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Reaction-diffusion systems are a paradigm for the study of nonlinear 

dynamical processes that are taking place in a spatially-extended medium. 

Examples can be found in many natural systems, ranging from physics and 

chemistry to biology, and are also applied in areas as different as finances and 

cultural anthropology. Common aspects of these systems are that they show 

coherent temporal and spatiotemporal behaviour, reflected by travelling wave 

solutions, uniform oscillations, spatially periodic but temporally constant patterns 

(like the famous Turing patterns), or localised patterns like spots. Over the years, 

the focus of the research of these systems has moved towards the controlling and 

self-engineering of patterns and systems, notably to the inclusion of feedback 

loops, designed for stabilising spatiotemporal chaos or inducing novel patterns. 

These feedback loops can be a consequence of the system dynamics itself (are 

intrinsic) and are often operating with a time delay since assuming an 

instantaneous feedback is unrealistic in many cases. 

Specifically, in oscillatory reaction-diffusion systems, spatial coupling can 

render uniform oscillations unstable and can lead to spatiotemporal chaos. The 
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application of time-delay terms then can stabilize a range of different, including 

novel, regular solutions. In this thesis, the complex Ginzburg- Landau equation in 

one-dimensional space subjected to a combined global and local time delayed 

feedback term has been studied and investigated (a) travelling waves and (b) 

localized spot patterns. While the travelling wave pattern was found to be transient 

in simulations, the spot patterns were stable. These patterns are characterized by 

a change of oscillation amplitude and constant phase shift between the 

background oscillations and the inside of the localized pattern. The stability area 

in parameter space, the spatial extension of spots as function of the feedback 

parameters and the main instabilities has been investigated.  

 

Keywords: Reaction-Diffusion Systems, Nonlinear Oscillations, Complex 

Ginzburg-Landau Equation, Spatiotemporal chaos, Time-Delay Feedback 
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Chapter 1 
 

 

Introduction 
 
 
 

The aim of this thesis is to introduce and investigate a nonlinear chaotic 

spatially-extended system to which a time-delay feedback can be applied. The 

purpose of this feedback is to control the dynamic states of the system and to 

suppress chaos.  

As the underlying model system, the complex Ginzburg-Landau equations 

(CGLE) is used. The CGLE is a standard model for harmonic, nonlinear oscillations 

in a spatially-extended system, concepts that will be explained in more detail 

below. 

This study is focused on the interplay of global and local feedback terms 

and their efficiency in suppressing spatiotemporal chaos in a one-dimensional 

medium. In the focus are the dynamics of spot patterns, i.e. the coexistence of a 

localized region with non-uniform oscillations with large areas of uniform 

oscillations, is investigated numerically. Furthermore, travelling waves via 

numerical simulations has been studied. 

This introduction provides a background about what we understand by 

linear and nonlinear systems, oscillations, and other important concepts. 
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1.1 Linear systems  
 

What we understand by linear, depends on the context. For example, in 

calculus, it is a function whose graph is a straight line where the variables are only 

the first-order polynomial (e.g. 𝑓(𝑥) = 𝑚𝑥 + 𝑛, where m and n are constant, see 

Figure 1.1), while in linear algebra it is a linear map (e.g. between two vector 

spaces). 

 

 

 

 

 

 

Figure 1.1: A linear function. 

 

In engineering, a linear system is realized when the relationship between 

input functions 𝑥 and 𝑦 and output function 𝑓 satisfies  

 

𝑓(𝑎 ∙ 𝑥(𝑡) + 𝑏 ∙ 𝑦(𝑡)) = 𝑎 ∙ 𝑓(𝑥(𝑡)) + 𝑏 ∙ 𝑓(𝑦(𝑡)), 

 

where 𝑎 and 𝑏 are constant real numbers, and 𝑥 and 𝑦 are some functions of an 

independent variable 𝑡. In many contexts, the independent variable 𝑡 of interest 

represents physical time, but can also refer to other quantities.  

 

 

x 

y 
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Some examples of linear systems and operations in engineering applications [1]:  

• Wave propagation; for example – electromagnetic or sound waves  

• Electrical circuits build with resistors, capacitors, and inductors  

• Electronic circuits; for example – filters or amplifiers  

• Mechanical motion that is caused by the interaction of masses, 

springs, and dashpots/dampeners 

• Systems described by specific differential equations; for example – 

resistor capacitor and inductor networks  

• Multiplication by any constant; for example - attenuation or 

amplification of a signal  

• Some specific signal changes; for example – image blurring, 

resonances, or echoes  

• The unity system - where the output is always equal to the input  

• The null system - where the output is always zero and not 

depending on the input 

• Differentiation and integration, and the analogous operations of first 

difference and running for the discrete signal  

• Small perturbations in a nonlinear system; for example - a small 

signal being which is amplified by a properly biased transistor 

• Convolution, a mathematical operation where each value in the 

output is expressed as the sum of values in the input multiplied by 

the set of weight coefficients 

• Recursion, a technique similar to convolution, except previously 

calculated values in the output are used in addition to values from 

input 
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To describe and predict dynamic processes in nature and engineering, 

differential equations are common [2]. A differential equation 
𝑑𝑦

𝑑𝑡
= 𝑓(𝑡, 𝑦) is linear 

if 𝑓 is linear in 𝑦, where 𝑦 is the dependent variable and 𝑡 the independent one. For 

systems of more dependent variables 𝑦1, 𝑦2, … … … , 𝑦𝑛 the system of differential 

equations 

 
𝑑𝑦1

𝑑𝑡
= 𝑓1(𝑡, 𝑦1, 𝑦2, … … … , 𝑦𝑛)   

