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Abstract: Initial temperature has a promoting effect on laminar burning velocity, while initial pressure
and dilution rate have an inhibitory effect on laminar burning velocity. Equal laminar burning
velocities can be obtained by initial condition coupling with different temperatures, pressures and
dilution rates. This paper analysed the equivalent distribution pattern of laminar burning velocity
and the variation pattern of an equal weight curve using the coupling effect of the initial pressure
(0.1–0.3 MPa), initial temperature (323–423 K) and dilution rate (0–16%). The results show that, as the
initial temperature increases, the initial pressure decreases and the dilution rate decreases, the rate of
change in laminar burning velocity increases. The equivalent effect of initial condition coupling can
obtain equal laminar burning velocity with an dilution rate increase (or decrease) of 2% and an initial
temperature increase (or decrease) of 29 K. Moreover, the increase in equivalence ratio leads to the
rate of change in laminar burning velocity first increasing and then decreasing, while the increases
in dilution rate and initial pressure make the rate of change in laminar burning velocity gradually
decrease and the increase in initial temperature makes the rate of change in laminar burning velocity
gradually increase. The area of the region, where the initial temperature influence weight is larger,
gradually decreases as the dilution rate increases, and the rate of decrease gradually decreases.

Keywords: natural gas; laminar burning velocity; equivalent effect; influence weight

1. Introduction

Natural gas is considered the oil alternative fuel with the most potential due to
its advantages of eco-friendliness, cleanliness, low carbon emission, high efficiency and
low price, which have attracted the attention of scholars at home and abroad [1–3]. The
laminar burning characteristics of natural gas are of great significance for understanding
the inherent physical and chemical properties, the flame propagation process and the
chemical kinetics [4–6]. Domestic and international scholars have conducted a lot of
research regarding the influence of initial pressure (Pu), initial temperature (Tu), mixed gas
composition and concentration on laminar burning velocity (uL). Han et al. [7] analysed
the effect of initial temperature (323–423 K) on the laminar flame of premixed natural
gas through experimental studies. The results show that, with the increase in Tu, uL
gradually increases. Hermanns et al. [8] summarised the available measurements of
laminar burning velocities in CH4 + H2 + O2 + N2 flames at a temperature range of
298–418 K performed using a heating flux method. The results show that the increase in Tu
increases uL under different equivalence ratios. Halter et al. [9] analysed the effect of Pu
(0.1–0.5 MPa) on the laminar flame of CH4/air mixtures through experimental studies. The
results show that, with the increase in Pu, uL gradually decreases. Xie et al. [10] carried
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out a chemical kinetic modelling study of laminar burning characteristics for CH4/CO2
mixtures at elevated pressure by CHEMKIN coupling with a detailed chemical reaction
mechanism. The results show that uL decreases with increasing pressure under high
pressure. Chan et al. [11] studied the effects of CO2 diluent on uL of CH4/air premixed
flames utilizing experimentation and kinetic modelling. The results show that uL of the
methane and air mixture decreases as the CO2 dilution rate (DR) increases. Zhou et al. [12]
conducted a study on the effect of diluents (N2/CO2) on the laminar flame speed of a
H2/CO/CH4/air premixed flame using an outwardly propagating spherical flame and
the CHEMKIN package. The results show that laminar flame speed decreases with the
increase in N2/CO2 dilution ratios and that CO2 dilution has a stronger dilution effect,
thermal effect and chemical effect than those of N2 dilution. Huang et al. [13] studied
the laminar flame characteristics of natural gas–air flames in a constant-volume bomb at
normal temperature and pressure. The results show that uL tends to increase first and
then decrease with the increase in the equivalence ratio (Φ), and the maximum value is
obtained between Φ from 1.0 to 1.1. Dirrenberger et al. [14] presented new experimental
measurements of the laminar flame velocity of natural gas with equivalence ratios from 0.6
to 2.1 performed by the heat flux method. The results show that, with the increase in Φ, uL
increases first and then decreases. This pattern maintains good consistency with other test
data from the literature.

