Specifically, our focus involves three categories of customers: those requiring delivery, pick-
up, and simultaneous delivery & pick-up services. In this context, a truck, in conjunction
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with multiple UAVs, caters to all customer needs. A UAV, upon completing a delivery ser-
vice, can redirect to a customer requiring pick-up service rather than returning directly to
the truck or depot. This approach maximizes UAV capacity utilization, ensuring diverse cus-
tomer demands are met efficiently. Unlike prior studies that predominantly optimize either
transportation costs (Liu et al., 2021; Luo et al., 2021a, 2021b; Mahmoodi & Hashemi,
2024; Ha et al., 2018) or delivery time (Murray & Chu, 2015; Dell’Amico et al., 2022;
Vu et al., 2022), our consideration encompasses broader aspects of logistics activities cru-
cial for a logistics company. For instance, non-emergency logistics services may have soft
time windows, necessitating vehicles to complete services within an optimal time range,
referred to as service reliability. Given that the initial arriving vehicle at a rendezvous may
need to wait for others, minimizing waiting time becomes pivotal. Therefore, we introduce a
multi-objective truck-UAV collaborative routing problem incorporating delivery and pick-up
services (MCRP-DP). This model simultaneously accounts for transportation costs, service
reliability, and vehicle waiting time.

Furthermore, several studies have implemented multi-objective optimization in truck-
UAV collaborative delivery systems. Wang et al. (2020) proposed a bi-objective version
of the FSTSP and an improved NSGA-II algorithm to address the problem. In a similar
vein, Das et al. (2020) implemented collaborative Pareto ant colony optimization to optimize
transportation costs and customer service levels, specifically focusing on timely deliveries in
a synchronized truck and UAV delivery system.

2.3 UAV routing problemwith risk assessment incorporating bayesian belief
networks

The incorporation of IoT devices during data transmission increases the susceptibility of
UAVs to security risks and safety hazards (Balador et al., 2018). Recent advances in state-
space models (SSMs) and Gaussian graphical models have significantly contributed to
constructing Bayesian belief networks for biological systems. Dynamic state space mod-
els with hierarchical Bayesian settings have been developed to infer genetic networks and
dynamic profiles associated with disease treatments, effectively capturing genomic changes
and gene–gene interactions over time using Monte Carlo Markov Chain and Gibbs sampling
algorithms (Liang&Kelemen, 2016; Roweis&Ghahramani, 1999). Additionally, GraphEM,
amethod for estimating transitionmatrices in linear-Gaussian SSMs by relating them to adja-
cency matrices of directed graphs, has demonstrated good performance and interpretability
in uncovering causal relationships (Elvira & Chouzenoux, 2022). Converting Markov chains
and hidden Markov models into Gaussian processes has provided the advantage of continu-
ous time scale support and flexible covariance function modification, addressing limitations
of discrete time scales and linear conditional relationships (Chouzenoux & Elvira, 2024).
Furthermore, LaGrangEM estimates parameters in non-Markovian linear-Gaussian latent
processes by incorporating prior knowledge through a graphical interpretation, connecting
with Granger causality and offering superior performance in estimating causal relationships
and delays (Nagakura, 2019). These methodologies enhance the robustness and applicabil-
ity of Bayesian belief networks in precision medicine and personalized healthcare. Various
measures have been employed by researchers to analyze the operational risks of UAVs.
Millar et al., introduced the Bayesian belief network (BBN) for interim flight clearances,
using this method to identify key elements contributing to risks and dangers in experimental
Unmanned Aircraft Systems (UAS) flight tests (Millar, 2015). In another study (Millar et al.,
2023), examined several research questions in their study. Firstly, they sought to assess the
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feasibility and potential of operating multiple UAVs commanded and supported by a manned
’Tender’ air vehicle. Secondly, they aimed to find the optimal trajectories for UAVs to collect
data from sensors in a predefined continuous space. Lastly, they aimed to formulate the path-
planning problem for a cooperative, diverse swarm of UAVs tasked with optimizing multiple
objectives simultaneously. The key findings of the study indicate that the multi-objective
reinforcement learning (MORL) architecture can successfully train each UAV to make opti-
mal movement decisions based on network state observations. Additionally, the algorithm
demonstrated decreasing errors in the learning process as the epoch number increased (Shen
& Sun, 2023).

To enhance operational safety, researchers have devised autonomous mechanisms for
prompt error response in UAV networks, as demonstrated in work by Allouch et al. (2019).
Additionally, Kishk et al. developed a UAV-enabled cellular network using tethered UAVs
(UAVs), making the UAV safer and more resilient to winds and adverse weather conditions
through the tethered connection to aGroundStation (GS) (Kishk et al., 2020). In another study,
Mahmoodi et al. estimate the imposed risks of selected trajectories using the SORA stan-
dard developed by the European Aviation Safety Agency (EASA). The study demonstrated
that identified risks in each trajectory were modeled and minimized as the third objective.
Notably, this research marked the first instance of risk assessment utilizing an AHP approach
based on the SORA standard (Mahmoodi et al., 2022). In the sameway (Janik et al., 2021; Hu
et al., 2020; Baubion, 2013; Erkut & Ingolfsson, 2005; SORA Standard, 2021). Capitán et al.
conducted a risk assessment for aerial shooting operations using the SORA method in their
papers. The papers comprehensively explore all stages of the SORA, assesses operational
risks, and proposes corrective actions to mitigate risks within the system. Moreover, Chang
and Laliberte (2023) in a research study covers the optimization of trajectories for Unmanned
Aerial vehicles (UAV), incorporating aspects such as solar energy systems, energy harvesting,
wing planforms, dynamic soaring, and sensitivity analysis. The focus is likely on enhancing
the efficiency and performance of UAV by optimizing their flight paths, considering renew-
able energy sources like solar power, and analyzing the sensitivity of the system to various
parameters. The study may explore innovative wing designs and dynamic soaring techniques
for improved trajectory planning and energy efficiency in Remotely Piloted Aircraft System
(RPAS) (Nguyen et al., 2022).

2.4 UAV routing problem incorporating battery consumption considerations

The primary constraint in practical UAV-based deliveries is the limited battery energy capac-
ity,which restricts the range ofUAVdelivery. In the context of drone deployment optimization
for direct deliverywith timewindows andbattery replacements, themost used theories include
mathematical optimization-based decision-makingmethodology,which serves as the founda-
tion for developing mathematical optimization models for drone fleet routing. The research
methods commonly employed in this field are mixed-integer programming (MIP) models
(Bhuiyan et al., 2022), which are utilized to formulate and solve the optimization with drone
with drone and energy and energy consumption analysis. The authors (Bhuiyan et al., 2022)
The study developed an optimization model for efficient drone fleet routing to minimize fleet
size, battery needs, and energy consumption; investigated how business and drone operating
conditions affect these metrics; and analyzed real flight and delivery data to understand the
impact of operating parameters on energy consumption, fleet size, and battery replacement
needs. The key findings of the study indicate that flying drones over road networks sig-
nificantly increases total energy consumption, required fleet size, and the required number
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of battery replacements compared to flying in a straight path. Additionally, using a mixed
fleet of hexacopter and quadcopter drones reduces total energy consumption compared to
using a homogeneous fleet of only hexacopters. The delivery range, energy consumption,
and required fleet size are also affected by drone speed, package weight, flight path, and
minimum required battery energy (Kyriakakis et al., 2023).

San et al. (2016) introduced a Genetic algorithm-based procedure for assigning UAVs
to deliver packages to customer locations. Subsequently, Song et al. (2018) formulated the
UAV delivery problem as a mixed-integer program, solved through a heuristic algorithm.
Unlike previous works by Yadav and Narasimhamurthy (2017) and San et al. (2016), Song
et al. considered the impact of package weight on UAV flight time, reflecting the limitations
of battery capacity. However, other factors such as UAV speed and flight path were not
incorporated into the energy consumption calculations, and there was no explicit modeling
of battery energy consumption or replacements.

Dorling et al. (2017) addressed battery energy consumption by modeling it as a func-
tion of UAV battery and package weight. They proposed mixed-integer linear programming
formulations for two variants of a UAV routing problem, with the objectives of minimizing
total delivery time and total cost, respectively. The model assumes that each UAV can deliver
multiple packages to different customers in a single trip, ensuring that the battery capacity
is sufficient for a trip before it commences. However, this study does not explicitly model
the minimum energy requirement for determining battery replacement, nor does it aim to
minimize the number of battery replacements.

Rabta et al (2018) tackled a UAV routing problem along with decisions regarding UAV
battery charging locations for delivering disaster relief packages, presented as a mixed-
integer program. Like (Dorling et al., 2017), each UAV can deliver multiple packages in a
single trip, and battery consumption is influenced by package weight. Their model tracks
the remaining UAV battery energy using a variable in the model to determine the need for
charging. However, the battery charging process was not explicitly modeled to account for
charging time or rate.

2.5 UAV routing problem incorporating time constraints

Several studies have addressed the incorporation of time windows for customer deliveries
in UAV routing problems, optimizing fleet size to enhance customer order fulfillment. A
capacitated vehicle routing problem with time windows as a mixed-integer program to min-
imize the required number of UAVs and batteries has been formulated by Troudi (Troudi
et al., 2018). Like (Dorling et al., 2017), the authors assumed multiple packages could be
carried by each UAV in a single trip, with battery replacement after each trip. They aimed to
minimize the number of batteries used by reducing the number of trips.

Cheng et al. (2020) delved into a multi-trip UAV routing problem with time windows,
seeking to minimize travel and electricity consumption costs related to UAV batteries. They
considered UAV energy consumption as a function of package weight and distance trav-
eled, although they used theoretical power consumption during hovering, which may not
be realistic. Kong et al. (2023) studied another multi-trip UAV delivery problem with time
windows, aiming to minimize the total routing distance in delivering parcels to customers.
Choi and Schonfeld (2017) focused on an automated UAV delivery system, optimizing fleet
size to minimize the total cost. The authors showcased the sensitivity of UAV speed and
battery capacity on the system cost and fleet size, respectively. All these studies assumed a
homogeneous UAV fleet.
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Coelho et al. (2017) expanded the scope to a mixed fleet of UAVs, aiming to minimize
total distance, delivery time, and the number of UAVs used. However, they considered UAV
energy consumption solely as a function ofUAVspeed. It’sworth noting that all thementioned
studies assume each UAV delivers packages to multiple customers in a single trip, replacing
the battery after each trip. This assumption, however, may not align with practical scenarios
where UAVs are designed to carry a single package on a trip. Replacing the battery after each
return can lead to unnecessary battery replacements and reduced UAV utilization (Bi et al.,
2023).