𝑑𝑦2

𝑑𝑡
= 𝑓2(𝑡, 𝑦1, 𝑦2, … … … , 𝑦𝑛)  …. 

𝑑𝑦𝑛

𝑑𝑡
= 𝑓𝑛(𝑡, 𝑦1, 𝑦2, … … … , 𝑦𝑛)   

is linear if all functions 𝑓 are linear in all variables 𝑦. A dynamical system described 

by differential equations is linear if the differential equations are linear. 

A typical linear system is the ideal, undamped pendulum, which in the case 

of small angles represents a harmonic oscillator [2]. It can be obtained by 

linearizing the following nonlinear second-order differential equation 

𝑑2𝛼

𝑑𝑡2
+

𝑔

𝐿
sin 𝛼 = 0, 

where 𝑔 is the magnitude of the gravitational field, 𝐿 is the length of the rod of the 

hanging pendulum, and 𝛼 is the angle from the vertical to the pendulum. 

If the angles from the vertical are considered to be small, then sin 𝛼 ≈ 𝛼, and 

𝑑2𝛼

𝑑𝑡2
+

𝑔

𝐿
𝛼 = 0, 

𝑑2𝛼

𝑑𝑡2
+ 𝜔2𝛼 = 0, 

where 𝜔 = √
𝑔

𝐿
 is the angular velocity of the oscillation. 

The period of oscillations of the undamped pendulum with small angles is therefore 
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𝑇 =
2𝜋

𝜔
= 2𝜋√

𝐿

𝑔
. 

It is a characteristic of linear oscillations that their frequency does not 

depend on their amplitude, here, the angle of the pendulum with respect to the 

vertical. 

 

1.2 Nonlinear systems 

 

In mathematics, a nonlinear function is any function that is not linear. In 

engineering, a nonlinear system is such a system where the output is not 

proportional to the changes of the inputs [2]. These systems are present in our 

nature, such as weather, where its behaviour is chaotic and unpredictable, 

however, this behaviour is not random. This unpredictability of nature is due to the 

impossibility to know all variables for all times and that tiny differences in the 

variables can lead to large differences later (as per a positive Lyapunov exponent), 

as exemplified by the butterfly effect. 

Hence nature and many real applications are nonlinear, justifying why it is an 

interesting field of study for both scientists and engineers [3].  

In mathematics, a differential equation is nonlinear if the dependent 

variable enters the equation in a nonlinear way (e.g., polynomial of degree higher 

than one, or a trigonometric function). These equations can be solved analytically 

sometimes but a general solution cannot be written as a linear combination of 

particular solutions [2]. Thus, it is common to rely on numerical methods to solve 

such equations.  
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Some examples of nonlinear systems in engineering applications [1]: 

• Systems which have no static linearity, such as - the voltage and 

power in a resistor 𝑃 = 𝑉2 ∙ 𝑅; the energy emission by radiation of 

any heated object is 𝑅 = 𝑘 ∙ 𝑇4 depending on its temperature; the 

intensity of the light transmitted through a thickness of translucent 

material 𝐼 = 𝑒−𝛼𝑡 

• Systems that do not have sinusoidal fidelity such as electronic 

circuits for peak detection, squaring sine wave to square wave 

conversion, or frequency doubling 

• Common electronic distortion; for example – slewing, crossover 

distortion, or clipping.  

• Multiplication of two signals; for example - in an automatic gain 

control modulation of amplitude 

• Hysteresis phenomena; for example - magnetic flux density versus 

magnetic intensity in iron or mechanical stress versus strain in 

vulcanized rubber 

• Saturation; for example – transformers and electronic amplifiers 

driven too hard 

• Systems that has a threshold, for example - digital logic gates 

 

1.3 Oscillations and limit cycles 

 

In this thesis, oscillation or oscillatory terminology will appear many times. 

Oscillation is in principle a temporal phenomenon, which includes periodic and 
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aperiodic behaviour; within deterministic systems the aperiodic one can be 

quasiperiodic or chaotic, and can be stochastic, that means that the distribution of 

amplitudes or other appropriately defined quantities follow a probability distribution. 

Examples for natural oscillatory systems are the heartbeat and the physiological 

day-night cycle [2]. 