According to the above review, Tu has a promoting effect on uL while Pu and DR
have an inhibitory effect on uL. Equal laminar burning velocities can be obtained by initial
condition coupling with different temperatures, pressures and DRs. However, the literature
lacks corresponding research results on the equivalent effect on laminar burning. There are
much domestic and foreign research on the influence of parameters such as Tu, Pu and DR
on combustion, but most of the research focuses on the influence of a single parameter on
laminar burning, and it is difficult to obtain a quantitative equivalent relationship. Based
on the equivalent laminar burning concept, this paper analysed the equivalent distribution
pattern of uL and the variation pattern of the equal weight curve by the coupling effects of
Pu (0.1–0.3 MPa), Tu (323–423 K) and DR (0–16%). Relevant data support and engineering
reference are provided for revealing the influence of the coupling mechanism of initial
parameters on the laminar burning process, which is of great significance.

2. Experimental Setup

Figure 1 is a schematic of the test system, which is mainly composed of a constant
volume chamber (CVC), a temperature monitoring system, an ignition system, a data ac-
quisition system and a Schlieren imaging system [15]. The temperature monitoring system
includes a K-Type thermocouple and a proportional-integral-derivative (PID) temperature
controller, which is capable of maintaining the Tu error within ±3 k. The parameters of
the ignition system are as follows: the ignition voltage is 14 V, provided by a stabilized
power supply; the ignition pulse width is 3 ms; the ignition electrode diameter is 2 mm;
and the gap between the ignition electrodes is 3 mm. The data acquisition system includes
a pressure sensor (KISTLER 6125C), a data acquisition card (Data acquisition, NiUSB-6365,
sampling frequency of 100,000 Hz) and a charge amplifier (KISTLER 5018A). The Schlieren
imaging system includes an illuminator (100 W Power), two concave mirrors (Focal length
110 mm), two plane mirrors and a high-speed digital camera (Phantom V7.3, 10,000 fps,
resolution 512 × 512 pixels). Table 1 shows the main parameters of the CVC.
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Figure 1. The experimental setup.

Table 1. Basic parameters of the constant volume chamber (CVC).

Parameter (Unit) Value

Inner diameter (mm) 350
Volume (L) 22.4

Maximum heating temperature (K) 600
Maximum pressure (MPa) 4

Effective diameter of windows (mm) Φ120

The experiment uses a mixture of CO2, natural gas and compressed air to carry out
premixed combustion research in order to meet the needs of modern society for natural
gas engine performance simulation. CO2 is used as an inert gas to reduce the oxygen
concentration of the reactant, mainly to simulate the exhaust gas recirculation (EGR)
technology of the engine. Compared with N2, CO2 has a greater impact on the laminar
combustion of mixed gas, which is closer to the actual use of real EGR technology. In
the test, gaseous CO2, natural gas and compressed air are charged to the CVC to the
specified pressure sequentially according to the law of partial pressure. The chemical
reaction formula of the reaction between natural gas (CH4) and oxygen (O2) is as follows:

CH4 + 2O2 = CO2 + 2H2O (1)

From the metering ratio of this reaction formula, it can be seen that 1 mol methane
needs to consume 2 mol oxygen gas and that the source of oxygen is air. After calculation,
at Φ of 1, the complete oxidation of 1 mol of methane needs to consume 9.524 mol of air.

The partial pressure of carbon dioxide is expressed as follows:

PCO2 = DR× Pu (2)

When the equivalence ratio is Φ, the oxidation of 1 mol methane needs to consume
9.524/Φ mol air, so the partial pressure of methane when the equivalence ratio is Φ is as
follows:

pCH4 =
Pu− PCO2

1 + 9.524/ϕ
(3)

The compressed air partial pressure is obtained from the total initial pressure minus
other gas partial pressures:

Pair = Pu− PCO2 − PCH4 (4)
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The above method is used to complete the gas distribution of the constant volume
chamber (CVC). Meanwhile, the gas is gradually heated to Tu. Let it stand for at least
5 min to achieve gas premixing. After the combustion is completed, the residual exhaust
gas is discharged for “scrubbing” and vacuumed more than three times to ensure chamber
cleanliness [16]. To reduce the test error [17–19], the radius of this test is 6–25 mm.