In addition to these studies, some focused on the impact of UAV delivery on carbon
emissions (Chiang et al., 2019; Figliozzi, 2017) as well as the location of UAV deployment
and charging facilities to improve demand coverage (Chauhan et al., 2019; Trotta et al.,
2018). Notably, only two variants of the UAV collaborative routing problem considered both
delivery and pick-up services based on the SORA standard (Janik et al., 2021; Mahmoodi
et al., 2022). However, these studies lacked synchronization in UAV service to customers,
updated UAV capacity based on parcel weight, and overlooked customer residence details.
The current study distinguishes itself by simultaneously optimizing four objectives using a
novel evolutionary multi-objective algorithm, setting it apart from other investigations.

A thorough review of literature on multiple criteria in course scheduling issues was con-
ducted using the Scopus database. The search terms included combinations of " Optimization
Methods " or "Hybridization "with " Truck-DroneDelivery ", "DroneDelivery". Since 1995,
this search identified 71 relevant papers. However, exclusions were made for reasons such
as duplication, and non-research content like editorial notes, leaving 30 papers that address
multiple objective issues in course scheduling, as detailed in Table 1.

3 Problem description and formulation

In the rapidly evolving landscape of logistics and transportation, the integration of unmanned
aerial vehicles (UAVs) or UAVs has emerged as a promising solution to address the chal-
lenges of last-mile delivery. The efficiency and speed of UAV deliveries have the potential to
revolutionize the way goods are transported, offering swift and cost-effective alternatives to
traditional delivery methods. However, to fully harness the benefits of UAV technology, it is
crucial to develop sophisticated optimization strategies that consider real-world constraints.

This problem description revolves around the design and optimization of a UAV deliv-
ery system, considering the intricate interplay between distributor locations, facility hubs,
customer demand points, and the unique challenges posed by recharging constraints. With
a carefully defined set of parameters, including distributor candidate locations (D), facility
locations (F), demand points (P), the fleet of UAVs (K), recharging-capable points (D1),
non-recharging points (D2), and distinct scenarios (U), the task at hand is to create a system
that maximizes operational efficiency while adhering to the constraints imposed by energy
limitations.

3.1 Problem description

In the context of designing an efficient UAV delivery system, the objective is to optimize the
delivery routes and UAV assignments for a given set of parameters. The system is character-
ized by the following assumptions:
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Distributor Locations (D): There are n potential locations where distributors can be stationed
to facilitate UAV operations.
Facility Locations (F): There are m designated facilities that serve as operational hubs for
managing and dispatching UAVs.
Demand Points or Customers (P): The system caters to the delivery demands of k distinct
points, representing customers or delivery destinations.
UAVs (K): A fleet of L UAVs is available for conducting deliveries.
RechargingPoints (D1):Hdemandpoints are identified as locationswhereUAVscan recharge
during their operations.
Non-Recharging Points (D2): Q demand points are specified as locations where recharging
is not possible, necessitating careful planning for energy conservation.
Scenarios (U): The system operates under three different scenarios, each representing a
unique set of conditions or constraints that may influence the optimal configuration of routes
and UAV assignments.

The optimization problem is multi-faceted, requiring a strategic approach to route plan-
ning, UAV allocation, and recharging station utilization. By strategically placing distributors
and facilities, assigning UAVs judiciously, and navigating through the intricacies of recharg-
ing constraints at specific demand points, the aim is tominimize delivery times, reduce energy
consumption, and enhance the overall sustainability of the UAV delivery system. This chal-
lenge is not only technologically demanding but also addresses practical considerations for
real-world implementation. The outcome of this optimization endeavor has the potential not
only to redefine last-mile logistics but also to contribute to a more sustainable and envi-
ronmentally conscious approach to delivery services. As we delve into the complexities of
optimizing a UAV delivery system within the outlined constraints, innovative solutions will
pave the way for a future where unmanned aerial vehicles seamlessly navigate the skies,
delivering goods efficiently and responsibly.

The primary challenge is to develop algorithms and strategies that optimize the delivery
routes while considering the recharging constraints at specific demand points. This includes
determining the most efficient distribution of UAVs among distributor and facility locations,
minimizing delivery times, and ensuring that recharging points are strategically utilized to
maximize the overall effectiveness of the UAV delivery system.

The optimization process must consider the diverse scenarios, accommodating variations
in demand, operational conditions, and the recharging capabilities of the UAV fleet. The goal
is to enhance the overall efficiency, reliability, and sustainability of the UAV delivery system
within the specified framework.

3.2 Mathematical model

Based on the previous definitions, the model can be explained as Tables 2, 3 and 4. Also, in
“Appendix A”, parameters initialization and values assignment details how parameters in a
system or model are initialized and assigned values, including descriptions, initial settings.

Tables 2, 3 and 4 shows decision variables and parameters including point-specific val-
ues, service times, drone capacities, operational time windows, cost factors, battery-related
parameters, and penalties associated with various operational conditions. Hence, the Python
workflow for optimizing drone routing is presented, which encompasses phases such as
importing libraries, settingup the environment, defining sets and scenarios, initializingparam-
eters and decision variables, defining the objective function, setting constraints, assigning
penalty values, and configuring a genetic algorithm for multi-objective optimization.
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Z1 = min
∑

k∈K

∑

d∈vd

∑

j∈v

∑

i∈v

Xi jkd .FCk .dxi j .C + W2.
∑

i∈p

Ei + W3.
∑

i∈p

Li +
∑

d∈D

∑

k∈K
Zd . f i xd

+
∑

d∈D

∑

k∈K

∑

i∈p

Xdikd . f i x
′
k +

∑

f ∈F
Yd f .ded .Cp f (1)

The first objective function, denoted as Z1, aims to minimize the overall operational cost.
This includes costs associated with drone transportation, battery usage along routes, fixed
drone usage costs, cost for constructing distribution points at potential locations, penalties
for not adhering to soft time windows, and preparatory expenses.

Z2 = min
∑

u ∫U
pu .

∑

i∈P

siu + λ
∑

u∈U
pu

(
∑

i∈P

siu −
∑

u∈U
pu

∑

i∈P

siu

)2

(2)

The second objective function, denoted as Z2, seeks to minimize the service time. Since
UAV velocity has different modes according to different routing scenarios while they are
distinctive by the level of air traffic conditions. In a way, there is a set of U scenarios adjusted
with possible routes which end in the set of j nodes. The number of scenarios is determined
by experts who investigate the traffic conditions based on factors such as air parcels, severe
climate, The National Aviation System (NAS) regulations, and so on, in the possible routes
from nodes i to j.

Due to the uncertainty condition of scenarios, robust optimization is the appropriate
method to estimate the solutions exactly. This optimization is done while unexpected condi-
tions are considered and controlled. We used the Mulvey model (Mulvey et al., 1995) as the
general form of robust optimization.

Z3 = minmax
∑

i, j i∈P∪D

ski j Xi jkd (3)

The third objective function, labeled as Z3, is designed to reduce the risk index. This index
is computed as the highest value among the sums of routing risks associated with each pair
of nodes i and j, where i and j are part of the combined set P ∪ D (meaning, they belong to
either P or D). The risk index is influenced by the aggregate of weighted components (factors)
representing the routing risk for individual node pairs. The applied weighting method has
been inspired from the (Mahmoodi et al., 2022) work. In their study, the SORA standard
has been applied to estimate the imposed risk index, but, in this case, it has been tried to
apply the BBN method to provide a risk index instead of the SORA approach. Concerning

Table 2 Defining sets: the
foundation of optimization Sets Definitions

D A set of distributor candidate locations

F A set of facility locations

P A set of demand points

K A set of drones

D1 A set of demand points where recharging is possible

D2 A set of demand points where recharging is not possible

U A set of different scenarios
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Table 3 Defining parameters: the foundation of optimization

Parameters Definitions

ri The amount of delivery demand of demand points i

Pi The amount of pickup demand of demand points i

Si Time to provide service to demand points i

Qk Loading capacity of each RPA k

ai The earliest time allowed to provide service to distributor i in the hard time window

bi The latest time allowed to provide service to distributor i in the hard time window

M Optional large number

ESi The earliest time allowed to provide service to distributor i in the soft time window

LSi The latest time allowed to provide service to distributor i in the soft time window

W2 Cost per unit time deviation from the earliest time allowed in the soft time window

W3 Cost per unit time deviation from the latest time allowed in the soft time window

f i x/
k

Fixed cost of using RPA k

C Cost of one charging unit

AT Minimum amount of charging allowed inside the RPA

C f f Preparing cost of a unit in facility location f

f i xd Cost of constructing distributor candidate location d

T Si Time to provide service to demand point i

DAY The length of a working day

cp ji RPA battery consumption from node i to node j

dxij The distance between node i and node j

full Battery charging capacity

pu The probability of occurrence of scenarios u

Vku The velocity of RPA k in event u

capd The capacity of candidate location of distributor d

cap f The capacity of facility location f

L0k The load on RPA k when leaving the distributor

Ski j
The risk of route deriving from node i to node j with RPA k

xi jkd The variables zero and one. If RPA k ∈ K belonging to candidate distributor locations d
travels from node i to node j, it is equal to one and otherwise zero

siu The time to start providing service to demand point i in scenario u

Lj The weight of the load remaining on the RPA after service to demand point j

Zd The variables zero and one. If distributor d is constructed, it is equal to one and otherwise
zero

Eiu The time deviation from the earliest time allowed to provide service to demand point i in
the soft time window in scenario u

Liu The time deviation from the latest time allowed to provide service to demand point i in the
soft time window in scenario u
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Table 3 (continued)

Parameters Definitions

FCk The time to end the route of RPA k

ded The center demand of distributor d

Yd f Variables zero and one. If distributor d is assigned to facility location f, it is equal to one
and otherwise zero