We all have an intuitive idea about what oscillations are. In mathematics, 

an oscillatory function is a function that varies (typically quite often) between its 

extreme values as it approaches infinity or within a bounded interval. Periodic 

oscillations can be easily described with amplitude and phase. The amplitude is 

the value of the function 𝑓 between the extrema (sometimes also defined as the 

difference between the extrema, or against a null value). The time interval after 

which the amplitude values repeat is called the period 𝑇. So, we have 𝑓(𝑡) = 𝑓(𝑡 +

𝑇) since the values of 𝑓 repeat, it is customary to define the phase of an oscillation 

with constant frequency as 𝜃 = 𝜔𝑡 (and identify it with a corresponding value 

between 0 and 2𝜋). Figure 1.2 illustrates this concept using the FitzHugh-Nagumo 

model for neuronal dynamics, given by 

𝑑𝑢

𝑑𝑡
= 𝑢 −

𝑢3

3
+ 𝑖, 

𝑑𝑣

𝑑𝑡
= (𝑢 + 𝑎 − 𝑏𝑣)𝜀, 

where 𝑢 and 𝑣 are the variables and the parameters are 𝜀, 𝑎, 𝑏 and 𝑖, the input 

current of the neuron. The time series of variables 𝑢 and 𝑣 are shown in the figure 

1.2(a) (using parameter values 𝑎 = 0.7, 𝑏 = 0.8, 𝑖 = 0.8, and 𝜀 = 0.08, following). 

The limit cycle oscillations can be seen in 𝑢 − 𝑣  space (figure 1.2 (c)). In Fig. 

1.2(b), we see the phase defined from (𝑢, 𝑣) variables. A related concept is the 
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phase shift. It defines any change of phase if there is one variable, or the phase 

difference between two or more variables [2], see Figure 1.2(d). 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2: (a) Time series of the variables in the oscillatory 
FitzHugh-Nagumo model. (b) Definition of phase 𝜃 from the 
limit cycle from (a). (c) Blue: limit cycle from (a); red: 
selected values of the phase (as defined in (b)); open circle: 
unstable fixed point (-0.27, 0.53) inside the limit cycle. (d) 
Phase shift (see main text). 

 

Limit cycles represent a sustained, regular oscillation in nonlinear systems. 

These cycles can be distinguished from linear oscillations because their oscillation 

amplitude is independent of the initial conditions. A limit cycle can be shown in the 

phase plane as an isolated closed trajectory (or orbit), see Figure 1.3. Typically, a 

limit cycle is shown in phase space defined by the system state variables, so that 

each variable is assigned to one axis [2]. 

Phase Shift 

(a) 

(b) 

(c) 

(d) 
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Figure 1.3: Limit cycle in phase space. The arrows on the 
limit cycle indicate the change of variable. After [5]. 

 

Limit cycles can be found, for example, in 2nd order nonlinear systems and 

have closed orbits or trajectories in phase space (i.e. a space, where every single 

state of a system is represented, and each possible state of that system 

corresponds to one unique point). They hold such a property that at least one 

trajectory spirals into where the time approaches positive infinity or negative 

infinity. These trajectories are isolated, meaning that neighbouring trajectories are 

not closed, they either spiral towards or away from the limit cycle. Thus, these 

closed orbits or trajectories represent stable or unstable solutions of the dynamical 

system. Self-sustained oscillations are represented by stable limit cycles.   

 

 

 

 

Figure 1.4: A stable limit cycle (A) and an unstable limit cycle (B), 
after [2]. In case (B), a stable fixed point lies within the limit cycle. 

 

Limit Cycle 
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Actually, there are three kinds of limit cycles – (i) stable (ii) unstable and (iii) 

semi-stable.  

(i) When all trajectories in the proximity of the limit cycle converging to it 

as time→∞; that means when all neighboring trajectories approach the 

limit cycle as time approaches to positive infinity; then it is stable limit 

cycle. 

(ii) When all trajectories in the proximity of the limit cycle diverging from it 

as time→∞; that means when all neighboring trajectories approach the 

limit cycle as time approaches to negative infinity; then it is unstable 

limit cycle. 

(iii) When some trajectories in the proximity of the limit cycle are converging 

to the limit cycle while others diverging from it as time→∞; then it is 

semi-stable limit cycle. 

. Stable and unstable limit cycles are illustrated in Figure 1.4. 

 

1.4 Reaction-diffusion systems and chemical oscillations 

 

Above, I have discussed limit cycles representing temporal oscillations. If 

the system is spatially-extended (one, two or three dimensions), oscillations can 

propagate also spatially, producing waves. There is a lot of types of waves that 

can be observed, a process called pattern formation. One typical example for 

pattern formation within a spatially-extended system occurs when there is 

perturbation with a nonzero wave number, growing from the spatially uniform state 

[6]. We may experience these patterns in our everyday life, such as convection 
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heating system in our houses, where heated air is going up near the radiators, then 

cooling down, becoming denser and descending due to gravity away from the 

radiators. If this process repeats, a spatially localised convection cells is formed.  