3. Data Processing
3.1. Extraction of Flame Radius

Figure 2 illustrates the process of obtaining a Schlieren image of the propagation flame
radius using the commercial mathematical software MATLAB. This paper chose the Canny
operator because of its high precision [20]. Before detecting the image boundary, five steps
were applied: background removal, greyscale processing (the threshold value is 10), flame
front extraction, boundary identification and fitting [21]. In the radius calculation, the
horizontal line was rotated clockwise by 0 degrees, 60 degrees and 120 degrees to obtain
3 diameters (6 radii), and the instantaneous flame radius Ru was obtained by averaging
the 6 radius values.
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3.2. Data Calculation

In the spherical diffusion flame, the propagation rate of the tensile flame is given [22],
shown below:

Sn = dRu/dt (5)

where t is the time.
For the outwardly propagating spherical flame, the flame stretch rate can be simplified

as follow [23]:
K = d(ln A)/dt = 2Sn/Ru = κSn (6)

in which A is an infinitely small area on the flame and κ = 2/Ru is the curvature of the
flame front.

To obtain the unstretched flame propagation velocity and the Markstein length, ac-
cording to the literature [24], use the classical formula, shown as follow:

Sl − Sn = LbK (7)
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However, there is a certain theoretical error in this method, so the recommendation of
Chen [25] is adopted. For most cases of the mixture with Lewis number Le < 1 or close to 1,
the nonlinear method proposed by Kelley et al. [26] is as follows:

ln(Sn) = ln(Sl)− SlLbκ/Sn (8)

For most cases of the mixture with Le > 1, another nonlinear formula [27] is used,
shown as follow:

Sn = Sl − SlLbκ (9)

where Le is as follows:
Le = λ/ρucpDm = DT/Dm (10)

The un-stretched uL can be calculated as follow [28]:

uL = Sl(ρb/ρu) = Sl/σ (11)

To further evaluate the influence of the coupling relationship of Pu, Tu and DR on uL,
this paper introduces the variation of laminar burning velocity ∆us1−s2, defined as follow:

∆us1−s2 = us1 − us2 (12)

where us1 and us2 are the uL of s1 and s2, respectively, and ∆us1−s2 is the variation of uL
between us1 and us2.

To evaluate the changes in Tu, Pu and DR under the equivalent ∆us1−s2, define
equations as follow:

∆Ts1−s2 = |Ts1 − Ts2| (13)

∆Ps1−s2 = |Ps1 − Ps2| (14)

∆DRs1−s2 = |DRs1 − DRs2| (15)

where Ts1, Ts2, Ps1, Ps2, DRs1 and DRs2 represent the initial temperatures, initial pressures
and dilution rates for the uL of s1 and s2, respectively, and ∆Ts1−s2, ∆Ps1−s2 and ∆DRs1−s2
are the corresponding Tu, Pu and DR of the variation in uL between us1 and us2.

To further analyse the influence of the coupling relationship of Pu, Tu and DR on the
uL, define the equations as follow:

RTs1−s2 =
∆us1−s2

∆Ts1−s2
(16)

RPs1−s2 =
∆us1−s2

∆Ps1−s2
(17)

RDRs1−s2 =
∆us1−s2

∆DRs1−s2
(18)

where, RTs1−s2, RPs1−s2 and RDRs1−s2 represent the variations in uL between us1 and us2
per unit temperature, unit pressure and unit dilution rate, respectively.