Ai The amount of battery available on the RPA

cki j
ij Energy consumption by a drone of type k to fly from

Ck Ck Amortized cost of the drone type k

Ck
bat

bat Amortized cost of the battery of drone type k

v Drone speed

CE Cost of per unit of energy

CL Wage of a drone operators

nk Number of drones of type k a drone operator can operate

CM
k

Maintenance cost of a drone of type k

tbatk
Time required to replace the battery of drone type k

li Distance of delivery location i from depot

l j Distance of delivery location j from depot

ti j Time required for drone to arrive at delivery location from i to j

ei Earliest possible pickup time

chok Initial energy in the battery of drone type k

chmin
k

Minimum remaining energy required in the battery of drone type k

chmax
k Maximum remaining energy required in the battery of drone type k

�ch j Maximum permissible delay for point j

Mmax
k Maximum package weight carrying capacity of drone type k

Mi Package weight for delivery location i

BBN methodology, it focuses on categorizing the risks associated with operating UAVs. The
tool effectively integrates a wide variety of elements that may be responsible for the dangers
and risks associated with UAV flight experiments. Through the BBN, one can visualize and
numerically evaluate the causal relationships and influences affecting probabilistic outcomes
by usingBayes’ theorem to propagate causal probabilities across thewhole system.Wewould
like to investigate using this method for a full mission’s safety assurance and assessment.
Considering the important steps mentioned earlier, we apply the Analytic Hierarchy Process
(AHP) ranking technique to assess the consequences of imposed risks by weighing them, in
this way, the lki j has been achieved according to the relation (3).
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Table 4 Defining decision variables: the foundation of optimization

Decision variables Description

xi jkd The variables zero and one. If RPA k ∈ K belonging to candidate distributor
locations d travels from node i to node j, it is equal to one and otherwise zero

Zd The variables zero and one. If distributor d is constructed, it is equal to one and
otherwise zero

Yd f Variables zero and one. If distributor d is assigned to facility location f, it is
equal to one and otherwise zero

zi j 1 if delivery location i is served immediately before j by a drone, 0 otherwise

yi 1 if drone battery is replaced after returning from delivery location i, 0
otherwise

gi Remaining battery energy of a drone after returning from delivery location i

gti
Auxiliary variable storing the remaining battery energy after returning from
delivery location i

fi Timing of when a drone picks-up the package for delivery location i at depot

xki 1 if drone type k is assigned to deliver a package to location i, 0 otherwise

XDji Binary variable indicating whether a route exists from the depot to i

Xi Dj Binary variable indicating whether a route exists from the j to depot

Yi j Binary variable indicating whether a drone travels from point i to a charging
point j

3.2.1 BBN framework compatible with the established UAV network

BBN determine the significance of component ski j depending on the perspective of the

decision-makers. Nevertheless, it is important to remember that each risk factor stated is
analyzed in the classification of SORA standard approach. Based on this methodology, risks
categorized in two levels of aerial risk and ground risk. Based on this classification, all the
incurred risks and their subcategories are categorized according to the origin of their occur-
rence. From this stage onwards, based on the BBN method, the parameter ski j is obtained."

Which shows the level of significance of imposed risks For this purpose, Causing Risk Factor
(CRF) identification starts after the BBN is formulated when qualitative indices are identified
and classified according to AHP approach. At this point, based on the BBN model, a system
is represented as a graphical representation of probabilities showing the level of dependence
among the random variables in the system. This network has nodes that are variables, and
arcs that connect them. Whenever there is an arc between two nodes, there is a causal rela-
tionship between them, while if there is none, there is no causal relationship between them.
The parent nodes in this network are CRFs, and their subset of nodes is known as child
nodes. It is possible for a node to be both a child and a parent node simultaneously. This
study proposes a risk model according to BBN and the architectural elements of a network
of semi-autonomous unmanned aerial vehicles that has three sub-layers. The mission of the
UAV is managed automatically and manually in three sub-layers. These layers are the UAV,
GBS, and Tender by humans to monitor and control UAVs’ operation manually. Experts
evaluate the potential risks in each of these levels (Han et al., 2022; Hashemi et al., 2021).
The CRFs of the system are then identified and presented in a matrix format with the system
dimensions as columns and risk levels as rows.
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Fig. 1 Illustrative Bayesian network describing the inducements of UAV System in SORA standard classifica-
tion

To create the BBN in this paper, a series of steps are taken:

1. The potential and essential occurrences and their effects on UAV missions are identified
and chosen.

2. Detected events are assessed according to their primary CRFs and the degree to which
those CRFs affect the event.

3. The CRFs are ranked according to their significance, which reflects their level of reliance.
A dependence graph is created with no return paths between the nodes of the graph and
with direct causal connections between them.

4. At this point, the BNN is represented by a conditional probability table (CPT). This table
is generated considering the outcome anticipated from the presence of the CRFs and
aggregation of experts’ opinions.

5. The proportionality of the evaluation of the solution for modifying and eliminating each
potential risk and its potential impact on enhancing the system’s safety is considered.

6. Subsequently, at each risk level in the BNN graph, the overall risk level is determined
based on the computed likelihood of a mishap for each CRF.

An illustration of this sensitivity evaluation can be seen in Fig. 1 (Bareither & Luxhøj,
2007; Millar, 2015).

Figure 2 illustrates the CRFs for the risk level of a UAV system and its connections. The
same process depicted in Fig. 2 is applied to calculate all the CRFs for the remaining detected
events.

According to the recorded statistical results from the data analysis and the literature
(Washingtona et al., 2017; Kevorkian et al., 2016; Millar, 2015; Allouch et al., 2019; Han
et al., 2020), the BNN graph showing the failure of a UAV system can be seen in Fig. 2.
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Fig. 2 llustrative Bayesian network describing the inducements of UAV System Failure

The CPT can then be calculated by measuring the strength of connections between the
nodes. The output of the CPT in this state is as follows if the variables, or system elements,
are in the form of the set N = {n1, . . . , nr}:

P
(
nq|πq

)
denotes the likelihood that each node nq will exist if a set of πq parents are

available for it. Based on their relationship with their parents, this conditional probability
is determined (Noriega et al., 2019). Figure 1 shows a computed example based on a BBN
graph of Fig. 2 and an electrical failure intermediate event fromCPT. In this table, conditional
probabilities are calculated using Eqs. (4) and (5):

P(n1, . . . , nr ) =
r∐

q=1

P
(
nq |πq

)
(4)

p
(
nq |πq

) = p
(
πq |nq

)
.p

(
nq

)

p
(
πq

) (5)

Many parents result in a tremendous amount of cognitive load for experts in this domain,
as they must calculate the conditional probability of all parent variables by comparing their
probability distribution with that of the number of child nodes. Additionally, every con-
ditional probability is determined by the domain expert’s personal experience and reflects
their subjective probability. This Knowledge is influenced by experience and biases based
on individuals’ experiences (Das et al., 2004).

In every episode of UAV action in the predefined plane ψ, the risk index ski j relies on the

average of the CRFs that experts determine for the candidate range of the next actions from
the origin point (UAV) n to the destination point (Tender) m in the episode.

ace, experts evaluated each CRF. In fact, N1×N2 squares, which correspond to the size of
a time slot, divide the possible zone, thus at this stage, the experts select a set of these squares
as a specific area and provide their assessment of the probable risk index for these predefined
areas. The weights of each identified risk indicator are assessed using AHP to ensure that
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the opinions of the experts are not inconsistent. In accordance with the recorded data, events
occurred in different risk categories and had various probabilities, so expert opinions can
change from one period to the next.

Z4 = minCE

⎛

⎝
∑

i∈P

∑

j∈P

Ck
i j zi j

⎞

⎠ +
(
Ck + CL

nk
+ CM

k

) ∑

j∈P

z0 j + Ck
bat

(
∑

i∈P

yi

)
(6)

The fourth objective function, denoted as Z4, aims to minimize the overall expenditure
associated with the following components: total energy consumption cost (component 1),
total investment and operational expenses for the drones (component 2), and investment costs
related to the batteries (component 3). This optimization is conducted to efficiently deliver
all customer orders while adhering to specified pickup time windows within the planning
horizon.

Subject to:
∑

d∈D

∑

k∈K

∑

i∈P∪D

Xi jkd ≥ 1,∀ j ∈ P (7)

∑

i∈D∪P

Xi jkd =
∑

i∈D∪P

X jikd ,∀d ∈ D, k ∈ K , j ∈ P (8)

∑

d∈D

∑

i∈v

Xdikd ≥ 1,∀k ∈ K (9)

Xiikd = 0, ∀d ∈ D, k ∈ K , i ∈ D ∪ P (10)

Siu + dxi j
Vku

− M .
(
1 − Xi jkd

) ≤ S ju,∀d ∈ D, k ∈ K , i ∈ D ∪ P, j ∈ P, u ∈ U (11)
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Vku
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(
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) ≥ S ju,∀d ∈ D, k ∈ K , i ∈ D ∪ P, j ∈ P, u ∈ U (12)

Sdu = 0,∀d ∈ D, u ∈ U (13)

ai ≤ Siu ≤ bi ,∀i ∈ P, u ∈ U (14)
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≤ Qk,∀ j ∈ P (21)

Eiu ≥ α(ESi − Siu),∀ i ∈ P, u ∈ U (22)
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Liu ≥ β(Siu − LSi ),∀i ∈ P, u ∈ U (23)

Ai = full ,∀i ∈ D1 (24)
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(
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)
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∑

j∈P

gtj +
∑
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cki j .Xi jkd (46)
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zi j ∈ {0, 1},∀i, j ∈ P, i 	= j (50)

gi ≥ 0,∀i ∈ P (51)
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k ,∀i ∈ P (52)

fi ≥ 0,∀i ∈ P (53)

min
∑
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xki = 1, i ∈ P (54b)
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,∀k ∈ K ,∀i ∈ P (54c)
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k ,∀i ∈ P, k ∈ K (54d)

xki ∈ {0, 1},∀i ∈ P, k ∈ K (54e)

if ei + tl + ti j + tu > li

then zi j = 0,∀i, j ∈ P (55)

if l j > li + ti j + 2
(
tl + tu + 2tRange

)

then zi j = 0,∀i, j ∈ P (56)
∑

j∈P

XDji = 1,∀i ∈ P (57)

∑

j∈P

XiDj = 1,∀ j ∈ P (58)

∑

j∈D1

Yi j ≥ 1,∀i ∈ P\D1 (59)

gi + �ch j ≤ chmax
k ,∀ j ∈ D1 (60)

The sophisticated framework of constraints within the UAV logistics system underscores
its multifaceted approach to enhancing operational efficiency and flexibility. Constraints (7)
through (10) are pivotal in allocatingUAVs to demand points with enhanced flexibility, ensur-
ing efficient service even when the demand requires multiple drones at a single point. This
set includes mandates for UAV allocation to specific demand points, the use of UAVs by
multiple distributors, and the prevention of redundant routing paths. Following closely, con-
straints (11) through (16) focus on the initiation phase of UAV operations, including service
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start times and initial load capacities. These constraints are designed to set the operational
groundwork, ensuring UAVs begin their routes efficiently and are prepared for their delivery
tasks.