It is not necessary to resort to fluid systems to discuss pattern formation 

but one can consider a simpler class of models, for example reaction-diffusion 

equations (systems). Thus, I discuss the diffusion equation as essential for 

understanding reaction-diffusion equations and oscillatory chemical systems. 

According to Fick’s first law, the diffusion flux is proportional to the spatial 

gradient of the chemical concentration [7]: 

𝐽 = −𝐷 ∙ ∇𝑐, 

where 𝐽 is the diffusion flux, 𝐷 is the diffusion coefficient, 𝑐 is the concentration. 

The continuity equation for mass is: 

𝜕𝑐

𝜕𝑡
+ ∇ ∙ 𝐽 = 0. 

Thus, Fick’s second law (which is the diffusion equation) can be derived, 

for 𝐷 being a constant, as:  

           
𝜕𝑐

𝜕𝑡
+ ∇ ∙ (−𝐷 ∙ ∇𝑐) = 0 

∴
𝜕𝑐

𝜕𝑡
− 𝐷 ∙ ∇2𝑐 = 0 

∴
𝜕𝑐

𝜕𝑡
= 𝐷 ∙ ∇2𝑐 

This equation is known as the diffusion equation, a parabolic partial 

differential equation. It is mathematically equivalent to the heat equation for heat 

transfer. If there are chemical substances which are reacting and diffusing, the 

reaction-diffusion equations can be formed: 

𝜕𝑡𝑐 = 𝑓(𝑐) + 𝐷∇2c, 
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where 𝑐 is the vector of concentrations (it is natural to assume more than one 

chemical species for reaction systems), 𝑓 the vector of reaction functions (typically 

nonlinear), and 𝐷 the diffusion matrix.  

Oscillations in chemical systems have intrigued people for a long time [8]. 

In 1828, G.T. Fechner first reported a chemical oscillatory system. Later, W. 

Ostwald observed an inhomogeneous reaction during chromium dissolution rate in 

acid, and an increase or decrease of the periodic oscillation of the chemical 

reaction process. At the beginning of the 20th century, it was believed that 

oscillations are not possible in homogenous reaction systems.  In the 1950s, 

Belousov observed that in the Krebs (citric acid) cycle reactions (cerium as a 

catalyst and citric acid as reductant) the solution oscillates between two visually 

distinguishable states, transparent and yellow. However, as the temperature rises, 

the oscillation frequency increases. His observation proved that the oscillations 

between colours changes in the solution occurs due to the concentration of cerium, 

in other words, oscillations in a homogenous reaction are possible. Afterwards, this 

Belousov-Zhabotinsky reaction has been studied in much detail and is now a 

paradigm for oscillating reaction-diffusion systems. 

 

1.5 Complex Ginzburg-Landau Equation 
 

The complex Ginzburg-Landau equation (CGLE) is one of the vast 

researched nonlinear equations. It describes a wide range of phenomena, from 

nonlinear waves in reaction-diffusion systems to second-order phase transitions, 

superconductivity, etc. [9].  
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The CGLE describes the dynamics of isotropic spatially-extended systems 

near the threshold of a supercritical Hopf instability, leading to uniform oscillations. 

Near threshold, the equations are universal and can be written in terms of complex 

amplitudes of the most unstable oscillatory mode [9]. Therefore, it describes 

nonlinear oscillations. It reads 

𝜕𝑡𝐴 = (1 − 𝑖𝜔)𝐴 − (1 + 𝑖𝛼)|𝐴|2𝐴 + (1 + 𝑖𝛽)∇2A 

where,  𝐴 = complex oscillation amplitude 

𝜔 = linear frequency parameter 

𝛼 = nonlinear frequency parameter 

𝛽 = linear dispersion coefficient 

Due to the presence of the Laplacian ∇2A, this equation can be interpreted 

as a nonlinear reaction-diffusion equation, 𝜕𝑡𝐴 = 𝑓(𝐴) + 𝐷∇2A, where 𝑓 is a 

nonlinear function. The presence of the Laplacian operator characterizes 

dissipative processes, like diffusion of chemical substances or the dissipation of 

heat. Since A is a complex variable, it can be interpreted mathematically as two 

reaction-diffusion equations for two real variables. It can be shown that the CGLE 

is the normal form of a supercritical Hopf bifurcation in a spatially extended system, 

i.e., even if the original reaction-diffusion system has n variables, its dynamics is 

described by only two variables, and which then can be represented by A. 

Oscillations in the CGLE can be described in terms of amplitude and phase 

or frequency. This can be written as 𝐴 =  𝜌𝑒−𝑖𝛺𝑡, or 𝐴 =  𝜌𝑒𝑖𝛺𝑡, where 𝐴 = complex 

variable (complex amplitude), 𝑡 = time, 𝜌 = real amplitude (modulus of 𝐴), 𝛺 = 

frequency. The product 𝛺𝑡 is the phase of the oscillation. 

