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Abstract

Remanufacturing is increasingly recognised as a pivotal technology for en-

hancing the lifespan and residual value of end-of-life (EoL) products. Con-

trasting with conventional manufacturing systems, which are highly inte-

grated and automated, remanufacturing processes must navigate a multitude

of uncertainties, including small-batch and customised production demands.

Presently, the intelligence and autonomy levels within remanufacturing sys-

tems are rudimentary, offering limited support for autonomous decision-

making and optimisation of production strategies. Thus, this dissertation

aims to elevate the intelligence and dependability of the remanufacturing

system, with a particular emphasis on the disassembly process as the pri-

mary area of study.

Initially, drawing inspiration from the broad application of Digital Twins

(DT) and Cyber-Physical Systems (CPS) within the realm of intelligent man-

ufacturing, this work proposes a systemic conceptual framework for a Cyber-

Physical Remanufacturing System (CPRS). This framework seeks to enhance

the automation, intelligence, and operational capabilities of remanufactur-

ing systems. Subsequently, at the workshop level, to efficiently manage the
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disassembly of vast quantities and diverse types of EoL products, disassem-

bly lines are introduced to boost the cost-effectiveness and productivity of

these operations. This thesis introduces a novel simulated annealing-based

hyper-heuristic algorithm (HH) designed for the multi-objective optimisa-

tion of the stochastic parallel complete disassembly line balancing problem.

Furthermore, human-robot collaborative disassembly (HRCD), an innovative

semi-automatic disassembly approach, is explored to increase flexibility and

efficiency by offering multiple disassembly methods. An individual-level gen-

eral ontology model for modelling EoL products is proposed, along with a

rule-based reasoning method to autonomously generate optimal disassembly

sequences and schemes. In addition, an analysis of disassembly sequence re-

liability, leveraging a large-language model (LLM), is conducted to assess the

efficacy of these disassembly sequences. The practical applicability of these

case studies is demonstrated through experimental validation.

Key words: Remanufacturing, Cyber-Physical System, Human-Robot

Collaborative Disassembly, Disassembly Line Balancing Problem, Large Lan-

guage Model.
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1
Introduction

1.1 Research Background

1.1.1 Background of Smart Manufacturing

Manufacturing involves the generation or fabrication of products through the

utilisation of equipment, workforce, machinery, tools, and either chemical or

biological techniques and processes [1]. The objective of manufacturing is

to design and produce products that align with customer demands and ex-
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pectations. Fundamental manufacturing procedures, including machining,

forming, welding, casting, and assembling, are executed within factories or

workshops. Over time, manufacturing techniques have progressed, aiming

for efficiency, cost-effectiveness, and superior quality [2]. The manufacturing

sector is in a perpetual state of evolution, marked by the emergence and

adoption of novel technologies, methodologies, and materials, all geared to-

wards enhancing efficiency, productivity, and quality standards. Serving as

the cornerstone of the economy’s secondary sector, the manufacturing indus-

try plays a pivotal role in the global economic landscape, fostering employ-

ment opportunities and contributing substantial revenue streams for both

businesses and governments [3].

Smart manufacturing has emerged as a pivotal element in the progression

of societal development and economic infrastructure, marked by significant

advancements in essential equipment, technology, manufacturing services,

system control, micro-nano manufacturing, and intelligent robotics, among

others [4]. Over the past decade, leading nations globally have rolled out

an array of strategies related to smart manufacturing. Notable initiatives

include the “Strategy for American Innovation [5]”, “Industry 4.0 [6]”, “High-

Value Manufacturing [7]”, “New Robot Strategy [8]” and “Made-in-China

2025 [9]”. These strategic approaches, detailed in Table 1.1.

• “Strategy for American Innovation” emphasises the development of

distributed and interconnected smart equipment to facilitate real-time

control and volume-flexible production. It leverages advanced sensors

26



Y.X.Hu, PhD Thesis, Aston University 2024

Table 1.1: The comparison of manufacturing strategies.
Strategies Year Country Definition Objectives
Strategy for
American
innovation

2012 American
Integration of smart devices and
software and big data analysis

Establish smart
manufacturing system

Industry 4.0 2013 Germany Establish CPS
Establish a smart factory

to realise smart
production

New Robot
Strategy

2014 Japan
Focus on industrial robots,

3D printing and new
energy vehicles

Reshaping
manufacturing method

High-Value
Manufacturing

2015 UK
Integrate solve energy,
digital revolution and

economic life

Reinventing industry
strength

Made-in-
China 2025

2015 China
Integrate the information

technology and
manufacturing equipment

China’s strength in
manufacturing

and data management technologies throughout the product life cycle

to achieve rapid innovation cycles, interoperability, and enhanced pro-

ductivity within a fully digital manufacturing enterprise.

• “Industry 4.0” focuses on employing Internet of Things (IoT) technol-

ogy for the real-time perception and monitoring of vast amounts of

data generated during the production process. This strategy aims to

realise intelligent analysis and decision-making within the production

system by establishing a cyber-physical system that supports smart

production, network collaborative manufacturing, and large-scale per-

sonalised manufacturing.

• “New Robot Strategy” is dedicated to the advancement of industrial

collaborative robots and automated factories. It addresses productivity

shortfalls through the use of innovation networks, software systems,
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industrial robots, material networks, and other technologies, fostering

a more efficient production landscape.

• “High-Value Manufacturing” seeks to respond more swiftly to market

demands, advocates for sustainable development, fosters high-quality

labour, and aims to realise the remanufacturing process within a pro-

duction centric value chain. This approach is geared towards enhancing

the industry’s ability to innovate and adapt to changing market needs.

• “Made-in-China 2025” is predicated on the integration of new genera-

tion information technologies such as IoT, big data, and edge comput-

ing across all facets of manufacturing activities. It encompasses prod-

uct design, process management, and after-sales service, implementing

advanced functions like in-depth self-perception of information, smart

optimisation, automatic control, and dynamic self-executing manufac-

turing processes.

Strategies are various in their emphasis and objectives, reflecting the di-

verse priorities and policy orientations across different countries. However,

‘Industry 4.0’ is one of the highest recognition, acceptable and widest sepa-

rated strategy around the world. The development and main characteristics

of industrial revolution as shown in Table 1.2 and Figure 1.1. Since the dawn

of the first industrial revolution, humanity has experienced three subsequent

revolutions, leading us to the current era of Industry 4.0. The second revolu-

tion introduced the modern production line by Ford, significantly enhancing
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the speed of manufacturing and realise the mass production. The third rev-

olution was marked by the advent of industrial robots and advancements

in computing and sensing technologies. Industry 4.0 has further developed

advanced networking and big data analysis capabilities, incorporating artifi-

cial intelligence techniques such as cyber-physical systems and the Internet

of Things (IoT). Looking ahead to Industry 5.0, a more human-centric ap-

proach is anticipated, emphasising technologies that enhance human-centric

manufacturing and foster a synergistic human-machine interface, thereby am-

plifying human creativity [10]. As manufacturing technology has advanced,

it has also led to improved working conditions, such as shorter working hours

and reducing repetitive work. The focus on enhancing the working conditions

of human labourers remains paramount as the industry transitions into the

Industry 5.0 era.

Table 1.2: The process of industrial revolution.
Era Time Important event Characteristic

Steam engine 1840-1870

•Spinning machine (1765)
•Steam engine (1785)
•UK completed the first
industrial revolution (1840)

•Development of industrial cities
•Development of the steel and
textile industries
•Machines replace manual labour

Electrical 1871-1914
•Power generator (1866)
•Assembly line (1913)

•New industrial expansion
•Massive production

Information 1915-1999
•Programmable logic
controller (1969)
•Internet (1969)

•Analog electronic equipment
•Personal computer
•Smart cell phone

Digital 2000-
•Big Data (2008)
•Industry 4.0 (2014)
•Made in China 2025 (2015)

•Technology in Emerging Fields
(IoT, Robotic, Biotechnology)
•Customized production

Moreover, in the landscape of modern smart manufacturing, the strategies

of manufacturing are more focused on the sustainability, improving resource
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Figure 1.1: Fourth industrial revolution and Industry 5.0.

efficiency, reducing energy consumption and extending product life-cycles

due to the recognition of the environmental, economic, and societal bene-

fits. Figure 1.2 shows the energy consumption from renewable and waste

sources in the manufacturing sector of the United Kingdom between 1990

and 2018. The bar chart intuitively demonstrates a progressive ascent in en-

ergy consumption within the manufacturing sector of the United Kingdom.

Commencing at a consumption level of 537 tons in 1990, a marked escalation

is observable, particularly from the year 2010 onwards. The apex of this

upward trajectory was attained in 2018, with the sector consuming approxi-

mately 3,640 tons. To elucidate, the year 2018 witnessed the manufacturing

sector’s consumption of renewable and waste energy sources reaching ap-
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proximately 3.6 million metric tons of oil equivalent, the zenith within the

evaluated time-frame. This represents an approximately seven-fold augmen-

tation from the initial figures recorded in 1990.

Figure 1.2: Energy consumption from renewable and waste sources in the
manufacturing sector in the United Kingdom (UK) from 1990 to 2018. (Open
source link in 8.3)

Introducing more effective methods to reduce energy, resource consump-

tion, and extend the life-cycle of products is crucial for enhancing sustain-

ability in manufacturing. Such approaches, as highlighted in recent analyses,

encompass a broad spectrum of strategies including optimising product de-

sign for material efficiency, leveraging low-carbon materials, and ensuring
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products are recyclable or reusable at their end of life. The integration of

lean manufacturing principles with sustainability-specific concepts, such as

energy recovery and waste-material reuse, signifies a critical shift towards

resource productivity optimisation (RPO). This shift not only aids in the

significant reduction of environmental impact but also aligns with economic

benefits by improving process efficiency and reducing waste. These strategies

underscore the importance of a comprehensive approach to manufacturing

that marries profitability with environmental stewardship, thereby meeting

the growing regulatory and consumer demand for more sustainable products

while ensuring competitive advantage in the market.

1.1.2 Introduction of Remanufacturing

As a novel and advance technology, remanufacturing not only contributes

to the sustainability of manufacturing practices but also propels the econ-

omy towards a more sustainable and resilient future. Remanufacturing is a

comprehensive and rigorous industrial process by which an EoL product is re-

stored to an original-produced or better-than-new condition and is warranted

in terms of performance level and quality [11].

As shown in Figure 1.3, remanufacturing supports the circular economy

by extending the lifespan of products and significantly reducing waste and the

need for raw materials. Unlike recycling, which destroys the original shape

of the product to recover materials, remanufacturing preserves the product’s

form and retains much of the value added during its initial manufacture.
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This process is also distinct from other product recovery processes due to its

potential to conserve more energy and resources, which contributes to the

reduction of environmental impacts. According to prior literature, remanu-

facturing saves 80% resources, 80% costs and reduces 85% the air emission

comparing to producing new products.

Figure 1.3: Circular economy of biological and technical. (Open source link
in 8.3)

From the economic aspect, it was reported that the remanufactured au-

tomotive products can be sold at a price of 40% lower than the new products

and the profit is 20%. Remanufacturing, as an industry, also helps to create

jobs such as disassembly, testing operators. Remanufacturing, as a newly
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emerging technique, it also helps the sustainability development in the de-

veloping countries due to the modern techniques used in remanufacturing,

such as, IoT, has minimised the technique gap between developing countries

and developed countries. Since developing countries consume over two-thirds

of industrial goods, the contribution of remanufacturing is unbelievably valu-

able. The evidence above shows that remanufacturing can be beneficial for

all three pillars of sustainability: environmentally friendly, economic, and

societal beneficial. Therefore, it is a sustainable choice for the EoL products

for the manufacturers, which can lead to a positive impact to the society and

environment.

1.1.3 Current Status of Remanufacturing

There has been significant progress in the field of remanufacturing over the

past decade, positioning it as a critical element of the circular economy.

A typical remanufacturing process is presented in Figure 1.4. Remanufac-

turing offers a pathway to sustainable manufacturing by refurbishing used

products to a condition akin to new, resulting in substantial economic and

environmental benefits. However, despite its advantages, remanufacturing

encounters distinct challenges that may impede its adoption and efficacy.

From a macro-level perspective, logistical, and marketing issues emerge as

primary obstacles affecting the recognition and fulfilment of remanufacturing

practices.

• Collection and logistics: effective remanufacturing requires a reliable
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Figure 1.4: Remanufacturing processes.

supply of used products. However, collecting these products can be

logistically challenging and costly, affecting the overall efficiency of the

remanufacturing process [12].

• Quality assurance and market acceptance: ensuring and conveying the

quality of remanufactured products is crucial for consumer acceptance.

Misconceptions about remanufactured products being inferior to new
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ones pose a significant challenge [13].

• Regulatory and policy frameworks: the lack of standardised regulations

and policies for remanufactured products can create market uncertain-

ties, hindering the growth of remanufacturing industries [14].

At the technical level, numerous fundamental research challenges persist

regarding remanufacturing from both a systemic and procedural standpoint.

• From the point of view of products, there has no set list of products

which can be remanufactured, and the condition of retrieved prod-

ucts are various. As the specialised technology and craftsmanship with

high and advanced technology, the operating cost of remanufacturing

process needs to consider the economics and feasibility of remanufac-

tured products [15]. Apart from the investment cost of remanufacturing

technology, the condition monitoring and component relationship mod-

elling for the remanufacturing products are also well worth for further

research.

• From the remanufacturing process view, the physical model of remanu-

factured products is highly uncertain, and the complexity of the reman-

ufacturing process is also hard to define. Different from the highly inte-

grated and automated smart manufacturing process, the condition and

processing time of remanufacturing products are various, lacking the

cooperation mechanism and track management to implement collabora-

tive remanufacturing process [16]. The smart, flexible and autonomous
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remanufacturing process has not yet been realised in large-scale indus-

trial remanufacturing operations and it is insensitive to the dynamic

response to the disturbance of the remanufacturing process [17].

1.2 Research Challenges and Scopes

1.2.1 Research Challenges

Drawing upon the current foundational research goals and objectives in re-

manufacturing, this study seeks to develop a Cyber-Physical Remanufac-

turing System (CPRS) aimed at facilitating adaptive, cooperative, and au-

tonomous process planning and scheduling. This initiative takes into account

the uncertain and variable conditions prevalent within remanufacturing sys-

tems. To manage the research plan effectively, several research challenges

must be addressed:

Firstly, a comprehensive literature review has established that there is

no CPS designed specifically for the complete remanufacturing process. Un-

like CPPS, the remanufacturing process involves factors such as the diversity

and uncertainty of EoL products, which complicate the cost-profit analysis

[18]. The remanufacturing process typically undergoes a series of steps and

involves various mechanical equipment, making the communication and data

exchange between different pieces of equipment challenging. At the same

time, there is a notable deficiency in system-level equipment integration, and

the intelligence and autonomy of existing remanufacturing systems are rel-
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atively low [19]. From the perspective of smart manufacturing, theoretical

models have not effectively integrated advanced technologies associated with

the ‘Industry 4.0’ era in actual production scenarios, leading to issues such as

rigidity in theoretical models, insufficient modelling accuracy, and significant

delays, thus failing to achieve smart and effective production and operations

[20]. Additionally, current remanufacturing systems cannot meet the pro-

duction demands of small batches and customisation, nor can they adapt to

the dynamic factors encountered in actual production environments. There-

fore, proposing a CPS for remanufacturing that embodies a higher degree of

intelligence and autonomy presents a challenging yet worthwhile endeavour

[21].

Secondly, the disassembly process in remanufacturing is inherently diver-

gent, potentially following multiple disassembly routes. Furthermore, as pre-

viously noted, the distinctive features of small-batch and customised produc-

tion emphasise the critical role of planning and scheduling in determining the

efficiency of remanufacturing systems [22]. The production process is fraught

with inherent uncertainty [23]. Traditional stochastic programming meth-

ods, such as the scene tree method, struggle to exhaustively describe these

continuous uncertain parameters due to their large-scale intractability, issues

with scenario decomposition, and the complexities of chance-constrained pro-

gramming, which relies heavily on joint probability information [24]. Thus,

the challenge lies in comprehensively considering uncertain parameters and

model complexity to develop advanced algorithms that can integrate process
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planning and scheduling optimisation while analysing system robustness and

the optimisation modelling process.

Thirdly, the disassembly of EoL products involves a divergent process

with potential for multiple routes. Given the uncertain characteristics and

conditions of EoL products, it is impractical to apply a uniform standard pro-

cess to the remanufacturing of various EoL items [25]. Furthermore, the vast

and often unbounded information related to EoL products typically includes

a significant amount of redundant data, which is not very useful or relevant

for remanufacturing purposes. Therefore, defining an effective information

scope and modelling the EoL products represent significant challenges in the

field [26].

The technology related to human-robot collaborative disassembly pro-

cesses is still in its infancy. Initially, planning the disassembly sequence and

optimising task allocation to adapt to the capabilities and efficiencies of hu-

man and robotic participants presents a significant challenge. The proposed

optimisation algorithms must consider various factors, including the time re-

quired to complete tasks, task complexity, and the respective capabilities of

human workers and robots [27]. Additionally, it is also important to improve

the precision and flexibility of collaborative robots for achieving a more ef-

ficient cooperation model. Currently, artificial intelligence technologies such

as large language models and machine learning are rapidly advancing. By

effectively integrating these AI technologies, not only can the intelligence

level of collaborative robots be enhanced, but the efficiency of the overall

39



Y.X.Hu, PhD Thesis, Aston University 2024

human-robot collaborative disassembly process can also be improved [28].

Furthermore, the effectiveness of human-robot collaboration hinges on

the ability to facilitate seamless communication between human operators

and robotic systems. Overcoming this challenge involves the development

of interfaces that enable humans to effortlessly communicate instructions to

robots and comprehend their actions. The creation of intuitive communi-

cation methods, which may encompass voice commands, gestures, or even

direct physical interaction with robots, is essential for fostering efficient and

cohesive teamwork.

1.2.2 Research Questions and Scope

The research scope of this study is designed to address the multifaceted

challenges associated with the development and implementation of advanced

Cyber-Physical Remanufacturing Systems (CPRS). By focusing on these key

areas, the research aims to enhance the efficiency, intelligence, and adapt-

ability of remanufacturing systems in the face of uncertain and variable con-

ditions. The research questions, scope and objectives are mainly summarised

as follow:

• What is the significance of CPRS? Why is it well worth to research on

and how to validate it?

The conceptual framework for the CPRS in proposed in this thesis to

explore the integration of advanced optimisation algorithms, robotics,

and information technology to create a seamlessly connected and au-
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tomated environment for remanufacturing operations. This research

objective is an initial attempt to establish an complete CPRS to cover

overall remanufacturing steps and will focus on the interaction between

human operators and robots, leveraging real-time data analytics for de-

cision support and dynamic task allocation. The proposed conceptual

framework is validated through the case studies focus on disassembly

process.

• What kind of method has been proposed and applied for solving DLBP?

What kind of advantages does this method have?

To solve this research question, this thesis primarily proposes an in-

novative optimisation algorithm called hyper-heuristic algorithm that

enhances rapid decision-making and efficiency in solving the disassem-

bly line balancing problem under uncertainty. The proposed algorithm

can dynamically allocate tasks, manage resources efficiently, and has

the ability to handle multiple uncertainties, thereby reducing bottle-

necks quickly and stably.

• How to model the EoL product in a standard and effective manner?

This thesis proposes an ontology model for modelling EoL products

to improve the efficiency and effectiveness of information management.

The proposed ontology model is standard and universal, making it easy

to store and reuse, specifically for those complex EoL products with

various and complex components.
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• How to allocate disassembly tasks between human and robot? How to

determine the optimal HRCD sequence effectively?

The disassembly ontology model will provide a structured database to

represent knowledge about the components, tools, tasks, and human-

robot interactions necessary for effective disassembly. The rule-based

method will leverage this ontology to devise efficient sequencing strate-

gies that optimise task allocation and workflow, thereby enhancing

productivity and safety. The combination of proposed methods can

effectively planning and determine the optimal disassembly scheme of

HRCD.

• How to quantitatively evaluate the optional disassembly sequence of

HRCD?

This thesis proposes the integration of large-language models into HRCD

to enhance communication and decision-making processes between hu-

mans and robots. The use of a large-language model aims to quanti-

tatively evaluate optional disassembly sequences, facilitating more re-

liable and efficient human-robot interactions during disassembly tasks.

There are some elements are out of scope of this project:

• Other processes in remanufacturing: The proposed CPRS is a concep-

tual framework which covers all processes in remanufacturing. How-

ever, the research scope of implementation all processes is too large.
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Therefore, this research only considers disassembly as case study to

validate the proposed framework of CPRS.

• Trust and explainability: In this study, new methods and experimental

techniques for evaluating the reverse logistic and close loop supply chain

logistics explanations are not considered.

1.3 Thesis Organisation

The organisation and depicting flowchart of this thesis is presented in Fig-

ure 1.5. In detail:

• Chapter 1 introduces the background of this thesis by detailing the

research background, challenges, questions and scope.

• Chapter 2 provides a literature review on cyber-physical production

systems (CPPS), disassembly line balancing problem, human-robot col-

laborative disassembly and large-language model in human-robot col-

laborative disassembly.

• Chapter 3 conceptualises a framework for cyber-physical remanufactur-

ing systems (CPRS), delineating the process, definition, connections,

current challenges, and future perspectives.

• Chapter 4 proposes a novel simulated annealing-based hyper-heuristic

algorithm for parallel disassembly line balancing problem (DLBP-SP),

including computational experiments and conclusions.
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Figure 1.5: The organisation and contents of this thesis.

• Chapter 5 advances an ontology and rule-based method for human-

robot collaborative disassembly planning in remanufacturing, with a

case study and conclusion.

• Chapter 6 integrates a large-language model (LLM) into human-robot

collaborative disassembly (HRCD) in remanufacturing, covering the

LLM for robots, methodology, and case study.
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• Chapter 7 recaps this thesis and summarises the research contributions

in this thesis. Moreover, indicating several future research directions

of based on this research.

Each chapter is systematically divided into sections, providing a compre-

hensive approach to addressing the complexities and innovations in the field

of remanufacturing and human-robot collaborative disassembly.

1.4 Chapter Summary

The introduction chapter sets the stage for an in-depth exploration of the

smart manufacturing with a focus on remanufacturing. It begins by outlining

the background of smart manufacturing, introducing remanufacturing, and

discussing the state-of-the-art of remanufacturing practices. It further delves

into the research challenges and scope, where it identifies specific obstacles

and delineates the boundaries of the research. Additionally, the organisation

of the thesis is presented, providing a road-map for the reader. Finally, the

chapter concludes with a summary, encapsulating the key points discussed

and setting the foundation for the subsequent chapters.

This introduction is crucial for establishing the context and significance

of the research, as well as highlighting the contribution it seeks to make in

the fields of smart manufacturing and remanufacturing.
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2
Literature Review

2.1 Cyber-Physical Production Systems

2.1.1 Cyber-Physical System (CPS)

CPS is a multi-dimensional complex system that integrates the information

network world and the dynamic physical world. Through the integration and

collaboration of computing, communication and control (3C), CPS provides

services such as real-time sensing, information feedback, and dynamic con-
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trol [29]. Through connections and feedback loops, the virtual information

exchange and physical processes are integrated and interacted in real-time

to monitor the physical entities. There are some basic definitions of CPS as

shown in Table 2.1.

Table 2.1: Definitions of cyber-physical systems.
CPS Definition Reference

1

‘Cyber-physical systems are integrations of computation and
physical processes. Embedded computers and networks monitor
and control the physical processes, usually with feedback loops
where physical processes affect computations and vice versa.’

[30]

2

‘Cyber-physical systems (CPS) are systems of collaborating
computational entities which are in intensive connection with the
surrounding physical world and its on-going processes, providing
and using, at the same time, data-accessing and data-processing
services available on the Internet’

[31]

3

‘A cyber-physical system (CPS) or intelligent system is a computer
system in which a mechanism is controlled or monitored by
computer-based algorithms. In cyber-physical systems, physical
and software components are deeply intertwined, able to operate on
different spatial and temporal scales, exhibit multiple and distinct
behavioural modalities, and interact with each other in ways that
change with context’

US National
Science

Foundation

2.1.2 Cloud-Based Manufacturing (CBM)

CBM is an advanced technology that integrated advanced information tech-

nology, manufacturing technology and emerging Internet of Things technol-

ogy. CBM can improve the autonomous and innovation capability of the

manufacturing industry through integrating the manufacturing resources and

providing high-value-added and low-cost manufacturing services [32]. There

are several definitions of CBM as shown in Table 2.2.
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Table 2.2: Definitions of cloud-based manufacturing.
CPS Definition Reference

1

‘Cloud manufacturing is a computing and service-oriented
manufacturing model developed from existing advanced
manufacturing models (e.g., application service providers, agile
manufacturing, networked manufacturing, manufacturing grids)
and enterprise information technologies under the support of cloud
computing, the Internet of things (IoT), virtualisation and service-
oriented technologies, and advanced computing technologies’

[32]

2

‘Cloud manufacturing is a model for enabling ubiquitous,
convenient, on-demand network access to a shared pool of
configurable manufacturing resources (e.g., manufacturing software
tools, manufacturing equipment, and manufacturing capabilities)
that can be rapidly provisioned and released with minimal
management effort or service provider interaction’

[33]

3

‘Cloud-Based Manufacturing (CBM) refers to a networked
manufacturing model that exploits on-demand access to a shared
collection of diversified and distributed manufacturing resources to
form temporary, reconfigurable production lines which enhance
efficiency, reduce product life-cycle costs, and allow for optimal
resource allocation in response to variable-demand customer
generated tasking.’

[34]

2.1.3 Cyber-Physical Production System (CPPS)

To deal with the variable environment, the manufacturing mode is changing

from large-scale centralised rigorous structure to distributed flexible struc-

ture. Through integrating the advanced technologies, CPPS is proposed

from the integration of CPS and manufacturing systems. CPPS can re-

alise functions such as heterogeneous integration, ubiquitous connection and

virtual-reality mapping through dynamic hybrid organisational structure,

which has the characteristics of smartness, connectedness and responsive-

ness [31]. There are two definitions of CPPS as shown in Table 2.3.
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Table 2.3: Definitions of cyber-physical production system.
CPS Definition Reference

1

‘Cyber-Physical Production Systems (CPPS) consist of
autonomous and cooperative elements and subsystems
that are connected based on the context within and across
all levels of production, from processes through machines
up to production and logistics networks (Three main
characteristic: Smartness, Connectedness, Responsiveness)’

[31]

2

‘Cyber-Physical Production Systems are systems of systems
of autonomous and cooperative elements connecting with
each other in situation dependent ways, on and across all levels
of production, from processes through machines up to production
and logistics networks, enhancing decision-making processes in
real-time, response to unforeseen conditions and evolution along time’

[35]

2.2 Disassembly Line Balancing Problem

This section covers three aspects, including layout types for disassembly lines,

optimisation algorithms, and the studied disassembly products of DLBP.

These three aspects are the foundation for the research backgrounds, meth-

ods and objects of DLBP. The research gaps and challenges of DLBP are

discussed and summarised.

2.2.1 Layout Type of Disassembly Line

The layout type of the disassembly line is decided at the design stage for

determining the function and capability of the disassembly line, in which the

number of workstations and cycle time are two key factors that affect the

overall efficiency of the disassembly line. Workstations refer to any point

on the disassembly line where operators execute a disassembly task on EoL

products. Cycle time is the time it takes to complete each workstation task,
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which includes working time and idle time. The overall efficiency of the

disassembly line can be improved by minimising the idle time of each work-

station. Different disassembly line layouts represent different implementation

modalities of EoL products disassembled by workstations. According to the

literature review, there are four main layout types of disassembly lines, in-

cluding straight, U-type, two-sided, and parallel, as shown in Figure 2.1.

Figure 2.1: Layout type of disassembly lines.

The straight type is the most commonly used layout type for disassembly

lines. The workstations are sequentially organised in a line array, as shown

in Figure 2.1 [36]. The structure of the straight disassembly line is simple,

making it easy to construct the mathematical model for DLBP. On this basis,

several studies have incorporated different scenarios for further research, such

as partial disassembly [37], and automatic robotic disassembly [38]. However,

the straight disassembly system has a relatively low dynamic range and is

only suitable for processing a single type of EoL product. The U-type dis-

assembly line was first proposed by Agrawal and Tiwari [39]. Compared to
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the straight type, the U-type has the advantages of relatively high operation

flexibility, high efficiency and short setup times [40]. The two-sided disas-

sembly line was introduced by Wang et al. [41] and Kucukkoc [42], which

is designed specifically for processing the disassembly of large-sized equip-

ment. Both U-type and two-sided layouts cannot be used for disassembling

multi-type EoL products [43]. Therefore, the parallel disassembly line was

first proposed by Karadag and Turkbey [44] for dealing with the disassembly

process of multi-type EoL products simultaneously. Wang et al. proposed

the genetic simulated annealing algorithms for solving parallel DLBP un-

der uncertainty [45]. The parallel disassembly line achieves high flexibility

and can disassemble multiple types of EoL products. Given the increasing

quantity and variety of EoL products, the parallel disassembly line is more

suitable and advantageous for practical applications in real-world scenarios

[46].

2.2.2 Optimisation Algorithms for DLBP

The optimisation of DLBP is a typical non-deterministic polynomial (NP)

complete linear programming problem [47], which cannot determine the opti-

mal solution. According to the characteristics of DLBP, there are three main

types of optimisation methods in DLBP: exact methods, heuristic algorithms

and meta-heuristic algorithms. At the initial stage, the exact methods are

considered and applied in DLBP. Altekin et al. [48] proposed the linear

programming methods and developed the mixed integer programming for-
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mulation for solving the profit-oriented partial DLBP [49]. Igarashi et al.

[50] proposed integer programming to design the disassembly system and

achieve the multi-objective optimisation goals in a closed-loop supply chain.

Ozceylan and Paksoy [51] developed a nonlinear programming model for as-

signing disassembly tasks to optimise the reverse supply chain. With the

development of global and intelligent optimisation algorithms, an increas-

ing number of heuristic and meta-heuristic algorithms are introduced and

applied in DLBP. The heuristic algorithms are generated and developed by

imitating natural behaviours, including greedy algorithm, hill climbing al-

gorithm, simulated annealing algorithm, ant colony algorithm, etc. McGov-

ern and Gupta developed the mixed hill-climbing [52] and greedy algorithm

[53] to generate the disassembly sequence and solve the DLBP. Kalayci and

Gupta published a series of research for solving sequence-dependent DLBP,

which took simulated annealing (SA) algorithm [54], and ant colony opti-

misation (ACO) algorithm [55]. All the heuristic algorithms are formulated

and programmed with regulations for solving specific optimisation problems.

Nowadays, meta-heuristic algorithms are becoming the most popular opti-

misation algorithm in DLBP. The meta-heuristic algorithm is derived from

the heuristic algorithm, which combines the stochastic process and the local

search algorithm. There are several heuristic algorithms that are also imple-

mented to optimise the DLBP, such as the hybrid genetic algorithm (GA)

[56], particle swarm optimisation (PSO) algorithm [57], artificial bee colony

algorithm [58] and Tabu algorithm [59] for solving the optimisation process of
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DLBP. Zhang et al. [60] proposed the artificial fish swarm algorithm for solv-

ing multi-objective DLBP under uncertain disassembly time. Zhu et al. [61]

constructed the firefly algorithm for solving the discrete DLBP and taking

hazardous disassembly operations into account.

In summary, the exact method may obtain the optimal solution, but it has

limitations and is not suitable for solving the large-scale and multi-objective

optimisation of DLBP. The exact method consumes high computing resources

and time dealing with large-scale optimisation of DLBP [62]. According to

the characteristic of heuristic algorithms, the proposed heuristic algorithms

cannot obtain the optimal solution of NP problems and easily obtain the local

optimal solutions [63]. The heuristic algorithms are not suitable for solving

high-complexity DLBP. Meta-heuristic algorithms are able to provide more

optimal solutions with limited resources, and they are suitable for dealing

with large-scale and multidimensional optimisation problems. However, the

model and computational complexity of the meta-heuristic algorithm are

higher than exact methods and heuristic algorithms.