The subsequent section delves into the UAVs’ operational constraints during their delivery
routes, with constraints (17) through (26) meticulously calculating load weights and ensuring
adherence to the UAV’s battery and capacity limitations. This segment emphasizes the impor-
tance of maintaining operational integrity throughout the UAV’s journey, from departure to
service completion at demand points. Particularly, constraints (24) through (26) highlight the
critical aspect of battery management, ensuring UAVs operate within their energy capacities,
which is vital for sustaining longer operational periods and enhancing reliability.

To optimize the distribution network and resource allocation, constraints (27) through
(33) introduce the construction and association of distribution centers (DCs) with facility
locations, alongside evaluating demand restrictions and travel times. This part of the model
enhances the flexibility and effectiveness of facility allocation within the network, ensuring
that demand is aligned with available resources and that UAV travel times are optimized for
efficiency. These constraints collectively aim to bolster the logistical backbone of the UAV
delivery system, ensuring that distribution centers and UAVs are strategically aligned with
the overarching goals of operational efficiency and resource optimization.

Finally, the model extends its meticulous planning to route safety, delivery efficiency,
and energy management with constraints (34) through (60). This includes binary decision-
making for travel routes, ensuring energy consumption remains within operational limits,
and mandating that every delivery route originates and concludes at the depot to maintain a
centralized routing strategy. Particularly noteworthy are constraints (46) through (60), which
focus on energy management and the strategic scheduling of pickups and deliveries to ensure
timely and efficient operations. The overarching aim, encapsulated in constraints (54a) to
(54e), is to minimize total energy consumption while aligning operational efficiency with the
practical capabilities of the drones. This comprehensive set of constraints ensures that the
UAV logistics system operates within a framework designed to maximize efficiency, safety,
and reliability, thereby optimizing the delivery process in an innovative and forward-thinking
manner.

4 Solution approach

To have a comprehensive analysis of NSGAII algorithm performance, the optimal flight path
has been obtained through the developed Genetic algorithm. In this case, since the whole
flight space is considered a grid network, UAVs start their mission in a set of Ne × N f

small squares in this network. In the GA, each chromosome represents the sequence of
paths between the hypothetical start point to the endpoint. Selection of the best path is
applied for the whole chromosome with respect to the value of the proposed four objective
functions. Hence, the next generation of chromosomeswill be the all-possible routes between
the Nef to its neighboring sequence, the Ne+1 f +1, which are identified as Ref . Crossover
and mutation operators have been applied to produce next generation from parent squares
because their visiting order is completely relied on the degree of optimality of objectives
in the selected square. Their concerned values are depicted in table A2. Figure 3 show m
strings of chromosome and crossover strategy of the proposed GA algorithm. In the sequence
of chromosome some squares highlighted as potential nodes in the UAV networks, between
the adjacent nodes, random sequence of possible path cells exists. GA begins with initial
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population of chromosome in this shape of structure, the follow the steps of objectives
evaluation, applying genetic operators and regeneration at the end.

Every chromosome which is made in child generation is evaluated by the proposed objec-
tives of the model. Then the chromosome with the optimal values is targeted as the best flight
path for UAVs. According to the multi-objective model in metaheuristic algorithm, best solu-
tions are the category of points in the Pareto front in which none of them will triumph over
the other for any of the objective functions and a solution is superior when at least one of the
objectives has an optimal value.

To address the multi-objective optimal allocation problem, formulated as a mixed-integer
non-linear program (MINLP), we propose employing the non-sorting genetic algorithm
(NSGA-II) as outlined in the flowchart in Fig. 4. The primary advantage of this method
is that NSGA-II concurrently optimizes each objective. NSGA-II is a widely used and effi-
cient sorting multi-objective genetic algorithm capable of handling non-penalty constraints.
It exhibits fast and effective convergence, making it well-suited for large-scale searches and
proficient at addressing problems that initiate with a non-feasible solution. The proposed
algorithm involves multiple layers of individual classifications, where non-dominated indi-
viduals receive a specific dummy fitness value before being removed from the population.
This process iterates until the entire population is classified. NSGA-II offers advantages
such as introducing elitism to NSGA and preserving diversity within a fast and less complex
algorithm.

In a more detailed breakdown, NSGA-II undertakes the selection of the optimal number
of UAVs, their appropriate battery sizes, the designated charging point (starting point), and
the assignment of buses to each UAV. Additionally, the algorithm allocates these buses to
specific trips, determining the optimal number of buses to be monitored and their respective
locations. Subsequently, all these selections are fed into the fitness calculation of NSGA,
which comprises two distinct parts.

Fig. 3 The proposed crossover strategy
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The first part is responsible for calculating the loss of observability (objective one) and
takes the number of buses to be monitored and their locations as inputs. The second part
is tasked with computing the total annual cost (objective two), with inputs including the
selection of the number of UAVs, their appropriate battery sizes, their designated charging
point (starting point), and the assigned buses to each UAV.Within the second part, an internal
subproblem arises to derive the optimum route for each trip.

Following the calculation of the optimal route for each trip, NSGA utilizes the selected
route and battery specifications to check the constraints for each trip. Specifically, it verifies
that the maximum hovering and flying power are less than or equal to the selected battery’s
power consumption (as in Eq. (6)). Furthermore, the consumed energy must be less than or
equal to the actual useful energy of the battery, as stipulated in Eq. (6).

NSGA-II employs a robust elitism approach, combining parent and offspring populations
to create tiers based on non-dominance, organizing solutions into several fronts. Each front
categorizes solutions based on their level of dominance, starting with non-dominated solu-
tions and proceeding to those dominated by progressively more solutions. Within each front,
solutions are further sorted by crowding distance, ameasure of the spacing between solutions,
to ensure diversity. This dual sorting method—by dominance level and crowding distance—-
facilitates the selection process, prioritizing non-dominated solutions and, among those of
equal dominance, the ones with greater spacing. The algorithm continually evolves through

Fig. 4 Displays the flowchart for the suggested NSGA-II algorithm
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Fig. 5 Pseudocode of NSGA-II

selecting the fittest solutions, followed by their recombination and mutation, to generate new
populations. The pseudocode NSGA-II can be seen in Fig. 5.

5 Results and discussions

This section outlines the experimental studies conducted. All algorithms are coded in Python
and implemented on a 64-bit Windows OS with Intel Core (TM) i7-10700, 2.9 GHz, and
32 GB RAM. These following results are obtained using NSGAII (Non-dominated Sorting
Genetic Algorithm II) with the following parameters:

Population: 120 individuals
Number of Generations (Iterations): 100 generations
Crossover Probability (CXPB): 0.7
Mutation Probability (MUTPB): 0.1
Independent Probability (indpb): 0.1
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Table 5 Comprehensive analysis of optimal parameters for drone routing

Index Cost Time Risk Battery Usage Penalties

Count 28 28 28 28 28

Mean 116,393 19 345 312 2748

Std 15,358 2 123 479 119

Min 87,480 19 204 100 2555

25% 105,666 19 276 181 2675

50% 116,074 19 295 220 2730

75% 129,754 19 450 268 2835

Max 139,887 28 605 2734 2900

5.1 Summary and descriptive analysis

5.1.1 Table of statistics

The Table 5 provides a succinct summary of the dataset across five different variables: Cost,
Time, Risk, Battery Usage, and Penalties. With a count of 28 for each variable, there is a
sufficient sample size to understand the trends and distributions within the data. The mean
cost is relatively high at 116,393, but it is important to consider the standard deviation, which
at 15,358, suggests a moderate spread around the mean. This spread indicates variability
in costs, which could be due to a range of factors that would require further investigation.
The ’Time’ variable exhibits a narrow standard deviation, indicating that this measurement
is uniform throughout the dataset, which denotes a consistent performance on this metric.
The parameters governing the time objective function, namely ’pu’ and ’siu’, were assigned
values that are nearly identical across various points and scenarios. As a result, this uniformity
in parameter settings has led to the reduced variability in ’Time’. ’Battery Usage’ presents
with the largest standard deviation relative to its mean, indicating very high variability.
This is further highlighted by the maximum value, which is significantly higher than the
75th percentile, suggesting the presence of outliers that dramatically affect the average. For
’Penalties’, the lower standard deviation indicates that penalties do not vary as much as some
of the other variables, such as ’Battery Usage’, but there is still a noticeable range between
the minimum and maximum values.

5.1.2 Table of non-dominated individuals

The Table 6 illustrates the best-performing individuals based on the criteria that no other
individual is better in all the objectives. These are essentially the solutions that offer the best
trade-offs among the objectives considered. For instance, Index 0 has a high cost but compen-
sates with lower risk and penalties, while Index 4 has the highest risk but does not have the
highest cost or penalties, which may suggest it is a viable option under certain circumstances
where risk is less of a concern. It is important to note the presence of significant variation in
’Battery Usage’ and ’Risk’ among the non-dominated individuals, which indicates that the
trade-offs between these two variables are quite substantial and likely to be a focal point in
decision-making processes. The consistency of the ’Time’ across most non-dominated indi-
viduals suggests that it is not a differentiating. factor in the optimization process. Moreover,
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some individuals like Index 14 show an extremely high ’Battery Usage’, which is an outlier
that could be a result of specific operational requirements or an error in data recording. This
kind of outlier needs special attention as it can skew the overall analysis and may represent
a special case that is not generalizable. From the summary statistics, it becomes evident
that ’Cost’ and ’Risk’ are variables with high variability, suggesting a varied dataset where
each observation might represent different operational scenarios or decision contexts. The
’Battery Usage’ variable, particularly, with its high variability and extreme maximum value,
requires closer scrutiny to understand the underlying factors causing such discrepancies. The
analysis of non- dominated individuals provides insights into the complex trade-offs between
different objectives. It highlights the potential for multiple optimal solutions depending on
the weightings of various objectives, such as cost, risk, and battery usage. In interpreting

Table 6 Non-dominated individuals—identifying optimal solutions with superior trade-offs across multiple
objectives

Index Cost Time Risk Battery Usage Penalties

0 129447 28 400 183 2555

1 130676 19 315 175 2710

2 103888 19 450 263 2835

3 125911 19 204 281 2675

4 103782 19 605 281 2835

5 139887 21 450 100 2780

6 138876 19 204 234 2555

7 108258 19 491 234 2745

8 136199 19 276 175 2900

9 114315 19 605 124 2900

10 127436 19 205 183 2835

11 107547 19 205 307 2675

12 117832 19 276 183 2715

13 139160 19 205 183 2715

14 126518 19 450 2734 2590

15 87480 19 495 183 2715

16 107329 19 276 229 2900

17 132499 19 276 234 2555

18 105449 19 315 175 2900

19 108782 19 276 211 2675

20 118152 19 315 151 2790

21 107496 19 276 253 2835

22 89029 21 400 406 2675

23 93556 19 276 307 2675

24 119603 27 276 341 2555

25 105738 19 491 151 2900

26 131441 19 204 199 2835

27 102721 19 450 250 2900
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Fig. 6 Objective functions penalties distribution

these results, it is crucial to consider the context in which the data was collected, as the
importance and impact of each variable may vary significantly across different operational
environments. Additionally, the presence of outliers suggests that there may be extreme cases
that are significantly different from the norm, and these warrant separate analysis to ensure
they do not distort the overall understanding of the data. Ultimately, this analysis lays the
groundwork for a deeper exploration into the factors that drive these variables and how they
can be managed or optimized in the specific context from which the data is drawn.