Nonlinear dissipative media, as modelled by the CGLE, not only show 

temporally periodic behaviour but also display spatiotemporally disordered, chaotic 
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states [9]. Since the CGLE represents a reaction-diffusion system, spatiotemporal 

chaos can be created by the diffusion part and is observed if the parameter 

inequality 1 + 𝛼𝛽 < 0 is fulfilled (the Benjamin-Feir or Benjamin-Feir-Newell 

criterion). In order to influence the system dynamics, it has been found that 

reaction-diffusion systems can be controlled and engineered by external force and 

internal feedback signals [10], following fundamental work on controlling chaos by 

Ott, Grebogi and Yorke [11]. 

Furthermore, spatiotemporal chaos can be controlled by feeding back a 

global time-delayed signal into the system [10]. This method is also known as time-

delay auto-synchronization (TDAS) which was first proposed by Pyragas in 1992 

[12]. In TDAS, a feedback signal such as F can be applied which is proportional to 

the difference between the actual state of the system and its delayed one. For 

controlling the feedback in such systems two types of control can be considered: 

(i) global and (ii) local control.  

This thesis represents further investigation of this approach, based on the 

CGLE with a time-delay auto-synchronization (TDAS) feedback with local and 

global contributions, first presented in [13]:  

𝜕𝐴

𝜕𝑡
= (1 − 𝑖𝜔)𝐴 − (1 + 𝑖𝛼)|𝐴|2𝐴 + (1 + 𝑖𝛽)

𝜕2𝐴

𝜕𝑥2
+ 𝐹 

where  𝐴 = complex oscillation amplitude 

   𝜔 = linear frequency parameter 

𝛼 = nonlinear frequency parameter 

 𝛽 = linear dispersion coefficient 

𝐹 = feedback term 
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𝐹 = 𝜇 ∙ 𝑒𝑖𝜉 ∙ [𝑚𝑙{𝐴(𝑥, 𝑡 − 𝜏) − 𝐴(𝑥, 𝑡)} + 𝑚𝑔{�̅�(𝑡 − 𝜏) − �̅�(𝑡)}], 

  where  µ = feedback strength 

𝜉 = phase shift  

𝜏 = delay time 

𝑚𝑔 = global feedback strength 

𝑚𝑙 = local feedback strength 

  and �̅�(𝑡) =
1

𝐿
∫ 𝐴(𝑥, 𝑡)

𝐿

0
𝑑𝑥 

   where, Ā = spatial average 

𝐿 = one-dimensional system length  

In the literature review, I discuss previous results of this and related models in 

detail. The table below gives schematically some differences between linear and 

nonlinear waves, in the spirit of the differences between linear and nonlinear 

systems as described above. 

 

Table 1.1 Differences between linear and nonlinear waves 

Linear wave Nonlinear wave 

Frequency does not depend on the 
amplitude 

Frequency depends on the amplitude 

Amplitude does not depend on the 
wave number 

Amplitude depends on the wave number 

Waves decay due to dissipation 
Waves do not decay, system is active, 

consumes energy 

Waves do not interact; linear 
superposition applies 

Waves interact; nonlinear collisions and 
shocks 

No frequency selection 
Topological defects and boundaries select 

unique frequency 
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1.6 Example of a feedback system 

 

One example of a time-delayed feedback system is to control chaos in current-

controlled power converters in a power generation system [43].  

Let us consider this example in more detail. A power generation system which 

generates varied voltage, for example photovoltaic (PV) cells, needs a DC-DC 

boost converter to work as an intermediate power processing unit that connects 

the power generation system with the load. Internally, such converters work as a 

periodic process for the induction current of the circuit. However, DC-DC boost 

converters are a type of power converters which may reach nonlinear operating 

conditions when they are connected to a power generation which varies due to 

environmental conditions (e.g. irradiation or temperature) [44]. 

While every power converter is designed to work within its operating region as 

a stable process, beyond its operating region it may face limitations or instabilities. 

In this case, the induction current undergoes period-doubling bifurcations as the 

reference current is increased, leading to a chaotic time series of the induction 

current [36]. In practice, this means not only unpredictability of the current but also 

that so-called noise ripples may lead to crash the converter [43]. Therefore, in order 

to keep the converter its periodic operation, the chaotic states in any form should 

be avoided and it is essential to control these chaotic states in this specific 

nonlinear system. By using a time-delay feedback term 𝐾[𝑖𝐿(𝑡 − 𝜏) − 𝑖𝐿(𝑡)], where 

𝐾 is the feedback strength, 𝜏 the delay time and 𝑖𝐿 the induction current of the 

circuit, the authors are able to induce a periodic operation of the otherwise chaotic 

DC-DC boost converter.
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Chapter 2 
 

 

Literature review 
 
 
 

This thesis builds on a range of previous research. Specifically, I review 

relevant publications in nonlinear oscillations and their control.  