3.3. Chemical Kinetic Model

Chemkin (GRI_mech 3.0) was applied in this study. GRI_mech is a series of mecha-
nisms aiming at combustion of methane that were proposed by Gas Research Institute, and
GRI_mech 3.0 is the latest version. GRI_mech 3.0 mechanism contains 53 components and
325 elementary reactions and works well in the combustion of methane, carbon monoxide,
hydrogen, etc.
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4. Results and Discussion
Analysis of Laminar Burning Velocities Distribution of Natural Gas

Figure 3a shows the data comparison between the test and simulation. The results
exhibit very good consistency between the simulated and measured values of uL. It can
be seen from the figure that the maximum error between the simulation model and the
test results is 5%, within a reliable range [29–31]. To further improve the accuracy of
the simulated values, Figure 3b shows the deviation of uL measured by different groups
from that predicted by the simulation based on GRI_mech 3.0. The results show that the
difference in uL between the simulated data (0.3 MPa and 323 K) and HASSAN’s [32] and
Halter’s [9] (0.3 MPa and 298 K) is found to be within 4.7 cm/s at a temperature difference
of 25 K. Good agreement is found between our data and Cai’s [33] measurements except for
the Φ of 0.7, where our uL is 2.9 cm/s (error 9%) higher, as the temperature difference is 5 K.
The deviation in numerical data is only slightly larger than that of Hinton’s [34], especially
when the equivalent is relatively high, but the maximum difference is only 5 cm/s. It can be
seen that the simulation model maintains good consistency with the experimental results
and literature data and can be used for analysis under certain working conditions.
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Figure 4 shows the equivalent distribution pattern of uL under the coupling effect of
Tu and Pu when the equivalence ratios are 0.9, 1.0, 1.1 and 1.2 and when DR is 0%. As
shown in the figure in the temperature range of 323–423 K, the pressure range of 0.1–0.3 MPa
and Φ of 0.9–1.2, the ranges of uL are 23.5–59.6 cm/s, 26.6–65.4 cm/s, 26.8–65.8 cm/s and
21.9–59.6 cm/s. With the increase in Φ, the variations in uL are 36.1 cm/s, 38.8 cm/s,
39 cm/s and 37.7 cm/s, respectively, showing a trend increasing first and then decreasing.
The maximum value occurs around Φ of 1.1. In addition, from the high-temperature and
low-pressure area to the low-temperature and high-pressure area, uL shows a clear downward
trend, and as the temperature increases, the pressure decreases and uL changes faster, that is,
a larger rate of change in uL in the high-temperature and low-pressure area.

The feature points in the uL range of 32.53–46.06 cm/s were further extracted to analyse
the variation pattern of the uL corresponding to Φ. As illustrated in Figure 5, under a certain
variation value of uL, the corresponding Pu tends to increase first and then decrease, and the
corresponding Tu decreases first and then increases as Φ increases. The trend shows that,
with the increase in Φ, the isoline of uL moves to the high-pressure and low-temperature
region first and then moves to the low-pressure and high-temperature region around Φ of 1.1.
Figure 6 shows the rate of change R in uL in the velocity range of 32.53–46.06 cm/s. It can
be seen from the figure that R46.6–41.55 > R41.55–37.04 > R37.04–32.53, which indicates that, in the
range of Φ at 0.9–1.2, the greater the uL, the greater the rate of change R for uL.
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Figure 4. Equivalent distribution pattern of uL under the coupling effect of Tu and Pu when the equivalence ratios are 0.9,
1.0, 1.1 and 1.2 and when dilution rate (DR) is 0%.
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Figure 6. The rate of change R of uL corresponding to Φ.