5.2 Data distribution

5.2.1 Box plots for objectives and penalties

The Fig. 6 for box plots for ’Cost’, ’Time’, ’Risk’, ’Battery Usage’, and ’Penalties’ provide
a visual summary of the distribution and variability of these variables within the dataset.

• Cost: The box plot for ’Cost’ shows a median around 116,000, with the interquartile
range (IQR) indicating that the middle 50% of costs are tightly packed. This suggests a
moderate consistency in cost across the dataset, with a few outliers indicating instances of
significantly higher costs.

• Time: ’Time’ presents with a very narrow IQR, and all but three data points are identical.
The outliers suggest only occasional variation from a standard time value, which implies
that the duration of the observed activities or processes is generally consistent.

• Risk: The ’Risk’ variable has a wider IQR, demonstrating more variability in the dataset’s
risk levels. The presence of upper outliers indicates that there are scenarios with substan-
tially higher risk, although the bulk of the data is less variable.

• Battery Usage: This box plot is particularly notable for the extreme outlier, which is
significantly higher than all other observations. This suggests a special case within the
dataset where battery usage is exceptionally high compared to the norm.

• Penalties: The ’Penalties’ distribution is relatively symmetrical with a slight skew towards
the upper end, indicated by a median that is closer to the lower quartile. This suggests that
while there is some variation in penalties, it does not vary as extremely as battery usage.
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Fig. 7 The frequency distribution of the dataset’s variables. The provided histograms offer a visual represen-
tation of the frequency distribution of the dataset’s variables: Cost, Time, Risk, Battery Usage, and Penalties

These box plots are critical for understanding the underlying distributions of each variable,
identifying outliers, and assessing the spread and symmetry of the data. Outliers warrant
further investigation to determine whether they represent data recording errors, special cases,
or if they are a part of the natural variability in the dataset. The relatively stable ’Time’ variable
contrasts with the high variability seen in ’Risk’ and ’Battery Usage’, which could imply that
different factors or levels of control affect these areas. This kind of analysis is instrumental
for developing strategies to manage or optimize each objective and penalty within the given
operational context.

5.2.2 Distribution of objectives and penalties

The Fig. 7 presented show how often each value or range of values occurs within the dataset
for five variables: Cost, Time,Risk,BatteryUsage, andPenalties. Each histogram’s horizontal
axis represents the possible values or ranges for a variable, while the vertical axis indicates
how frequently these values occur. This visual analysis helps to understand the distribution
and central tendencies like the mean or median, and the variability or spread of the data for
each variable, aiding in further statistical analysis or modeling. The detailed explanation of
each section is provided below:

• Cost: The histogram for Cost shows a relatively even distribution across several bins, with
frequencies tapering off as the cost increases. This indicates a range of cost values within
the dataset, with fewer instances of very high costs.

• Time: The Time distribution is highly skewed, with most observations clustered around
a single value, which indicates very little variation in the time metric across different
observations. The few occurrences of higher time values are outliers.
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Fig. 8 Comparative contour plots ofobjectives

• Risk: The Risk histogram displays a multi-modal distribution with several peaks, suggest-
ing that certain risk levels occur more frequently than others. This could point to common
risk profiles within the operational context from which the data was collected.

• Battery Usage: The Battery Usage distribution is highly skewed with one significant
outlier, which suggests that one observation or set of conditions led to an unusually high
battery usage. This outlier could potentially be an area of concern or interest for further
investigation.

• Penalties: The Penalties distribution appears to be bi-modal, with two peaks suggesting
that there are two common penalty values within the dataset. This could indicate the
presence of two distinct groups or conditions under which penalties are typically incurred.

5.3 Density analysis

5.3.1 Contour plots

The figure 8 indicated a visual narrative for the interplay between paired variables, revealing
the density and distribution that might not be as apparent through numerical analysis alone.
In the interrelation of cost and risk, the data congregates within a middle ground, suggesting
a balanced operational approach where neither extreme cost nor high risks are prevalent. This
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pattern is a testament to an underlying strategy that might be prioritizing cost-efficiency up
to a certain threshold of acceptable risk. This strategic balance is disrupted when considering
the battery usage outliers, which stand apart in the contour plot of time versus battery usage.
The stark isolation of these outliers indicates exceptional cases, perhaps indicative of atypical
scenarios or data anomalies, which starkly contrast with the otherwise homogenous spread
signifying operational standardization. Furthermore, the risk versus penalties contour plot
intimates a correlation where moderate risks are commonly paired with proportionate penal-
ties. The plot unveils a central tendency in the data, suggesting a predictive nature of penalties
based on risk levels, which could be a valuable insight for riskmitigation strategies. Similarly,
cost and time exhibit a relationship that is clustered around specific values, reinforcing the
notion of standard. Operating times across varied costs. The existence of these clusters points
to established procedures and a potential efficiency ceiling that might be explored for further
optimization. The collective insights from these contour plots are instrumental for strategic
planning. They highlight the prevailing operational regimes, while also flagging outliers and
anomalies for further inquiry. Such visual tools allow for an aggregated comprehension of
complex data interactions, laying the groundwork for refined resourcemanagement andmore
targeted risk control measures. In addition to the detailed explanation provided in the article,
the contour plots in Fig. 8 offer further insights:

1. Cost versus Risk: The plot reveals a concentration of data in a specific range, indicating
an operational preference for balancing moderate costs and risks. This suggests a tactical
approach where cost and risk are managed to avoid extremes, enhancing operational
stability.

2. Time versus Battery Usage: Notable outliers in this plot signify unusual cases that
deviate significantly from the norm, pointing to potential anomalies or special operational
scenarios that require further investigation.

3. Risk versus Penalties: The data suggests a direct relationship between risk and penal-
ties, where moderate risks correspond to proportionate penalties, providing a basis for
predictive risk management and mitigation strategies.

4. Cost versus Time: The clustering around particular values suggests a standardized oper-
ating time for various costs, indicating potential efficiency limits that could be optimized
further.

These visual insights are crucial for strategic planning, highlighting standard operational
regimes and identifying outliers for focused analysis, thus aiding in refined resource man-
agement and targeted risk control measures.

5.4 Relationship and correlation analysis

5.4.1 Heatmap of data correlation

The Fig. 9 presented the heatmap of objective correlations offers a compelling visual guide
to the relationships between various operational metrics. Each square on the heatmap rep-
resents the correlation coefficient between two variables, ranging from − 1 to 1. A value
of 1 indicates perfect positive correlation, − 1 indicates perfect negative correlation, and 0
denotes no correlation. In this heatmap, the correlation between cost and risk stands out with
a coefficient of− 0.40, suggesting a moderate negative relationship. This could imply that as
cost decreases, risk might increase, or vice versa, pointing towards a trade-off between these
two objectives where a balance might be sought. The relationship between time and penalties
is also notable, marked by a correlation coefficient of− 0.45. This suggests that longer times
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might be associated with fewer penalties, or shorter times could correlate with increased.
Penalties, hinting at a possible efficiency versus compliance scenario. Conversely, the corre-
lation between risk and penalties is positive, with a value of 0.28, which may indicate that
higher risk levels are associated with increased penalties. This relationship underscores the
potential cost of risk within operations, where higher risk actions are more likely to result in
penalties. Notably, battery usage does not show a strong correlation with any other variable,
the strongest being a negative − 0.31 with penalties, which might suggest that higher battery
usage is not necessarily associated with higher penalties. This could be reflective of oper-
ational scenarios where battery usage is independent of the penalty- incurring actions. The
subtle correlations between these metrics reflect the complexities of operational dynamics,
where each decision or change in one area can have a varied impact on others. Understanding
these correlations is essential for informed decision-making, allowing for strategic adjust-
ments that consider the ripple effects across different areas of operation. In addition to the
detailed explanation provided, the heatmap in Fig. 9 reveals further nuance. The heatmap in
Fig. 9 highlights key relationships between operational metrics: a moderate negative correla-
tion (− 0.40) between cost and risk indicates that higher costs are associated with lower risks,
suggesting a strategic balance. The negative correlation (− 0.45) between time and penalties
implies longer operational times reduce penalties, indicating an efficiency-compliance trade-
off. A positive correlation (0.28) between risk and penalties shows that higher risks result in
increased penalties, emphasizing the financial impact of risky operations.

Fig. 9 The heatmap of objectives correlates
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Fig. 10 3D pareto Front of objective functions

5.4.2 3D Pareto Front

The 3D schematic view of Pareto Front Chart in Fig. 10 illustrates the complex interplay
between cost, risk, and time, crucial metrics for evaluating performance and efficiency.
Observations reveal trade-offs and the extent to which one variable may affect another.
Points’ positions and colors convey multiple pieces of information, showing that scenarios
with minimized risk do not necessarily align with lower costs or penalties. For instance,
higher battery usage does not correspond with higher penalties or risk, indicating efficient
energy use. This chart helps stakeholders identify areas for improvement by examining the
balance of operational metrics.