2.2.3 The Categories of EoL Product in DLBP

Traditionally, research on DLBP is focused on constructing a mathematical

model and proposing an optimisation algorithm. Most case studies are im-

plemented based on benchmark test datasets without considering actual EoL

products [64]. The benchmark test datasets are commonly generated from

software modelling, mainly applied for verifying and validating the perfor-
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mance of the proposed algorithms.

In order to promote and enrich the application of automation disassem-

bly in the real-world, the disassembly of actual EoL products is gradually

introduced in DLBP. The majority of actual EoL products are focused on

waste electric and electronic equipment (WEEE), such as personal computers

(PC) [65], mobile phones [66], laptops [67], etc. These WEEE products are

suitable for conducting experiments due to their variety and simple physical

structure. However, the resource recycling and economic benefits from the

disassembly process of electronic products are limited [4]. Industrial equip-

ment disassembly has more significant social benefits as a result of its large

scale and high added value. However, only a few studies consider indus-

trial equipment as a case study, including hammer drills [68], corn harvester

cutting tables [69] and automobile engines [70].

2.3 Human-Robot Collaborative Disassembly

This section is reviewed and summarised from three aspects: human-robot

collaborative disassembly, ontology-based product information models, and

rule-based reasoning for disassembly planning. These three aspects cover the

background and methodologies related to HRCD. At the end of this section,

the research gaps and challenges associated with implementing human-robot

collaborative disassembly are discussed.
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2.3.1 Background of HRCD

In line with definitions from smart manufacturing, human-robot collabora-

tion in smart remanufacturing is defined as an interactive environment where

humans and industrial robots coexist, sharing the same workspace, resources,

and remanufacturing tasks [71]. While humans primarily control and monitor

the remanufacturing processes, industrial robots, endowed with environmen-

tal sensing, cognitive capabilities, and relevant knowledge, are positioned to

closely assist humans in accomplishing the remanufacturing tasks, or operate

autonomously [72]. The advantage of human-robot collaboration lies in the

ability of these robots to handle high-load, repetitive, and hazardous tasks

while ensuring human safety [73]. This not only improves overall production

efficiency but also substantially reduces the workload and stress on humans.

Compared to the traditional human disassembly process, human-robot col-

laboration in disassembly can improve overall efficiency by combining the au-

tomation and intelligence with the human’s knowledge and expertise [74, 75].

Liu et al. [76] integrated advanced technologies such as cyber-physical

production systems (CPPS) and Artificial Intelligence (AI) to establish a

comprehensive HRCD system framework. They validated the feasibility and

efficiency of the system through case studies involving HRCD task planning,

distance-based safety strategies, and motion-driven control methods. Huang

et al. [77] introduced an active compliance control method for the HRCD

of press-fit components. They demonstrated the feasibility of their approach
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with a case study in which a human and robot collaboratively disassem-

bled an automotive water pump. In their follow-up study, they designed

a human-robot collaboration paradigm comprising two collaborative robots

and an operator, and validated it using the same method [78]. Lee et al. [79]

proposed a disassembly sequence planning algorithm for the HRCD environ-

ment. Considering constraints such as limited resources and worker safety,

the proposed algorithm aims to reduce the overall disassembly time. The

effectiveness of the proposed method was validated through a case study

involving the disassembly of a disposed hard disk drive. Xu et al. [80] in-

troduced the Pareto-based modified discrete bees algorithm (MDBA-Pareto)

to address the disassembly sequence planning problem in human-robot col-

laborative settings. This method considers multiple optimisation objectives,

including disassembly time, cost, and difficulty. By employing computer

disassembly as a case study and comparing their method with other rele-

vant algorithms, they demonstrated the effectiveness of their proposed ap-

proach. Parsa and Saadat [81] classified human-robot collaboration tasks

by evaluating the remanufacturing capability of EoL product components.

This enriched the definitions of collaboration categories within human-robot

collaboration. Subsequently, they generated a near-optimal disassembly se-

quence using an enhanced genetic algorithm. The efficiency of their approach

was validated by comparing it to the particle swarm optimisation algorithm.

Aguinaco et al. [82] introduced a goal-conditioned reinforcement learning ap-

proach to ensure real-time collision avoidance, facilitating safe interactions
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in the human-robot disassembly process. Chu and Chen [83] proposed a

hybrid particle swarm optimisation algorithm based on Q-learning to ad-

dress HRCD challenges of power batteries. By comparing their proposed

algorithm with other related meta-heuristic approaches, they affirmed its ef-

fectiveness. Guo et al. [84] developed a method for human-robot collabora-

tive partial-destructive disassembly sequence planning, considering multiple

failure modes of EoL products. They employed a multi-layer chromosome

encoding technique with the aim of determining the optimal disassembly

sequence.

The majority of papers addressing the HRCD issue focus on developing

optimisation algorithms for disassembly sequence planning, aiming to iden-

tify the optimal disassembly sequence [85]. However, given that disassembly

sequence planning is inherently an NP-hard problem, it becomes theoretically

impossible to determine the optimal disassembly sequence through those op-

timisation algorithms [86]. Consequently, there is a need to consider incorpo-

rating alternative methods, such as graph theory, and knowledge reasoning,

to plan and determine the optimal human-robot collaborative disassembly

sequences.

2.3.2 Ontology-Based Product Information Model

The product information model, which represents products and associated

disassembly data in a structured format, serves as the premise for disassembly

sequence planning [87]. For effective disassembly sequence planning, it is es-
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sential to construct a well-defined, comprehensive product information model

for EoL products. This model should be able to offer a shared, scalable, and

organised information structure in a designated format [88]. Two primary

models are predominantly used at the current stage: matrix-based models

and graph-based models. Both models can properly represent the connection

relationships and precedence constraints among components in EoL products

[89], intuitively generating disassembly sequences. However, these two mod-

els are not suitable for storing and transferring other disassembly-related

knowledge, such as the required direction, action, or tool for each compo-

nent’s disassembly. This drawback significantly hampers the expansion of

disassembly knowledge and reduces the quality of disassembly planning so-

lutions. To compensate for this limitation, the product information model

requires a more standardised, structured, and intelligent method to build

upon.

Knowledge engineering has been widely employed for knowledge acquisi-

tion and sharing in manufacturing [90]. It stores and shares knowledge in

the form of ontologies. Ontologies, serving as tools for building conceptual

models and expressing semantic knowledge, have been widely deployed in

fields like artificial intelligence and systems engineering [91]. The ontology-

based product information model is capable of representing knowledge in a

more standardised and structured manner [92]. It facilitates the easy storage

and access of various disassembly-related knowledge, including product hier-

archical structures, connection constraints, disassembly rules, and selection
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criteria for disassembly directions, actions, tools, etc.

Over the past few years, ontology-based models for assembly have gar-

nered significant attention for their potential in enhancing the assembly pro-

cess’s efficiency and intelligence. According to Qiao et al. [93] and Zhong

et al. [94], ontologies can capture complex interrelationships among compo-

nents and assembly processes, thereby facilitating more effective and auto-

mated assembly sequence planning. This sentiment is further demonstrated

by Gong et al. [95], who emphasised the importance of semantic represen-

tations in reducing assembly errors and reusing both process knowledge and

assembly sequence planning experience.

Moreover, it possesses good scalability, allowing timely adjustments to

meet different scenarios in disassembly. Zhu and Roy [96, 97] developed

a disassembly information model that includes various types of knowledge

related to EoL products, such as product hierarchical structure, feasible dis-

assembly sequences, component uncertainties, and degradation information.

Building on this, they aimed to generate more reasonable disassembly se-

quences. Foo et al. [98, 99] proposed an ontology-based structural model to

manage the disassembly-related knowledge of EoL products. They employed

an artificial learning method for component recognition during disassembly

and validated its efficacy using the disassembly of LCD monitors as a case

study.

The consensus in the literature indicates a promising future for ontology-

based assembly models, as they pave the way for more intelligent, adapt-
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able, and efficient manufacturing processes. However, existing disassembly

information models have not been designed for human-robot collaborative

disassembly scenarios. Moreover, these models are relatively simplistic and

unsuitable for the disassembly process in remanufacturing. Therefore, there

is a need to develop a more comprehensive ontology-based model for EoL

products, specifically tailored to human-robot collaborative disassembly in

remanufacturing.

2.3.3 Rule-Based Reasoning for Disassembly Sequence

Planning

Rule-based reasoning inherently operates by constructing pertinent seman-

tic rules or processing mechanisms to extract tacit knowledge hidden within

explicit knowledge [100]. Furthermore, knowledge reasoning can resolve in-

consistencies within the product information model and detect contradictions

present within the existing knowledge [101].

Veerakamolmal and Gupta [102] proposed a case-based reasoning method

to automatically plan and generate the disassembly sequence. Giudice [103]

proposed a rule-based approach to reason the difficulty of spatial and junction

constraints of components. Consequently, this approach supports determin-

ing the optimal disassembly depth and enhances the disassemble ability of

EoL products. Chen et al. [104] proposed a system based on ontology and

case-based reasoning method to realise the automatic disassembly decision-

making and reduce costs. Yu et al. [105] developed an ontology and partial
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destructive rule-based method, which automated planning the disassembly

sequence of disposed automotive traction batteries (ATB).

The rule-based reasoning method offers a range of distinct advantages, es-

pecially its structured approach to problem-solving. Tor et al. [106] proposed

a rule-based representation approach for the functional design of mechanical

products. Its deterministic nature ensures that, given a specific input, the

output remains consistent, thereby reducing uncertainty in decision-making

processes related to physical behaviours. Such consistency leads to more

straightforward debugging and validation of processes. Zheng et al. [107]

introduced a knowledge-based engineering method for designing the architec-

tures of robotic manufacturing systems. Within this method, a rule-based

reasoning process is outlined to describe the explicit semantic information

of the components of robotic manufacturing systems [108]. Integrating ex-

pert knowledge in the form of predefined rules guarantees that the system

operates based on tried and tested expertise, Reddy and Fields [109] laying

a foundation for reliability. Additionally, highlighted two other advantages

of the rule-based reasoning method through his review paper:

1. The transparency of rule-based systems means that decisions can be

traced back to specific rules, offering enhanced interpretability and un-

derstandability. This feature is especially vital in complex systems

where grasping the logic behind decisions is essential.

2. Rule-based reasoning can be effortlessly expanded by adding new rules
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without necessarily modifying existing ones, which supports scalability

and adaptability.

In summary, the rule-based reasoning method presents a clear, scalable,

and reliable approach to automated reasoning and decision-making. It is

evident that rule-based reasoning for disassembly planning primarily relies on

pre-established product information semantic models. Therefore, the existing

rules are non-transferable and unsuitable for contexts involving human-robot

collaborative disassembly.

2.4 Large-Language Model for Disassembly

In the realm of advanced manufacturing and sustainable industrial processes,

the fusion of artificial intelligence (AI), particularly through Large Language

Models (LLMs), with robotic systems has emerged as a frontier of innovation.

This integration promises to revolutionise the efficiency and effectiveness of

human-robot collaborative disassembly, a critical component in addressing

global challenges of waste reduction, recycling, and remanufacturing. These

works collectively illuminate the trajectory of embedding LLMs in robotic

systems to enhance human-robot interaction, decision-making processes, and

the execution of complex disassembly tasks.

2.4.1 Large-Language Model for Robot

Li et al. [110] and Li et al. [111] offer complementary perspectives on the inte-

gration of LLMs for task-oriented dialogues and interactive decision-making
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in industrial settings. These contributions highlight the role of pre-trained

language models in facilitating nuanced interactions between humans and

robots, enabling machines to participate in planning and decision-making

processes based on natural language input. The emphasis on humanised dia-

logue systems and decision-making algorithms suggests a move towards more

intuitive and accessible robotic systems for non-expert users.

The pioneering work by Benjdira et al. [112] on ROSGPT Vision intro-

duces a novel approach to commanding robots using language model prompts,

bridging the communication gap between humans and robots. This advance-

ment underscores the potential of LLMs to interpret human commands into

actionable tasks, a critical capability for collaborative disassembly environ-

ments where adaptability and precision are paramount. Similarly, Brohan

et al. [113] delves into the grounding of language in robotic affordances, sug-

gesting that robots can understand and act upon commands based on their

physical capabilities and the context of their environment, further enhancing

the fluidity of human-robot collaboration.

Pan et al. [114] provides a road-map for unifying LLMs with knowledge

graphs, proposing a framework that could enhance the contextual under-

standing of robots in disassembly tasks. This integration is crucial for en-

abling robots to access and leverage vast amounts of structured knowledge,

improving their ability to make informed decisions and execute tasks with a

higher degree of autonomy. Vemprala et al. [115] discusses the design prin-

ciples and model abilities necessary for embedding ChatGPT in robotics,
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offering insights into the practical considerations for implementing LLMs in

robotic systems.

Figure 2.2: Goal with ChatGPT [115].

Figure 2.2 from paper [115] presented appears to be an illustrative com-

parison between the traditional model of robotics, which is “Robotics today:

engineer in the loop,” and an envisioned model involving ChatGPT, titled

“Goal with ChatGPT: user on the loop.” In the traditional model, the engi-

neer is depicted as central to the process, with a feedback loop that includes

setting objectives, programming the robot, and deploying and improving its

functions, as suggested by the code snippet and the illustration of an engi-

neer working on a computer while a robot seems to be waiting for commands.

On the other hand, the “Goal with ChatGPT” model proposes a shift where

the user directly interacts with a language model (LLM) through prompts

and application programming interfaces to command any robot to perform

various tasks. This is visually represented by a user silhouette with arrows

indicating a more direct loop between the user’s objectives and the deploy-

ment and improvement of the robot’s tasks without the need for in-depth
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programming. Supporting this model, the figure provides examples of tasks

such as inspecting shelves in a specific pattern, arranging coloured blocks to

create the Microsoft logo, and navigating a kitchen environment to warm up

lunch, illustrating the versatility and user-friendly approach of the proposed

ChatGPT-enhanced robotics system.

Figure 2.3: Conceptual framework of LLM-embedded HRCD.

Figure 2.3 provides a schematic representation of a process where a human

operator interfaces with a robot through a language model, indicative of

a natural language processing (NLP) application in robotics control. The

flow begins with the human operator issuing a language command, which is

presumably translated into a written prompt. This prompt is then processed

by a large language model (LLM), which incorporates semantics and context

to understand and respond to the prompt appropriately. The output from

the LLM is passed through a decoder, which is responsible for translating
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the language output into a robot control command. The depiction of the

control flow suggests a feedback loop, implying that the robot’s performance

or status can influence subsequent interactions with the LLM model. At the

end of the sequence, the UR3 robot, a specific model known for its precision

and versatility in automation, acts on the decoded commands. This diagram

illustrates the integration of advanced language understanding within the

control systems of robotics, showcasing the potential for more intuitive and

flexible human-robot interactions in complex tasks.

The surveyed documents also explore the challenges and opportunities in

enhancing LLMs’ capabilities for specific tasks such as planning goals trans-

lation [116], generative information extraction [117], and foundation models

for decision-making [118]. Each of these contributions addresses different

facets of the problem space, from the translation of natural language into

planning goals to the extraction of relevant information for task execution,

highlighting the versatility and potential of LLMs to transform robotic dis-

assembly.

Further, the review and survey papers by Zhang et al. and Zhao et al.

[119, 120] offer comprehensive overviews of the current state of research in

LLMs for human-robot interaction, knowledge graph completion, and com-

monsense knowledge for task planning, respectively. These works synthesise

the collective progress in the field, identifying gaps in current methodologies

and proposing directions for future research.
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2.4.2 Large-Language Model for Sequence Planning

LLM has been increased popular, while the application of LLM in sequence

planning is still limited.

Figure 2.4: The scheme of the learning from demonstration model [121].

Figure 2.4 from Zhang et al. [121] appears to conceptualise a human-

robot interaction framework for industrial automation, segmented into three

main processes: Demonstration, Learning, and Collaboration. The human

operator is depicted providing a demonstration, which involves tasks teach-

ing and establishing a customised sequence of operations. This is graphically

connected to an industrial robotic arm on the right, suggesting the transfer

of knowledge or instructions from human to machine. The central part of the

image is organised into three coloured blocks, each describing a different as-

pect of the interaction. The blue block corresponds to the “Demonstration”
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phase, where the operator’s actions serve as a template for the robot’s tasks.

The green block, labelled “Learning” implies that the robot is designed to

understand and internalise the task sequence and predict subsequent actions

autonomously. The final orange block, “Collaboration” suggests an advanced

phase where the robot is capable of early motion planning and delivering the

right part at the correct time, indicating a real-time, responsive interaction

with the human operator. Collectively, the figure encapsulates a sophisti-

cated model where human expertise is leveraged through demonstration and

subsequently refined through machine learning, culminating in a collabora-

tive interaction that enhances efficiency and precision in automated tasks.

Straightforwardly, the semantic information involved in sequence plan-

ning can be queried through LLM to obtain feasible solutions. Ruan et al.

[122] introduce two different agents to understand different situations based

on their domain angle, where the integration of two agents’ suggestions can

serve as the inference process. Besides, knowledge graph can be utilised as

a rule-based model to guide the sequence planning process with LLM [123].

Furthermore, reinforcement learning can be utilised to generate a graphical

representation of sub-goals, which improves its explainability [124].

Another typical application scenario is robotic planning, where most of

their input is in image format. A tailored prompt can help robot to perceive

current situation and understand the requirements better [125]. Besides,

Dagan et al. [126] applied LLM to analyse the dynamic image in the robotic

planning, where the LLM enables to keep track of the world state to adapt
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to changes and make informed decisions. Furthermore, Song et al. [127]

proposed a visual-based few shot learning method in embodied agents and

adjusted the sequence policy based on evidence.

However, the disassembly sequence planning always has prior knowledge

as constriction. The response from LLM may not consider such prior constric-

tion. Meanwhile, the LLM is more like a black box, where the uncertainty

issue may introduce to the sequence planning task.

1. Engineers often face a plethora of choices during the disassembly pro-

cess, each linked to uncertain outcomes, leading to substantial chal-

lenges.

2. The challenge lies in harnessing the knowledge embedded in LLM to

aid disassembly sequence planning, which remains an unresolved task.

2.5 Research Gaps and Challenges

2.5.1 CPRS

In recent years, the evolution of smart remanufacturing has seen significant

progress through integration with digital technologies, marking a period of

rapid expansion. Nevertheless, the level of intelligence and autonomy within

remanufacturing systems remains nascent, exposing several research gaps and

challenges:

1. Equipment and System Integration: Modern remanufacturing systems

commonly do not achieve fully intelligent production and operations.
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Although there have been significant theoretical developments, the im-

plementation of these frameworks in real-world production environ-

ments often does not meet expected outcomes. This issue primarily

arises due to the inflexibility of theoretical models, errors in model ac-

curacy, substantial delays, and insufficient responsiveness to changing

production variables [128].

2. Cyber-Physical System Modelling and Reliability Analysis: When ac-

counting for uncertainties in systematic production scheduling, the di-

versity of uncertainty sources and system configurations necessitates

varied dynamic scheduling strategies, both passive and active [129].

The primary challenge lies in applying advance optimisation algorithm

to mitigate risks and minimising the impact of equipment failures within

smart manufacturing strategies.

3. EoL Products Modelling: In the context of remanufacturing, it is im-

practical to extract constraint and fastener information directly from

CAD, CAM, and BOM files owing to the unpredictable conditions of

EoL products [130]. Consequently, it is essential to employ advanced

methodologies and delineate the extent of information necessary to en-

hance the effectiveness and unearth the implicit information contained

within EoL products.

4. Optimisation Modelling under Uncertainty: Traditional stochastic pro-

gramming methods, such as the scenario tree approach, struggle to
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comprehensively address the continuous uncertain parameters inher-

ent in production processes due to the vast scale and complexity of

the models. The challenges include the intractability of large-scale

stochastic programming, issues with scenario decomposition, and the

complexities introduced by chance-constrained programming, which re-

lies on joint probability data.

These challenges underscore the significant theoretical and practical gaps

in key technological areas within the field. Research into the modelling of

EoL products and the optimisation of process planning and scheduling in

cyber-physical remanufacturing systems could facilitate transformative ad-

vancements in enterprise operations. This thesis will tackle on this research

challenge and propose the conceptual framework of CPRS. The proposed

CPRS offers demonstrative and referential insights for key technology re-

search and other decision-making processes.

2.5.2 DLBP

In summary, there are three major research gaps and challenges according to

the literature review:

1. The majority of disassembly line layout types are straight with a de-

termined environment [131], which cannot fully model the actual disas-

sembly scenario. Straight disassembly lines are incapable of disassem-

bling multi-type EoL products simultaneously [132]. The mathematical
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model of the predetermined scenario cannot reflect the actual charac-

teristics of both disassembly lines and EoL products.

2. The increasing complexity of the mathematical model and the uncer-

tain conditions of DLBP limit the performance of existing optimisation

algorithms. The single-objective optimisation of DLBP is linear. How-

ever, the multi-objective optimisation of DLBP-SP becomes a nonlinear

and NP problem with higher computational complexity than DLBP.

With the development of artificial intelligence methods, novel optimi-

sation algorithms need to be proposed to deal with multi-objective

optimisation with uncertain conditions and obtain better optimisation

performance.

3. The disassembly process is inherently divergent, which introduces op-

tional and variable methods and sequences. Additionally, the uncer-

tain characteristics of EoL products contribute to variability in the

time required for disassembly tasks. These uncertainties complicate

the planning of disassembly sequences and make it challenging to de-

termine the optimal disassembly sequence as well. Furthermore, most

EoL products used in DLBP are derived from benchmark test datasets

or WEEE . These products typically feature a limited number of dis-

assembly tasks and relatively straightforward precedence constraints.

Conversely, more complex industrial equipment represents a category

with significant potential value for remanufacturing [4].
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In accordance with the three aspects listed above, this research explores

a more realistic and complex scenario of parallel assembly lines and pro-

poses a novel optimisation model to solve multi-objective optimisation of the

DLBP-SP. Furthermore, this research also introduces a new type of indus-

trial equipment (gearbox) as a case study to enrich the disassembly research

of industrial equipment.

2.5.3 HRCD

In this thesis, one of the primarily research objectives focus on how to ef-

ficiently model and manage EoL products in HRCD. According to the pre-

vious literature review, ontology-based modelling is a common and effective

method which is also applied in this thesis.

However, the existing ontology model has two limitations that makes

it unsuitable and challenging for human-robot collaborative disassembly in

remanufacturing:

1. Current disassembly ontology models are relatively simple, suggesting

only two types of components in EoL products [104, 105]. This lim-

ited scope fails to effectively differentiate among various components,

thereby impeding the decision-making process in disassembly sequence

planning.

2. Moreover, current disassembly ontology models do not consider or es-

tablish a human-robot collaborative working environment and lack a
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related knowledge base for robots. Based on the human-robot collab-

orative disassembly ontology model, there is also a need to formulate

corresponding rules to reason and generate the optimal disassembly

sequence scheme.

2.5.4 LLM in HRCD

In conclusion, the integration of Large Language Models into human-robot

collaborative disassembly represents a significant leap forward in the quest for

more efficient, sustainable, and intelligent manufacturing processes. The re-

viewed body of literature delineates a multifaceted research landscape where

LLMs serve as a bridge between human intuitive understanding and robotic

precision. As this field continues to evolve, the foundational work discussed

herein provides a road-map for future innovations. There are two challenges

to overcome and highlighting the vast potential for LLMs to redefine human-

robot collaboration disassembly in industrial settings.

Based on the previous literature review and review article [133], the main

subjects of related research on HRCD are summarised in Table 2.4. The

research topics cover two major aspects, including disassembly and interac-

tion. In disassembly, collaboration modes, disassembly levels and efficiency

optimisation are three main research topics. In interaction, robustness and

safety measures are considered. All the research topics aim at enhancing the

overall performance and safety of the HRCD. This thesis primarily focuses

on efficiency optimisation and robustness enhancement of human-machine
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collaboration in a collaborative, complete disassembly mode.

Table 2.4: Research topics in HRCD.
Topics Strategies Description

Disassembly

Collaboration Mode
Sequential Disassembly tasks are performed one after another by the human or robot.

Parallel Disassembly tasks can be dismantled simultaneously by the human and robot.
Collaborate Human and robot work actively interacting and assisting each other to implement disassembly tasks.

Disassembly Level
Complete The EoL product is disassembled to the lowest component level.
Partially Only specific components or target parts of the EoL product are disassembled.

Efficiency Optimisation
Task Allocation Strategies for distributing tasks between human and robot to maximise efficiency.

Sequence Planning Optimising the disassembly sequence of the EoL product to minimise the idle time of human and robot.
Path Planning Optimising the movement paths of robots to reduce time and energy consumption.

Interaction
Robustness

Flexibility HRCD can adapt to different disassembly tasks and environments.
Evaluability HRCD requires efficiently assess through a quantitative metric.

Trust Building Strategies to enhance trust between human and robot to improve collaboration.

Safety Measure
Proactive HRCD designed to prevent accidents through anticipation and avoidance of risks.
Reactive Mechanisms that respond to incidents or errors to minimize harm and damage.

2.6 Research Aim and Objectives

The research endeavours to introduce a comprehensive conceptual framework

for the cyber-physical remanufacturing system (CPRS), aimed at enhancing

the intelligence and autonomy of the remanufacturing process. Specifically,

the EoL products modelling, disassembly sequence planning, disassembly

line balancing, and human-robot collaborative disassembly (HRCD) are de-

veloped and validated within the CPRS framework.

The research objectives of this research are based on the research aim

and formulated after reviewing the status of remanufacturing, according to

the potential research direction. The specific breakdown research objectives

of this project are as follows:

• Objective 1: Define, design and propose the conceptual framework

of cyber-physical remanufacturing system (CPRS) for manag-

ing the processes and improving the intelligence and autonomy of the

remanufacturing system (System-level, overall scope).
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• Propose the hyper-heuristic algorithm for optimising the in-

tegrated process planning and scheduling in CPRS (Workshop-

level, performance indicator).

• Propose the ontology and rule-based method for human-robot

collaborative disassembly planning in CPRS (Individual-level, pro-

cedure input).

• Develop the large language model embedded human-robot col-

laborative disassembly in CPRS (Improving the intelligence of col-

laborative robot).

2.7 Chapter Summary

Chapter 2 provides a comprehensive literature review that lays the ground-

work for understanding the integration of cyber-physical systems in pro-

duction, the complexities of disassembly line balancing, and the innovative

approaches in human-robot collaborative disassembly, culminating in the ex-

ploration of the application of large language models for disassembly pro-

cesses. It begins with an in-depth examination of Cyber-Physical Produc-

tion Systems (CPPS), starting from the basics of Cyber-Physical Systems

(CPS) and Cloud-Based Manufacturing (CBM) to the more integrated con-

cept of CPPS. This foundation underscores the evolution of manufacturing

systems into more interconnected, intelligent, and efficient entities capable

of responding to dynamic production demands. The review then transitions
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into the Disassembly Line Balancing Problem (DLBP), discussing various

layout types, optimisation algorithms, and categories of End-of-Life (EoL)

products. This segment highlights the challenges in achieving optimal dis-

assembly line efficiency and the critical role of sophisticated optimisation

techniques in managing the variability and complexity of EoL products.

Subsequently, the chapter shifts focus to Human-Robot Collaborative Dis-

assembly, emphasising the background and potential of synergizing human

flexibility and decision-making with robotic precision in disassembly tasks.

It explores ontology-based product information models and rule-based rea-

soning for disassembly sequence planning as vital components for enhancing

collaboration and efficiency. The exploration of research gaps reveals the

need for advanced communication interfaces, improved safety measures, and

more intuitive collaboration frameworks. The final section delves into the

role of Large Language Models (LLMs) in disassembly, discussing their ap-

plication in robotic comprehension and sequence planning. This innovative

approach promises to revolutionise disassembly processes by enabling more

natural and effective communication between humans and robots, although

it also highlights significant research gaps, including the need for improved

model understanding of technical language and the integration of LLMs with

physical disassembly systems.

Through this literature review, Chapter 2 articulates the current state of

research and identifies pivotal areas for future investigation, setting the stage

for significant advancements in the field of CPRS.

77



Y.X.Hu, PhD Thesis, Aston University 2024

3
A Conceptual Framework of

Cyber-Physical

Remanufacturing System

3.1 Introduction

Although traditional remanufacturing systems hold considerable promise,

they encounter significant challenges. Establishing such systems comes with

78



Y.X.Hu, PhD Thesis, Aston University 2024

several intractable issues, primarily due to the complexity of the processes

involved, such as disassembly, cleaning, inspection, repair, reassembly, and

testing [134]. As noted by Wang et al. [135], these remanufacturing processes

have traditionally been labor-intensive and heavily dependent on the implicit

knowledge and skills of experienced workers. This reliance often results in

variability in both the quality and quantity of the remanufactured prod-

ucts [136]. Moreover, remanufacturing operations frequently face uncertain-

ties concerning the timing, quantity, and quality of returned EoL products.

These uncertainties introduce substantial remanufacturing process, logistical

and inventory challenges, as discussed by Chen et al. [137].

Furthermore, traditional remanufacturing systems are often plagued by

insufficient information flows, leading to inefficiencies throughout the reman-

ufacturing processes. For example, the absence of detailed data regarding the

condition of returned EoL products can lead to sub-optimal decisions within

the remanufacturing process, as indicated by Xiao et al. [138]. Moreover,

despite having a lower environmental impact compared to original manu-

facturers, remanufacturing still poses significant environmental concerns due

to the reliance on non-renewable energy sources and solvents in some of its

processes [15].

An additional drawback of existing remanufacturing systems is their inef-

ficacy in managing and processing returned EoL products. According to re-

search by Ferraro et al. [139], traditional remanufacturing systems frequently

fall short in predicting and managing EoL product returns effectively, result-
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ing in inventory and production inefficiencies. This challenge is exacerbated

by a lack of standardised processes, which hinders scalability and elevates

operational costs.

Addressing these challenges, the advent of ”Industry 4.0” and ”Smart

Manufacturing” introduces a range of advanced technologies that enhance

connectivity among infrastructures and increase the automation level in re-

manufacturing systems. Notable among these are the Internet of Things

(IoT), Digital Twins (DTs), Cyber-Physical Systems (CPS), and Cloud Com-

puting [140]. Specifically, IoT facilitates the connection and communication

among different physical entities through technologies like radio-frequency

identification (RFID) and smart sensors [141]. CPS and DTs significantly

enhance the intelligence and efficiency of manufacturing systems by enabling

iterative optimisation processes in a virtual environment, offering solutions

that are both cost-effective and superior [142]. Furthermore, cloud comput-

ing provides the capability to tackle more complex manufacturing challenges

[143].

The aforementioned technologies are integral to the advancement of smart

manufacturing. Nonetheless, there remains a significant shortfall in the inte-

gration of modern technology within remanufacturing processes. Although

some progress has been observed, the adoption of digital technologies that

support digitalisation and intellectualisation remains limited. This gap in

technology adoption impedes the optimisation of resource utilisation and

process efficiency, both of which are essential for sustainably scaling reman-

80



Y.X.Hu, PhD Thesis, Aston University 2024

ufacturing practices.

To promote the incorporation of the aforementioned advanced technolo-

gies in remanufacturing, this chapter introduces a conceptual framework for

the Cyber-Physical Remanufacturing System (CPRS). This framework aims

to address existing limitations by synergizing physical operations with net-

worked digital technologies, thereby enhancing information accuracy, process

efficiency, and resource optimisation. According to Chao et al. [75], the im-

plementation of CPS within remanufacturing significantly boosts the adapt-

ability and responsiveness of these systems. By providing real-time data

and feedback loops throughout the product life-cycle, CPS enables improved

forecasting, planning, and control—key elements in managing the variability

and uncertainties typical of remanufacturing environments.

The structure of this chapter is organised as follows. Section 3.2 intro-

duces the primary processes involved in the CPRS. Section 3.3 discusses the

proposed overall conceptual framework for the CPRS. Section 3.4 explores

the research challenges and key issues associated with the CPRS. The chapter

concludes with a summary in Section 3.5.