The auxiliary dashed curves in Figure 4 stand for the equivalent effect on the uL of
Tu and Pu. The specific equivalent relationship is that the Tu change of ∆T = 25 K and
the Pu change of ∆P = 0.05 MPa have equivalent effects on the same variation value of
uL. The intersection of the isolines of uL and the auxiliary dashed curves in the figure
indicates that Tu and Pu have an equal influence weight on uL at this point. All the
equal weight intersection points in the figure are extracted and fitted into curves (refer to
Figure 7); three regions are formed by equal weight curves. Among them, region II is the
area where Pu has a greater influence on uL, and region I and region III are the areas where
Tu has a greater influence on uL. As Φ increases, the equal weight curves of Tu and Pu
exhibit different movement patterns. Refer to the figure, as Φ increases and Tu is less than
384 K, the low-pressure equal weight curve (Pu = 0.12–0.15 MPa) gradually moves toward
a higher Pu but the increase rate changes more slowly with the increase in Tu. When Tu
is greater than 384 K and Φ is 1.1, Pu of the low-pressure equal weight curve reaches the
maximum. As such, with the Φ increases, the area of region I below a Tu of 384 K gradually
increases, that is, the area in which the initial temperature influence weight is greater
gradually increases. In the initial temperature above 384 K of region I, as Φ increases, the
area of the region with the greater initial temperature influence weight increases first and
then decreases. Furthermore, as Φ increases and the initial temperature is greater than
412 K, the high-pressure equal weight curve (Pu = 0.19–0.22 MPa) gradually moves toward
a higher Pu. When the initial temperature is in the range of 342–412 K and Φ is 1.1, the Pu of
the high-pressure equal weight curve reaches the minimum. When the initial temperature
is lower than 342 K and Φ is 1.2, the Pu of the high-pressure equal weight curve reaches the
minimum. Therefore, as Φ increases, the area in which the initial temperature is larger than
412 K with a greater initial temperature influence weight gradually decreases. While the
initial temperature is below 384 K, the area with the greater initial temperature influence
weight increases.

Figure 8 shows the equivalent distribution pattern of uL under the coupling effect of
initial temperature and Pu when Φ is 1.0 and when DR is 0–16%. Under the temperature
range of 323–423 K; the pressure range of 0.1–0.3 MPa; and the dilution rates of 0, 4%, 8%,
12%, 14% and 16%, the ranges of uL are 26.6–65.4 cm/s, 19.1–49.4 cm/s, 13.5–37.2 cm/s,
9.35–27.7 cm/s, 7.7–23.75 cm/s and 6.25–20.3 cm/s. As DR increases, the variations in uL
are 38.8 cm/s, 30.3 cm/s, 23.7 cm/s, 18.35 cm/s, 16.05 cm/s and 14.05 cm/s, showing a
gradually decreasing trend. It can be seen from the figure that uL in the high-temperature
and low-pressure region is still greater than that in the low-temperature and high-pressure
region and that the increase in DR only affects the rate of change in uL. That is, although
the higher the uL, the greater the rate of change in uL, but the increase in DR will weaken
the increase in the rate of change in uL.
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Figure 7. Variation pattern of the equal weight curve corresponding to Φ with ∆T = 25 K and
∆P = 0.05 MPa.
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Figure 8. The equivalent distribution pattern of uL under the coupling effect of Tu and Pu when Φ is 1.0 and when the
dilution rates are 0%, 4%, 8%, 12%, 14% and 16%.
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Figure 9 shows the equal weight curve changes with the DR under the coupling effect of
initial temperature and Pu. As illustrated, with the increase in DR when the initial temperature
is greater than 350 K, the low-pressure equal weight curve (Pu = 0.125–0.165 MPa) gradually
moves toward the lower Pu area and, as Tu increases, the increase rate slowly grows. When
the initial temperature is lower than 350 K and DR is 14%, Pu of the low-pressure equal weight
curve reaches the minimum. It can be seen that, as the DR increases, the area of region I above
the initial temperature of 350 K gradually decreases, that is, the area with a greater initial
temperature influence weight gradually decreases. Additionally, with the increase in DR, the
high-pressure equal weight curve (Pu = 0.18–0.3 MPa) gradually moves toward the higher Pu
area and, as Tu increases, the increase rate changes more slowly with the increase in initial
temperature. As such, with the increase in DR, the area with the greater initial temperature
influence weight gradually decreases and the decrease rate gradually decreases.
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Figure 9. Variation pattern of the equal weight curve corresponding to DR with ∆T = 25 K and
∆P = 0.05 MPa.