For instance, points with lower risk values that are closer to the front of the chart represent
scenarios with minimized risk. However, these points do not necessarily align with lower
costs or penalties, suggesting that reducing risk might come at a higher financial or penal
cost. Conversely, points that are higher on the risk axis and closer to the chart’s rear suggest
scenarios where more time has been taken, potentially to mitigate risk, yet these scenarios do
not incur the highest penalties, as indicated by their cooler hues. Thismight suggest that taking
more time—perhaps to ensure thoroughness or compliance—can result in a more favorable
balance of risk and penalties, even if the cost is not minimized. Notably, the highest battery
usage, indicated by the number 406, does not correspond with the highest penalties or risk,
which could imply that higher battery consumption does not necessarily lead to increased
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penalties or risk in this operational context. This could be indicative of efficient energy use
where increased battery usage is not a sign of inefficiency or elevated risk. The color gradient,
reflecting penalties, varies across the spectrum, with the gradient’s cooler end representing
lower penalties and the warmer end representing higher penalties. The distribution of colors
across the chart illustrates that the highest penalties are not exclusively associated with high
costs or risks. For instance, a pointwith a relatively low risk of 250 shows a penalty close to the
higher end of the spectrum. This could suggest that penalties in this context are influenced by
factors beyond just risk and cost, and perhaps more by operational decisions or externalities
not directly captured by the other twometrics. Overall, the 3DPareto Front Chart is a strategic
tool, allowing stakeholders to identify operational efficiencies or deficiencies. By examining
the positions and colors of the points in relation to each other, stakeholders can pinpoint areas
for potential improvement, such as reducing costs or managing risks more effectively without
incurring high penalties. This visualization also opens questions for further analysis, such as
the factors contributing to the highest penalties and whether these are within the control of
the organization.

5.4.3 Pair plot of pareto front relations

The Fig. 11 presented appears to be a matrix of scatter plots combined with histograms, often
referred to as a pair plot, which is a multi-variable analysis tool. This type of visualization
enables the simultaneous observation of potential relationships between pairs of variables
and the distribution of single variables within the same framework.

The histograms on the diagonal of the matrix offer insights into the distribution of each
individual variable: Cost, Time, Risk, Battery Usage, and Penalties. For instance, the his-
togram for Time suggests a skewed distribution with most occurrences concentrated at lower
time values, indicating that most activities occur within a shorter time frame. In contrast,
the histogram for Battery Usage indicates a more varied distribution, with several peaks,
which may suggest different operational modes or levels of activity. The scatter plots below
the diagonal show the relationships between the pairs of variables. For example, the plot at
the intersection of Cost and Risk could indicate a potential pattern or trend between these
variables, where a cluster of points may suggest a correlation. Similarly, other scatter plots
show different concentrations of data points that could suggest varying degrees of association
between the variables. The matrix format allows for a comprehensive overview of how each
variable interacts with the others, highlighting both the distribution of individual variables
and their mutual relationships. This kind of visualization is particularly useful for identifying
correlations, outliers, or clusters within the data, which can be pivotal for understanding the
complex dynamics of the system from which the data was derived. It also serves as a basis
for more detailed statistical analysis, where these visual cues can guide deeper investigations
into causality, variance, and other statistical properties. In addition to the comprehensive
explanation provided, the figure, a pair plot, further elucidates variable interrelationships and
individual distributions:

1. Histograms: The diagonal histograms illustrate the distribution of each variable. For
instance, "Time" shows a concentration at lower values, indicating most operations are
short. "Battery Usage" displays a multimodal distribution, hinting at diverse operational
intensities.

2. Scatter Plots: The off-diagonal scatter plots reveal potential correlations between vari-
able pairs. For example, the "Cost versus Risk" scatter plot may show a clustering pattern,
indicating a possible relationship where specific cost ranges align with certain risk levels.
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Fig. 11 A matrix of scatter plots of pareto Front Relations

3. Overall Insights: This visualization not only identifies individual variable distributions
and pairwise relationships but also aids in detecting correlations, outliers, and clusters. It
serves as a foundation for deeper statistical analyses, helping to unravel complex system
dynamics and guiding targeted investigations into causality and variance.

5.4.4 Bubble chart

The Fig. 12 depicted provides a graphical representation of the relationship between cost
and risk, with the additional dimension of penalties indicated by the size of the bubbles.
Larger bubbles represent higher penalties, while smaller bubbles represent lower penalties.
In this visualization, the distribution of bubbles across the cost-risk plane shows how these
two variables correlate, with the variation in bubble size offering insight into the penalty
magnitude associated with different cost-risk combinations. The placement of larger bubbles
at various points on the chart could suggest that higher penalties are not exclusively occurring
at high-risk or high-cost scenarios. Instead, there is a dispersion of penalties across the
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range, indicating that high penalties can occur across various levels of cost and risk. The
concentration of bubbles in certain areas may point to more common cost-risk scenarios,
while sparse areas may indicate less common or outlier situations. If larger bubbles are
concentrated in a specific region, it might suggest that higher penalties are more likely in
that particular cost and risk range. Conversely, a cluster of smaller bubbles would suggest
that those cost and risk combinations are generally associated with lower penalties. The
color coding of the bubbles, corresponding to different penalty values, allows for quick
visual differentiation between varying levels of penalties. This can be useful for identifying
patterns or trends, such as whether there is a trend toward higher penalties with increasing
cost or risk. This bubble chart serves as a valuable tool for risk management and financial
planning, as it visualizes complex data in an easily interpretable format. By analyzing where
the larger bubbles are predominantly located, one can identify which combinations of cost
and risk have historically led to higher penalties, and potentially adjust strategies accordingly
to mitigate these costs.

5.5 Comparative and evolution analysis

5.5.1 Area chart

The Fig. 13 illustrates the fluctuation of cost, risk, and battery usage over a series of indexed
events or time periods. The layers of color represent each variable’s magnitude, stacked to
show their cumulative effect at each index point. The cost, represented by the bottommost
layer, forms the foundation of the chart, and exhibits significant variation throughout the
index, with peaks suggesting instances of high expenditure. The risk layer, while also varying,

Fig. 12 Bubble chart of cost versus risk
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does not seem to correspond directly with the cost’s peaks and valleys, indicating that the
relationship between cost and risk is not strictly proportional or may be influenced by other
factors not depicted in the chart. Above both, the battery usage shows.

spikes that considerably exceed the scale of cost and risk at certain index points. This
implies occurrences of high battery consumption, which do not appear to be directly related
to the cost or risk levels, suggesting that battery usage is subject to different operational
dynamics or constraints. The area chart is a visual representation of the overall trends and
can be useful for spotting patterns, such as whether higher costs are typically associated with
increased risk or battery usage. However, the overlapping nature of the chart may obscure
some of the finer details of these relationships, necessitating a deeper dive into the data
for more precise insights. By examining the variability and the relative proportion of each
area, one can infer the volatility and impact of each variable within the operational context.
Such an analysis might be critical for identifying inefficiencies, forecasting future trends,
and allocating resources more effectively.

5.5.2 Network graph

Figure 14depicts a network graph illustrating the relationship between cost and risk,where the
size of each node in the graph represents battery usage. This visual representation allows for an
intuitive understanding of how different levels of battery consumption impact the associated
costs and risks, facilitating strategic decisions in scenarios where battery management is
crucial. The network graph visualizes the interconnectedness of cost and risk with varying
node sizes representing battery usage. Each node, likely corresponding to an individual data
point or scenario, is connected, indicating potential relationships or dependencies between
different cost and risk pairings. The size of each node is indicative of the battery usage
associated with each pairing; larger nodes suggest higher battery usage, while smaller nodes
indicate lower usage. For example, node 14, being the largest, suggests it is a scenario
with substantial battery consumption, possibly an outlier if it significantly deviates from
the other node sizes. The thickness of the lines connecting the nodes might suggest the

Fig. 13 Area chart of objective functions over index
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strength or frequency of the transition between different cost and risk states, or how often
certain scenarios occur. If the lines are uniformly thin, this could indicate that transitions
between states are not common, or the network is showing a snapshot rather than a process
over time. The graph provides an abstract representation that could be used for analyzing
operational or system dynamics, especially in contexts where battery usage is a critical factor.
The spatial arrangement of nodes can reveal clusters of similar cost-risk scenarios, and the
size of nodes within these clusters can indicate which scenarios are most energy-intensive.
This visualization can guide strategic decisions, such as identifying which scenarios to target
for battery usage reduction or understanding the balance between cost, risk, and energy
consumption. By exploring the network, one can discern patterns that might inform policy
changes or operational adjustments to enhance efficiency and reduce costs or risks associated
with high battery usage.

6 Comparative analysis and validation of optimization results

Before delving into the detailed convergence analysis of the optimization model, it is crucial
to understand the role of objective functions in evolutionary algorithms. In optimizing drone
routing strategies, the genetic algorithm is precisely configured to enhance a population of
potential solutions across multiple dimensions—cost, time, risk, and battery usage. These
objective functions act as key metrics, assessing the effectiveness and feasibility of solutions

Fig. 14 Network graph of cost versus risk with node size representing battery usage
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Fig. 15 Visual depiction of the convergence of objective functions over generations: a cost, b time, c risk,
d battery usage

generated in each iteration. Figure 15, presented next, depicts the convergence behavior of
these objective functions, visually demonstrating how the algorithm iteratively focuses on
the most promising strategies. It showcases the algorithm’s performance across generations,
highlighting the evolutionary dynamics that steer the optimization process towards solution
stabilization and refinement. This introduction prepares for an in-depth discussion on the
algorithm’s efficiency, as evidenced by the observed convergence trends in the subsequent
charts.

Figure 15 demonstrates the performance of the optimization model over 250 genera-
tions, focusing on cost, time, risk, and battery usage. Initially, the genetic algorithm swiftly
reduces cost, achieving a stable set of solutions by generation 37. Similarly, time stabilizes
by generation 46, risk by generation 54, and battery usage by generation 60. This stepwise
improvement pattern indicates that the algorithm quickly identifies near-optimal solutions in
the early generations, followed by gradual refinements leading to stability. The results show-
case the efficiency and convergence behavior of the algorithm, supported by a population
of 300 individuals, with specific probabilities for crossover, mutation, and independence. To
better demonstrate the superior performance of the proposed algorithm, a comparison was
made with another multi-objective study, specifically Monsef et al. (2019), as shown in the
table below which provides a comparison between their method and the current proposed
model.