3.2 The Concept and Process of CPRS

3.2.1 Definition of Smart Remanufacturing

Essentially, smart remanufacturing represents an evolving research area that

signifies a major shift towards more interconnected, efficient, and sustainable
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manufacturing practices. This provides a robust framework for handling EoL

products in alignment with modern technological capabilities and environ-

mental objectives [144]. From the perspective of long-term circular economy

and green sustainability strategies, remanufacturing benefits society, indus-

try, and the environment, creating a win-win-win situation.

However, smart remanufacturing is a relatively new field in the literature,

with few definitions available. At present, one widely accepted definition

proposed by Kerin et al. is:

“Smart remanufacturing uses Industry 4.0 technologies on products to

be remanufactured, as well as on remanufacturing processing equipment and

business management systems, primarily including Cyber-Physical Systems

(CPS), Internet of Things (IoT), Artificial Intelligence (AI), and Big Data

Analytics (BDA).” [145]

This definition, by integrating Industry 4.0 technologies, allows the smart

remanufacturing system to identify, locate, and determine the condition of

mid-life remanufacturable products, achieving a level of remote interaction

or EoL products processing previously unattainable, thereby extracting more

value to meet the needs of the remanufacturing business. However, the re-

manufacturing process is more complex than manufacturing, thus, it is unwise

to fully and directly transfer the Industry 4.0 paradigm to remanufacturing

[146].

Another definition of smart remanufacturing, proposed by Okechukwu

et al. is:
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“Smart remanufacturing integrates the principles of Industry 4.0 (I4.0)

and the circular economy to enhance the remanufacturing process. It mod-

ernises traditional remanufacturing methods by incorporating advanced tech-

nologies such as the Internet of Things (IoT), Virtual Reality (VR), and

Augmented Reality (AR).” [17]

This definition emphasises the use of digital technology to shorten and

strengthen the connections between product manufacturers, users, and re-

manufacturers. It aims to improve resource circulation and value creation

through product service systems, adapting to changing social needs, user

expectations, and workforce attributes.

As smart remanufacturing adopts these new technologies, it is expected

to handle increased data and information flows, adding complexity but also

increasing opportunities for innovation in the remanufacturing process. How-

ever, from a technological implementation perspective, the majority of re-

manufacturers are very small, resource-limited companies that cannot afford

the cost of implementing smart manufacturing technologies.

Combining the above two definitions of smart remanufacturing, this chap-

ter defines smart remanufacturing based on the constructed ‘three-stage,

three-level’ CPRS as:

“Smart remanufacturing integrates the principles of closed-loop supply

chains, Industry 4.0 technologies, and circular economy to achieve a highly

efficient operational paradigm that is structured, transparent, and informa-

tional throughout the overall remanufacturing process.”
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Distinct from the above definitions, this chapter’s definition takes an inte-

grated approach to the recycling and marketing stages of the remanufacturing

process. This definition considers how to efficiently organise, manage, and

optimise business processes, including production, service provision, and lo-

gistics. Given the multiple influencing factors of remanufactured products

and markets, as well as related inherent uncertainties, smart remanufacturing

can evolve and change in response to different technological developments,

market demand dynamics, and updates in management concepts.

3.2.2 The Process of CPRS

The methodology employed in the proposed CPRS encompasses a series of

stages: surface examination, disassembly, cleansing, sorting and inspection,

reprocessing, reassembly, and testing. The essential technologies pertinent

to these stages are depicted in Figure 3.1.

• Surface inspection: the heterogeneity and unpredictability of EoL

products are pivotal factors that influence the efficacy of remanufac-

turing systems. A notable issue within this domain is the disconnect

between remanufacturers and the original end-users of the EoL prod-

ucts. This separation often results in the loss of crucial information,

thereby complicating the accurate assessment of the EoL products’ con-

dition [147]. To circumvent the costs associated with extensive data

gathering and condition assessment, emphasis is placed on surface in-

spections upon receipt of EoL products. Such inspections serve as a
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Figure 3.1: The process of CPRS.

preliminary step in determining the feasibility of remanufacturing an

item. The evaluation primarily depends on various forms of data and

information, such as usage duration, maintenance history, structural

integrity, and visual examinations. This information, which can be

collected from the end-users, is then analysed by the remanufacturer

[148]. Effective surface inspections enhance the understanding of an

EoL product’s condition, providing a solid foundation for subsequent

remanufacturing processes.

• Disassembly: represents a critical and mandatory phase in the reman-

ufacturing cycle, distinguished from the linear methodology of assem-

bly. This phase is characterised by its divergent nature, encompassing
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varying levels, types, and routes of disassembly [149]. Disassembly

levels are typically categorised into partial or complete. Partial disas-

sembly targets the retrieval of valuable components, overlooking those

deemed non-essential, and does not involve decomposing the EoL prod-

ucts into their individual parts. In terms of disassembly types, methods

are classified as either destructive or non-destructive. Destructive disas-

sembly, an irreversible process, is employed when certain components

cannot be feasibly disassembled, often resulting in higher costs com-

pared to its non-destructive counterpart. Furthermore, the selection

of a disassembly route, also known as disassembly sequence planning,

involves planning and optimising the order in which sub-assemblies or

components are detached, taking into account the constraints of prece-

dence and regulations pertaining to fasteners.

• Cleaning: constitutes an essential stage in the remanufacturing pro-

cess, aimed at removing contaminants such as rust and paint from

components to achieve a specified level of cleanliness, which is crucial

for ensuring the quality and performance of the components [15]. Var-

ious cleaning technologies are employed, including jet, chemical, and

ultrasonic cleaning. The choice of technology is influenced by the ma-

terials, physical structure, and chemical properties of the components.

It is also common to utilise a combination of these technologies to

effectively clean different types of components. Moreover, it is criti-

cal to prevent secondary contamination of the components during the
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cleaning process to maintain the integrity and effectiveness of the re-

manufacturing.

• The sorting process in remanufacturing is integrally linked to the in-

spection phase. The primary objective of the inspection process is to

ascertain the geometric accuracy, surface and internal integrity, and the

quality and physical properties of the components. To ensure that the

inspection does not introduce defects or alter the existing condition of

the components, non-destructive testing (NDT) methods are employed.

These methods typically include ultrasonic testing (UT), radio-graphic

testing (RT), and magnetic particle testing (MPT). Based on the results

of the inspection and an analysis of cost efficiency, the sorting process

categorises components into groups designated for maintenance, repro-

cessing, or replacement. Furthermore, the classification of maintenance

and reprocessing components is refined according to the type of defect

and physical condition of the components [150].

• Reprocessing in remanufacturing involves a series of physical inter-

ventions aimed at restoring both the structural and functional integrity

of components [149]. Unlike continuous process manufacturing, which

transforms raw materials into components, reprocessing is typically

conducted in batch production settings, offering flexibility to address

diverse maintenance needs and specific types of defects. In recent de-

velopments, additive manufacturing has emerged as an innovative re-
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processing technique that offers both cost efficiency and enhanced pre-

cision. Furthermore, the scheduling of components within the reman-

ufacturing process presents an optimisation challenge. This scheduling

can be effectively integrated and optimised in conjunction with the

planning of the disassembly process sequence [64].

• Reassembly constitutes the methodical integration of maintained, re-

processed, and replaced components into remanufactured products, ef-

fectively serving as the inverse of the disassembly process. Unlike stan-

dard assembly operations in manufacturing, reassembly is characterised

by significant uncertainty, variability, and instability, traits inherited

from the disassembly process. These factors critically impact the reli-

ability and longevity of remanufactured products [151]. Furthermore,

reassembly and disassembly processes often share the same machinery

within a unified remanufacturing system, thereby linking the planning

of disassembly/reassembly sequences and resource allocation to unique

optimisation challenges in the field of remanufacturing.

• Testing represents the concluding phase in the remanufacturing pro-

cess, wherein the precision of the physical structure, functionality, and

durability predictions are assessed to validate the performance of re-

manufactured products. The outcomes of these tests must align with

the standards set for new products [150]. The primary objective of

the testing phase is to detect and eliminate any defects that may have
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arisen during the remanufacturing process, thereby ensuring the oper-

ational integrity of the remanufactured products. It is imperative that

the methodologies and criteria used for evaluating the performance

of remanufactured products are consistent with those applied to new

products.

3.3 The Conceptual Framework of CPRS

To enhance the automation and intelligence of smart remanufacturing sys-

tems, this chapter proposes a conceptual framework called CPRS by leverag-

ing advanced technologies such as the Internet of Things (IoT), Information

and Communication Technology (ICT), Cyber-Physical Systems (CPS), and

Digital Twins (DT). Inspired from Chao et al. [152], The architecture of

CPRS is structured into three distinct layers: the physical layer, the edge

layer, and the cloud service layer as shown in Figure 3.2. The physical

layer, located at the base, comprises tangible entities and facilitates com-

munication among various components. Above this, the edge layer serves

as a bridge, translating physical entities into virtual counterparts via digital

twins and connecting to the physical layer through network interfaces. The

topmost layer, the cloud service layer, provides comprehensive system-level

applications and integrated services for remanufacturing. This layer sup-

ports iterative optimisation to enhance cloud services, which, in turn, guide

the operational decisions at the edge layer. Communication between the

edge and cloud service layers is primarily conducted through protocols that
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govern the interaction among different mechanical systems. The framework

exhibits increasing levels of digitisation and visualisation as one moves from

the lower to the upper layers, and horizontally, it demonstrates enhanced

cooperation and adaptability. Further details about each layer’s components

are expounded in subsequent sections.

3.3.1 Physical Layer

In the remanufacturing system, the objectives encompass EoL products and

accompanying technological components, including machinery, interactive

devices, and sensors, as illustrated in Figure 3.3. EoL products undergo re-

manufacturing via diverse types of machinery. Interactive and sensor devices

facilitate communication among these machines and monitor the processes

involving EoL products. Consequently, the proposed physical layer of the

system is composed of five segments: EoL products, interactive equipment,

actuator equipment, sensor equipment, and the environment. These compo-

nents collectively support all stages of the remanufacturing process.

• EoL products represent the primary targets for remanufacturing.

Due to their inherently uncertain characteristics, remanufacturing these

products cannot adhere to a uniform standard process. Consequently,

the availability of comprehensive supplementary information on EoL

products enhances the creation of a robust knowledge base for the

remanufacturing process. Data pertaining to EoL products are cat-

egorised into two types: static and dynamic. Static data include the
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Figure 3.2: The structure of proposed CPRS.

bill of materials (BOM), which lists the categories and quantities of

raw materials vital for disassembly. Additional static data encompass
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Figure 3.3: Physical layer of CPRS.

geometric parameters and constraints among the product components.

Dynamic data, on the other hand, typically encapsulate life-cycle in-

formation detailing maintenance types and components, which are cru-

cial for the inspection processes in remanufacturing. However, not all

collected data are beneficial for remanufacturing purposes; redundant

data can obscure pertinent information and diminish the operational

efficiency of the remanufacturing system. Therefore, it is imperative
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to scrutinise the scope of data collection related to EoL products to

support and streamline the remanufacturing process effectively.

• Interactive equipment plays a crucial role in enabling communica-

tion between machinery and End-of-Life (EoL) products, which oth-

erwise lack the capability to interact autonomously. Leveraging the

Internet of Things (IoT), interactive devices facilitate the establish-

ment of interconnected systems between various pieces of machinery

and EoL products. Radio-frequency identification (RFID) serves as a

key example of such wireless communication technologies. It operates

by identifying, reading, and transmitting stored data via radio signals

without the need for direct physical contact. This technology has found

extensive applications in logistics management and smart manufactur-

ing due to its efficiency and the ability to operate without physical

connectivity. RFID systems primarily utilise RFID tags, which are

capable of storing and processing information that can be wirelessly

transmitted and received by reading devices operating at specific radio

frequencies.

• Actuator equipment encompasses various machinery aligned with

the sequential stages of the remanufacturing process. To accommodate

the diverse and increasing volume of remanufactured products, a mixed

disassembly/assembly line has been implemented, which includes the

integration of robotic arms to advance towards an autonomous reman-
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ufacturing process. Machine tools are predominantly used for repro-

cessing within these systems. Additionally, the equipment designated

for inspection and testing varies to suit different types of EoL products.

Cleaning, however, is primarily conducted manually and thus does not

involve specialised machinery equipment [152]. All actuator devices are

interconnected through interactive equipment, enabling the monitoring

of the remanufacturing process for EoL products.

• Sensor equipment, though primarily utilised in the inspection and

testing phases of the remanufacturing system, extends its applications

to performance assessment and prediction of components. An example

of such technology is Ultrasonic Testing (UT), where the equipment

comprises a probe and a sensor that collect raw digital signals. These

signals are subsequently processed by a digital signal processor (DSP)

to produce analogue signal data, characterised by its continuity and

high resolution. Beyond Non-Destructive Testing (NDT) equipment, it

is imperative to incorporate temperature and humidity sensors within

the remanufacturing system. These sensors play a crucial role in moni-

toring the environmental conditions of the process, thereby preventing

failures that could arise from adverse conditions affecting the actuator

equipment.

• The environment constitutes a critical component that cannot be

overlooked in remanufacturing systems, which represent a specialised
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mode within the broader manufacturing domain. The triadic system

engineering framework of ”man-machine-environment” remains pivotal

in these systems. Within a remanufacturing context, the environment

primarily oversees and regulates factors such as temperature, humid-

ity, and other necessary conditions for remanufacturing. Adherence

to these environmental standards is essential not only for minimising

wear and tear on actuator equipment but also for enhancing the qual-

ity of the remanufactured products. This integrated approach ensures

that operational conditions are optimised to support the longevity and

functionality of the products processed.

3.3.2 Edge Layer

Digital Twin (DT) offers a high-fidelity and precise virtual representation

of the entire life-cycle of physical entities [143]. Utilising the DT model,

Product Life-cycle Management (PLM) can be efficiently and cost-effectively

executed in a virtual environment. Additionally, the digital twin enables the

simulation, analysis, and optimisation of the physical entity.

Within the conceptual framework of the CPRS, the edge layer serves as

the virtual counterpart to the physical components found in the physical

layer. This includes models of EoL products, interactive devices, actuators,

sensors, and the environmental conditions, as depicted in Figure 3.4.

• Product model: the fidelity and precision of the DT model for EoL

products, which mirrors the physical attributes of these products, are
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Figure 3.4: Edge layer of CPRS.

essential for the effective execution of the remanufacturing process in

a virtual environment. Nonetheless, completeness in this context does

not imply exhaustive information about EoL products, as extraneous

data can introduce redundancy and complicate data collection efforts.

The accuracy of this data is critical, as it influences the disassem-

bly, inspection, and testing stages in remanufacturing. Consequently,
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data collection should prioritise capturing the constraints, connections,

and geometric parameters essential for DT modelling of EoL products

within the CPRS. CAD/CAM play pivotal roles in accurately repre-

senting the constraints and connections between sub-assemblies and

components of EoL products in the virtual space. These technologies

are adept at conveying explicit information about EoL products. How-

ever, implicit information often remains overlooked and requires the

integration of auxiliary technologies such as ontology and knowledge

graphs to uncover deeper insights into the EoL products.

• The interactive model primarily facilitates the exchange and com-

munication of information data between EoL products and machin-

ery equipment. Utilising the Unified Modelling Language (UML) and

Graphical User Interface (GUI), this model enables effective communi-

cation across different machinery components, allowing for the visuali-

sation of information data flows associated with EoL product models.

This approach not only streamlines interactions but also enhances the

clarity and accessibility of data within the remanufacturing process.

• The actuator model comprises DT representations of various ma-

chinery components, including robotic arms and machine tools, de-

rived from their corresponding physical entities. Within the edge layer

of the Cyber-Physical Remanufacturing System (CPRS), this model

is utilised to implement diverse processes. It is integrated with in-
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teractive and sensor models to enable the detection and monitoring

of status information. Furthermore, the performance of the actuator

model is influenced by the environmental conditions represented within

the environment model, highlighting the interconnected nature of these

system components.

• The sensor model encapsulates signal datasets gathered from physi-

cal sensor equipment. Within the edge layer of the CPRS, these signal

datasets serve distinct purposes across various stages of the remanufac-

turing process. Monitoring signals provide insights into the condition of

EoL products, while inspection signals help identify defects and assess

the state of disassembled components. Additionally, testing signals are

critical for evaluating the performance of remanufactured products and

predicting their life cycle. For processes such as disassembly, reprocess-

ing, and assembly, the sensor model plays a vital role in collecting data

to monitor and adjust the workflow within CPRS, ensuring efficient

process management and quality control.

• The environment model represents the characteristic attributes of

the Cyber-Physical Remanufacturing System (CPRS) across both its

physical and edge layers. This model is instrumental in assessing long-

term degradation and failure performance under specific conditions,

which are unattainable solely through the physical layer. Moreover,

the environment model benefits from iterative simulations conducted
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within the virtual edge layer. These simulations enhance the model’s

accuracy and effectiveness, facilitating the management and optimisa-

tion of processes in the physical layer. This dual-layer approach allows

for a more comprehensive analysis and optimisation of environmental

impacts on remanufacturing processes.

3.3.3 Cloud Service Layer

The cloud service layer constitutes the uppermost tier of the proposed con-

ceptual framework. This layer is characterised by its computational and op-

timisation capabilities, essential for the operation of the CPRS. Within this

layer, there are primarily two distinct levels of cloud services: system-level

strategies and workshop-level executive applications. System-level strate-

gies facilitate Product Life-cycle Management (PLM) utilising the Digital

Twin model of End-of-Life (EoL) products. In operational processes such as

disassembly, reprocessing, and assembly, advanced planning and scheduling

(APS), enterprise resource planning (ERP), and manufacturing execution

systems (MES) are comprehensively integrated. Additionally, prognostics

health management (PHM) plays a crucial role in monitoring, inspection,

and testing processes. These integrated strategies interact synergistically

within the system, enhancing the overall efficiency and effectiveness of the

remanufacturing process.

The integrated system-level strategies are implemented within the workshop-

level executive applications at the edge layer, providing tailored services for
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various stages of the remanufacturing process. In the phases of disassem-

bly, reprocessing, and assembly, these strategies facilitate the optimisation

of process planning, scheduling, and resource allocation. This optimisation

is necessitated by the presence of multiple disassembly routes and the con-

straints posed by limited machinery availability. Additionally, layout design

and production planning are intricately linked to both disassembly and as-

sembly processes.

Furthermore, cloud computing plays a pivotal role through the cloud

platform in the cloud service layer, offering robust capabilities for the storage

and exchange of substantial resources and computational power within the

CPRS. The effectiveness of the production plan and the overall performance

of the remanufacturing services in CPRS are directly influenced by these

integrated remanufacturing services.

3.4 Current Challenges and Future Perspec-

tives of CPRS

At present, the comprehensive depiction of the CPRS remains in its nascent

conceptual phase, which introduces several research challenges concerning its

implementation. Consequently, these challenges are articulated to delineate

the future research directions for CPRS, guiding further investigation and

development within this domain.
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3.4.1 EoL Product Modelling for CPRS

Remanufacturing diverges significantly from traditional manufacturing pro-

cesses, which are typically convergent and standardised. In remanufacturing,

processes are inherently divergent and variable, influenced by the conditions

of EoL products. Accurately modelling the structure and condition of EoL

products is essential for the effective execution of the remanufacturing pro-

cess within the CPRS. Furthermore, the scope of information modelling for

EoL products, which may include details such as component materials and

colours, must be carefully managed to prevent information redundancy and

interference.

Consequently, the modelling of EoL products emerges as a primary re-

search area and challenge in CPRS. The information databases for EoL prod-

ucts in remanufacturing must be comprehensive and enhanced through ad-

vanced technologies. These databases should also support interactivity and

repeatability to facilitate the remanufacturing of similar EoL products, op-

timising both efficiency and efficacy in the process.

3.4.2 Process Planning and Scheduling in CPRS

Disassembly, reprocessing, and assembly are the principal operational stages

within a remanufacturing system, all of which typically share resources and

equipment. This sharing necessitates careful process planning and schedul-

ing. Notably, the disassembly process functions as the inverse of assembly.

Yet, for complex and multiple End-of-Life (EoL) products, the routes and
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sequences of the disassembly process can vary, presenting challenges in pro-

cess planning within remanufacturing contexts. Given that the availability of

machinery and workforce resources in the remanufacturing process is limited,

effective resource management and enhancement of production performance

become crucial. Consequently, optimising process planning and scheduling

through the deployment of algorithms and adapting to uncertainties emerge

as significant research topics and challenges in remanufacturing.

3.4.3 Data Exchange and Communication

In the proposed framework of CPRS, various types of machinery are em-

ployed at different stages of the process. Although these machines can be

interconnected through the Internet of Things (IoT), challenges arise due to

potential conflicts and recognition issues stemming from the disparate pro-

tocols and data formats used by different machines. This inconsistency can

lead to inefficient data transmission and exchange, subsequently impacting

the overall efficacy of the CPRS. Therefore, the development of standardised

and effective protocols and data formats for managing inter-machine data

within CPRS represents a significant research challenge.

3.5 Chapter Summary

Chapter 3 delves into the conceptual framework of Cyber-Physical Remanu-

facturing Systems (CPRS), starting with an introductory overview that sets

the stage for understanding the importance of remanufacturing in the current
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global sustainability and circular economy context. It outlines the reman-

ufacturing process, beginning with the collection and sorting of End-of-Life

(EoL) products, followed by disassembly, cleaning, refurbishing, and reassem-

bly into like-new condition products. This process not only extends the life-

cycle of products but also significantly reduces waste and resource consump-

tion. The chapter then progresses to articulate the conceptual framework of

CPRS, which is structured into three main layers: the physical layer, where

the actual remanufacturing operations occur; the edge layer, which serves as

the intermediary processing stage for real-time data; and the cloud service

layer, which offers a centralised platform for data analysis, storage, and the

provision of computational resources. This layered architecture facilitates a

seamless integration of cyber and physical realms, enabling optimised opera-

tional efficiency through advanced data analytics, artificial intelligence, and

machine learning.

The latter part of the chapter addresses the current challenges and future

perspectives of CPRS, highlighting three main areas: EoL product mod-

elling for remanufacturing, process planning and scheduling in remanufac-

turing, and data exchange and communication between the layers. Accurate

modelling of EoL products is essential for effective remanufacturing, requir-

ing sophisticated methods to assess and categorise products based on their

condition and manufacturing ability. Process planning and scheduling are

critical for ensuring the efficiency and effectiveness of remanufacturing oper-

ations, demanding advanced algorithms capable of handling the complexities
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and variabilities inherent in EoL products. Lastly, the chapter underscores

the importance of robust data exchange and communication protocols across

the physical, edge, and cloud layers to support the dynamic and intercon-

nected nature of CPRS. Addressing these challenges is crucial for advancing

the capabilities of CPRS, paving the way for more sustainable manufacturing

practices and contributing to the broader goals of the circular economy.
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4
A Simulated Annealing-Based Hyper-Heuristic

Algorithm for Stochastic Parallel Disassembly Line

Balancing in CPRS

4.1 Introduction

Disassembly, an essential and very first step in the remanufacturing process,

serves as the reverse of the assembly process. This involves the systematic
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separation and retrieve of usable and valuable sub-assemblies or components

from EoL products. Traditionally, disassembly can be executed either de-

structively or partially to extract core components with high residual value.

However, within the remanufacturing context, it is imperative that disassem-

bly be conducted non-destructively and dismantle thoroughly of EoL prod-

ucts. This ensures that the remanufactured products conform to the original

specifications set by the original manufacturers [153]. Consequently, the dis-

assembly process in remanufacturing necessitates a effective and automated

approach to maintain the integrity and functionality of the components.

Recent advancements in technological innovation and material invention

have led to a significant increase in the volume of EoL products. Conse-

quently, the disassembly line has been recognised as an ideal configuration

for managing the disassembly of these products, adeptly addressing their

complexity and the demands of large-scale operations. The disassembly line

balancing problem (DLBP) involves strategically allocating sequential disas-

sembly tasks across a series of systematically arranged workstations. This

allocation is aimed at improving performance metrics such as the number

of stations, workload, and idle time [154]. Optimising DLBP is crucial for

enhancing the productivity and efficiency of disassembly lines, which in turn

contributes to increased operational efficiency and cost reduction [155].

As the variety of EoL products expands, traditional single, straight dis-

assembly lines are insufficient to handle the diverse and voluminous cate-

gories of these products. Different layout configurations, such as two-sided
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and U-shaped arrangements, have been explored to enhance the efficiency

of disassembly lines by optimising the operating times at each workstation.

However, these configurations still have limitations in managing the disas-

sembly of multiple types of EoL products simultaneously. To address this

challenge, the implementation of multiple disassembly lines, including par-

allel disassembly line setups, has been proposed to effectively manage the

disassembly processes for various types of EoL products. Currently, research

on parallel disassembly lines is in its early stages, with studies not considering

the uncertain factors.

Consequently, this chapter research on the concept of the workshop-level

parallel disassembly line, as outlined within the comprehensive system frame-

work of the CPRS. To enhance the overall efficiency of these parallel disas-

sembly lines, two primary contributions are presented in this chapter.

Firstly, a mathematical model for stochastic parallel complete disassem-

bly line balancing (DLBP-SP) is proposed. Within the remanufacturing sec-

tor, it is essential that remanufactured products meet the same performance

specifications as their original products [23]. As a result, EoL products must

be completely disassembled prior to entering subsequent remanufacturing

processes. Given the variable condition of EoL products, the disassembly

times in this model are characterised as stochastic values. The optimisation

goals for the parallel complete disassembly line encompass the number of

workstations, workload index, and profitability. The inherent conflict among

these optimisation objectives increases the computational complexity of the
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model.

Secondly, a simulated annealing-based hyper-heuristic algorithm (HH) is

proposed for addressing the multi-objective optimisation challenges of the

DLBP-SP. This approach integrates partially mapped crossover and single-

point insertion mutation operations to adhere to precedence constraints. By

employing this algorithm, both the search and solution spaces are expanded

and enhanced. The efficacy and superiority of this algorithm are validated

through comparative experiments using an open-source dataset and previ-

ously established optimisation algorithms. Additionally, a case study in in-

dustrial disassembly is conducted to practically apply the proposed method.

This case study serves to confirm the stability and robustness of the al-

gorithm. Notably, this case study marks the first instance of employing a

gearbox as a case study within the domain of DLBP.

The subsequent parts of this chapter are structured as follows: Section 4.2

delineates the problem description, assumptions, notations, and the mathe-

matical model of DLBP-SP, supplemented by an illustrative example. Sec-

tion 4.3 details the introduction of a novel simulated annealing-based hyper-

heuristic algorithm, including an overview of its framework and the opera-

tional processes involved. Section 4.4 executes comparative experiments and

a case study to analyse and confirm the efficiency and performance of the

proposed algorithm. Finally, Section 4.5 offers a summary of this chapter.
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4.2 Stochastic Parallel Disassembly Line Bal-

ancing Problem

4.2.1 Description of DLBP-SP

Figure 4.1 introduces the standard layout of a parallel disassembly line, con-

sisting of two adjacent lines, labelled 1 and 2, designed to disassemble EoL

products A and B concurrently. These products are conceptualised as lay-

ered industrial assemblies, with product A comprising five components and

product B consisting of six components. In this setup, components shaded

darker are prioritised for disassembly. Following disassembly, components

are individually routed to subsequent remanufacturing processes. The se-

quence of disassembly adheres to a logical and feasible order, conforming to

the precedence constraints imposed by the physical structure of the prod-

ucts. Complete disassembly, as shown for both EoL products A and B in

Figure 4.1, entails the total separation of a product into its constituent com-

ponents [156].

Workstations 1, 2, and 3 are sequentially placed between the parallel

disassembly lines, designed to handle disassembly tasks from either or both

lines. Initially, Workstation 1 undertakes the first two disassembly tasks

for product A and the first disassembly task for product B. Subsequently,

Workstation 2 is responsible for the next three disassembly tasks of product A

and the following two disassembly tasks of product B, with both workstations
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Figure 4.1: Parallel disassembly lines.

operating tasks across both lines. In contrast, Workstation 3, solely operating

on disassembly line 2, handles the final three disassembly tasks of product B.

Tasks are distributed among different workstations based on an optimisation

algorithm to manage the disassembly of various EoL products.

This configuration allows for the simultaneous disassembly of multi-type

products on parallel disassembly lines, where cycle times can be individu-

ally tailored for each line to enhance operational efficiency and flexibility.

Furthermore, optimising the cycle times can reduce the idle periods of work-

stations, thereby improving overall efficiency.

4.2.2 Notations and Assumptions of DLBP-SP

In this subsection, the optimisation of the complete disassembly process for

two distinct EoL products on parallel disassembly lines is examined. To de-

velop a more applicable mathematical model for the stochastic parallel com-

plete disassembly line balancing (DLBP-SP), various fundamental notations
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are introduced. These notations are defined and described in Table 4.1.

Table 4.1: Definition and description of notations.

Notations Definition and Description

m Number of disassembly line, m = 1, 2
im Number of disassembly tasks on disassembly line m, i = 1, 2, . . . , I, where I

is the number of components of EoL product
K Number of workstations, k = 1, 2, . . . ,K, where K is the maximum number

of workstations
j The position of the disassembly process, j = 1, . . . , J , where J is the maxi-

mum number J = I.
ri Revenue from disassembly task i
Cw Fix operation cost per unit time for workstations
Cp Operating cost of workstations for parallel disassembly lines
Cc Operating cost of workstations for single disassembly line

CTm Cycle time of disassembly line m
CT Cycle time of parallel disassembly lines
Tk Operation time of workstation k
εm Coefficient value of CT and CTm

t̃
′
im Stochastic disassembly time of task i on disassembly line m
µim Average disassembly time of task i on disassembly line m
σ2
im Variance of task i on disassembly line m

1− α Confidence level
φ Standard normal distribution function
LB Theoretical minimum number of workstations
I Workload smoothness index
P Overall profit from complete disassembly process

PAND(im) The set of AND predecessors of task i on disassembly line m
POR(im) The set of OR predecessors of task i on disassembly line m

xijm =

{︃
=1, if task i at position j on line m
=0, otherwise

yijmk =

{︃
=1, if task i at position j on line m is assigned to workstation k
=0, otherwise

Sk =

{︃
=1, if workstation k is working on single disassembly line
=0, otherwise

Pk =

{︃
=1, if workstation k is working on parallel disassembly line
=0, otherwise

Zk =

{︃
=1, if workstation k is available
=0, otherwise

Drawing on the fundamental notations, a set of preliminary assumptions

111



Y.X.Hu, PhD Thesis, Aston University 2024

has been established to facilitate the formulation of the mathematical model

for the DLBP-SP.

1. Two disassembly lines are designed to be adjacent and parallel, and the

workstations are located sequentially between them.

2. The cycle time of each disassembly line is pre-defined and can be dif-

ferent.

3. Workstations are operated by skilled workers who can work on single

or both parallel disassembly lines and spend no travel time.

4. The workstations can only be allocated and process a single disassembly

task at a time.

5. The precedence constraints and mean disassembly time of each disas-

sembly task are known. Moreover, the precedence constraints of disas-

sembly tasks should be satisfied during the disassembly process.

6. The EoL products are completely disassembled into their simplest sin-

gle components. The revenue from each disassembled component is

known.

7. Each disassembly task’s actual process time is stochastic, following the

standard normal distribution.

8. The sum of the actual process time of assigned disassembly tasks to a

workstation should not exceed the cycle time. If exceeded, the number
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of workstations should be added for taking the remaining disassembly

tasks into new cycle time.

9. Materials and instruments are sufficient and infinite.

4.2.3 Mathematical Model of DLBP-SP

Using the established notations and assumptions, the parallel disassembly

line balancing model with stochastic process times is formulated. This model

is based on the defined common cycle time of the parallel disassembly lines,

the multiple optimisation objectives, and the lower boundary conditions of

the DLBP-SP. To demonstrate the application and functionality of the pro-

posed mathematical model, an illustrative example is provided.