Figure 10 shows the equivalent distribution pattern of uL under the coupling effect
of Tu and DR when Φ is 1.0 and when Pu is 0.1–0.25 MPa. The figure indicates that uL
gradually decreases from the high-temperature and low-dilution rate area to the low-
temperature and high-dilution rate area. When Pu are 0.1 MPa, 0.15 MPa, 0.2 MPa and
0.25 MPa, the ranges of uL are 22.6–65.4 cm/s, 19.0–56.9 cm/s, 16.6–51.1 cm/s and
14.9–46.7 cm/s. With the increase in Pu, the variations in uL are 42.8 cm/s, 37.9 cm/s,
34.5 cm/s and 31.8 cm/s, respectively, exhibiting a gradually decreasing trend. The larger
the Pu, the smaller the variation in uL as well as the rate of change in uL. In addition, the
figure shows fine parallelism of the isolines of uL, indicating that the coupling effect of
DR and Tu exhibits a relatively stable isometric relationship and hardly changes with the
variation in Pu. The measurements show that, when DR increases (or decreases) by 2% and
the initial temperature increases (or decreases) by 29 K, an equal uL can be obtained.

The feature points in the uL range of 29.54–40.82 cm/s were further extracted to
analyse the variation pattern of uL corresponding to Pu. As shown in Figure 11, when the
variation in uL is constant, the corresponding DR decreases with the increase in Pu and
the initial temperature increases with the increase in Pu. This clearly shows that, with the
increase in Pu, the isoline of uL moves to the low-dilution rate and high-temperature area.
Figure 12 shows the rate of change R of uL in the velocity range of 29.54–40.82 cm/s. It can
be seen from the figure that R40.82-37.06 > R37.06-33.30 > R33.30-29.54, which indicates that, in
the range of Φ 0.1–0.25, the greater the uL, the greater the rate of change R in uL.
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Figure 10. Equivalent distribution pattern of uL under the coupling effect of Tu and DR when Φ is 1.0 and when the initial
pressures are 0.1 MPa, 0.15 MPa, 0.2 MPa and 0.25 MPa.
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Figure 11. Equivalent variation of uL corresponding to the initial condition change with Pu.
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Figure 12. The rate of change R of the uL corresponding to the Pu.

Figure 13 shows the equivalent distribution pattern of uL under the coupling effect of
Tu and DR when Φ is 1.0 and when the range of the initial temperature is 348–423 K. The
figure indicates that uL gradually decreases from the low-pressure and low-dilution rate
area to the high-pressure and high-dilution rate area. When the initial temperatures are
348 K, 373 K, 398 K and 423 K, the ranges of uL are 15.50–46.80 cm/s, 17.80–52.60 cm/s,
20.2–58.8 cm/s and 22.8–65.4 cm/s. With the increase in initial temperature, the variations
in uL are 31.3 cm/s, 34.8 cm/s, 38.6 cm/s and 42.6 cm/s, respectively, exhibiting a gradually
increasing trend. The larger the initial temperature, the greater the variation in uL as well as
the rate of change R in uL. In addition, from the high-pressure and high-dilution rate area
to the low-pressure and low-dilution rate area, uL shows a clear upward trend, and as Pu
and DR decrease, uL changes faster, that is, a larger rate of change in uL in the low-pressure
and low-dilution rate area.
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Figure 13. Equivalent distribution pattern of uL under the coupling effect of Pu and DR when Φ is 1.0 and when the initial
temperatures are 348 K, 373 K, 398 K and 423 K.
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The feature points in the uL range of 31.14–42.9 cm/s were further extracted to analyse
the variation pattern of uL corresponding to Pu. As shown in Figure 14, when the variation
in uL is constant, the corresponding DR and Pu decrease with the increase in the initial
temperature. This clearly shows that, with the increase in initial temperature, the isoline
of uL moves to the high-pressure and high-dilution rate area. Figure 15 shows the rate
of change R in uL in the velocity range of 31.14–42.9 cm/s. It can be seen from the
figure that R42.90-38.98 > R38.98-35.06 > R35.06-31.14, which indicates that, in the range of initial
temperatures 348–423 K, the greater the uL, the greater the rate of change R in uL.
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Figure 14. Equivalent variation in uL corresponding to the initial condition change with Tu.
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Figure 15. The rate of change R in uL corresponding to Tu.