In the context of nonlinear oscillations, the complex Ginzburg-Landau 

equation (CGLE) is one of the most studied equations [9]. This equation can be 

interpreted as a reaction-diffusion equation and as such can have purely temporal 

or spatiotemporal solutions. The basic solution of the CGLE represents uniform 

oscillations, but depending on the system parameters, these uniform oscillations 

may be stable or unstable. Different regular states (for example, plane waves or 

Bekki-Nozaki holes) are solutions, but also phase and amplitude turbulence, 

examples for spatiotemporal chaos, are possible [9]. This equation will be 

discussed more in the Chapter 3. 

It is of interest to control chaotic states. Following the pioneering work by 

Ott, Grebogi and Yorke to control chaos in non-spatial systems [11], Pyragas 

showed in 1992 that spatiotemporal chaos can be controlled by feeding back a 

global time-delayed signal to the system [12]. This method is also known as time-

delay auto-synchronization (TDAS). In TDAS, a feedback signal, say 𝐹, can be 

applied which is proportional to the difference between the actual state of the 

system (such as 𝐴(𝑡)) at any given time (i.e. 𝑡) and the state of the system before 



Chapter 2 

F.M. Hasan, PhD Thesis, Aston University 2023  18 
 

(i.e. 𝑡 − 𝜏). This proportionality can be expressed as 𝐹(𝑡, 𝜏)  ∝  𝐴(𝑡 − 𝜏) –  𝐴(𝑡). The 

research presented in this work is based on a feedback term of this kind. 

In the context of the CGLE, control of spatiotemporal chaos via global 

feedback has first been investigated in 1996 by Battogtokh and Mikhailov [14]. 

They have used time delay to vary the phase shift between global control signal 

and average oscillation phase in the medium [14]. Thus, by adjusting the delay 

time and the phase shift they have characterized the condition to obtain uniform 

oscillations [14]. This research is relevant for the present work as in this work global 

feedback terms within the CGLE are used as well, although I include furthermore 

local terms. 

A further investigation [15] focussed on controlling spatiotemporal chaos 

using time-delay feedback control (described below) by providing a transition from 

travelling waves to stationary periodic patterns. The authors observed, when the 

time-delay feedback control was applied to travelling pluses within the Gray-Scott 

model two possible final states were found. After implementing activator and 

inhibitor control into the system, wave splitting and spatially periodic Turing pattern 

has been observed. This method shows how spatiotemporal chaos in the Gray-

Scott model can be controlled [15]. While that work was made for a model 

fundamentally different from the one studied in this thesis (see in particular Chapter 

4), it provides a successful example for feedback control in reaction-diffusion 

systems. 

In 2002, a comparison of time delay control methods for stabilizing several 

solutions had been published, where a generic reaction-diffusion system with 

global coupling was considered [16]. The results of this paper have some similarity 

with the results and discussion in Chapter 4, however in this work, both local and 
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global terms have been introduced, and also the underlying model (the CGLE) is 

different from the [16]. 

In 2004, Beta and Mikhailov used a global TDAS scheme to control 

spatiotemporal chaos in the CGLE [17]. It has been found that a non-invasive 

stabilization of uniform oscillations cannot be possible if the CGLE is in the 

Benjamin-Feir unstable regime, although the feedback signal could be reduced to 

a minimum. This study also analysed the stability of uniform oscillations as function 

of the feedback parameters, in particular long delay times [17]. In Chapter 4 and 

5, I will be showing some results on short and long time-delays that have 

similarities of this paper. Again, the presence of local terms in the main difference 

to [17]. 

Afterwards, Stich, Casal and Beta introduced a combination of global and 

local control into TDAS to control spatiotemporal chaos in the CGLE [13]. The 

resulting model (the equations were already shown in Chapter 1) is the framework 

of the system developed in this thesis and therefore it is of interest to describe the 

behaviour of this model in more detail. In the first place, appropriate feedback 

strengths and delay times can induce uniform oscillations for a variety of weights 

of local vs. global terms. Not only uniform oscillations are described: For stable and 

perfectly regular standing waves, a combination of local and global TDAS terms is 

important [13]. In the same article, it also has been observed that the presence of 

local TDAS terms prevents uniform oscillations to stabilized and helps to form 

spatiotemporal patterns which for purely global TDAS would be either non-existing, 

or unstable [13]. That publication is the basis of part of the present research, in 

particular for travelling waves. 
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In follow-up work, Stich and Beta, a linear stability analysis of uniform 

oscillations with respect to spatiotemporal perturbations (perturbations of a given 

wavenumber) was performed [18]. In this way, they could characterize the standing 

waves as an instability of uniform oscillations with respect to waves with a certain 

wavenumber [18]. Therefore, standing waves appear in parameter areas adjacent 

to regions where stable uniform oscillations are observed. They also discussed 

multi-stability of uniform oscillations and therefore hysteresis effects [18]. Another 

solution that had been discussed is the so-called amplitude death, favoured for 

high local (and low global) contributions to the feedback [18]. Amplitude death 

indicates the transition from an oscillatory solution to a stationary fixed point. In this 

system, amplitude death can be stabilized non-invasively [18]. A stability analysis 

for the models studied in Chapters 4 and 5 is a formidable task to do, however, is 

left for further work. 