Cycle Time of Parallel Disassembly Lines

Cycle time is defined as the total elapsed time from the process beginning

to the stop end of a workstation, which is pre-defined on the disassembly

line [157]. Reflecting the unique attributes of parallel disassembly lines, each

line’s cycle time (CTm) can be identical or distinct. To facilitate manage-

ment and enhance the overall efficiency of parallel disassembly lines, a com-

mon cycle time (CT ) is utilised. Drawing on the methodologies outlined in

[158], this subsection employs the modified least common multiple (LCM) ap-

proach. The procedural steps of the LCM method tailored for the DLBP-SP

are detailed as follows:

Step 1: Determine the LCM as the common cycle time (CT ) of two
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different disassembly lines:

CT = [CT1, CT2],m = 2; (4.1)

Step 2: Calculate the coefficient values εm by dividing each cycle time of

the disassembly line (CTm) by the common cycle time (CT ):

εm = CT/CTm; (4.2)

Step 3: Modifying the stochastic process time of each disassembly line

(t̃im) into parallel disassembly lines based on the coefficient values εm:

t̃im = N(µim, σim) (4.3)

t̃
′
im = εm · t̃im ⇒ t̃

′
im = N

(︁
εm · µim, ε

2
m · σ2

im

)︁
⇒ t̃im = N

(︁
µ′
im, σ

2′
im

)︁
. (4.4)

In the proposed DLBP-SP model, the calculated common cycle time (CT )

and the updated stochastic process time (t̃
′
im) are incorporated. This process

will be further elucidated through an illustrative example.

Optimisation Goals of DLBP-SP

Generally, the objective of disassembly line balancing is to plan the alloca-

tion and optimise the sequence of disassembly tasks to enhance overall per-

formance, with key performance indicators including productivity, efficiency,

and profitability. In this context, to assess and validate the optimisation per-

114



Y.X.Hu, PhD Thesis, Aston University 2024

formance, three optimisation objectives for DLBP-SP are considered in this

subsection: the number of workstations (K), the workload smoothness in-

dex (I), and profit (P ). The equations used to represent the multi-objective

optimisation of DLBP-SP are presented below:

f1 = min(K) =
K∑︂
k=1

I
max
i=1

(︄
M∑︂

m=1

J∑︂
j=1

xijmyijmk

)︄
(4.5)

f2 = min(I) =

⌜⃓⃓⎷ K∑︂
k=1

(CT − Tk)2 (4.6)

f3 = max(P ) =
M∑︂

m=1

I∑︂
i=1

rixijm − Cs

J∑︂
j=1

Sk − Cp

J∑︂
j=1

Pk − (CT · Cw)
K∑︂
k=1

Zk

(4.7)

F = min [f1, f2,−f3] (4.8)

Equation 4.5 calculates the minimum number of workstations required,

while Equation 4.6 assesses the smoothness index of workload distribution,

aiming for minimisation. Equation 4.7 quantifies the maximum profit achiev-

able through the comprehensive disassembly of various EoL products. Equa-

tion 4.8 encapsulates the multi-objective optimisation goals of the DLBP-SP,

targeting the optimal solution that simultaneously minimises the number of

workstations and workload while maximising profit.

The optimisation process for these multiple objectives may encounter in-

herent constraints and conflicts, where enhancing one objective could poten-

tially compromise another. It is often impractical to achieve an optimal so-
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lution that simultaneously optimises all objectives to their fullest extent. To

address this, a Pareto optimal solution—also referred to as a non-dominated

solution—is employed to evaluate the optimisation outcomes with the intent

of achieving the best possible multi-objective performance [159]. The set of

Pareto optimal solutions represents the boundary of optimal solutions, be-

yond which no objective can be improved without degrading another. The

multi-objective optimisation equations must also adhere to the following con-

straint equations:

K∑︂
k=1

yijmk ≤ 1,∀i ∈ I, j ∈ J (4.9)

M∑︂
m=1

Im∑︂
i=1

xijmyijmk ≥ 1,∀k = 1, 2, . . . , K (4.10)

yijmk ≤
k∑︂

o=1

yijmo, ∀i ∈ I, k ∈ K, o ∈ PAND(i) (4.11)

yijmk ≤
k∑︂

o=1

∑︂
o∈OR(i)

yijmo,∀i ∈ I, k ∈ K, o ∈ OR(i) (4.12)

M∑︂
m=1

K∑︂
k=1

I∑︂
i=1

Tkxim ≤ CT, ∀i ∈ I, j ∈ J, k ∈ K (4.13)

xijm, yijmk, Zk ∈ {0, 1},∀m, i, k (4.14)

Equation 4.9 specifies that each disassembly task may only be assigned

to one workstation at any given time. Equation 4.10 confirms that there are

no workstations remaining idle. Equation 4.11 stipulates that a disassem-
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bly task can only be assigned once all preceding tasks, linked by an AND

relationship, have been completed. Conversely, Equation 4.12 allows a dis-

assembly task to be allocated if at least one of its predecessors, connected

through an OR relationship, has been assigned. Equation 4.13 ensures that

the total estimated uncertainty and processing time for all tasks assigned to

a workstation do not exceed the defined cycle time. In Equation 4.14, the

decision variables are defined as binary (0 or 1).

Definition of Lower Bound

The concept of the lower bound was initially introduced by Gökçen et al.

[160] as a theoretical construct representing the minimum number of stations

required to balance a parallel assembly line under specific conditions. The

original lower bound (LBo) is calculated using the following formula:

LBo =

⌈︄
M∑︂

m=1

∑︁Im
i=1 µim

CTm

⌉︄
, LBo ∈ N+ (4.15)

In Equation 4.15, the term µim denotes the deterministic component that

represents the average disassembly time. However, if the disassembly time is

treated as a stochastic variable, as Özcan discussed [158], the lower bound

(LB) for the proposed DLBP-SP model is modified accordingly, as shown in

Equation 4.16.
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LB =

⎡⎢⎢⎢
M∑︂

m=1

∑︁Im
i=1 µim + φ−1(1− α)

√︂∑︁Im
i=1 σ

2
im

CTm

⎤⎥⎥⎥ , LB ∈ N+ (4.16)

In this equation, the disassembly time is treated as a stochastic variable,

following a standard normal distribution. In practical applications, disassem-

bly times may increase due to unpredictable factors such as tool malfunctions

or components sticking, leading to a potential surpass the workstation’s cycle

time by the total disassembly time of the tasks assigned to it. To account for

this, a confidence level (1 − α) is employed to quantify the probability that

the total stochastic disassembly time of the assigned tasks remains within the

workstation’s cycle time. Following the approach from Özcan [158], this sub-

section adopts confidence levels of 0.9 and 0.975. Additionally, the random

variances in disassembly tasks are generated and categorised into low vari-

ance ([0, (µim/4)2]) and high variance ([0, (µim/2)2]), serving as the initial

parameters for the comparative experiments discussed in Section 4.4.

The Explanatory Example

In this subsection, a detailed example is presented to demonstrate the pro-

posed mathematical model for the DLBP-SP. The parallel disassembly line

presented in Figure 4.1 serves as the basis for this example, with the pre-

determined cycle time for each disassembly line (CTm) and relevant data on

various EoL products provided in Tables 4.2 and 4.3. The analysis assumes
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low task variances for the disassembly tasks, allowing for the calculation of

cycle time (CT ) and coefficient values (εm) using the Least Common Multiple

(LCM) method as derived from Equations 4.1 to 4.4. The adjusted infor-

mation for products A and B on the parallel disassembly lines is summarised

in Table 4.4.

Table 4.2: The information of product A on disassembly line 1.

Cycle Time of Disassembly Line 1 (CT1) 15

Task ID (i1) 1 2 3 4 5
Average disassembly time (µi1) 4 6 3 4 2

Variance (σ2
i1) 0.50 1.20 0.70 0.60 0.20

Precedence constraints - 1 1, 2 1, 2 1, 2

Table 4.3: The information of product B on disassembly line 2.

Cycle Time of Disassembly Line 2 (CT2) 20

Task ID (i2) 1 2 3 4 5 6
Average disassembly time (µi2) 3 4 2 6 7 4

Variance (σ2
i2) 0.40 0.30 0.10 1.20 1.50 0.30

Precedence constraints - 1 1, 2 1, 2, 3 1, 2 1, 2, 3, 4

Table 4.4: The modified information of product A and B on parallel disassembly lines.

CT = 60
ε1 = 4, ε2 = 3

TaskID A1 A2 A3 A4 A5 B1 B2 B3 B4 B5 B6
µ′
i 16 24 12 16 8 9 12 6 18 21 12

σ2′
i 8.00 19.20 11.20 9.60 3.20 3.60 2.70 0.90 10.80 13.50 2.70

The minimum number of workstations is determined to be 3, based on the

calculation from Equation 4.15. Table 4.5 presents a feasible optimal disas-
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sembly sequence, along with the corresponding task allocation and operating

rate.

Table 4.5: A feasible disassembly sequence of the DLBP-SP.

Number of Workstation 1 2 3

Sequential task ID A1 B1 A2 B2 B3 A3 A4 A5 B4 B5 B6
µ 16 9 24 12 6 12 16 8 18 21 12
i 8.00 3.60 19.20 2.70 0.90 11.2 9.60 3.20 10.80 13.50 2.70

Sum of 49 54 51
Operating rate (%) 76.67 90.00 85.00

This disassembly sequence obtains the theoretical minimum number of

workstations, qualifying it as one of the potential optimal solutions. However,

this solution is not unique. When considering the operating rate as an addi-

tional optimisation objective, it may no longer remains optimal. Conversely,

if both the number of workstations and the operating rate are optimised si-

multaneously, this solution could be considered a Pareto optimal solution.

To address this multi-objective optimisation, the following subsections will

introduce the proposed HH algorithm.

4.3 The Proposed Hyper-Heuristic Algorithm

for DLBP-SP

This section introduces the novel simulated annealing-based hyper-heuristic

algorithm (HH). The process begins with the representation and encoding

of the precedence constraints of EoL products using a precedence graph.

Following this, the operational procedure and framework of the proposed HH
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are described in detail. Lastly, the decoding process is outlined to illustrate

the multi-objective optimisation results achieved by the HH algorithm.

4.3.1 Encoding Strategy

All feasible disassembly sequences are required to comply with the precedence

constraints of EoL products. Following the approach from Bentaha et al.

[161], a precedence graph is utilised to construct the precedence matrix,

ensuring adherence to these constraints and facilitating the generation of a

feasible initial solution. The precedence matrix for EoL products is defined

using binary variables to represent the precedence relationships among the

components of EoL products. As illustrated in Equation 4.17, the precedence

matrix for an EoL product on disassembly line m is denoted as Pm:

Pm = [Pijm](Nm∗Nm),∀i, j = 1, 2, . . . , Nm;m = 1, 2, . . . ,M (4.17)

As shown in Equation 4.18, Pijm represents the precedence relationship

between disassembly task i and task j. The equation must satisfy the decision

variable:

Pijm =

⎧⎪⎨⎪⎩ = 1, if task i immediate predecessor of task j

= 0, otherwise
(4.18)
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Different EoL products are associated with varying precedence constraints.

To effectively manage these constraints within the context of the DLBP-SP,

a composite precedence matrix is developed. This matrix represents the re-

lationships among the different EoL products, as depicted in Equation (4.19)

[45]:

P ∗ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P1 0 0 0 0

0 . . . 0 0 0

0 0 Pm 0 0

0 0 0 . . . 0

0 0 0 0 PM

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.19)

The composite precedence matrix P ∗ is structured as a diagonal matrix,

where the precedence matrices for the various EoL products are placed se-

quentially along the diagonal, while all other elements in P ∗ are zero matrices.

For instance, in the illustrative example, the precedence graphs and cor-

responding precedence matrices for EoL products A and B are depicted in

Figure 4.2. The resulting composite precedence matrix P ∗ is presented in

Equation 4.20.
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(A) The precedence graph and matrix of product A.
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(B) The precedence graph and matrix of product B.

Figure 4.2: The precedence graph and matrix of product.

P ∗ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0

0 0 1 1 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
0

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 0 0 0

0 0 1 1 1 0

0 0 0 0 0 1

0 0 0 0 0 1

0 0 0 0 0 1

0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.20)
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The composite precedence matrix serves as the foundational input for

generating the initial solution in DLBP-SP. The steps involved in identifying

a feasible disassembly sequence are outlined below, based on the illustrative

example:

Step 1: Identify the disassembly tasks that do not have any predecessor

tasks, designating them as priority tasks. In this case, the priority disassem-

bly tasks would be A1 or B1.

Step 2: Once all priority disassembly tasks have been assigned, update

the composite precedence matrix accordingly. For example, prior to assigning

task A1, the original matrix element P ∗(A1, A2) equals 1. After assigning

task A1, the updated matrix element P ∗′(A1, A2) becomes 0. Additionally,

the upper-left sub-matrix becomes zero, allowing it to be removed during the

disassembly task sequencing process.

Step 3: Randomly select the next disassembly tasks from those that do

not have AND predecessor tasks or have OR predecessor tasks, such as A2

or B2.

Step 4: Repeat steps 2 and 3 until the composite precedence matrix P ∗

is reduced to P ∗ = [0]. At this point, all disassembly tasks in the DLBP-SP

will have been assigned and sequenced.

In the example provided, Table 4.5 illustrates one possible disassembly

sequence for the DLBP-SP. Although the constraints and components for

products A and B are relatively simple, the sequencing process becomes

increasingly complex as the scale of EoL products grows.
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4.3.2 Procedure of Proposed Hyper-Heuristic Algorithm

Distinct from conventional heuristic approaches, hyper-heuristics represent

a systematic method designed to select or create heuristics that effectively

address multi-objective optimisation challenges [162]. Typically, the struc-

ture of a hyper-heuristic framework facilitates the deployment of a high-level

heuristic algorithm (HLH), which orchestrates an array of low-level heuristic

algorithms (LLHs) to derive the best possible solution [163].

Low-Level Heuristic Algorithms

LLHs are crucial elements within the HH framework, significantly influencing

its complexity and effectiveness. In the design of LLHs, it is imperative to

adopt principles that are straightforward yet robust, to enhance the overall

efficacy of HH. This section utilises three distinct types of heuristic algorithms

as LLHs: the non-dominated sorting genetic algorithm 2 (NSGA2), strength

Pareto evolutionary algorithm 2 (SPEA2), and multi-objective evolutionary

algorithm based on decomposition (MOEAD). Each of these algorithms pos-

sesses unique strengths and limitations.

1. NSGA2 [164]: employs rapid sorting and an elitist strategy to enhance

the algorithm’s convergence and precision, while introducing a crowd-

ing distance measure to ensure diversity and even distribution of solu-

tions. NSGA2 demonstrates robust convergence capabilities in address-

ing multi-objective optimisation problems. Nevertheless, it is observed

that the distribution of optimal solutions produced by NSGA2 lacks
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uniformity.

2. SPEA2 [165]: utilises a fitness assignment strategy coupled with den-

sity information, making it well-suited for tackling multi-objective op-

timisation problems. This algorithm is characterised by its rapid con-

vergence and reduced computational complexity relative to the other

algorithms discussed.

3. MOEAD [166]: reformulates multi-objective optimisation problems into

several sub-scalar problems, each defined by a uniformly distributed

weight vector. It addresses each sub-scalar problem using an aggre-

gation function to optimise the overarching multi-objective challenges.

However, among the low-level heuristic algorithms discussed, MOEAD

exhibits the highest computational complexity.

The chosen three types of LLHs are comparatively straightforward and

apt for use within the HH framework. Each LLH necessitates the implemen-

tation of crossover and mutation processes to manipulate initial solutions and

produce a set of optimal solutions. The following subsection incorporates the

use of partially mapped crossover and single-point insertion mutation specif-

ically for the DLBP-SP scenario.

Partially Mapped Crossover

Generally, the random crossover method is preferred for its simplicity in

producing offspring solutions from optimal parental configurations. However,
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within the DLBP-SP context, this method may lead to infeasible solutions

that breach precedence constraints, thereby diminishing the effectiveness of

LLHs. Consequently, this subsection adopts the partially mapped crossover

method to enhance the performance of LLHs.

Consider the previous illustrative example where the operation of par-

tially mapped crossover is depicted in Figure 4.3. In this method, any two

feasible solutions may serve as parents, with the mapping section established

between two randomly selected crossover points. Within the exchange map-

ping section, a list for swapping is chosen, such as B2 ↔ A3, A5 ↔ A4. Sub-

sequent steps involve updating individuals that present conflicts according

to the mapping list, while non-conflict individuals are directly copied from

their respective parents. Ultimately, this process results in the generation of

offspring solutions.

Single-Point Insertion Mutation

Like the crossover operation, traditional random mutation methods often re-

sult in the creation of infeasible solutions. According to Wang et al. [45], the

single-point insertion mutation method enhances the performance of LLHs.

Illustrating this process, Figure 4.4 demonstrates the operation of single-

point insertion mutation. A mutation point, such as B3, is chosen randomly.

Subsequently, the predecessor and successor tasks, B2 and B6 respectively,

are identified. The chosen point, B3, must then be positioned either after B2

or before B6. In the original parental solution where B3 follows B2, the only
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A2 B2 B3 A3 A4 A5 B4 B5 B6B1A1Parent  1

A2 A3 B2 B3 A5 A4 B4 B5 B6A1B1Parent  2

A2 B2

B3 A3 A4

A5 B4 B5 B6B1A1Offspring 1

A2 A3

B2 B3 A5

A4 B4 B5 B6A1B1

Mapping

Sect ion

Offspring 2

Exchange mapping 

sect ion

Mapping 
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B3 A3 A4

B2 B3 A5

A2 A3 A4 B4 B5 B6B1A1Offspring 1

A2 B2 A5 B4 B5 B6A1B1Offspring 2 B3 A3 A4

B2 B3 A5

Crossover result

Figure 4.3: Operation process of the partial mapped crossover.

feasible offspring solution positions B3 immediately before B6.

B6B2 B3

Mutat ion Point

Predecessor

A2 A3 A4 B4 B5 B6B1A1Parent B2 B3 A5

Mutat ion 

result

A2 A3 A4 B4 B5 B6B1A1Offspring B2 A5

Successor

B3

Figure 4.4: Operation process of single-point insertion mutation.
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4.3.3 Simulated Annealing Based High-Level Heuris-

tic Algorithm

The HLH is a critical element that significantly impacts the overall effec-

tiveness of a HH system. The choice of an appropriate high-level strategy is

crucial for addressing optimisation problems effectively. Presently, HLHs are

classified into four main categories based on their operational mechanisms:

random selection, greedy strategy, meta-heuristic algorithms, and learning

methods [167]. In this subsection, the simulated annealing algorithm (SA) is

utilised as the HLH for the DLBP-SP scenario.

The SA algorithm is proficient in handling complex, parallel multi-objective

optimisation problems. It is noted for its straightforward computational

complexity and exhibits considerable robustness and versatility. However,

the efficacy of the SA algorithm is contingent upon the initial values and

pre-defined parameters; it also has a comparatively slow convergence rate.

Employing SA as the HLH in a HH framework can effectively circumvent

local optima and achieve superior global solutions by coordinating multiple

solution spaces derived from LLHs. The methodology for the SA-driven HH

is outlined in Algorithm 1.

4.3.4 Decoding Process

The decoding process involves assigning optimally sequenced disassembly

tasks to workstations while adhering to the cycle time constraints of DLBP-
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Algorithm 1 Proposed SA based HH.

Input: Objective Function, F ; Crossover, pc; Mutation, pm; Initial temper-
ature, T0; Stopping temperature, Tf ; Cooling rate, α; Initial population,
P0; Iteration time, K; Precedence matrix, P ∗; Population size, N

Output: Optimal solution set, S∗
1: t← 0
2: Random generate N individuals as the initial population
3: while t ≤ K or St ̸= St−1 do
4: for i = 1 to N do
5: Generate initial solution sets S0 through mapping, crossover (pc)

and mutation (pm) based on LLHs (Hi)
6: while T0 ≥ Tf do
7: Randomly select a heuristic hi ∈ Hi, combine S0 to generate

new solution sets through neighborhood mutation Si, Calculate ∆Ek =
F (S1)− F (S0)

8: if ∆Ek ≥ 0 then
9: S∗ = S1

10: else
11: generate a random number x ∼ U(0, 1)
12: if x < exp(−∆Ek/t) then
13: S∗ = S1

14: else
15: S∗ = S0

16: end if
17: end if
18: end while
19: end for
20: t = t + 1
21: end while

SP. As the illustrative example and optimal sequences in Table 4.5, un-

der specific conditions, the optimal minimum number of workstations is

3. The sequences of disassembly tasks allocated to each workstation are

as follows: K1 = A1 → B1 → A2, K2 = B2 → B3 → A3 → A4 → A5, and
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K3 = B4 → B5 → B6. According to the non-deterministic polynomial (NP)

characteristic of DLBP-SP, the optimal solution is not identical.

4.4 Computational Experiments

This section presents a comparative experiment and a case study. Initially,

the comparative experiment involves assessing the performance of the pro-

posed HH against existing algorithms using benchmark test datasets. Subse-

quently, a case study focusing on two types of industrial splitter gearboxes is

introduced. The outcomes of both the comparative experiment and the case

study are analysed and discussed in this section. The implementation of the

proposed HH was carried out using Python on a computer equipped with an

Intel(R) Core(TM) i7-9700K CPU at 3.6 GHz and 32 GB of RAM.

4.4.1 Comparison Experiment

The proposed HH algorithm is evaluated in comparison with existing meth-

ods. Specifically, it is benchmarked against the Tabu search algorithm (TS)

designed for addressing the stochastic parallel assembly line balancing prob-

lem as introduced from Özcan [158], and the genetic simulated annealing

algorithm (GSA) developed for solving the partially parallel stochastic dis-

assembly line balancing problem (DLBP), as introduced from Wang et al.

[45].
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Description of The Experiment Dataset

The benchmark datasets utilised in this experiment are sourced from Özcan

[158], encompassing 16 distinct named datasets, including those labelled as

Jaeschke, Jackson, etc. Each dataset comprises a varying number of dis-

assembly tasks, precedence constraints, and average process times for each

task. To suit applications in parallel disassembly lines, problems were gen-

erated by pairing datasets with themselves and with other datasets (e.g.,

Jaeschke-Jaeschke, Jackson-Jaeschke). This experiment considers 31 differ-

ent experimental problems, with a total of 372 experiments conducted using

various indicators such as cycle times (CT1, CT2), the number of tasks (N1,

N2), task variances, and confidence levels (0.9 and 0.975). The primary op-

timisation objective in these computational experiments is the number of

workstations (N). Comparative results for the TS and GSA algorithms are

derived from references [45, 158].

Results and Analysis

The findings of the computational experiments are detail presented in Ta-

bles 4.6 and 4.8. The proposed HH algorithm consistently achieves solutions

that are nearly identical to those of the existing algorithms under conditions

of low task variance, but with limited enhancements. Specifically, the HH’s

rates of obtaining identical solutions compared to the TS and GSA under

low task variance are 87.10% and 84.94% versus 73.12% and 80.64%, respec-

tively. Conversely, under high task variance conditions, the HH algorithm
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demonstrates significant improvement, achieving better solutions at rates of

89.24% and 97.84% compared to 86.02% and 97.84% for TS and GSA, respec-

tively. These results suggest that the HH algorithm performs comparably to

TS and GSA under low variance conditions, where the limited variety and

search space for mean disassembly times facilitate the attainment of optimal

solutions. Under high variance conditions, the expanded search space en-

ables the HH to outperform, confirming its superior efficacy in more complex

scenarios.

To assess the effectiveness of the proposed HH algorithm, the gap percent-

age (%Gap) from the LB, defined as LB = Min(K)−LB
LB

, has been introduced.

A lower %Gap indicates that the computed outcomes are closer to the the-

oretical minimum number of workstations, reflecting the performance of the

optimisation algorithm. According to the data presented in Table 4.8, the

%Gap from LB for confidence levels (1−α) = 0.9 and (1−α) = 0.975 under

low task variance are 9.37% and 14.29%, respectively. Under conditions of

high task variance, these gaps are 7.63% and 13.17%.

Comparative analysis with the TS and GSA algorithms shows that un-

der low task variance, the %Gap from the HH algorithm exhibits marginal

improvements. However, under high task variance, the %Gap reductions are

more significant: 9.2% for (1−α) = 0.9 and 8.86% for (1−α) = 0.975 relative

to TS, and 10.88% for (1 − α) = 0.9 and 17.84% for (1 − α) = 0.975 com-

pared to GSA. These results not only highlight the HH algorithm’s superior

performance in challenging scenarios but also its consistency across different
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task variances, demonstrating its stability.

The outcomes of the computational experiments substantiate that the

proposed HH algorithm is validated and demonstrates suitability for complex

and uncertain environments.

Table 4.6: Computational results (Part 1).

Problem N1 N2 CT1 CT2

Low task variances High task variance
(1− α) = 0.9 (1− α) = 0.975 (1− α) = 0.9 (1− α) = 0.975

LB TS GSA HH LB TS GSA HH LB TS GSA HH LB TS GSA HH

Jaeschke–Jaeschke 9 9
10 14 7 8 8 8 8 10 9 9 7 11 10 8 8 13 13 10
10 10 8 10 10 10 9 12 12 12 8 14 14 10 10 15 15 12
18 10 7 7 7 7 7 8 8 8 7 9 9 8 8 11 11 9

Jackson–Jaeschke 11 9
10 14 8 9 9 9 8 11 10 10 8 11 11 10 8 13 13 11
10 10 9 12 12 12 9 14 14 14 9 14 14 12 10 15 15 14
21 18 5 5 5 5 5 6 6 6 6 6 6 6 6 7 7 6

Jackson–Jackson 11 11
10 13 9 11 11 11 9 12 12 12 9 11 11 11 9 14 13 12
14 14 8 9 9 8 8 9 9 8 8 9 9 8 8 10 10 9
21 14 7 7 7 7 7 7 7 7 7 7 7 7 7 8 8 7

Roszieg–Jackson 25 11
18 21 11 11 11 11 11 12 12 12 11 13 12 11 11 14 13 12
21 21 10 10 10 10 10 11 10 10 10 11 10 10 10 12 12 11
25 14 10 10 10 10 10 11 11 11 11 11 11 11 10 12 12 11

Roszieg–Roszieg 25 25
18 25 14 14 14 15 14 15 15 15 14 16 16 15 14 17 17 16
21 21 13 15 14 15 14 16 15 15 14 16 16 15 14 18 17 16
32 25 11 11 11 11 11 11 11 11 11 11 11 11 11 13 12 11

Sawyer-Roszieg 30 25
41 32 13 15 14 14 13 15 15 15 14 16 15 15 14 17 17 15
47 25 14 14 14 14 14 15 15 15 14 16 15 14 14 18 17 15
54 21 13 14 14 14 14 15 15 15 14 16 15 14 14 18 17 15

Sawyer- Sawyer 30 30
36 41 18 21 20 21 18 22 22 22 19 24 22 21 19 27 26 23
36 36 19 22 22 23 19 24 24 25 20 25 24 23 20 28 28 25
75 54 11 12 12 12 11 13 13 13 12 13 13 12 12 14 14 13

Gunther-Sawyer 35 30
61 75 14 15 15 15 14 16 16 16 14 17 16 15 14 19 18 16
69 54 14 16 15 16 14 17 17 17 15 18 17 16 15 20 19 17
81 36 16 19 18 19 16 20 19 20 17 21 20 19 17 24 23 20

Gunther- Gunther 35 35
61 69 17 19 19 19 17 20 20 20 17 22 21 19 17 25 24 21
69 69 16 18 17 18 16 19 19 19 16 20 20 18 16 24 22 19
81 61 15 17 17 17 16 18 18 18 16 20 19 18 16 23 22 19

Kilbridge-Gunther 45 35
79 81 14 15 15 15 15 16 16 16 15 17 17 15 15 19 19 16
69 69 17 18 18 18 17 19 19 19 17 20 19 18 17 22 22 20
184 61 12 13 13 13 12 14 14 14 13 15 15 13 13 17 16 14

Kilbridge- Kilbridge 45 45
79 184 11 12 12 12 12 12 12 12 12 12 12 12 12 13 13 12
92 92 13 14 14 14 14 15 15 15 14 15 15 14 14 16 16 15
138 110 10 10 10 10 11 11 11 11 11 11 11 11 11 12 12 11

Hahn- Kilbridge 53 45
2338 92 13 14 14 14 14 15 15 15 14 15 15 14 14 16 16 15
2004 69 16 18 18 18 17 19 19 19 17 19 19 18 17 21 21 19
2338 184 10 10 10 11 11 11 11 11 11 11 11 11 11 12 12 11

Hahn-Hahn 53 53
2004 4676 11 12 12 12 11 13 13 13 12 13 13 12 12 14 14 13
2806 2806 11 12 12 12 11 13 12 12 12 13 12 12 12 14 15 13
4676 3507 8 8 8 8 8 9 8 8 9 9 9 9 9 9 9 9

4.4.2 Case Study

This subsection implements the proposed HH algorithm for the multi-objective

optimisation of the DLBP-SP involving two similar types of gearboxes from
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Table 4.7: Computational results (Part 2).