Table 7 provides a comparison between the current proposed model (NSGA-II + BBN)
and the method from Monsef et al. (2019), evaluating key criteria such as cost, time, risk,
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Table 7 Comparative analysis of optimization performance between the proposed NSGA-II + BBN Model
and Monsef et al. (2019)

Criteria Current Study (NSGA-II + BBN) Monsef et al. (2019)—NSGA-II

Cost over Generations Rapid reduction in cost, stabilizing
around generation 37 (Figure a)

Slower reduction, stabilizes
after 100 generations

Time over Generations Time stabilizes after 46 generations,
faster convergence (Figure b)

Time improves slowly,
stabilizing near 200
generations

Risk over Generations Sharp decrease in risk with stable
convergence by 54 generations (Figure
c)

No risk assessment is integrated

Battery Usage over
Generations

Gradual optimization with fewer
oscillations, stabilizing by generation
60 (Figure d)

No Battery usage is integrated

Overall Convergence Rate Faster convergence in all metrics,
achieving stability by 50 generations

Slower convergence, requiring
over 100–150 generations for
stability

Algorithm Complexity NSGA-II combined with Bayesian Belief
Network (BBN) for risk optimization

NSGA-II without any risk
considerations

battery usage, and convergence rate. The proposedmodel demonstrates superior performance
in all these metrics. It achieves faster cost reduction, stabilizing after 37 generations, while
Monsef’s method requires more than 100 generations. Time stabilization occurs within 46
generations in the proposed model, compared to around 200 generations in Monsef’s. Addi-
tionally, risk management is a key advantage, utilizing Bayesian Belief Networks (BBN) to
reduce risk, a factor absent in Monsef’s method. Battery usage is also optimized, stabilizing
by generation 60, which is not considered in Monsef et al. (2019). Finally, the proposed
model converges faster overall, achieving stability across all metrics within 50 generations,
whereas Monsef’s approach takes significantly longer to converge. This demonstrates the
enhanced efficiency and applicability of the proposed model, particularly in real-world sce-
narios involving risk and battery management.

7 Conclusion

This study introduces a drone routing optimization model with key insights supported by
quantitative analysis, showcasing its potential for enhanced operational efficiency. Themodel
significantly reduced cost and time by averages of 37.3% and 10.48%, respectively, over 250
generations. The NSGAII algorithm effectively optimized drone routing, achieving a cost
range of 52–55 million, average time efficiency of 8425, and managing risk levels with
an average of 595,108. Box plots and histograms demonstrated the model’s adept balance
between cost-efficiency and risk management. The correlation heatmap highlighted inter-
dependencies, emphasizing the importance of cost-efficiency and energy management in
reducing risks and penalties. The 3D Pareto front and pairplot analyses revealed strategic
trade-offs in drone routing optimization. Comparative analysis using area charts and network
graphs underscored the model’s adept handling of complex routing dynamics. The drone
route optimization map indicated strategic placement of the Depot and highlighted varying
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visit frequencies at distributors and facilities. The model’s classification of scenarios demon-
strated adaptability to real-world conditions, emphasizing its potential for future innovations
in drone logistics. Future work could involve comparing the proposed model with other opti-
mization algorithms, incorporating additional data sources, or extending the model to other
logistics scenarios to explore further improvements and enhance the robustness of drone
routing optimization.

Appendix A: Parameters initialization and values assisgnment

Parameter Description Selection Justification

ri Point1 = 3; Point2 = 2; Point3 = 5;
Point4 = 5; Point5 = 3; Point6 = 3;
Point7 = 2; Point8 = 4; Point9 = 4;
Point10 = 6; Point11 = 3; Point12
= 2

Selected based on typical
delivery demands observed in
urban logistics scenarios,
reflecting a mix of high and
low demand points to ensure
diverse test cases

Pi Point1 = 129; Point2 = 118; Point3 =
149; Point4 = 144; Point5 = 141;
Point6 = 150; Point7 = 139; Point8
= 127; Point9 = 121; Point10 =
127; Point11 = 129; Point12 = 129

Values derived from empirical
data on population density and
commercial activity in urban
areas, ensuring realistic
representation of demand
variability

Si (’Point1’, ’RPA1’) = 88; (’Point1’,
’RPA2’) = 68; (’Point1’, ’RPA3’) =
50; (’Point1’, ’RPA4’) = 65;
(’Point1’, ’RPA5’) = 80; (’Point1’,
’RPA6’) = 79; (’Point1’, ’RPA7’) =
83; (’Point2’, ’RPA1’) = 99;
(’Point2’, ’RPA2’) = 98; (’Point2’,
’RPA3’) = 75; (’Point2’, ’RPA4’) =
56; (’Point2’, ’RPA5’) = 69;
(’Point2’, ’RPA6’) = 97; …

Service times based on
historical data and operational
efficiency of different drone
models, adjusted to simulate a
realistic range of scenarios for
model testing

Qk RPA1 = 200; RPA2 = 250; RPA3 =
150; RPA4 = 150; RPA5 = 200;
RPA6 = 150; RPA7 = 150

Capacity values are typical of
current commercial drone
models used in urban logistics,
ensuring practical applicability

ai 480 Reflects the average starting
operational hours for drones in
urban settings, based on
industry standards
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Parameter Description Selection Justification

bi 1020 Maximum operational hours
calculated based on battery
life and recharge cycles,
consistent with manufacturer
specifications

M 100,000 Set as a sufficiently large
number to act as a constraint in
optimization models, ensuring
no practical limitations on
computational performance

ESi Point1 = 3; Point2 = 13; Point3 = 12;
Point4 = 15; Point5 = 8; Point6 =
12; Point7 = 14; Point8 = 11;
Point9 = 3; Point10 = 13; Point11
= 7; Point12 = 14

Emergency service index based
on criticality of each point,
derived from historical
emergency response data

LSi Point1 = 65; Point2 = 70; Point3 =
75; Point4 = 80; Point5 = 60;
Point6 = 65; Point7 = 70; Point8 =
75; Point9 = 80; Point10 = 60;
Point11 = 65; Point12 = 70

Service level index reflecting
customer satisfaction targets,
informed by industry
benchmarks and best practices

W2 5 Weight factor chosen to balance
cost and efficiency in the
optimization model, based on
expert judgment

W3 10 Higher weight given to critical
constraints, reflecting their
priority in the decision-making
process

f i x/
k

RPA1 = 1000; RPA2 = 1100; RPA3
= 1200; RPA4 = 1300; RPA5 =
1400; RPA6 = 1500; RPA7 = 1600

Fixed costs based on the initial
investment and maintenance
costs associated with each
drone model, ensuring
comprehensive cost analysis

C 1.5 Cost of one charging unit based
on industry rates for electricity
and infrastructure costs

AT 0.42 Minimum charging allowed
within the RPA to ensure
sufficient operational range,
derived from technical
specifications of drone
batteries
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Parameter Description Selection Justification

C f f Facility1 = 4.47; Facility2 = 7.62;
Facility3 = 4.47; Facility4 = 7.81;
Facility5 = 7.81

Preparation costs for facility
locations based on
construction and operational
costs, reflecting industry
averages

f i xd Distributor1 = 250; Distributor2 =
300; Distributor3 = 350;
Distributor4 = 400; Distributor5 =
450

Cost of constructing distributor
candidate locations based on
empirical data from similar
logistics projects

DAY 480 Length of a working day in
minutes, reflecting typical
operational hours for logistics
companies

cp ji (’Point1’, ’Point1’) = 0.0; (’Point1’,
’Point2’) = 2.3717082451262845;
(’Point1’, ’Point3’) =
2.1213203435596424; (’Point1’,
’Point4’) = 2.7041634565979917;
(’Point1’, ’Point5’) =
3.0923292192132457; (’Point1’,
’Point6’) = 3.8242646351945884;
(’Point1’, ’Point7’) =
5.4083269131959835; (’Point1’,
’Point8’) = 5.7118298293979315;
(’Point1’, ’Point9’) = 7.5; (’Point1’,
’Point10’) = 7.721722605740251;
…

Battery consumption between
nodes based on the Euclidean
distance and drone power
consumption rates, ensuring
realistic energy usage
modeling

dxij (’Point1’, ’Point2’) = 15.81;
(’Point1’, ’Point3’) = 14.14;
(’Point1’, ’Point4’) = 18.03;
(’Point1’, ’Point5’) = 20.62;
(’Point1’, ’Point6’) = 25.5;
(’Point1’, ’Point7’) = 36.06;
(’Point1’, ’Point8’) = 38.08;
(’Point1’, ’Point9’) = 50.0;
(’Point1’, ’Point10’) = 51.48;
(’Point1’, ’Point11’) = 50.0;
(’Point1’, ’Point12’) = 55.9;
(’Point2’, ’Point1’) = 15.81;
(’Point2’, ’Point3’) = 25.5;
(’Point2’, ’Point4’) = 11.18; …

Distances between nodes
calculated using geographical
data, ensuring accurate routing
and distance-based constraints
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Parameter Description Selection Justification

pu Scenario1 = 0.33; Scenario2 = 0.33;
Scenario3 = 0.34

Probabilities of scenarios based
on expert analysis and
historical data, ensuring
diverse and realistic scenario
testing

Vku RPA1 = {’Scenario1’: 110,
’Scenario2’: 120, ’Scenario3’: 130};
RPA2 = {’Scenario1’: 110,
’Scenario2’: 120, ’Scenario3’: 130};
RPA3 = {’Scenario1’: 110,
’Scenario2’: 120, ’Scenario3’: 130};
RPA4 = {’Scenario1’: 110,
’Scenario2’: 120, ’Scenario3’: 130};
…

Velocity of RPAs in different
scenarios based on drone
performance data and
operational conditions

capd Distributor1 = 845; Distributor2 =
866; Distributor3 = 871;
Distributor4 = 884; Distributor5 =
838

Capacities of distributor
locations based on storage and
operational limits, reflecting
typical logistics hub capacities

cap f Facility1 = 140; Facility2 = 150;
Facility3 = 145; Facility4 = 143;
Facility5 = 120

Facility capacities derived from
industry standards for
operational hubs, ensuring
practical constraints

L0k RPA1 = 784; RPA2 = 849; RPA3 =
794; RPA4 = 849; RPA5 = 847;
RPA6 = 781; RPA7 = 854

Initial load on RPAs when
leaving the distributor based
on typical payloads and drone
capacities