The auxiliary dashed curves in Figure 13 stand for the equivalent effect on the uL of
Pu and DR. The specific equivalent relationship is that the Pu change of ∆P = 0.05 MPa
and the DR change of 2% have equivalent effects on the same variation value of uL. The
intersection of the isolines of uL and the auxiliary dashed curves in the figure indicates
that Pu and DR have an equal influence weight on uL at this point. All the equal weight
intersection points in the figure are extracted and fitted onto curves (refer to Figure 16),
and two regions are formed by equal weight curves. Region I is the area where the DR has
a greater influence on uL, while in region II, Pu has a greater influence on uL. This shows
that, under the influence of the coupling effect of Pu and DR on uL, Pu of the low-pressure
and high-dilution rate area has a greater weight on uL. As the initial temperature increases,
the equal weight curves of Pu and DR exhibit different movement patterns.
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Figure 16. Variation pattern of the equal weight curve corresponding to Tu with ∆DR = 2% and
∆P = 0.05 MPa.

5. Conclusions

Due to the initial temperature having a promoting effect on laminar burning velocity
while the initial pressure and dilution rate have an inhibitory effect on laminar burning
velocity, equal laminar burning velocities can be obtained by initial condition coupling with
different temperatures, pressures and dilution rates. This paper analysed the equivalent
distribution pattern of the laminar burning velocity and the variation pattern of the equal
weight curve by coupling effect of the initial pressure (0.1–0.3 MPa), initial temperature
(323–423 K) and dilution rate (0–16%). The main conclusions are summarized as follows:

1. As the initial temperature increases and the initial pressure decreases, the rate of
change in laminar burning velocity increases. Moreover, the increase in equivalent
ratio makes the variation of laminar burning velocity show a trend increasing first
and then decreasing and the maximum value is reached when Φ = 1.1, while with
the increase in the dilution rate, the variation in laminar burning velocity gradually
decreases and the isoline of laminar burning velocity gradually moves towards the
high-temperature and low-pressure area.

2. The equivalent effect of initial condition coupling can obtain equal laminar burning
velocity with the dilution rate increasing (or decreasing) by 2% and the initial tem-
perature increasing (or decreasing) by 29 K. Additionally, the variation in laminar
burning velocity tends to decrease with the increase in initial pressure, and the iso-
line of laminar burning velocity gradually moves towards the high-temperature and
low-dilution rate area.

3. With the dilution rate and the initial pressure decreasing, the rate of change in laminar
burning velocity increases. Additionally, the variation in laminar burning velocity tends
to increase with the increase in initial temperature, and the isoline of laminar burning
velocity gradually moves towards the high-pressure and high-dilution rate area.

4. As the equivalence ratio increases when the initial temperature is less than 384 K, the
area with the greater initial temperature influence weight gradually increases, and
when it exceeds 384 K, the area increases first and then decreases; when the initial
temperature is greater than 412 K, the area gradually decreases with the increase
in equivalence ratio, while when the initial temperature is less than 342 K, the area
gradually increases with the increase in equivalence ratio.

5. With the increase in dilution rate, the area with the greater initial temperature influ-
ence weight gradually decreases and the decrease rate gradually decreases. In the
low-pressure and high-dilution rate region, the initial pressure has a greater influence
weight on laminar burning velocity, while in the high-pressure and low-dilution rate
region, the dilution rate has a greater influence weight on laminar burning velocity.
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Abbreviations

Pu Initial pressure, MPa
Tu Initial temperature, K
uL Laminar burning velocity, m·s−1

DR Dilution rate
Φ Equivalence ratio
CVC Constant volume chamber
EGR Exhaust gas recirculation
Ru Instantaneous flame radius: mm
Sn Stretched flame propagation speed, m·s−1

κ Curvature of spherical flame, mm−1

K Stretch rate, s−1

Lb Markstein length, mm
Sl Unstretched flame propagation speed, m·s−1

Le Lewis number
λ Thermal conductivity, W·(m·K)−1

ρu Density of unburned gas, kg·m−3

cp Specific heat capacity, J·(kg·K)−1

Dm Mass diffusion coefficient, m2·s−1

DT Thermal diffusion coefficient, m2·s−1

ρb Density of burned gas, kg·m−3

σ Thermal expansion ratio
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