Problem N1 N2 CT1 CT2

Low task variances High task variance
(1− α) = 0.9 (1− α) = 0.975 (1− α) = 0.9 (1− α) = 0.975

LB TS GSA HH LB TS GSA HH LB TS GSA HH LB TS GSA HH

Tonge-Hahn 70 53
293 2004 20 22 22 23 16 24 24 24 21 25 25 23 21 28 27 24
410 2806 14 13 13 16 14 14 14 17 15 14 14 16 15 16 16 17
468 3507 12 13 13 13 12 14 14 14 13 14 14 13 13 16 16 14

Tonge- Tonge 70 70
364 410 19 21 21 21 19 22 22 22 19 23 23 21 19 26 26 22
468 468 16 17 17 17 16 18 18 18 16 19 19 17 16 21 21 18
527 293 19 22 22 22 19 23 23 23 20 24 24 22 20 27 27 23

Wee-Mag-Tonge 75 70
50 320 42 55 50 55 42 63 62 64 43 63 62 56 43 71 67 65
52 364 40 48 45 48 40 57 55 57 40 60 56 54 40 66 62 61
54 527 35 42 40 41 36 49 44 48 35 54 48 41 36 58 56 53

Wee-Mag-Wee-Mag 75 75
50 56 57 77 67 77 57 95 90 95 58 103 98 79 59 113 109 98
52 52 58 82 74 81 58 104 103 105 60 107 104 82 60 113 112 107
56 54 54 67 65 67 55 83 76 82 55 97 91 69 57 108 106 85

Arcus83-Wee-Mag 83 75
5048 50 45 59 54 58 46 67 63 65 47 70 63 60 47 74 72 68
5408 54 42 50 49 50 42 56 55 56 43 62 60 51 44 70 69 58
5853 56 39 47 46 47 39 51 49 51 40 58 54 48 41 66 61 51

Arcus83- Arcus83 83 83
5048 5408 29 34 34 34 29 36 35 36 31 38 37 34 31 43 42 36
6883 6883 22 25 25 25 22 26 26 26 24 28 28 25 24 31 31 27
8898 6309 20 23 23 23 20 24 24 24 22 26 26 24 22 29 29 25

Lutz3-Arcus83 89 83
110 6309 29 31 31 31 29 33 33 33 29 35 35 31 29 39 38 33
127 7571 25 27 26 27 25 28 28 28 25 29 29 27 25 32 32 28
150 8898 21 22 22 22 21 23 23 23 21 24 24 22 21 27 27 23

Lutz3- Lutz3 89 89
110 150 28 30 30 30 28 32 32 32 28 33 33 31 28 37 37 32
118 118 30 33 33 33 30 35 34 35 30 37 36 33 30 41 40 35
137 127 27 29 29 29 27 31 31 31 27 32 32 29 27 36 36 31

Mukherje-Lutz3 94 89
301 137 28 30 30 30 28 32 32 32 28 33 33 31 28 37 37 32
324 118 29 31 31 31 29 33 33 33 29 35 35 32 29 39 38 34
351 150 25 26 27 26 25 28 28 28 25 29 29 27 25 32 32 28

Mukherje- Mukherje 94 94
301 301 29 33 33 33 29 35 35 35 30 36 36 33 30 40 40 35
301 351 27 30 30 30 27 32 32 32 28 33 33 30 28 37 37 32
351 324 26 29 29 29 26 31 31 31 27 32 32 29 27 36 35 31

Arcus111- Mukherje 111 94
8847 301 32 36 36 36 32 39 38 39 33 40 40 37 33 45 45 39
9400 324 30 34 34 34 30 36 36 36 31 38 37 34 31 42 42 36
10027 351 28 31 31 31 28 33 33 33 29 35 34 32 29 39 38 33

Arcus111- Arcus111 111 111
8847 9400 34 39 39 39 34 42 41 42 35 44 43 40 35 49 48 42
11378 11378 28 31 31 31 28 33 32 33 28 33 33 31 28 37 37 33
17067 10743 23 26 26 26 23 28 28 28 24 29 29 26 24 32 32 28

Bartholdi-Arcus111 148 111
564 11378 25 26 26 26 25 28 28 28 25 29 29 26 25 31 31 28
705 11570 22 24 24 24 22 25 25 25 23 26 26 24 23 28 28 25
805 7571 28 31 31 31 28 33 33 33 28 35 34 31 28 37 38 33

Bartholdi- Bartholdi 148 148
513 564 22 23 24 23 22 24 25 24 23 25 25 23 23 27 28 24
626 626 19 20 20 20 19 21 21 21 20 21 22 20 20 23 23 21
805 705 16 17 17 17 16 17 17 17 17 18 18 17 17 19 19 18

Lee-Bartholdi 205 148
1510 564 26 28 29 28 26 30 30 30 27 31 31 28 27 34 34 30
2077 626 21 22 23 22 21 23 23 23 22 24 24 22 22 26 26 23
2832 705 17 18 18 18 17 19 19 19 18 19 19 18 18 20 21 19

Lee-Lee 205 205
1699 2643 23 25 25 25 23 26 26 26 23 27 27 25 23 29 29 26
2266 2266 22 23 23 23 22 23 24 24 22 24 24 23 22 26 26 24
2832 2454 19 19 20 20 19 20 20 20 19 21 21 20 19 22 22 21

Scholl-Lee 297 205
1935 2831 46 50 50 50 46 52 52 52 46 54 54 50 46 60 60 52
2247 1699 46 50 50 50 46 53 53 53 46 54 54 50 46 60 60 52
2787 1510 42 45 45 45 42 47 47 47 42 49 49 45 42 53 53 47

Scholl- Scholl 297 297
2049 2680 62 68 67 67 67 71 71 71 62 73 73 68 62 81 81 71
2111 2111 68 75 75 75 68 78 78 78 68 82 81 75 68 90 90 79
2787 2247 58 63 63 63 58 66 66 66 58 68 68 63 58 75 74 66

Hansa Tmp Co., Ltd. The efficacy of the HH algorithm is evidenced by the

number of non-dominated solutions it yields in comparison to both LLHs

(NSGA2, SPEA2, and MOEAD) and the conventional SA algorithm. The
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Table 4.8: Analysis of the computational results.
Computational Results analysis

VS TS VS GAS
Low task variance High task variance Low task variance High task variance

(1− α) = 0.9 (1− α) = 0.975 (1− α) = 0.9 (1− α) = 0.975 (1− α) = 0.9 (1− α) = 0.975 (1− α) = 0.9 (1− α) = 0.975
Number of better solutions 6 9 83 91 5 1 80 91

Number of identical solutions 81 79 9 1 68 75 12 1
Number of worse solutions 6 5 1 1 20 17 1 1

Rate of better solutions (%) 6.45% 9.68% 89.24% 97.84% 5.38% 1.08% 86.02% 97.84%
Rate of identical solutions (%) 87.10% 84.94% 9.68% 1.08% 73.12% 80.64% 12.90% 1.08%

Rate of worse solutions (%) 6.45% 5.38% 1.08% 1.08% 21.50% 18.28% 1.08% 1.08%
%Gap of TS and GAS 9.67 14.37 16.83 22.03 9.51 16.98 18.51 31.01

%Gap 9.37 14.29 7.63 13.17 -

advantage of the HH algorithm is particularly highlighted by its ability to

generate a higher number of non-dominated solutions. Additionally, the sta-

bility and robustness of the HH algorithm are further corroborated by the

hyper-volume index, reinforcing its effectiveness in handling complex optimi-

sation scenarios.

Descriptions of The Gearboxes

Gearboxes represent a prevalent and fundamental type of industrial machin-

ery. On one hand, most malfunctions in splitter gearboxes typically involve

minor issues with a single component while the majority of primary com-

ponents remain fully operational, as noted by Wang et al. [168]. On the

other hand, the configuration of components within a gearbox is relatively

straightforward, theoretically permitting complete disassembly without the

need for destructive methods. Consequently, gearboxes hold significant po-

tential for remanufacturing. This case study considers two similar models of

gearboxes, specifically the splitter gearbox series 85000 and 90000, as detailed

in Appendix 8.1.

This case study concentrates exclusively on gathering information perti-

nent to the disassembly process, thus it does not take into account detailed
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operational parameters and data. Information on the installation of the split-

ter gearboxes is compiled, which includes the type and quantity of compo-

nents (expressed as average disassembly process time), variance in operation

times, and revenue derived from each disassembled component.

Comprehensive details on the bill of materials and associated relation-

ship constrains of the components for these gearboxes are obtained from an

open-source platform, the link to which is provided in Appendix 8.1. More-

over, the related data (mean process time and deviation) are referenced from

Marruganti and Frizziero [169], where 1 time measurement unit (TMU) is

proposed to represent 0.0036 seconds. Based on the open-source platform

and a similar disassembly process used in this case study, the related data

have been simulated and calculated, as presented in Appendix 8.1.

The splitter gearbox series 85000 comprises 30 parts, while the series

90000 contains 35 parts. The exploded views of both gearbox series are illus-

trated in Figure 4.5, sourced from an open-source catalogue and detailed in

the materials section. The precedence constraints and disassembly sequences

for the splitter gearboxes series 85000 and 90000 are developed based on the

spare parts list and the manufacturing processes. The disassembly procedure

is conceptualised as the reverse of the manufacturing process, with arrows

in the diagrams indicating the immediate precedence of each disassembly

task. This case study assumes that both series of splitter gearboxes can

be completely disassembled without destructive processes. The precedence

relationships for both series are depicted in Figure 4.6.
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(a) Series 85000 (b) Series 90000

Figure 4.5: Explosion diagram of splitter gearboxes.
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Figure 4.6: Precedence relationship of splitter gearboxes.

Experiments and Analysis

In this subsection, various combinations of cycle times for each disassembly

line are established. The cycle times of each parallel disassembly line are

set as CT1 = {8, 27, 50, 60, 90} and CT2 = {10, 24, 60, 65, 108}, respectively.

The combination of different experimental parameters is shown in Table 4.9.

For each algorithm involved in this experiment, the initial population is

set to 50 individuals. The probabilities for crossover and mutation in the

relevant algorithms are determined to be 0.8 and 0.2, respectively. Addi-

tionally, the initial temperature for processes requiring thermal parameters

is established at 200, with a cooling rate of 0.975. The process is designed
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to continue until reaching a final minimum temperature of 10.

Table 4.9: The combination of experiment parameters.

No. CT1 CT2 No. CT1 CT2 No. CT1 CT2 No. CT1 CT2

1 8 11 8 27 65 15 39 89 22 84 24
2 8 24 9 27 72 16 67 11 23 84 65
3 8 65 10 27 89 17 67 24 24 84 72
4 8 72 11 39 11 18 67 65 25 84 89
5 8 89 12 39 24 19 67 72
6 27 11 13 39 65 20 67 89
7 27 24 14 39 72 21 84 11

Table 4.10 outlines three optimisation objectives alongside the number

of non-dominated solutions derived from various experiments. It is observed

that when the cycle time for one disassembly line is fixed, the required number

of workstations (K) decreases as the cycle time for the other line increases.

In a specific instance where both disassembly lines have the same cycle time

(CT1 = CT2 = 60), the minimum workload smoothness index (I) and the

maximum profit (P ) are realised, highlighting a unique scenario for parallel

disassembly lines. Nevertheless, there is no direct correlation between I and

P ; for example, experiments 7 and 8, 13 and 14 yield similar I values but

markedly different P outcomes. Additionally, three experiments resulted in

costs that deem them impractical to consider further.

Moreover, a higher count of non-dominated solutions is indicative of supe-

rior performance by the optimisation algorithm. The results from Table 4.10

demonstrate that the proposed hyper-heuristic (HH) algorithm is capable of

achieving a significantly greater number of non-dominated solutions, regis-

tering the highest count in 24 out of 25 experiments.
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Table 4.10: Multi-objective optimisation results and the number of non-
dominated solutions.
No. CT1 CT2 K I P MOEAD SPEA2 NSGAII SA HH

1 8 10 51 781.8 359.8 6 6 7 6 7
2 8 24 39 421.3 495.8 5 5 6 5 6
3 8 60 31 1866.6 479.8 6 6 7 7 7
4 8 65 31 8127.6 79.8 6 6 7 7 7
5 8 108 29 3259.8 403.8 7 7 8 7 7
6 27 10 38 3991.9 259.8 8 8 8 8 8
7 27 24 25 620.2 443.8 5 5 5 5 5
8 27 60 16 619.8 209.8 9 9 9 9 10
9 27 65 15 1767.9 −995.2 10 10 11 11 11
10 27 108 13 102.9 671.8 6 6 7 6 7
11 50 10 33 681.2 529.8 6 6 6 6 6
12 50 24 20 1505.8 109.8 5 5 5 5 5
13 50 60 11 124.1 499.8 7 7 8 7 8
14 50 65 10 127.9 159.8 6 6 8 7 8
15 50 108 8 486.8 −1870.2 9 9 10 10 10
16 60 10 32 803.4 529.8 6 6 6 6 6
17 60 24 19 290.9 599.8 3 3 3 3 3
18 60 60 10 19.9 749.8 11 10 10 11 11
19 60 65 9 142.6 39.8 6 6 7 6 7
20 60 108 7 46.6 299.8 3 3 3 3 3
21 90 10 30 1154.6 519.8 6 6 7 6 7
22 90 24 17 797.4 379.8 6 6 6 6 6
23 90 60 8 25.3 649.8 6 6 7 6 7
24 90 65 8 256.3 −340.2 6 6 7 6 7
25 90 108 6 116.0 309.8 10 10 10 10 10

Best number in 25 times 8 7 22 12 24
Rate (%) 32 28 88 48 96

Tables 4.11-4.13 highlight three selected optimal solutions derived from

different cycle time combinations for detailed analysis.

Table 4.11 presents an optimal solution for the cycle times CT1 = 50, CT2 =

60. The corresponding Gantt chart, shown in Figure 4.7, provides a visual

representation of the disassembly tasks allocation. This solution achieves

a minimum of 11 workstations, with workstation 6 dedicated solely to dis-
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assembly line 1, while the remaining workstations serve both lines. The

workload balancing index is recorded at 124.12, and the total profit from the

disassembly operations amounts to 499.8. The utilisation rates of the work-

stations vary from 96.1% to 61.4%, with the first two workstations showing

relatively lower rates due to the time-intensive nature of certain tasks (such

as B5 and A21), which pose challenges in practical application. Excluding

these two, the utilisation rates of the other nine workstations exceed 85%.

Table 4.11: One optimal sequence of the disassembly process (CT1 =
50, CT2 = 60).
Workstation

No.
Working load

balance
Profit Time ∆(%)

Task sequence on
each workstation

1

124.12 499.8

184.2 61.4%
‘A6’→‘B5’→‘B35’→‘B2’→

‘B20’
2 239.0 79.7% ‘A21’→‘B6’→‘A10’

3 287.5 95.8%
‘B18’→‘B1’→‘B3’→‘B34’→

‘B19’→‘B12’→‘B4’
4 281.0 93.7% ‘A1’→‘B13’→‘A19’→‘B33’→‘A7’
5 265.5 88.5% ‘B17’→‘A20’→‘A18’→‘A17’

6 260.0 86.7%
‘B16’→‘B15’→‘B14’→‘B21’→

‘B22’→‘B29’

7 288.8 96.3%
‘A2’→‘A22’→‘A23’→‘B32’→

‘A3’→‘B11’→‘B28’
8 271.5 90.5% ‘A24’→‘A14’→‘A5’→‘B8’

9 279.8 93.2%
‘B25’→‘A25’→‘A16’→‘B7’→

‘B23’→‘B9’

10 279.2 93.0%
‘A26’→‘A27’→‘A9’→‘B24’→
‘A13’→‘B27’→‘A15’→‘B31’→

‘A4’→‘B26’→‘A29’

11 289.0 96.3%
‘A30’→‘B30’→‘A28’→‘A12’→

‘B10’→‘A8’→‘A11’

Table 4.12 details an optimal solution derived under the condition where

the cycle times for both disassembly lines are identical (CT1 = CT2 = 60),

representing a unique case within parallel disassembly line configurations.
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This scenario facilitates a minimum of 10 workstations. The working load

balancing index is notably low at 19.87, while the total profit from the dis-

assembly process amounts to 749.8. The utilisation rates for all worksta-

tions exceed 85.0%. The exceptionally low workload balancing index and

the maximization of revenue are attributed to the uniform cycle times across

disassembly lines, which allows for optimal workstation performance without

inter-line conflicts.

Table 4.12: One optimal sequence of the disassembly process (CT1 = CT2 =
60).
Workstation

No.
Working load

balance
Profit Time ∆(%)

Task sequence on
each workstation

1

19.87 749.8

53.0 88.3%
‘A19’→‘B35’→‘B2’→‘A6’→

‘A18’→‘B1’
2 56.6 94.3% ‘B5’→‘A21’

3 44.6 89.2%
‘A1’→‘B20’→‘A20’→‘A7’→

‘A10’→‘B18’

4 57.8 96.3%
‘B17’→‘B19’→‘B16’→‘B3’→

‘B6’→‘B34’

5 57.6 96.0%
‘A17’→‘A2’→‘B4’→‘B12’→
‘B15’→‘A22’→‘A14’→‘B13’

6 51.0 85.0%
‘A23’→‘B3’→‘B14’→‘B21’→
‘A5’→‘A24’→‘A13’→‘A3’→

‘A15’

7 55.4 92.3%
‘A16’→‘A4’→‘A9’→‘A25’→
‘A29’→‘A30’→‘A12’→‘A8’

8 58.4 97.3%
‘B22’→‘B11’→‘B29’→‘A26’→

‘B28’→‘A27’→‘B25’

9 49.2 82.0%
‘A28’→‘B32’→‘B8’→‘B9’→

‘A11’

10 53.8 89.7%
‘B7’→‘B27’→‘B31’→‘B10’→
‘B23’→‘B24’→‘B26’→‘B30’

Table 4.13 outlines an optimal solution for the cycle times CT1 = 90, CT2 =

108, which represent the longest duration considered in this case study. This
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configuration results in a minimum of six workstations, a working load bal-

ancing index of 115.97, a total profit from the disassembly process of 309.8,

and workstation utilisation rates ranging from 96.1% to 76.6%. When com-

pared to the scenario with cycle times CT1 = 50, CT2 = 60, there is a

slight reduction in the working load balance and a decrease in overall profit.

This comparison suggests that longer cycle times do not necessarily enhance

performance, as they can lead to prolonged operational duration without

necessarily improving workstation utilisation rates. Therefore, it is crucial

to carefully determine the cycle times for each parallel disassembly line dur-

ing the initial design phase, particularly in the context of disassembling EoL

products.
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Figure 4.7: The Gantt chart of optimal solution (CT1 = 50, CT2 = 60).

Additionally, this case study utilises the hypervolume index as a metric
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Table 4.13: One optimal sequence of the disassembly process (CT1 =
90, CT2 = 108).
Workstation

No.
Working load

balance
Profit Time ∆(%)

Task sequence on
each workstation

1

115.97 309.8

490.9 90.9%
‘B5’→‘A19’→‘B12’→‘B6’→
‘B1’→‘A7’→‘A10’→‘B18’

2 508.1 94.1%
‘B17’→‘A21’→‘A18’→‘A1’→
‘B34’→‘B20’→‘B2’→‘B13’→

‘B35’

3 512.2 94.9%
‘B4’→‘B19’→‘B16’→‘B3’→

‘A6’→‘A20’→‘A17’→‘B15’→
‘B14’→‘B33’→‘A2’→‘B21’

4 519.1 96.1%
‘B22’→‘B29’→‘B11’→‘B28’→
‘B25’→‘A22’→‘B8’→‘A14’→

‘B9’→‘B32’

5 481.4 89.1%

‘A16’→‘B10’→‘A3’→‘B7’→
‘B23’→‘A9’→‘B24’→‘A23’→
‘B27’→‘A24’→‘A25’→‘A26’→

‘A5’

6 413.8 76.6%

‘A12’→‘A13’→‘B31’→‘A15’→
‘B26’→‘B30’→‘A30’→‘A8’→
‘A11’→‘A29’→‘A27’→‘A4’→

‘A28’

to assess the efficacy of the proposed HH algorithm. The hypervolume in-

dex quantifies the volume encompassed by the hypercube formed between

individual points in the solution set and a reference point within the target

space [170]. This metric is particularly apt for evaluating both the con-

vergence and the distribution of solution sets derived from multi-objective

optimisation algorithms. Superior performance of the algorithm is indicated

by a higher average hypervolume value and a reduced number of outliers,

reflecting better convergence and uniform distribution of solutions.

From the analysis of three disassembly schemes described earlier, the re-
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sults for three hypervolume indices are depicted in Figure 4.8. The data illus-

trate that the HH algorithm consistently achieves superior outcomes, devoid

of outliers within its solution sets. The performance of low-level heuristic

algorithms appears comparable, indicating a minimal performance disparity

among them, with the basic SA algorithm outperforming these lower-level

heuristics. The extent of convergence and distribution is represented by the

span of the box plot. Among all evaluated algorithms, the HH algorithm

demonstrates the most effective convergence and the most uniform distribu-

tion.

Figure 4.8: Box plots of hypervolume.
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Experiments Discussion and Conclusion

In conclusion, the effectiveness and superior performance of the proposed

HH algorithm are confirmed through comparative analysis with both the TS

and GSA. Employing two types of splitter gearboxes as a case study, the HH

algorithm was utilised for multi-objective optimisation in the disassembly of

industrial equipment. The algorithm’s enhanced performance is substanti-

ated by the quantity of non-dominated solutions it produces. Furthermore,

evaluations using the hypervolume index demonstrate the HH algorithm’s

stability and robustness relative to low-level heuristic algorithms and the

simulated annealing (SA) algorithm.

The primary aim of this section is to propose the mathematical model and

develop a methodology to optimise the DLBP-SP, setting a foundation for

implementing parallel disassembly lines in practical settings. Nevertheless,

the current approach has limitations, notably the absence of dynamic plan-

ning and real-time monitoring capabilities. Recent advancements in sensing

technologies present opportunities to enhance the intelligence and efficiency

of these parallel disassembly lines. For instance, mobile visual sensor systems

could be incorporated for real-time monitoring, allowing for the detection of

anomalies and failures that facilitate dynamic planning and further optimi-

sation of the disassembly processes [171]. Additionally, the integration of

autonomous robotics, automated guided vehicles (AGVs), and smart sensor

devices holds considerable promise. As described by Indri et al. [172], a vir-
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tual sensor network could be embedded into parallel disassembly lines to aid

in manual robot guidance and collision detection. This network, equipped

with a variety of physical sensors like light beamers, vision sensors, and HD

cameras, could offer real-time decision-making capabilities to enhance oper-

ational efficiency. Future research will explore the integration of these varied

sensing technologies into the proposed methodology.

4.5 Chapter Summary

This chapter presents a workshop-level demonstration of the proposed con-

ceptual framework of CPRS. The introduced HH algorithm effectively man-

ages the disassembly sequencing and optimises associated objectives for a

diverse and substantial quantity of EoL products. There are two main re-

search contributions:

Firstly, this chapter develops the mathematical model of DLBP-SP in

remanufacturing context. This model more accurately reflects the uncer-

tainties inherent in EoL products by incorporating stochastic disassembly

times. An illustrative example underscores the complexity involved in man-

aging stochastic parallel disassembly lines and highlights the necessity for

advanced algorithms that optimise key performance metrics like cycle time

and throughput.

Secondly, the other contribution of the chapter details the specialised HH

algorithm proposed for DLBP-SP, describing its distinctive elements such

as the encoding strategy, the algorithm’s procedural framework, and the
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integration of low-level heuristic algorithms with innovative operations like

partially mapped crossover and single-point insertion mutation. The simu-

lated annealing-based high-level heuristic algorithm plays a crucial role in

efficiently navigating the solution space, employing a temperature-controlled

exploration process that adeptly balances between exploration and exploita-

tion. The decoding process is intricately detailed, illuminating how solutions

are translated into practical adjustments on the parallel disassembly lines.

Subsequent computational experiments validate the proposed HH algo-

rithm’s effectiveness, featuring comparative analyses with existing methods

and a case study on gearbox disassembly that collectively highlight the algo-

rithm’s enhanced performance in optimising disassembly line configurations

under uncertain conditions. The comparison experiment results show that

under low task variance, the rates of obtaining identical solutions are 87.10%,

84.94%, and for high task variance, the rates of achieving better solutions

are 89.24%, 97.84%, respectively, compared to the TS and GSA algorithms,

confirming the algorithm’s validity and superiority.

Furthermore, the case study in this chapter is pioneering in applying the

DLBP-SP to gearboxes, demonstrating their suitability for complete non-

destructive disassembly. The research outlines the potential to extend and

adapt this approach to design parallel disassembly lines for a vast array of

gearbox types within remanufacturing systems. The multi-objective optimi-

sation performed in the case study involving two gearbox types shows that

the proposed HH algorithm produces the highest number of non-dominated
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solutions relative to four other basic algorithms. Additionally, the hyper-

volume index box plots of the proposed algorithm show the highest mean

number and absence of noise points, evidencing improved stability and con-

vergence. The versatility of the proposed HH solution is further validated

across both single and multiple optimisation problems.
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5
An ontology and rule-based method for human-robot

collaborative disassembly planning in CPRS

5.1 Introduction

Unlike the advanced automation and intelligence characterising assembly pro-

cesses, disassembly operations remain nascent, largely due to unpredictable

variations in quality and failure mechanisms inherent in EoL products [173].

Consequently, there is significant value in developing models and manage-
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ment strategies for these EoL products. Most disassembly operations are

currently performed manually, resulting in inefficiencies and elevated costs.

The incorporation of industrial robots into these processes is seen as a poten-

tial solution to enhance both automation and intelligence. Industrial robots,

known for their precision, sensitivity, and consistency, excel at executing ba-

sic and repetitive tasks in disassembly, ensuring uniform performance [174].

Nevertheless, these robots have not yet achieved the capability to completely

eliminate the need for human intervention in the disassembly process [175].

In cases involving complex or ambiguous tasks, the inflexible nature of robot

operations, combined with a lack of situational awareness, can lead to the in-

advertent damage of valuable components, diminishing their remaining value

[176].

Within the scope of modern semi-automatic manufacturing, HRCD has

emerged as an optimal approach. In this paradigm, industrial robots are

deployed for basic and repetitive tasks, simultaneously aiding humans with

more complex disassembly activities [177]. Human operators, equipped with

comprehensive information about EoL products, are able to make informed,

adaptive decisions that facilitate the seamless execution of tasks, thus en-

hancing overall disassembly efficiency [178]. The HRCD method leverages

the strengths of both human and robotic capabilities, advancing automation

and intelligence while retaining essential flexibility and adaptability [179].

This collaborative model effectively mitigates the uncertainties inherent in

disassembly processes, thereby improving operational efficiency.
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Nevertheless, HRCD sequence planning encounters several obstacles:

1. The variability and unpredictability of EoL products mean that existing

product information models are inadequate and not effectively tailored

for HRCD applications. There is an absence of a standardised, universal

model that can efficiently encapsulate the diversity of EoL products.

2. Presently, common strategies for devising and identifying the opti-

mal disassembly sequence typically employ heuristic optimisation algo-

rithms. These algorithms, however, yield results and procedural steps

that are challenging to interpret and confirm as optimal. It would be

more beneficial to develop a new, structured, and easily interpretable

method that ensures optimal planning and execution of disassembly

sequences and schemes.

3. Disassembly itself is a divergent process, involving the breakdown of

EoL products into subassemblies or components, which can often be

conducted simultaneously. Within the HRCD framework, various dis-

assembly approaches may be applied to each individual task. Conse-

quently, there exists a plethora of potential disassembly methods and

sequences, complicating the identification of the most suitable scheme,

particularly for complex EoL products.

To overcome these challenges, this chapter concentrates on the individual-

level of CPRS, introducing a general ontology model and a rule-based ap-

proach for the HRCD sequence planning of EoL products.
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The proposed disassembly-related ontology model captures and stores

knowledge pertinent to each component of EoL products, offering a standard-

ised and structured framework for knowledge representation in human-robot

collaborative disassembly. This facilitates the systematic organisation and

management of disassembly knowledge, allowing for rapid extraction from

extensive data associated with EoL products. Building on this foundation,

a Semantic Web Rule Language (SWRL) rule-based reasoning method for

HRCD has been developed. This method determines the precedence con-

straints and potential disassembly methods for each task, leading to the

formulation of an optimal disassembly plan. To demonstrate the practicality

of these methods, the chapter includes a case study on the HRCD planning

of a gearbox. The comprehensive workflow of this chapter is depicted in

Figure 5.1.

The subsequent sections of this chapter are structured as follows: Sec-

tion 5.2 details the development of the ontology for human-robot collabo-

rative disassembly and outlines the semantic model for EoL products. Sec-

tion 5.3 explicates the established rules for reasoning and formulating the

optimal disassembly scheme. Section 5.4 showcases a case study that evalu-

ates the viability and effectiveness of the proposed methodology. A summary

of this chapter is provided in Section 5.5.
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Figure 5.1: Overall workflow of this chapter.

5.2 HRCD Ontology and Product Semantic

Model

This subsection introduces the ontology for HRCD. It formalises and seman-

tically represents information related to the disassembly processes of EoL

products.
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5.2.1 The Proposed HRCD Ontology

A domain ontology is crafted to encapsulate the knowledge within a specific

area, providing a semantic framework that details the concepts and their in-

terrelations within that domain [180]. The primary objective of constructing

such an ontology is to consolidate related knowledge, which aids in resolving

ambiguities and reducing redundancies across concepts and terminologies.

This type of ontology fosters a standardised, shared, and comprehensive un-

derstanding of the domain-specific knowledge [181]. The development pro-

cess of an ontology involves delineating a set of classes, object properties,

and data properties [182]. Classes are defined as collections of instances that

exhibit common properties or characteristics. These classes are linked and

interact via object properties. Instances, which are the core elements of the

ontology model, act as the objects [183].

The class hierarchy within the proposed ontology for HRCD is illustrated

in Figure 5.2. At the apex of this hierarchy sits the class designated as

owl:Thing, which encompasses all conceivable entities. This ontology intro-

duces twelve subclasses under owl:Thing, each specifically devised to encap-

sulate the knowledge pertinent to HRCD. These subclasses provide a struc-

tured vocabulary and framework for the upper ontology, rooted in essential

concepts.

Two subclasses are proposed to describe the EoL product-level structure:

1. Product (p) denotes an abstract concept encompassing a set of EoL
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Figure 5.2: The class hierarchy of the proposed HRCD ontology.

products, which serve as the focal point of research in remanufacturing.

This concept may apply to any mechanical product approaching the

end of its life-cycle.

2. Subassembly (sa) refers to a group of components that, when com-

bined, function collectively as a unit within a larger assembly or prod-

uct. Typically assembled in a specific sequence during manufacturing,

a subassembly (sa) is considered a singular component within an EoL

product during disassembly. This classification simplifies the disassem-

bly process by reducing the total number of individual components and

potential disassembly sequences required for EoL products.

The aforementioned two subclasses are commonly utilised in product-
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level modelling. In contrast to conventional classifications and modelling

techniques at the component level, this study proposes three unique cate-

gories for modelling the components of EoL products. These categories are

designed to align with the performance demands of the disassembly process

in remanufacturing.

1. FunctionalPart (fp) refers to a category of crucial components that

are central to the primary functions of a product and critical to its

operation and performance. These components often retain substantial

residual and remanufacturing value. Typically, in the remanufacturing

process, the fp is targeted for reclamation, reprocessing, and reuse in

the production of remanufactured goods.

2. AccessoryPart (ap) designates a category of supplementary components

that augment a product’s features, convenience, appearance, or safety

through their specific functions. These components, while enhancing

the product, are not crucial to its core functionality or performance.

Accessory Parts are characterised by their reparability and interchange-

ability. Commonly, in the remanufacturing process, aps undergo repro-

cessing via additive manufacturing techniques to enhance the grades

and qualities of the remanufactured products.

3. Fastener (f ) refers to a category of hardware devices that mechanically

secure or attach two or more components. These devices, designated

as f s, are widely utilised to connect or fasten fps or aps in a manner
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that is secure yet non-permanent. This functionality facilitates the

disassembly of fps or aps without necessitating a destructive process.

The aforementioned subclasses are utilised to hierarchically delineate the

structural connections and relationships among components in EoL products.

These subclasses are specifically proposed to facilitate the management of

disassembly-related knowledge within a human-robot collaborative manner.

Additionally, this ontology model includes seven other proposed subclasses:

1. DisassemblyAction (DA) encompasses a range of activities necessary

for the removal of components, including grasping, moving, placing,

etc. These actions can be performed by either humans or robots, and

all disassembly tasks may be carried out through either a single action

or a combination of multiple actions.

2. DisassemblyTool (DTl) refers to the instruments employed for detach-

ing component connections in EoL products, including tools such as

screwdrivers, separators, and pullers. Both humans and robots are ca-

pable of utilising these disassembly tools, with each disassembly task

generally necessitating specific types of tools.

3. DisassemblyMethod (DM ) encompasses three distinct approaches for

executing disassembly tasks: human, robot, and human-robot collab-

orative methods. The appropriate DM s for each task are determined

based on the specific DAs and DTls required.
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4. DisassemblyType (DTy) categories disassembly into non-destructive and

destructive forms. Destructive disassembly may lead to irreversible

damage, thereby reducing the residual value of components. Con-

versely, non-destructive disassembly is favoured in remanufacturing due

to its ability to preserve component integrity and value.

5. DisassemblyLevel (DL) describes the extent of the disassembly process,

encompassing both complete and partial disassembly. The specific com-

ponents targeted within EoL products dictate the level of disassembly

required, which in turn impacts the strategic planning of the disassem-

bly sequence.

6. Direction (Dir) denotes the constraints on component movement along

six coordinate axes (±X,±Y,±Z).

7. Cost (C ) encompasses the time and labor expenses involved in perform-

ing the disassembly task, which vary depending on the DM s employed.

Each method utilises different DAs and DTls, influencing the overall

cost.

5.2.2 Object and Data Properties of HRCD Ontology

The Web Ontology Language (OWL) is the preferred language for ontology

representation within the framework of semantic web standards [184]. It

builds upon the Resource Description Framework (RDF) Schema to enhance

the depiction of complex classes, attribute characteristics, and property con-
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straints. OWL facilitates comprehensive semantic descriptions and logical

reasoning, which helps in minimising redundancies in knowledge representa-

tion and enhances knowledge sharing and semantic operations. These fea-

tures are especially beneficial for encapsulating complex knowledge in areas

such as human-robot collaborative disassembly within remanufacturing [185].

Ontologies crafted in OWL are both machine-readable and computation-

friendly, thereby supporting efficient storage and development processes.

Within the OWL-based framework, object properties clarify the attributes

and relational constraints between classes. The relationships among classes in

the proposed human-robot collaborative disassembly ontology are illustrated

in Figure 5.3.
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Figure 5.3: The class relationships of the proposed HRCD ontology.