In subsequent work, standing waves were analysed in more detail, in 

particular their instabilities were described, for example the instability to a breathing 

mode [19]. Another aspect of that model has been described in a different 

publication, focusing on multi-stability of solutions and the fact that the fundamental 

equations become delay differential equations and more results rely on numerical 

evaluation [19]. In that work, different values of the phase shift parameter 𝜉 (i.e., 

0 𝑡𝑜 2𝜋) have been considered instead of one fixed value (e.g., 
𝜋

2
), as in [13, 18, 

19]. It has been also reported in that work that, for global feedback, the amplitude 

death cannot happen when local feedback is zero [20]. In all the present work 

presented here, the value 𝜉 is chosen to be 
𝜋

2
 for consistency with the mentioned 

articles. 
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In further work [21], the pattern formation in that model was investigated 

under the influence of noise, in particular with respect to standing waves: it has 

been observed that in the small noise does not destabilize deterministically stable 

standing waves and that in the deterministically unstable regime, but close to the 

boundary, a small noise intensity can induce standing waves [21]. Their work has 

some similarity to the present research as unstable regimes will be also reported 

in Chapter 4 and 5. 

The CGLE also been implemented to investigate travelling waves with 

feedback. By using linear stability analysis, Montgomery and Silber [22] have found 

for the one-dimensional CGLE in the Benjamin-Feir unstable regime travelling 

wave solutions in a non-invasive feedback control scheme can be stabilized. Using 

a stability analysis, the authors find an optimal value of one of the feedback 

parameters to determines whether a travelling wave is stable to all perturbation 

wavenumbers [22]. This is one of the few published works on travelling waves. 

However, the feedback scheme is essentially different and particularly designed 

for wave control, unlike the model studied in Chapter 4. 

Another investigation, by Postlethwaite and Silber [23], was conducted on 

travelling waves for two-dimensional CGLE in a spatial and temporal feedback 

control system, similar to the control system studied earlier [22]. In the present 

study, space is one-dimensional and, therefore, the mentioned publication has no 

direct impact on this work. However, together with [22] it gives a glance on what 

features could be found once the dimensionality of the system changes. 

I should also mention research on other models with have some 

resemblance with my model. Another research for the CGLE [24] was done to drive 
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a spatiotemporal chaotic state into stable plane wave solutions via a set of local 

controllers of Pyragas type. Their model is  

�̇� = 𝐴 + (1 + 𝑖𝛼)𝜕𝑥
2𝐴 − (1 + 𝑖𝛽)|𝐴|2𝐴 + 𝑈(𝑥, 𝑡)    

with  𝑈(𝑥, 𝑡) = 0  for 𝑥 ≠ 𝑥𝑖 

and  𝑈(𝑥, 𝑡) = 𝐾0{𝑔(𝑥𝑖, 𝑡) − 𝐴(𝑥𝑖 , 𝑡)}  for   𝑥 = 𝑥𝑖 

 

where 𝑖 = 1,2, … , 𝑀 and  𝑥𝑖 = 1 + (𝑖 − 1)𝜈 are the positions of 𝑀 local, equally 

spaced controllers, mutually separated by a distance 𝜈, i.e., 

𝑥𝑖+1 − 𝑥𝑖 = 𝜈. 

The function 𝑔(𝑥) is the plane wave solution 

𝑔(𝑥, 𝑡) = √1 − 𝑞2𝑒𝑖(𝑞𝑥+𝜔𝑡), 𝑓𝑜𝑟 − 1 ≤ 𝑞 ≤ 1           

The main result is that they achieve the control of the spatiotemporal chaos 

and induce plane waves, when large enough control strengths and density of 

controllers (𝑀 large enough) has been used. 

Research done in 2017 [25] derived some general criteria for the 

stabilization of solutions for the CGLE by using different kind of feedback control 

algorithms (on the right-hand side of the following equations). Their models read 

 

𝑢𝑡 − (𝜆 + 𝑖𝛼)𝑢𝑥𝑥 + (𝜅 + 𝑖𝛽)|𝑢|𝑝𝑢 − 𝛾𝑢 = −𝜇 ∑ �̅�𝜒𝑗𝑘(𝑥)𝑁
𝑘=1    

and 

𝑢𝑡 − (𝜆 + 𝑖𝛼)Δ𝑢 + (𝜅 + 𝑖𝛽)|𝑢|𝑝𝑢 − 𝛾𝑢 = −𝜇 ∑ (𝑢, 𝜔𝑘)𝑁
𝑘=1 𝜔𝑘   

 

complemented by suitable Neumann and Dirichlet boundary conditions.  
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The first feedback term represents a locally averaged (over 𝑁 intervals) 

feedback, and the second one 𝑁 Fourier modes (for further details about the 

meaning of the notation in the feedback terms, see [25]). My models, adapted to 

their notation, have 𝜆 = 1, 𝜅 = 1, 𝛾 = 1 and  𝑝 = 2, while they do not have terms 

corresponding to 𝜒 or to 𝜔. Moreover, the feedback terms themselves are 

fundamentally different, so a comparison of [25] to the model used in this work 

cannot be made. 