Ski j
(’RPA1’, ’Point1’, ’Point1’) = 0;
(’RPA1’, ’Point1’, ’Point2’) = 500;
(’RPA1’, ’Point1’, ’Point3’) = 600;
(’RPA1’, ’Point1’, ’Point4’) = 200;
(’RPA1’, ’Point1’, ’Point5’) = 300;
(’RPA1’, ’Point1’, ’Point6’) = 500;
(’RPA1’, ’Point1’, ’Point7’) = 300;
(’RPA1’, ’Point1’, ’Point8’) = 600;
(’RPA1’, ’Point1’, ’Point9’) = 500;
(’RPA1’, ’Point1’, ’Point10’) = 600;
(’RPA1’, ’Point1’, ’Point11’) = 500;
(’RPA1’, ’Point1’, ’Point12’) = 500;
…

Risk of route derived from node
i to node j with RPA k, based
on BBN risk assessment
methodology
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Parameter Description Selection Justification

siu Point1 = {’Scenario1’: 45,
’Scenario2’: 36, ’Scenario3’: 37};
Point2 = {’Scenario1’: 33,
’Scenario2’: 34, ’Scenario3’: 37};
Point3 = {’Scenario1’: 47,
’Scenario2’: 41, ’Scenario3’: 31};
Point4 = {’Scenario1’: 38,
’Scenario2’: 44, ’Scenario3’: 36}; …

Time to start providing service
to demand point i in scenario
u, based on operational
schedules and scenario
analysis

Lj Point1 = 25; Point2 = 36; Point3 =
30; Point4 = 35; Point5 = 28;
Point6 = 30; Point7 = 20; Point8 =
28; Point9 = 39; Point10 = 37;
Point11 = 38; Point12 = 32

Load weight remaining on the
RPA after service to demand
point j, derived from payload
capacities and operational
constraints

Eiu (’Point1’, ’Scenario1’) = 23;
(’Point1’, ’Scenario2’) = 23;
(’Point1’, ’Scenario3’) = 23;
(’Point2’, ’Scenario1’) = 26;
(’Point2’, ’Scenario2’) = 26;
(’Point2’, ’Scenario3’) = 26;
(’Point3’, ’Scenario1’) = 20;
(’Point3’, ’Scenario2’) = 20;
(’Point3’, ’Scenario3’) = 20;
(’Point4’, ’Scenario1’) = 23;
(’Point4’, ’Scenario2’) = 23;
(’Point4’, ’Scenario3’) = 23;
(’Point5’, ’Scenario1’) = 26;
(’Point5’, ’Scenario2’) = 26; …

Time deviation from the earliest
time allowed to provide
service to demand point i in
the soft time window in
scenario u, based on
scheduling flexibility

Liu (’Point1’, ’Scenario1’) = 40;
(’Point1’, ’Scenario2’) = 40;
(’Point1’, ’Scenario3’) = 40;
(’Point2’, ’Scenario1’) = 45;
(’Point2’, ’Scenario2’) = 45;
(’Point2’, ’Scenario3’) = 45;
(’Point3’, ’Scenario1’) = 35;
(’Point3’, ’Scenario2’) = 35;
(’Point3’, ’Scenario3’) = 35;
(’Point4’, ’Scenario1’) = 40;
(’Point4’, ’Scenario2’) = 40;
(’Point4’, ’Scenario3’) = 40;
(’Point5’, ’Scenario1’) = 45;
(’Point5’, ’Scenario2’) = 45; …

Time deviation from the latest
time allowed to provide
service to demand point i in
the soft time window in
scenario u, reflecting possible
delays

α 0.5 Parameter for scaling
deviations, set to balance early
and late service penalties
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Parameter Description Selection Justification

β 0.7 Parameter for scaling
deviations, set to emphasize
the importance of late service
penalties

FCk RPA1 = 700; RPA2 = 720; RPA3 =
740; RPA4 = 760; RPA5 = 780;
RPA6 = 800; RPA7 = 820

Reflects fixed costs
(maintenance, depreciation,
etc.). Values increase
incrementally to represent
differences in drone
capabilities and usage, based
on operational data

ded Distributor1 = 89; Distributor2 = 75;
Distributor3 = 74; Distributor4 =
90; Distributor5 = 97

Center demand of distributor d
based on historical demand
data and operational capacity

Ai 0.42 for all drones Amount of battery available on
the RPA, based on
manufacturer specifications
and operational needs

cki j
(’Point1’, ’Point1’) = 0; (’Point1’,
’Point2’) = 7; (’Point1’, ’Point3’) =
6; (’Point1’, ’Point4’) = 9; (’Point1’,
’Point5’) = 4; …

Energy consumption by a drone
of type k to fly from i to j,
based on distance and drone
power consumption rates

Ck RPA1 = 160; RPA2 = 170; RPA3 =
180; RPA4 = 190; RPA5 = 200;
RPA6 = 210; RPA7 = 220

Amortized cost of the drone
type k, based on purchase
price and maintenance costs
spread over operational life

Ck
bat RPA1 = 23; RPA2 = 26; RPA3 = 29;

RPA4 = 32; RPA5 = 35; RPA6 =
38; RPA7 = 41

Amortized cost of the battery of
drone type k, reflecting
replacement and maintenance
costs

CE 0.1 Cost per unit of energy, derived
from industry rates for
electricity

CL 30 Wage of drone operators, based
on industry standards for labor
costs

nk 2 Number of drones of type k a
drone operator can operate,
based on industry standards
and operational efficiency

CM
k RPA1 = 100; RPA2 = 105; RPA3 =

110; RPA4 = 115; RPA5 = 120;
RPA6 = 125; RPA7 = 130

Maintenance cost of a drone of
type k, reflecting routine
maintenance and repair costs
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Parameter Description Selection Justification

tbatk 20 for all drones Time required to replace the
battery of drone type k, based
on manufacturer specifications
and operational procedures

li Point1 = 15; Point2 = 19; Point3 =
20; Point4 = 17; Point5 = 27;
Point6 = 33; Point7 = 30; Point8 =
17; Point9 = 17; Point10 = 28;
Point11 = 20; Point12 = 20

Distance of delivery location i
from depot, based on
geographical data and routing
plans

l j Point1 = 17; Point2 = 12; Point3 =
25; Point4 = 21; Point5 = 16;
Point6 = 10; Point7 = 18; Point8 =
24; Point9 = 24; Point10 = 24;
Point11 = 18; Point12 = 17

Distance of delivery location j
from depot, reflecting typical
urban logistics distances

ti j (’Point1’, ’Point1’) = 0; (’Point1’,
’Point2’) = 8; (’Point1’, ’Point3’) =
15; (’Point1’, ’Point4’) = 8;
(’Point1’, ’Point5’) = 13; (’Point1’,
’Point6’) = 14; (’Point1’, ’Point7’)
= 5; (’Point1’, ’Point8’) = 5;
(’Point1’, ’Point9’) = 13; (’Point1’,
’Point10’) = 13; (’Point1’,
’Point11’) = 6; (’Point1’, ’Point12’)
= 6; (’Point2’, ’Point1’) = 14;
(’Point2’, ’Point2’) = 0; (’Point2’,
’Point3’) = 6; …

Time required for drone to
arrive at delivery location from
i to j, based on operational
speeds and distances

ei Point1 = 7; Point2 = 7; Point3 = 7;
Point4 = 9; Point5 = 8; Point6 = 7;
Point7 = 8; Point8 = 9; Point9 = 7;
Point10 = 8; Point11 = 9; Point12
= 9

Earliest possible pickup time,
based on operational schedules
and demand patterns

chok 90 for all drones Initial energy in the battery of
drone type k, reflecting full
charge capacity

chmin
k 20 for all drones Minimum remaining energy

required in the battery of
drone type k, ensuring
sufficient power for return or
emergency landing
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Parameter Description Selection Justification

chmax
k 80 for all drones Maximum remaining energy

required in the battery of
drone type k, reflecting battery
capacity limits, set lower than
full capacity to ensure
operational safety and
longevity

�ch j Point1 = 0.36; Point2 = 0.47; Point3
= 0.25; Point4 = 0.16 Point5 =
0.23; Point6 = 0.18; Point7 = 0.45;
Point8 = 0.20; Point9 = 0.36;
Point10 = 0.21; Point11 = 0.24;
Point12 = 0.44

Maximum permissible delay for
point j, based on operational
constraints and delivery
urgency

Mmax
k RPA1 = 70; RPA2 = 80; RPA3 = 90;

RPA4 = 100; RPA5 = 110; RPA6 =
120; RPA7 = 130

Maximum package weight
carrying capacity of drone
type k, based on manufacturer
specifications

Mi Point1 = 5; Point2 = 4; Point3 = 5;
Point4 = 4; Point5 = 5; Point6 = 4;
Point7 = 3; Point8 = 2; Point9 = 4;
Point10 = 3; Point11 = 5; Point12
= 4

Package weight for delivery
location i, based on typical
delivery items in urban
logistics

Constraint
Penalties

constraint_5_penalty = 300 # Each
demand point covered at least once

constraint_6_penalty = 250 # In-flow
and out-flow balance

constraint_7_penalty = 200 # Drone
utilization

constraint_8_penalty= 150 #Avoiding
self-routing

:
:
constraint_57_penalty = 200 # Time
Condition Waiting Feasibility

constraint_58_penalty = 150 # gi and
�ch_j Relation

Penalties set based on the
severity of constraint
violations, ensuring
appropriate weighting in the
optimization model to
prioritize critical operational
constraints

Appendix B: Tale B1: Description of Numerical Labels in Fig. 14
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Node Description

0 Scenario with the highest battery usage, indicating substantial
consumption

1 Low cost, moderate risk scenario

2 Moderate cost, moderate risk scenario

3 Low cost, low risk scenario

4 High cost, low risk scenario

5 Low cost, high risk scenario

6 Moderate cost, low risk scenario

7 Moderate cost, high risk scenario

8 Low cost, high battery usage scenario

9 High cost, high risk scenario

10 Low cost, moderate risk scenario

11 High battery usage, moderate cost scenario

12 Moderate battery usage, low cost scenario

13 High risk, low cost scenario

14 Scenario with the highest cost and risk

15 Low battery usage, high cost scenario

16 Moderate cost, high battery usage scenario

17 Low risk, low cost scenario

18 High risk, high battery usage scenario

19 Moderate risk, moderate battery usage scenario

20 Low battery usage, low risk scenario

21 High battery usage, moderate risk scenario

22 High cost, low battery usage scenario

23 Low cost, low battery usage scenario

24 Moderate cost, low battery usage scenario

25 Moderate cost, high risk scenario

26 Low battery usage, moderate risk scenario

27 Moderate battery usage, high cost scenario
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