The inner circle of the diagram displays the semantic representation of
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the structural relationships at the component level within EoL products.

Specifically, the structural interconnections among the three categories of

components in the EoL product are depicted by the relationships isDirect-

CoveredBy (iDCB) and isFixedBy (iFB). The iDCB relationship denotes

that a f, an ap, or a fp is directly covered by another ap or fp. Conversely,

the iFB relationship indicates that aps or fps are fastened by a f.

To illustrate the product level more effectively and clearly, all categories

of components are collectively referred to as component (cp) in this figure.

Relationships within a p that include sa are denoted by hasSubassembly

(hsa), while cp contained within a p or sa are indicated by hasComponent

(hc). It is important to acknowledge that a sa can also serve as a component

for another sa, demonstrating the modular nature of subassemblies within

the product structure.

The additional disassembly-related classes are also interconnected and

applied through semantic expressions. Movement constraints for sa and cp

are captured by isConstrainedIn (iCI ), which delineates the six directional

(Dir) limitations. The DL and DTy of a p can be described through hasDis-

assemblyLevel (hDL) and hasDisassemblyType (hDTy), respectively. Within

this framework, sa is a subclass of DL. When sa is empty (sa=ø), the DL

is classified as complete disassembly. The cp is defined by its required DTl,

DA, DM, and cp through the object properties hasDisassemblyTool (hDTl),

hasDisassemblyAction (hDA), hasDisassemblyMethod (hDM ), and hasCost

(hC ), respectively.
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Furthermore, this chapter delineates that the DM encompasses three dis-

tinct approaches: human, robot, and human-robot collaborative. The choice

of an appropriate DM for a given disassembly task is influenced by the re-

quired DTls and DAs specific to each cp. The determination of DM s and

C for a cp is guided by these requirements, utilising a rule-based reasoning

approach that integrates DTls and DAs.

Expanding upon the ontology object properties discussed by Chen et al.

and Yu et al. [104, 105], this chapter introduces a set of object properties

specifically designed for the human-robot collaborative disassembly ontology.

These properties are detailed in Table 5.1.

This table outlines that the domain of an object property identifies the

class to which the property may be applied, while the range specifies the class

that can assume the value of the property. The domain and range define the

permissible associations within an ontology, thus ensuring conformity to the

ontology’s logical framework. The object properties introduced are as follows:

• Object properties 1-12 delineate the assembly relationships among prod-

uct components along the six coordinate axis directions (+X/-X/+Y/-

Y/+Z/-Z), collectively defining the complete assembly structure of the

EoL product. Specifically, properties 1-6 detail the coverage relation-

ships between different components, whereas properties 7-12 address

the fastening relationships involving fasteners and both functional and

accessory parts.
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Table 5.1: Object properties in the HRCD ontology.
No. Object property Domain Range Inverse property
1 dC plusX fp, ap, sa f, fp, ap, sa iDCB minusX
2 dC plusY fp, ap, sa f, fp, ap, sa iDCB minusY
3 dC plusZ fp, ap, sa f, fp, ap, sa iDCB minusZ
4 iDCB plusX f, fp, ap, sa fp, ap, sa dC minusX
5 iDCB plusY f, fp, ap, sa fp, ap, sa dC minusY
6 iDCB plusZ f, fp, ap, sa fp, ap, sa dC minusZ
7 fix plusX f fp, ap, sa iFB minusX
8 fix plusY f fp, ap, sa iFB minusY
9 fix plusZ f fp, ap, sa iFB minusZ
10 iFB plusX fp, ap, sa f fix minusX
11 iFB plusY fp, ap, sa f fix minusY
12 iFB plusZ fp, ap, sa f fix minusZ
13 iPO f, fp, ap, sa sa, p hPO
14 cBDI f, fp, ap, sa Dir N/A
15 hDA f, fp, ap, sa DA N/A
16 cBDB f, fp, ap, sa DTl N/A
17 hDM f, fp, ap, sa DM N/A
18 hTBDA f, fp, ap, sa f, fp, ap, sa N/A
19 hTBDDA f, fp, ap, sa f, fp, ap, sa N/A
20 hPT f, fp, ap, sa C N/A
21 hC f, fp, ap, sa C N/A
22 cBDS f, fp, ap, sa f, fp, ap, sa N/A
23 dF f, fp, ap, sa Dir, DTl N/A

• Object property 13 represents the hierarchical relationship among prod-

ucts, subassemblies, and individual components.

• Object property 14 indicates the potential disassembly directions of a

subassembly or component in an EoL product.

• Object properties 15-17 respectively identify the necessary disassembly

actions, tools, and viable disassembly methods for each task.

• Object properties 18-19 elucidate the precedence relationships in dis-

assembly between subassemblies and components, establishing the se-
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quence of disassembly for the product. This property is transitive,

allowing components with direct disassembly precedence to be treated

as subassemblies.

• Object properties 20-21 convey the time and operational costs required

for the disassembly of subassemblies and components.

• Object property 22 identifies which subassemblies or components may

be disassembled concurrently.

• Object property 23 is utilised primarily to evaluate whether different

subassemblies or components can be disassembled simultaneously. In

this evaluation, Dir and DTl are employed as two indices, correspond-

ing to Auxiliary rules 67-69 as presented in Table 5.5.

Data properties are utilised to define the characteristics, attributes, or

other data-centric information pertaining to entities across different classes

[185]. Similar to object properties, each data property is associated with a

specific domain and range. The definitions and detailed descriptions of these

relevant data properties are documented in Table 5.2.

5.2.3 An Illustrative Example

In the dynamic field of smart remanufacturing, the disassembly of EoL prod-

ucts is recognised as a pivotal element, necessitating organised and methodi-

cal strategies. A key innovation in this area is the development of a product

semantic model tailored for disassembly, which serves as a critical conduit
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Table 5.2: Data properties in the HRCD ontology.
No. Data Property Domain Range Description

1

cBDI plusX

f, fp, ap, sa boolean
Record the optional disassembly direction

of a f, fp, ap or sa

cBDI plusY
cBDI plusZ

cBDI minusX
cBDI minusY
cBDI minusZ

2 iD f, fp, ap, sa, p string Record the identity of a f, fp, ap, sa or p
3 nameOfComponent f, fp, ap, sa string Record the name of a f, fp, ap or sa
4 quantity f, fp, ap int Record the quantity of a f, fp, ap or sa in the p

5
humanProcessTime

f, fp, ap, sa float
Record the process time of disassemble a f, fp, ap or sa

using human, robot or human-robot DM
robotProcessTime

humanRobotProcessTim

linking EoL products with other remanufacturing processes. This ontology

model provides an exhaustive representation of products, capturing not only

their physical structure and attributes but also incorporating relevant data

such as maintenance histories and failure modes. Utilising semantic technolo-

gies, the model comprehensively delineates complex relationships, dependen-

cies, and hierarchies among EoL product components. By mapping out both

hierarchical and connection-based relationships within product architectures,

the semantic model enhances the efficiency, clarity, and effectiveness of the

disassembly process.

The product semantic model is integrated within the broader framework

of the proposed HRCD ontology model, which delineates the components and

their interrelationships within EoL products. This section aims to elucidate

the product semantic model by using the belt roller support assembly as a

case study. Figure 5.4 illustrates the interactions among the three categorised

components of the belt roller support assembly: bolts (depicted in grey)

function as fasteners, bushes (shown in light blue) serve as accessory parts,
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and the base (in navy blue), shaft (in yellow), bracket (in green), and roller

(in red) are identified as functional parts. Utilising the product semantic

model alongside the object properties outlined in Table 5.1, Table 5.2, and

Figure 5.3, we have constructed the topological structures of the belt roller

support assembly, highlighting its connections and hierarchical relationships.

Descriptions and semantic expressions of the belt roller support assembly are

detailed below:
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Figure 5.4: An illustrative example.

• Bracket iFB plusY bolt: brackets are fixed by bolts from +Y direction.

• Base iDCB plusZ bracket: the base is directly covered by brackets from

+Y direction.

• Bush iDCB plusZ bracket: the left bush is directly covered by the left

bracket from +Z dirction.
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• Bush iDCB minusZ bracket: the right bush is directly covered by the

right bracket from +Z dirction.

• Shaft iDCB plusZ bracket: the shaft is directly covered by the left

bracket from +Z dirction.

• Shaft iDCB minusZ bracket: the shaft is directly covered by the right

bracket from +Z dirction.

• Roller iDCB plusZ shaft: the roller is directly covered by the shaft from

+Z direction.

Normally, the -Y direction, which is associated with gravity, is not con-

sidered in the disassembly process.

5.3 Rule-Based Reasoning for HRCD Sequence

Planning

In this section, the Semantic Web Rule Language (SWRL) and Semantic

Query-enhanced Web Rule Language (SQWRL) are utilised to develop a

rule-based reasoning approach. The first subsection introduces rules con-

cerning the product structure. These rules are designed to reason about

and establish precedence constraints necessary for disassembling subassem-

blies or components within an EoL product. The second subsection outlines

rules that ascertain the disassembly method for each component, aiming to

formulate an optimal human-robot collaborative disassembly strategy.
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5.3.1 Rules for Reasoning Disassembly Precedence Con-

straints

Building upon the disassembly relationships between fp and f as discussed

in previous papers [104, 105], this thesis extends the analysis to include

relationships among fp, ap, and f. Disassembly tasks are conducted from

five coordinate axes directions, excluding the -Y direction. The rules and

guidelines for establishing disassembly precedence constraints are detailed in

Table 5.3. In mechanical products, situations where f s are attached to each

other typically do not occur and are therefore not included in the consider-

ations. Three specific relationships are defined as direct disassembly: f /fp,

f /ap, and ap/ap. These relationships promote consistent disassembly prac-

tices and actions and help minimise changes in the disassembly direction.

Based on these established rules, it is feasible to determine the precedence

constraints among fp, ap, and f within an EoL product.

The belt roller serves as a case study to verify the accuracy and complete-

ness of the disassembly precedence constraint set. By utilising the CAD file,

which is accessible through the open-source link provided in Appendix 8.3,

and the relational semantic descriptions found in Section 5.2.3, the actual

disassembly procedures and the precedence constraint graph are depicted in

Figure 5.5. The disassembly sequence begins with the removal of the bolts,

followed by the brackets, bushes, and shaft. During this sequence, the roller

and base are automatically separated. The graph illustrates nine precedence
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Table 5.3: Rules for generating the precedence constrains of components.
No. SWRL/SQWRL Description

1-6
f (?f) ˆfp (?fp) ˆiDCB Dir (?f, ?fp)

→ hTBDDA (?f, ?fp)
If a f is directly covered by a fp in any disassembly-direction
of the f, then the f shall be direct disassembled after the fp

7-12
f (?f) ˆap (?ap) ˆiDCB Dir (?f, ?ap)

→ hTBDDA (?f, ?ap)
If a f is directly covered by an ap in anydisassembly-direction
of the f, then the f shall be direct disassembled after the ap

13-18
ap (?ap) ˆfp (?fp) ˆiDCB Dir (?ap, ?fp)

→ hTBDA (?ap, ?fp)
If an ap is directly covered by a fp in any disassembly-direction

of the ap, then the ap shall be disassembled after the fp

19-24
fp (?fp) ˆap (?ap) ˆiDCB Dir (?fp ?ap)

→ hTBDA (?fp, ?ap)
If a fp is directly covered by an ap in any disassembly-direction

of the fp, then the fp shall be disassembled after the ap

25-30
fp (?fp) ˆf (?f) ˆiFB Dir (?fp, ?f)

→ hTBDDA (?fp, ?f)
If a fp is fixed by a f in any direction,

then the fp shall be direct disassembled after the f

31-36
ap (?ap) ˆf (?f) ˆiFB Dir (?ap, ?f)

→ hTBDDA (?ap, ?f)
If an ap is fixed by a f in any direction,

then the ap shall be direct disassembled after the f

37-42
fp (?fp) ˆfp (?fp1) ˆiDCB Dir (?fp, ?fp1)

→ hTBDA (?fP, ?fp1)
If a fp A is directly covered by a fp B in any direction,

then the fp A shall be disassembled after the fp B

43-48
ap (?ap) ˆap (?ap1) ˆiDCB Dir (?ap, ?ap1)

→ hTBDDA (?aP, ?ap1)
If an ap A is directly covered by an ap B in any direction,

then the ap A shall be disassembled after the ap B

*Dir represents plusX, minusX, plusY, plusZ, minusZ, respectively.

constraints among the components of the belt roller. Although various dis-

assembly sequences are possible, the set of precedence constraints is singular

and fixed, necessitating strict adherence throughout the disassembly process.

The ontology for the product, along with specific instances of the belt

roller, has been constructed utilising Protégé version 5.5.0, employing Her-

miT as the integrated reasoning engine. This process resulted in the gener-

ation of nine assertions based on the established rules:

1. ‘Bracket left hTBDDA Bolts’: The left bracket, directly fixed by bolts

from the +Y direction, has to be direct disassembled after removing

the bolts (from rules 25-30)

2. ‘Bracket right hTBDDA Bolts’: The right bracket, directly fixed by

bolts from the +Y direction, has to be direct disassembled after re-

moving the bolts (from rules 25-30).
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Figure 5.5: Disassembly procedures and precedence constraints of the belt
roller.

3. ‘Bush left hTBDA Bracket left’: The left bush, directly covered by the

left bracket from the +Z direction, has to be disassembled after the left

bracket (from rules 13-18).

4. ‘Bush right hTBDA Bracket right’: The right bush, directly covered

by the right bracket from the -Z direction, has to be disassembled after

the right bracket. (from rules 13-18).

5. ‘Shaft hTBDA Bush left’: The shaft, directly covered by the left bush

from the +Z direction, has to be disassembled after the left bush. (from

rules 19-24).

6. ‘Shaft hTBDA Bush right’: The shaft, directly covered by the right
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bush from the -Z direction, has to be disassembled after the right bush.

(from rules 19-24).

7. ‘Roller hTBDA Shaft’: The roller, directly covered by shaft from the

+Z direction, has to be disassembled after the shaft. (from rules 37-42).

8. ‘Base hTBDA Bracket left’: The base, directly covered by the left

bracket from the +Y direction, has to be disassembled after the left

bracket. (from rules 37-42).

9. ‘Base hTBDA Bracket right’: The base, directly covered by the right

bracket from the +Y direction, has to be disassembled after the right

bracket. (from rules 37-42).

In this case analysis, a single assertion is derived from the selected rule

according to the specified direction. The accuracy and completeness of the

precedence constraint set can be evaluated based on the following criteria:

1. Correctness of the precedence constraint set: The SWRL rules pro-

posed in this study ensure the absence of contradictions, and all rea-

soning outcomes produced by these rules are consistent with the in-

tended precedence constraints. The resulting precedence constraints

for the belt roller effectively reflect the true sequence requirements for

the components.

2. Completeness of the precedence constraint set: The set, which com-

prises the outcomes derived from the proposed SWRL-based rules, en-
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compasses nine precedence constraints. This total corresponds exactly

with the actual precedence constraint set for the belt roller.

The disassembly precedence constraint set generated by the proposed

SWRL rules 1-48 corresponds with the actual precedence constraint set of

the belt roller. However, rules 1-12, 31-36, and 43-48 do not establish any

precedence constraints among the components, which is attributable to the

lack of specific component relationships and semantic descriptions within the

belt roller. Despite this, these rules are not considered redundant, as they

are designed to encompass and describe all possible scenarios or inferences,

including potential relationships within an EoL product.

5.3.2 Rules for Determining Disassembly Method

Collaborative robots are well-suited for efficiently handling repetitive and

straightforward tasks within human-robot collaboration environments, ad-

dressing the limitations of manual disassembly, such as lower efficiency and

higher costs. However, their effectiveness is influenced by several factors,

including worker safety, the complexity of the disassembly tasks, and the

constraints of available tools and resources. For more complex disassem-

bly tasks, humans have demonstrated greater flexibility and efficiency com-

pared to robots. This advantage is due to human capabilities such as detec-

tion, observation, critical thinking, and manual dexterity, which robots cur-

rently lack. Therefore, complex disassembly processes are best approached

through human-robot collaboration, combining the flexibility of human work-
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ers with the precision of robots. This synergy between human adaptability

and robotic accuracy is more effective in managing complex disassembly tasks

than either humans or robots working independently.

In the context of HRCD, existing knowledge does not provide a standard

methodology for determining the disassembly methods for various compo-

nents, primarily due to the absence of a standardised approach for evaluating

task complexity. To address this, we draw on evaluation criteria from the

literature [186] and consider the number and type of disassembly actions, as

well as the disassembly tools, as key factors in identifying the most suitable

disassembly methods for each disassembly task. The disassembly actions are

based on nine fundamental actions identified in previous study [187], and

the tools include common items such as wrenches and screwdrivers, along

with specialised tools like bearing pullers. Building on these criteria, this

section introduces a set of rules that leverage disassembly-related knowl-

edge—specifically the required disassembly actions and tools—to determine

the optimal disassembly method for each component in an EoL product. The

proposed rules and their corresponding descriptions are detailed in Table 5.4.

The potential disassembly methods for a component fall into four primary

categories: those that can be executed by either humans or robots, those that

are feasible solely for humans, those that are suitable exclusively for robots,

and those that require human-robot collaboration.

• Rules 49-54 specify that if a c can be disassembled using a single DA

and requires one or fewer DTl, then the disassembly of the c can be
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Table 5.4: Rules for determining disassembly method.
No. SWRL/SQWRL Description

49
fp (?fp) ˆhDA (?fp, ?a) ˆhDTl (?fp, ?t) ˆsqwrl:count (?a) = 1 ˆsqwrl:count (?t) <= 1

→ hDM (?fp, ?r) ˆRobot (?r) ˆhasProcessTime (?fp, ?pt) For any fp, ap or f that has a single DA
that uses less than or equal to one DTl,

then the fp, ap or f can be
disassembled by robot or human

through certain process time

50
fp (?fp) ˆhDA (?fp, ?a) ˆhDTl (?fp, ?t) ˆsqwrl:count (?a) = 1 ˆsqwrl:count (?t) <= 1

→ hDM (?fp, ?h) ˆHuman (?h) ˆhasProcessTime (?fp, ?pt)

51
ap (?ap) ˆhDA (?ap, ?a) ˆhDTl (?ap, ?t) ˆsqwrl:count (?a) = 1 ˆsqwrl:count (?t) <= 1

→ hDM (?ap, ?r) ˆRobot (?r) ˆhasProcessTime (?ap, ?pt)

52
ap (?ap) ˆhDA (?ap, ?a) ˆhDTl (?ap, ?t) ˆsqwrl:count (?a) = 1 ˆsqwrl:count(?t) <= 1

→ hDM (?ap, ?h) ˆHuman (?h) ˆhasProcessTime (?ap, ?pt)

53
f (?f) ˆhDA (?f, ?a) ˆhDTl (?f, ?t) ˆsqwrl:count (?a) = 1 ˆsqwrl:count(?t) <= 1

→ hDM (?f, ?r) ˆRobot(?r) ˆhasProcessTime (?f, ?pt)

54
f (?f) ˆhDA (?f, ?a) ˆhDTl (?f, ?t) ˆsqwrl:count (?a) = 1 ˆsqwrl:count(?t) <= 1

→ hDM (?f, ?h) ˆHuman(?h) ˆhasProcessTime (?f, ?pt)

55
fp (?fp) ˆhDA (?fp, ?a) ˆhDTl (?fp, ?t) ˆsqwrl:count (?a) = 2 ˆsqwrl:count(?t) <= 1

→ hDM (?fp, ?r) ˆRobot(?r) ˆhasProcessTime (?fp, ?pt)
For any fp, ap or f that has two DAs that

uses less than or equal to one DTl,
then the fp, ap or f can be disassembled
by robot through certain process time

56
ap (?ap) ˆhDA (?ap, ?a) ˆhDTl (?fp, ?t) ˆsqwrl:count (?a) = 2 ˆsqwrl:count (?t) <= 1

→ hDM (?ap, ?r) ˆRobot (?r) ˆhasProcessTime (?ap, ?pt)

57
f (?f) ˆhDA (?f, ?a) ˆhDTl (?fp, ?t) ˆsqwrl:count (?a) = 2 ˆsqwrl:count (?t) <= 1

→ hDM (?f, ?r) ˆRobot (?r) ˆhasProcessTime (?f, ?pt)

58
fp (?fp) ˆhDA (?fp, ?a) ˆhDTl (?fp, ?t) ˆsqwrl:count (?a) = 2 ˆsqwrl:count (?t) = 2

→ hDM (?fp, ?h) ˆHuman (?h) ˆhasProcessTime (?fp, ?pt)
For any fp, ap or f that has two DAs that

uses two DTls, then the fp, ap or f can
only be disassembled by human through

certain process time
59

ap (?ap) ˆhDA (?ap, ?a) ˆhDTl (?ap, ?t) ˆsqwrl:count (?a) = 2 ˆsqwrl:count (?t) = 2
→ hDM (?ap, ?h) ˆHuman (?h) ˆhasProcessTime (?ap, ?pt)

60
f (?f) ˆhDA (?f, ?a) ˆhDTl (?f, ?t) ˆsqwrl:count (?a) = 2 ˆsqwrl:count(?t) = 2

→ hDM (?f, ?h) ˆHuman (?h) ˆhasProcessTime (?f, ?pt)

61
fp (?fp) ˆhDA (?fp, ?a) ˆhDTl (?fp, ?t) ˆsqwrl:count (?a) >2 ˆsqwrl:count (?t) >= 2

→ hDM (?fp, ?hr) ˆHumanRobot (?hr) ˆhasProcessTime (?fp, ?pt)
For any fp, ap or f that has more than
two DAs that uses two and more than

two DTls, then the fp, ap or f can
be disassembled by human-robot

collaboration through certain process time

62
ap (?ap) ˆhDA (?ap, ?a) ˆhDTl (?ap, ?t) ˆsqwrl:count (?a) >2 ˆsqwrl:count (?t) >= 2

→ hDM (?ap, ?hr) ˆHumanRobot (?hr) ˆhasProcessTime (?ap, ?pt)

63
f (?f) ˆhDA (?f, ?a) ˆhDTl (?f, ?t) ˆsqwrl:count (?a) >2 ˆsqwrl:count (?t) >= 2

→ hDM (?f, ?hr) ˆHumanRobot (?hr) ˆhasProcessTime (?f, ?pt)

performed by either a human or a robot.

• Rules 55-57 suggest that if a c requires two DAs and no more than one

DTl, then the disassembly process for the c should be carried out by a

robot.

• Rules 58-60 indicate that if a c requires two DAs and two DTls, then

the disassembly of the c should be performed by a human.

• Rules 61-63 state that if a c requires more than two DAs and two or

more DTls, the disassembly process for the c should apply human-robot

collaboration.

After determining the disassembly methods for each component through

174



Y.X.Hu, PhD Thesis, Aston University 2024

reasoning, the corresponding disassembly time costs are incorporated as sup-

plementary knowledge.

5.3.3 Auxiliary Rules

In addition to the rules previously established, there are several supportive

auxiliary rules proposed to specify and infer the optimal disassembly sequence

as shown in Table 5.5.

Table 5.5: Auxiliary rules
No. SWRL/SQWRL Description

64
fp (?fp) → dD plusX (?fp, 1) ˆdD minusX (?fp, 1) ˆ

dD plusY (?fp, 1) ˆdD minusY (?fp, 1) ˆ
dD plusZ (?fp, 1) ˆdD minusZ (?fp, 1)

Update and get the disassemble
direction of a fp, ap or f.

65
ap (?ap) → dD plusX (?ap, 1) ˆdD minusX (?ap, 1) ˆ

dD plusY (?ap, 1) ˆdD minusY (?ap, 1) ˆ
dD plusZ (?ap, 1) ˆdD minusZ (?ap, 1)

66
f (?f) → dD plusX (?f, 1) ˆdD minusX (?f, 1) ˆ

dD plusY (?f, 1) ˆdD minusY (?f, 1) ˆ
dD plusZ (?f, 1) ˆdD minusZ (?f, 1)

67

fp (?fp) ˆap (?ap) ˆhDD (?fp, ?d1) ˆhDD (?ap, ?d2) ˆ
swrlb:dF (?d1, ?d2) ˆhDM (?fp, ?m1) ˆhDM (?ap, ?m2) ˆ

swrlb:dF (?m1, ?m2) ˆsqwrl:not (hTBDA (?fp, ?ap)) ˆ
sqwrl:not (hTBDA (?ap, ?fp)) → cBDS (?fp, ?ap)

Determine if the fp/ap, fp/f or ap/f
have different disassembly directions,

can be disassembled by different
method, and have no specified
requirement for one part to be

disassembled after the other. If these
conditions are met, the rule infers

that the referred parts can be
disassembled simultaneously

68

fp (?fp) ˆf (?f) ˆhDD (?fp, ?d1) ˆhDD (?f, ?d2) ˆ
swrlb:dF (?d1, ?d2) ˆhDM (?fp, ?m1) ˆhDM (?f, ?m2) ˆ

swrlb:dF (?m1, ?m2) ˆsqwrl:not (hTBDA (?fp, ?f)) ˆ
sqwrl:not (hTBDA (?f, ?fp)) → cBDS (?fp, ?f)

69

ap (?ap) ˆf (?f) ˆhDD (?ap, ?d1) ˆhDD (?f, ?d2) ˆ
swrlb:dF (?d1, ?d2) ˆhDM (?ap, ?m1) ˆhDM (?f, ?m2) ˆ

swrlb:dF (?m1, ?m2) ˆsqwrl:not (hTBDA (?ap, ?f)) ˆ
sqwrl:not (hTBDA (?f, ?ap)) → cBDS (?ap, ?f)

70 hTBDDA (?f, ?fp) → sa (?f) ˆsa (?fp) If a f has to be direct disassembled after a fp
or ap, the fp or ap has to be direct

disassembled after the f. Ap A has to be
direct disassembled after ap B. Then the f and

f /ap can be regarded as a sa

71 hTBDDA (?fp, ?f) → sa (?fp) ˆsa (?f)
72 hTBDDA (?f, ?ap) → sa (?f) ˆsa (?ap)
73 hTBDDA (?ap, ?f) → sa (?ap) ˆsa (?f)
74 hTBDDA (?ap1, ?ap2) → sa (?ap1) ˆsa (?ap2)

• Rules 64-66 are employed to update the disassembly direction available

for each component.

• Rules 67-69 are designed to determine whether two components can
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be disassembled concurrently, taking into account their disassembly di-

rection and method, while ensuring that there are no precedence con-

straints. For simultaneous disassembly to be possible, the components

must be oriented in different disassembly directions and must utilise

distinct disassembly methods, excluding those involving human-robot

collaboration. Typically, components of the same type share identical

disassembly methods, which precludes concurrent disassembly. Addi-

tionally, these rules aim to minimise changes in the disassembly direc-

tion and maintain continuity in the disassembly actions.

• Rules 70-74 suggest that if a f has an hTBDDA relationship with an-

other fp or ap, then f and fp/ap can be treated as a single sa. Simi-

larly, if an ap has an hTBDDA relationship with another ap, these two

aps can also be grouped as a sa. These rules facilitate the grouping

of components, thereby simplifying the disassembly sequence planning

by reducing the need for changes in disassembly direction. This ap-

proach enhances the efficiency and capability of the rule-based reason-

ing method, particularly when dealing with larger and more complex

EoL products.

In this chapter, subassemblies are categorised based on the types of com-

ponents they contain. If a sa is composed exclusively of a single type of fp,

ap, or f, it is classified as that specific component type. However, if a sa

contains two or more different types of components, it is classified as an fp.
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5.3.4 Process for Generating The Optional Disassem-

bly Scheme

The research workflow of this chapter, built upon the developed product

semantic model, consists of two main phases: first, establishing disassembly

precedence constraints among product components and determining their

respective disassembly methods; second, generating the optimal disassembly

scheme.

Workflow for Generating Disassembly Precedence Constraints

The workflow for generating disassembly precedence constraints among com-

ponents is illustrated in Figure 5.6. Before applying the relevant reasoning

rules, three empty sets are initialised: Set f, Set fp, and Set ap. The primary

input in this chapter consists of the lowest-level components of the EoL

product. Components are categorised and assigned to the appropriate sets

based on their classification. Disassembly-related information for these com-

ponents is stored and transmitted across the different sets. After reading and

inputting the complete list of product components, rules 1-48 are applied to

establish disassembly precedence constraints among the various components.

These constraints are constructed on the foundation of traditional And/Or

graphs but retain additional information about the components, enhancing

the subsequent decision-making processes. Next, according to rules 70-74,

related components are grouped and treated as subassemblies, thereby re-

ducing the total number of product components and shrinking the solution
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space for feasible disassembly sequences. The types of sub-components are

determined by the categories of the components they contain, with the sets

being updated accordingly. Finally, rules 49-63 are used to infer the potential

disassembly methods for each component, and the time cost associated with

each method is recorded as part of the known knowledge base.

Start

Create three empty sets

(Set f, Set fp and Set ap) 

Divide components into different sets

(Set f contains all fasteners, Set fp 

contains all funtional-parts and Set ap 

contains all accessory-parts)

Input indivdual components 

(ID, Name, Category, Disassembly 

Action, Tool, Positional relationship, etc.)

Determine the pre-direct disassembly 

fasteners of each functional-part/

accessory-part

(According to Rules 25-36)

Determine the pre-direct disassembly 

funtional-part/accessory-part of each 

fastener

(According to Rule 1-12)

Determine the pre-disassembly 

functional-parts of each accessory-part

(According to Rule 13-18)

Determine the pre-direct disassembly 

accessory-part of each accessory-part

(According to Rules 43-48)

Determine the pre-disassembly 

accessory-part of each functional-parts 

(According to Rule 19-24)

Determine the pre-disassembly 

functional-part of each functional-parts 

(According to Rule 37-42)

 Rule 1-48 for reasoning the 

relationship of components

Grouping the related components into 

Subassemblies

(According to Rules 70-74)

 Determine the type of subassemblies 

and Update related sets

(Delete corresponding fasteners and 

components from Set f, Set fp and Set 

ap. And add subassemlies into Set fp 

and Set ap)

Output the optional disassembly 

method of all components

(According to Rule 49-63)

End

Figure 5.6: Workflow for generating precedence constraints of EoL product.
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Workflow for Generating Optimal Disassembly Scheme

Based on the precedence constraints established in section 5.3.4, all possible

disassembly sequences and the optimal disassembly scheme can be generated

and determined using subsequent rules. The overall workflow for determining

the optimal disassembly scheme is illustrated in Figure 5.7. According to the

grouping and categorisation process detailed in section 5.3.4, sas have already

been sequentially grouped and categorised as fps, aps, or f s. Following this,

all components are divided into three distinct sets—fp, ap, and f —based on

their attributes within the EoL product. It is important to note that any

relationship in which an f is directly covered by another fp or ap is eliminated

through the grouping and generation of sas. This procedure not only reduces

the number of components involved in the disassembly sequence planning but

also aligns with the standard practices of disassembly consistency.

After applying rules 64-66, the available disassembly directions and all

executable components are identified and initialised. Following conventional

disassembly practices, where components are typically loosened first, the f

components are prioritised for disassembly. If the f set is non-empty, one

executable f is selected as the current disassembly task. Simultaneously,

the potential for simultaneous disassembly with another executable fp or ap

is assessed using rules 68-69. If a compatible fp or ap is identified, the f

and the fp/ap are disassembled together. Otherwise, the f is disassembled

individually. Once this task is completed, the disassembly directions for the
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remaining components are reinitialised using rules 64-66, and the relevant

sets are updated. This process continues iteratively.

When the f set is empty, the ap set is then evaluated. Typically, aps

are incorporated to improve the overall performance of the product, serving

as connectors between f s and fps. If the ap set is non-empty, an executable

ap is selected as the next disassembly task. Rule 67 assists in determining

whether this ap can be disassembled concurrently with any remaining fp.

If a suitable fp is identified, they are disassembled together; if not, the ap

is disassembled on its own. After the ap is disassembled, the disassembly

directions for the remaining fps or aps are updated in accordance with rules

64-65, leading to the subsequent updating of sets fp and ap.

When the ap set is empty, the fp set is examined last. If the fp set

is non-empty, an executable fp is selected as the current task. Typically,

these remaining fps have a higher residual value and are disassembled using

similar methods. As a result, no further evaluation is needed to identify

other fps that could be disassembled concurrently. This process continues

iteratively until the fp set is empty, at which point it can be concluded that

all components of the EoL product have been fully disassembled. Following

this, all possible HRCD sequences are generated and output by sequentially

following the disassembly tasks. The optimal HRCD scheme can then be

determined based on specific criteria.

Additionally, to address conflicts and uncertainties in multi-optional si-

multaneous disassembly tasks, the selection of executable components is pri-
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oritised in the order of +Y, +X, +Z, -X, and -Z, with -Y generally represent-

ing the gravitational direction and therefore not considered for disassembly

tasks.

Set f = ∅ �

No

Execute both disassembly tasks 

simultaneously (fastener and 

component)

Is there any other 

components can be 

simultaneously 

disassembled

(According to Rule 68-69)

Yes

Execute the disassembly task sololy 

(fastener)

No

Set ap = ∅ �

Initialise the DOF and determine the 

executable components

(According to Rule 64-66)

Re-initialise/Initialise the DOF of the rest 

fasteners and components and update 

related Sets (According to Rule 64-66)

Set fp = ∅ �

Output optimal Human-Robot 

Collaboration disassembly scheme 

Start

Input indivdual components 

(Category, Disassembly method, 

Direction, precedence constraints, etc.)

Input three sets with all components 

(Set f, Set fp and Set ap) 

Select one executable fastener as 

disassembly task

Yes

Select one executable accessory-part as 

disassembly task

Is there any other 

funcational-part can be 

simultaneously 

disassembled 

(According to Rule 67)

Yes

Execute the disassembly task sololy 

(accessory-part)

Execute both disassembly tasks 

simultaneously (functional-part and 

accessory-part)

Yes

No

No

Re-initialise/Initialise the DOF of the rest 

accessory-part and update Set fp and 

Set ap (According to Rule 64-65)

Select one executable functional-part as 

disassembly task

End

Re-initialise/Initialise the DOF of the rest 

accessory-part and update Set ap

(According to Rule 65)

Yes

No

Figure 5.7: Workflow for generating optimal disassembly schemes.
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5.4 Case Study

In this section, a case study is proposed involving the disassembly sequence

planning of a worm gear reducer gearbox to validate the feasibility and ef-

ficiency of the proposed HRCD methods. The exploded view and bill of

materials (BOM) for the gearbox are shown in Figure 5.8 and Table 8.3,

respectively. The CAD file and BOM are accessible via the link provided

in Appendix 8.3. This case study is designed to validate the effectiveness of

the proposed human-robot collaborative disassembly ontology and inference

rules. In this scenario, the gearbox is assumed to undergo a complete non-

destructive disassembly. The ProcessingTime for this case study is measured

in dimensionless units.

Figure 5.8: Exploded view of the gearbox.

182



Y.X.Hu, PhD Thesis, Aston University 2024

5.4.1 HRCD Ontology Model of Gearbox

In this subsection, the disassembly ontology of the gearbox is constructed

using the modelling tool Protégé 5.5.0. Building upon the general disassem-

bly ontology model developed earlier, the gearbox components are input as

instances. The established classes, object properties, data properties, and

individuals associated with the gearbox are depicted in Figure 5.9. The cre-

ated gearbox ontology is saved in the Web Ontology Language (OWL) format

as an .owl file. The rules relevant to HRCD are developed using Microsoft

Visual Studio Community 2019, with the C# programming language. This

process integrates the open-source .Net library (dotNetRDF), which provides

a comprehensive API for using SPARQL, and Jena.Net, a .NET port of the

Jena semantic web toolkit. The ontology file generated and saved in Protégé

(.owl file) is imported into Visual Studio. Subsequently, SPARQL and the

Jena Ontology API are used to construct and execute the corresponding rule

inferences, enabling the generation of the optimal human-robot collaborative

disassembly scheme.

5.4.2 Precedence Constraints of The Gearbox

The relationships concerning the semantic disassembly of fasteners, accessory

components, and functional components within the gearbox are delineated

in Tables 5.6, 5.7, and 5.8. The precedence constraints for the gearbox,

which were derived from the process outlined in Section 5.3.4, are depicted

in Figure 5.10. Furthermore, the relationships of component disassembly
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Figure 5.9: Screenshot of the human-robot disassembly ontology of gearbox
in Protégé.

precedence, as deduced from Rules 1-48, are displayed in Figure 5.10(a).

By applying additional Rules 49-63 and 70-74, the streamlined disassembly

precedence relationships are illustrated in Figure 5.10(b). The analysis of
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precedence constraint graphs indicates a reduction in constraints from 22 to 7.

This condensation of optional disassembly sequences enhances the efficiency

of the planning process, particularly through the application of Rules 70-74.

Detailed information regarding the resultant subassemblies and the residual

components is provided in Table 5.9. Notably, the assembly process yielded

five subassemblies, with the S2 subassembly categorised as an accessory part

and the others classified as functional parts.

Table 5.6: Semantic assembly-relations of fasteners in the gearbox.
f No. iDCB plusX iDCB minusX iDCB plusY iDCB minusY iDCB plusZ iDCB minusZ

4 - - - - - -
5 - - - - - -

f No. cBDI plusX cBDI minusX cBDI plusY cBDI minusY cBDI plusZ cBDI minusZ
4 1 0 0 0 0 0
5 0 0 0 0 1 0

Table 5.7: Semantic assembly-relations of accessory parts in the gearbox.
ap No. iDCB plusX iDCB minusX iDCB plusY iDCB minusY iDCB plusZ iDCB minusZ

6 - 12 - - - -
9 - 6 - - - -
10 22 - - - - -
15 - - - - 13 -
16 - - - - - 14
19 - - - - 20 -
20 - - - - - -
21 - - - - - -
22 3 - - - - -
23 - - - - 19 -

ap No. iFB plusX iFB minusX iFB plusY iFB minusY iFB plusZ iFB minusZ
6 - - - - - -
9 - - - - - -
10 - - - - - -
15 - - - - - -
16 - - - - - -
19 - - - - 5 -
20 - - - - - -
21 - - - - - -
22 - - - - - -
23 - - - - - -
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Table 5.8: Semantic assembly-relations of functional parts in the gearbox.
fp No. iDCB plusX iDCB minusX iDCB plusY iDCB minusY iDCB plusZ iDCB minusZ

1 8 - 2 - 18 21
2 - - - - - -
3 - - - - - -
7 10 - - - - -
8 7 11 - - - -
11 - 9 - - - -
12 - - - - - -
13 - - - - 23 -
14 - - - - - 21
17 - - - - 15 16
18 - - - - 17 -

fp No. iFB plusX iFB minusX iFB plusY iFB minusY iFB plusZ iFB minusZ
1 - - - - - -
2 - - - - - -
3 4 - - - - -
7 - - - - - -
8 - - - - - -
11 - - - - - -
12 - - - - - -
13 - - - - - -
14 - - - - - -
17 - - - - - -
18 - - - - - -

Table 5.9: Output of optional disassembly methods of components in the
gearbox.
No. Components Quantity Category DA DTl DM ProcessTime

S1 3,4,10,22 9 fP Grasp, Unscrew, Unplug
Screwdriver, Puller,

Circlip pliers
H 34

S2 6,9,12 3 ap Unplug Circlip pliers H/R 39/26

S3 7,8,11 3 fp
Place, Grasp, Move,

Unplug, Slide, Rotate
Puller, Separators,

Circlip pliers
HR 86

S4 5,19,20,23 9 fp
Unscrew, Move,
Grasp, Unplug

Screwdriver, Puller,
Rubber Mallet, Circlip pliers

HR 42

S5 13-18 6 fp
Place, Grasp, Move,

Slide, Unplug, Rotate
Puller, Separators,

Circlip pliers
HR 120

2 - 1 fp Rotate Wrench H/R 10/8
21 - 1 ap Grasp, Unplug Puller, Circlip plier H 15

5.4.3 Optimal HRCD Scheme of The Gearbox

This subsection delineates the generation of all viable disassembly sequences

and identifies the optimal scheme for human-robot collaborative disassem-

bly of the gearbox, employing the methodologies introduced in this study.
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Figure 5.10: Precedence constraints of the gearbox.

Moreover, a selection of basic heuristic optimisation algorithms is utilised as

benchmarks to illustrate the enhanced efficacy of our proposed approach.

Our Approach

Utilising the simplified component precedence constraints, accessory part S2

was initially designated as the primary disassembly task. Application of Rule

67 revealed that S2 could be disassembled simultaneously with functional

part 2. Following the workflow described in Section 5.3.4, this analysis led to

the generation of two viable disassembly solutions, labelled Solution 1 and

Solution 2, which are detailed in Table 5.10.

Table 5.10: Optional HRCD sequence schemes.
No. Disassembly sequence DM ProcessTime
1 <S2(-X), 2(+Y)>→21(-Z)→S1(+X)→S3(+X)→S4(+Y)→S5(+Y) <H, R>→H→HR→HR→HR→HR 336
2 <S2(-X), [2(+Y), 21(-Z)]>→S1(+X)→S3(+X)→S4(+Y)→S5(+Y) <R, [H]>→H→HR→HR→HR→HR 308

In Solution 1, the disassembly task involving accessory part S2 is under-

taken by a human operator, whereas a robot performs the disassembly of
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functional component 2. This configuration yields a total disassembly time

of 336 time units. In contrast, Solution 2 proposes the robotic disassembly

of accessory part S2 in parallel with the human-led disassembly of functional

component 2. This arrangement allows the human to commence the disas-

sembly of the subsequent accessory part 21 immediately upon completing

their initial task, optimising workflow continuity. The efficient synchronisa-

tion achieved in Solution 2 reduces the total disassembly time to 308 units,

thereby establishing it as the more efficient option.

Comparison Experiments

This case study pioneers the resolution of the HRCD sequence planning prob-

lem by integrating an ontology model with a rule-based reasoning approach.

Using a gearbox as a case study, the case study develops an optimal disassem-

bly scheme through this novel method. In the absence of directly comparable

methodologies to validate the superiority of the proposed approach, this case

study assesses its feasibility and effectiveness through comparative analysis

with established optimisation algorithms.

The review paper [133] identifies several prominent and frequently utilised

techniques for HRCD sequence planning and task allocation, including ge-

netic algorithm (GA), artificial bee colony (ABC), ant colony optimisation

(ACO), particle swarm optimisation (PSO), linear programming (LP), and

Tabu search (TS). Given that linear programming demands a formal math-

ematical model which falls outside the scope of this case study, the compar-
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ative experiment in this study will focus on the remaining five algorithms.

The disassembly-related data and alternative disassembly techniques pre-

sented in Table 8.3 serve as inputs for this chapter. Additionally, the prece-

dence constraints depicted in Figure 5.10 are incorporated as constraints

within the analysis. Tasks lacking precedence constraints are capable of be-

ing disassembled concurrently with other tasks using various directions and

methods. Furthermore, the consideration of subassemblies is omitted in these

optimisation algorithms.

The primary objective of the comparative experiment discussed herein

is to evaluate the feasibility and effectiveness of the method proposed. The

detailed design, parameter configuration, and performance optimisation of

the optimisation algorithms are not within the focus of this investigation.

Consequently, this study utilises five representative optimisation algorithms

sourced from an open-source library (details available in Appendix 8.3), with

parameters configured to their default settings as stipulated by the library.

These parameter settings are detailed in Table 5.11.

For the comparison experiment described, the number of iterations is

established at 1000, which constitutes one criterion for termination. Another

termination condition is met if a solution is identified during these iterations

and remains unchanged in the subsequent four iterations; at this juncture, the

iterations cease, and the prevailing solution is deemed optimal. To verify the

fairness and efficacy of these optimisation algorithms, 20 experiments were

conducted under identical conditions. The results of the optimal experiments
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Table 5.11: Parameter settings for comparison experiments.
Method Parameters Values Method Parameters Values

TS
Number of iterations 1000

ABC
Population size 50

Number of neighbours 10 Number of iterations 1000
Tabu size 10 N limits 25

GA

Population size 50

AC

Population size 50
Number of iterations 1000 Number of iterations 1000
Crossover Probability 0.9 Sample count 25
Mutation Probability 0.1 Intent factor 0.5

PSO

Number of iterations 1000 Deviation distance ratio 1.0
Local coefficient 2.05
Global coefficient 2.05

Inertia factor 0.4

are displayed in Table 5.12.

Table 5.12: Comparison experiment results.
No. Disassembly sequence Direction Change Times ProcessTime

TS

12(-X)→21(-Z)→5(+Z)→14(-Z)→20(+Z)→16(-Z)→
4(+X)→6(-X)→19(+Z)→3(+X)→22(+X)→9(-X)→
23(+Z)→10(+X)→11(-X)→13(+Z)→15(+Z)→2(+Y)→
17(+Z)→7(+X)→18(+Z) →8(+X)

19 311

ABC

12(-X)→20(+Z)→6(-X)→4(+X)→5(+Z)→3(+X)→
22(+X)→19(+Z)→23(+Z)→9(-X)→11(-X)→13(+Z)→
15(+Z)→21(-Z)→14(-Z)→16(-Z)→17(+Z)→18(+Z)→
2(+Y)→10(+X)→7(+X)→8(+X)

12 314

AC

20(+Z)→12(-X)→6(-X)→4(+X)→21(-Z)→3(+X)→
9(-X)→2(+Y)→14(-Z)→5(+Z)→19(+Z)→22(+X)→
10(+X)→7(+X)→11(-X)→8(+X)→16(-Z)→23(+Z)→
13(+Z)→15(+Z)→17(+Z)→18(+Z)

13 315

PSO

2(+Y)→4(+X)→3(+X)→21(-Z)→12(-X)→22(+X)→
10(+X)→6(-X)→20(+Z)→9(-X)→11(-X)→7(+X)→
8(+X)→14(-Z)→5(+Z)→19(+Z)→16(-Z)→23(+Z)→
13(+Z)→15(+Z)→17(+Z)→18(+Z)

12 319

GA

12(-X)→4(+X)→2(+Y)→5(+Z)→3(+X)→20(+Z)→
19(+Z)→6(-X)→9(-X)→21(-Z)→11(-X)→14(-Z)→
8(+X)→13(+Z)→15(+Z)→22(+X)→10(+X)→7(+X)→
23(+Z)→16(-Z)→17(+Z)→18(+Z)

15 313

Ours {S2(-X), [2(+Y), 21(-Z)]}→S1(+X)→S3(+X)→S4(+Y)→S5(+Y) 3 308

The table outlines the results of disassembly sequences obtained using five

representative optimisation algorithms. The outcomes for ProcessTime are

relatively consistent, ranging between 310 and 320 units. Among these, TS
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demonstrates the greatest efficiency with a process time of 311 units, closely

approaching the optimal result. GA, ABC, ACO exhibit process times of

313, 314, and 315 units respectively. Conversely, PSO records the highest

process time at 319 units, indicating a minor delay in comparison to the other

algorithms. It is important to note that none of the algorithms assessed were

able to match the optimal process time of 308 units achieved by our proposed

method.

In the conducted comparison experiment, no specific preferences or re-

strictions were placed on the disassembly direction, yet the selected algo-

rithms proposed various initial disassembly directions. For example, TS,

ABC, and GA commence disassembly in the -X direction for the same task,

whereas PSO and ACO initiate in the +Y and +Z directions, respectively.

Each algorithm results in over 10 directional changes throughout the disas-

sembly process. Such frequent changes in direction can escalate time and

labor costs and pose increased safety risks, which are sub-optimal for prac-

tical disassembly operations. In contrast, our method, which is informed by

expert knowledge and specific disassembly preferences, tends to execute suc-

cessive operations in consistent directions, significantly reducing directional

changes to only three throughout the disassembly process.

The representative optimisation algorithms exhibit inherent limitations

stemming from their default parameter configurations. These algorithms

necessitate additional adjustments to their parameters to enhance the quality

of solutions and approach the global optimum more closely. The absence
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of expert insights and real-world context complicates the parameter tuning

process, making it both challenging and uncertain. The notable benefits

of our proposed method, as demonstrated in the comparative analysis, are

summarised in Table 5.13.

Table 5.13: Comparison between our method and optimisation algorithms.
Our method (OM) Optimisation algorithms (OAs)

Principle

OM is proposed based on SWRL rules,
which are a formal semantic expression
derived from expert knowledge and real-
world scenarios.

OAs are proposed based on a defined
objective function and are subject to various
constraints, but they lack expert knowledge
and descriptions of real-world scenarios.

Procedure Transparent and explicit. Opaque

Predictability
OM reasoning outcomes are predictable.
Outcomes are consistent as long as the
input conditions are the same.

The results of OAs are unpredictable due to
the randomness of OAs.

Traceability OM is easy to trace back to specific rules.
OAs act as a black box, and the intermediate
processes are hard to trace.

Complexity
The semantic expressions and SWRL rules
in OM are easier to implement and
understand.

OAs are more complex to implement, which
require algorithm design and constant
adjustment of parameters.

Replicability
The SWRL rules in OM can directly
encode, store, and integrate the expert
knowledge into different scenarios.

OAs are designed, and parameters are
adjusted to a specific scenario.

Optimisation
Result

OM can generate an exact optimal solution.
OAs generate a near-optimal solution and are
unable to confirm that the solution is optimal.

5.5 Chapter Summary

This chapter introduces a human-robot disassembly ontology model along

with a rule-based reasoning method aimed at identifying the optimal dis-

assembly scheme for EoL products. This model develops a standardised

and semantically structured framework that represents disassembly prece-

dence constraints and various optional disassembly methods for each compo-

nent of EoL products. Relative to methodologies developed in other studies

[104, 105], the approach adopted in this chapter exhibits several innovative
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aspects:

1. This chapter marks the initial development of a generalised ontological

semantic model tailored for HRCD environments. The methodology

introduced here is broadly applicable and versatile. Leveraging the

HRCD ontology, it allows for the semantic representation of any me-

chanical product or disassembly scenario through structured language.

This approach is distinguished by its flexibility and efficiency, enhanced

by the incorporation of product-specific information.

2. This chapter advances the categorisation of product components, build-

ing on existing methodologies that typically distinguish between func-

tional parts and fasteners. Such traditional classifications aid in es-

tablishing disassembly priority constraints derived from product topol-

ogy but often prove too broad, complicating the retrieval of specific

component information. In response to the nuances of HRCD in re-

manufacturing contexts, this study introduces a refined three-tier di-

vision: functional parts, accessory parts, and fasteners. While this

more detailed classification increases the complexity of constructing

product topology and defining disassembly priority constraints, it sig-

nificantly enhances the accessibility of component-specific information

and supports informed decision-making in subsequent remanufacturing

processes.

3. Contrary to conventional heuristic optimisation algorithms, this chap-
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ter employs semantically constructed disassembly rules to infer and

establish the optimal sequence and scheme for HRCD. These rules are

expressible through SWRL/SQWRL, facilitating interaction between

computers and robots. Effective reasoning with these rules generates

viable disassembly sequences, ensuring the creation of high-quality, ex-

ecutable disassembly plans suitable for complex mechanical devices.

Furthermore, the development of rules grounded in semantic principles

enhances both the flexibility and efficiency of the disassembly process.

The effectiveness of the proposed method is confirmed through a case

study and comparative experiments. In comparison with six fundamental

optimisation algorithms, this method registers the minimal process time of

308 units and the least number of directional changes, totalling three. Addi-

tionally, this approach promotes the integration, dissemination, and augmen-

tation of disassembly knowledge, thereby providing a versatile methodology

for formulating disassembly solutions for diverse EoL products.

By standardising and modularising the modelling and management of

EoL products, the impact of inherent uncertainty can be mitigated. Further-

more, the contributions of this chapter have the potential to significantly

enhance the efficiency and performance of the disassembly process within

the CPRS at the individual-level.
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6
Large-language model for Human-Robot Collaborative

Disassembly Sequence Planning and Analysis in CPRS

6.1 Introduction

Remanufacturing represents a critical approach within the proposed smart

manufacturing frameworks, marking a shift toward sustainable and circular

economic practices [15]. This process encompasses various manufacturing

stages that rejuvenate EoL products to a functional state equivalent to, or
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better than, new items [188]. By amalgamating used and new components,

remanufactured products not only prolong their service life but also diminish

the need for raw materials [189]. Furthermore, remanufacturing enhances the

lifespan of EoL products, aiding in the conservation of resources, reduction

of manufacturing expenses, and mitigation of environmental impacts.

The initial and vital step in the remanufacturing process is disassembly,

which involves separating a product into its individual components [190].

This stage is essential for the effective remanufacturing of products, as it facil-

itates the recovery and refurbishment of parts that possess remaining utility

and significant residual value. In contrast to the disassembly methods used in

routine maintenance or recycling, remanufacturing requires non-destructive

techniques that maintain the integrity and value of each component [191].

Non-destructive disassembly prevents damage to high-value parts. Addition-

ally, by dismantling products into separate units for thorough inspection and

assessment, remanufacturing ensures the enhanced performance of the final

remanufactured product, serving as a critical quality control measure within

the process.

Disassembly, a divergent process, involves numerous potential sequences

for dismantling EoL products into their constituent parts [192]. Complex

and larger EoL products often present a multitude of optional disassembly

sequences, posing challenges in planning and identifying the most effective

approach. Traditionally, the planning and sequencing of disassembly tasks

were predominantly guided by the expertise and intuition of engineers [193],

196



Y.X.Hu, PhD Thesis, Aston University 2024

a method that, despite its reliance on skilled professionals, could fall short in

consistently achieving the most effective outcomes. With advancements in

technology, heuristic optimisation algorithms have become a leading strategy

in orchestrating disassembly tasks. Although these algorithms provide signif-

icant flexibility and are widely applicable, they often lack transparency, and

their results may not always be optimal [194]. To address these limitations,

knowledge-based models have been developed. These models utilise explicit

rules and heuristics derived from expert insights to guide the disassembly

process [195]. While more systematic and reliable than intuition-based meth-

ods, these models might not possess the necessary flexibility or adaptability

to handle complex or unexpected scenarios effectively.

Disassembly of EoL products inherently involves unpredictability and un-

certainty due to their variable conditions [196]. Engineers often encounter

unfamiliar equipment and EoL products, which necessitates a thorough un-

derstanding of its structure and the determination of optimal disassembly

techniques. Although their prior experience is invaluable, it may not consis-

tently provide reliable guidance due to the unique and complex nature of each

task. In such situations, engineers typically search for advice or references to

aid their decision-making processes. However, finding and locating reliable

sources can prove challenging. Conventional knowledge databases and man-

uals may not cover specific or unusual scenarios, and peers or experts are

not always available for consultation [197]. Moreover, the relevance of the

available advice might vary with the specific circumstances and conditions
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at hand. This uncertainty and the scarcity of dependable information under-

score the need for more advanced and flexible tools in disassembly planning.

The emergence of Large Language Models (LLMs) has attracted signifi-

cant attention worldwide [198]. These models hold potential for enhancing

disassembly planning due to the rich semantic content inherent in disassem-

bly sequences. Utilising LLMs to field queries about these sequences can

offer diverse insights, though the responses may sometimes embody uncer-

tainty [199]. The principal challenge involves effectively utilising the deep

knowledge within LLMs to facilitate the planning of disassembly sequences,

a problem that has yet to be fully resolved.

In response to these challenges, this paper proposes the development of

an LLM-based Bayesian Network designed to produce a robust human-robot

collaborative disassembly sequence planning (HRCDSP) with accompanying

explanations and qualifications of uncertainty. This approach entails a dy-

namic interaction between the Bayesian Network and the LLM, orchestrated

through a Generative Adversarial Network (GAN). The primary contribu-

tions of this initiative are outlined as follows:

1. A disassembly constraint graph-based Dirichlet Bayesian Network (DiBN)

was developed for HRCD sequence planning. This method represents

the HRCD process as a graph and quantifies uncertainties using poste-

rior probability distributions. The Dirichlet distribution is particularly

apt due to its capacity to effectively depict the logical event space in-

herent in HRCD processes.

198



Y.X.Hu, PhD Thesis, Aston University 2024

2. A novel evaluation method for HRCD sequences was developed us-

ing a LLM that has been fine-tuned with domain-specific knowledge

in HRCD. To maintain the consistency of the outputs from the LLM

and reduce potential biases, a customised prompt strategy is employed.

This approach enhances the robustness of the responses generated by

the LLM.

3. A GAN framework was adapted to facilitate the synergistic integration

of DiBN and LLM. Within this framework, the responses from the

LLM are utilised to update the DiBN based on defined criteria. This

integration allows the DiBN, which is a reliable planner for HRCD,

to effectively assimilate and incorporate valuable knowledge from the

LLM’s output, leveraging open-source information.

6.2 Methodology

6.2.1 Problem Statement

This chapter aims to develop a robust and effective disassembly sequence for

handling unfamiliar tasks, as depicted in Figure 6.1. Initially, a disassembly

graph is constructed, serving as the foundational guideline for the disas-

sembly task. This graph, however, presents multiple potential sequences.

Selecting and determining the optimal sequence becomes a subsequent chal-

lenge. As the graph represents an ontological structure of the disassembly

constraint graph (DCG), it is convertible into the DiBN for quantitative
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analysis. In this conversion, a starting node based on the DCG structure is

incorporated into the DiBN. Sampling efforts initiate from this starting node,

progressing to the base of the DiBN before restarting, with a mechanism to

mark nodes post-sampling to avoid repetition. Given the limited availability

of validated sequence labels, the probability estimates remain uncertain yet

necessary. To address this, a reinforcement learning strategy using a GAN

is proposed. This method leverages a LLM to predict subsequent disassem-

bly steps based on the current state, while feedback or rewards from the

system adjust the prompts and probabilities in the Bayesian network. This

integrated approach allows engineers, using a given DCG, to deduce the opti-

mal disassembly sequence through reasoning facilitated by an LLM-enhanced

Bayesian Network.

Given that the disassembly graph embodies an ontological structure, it

can be converted into a Bayesian network for quantitative analysis. However,

the calculation of independent probabilities remains uncertain and unreliable

due to the limited availability of validated ground truth data. To address

this challenge, a reinforcement learning (RL) approach is introduced. This

method utilizes a LLM to predict the subsequent part to disassemble based

on the current state of assembly. Concurrently, feedback or rewards from

the environment are used to adjust the prompts and probabilities within the

Bayesian network. Employing this process, engineers can use the disassembly

graph to estimate the optimal disassembly sequence by querying the LLM

with specifically tailored prompts.
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Figure 6.1: Workflow of the Proposed LLM-based DiBN Model.

6.2.2 Generated Disassembly Graph

The proposed method entails developing a disassembly graph that visualises

the disassembly process. This graph encapsulates the hierarchical organi-

sation of components, delineates their interrelationships, and sequences the

operations involved [200]. The notations employed are described as follows:

Nodes N : These denote the components within the assembly, with each

node being allocated a level (L) reflective of its hierarchical positioning

Edges E: These illustrate the interconnections between components, dif-

ferentiated into two categories:

Solid edges Es: Indicate contact relationships among components.

Dashed edges Ed: Signify non-contact relationships between components.
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Hierarchical Structure of Components

In the proposed graph model G(N,E), components N are arranged hierar-

chically. Each component is assigned a level L that reflects its dependencies.

Components at higher levels, which require the prior disassembly of those

at lower levels, are positioned higher within the hierarchy. This hierarchical

organisation governs the precedence sequence of the disassembly process.

Relationships of Components

The graph also delineates both contact and non-contact relationships among

components of EoL products via edges E. Contact relationships, denoted

by solid edges Es, indicate a physical linkage between components, requiring

that a component connected by a solid edge be removed before or concur-

rently with its adjacent component. Non-contact relationships, depicted by

dashed edges Ed, represent logical associations among components that do

not engage physically but are interconnected through the sequence of dis-

assembly operations. Recognising these non-contact relationships is crucial

for identifying concealed dependencies and potential bottlenecks within the

disassembly process.

AND/OR Precedence of Components

The established graph model integrates both AND/OR precedence relation-

ships among components of EoL products. AND precedence occurs when

multiple components are capable of being disassembled simultaneously, il-

lustrated by parallel edges emanating from a single node within the graph.
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OR precedence is presented through alternative paths emanating from one

node to others, indicating a variety of viable sequences for disassembling

components. This versatility proves beneficial under different conditions or

constraints.

Figure 6.2 provides an illustrative example of component relationship of

a satellite, whose disassembly process can be modelled in this format. Such

a disassembly graph lays the groundwork for subsequent graph embedding

training.

Figure 6.2: Disassembly graph of the satellite.
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6.2.3 Disassembly Graph-Based Bayesian Network

The disassembly graph, while comprehensive, might not encompass all pos-

sible current scenarios and could present multiple choices within a specific

configuration. Consequently, a quantitative analysis method is essential. A

Bayesian network is suggested to model the probabilities of various outcomes,

with its structure derived from the disassembly graph. The probability esti-

mates within the Bayesian network can be approximated using outputs from

a LLM. Therefore, a Bayesian network based on the disassembly graph is pro-

posed, with its parameters determined by sampling from a specified Dirichlet

distribution.

The disassembly graph-based Bayesian network is denoted as B(V,E),

where V represents the set of node set, while E denoted the edge set.

Based on Bayes’ theorem, the calculation of conditional probability can

be expressed using the following equation:

P (A|B) =
Pj(A,B)

P (A)
, (6.1)

where Pj is the joint probability, P (A|B) represents the dependent prob-

ability. It can also represent as P (A|B,C...Z) =
Pj(A,B,...,Z)

P (B,...,Z)
if this equation

involves more than two nodes for its inference. To minimise uncertainty,

each conditional probability is modelled using a Dirichlet distribution, the

parameters of which are influenced by the sample data:
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P (A = xi|Bj, Ck...Zl) = Dirichlet(x;α), (6.2)

where x = (x1, x2, ..., xm), m is the number of X’s condition. Bj, Ck, and Zl

denotes the specific condition of B, C and Z, respectively.

Within the sequential environment, feedback in the form of a reward is

provided to the Bayesian network to facilitate parameter updates. Specifi-

cally, if a reward surpasses a predefined threshold—indicative of a satisfactory

sequence—then a maximum likelihood approach is employed to update the

parameter.

L(θ|X) =
n∏︂

i=1

P (xi|θ), (6.3)

In this context, X represents a set of observed data points x1, x2, ..., xN ,

where each xi denotes the specific condition of event x.

Upon finalising the graph structure, accurately determining the depen-

dent probability becomes challenging. The LLM can be utilised to approx-

imate both dependent and independent probabilities. Additionally, the re-

ward score provided by the environment serves to update these probabilities.

6.2.4 LLM-based sequence planning

Given the current state, the LLM can estimate the probability of the next

action using a customised prompt. In the context of remanufacturing disas-

sembly, this action must be evaluated concerning various factors, including
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environmental impact, cost, and time duration. As illustrated in Fig. 6.3,

an engineer will engage with the LLM by submitting the disassembled ob-

ject and a proposed sequence, anticipating both an evaluation score and an

explanatory output from the LLM.

To prevent and reduce the occurrence of illogical comments and unsta-

ble scores, a Prompt Rephraser and random trials are implemented to create

comparable prompts that query the LLM for evaluating the HRCD sequence,

as depicted in Fig. 6.3. After numerous iterations, the system compiles and

reviews the evaluated results, assessing score stability (targeting a variance

less than 5). Should the scores demonstrate stability, the system randomly

selects one record to represent the final output. This approach strength-

ens the system’s robustness and applies constraints informed by the domain

knowledge encapsulated within the DiBN.

6.2.5 GAN Based HRCD Sequence Planning

The aforementioned modules can be synthesized into the GAN framework,

wherein the Bayesian Network (BN) functions as the Generator and the LLM

acts as the Discriminator. Within this framework, the BN is capable of

generating a potential sequence through the described process, while the

LLM assesses this sequence from various viewpoints.
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Figure 6.3: The querying process of the LLM.

min
DiBN

max
LLM

= Es∼ps(s)[LogLLM(s)]

+ Ez∼pz(z)[Log(1− LLM(DiBN(z)))], (6.4)

Where z represents the random noise sample drawn from a prior distri-

bution pz(z), s denotes the feasible sequence generated by the DiBN, and

ps signifies the effective sequence space. Additionally, DiBN(z) is the se-

quence generated by the Bayesian network from the noise sample z, and

LLM(DiBN(z)) is the evaluation score assigned by the fixed discriminator
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to the generated sequence.

During the training phase, a batch of sequences S = s1, s2, ..., sn is gen-

erated by the DiBN and evaluated by the LLM, which assigns scores to each

sequence, denoted as D(si) for the score of sequence si. From the batch S, se-

quences Shigh ∈ S that exceed a predefined score threshold or are among the

top-k highest scoring are selected. These sequences are deemed most infor-

mative for the generator’s learning process, representing the most promising

HRCD sequences according to the LLM’s evaluation. The selected sequences

Shigh are subsequently used to refine the DiBN, enhancing its probability

distributions to more effectively generate realistic and efficient disassembly

sequences. This iterative process continues until a satisfactory level of per-

formance is reached. Algorithm 2 outlines a unified pipeline summarising the

key steps of this methodology.

Algorithm 2 Unified Pipeline of LLM-based HRCD sequence generation

Input: DCG: Disassembly constraint graph; Prompt: Tailored prompt;
Output: HRCDsequence: HRCD sequence from well-trained DiBN
1: Transfer DCG into DiBN ;
2: Score list = [0,0,0,0,0];
3: while Average (Score list[:-5]) < 90 do
4: HRCD sequence=Sampling (DiBN)
5: Text = LLM Query (HRCD sequence)
6: Score, Explanation = Extract (Text)
7: Score list.extend (Score)
8: if Score > Threshold then
9: Update DiBN ← HRCD sequence

10: end if
11: end while
12: Final HRCD sequence = Sampling n(DiBN)
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6.3 Case Study

6.3.1 Case Study I: belt roller

The initial case study examines the disassembly process of a belt roller within

the HRCD framework. A detailed breakdown of the disassembly compo-

nents is provided in Table 6.1, where DM denotes the disassembly method.

This method may involve a human (H), robot (R), or a combined human-

robot effort (HR). The disassembly planner, based on their expertise, assigns

each disassembly task to an appropriate agent, as represented by the various

colours in the DCG depicted in Fig. 6.4. Furthermore, an illustration of the

DCG for the belt roller, which reflects both the structural composition and

prior disassembly experiences, is positioned in the lower right corner of the

referenced figure.

Table 6.1: Component list of the belt roller.
ID Name DM ID Name DM
1 Bolts H/R 5 Left Bush R
2 Left Bracket H/R 6 Right Bush H/R
3 Right Bracket H/R 7 Shaft H
4 Base R 8 Roller HR

The DiBN is constructed using the DCG tailored to the precedence con-

straints of the belt roller. This BN initially creates potential and optional dis-

assembly sequences through graph navigation, though these initial sequences

may be sub-optimal. These sequences undergo evaluation by a LLM using

the specified prompt. The feedback from the LLM is then employed to en-
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Figure 6.4: Structure and precedence constraints of the belt roller.

hance the DiBN model iteratively, with each cycle of feedback considered a

distinct step in the refinement process. Figure 6.5 illustrates this process:

the blue curve represents the sequence generation by the DiBN prior to LLM

integration, following the default probabilistic pathways. Conversely, the

orange curve displays the sequence outcomes post LLM integration, show-

ing initial similarity but diverging significantly after continued refinement.

After ten steps of incorporating high-scoring sequences, the DiBN demon-

strates a marked improvement in sequence quality. This divergence becomes

particularly pronounced in the latter five steps, underscoring the impact of

LLM-based refinement on the DiBN’s performance.

The efficacy of the training regimen and the enhancements made by the

newly proposed DiBN are demonstrated through a comparative analysis with

the original BN. This analysis is visually represented by the loss curves of

both models as depicted in Fig. 6.6. The loss curves reveal that the DiBN

210



Y.X.Hu, PhD Thesis, Aston University 2024

Figure 6.5: Reward comparison between DiBN with and without LLM in
belt roller HRCDSP.

not only converges more rapidly but also attains a lower overall loss, albeit

with some fluctuations. Such a visual comparison distinctly underscores the

improvements in both training efficiency and model accuracy facilitated by

the modifications implemented in the DiBN.

Figure 6.6: Training Loss comparison in belt roller HRCDSP.

To address the uncertainties associated with the LLM, the DiBN incorpo-

rates a latent space, as outlined in the preceding section. A sampling method

is employed to assess this latent space, and Fig. 6.7 displays several repre-
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sentative conditional probabilities within the BN. The X-axis represents the

directional flow of these probabilities. For example, the notation ‘N1→N2’

indicates the probability of proceeding with ‘N2’ when the witnessed ev-

idence is ‘N1’. As illustrated in Fig. 6.7, the conditional probability of

‘N1→N2’, whether to disassemble ‘N2’ or not, shows minimal variance (0.52

vs. 0.48). This reflects practical scenarios where, following the disassembly

of ‘N1’ (bolts), the subsequent removal of either the left or right bracket

is equally feasible. Conversely, the conditional probability for ‘N7→N8’ is

significantly higher, which is logical given that the shaft is positioned inside

the roller, making sequential disassembly a practical approach. These prob-

abilities help to quantify and mitigate the uncertainty associated with each

decision in the disassembly process.

Figure 6.7: Conditional probability of disassembly events in belt roller.

The established HRCD planning method does not necessitate the inclu-
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sion of additional attributes within the DCG, such as time expenditure or

economic costs, which are circumvented by the use of a LLM. To assess the

efficacy of this method, it is benchmarked against various advanced models,

including Topological Sorting [201], Greedy Search [202], Depth-first Search

(DFS) [203], and Breadth-first Search (BFS) [204]. Given that the focus of

this comparison is the HRCD sequence, the Kendall Rank Correlation Coef-

ficient [205] and Spearman’s Rank Correlation [206] are utilised to gauge the

performance of each model, providing a statistical measure of their relative

effectiveness.

Figure 6.8 illustrates that the LLM-DiBN method outperforms others

in terms of the Kendall and Spearman correlation metrics, achieving scores

close to 1. This indicates that the proposed method is capable of generating

HRCD sequence plans that closely match the optimal ground truth plans.

Nevertheless, the performance differential between the methods is not sub-

stantial. A plausible explanation for this minor discrepancy is the relatively

simple structure of the belt roller, characterised by a limited number of EoL

components and parts.

6.3.2 Case Study II: gearbox

In the second case study, the disassembly of a gearbox is examined, as de-

picted in Figure 5.8 (Chapter 5, Section 5.4). This gearbox consists of 23

components that require disassembly, details of which are summarised in

Table 8.3 (Appendix 8.2).
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Figure 6.8: Cutting-edges methods comparison for belt roller HRCDSP.

The DCG for the gearbox is redefined and updated based on the me-

chanical structure and precedence disassembly constraints, as illustrated in

Fig.6.9. Utilising a similar approach as in the first case study, the DiBN is re-

fined with high-scoring sequences following evaluation by a LLM. Figure6.10

displays the variability in rewards, where the traditional DiBN, initiated ran-

domly, shows fluctuating results without notable improvement. Conversely,

the DiBN that incorporates feedback from the LLM exhibits a consistent up-

ward trend. In later stages, this LLM-enhanced DiBN significantly surpasses

the performance of the original model. This outcome suggests that incor-

porating an LLM as a discriminator enhances the logical structuring of the

disassembly sequences. Notably, the disparity in performance during later

iterations is more pronounced than observed in Fig. 6.5. This is likely due to

the gearbox’s complexity, which consists of 23 components, creating a larger

HRCD space compared to the six components in the belt roller from the first
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case study.

Figure 6.9: Precedence constraints graph of the gearbox.

Statistical sampling is employed to assess the latent space for uncertainty

quantification within the DiBN of a gearbox. Figure 6.11 presents various

typical conditional probabilities. For instance, the conditional probability of

transitioning from ‘N4→N3’ shows minimal variation between the options

of disassembling ‘N4’ or not (0.65 vs. 0.35). This scenario mirrors practical

conditions where, subsequent to the removal of ‘N4’, a screw, the disassembly

of other external components such as ‘N12’ and ‘N21’ is feasible. In contrast,

the conditional probability of ‘N9→N11’ is markedly higher, reflecting the

proximity of the inner buckle to the bearing, which can be disassembled

without the need for additional tools or extensive effort.

The conditional probability of disassembling a specific component cor-
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Figure 6.10: Reward comparison between DiBN with and without LLM in
gearbox HRCDSP.

relates positively with the accumulation of observed evidence. Figure 6.12

delineates the conditional probabilities for various disassembly nodes, high-

lighting three particular components (Node 3, Node 6, and Node 14) for

detailed examination. The X-axis denotes the count of evidence observed for

each node. For example, one piece of evidence for Node 3 implies observa-

tion of its parent node (N4), whereas two pieces of evidence might indicate

that two other nodes, such as Node 5 or Node 20, have been disassembled.

An averaging approach is utilised to calculate the conditional probability of

Node 3 given two pieces of evidence, and similar calculations apply to other

nodes. As depicted in Fig. 6.12, there is a discernible upward trend in the

conditional probabilities as the evidence increases. This pattern is consis-

tent with established disassembly practices where, for instance, Node 3 is a

potential candidate for removal following the disassembly of Node 4, but its

immediate removal is not obligatory as alternatives like Nodes 12, 5, and 20
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Figure 6.11: Conditional probability of disassembly events in gearbox.

are also viable subsequent steps.

Figure 6.12: Condition probability with increase evidence in gearbox.

As Case Study I, the performance of the DiBN is benchmarked against

the original BN model by analysing their respective loss curves during the

training phase. Figure 6.13 illustrates comparable outcomes, with the DiBN

demonstrating quicker convergence and achieving a lower loss. Both models
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show a pronounced downward trend in loss, more significant than in Case

Study I, which underscores the improvements in training efficiency and model

accuracy achieved with the DiBN implementation.

Figure 6.13: Training Loss comparison in gearbox HRCDSP.

To demonstrate the efficiency of the proposed method, it is evaluated

against other advanced methods, employing a similar approach as in Case

Study I. Figure 6.14 shows that the proposed LLM-DiBN method outper-

forms the others, achieving the highest scores in both Kendall and Spearman

metrics, approximately 0.7.

In contrast to Case Study I, there is a notable performance discrepancy

between the proposed method and its counterparts. This difference can be

attributed to the gearbox’s complex structure, which comprises 23 compo-

nents and parts, resulting in a more intricate search space for disassembly

planning. This substantial performance gap underscores the efficiency and

robustness of the proposed method in handling complex scenarios.
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Figure 6.14: Cutting-edges methods comparison for gearbox HRCDSP.

6.4 Chapter Summary

This chapter explores the pioneering integration of LLMs into HRCD within

the realm of smart remanufacturing. Initially, the chapter presents an in-

troduction that highlights the importance of integrating advanced AI tech-

nologies, such as LLMs, to elevate the efficiency and sophistication of disas-

sembly processes in remanufacturing environments. It emphasises the role of

these technologies in bridging communication divides between humans and

robots, thus enabling smoother and more intuitive collaborative efforts. In

the methodology section, a detailed framework for embedding LLMs into

HRCD is delineated, beginning with a problem statement that prepares the

groundwork for further developments. This includes the creation of a disas-

sembly graph that lays the groundwork for a Bayesian network. This network

models the probabilistic interdependencies among various disassembly tasks.

The discussion progresses to the utilisation of LLMs for sequence planning
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and introduces the application of GANs in optimising disassembly sequences.

This section showcases advanced strategies that utilise the predictive strength

of LLMs to manage intricate disassembly tasks effectively.

This chapter also presents two case studies to demonstrate the practical

application of the methodologies discussed, illustrating the use of the LLM-

embedded HRCD approach in real-world remanufacturing scenarios. These

case studies highlight how integrating LLMs and GANs into the disassembly

process not only increases the efficiency and flexibility of the disassembly

sequences but also enhances the interaction between human operators and

robotic systems. The chapter concludes with a reflection on the implications

of these research findings, emphasising the transformative impact of incorpo-

rating LLMs into HRCD systems on the future of smart remanufacturing. It

points out that these technological advancements could foster more sustain-

able manufacturing practices by enhancing the efficiency of material reuse

and recycling through improved disassembly processes, thereby contributing

to the circular economy.
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7
Conclusions and Future Work

7.1 Recap of The Research

In recapitulating the research outlined across the discussed chapters, this

section synthesises the progressive exploration and innovative methodologies

developed for enhancing human-robot collaborative disassembly in the con-

text of smart remanufacturing.

Chapter 2 laid the foundational knowledge and state-of-the-art research

on Cyber-Physical Production Systems (CPPS), Disassembly Line Balanc-

221



Y.X.Hu, PhD Thesis, Aston University 2024

ing Problem (DLBP), human-robot collaborative disassembly (HRCD) and

Large Language Models (LLMs) in HRCD, dissecting their integral role in

modern smart remanufacturing. Moreover, the research gaps and challenges

and other advanced computational techniques are also discussed and anal-

ysed in this chapter.

Moving forward, Chapter 3 detailed proposed a conceptual framework for

Cyber-Physical Remanufacturing Systems (CPRS), emphasising the seam-

less integration of cyber systems with physical manufacturing processes. It

mainly focuses on the system level remanufacturing processes management.

The discussion on current challenges and future perspectives shed light on

the critical areas of EoL product modelling, process planning, and data com-

munication essential for the realisation of efficient CPRS. It mainly focuses

on the system level remanufacturing processes management. However, the

overall framework of the CPRS is too large which is beyond the research

scope of this research. Therefore, the disassembly process, as one of the

most important processes in remanufacturing, is focused and determined in

following research.

Chapter 4 innovated upon this foundation by proposing a novel simulated

annealing-based hyper-heuristic algorithm specifically designed to tackle the

stochastic parallel disassembly line balancing problem which is mainly focus

on the workshop level, showcasing its effectiveness through comprehensive

computational experiments and a practical case study.

Chapter 5 further refined the approach to disassembly planning by in-
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troducing an ontology and rule-based method, aimed at facilitating precise

and efficient human-robot collaboration in disassembly tasks which is the

individual level. Through detailed case studies, this chapter demonstrated

the practical application and effectiveness of the proposed methodology in

real-world scenarios.

Lastly, Chapter 6 expanded the horizon of human-robot collaborative

disassembly (HRCD) by embedding Large-Language Models (LLM) into the

disassembly planning process. This chapter explored the establishment of

disassembly graphs, the application of Bayesian networks, and innovative

sequence planning through generative adversarial networks, culminating in

a case study that highlights the transformative potential of LLMs in smart

remanufacturing.

Together, these chapters articulate a cohesive and comprehensive research

journey, from the foundational understanding of CPPS to the cutting-edge

application of LLMs in disassembly planning. This recap underscores the

evolution of methodologies and technologies aimed at revolutionising smart

remanufacturing through enhanced human-robot collaboration, offering in-

sights into future research directions and the continuous pursuit of sustain-

ability and efficiency in manufacturing processes.

7.2 Research Contributions

The research contributions derived from this thesis are manifold, reflecting

significant advancements in the domain of human-robot collaborative dis-
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assembly (HRCD) and smart remanufacturing. These contributions can be

summarised as follows:

• Established a Conceptual Framework of Cyber-Physical Remanufac-

turing Systems (CPRS): The development of a conceptual framework

for CPRS, as delineated in Chapter 3, contributes to integrating cyber-

physical systems and related advanced ’Industry 4.0’ technologies within

the remanufacturing domain. This framework establishes a practical

foundation for subsequent research in smart remanufacturing systems,

underscoring the prospective contributions of cloud services and edge

computing to augment the efficiency and sustainability of remanufac-

turing processes.

• Advancements in Optimisation Algorithms for DLBP: Chapter 4 intro-

duces a proposed optimisation algorithm based on simulated annealing

hyper-heuristics to address the stochastic parallel disassembly line bal-

ancing problem, significantly enhancing the optimisation of disassembly

processes. This methodology effectively mitigates the inherent uncer-

tainties associated with disassembly tasks and improves line efficiency,

thereby establishing a new benchmark for algorithmic approaches in

remanufacturing systems.

• Proposed Ontology Model and Rule-Based Method for HRCD Sequence

Planning: The methodology presented in Chapter 5 employs ontology

and rule-based reasoning to structure disassembly sequence planning,
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offering a systematic and efficient approach to managing complex disas-

sembly tasks. This contribution enhances human-robot collaboration

in disassembly processes by providing a transparent and systematic

framework for knowledge representation and decision-making, thus im-

proving operational efficiencies.

• Integration of Large Language Models in HRCD: As explored in Chap-

ter 6, the LLM is embedded in HRCD to support the evaluation of

disassembly sequences. This approach leverages the power of LLMs for

sequence planning and decision-making in disassembly tasks, marking a

significant stride towards the intelligent automation of HRCD sequence

planning. The use of disassembly graphs and Bayesian networks fur-

ther exemplifies the innovative integration of AI and machine learning

techniques in disassembly.

• Practical Application and Validation Through Case Studies: Across

the chapters, the application of these novel methodologies and algo-

rithms is validated through detailed case studies, particularly in the

disassembly of complex products like gearboxes. These practical appli-

cations not only demonstrate the effectiveness of the proposed solutions

but also provide valuable insights into their real-world implications and

potential for industry adoption.

Together, these research contributions from this thesis represent a signifi-

cant achievement in the field of smart remanufacturing and human-robot col-
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laborative disassembly, offering new directions for research and development.

By addressing critical challenges in disassembly line balancing, enhancing the

precision and efficiency of human-robot collaboration, and applying advanced

AI technologies in remanufacturing, this thesis paves the way for more sus-

tainable, efficient, and smart remanufacturing practices.

7.3 Limitations and Future Research Direc-

tions

7.3.1 Disassembly Line Balancing Problem

In future research, the mathematical model of disassembly line could be fur-

ther improved to better model actual conditions of disassembly in remanufac-

turing. The collaborative human robot disassembly line in a workstation will

provide more alternative choices in disassembly task allocation, which makes

it a more complex scenario. Moreover, the emerging deep learning and re-

inforcement learning optimisation algorithms may have more advantages for

multi-objective optimisation problems. Deep learning-based algorithms have

great ability on solving nonlinear fitting, while reinforcement learning based

algorithms are suitable for decision-making learning [207]. Nowadays, the

deep reinforcement learning method is generated and combined the advan-

tages of those two methods, which has great ability to solve more complex

optimisation problems in real-world scenarios [208]. Due to the highly versa-

tile of the proposed HH algorithm, it is possible to combine hyper-heuristic
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algorithms with those intelligence algorithms to further enhance the perfor-

mance of optimisation problems. Additionally, the optimisation of DLBP

in remanufacturing can be considered and pursued for larger-scale and more

complex actual products.

7.3.2 Human-Robot Collaborative Disassembly

For future research, the following three primary aspects should be considered:

This research is the first to introduce an ontology model and a rule-based

reasoning method for human-robot collaborative disassembly sequence plan-

ning. Therefore, this research focuses on proposing the upper-layer frame-

work of the ontology model and the reasoning rules in human-robot collabo-

rative disassembly. Practical factors such as uncertainty and failure are not

considered in this research. The ontology model can be further expanded

through integrating these factors to reflect a more practical industrial sce-

nario. Moreover, the generative pre-trained transformer (GPT) models offer

a potential solution to generate, learn and update the ontology model auto-

matically.

In this research, the generated disassembly strategies consider only a com-

plete and damage-free disassembly mode. Feasible and optimal disassembly

schemes are determined based on the overall process time and the number of

disassembly direction changes. However, due to the various constraints and

uncertainties associated with product components in real-world disassembly,

as well as potential failures during the disassembly process, the complexity
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evaluation of each disassembly task should be enhanced by considering eco-

nomic and technical factors. Subsequently, the selection of disassembly meth-

ods and the optimisation of human-robot collaborative disassembly schemes

will ensure greater practical significance and value.

The proposed ontology model and disassembly-related rules can be fur-

ther adapted and expanded to encompass the entire remanufacturing process

[209]. The full life-cycle of EoL products can be incorporated into the EoL

product ontology knowledge base, which can also aid in establishing the dig-

ital twin model of EoL products. Furthermore, the SWRL rules have the

potential to support and enhance planning and optimisation within the en-

tire remanufacturing process. Consequently, a smart remanufacturing system

embedded with the ontology model and rule-based reasoning mechanism can

be established.

7.3.3 Large-Language Model for HRCD

The exploration of Large-Language Models (LLM) for human-robot collabo-

rative disassembly, while groundbreaking, brings to light several limitations

that pave the way for future research directions. One of the primary limita-

tions lies in the current capability of LLMs to fully understand and interpret

the complex, technical language specific to disassembly processes and manu-

facturing schematics. Despite their remarkable progress in natural language

understanding, LLMs occasionally struggle with the precise interpretation of

technical jargon and the application of this knowledge in practical, physi-
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cal tasks. Additionally, the integration of LLMs into physical disassembly

systems poses significant challenges, particularly in ensuring seamless com-

munication between the cyber and physical components of collaborative dis-

assembly operations. The latency in response times and the potential for

misinterpretation of commands can hinder the efficiency and effectiveness of

human-robot collaboration, necessitating further refinement of these mod-

els to better accommodate the nuances of technical language and real-world

manufacturing contexts.

Future research directions should focus on enhancing the contextual un-

derstanding of LLMs, particularly in interpreting and acting upon complex

disassembly instructions within varied manufacturing environments. This

entails the development of specialised LLMs trained explicitly on technical

datasets, incorporating industry-specific knowledge that can bridge the cur-

rent gaps in language comprehension. Another promising avenue is the im-

provement of integration techniques for LLMs within cyber-physical systems,

aiming to reduce latency and increase the reliability of human-robot inter-

actions. Exploring advanced communication protocols and real-time data

processing frameworks could significantly enhance the synchronisation be-

tween humans, robots, and LLMs. Additionally, addressing the ethical and

safety considerations inherent in human-robot collaboration is paramount,

ensuring that advancements in LLM technology do not compromise worker

safety or job security. Through targeted research and development efforts,

the potential of LLMs to revolutionise smart remanufacturing and collabo-
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rative disassembly processes can be fully realised, pushing the boundaries of

current manufacturing capabilities towards more efficient, sustainable, and

intelligent production systems.

7.4 Chapter Summary

This chapter serves as a culminating summary of the research conducted,

alongside an articulation of its scientific contributions and a forward-looking

perspective on limitations and future directions. The chapter begins with a

concise recap of the research, emphasising the novel integration of cyber-

physical systems, advanced heuristic algorithms, ontology and rule-based

methods, and large language models within the realm of human-robot col-

laborative disassembly in smart remanufacturing. This synthesis not only

encapsulates the journey taken but also highlights the nuanced understand-

ing and innovations developed to tackle the complexities of disassembly pro-

cesses, optimising them for efficiency, accuracy, and sustainability.

In discussing scientific contributions, the chapter proudly outlines the

strides made in addressing the Disassembly Line Balancing Problem (DLBP),

enhancing Human-Robot Collaborative Disassembly (HRCD), and pioneer-

ing the use of Large-Language Models (LLMs) for HRCD. These contribu-

tions represent significant advancements in the field, offering methodologies

and frameworks that could be applied across a range of disassembly scenarios

in smart remanufacturing contexts. However, the narrative also acknowledges

inherent limitations, particularly in the scalability of solutions to DLBP, the
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integration depth of human-robot interactions in HRCD, and the domain-

specific performance of LLMs. Future research directions are thoughtfully

proposed, suggesting a deeper exploration into adaptive algorithms that can

more dynamically respond to the unpredictable nature of disassembly tasks,

the development of more intuitive interfaces and protocols for human-robot

collaboration, and the refinement of LLMs to better handle the specific lin-

guistic and procedural nuances of disassembly tasks. These pathways not

only aim to address the current gaps but also envision a future where smart

remanufacturing is more efficient, adaptable, and collaborative.
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8
Appendix
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8.1 Bill of Materials of Splitter Gearboxes

Table 8.1: Bill of materials of splitter gearboxes series 85000.
No. Description (Parts) Quality (Q) Mean Process Time (t) Deviation (D) Revenue (r)

1 Housing 1 8.2 2.1 25.3
2 Cover 1 10.4 3.5 43.5
3 Bearing 6010 1 5.6 1.2 12.6
4 Pinion gear 2 3.4 1.4 6.6
5 Sealing ring 45×65×8 2 7.6 2.2 4.8
6 Oil plug 3/8” 2 4.8 2.0 2.2
7 Oil drain plug 3/8” 1 5.2 1.6 1.4
8 Key 12*25 1 2.6 0.8 0.7
9 Snap ring UNI 7435-50 2 6.4 4.2 4.7
10 Oil dipstick with vent 1 7.3 1.4 2.6
11 Male P.T.O. shaft 1”3/8 Z6 1 8.4 3.4 23.4
12 Ring gear 1 18.7 5.2 4.3
13 Bearing 6009 4 5.4 1.3 11.2
14 Sealing ring 50*65*8 1 4.7 1.4 2.5
15 Cap DIN 470 D.38 5 10.5 4.5 1.5
16 Bearing 6210 1 10.2 3.5 15.6
17 Gasket 4 4.8 1.6 60.4
18 Washer Grower d.8 12 15.6 1.2 67.9
19 Nut M8 12 25.2 2.4 7.2
20 Peg UNI 8751 6*24 8 10.4 1.6 0.8
21 Socket cap screw M8*45 12 27.6 3.6 42.2
22 Gasket 1 8.5 1.4 14.3
23 Snap ring UNI 7435-48 1 3.4 1.2 2.3
24 Ring 1 4.7 2.1 3.7
25 Spring 1 2.6 1.4 2.3
26 Spring ring 1 8.6 2.4 4.2
27 Ball 3 4.2 0.9 12.7
28 Female P.T.O. shaft—1”3/8” Z6 1 4.6 1.6 16.6
29 Female P.T.O. shaft short 1”3/8 1 5.2 1.4 20.7
30 Female P.T.O. shaft long 1”3/8 1 3.4 0.8 23.4
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Table 8.2: Bill of materials of splitter gearboxes series 90000.
No. Description (Parts) Quality(Q) Mean Process Time (t) Deviation (D) Revenue (r)
1 Socket cap screw M6*20 4 9.2 1.2 14.2
2 Oil level plug 1 2.4 1.1 1.4
3 Gasket 1 1.2 0.4 0.6
4 Gasket 1 6.5 2.4 1.4
5 Socket cap screw 10 23.1 6.4 31.2
6 Peg ø 6 2 2.6 0.6 0.2
7 Snap ring ø 58 3 9.6 3.2 5.4
8 Bearing type 6010 5 28 6 63
9 Cap DIN 470 2 4.2 1.8 0.6
10 Pinion Gear 2 3.4 1.4 6.6
11 Sealing ring ø 3 11.4 2.1 7.2
12 Oil dipstick with vent 1 7.3 1.4 2.6
13 Gasket 3 3.6 1.2 45.3
14 O-Ring 2 8.2 2.2 0.6
15 Corteco Ring 2 10.4 3.8 6.4
16 Gasket 2 16.4 6.4 23.6
17 Flange SAE B 1 12.7 4.2 16.6
18 Socket cap screw 6 13.8 1.8 21.1
19 Flange SAE A 1 14.2 4.1 23.5
20 Oil drain plug 3/8” 1 5.2 1.6 1.4
21 Housing 1 8.4 2.2 25.4
22 Gasket 1 8.5 1.4 14.3
23 Ring gear 1 18.7 5.2 4.3
24 Male P.T.O. shaft 1”3/8 1 4.6 1.6 16.4
25 Bearing type 6210 1 10.2 3.5 15.6
26 Ball 3 4.2 0.9 12.7
27 Spring 1 2.6 1.4 2.3
28 Female P.T.O. shaft 1”3/8 long 1 3.4 0.8 23.4
29 Cap DIN 470 3 6.3 2.7 0.9
30 Female P.T.O. shaft 1-3/8” 1 7.3 2.4 18.4
31 Spring ring 1 8.6 2.4 4.1
32 Female P.T.O. shaft 1”3/8 short 1 5.2 1.4 20.7
33 Cover 1 10.8 2.4 24.8
34 Cap 1 8.6 2.2 8.2
35 Ring 1 4.8 1.8 3.8
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8.2 Disassembly-Related Information of The

Gearbox

The BOM and related information of the gearbox are presented in Table 8.3.

Table 8.3: Disassembly-related information of the gearbox.
ID Name Instance in Protégé Category Quantity DA DTl DM ProcessTime
1 House house fp 1 - - - -
2 Ventilator ventilator fp 1 Rotate Wrench H/R 10/8
3 Flange flange fp 1 Unscrew - H/R 15/10
4 Screw-1 screw-1 f 6 Unscrew Screwdriver H/R 5/2
5 Screw-2 screw-2 f 6 Unscrew Screwdriver H/R 5/2
6 Outer Buckle-52 outer buckle 52 ap 1 Unplug Circlip pliers H/R 8/6

7 Bearing-32205 bearing 32205 fp 1
Place, Grasp,
Move, Unplug

Puller, Separators,
Circlip pliers

HR 30

8 Worm Shaft worm shaft fp 1
Grasp, Move,
Slide, Rotate

Puller, Separators,
Circlip pliers

HR 26

9 Inner Buckle inner buckle ap 1 Unplug Circlip pliers H/R 17/10
10 Outer Buckle-68 outer buckle 68 ap 1 Unplug Circlip pliers H/R 12/9

11 Bearing-32008 bearing 32008 fp 1
Place, Grasp,
Move, Unplug

Puller, Separators,
Circlip pliers

HR 30

12 Worm Cover worm cover ap 1 Unplug Circlip pliers H/R 14/10

13 Bearing-32010-1 bearing 32010 1 fp 1
Place, Grasp,
Move, Unplug

Puller, Separators,
Circlip pliers

HR 25

14 Bearing-32010-2 bearing 32010 2 fp 1
Place, Grasp,
Move, Unplug

Puller, Separators,
Circlip pliers

HR 25

15 Gear spacer-1 gear spacer 1 fp 1
Grasp,
Unplug

Circlip pliers R 14

16 Gear spacer-2 gear spacer 2 ap 1 Grasp, Unplug Circlip pliers R 14

17 Gear shaft gear shaft fp 1
Grasp, Move,
Slide, Rotate

Puller, Separators,
Circlip pliers

HR 23

18 Gear gear fp 1
Slide, Move,

Grasp
Puller, Separators,

Circlip pliers
HR 45

19 Gear Cover gear cover ap 1 Move Rubber Mallet H/R 20/12
20 Gear retentor-1 gear retentor 1 ap 1 Grasp, Unplug Puller, Circlip plier H 15
21 Gear retentor-2 gear retentor 2 ap 1 Grasp, Unplug Puller, Circlip plier H 15
22 Worm retentor worm retentor ap 1 Grasp, Unplug Puller, Circlip plier H 22
23 Cover retentor cover retentor ap 1 Grasp, Unplug Puller, Circlip plier H 18
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8.3 Link for The Illustrative Example and The

Case Study

Open source:

1. https://www.statista.com/statistics/490764/energy-consumption-from-

renewable-and-waste-sources-in-manufacturing-uk

2. https://www.ellenmacarthurfoundation.org/circulate-products-and-materials

3. https://www.youtube.com/watch?v=b6h ZiGoLY0

4. https://grabcad.com/library/worm-gear-reducer-13

5. https://grabcad.com/library/belt-roller-support-assembly-in-solidworks-

1

6. https://github.com/thieu1995/mealpy
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[158] Uğur Özcan. Balancing stochastic parallel assembly lines. Computers

& Operations Research, 99:109–122, 2018.

[159] Antonio Benitez-Hidalgo, Antonio J Nebro, Jose Garcia-Nieto, Izaskun

Oregi, and Javier Del Ser. jmetalpy: A python framework for multi-

objective optimization with metaheuristics. Swarm and Evolutionary

Computation, 51:100598, 2019.
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