Another research [26] has investigated the dynamics near a resonant 

double Hopf bifurcation in a CGLE with local feedback, written (in my notation) 

 

𝜕𝐴(𝑥, 𝑡)

𝜕𝑡
=

𝜕2𝐴(𝑥, 𝑡)

𝜕𝑥2
+ [(1 + 𝑖𝜔) − (1 + 𝑖𝛼)|𝐴(𝑥, 𝑡)|2]𝐴(𝑥, 𝑡)

+ µ𝑒−𝑖𝜉[𝐴(𝑥, 𝑡 − 𝜏) − 𝐴(𝑥, 𝑡)] 

The main difference to the model in this thesis is that there is no parameter 

𝛽 (or, which is the same, 𝛽 = 0) and therefore the system dynamics they consider 

is always Benjamin-Feir-Newell stable, and no spatiotemporal chaos is observed. 

Furthermore, they only have what is generally known as local feedback, since no 

spatially-averaged (global) term is present in their model. As a result of these 

differences, the authors of [26] consider a different bifurcation that occurs in the 

model, the resonant double Hopf-bifurcation, (which is, a double Hopf-bifurcation 

where there is at bifurcation an integer relation between the imaginary eigenvalues, 

or imaginary Floquet exponents) and the system dynamics cannot be compared 

easily. 

In their study [27] from 2023, Tzou and Xie showed how localized structures 

(spots) interact and how their collective dynamics can lead to oscillatory behaviour. 
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They had an asymptotic analysis that deals with the stability of N-spot equilibrium 

solutions to the Schnakenberg reaction-diffusion system. The analysis leads to the 

formulation of a 2N×2N complex matrix eigenvalue problem. This matrix captures 

the essential dynamics of the system near the Hopf bifurcation threshold. This 

suggests a relationship between the steady-state patterns in the reaction-diffusion 

system and solutions to optimization problems where certain configurations 

minimize or optimize some criterion related to escape or diffusion. This paper was 

about single spot patterns and simple geometries, however in chapter 5 I have 

shown some results with multi-spot patterns in one-dimensional domains.  

A study [28] by Nishiura and Xie provides a detailed analysis of the 

dynamics of localized spots in a three-component reaction-diffusion system, 

focusing on the formation and movement of ring patterns. For their study they 

system they have considered is - N-spot bound state with three-component (𝑢𝑡, 

𝜏𝑣𝑡, 𝜃𝜔𝑡) reaction-diffusion system, see more details in [28].  By reducing the 

system to a set of ODEs and validating the results with numerical simulations, the 

research offers significant insights into pattern formation and collective motion. 

They have shown that ring patterns emerge as fundamental structures within 

reaction-diffusion systems, serving as the basis for understanding more intricate 

pattern formation and dynamics. Their research opened the scope to higher-order 

interactions (i.e., the simulation of seven-spot ring patterns) of new spots pattern 

formation in more complex and realistic scenarios. In chapter 5, I have shown multi-

spot patterns within one-dimensional domain, however the dynamics are very 

different. 

In 2003, [29] Yang and Epstein investigated a model of reaction-diffusion 

system with two coupled layers presents a case of pattern formation, where the 
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interaction between oscillatory and stationary dynamics leads to unique and 

intricate patterns. The observed twinkling eyes and localized spiral or concentric 

waves demonstrate the rich variety of structures that can emerge from such 

systems. This research not only enhances our understanding of reaction-diffusion 

systems but also has broader implications for studying similar phenomena in 

natural and synthetic systems. In their proposed model of a reaction-diffusion 

system with two coupled layers offers significant insights into the formation of novel 

oscillatory Turing patterns. The spontaneous formation of these patterns, such as 

twinkling eyes, localized spirals and concentric waves, and pinwheels, 

demonstrates the complexity that can arise from simple interactions between 

different dynamical modes. Although the pattern looks quite similar to a multi-spot 

pattern as studied in Chapter 5, the underlying dynamics is quite different as there 

is not Turing instability in the system studied there. 

In 2021 [30] Al Saadi et. al. investigates simple predator-prey models with 

rational interaction terms in both one-dimensional and two-dimensional spatial 

domains. They found that the pattern formation in predator-prey models with 

rational interaction terms and saturation. The analysis reveals the conditions under 

which localized and complex spatio-temporal patterns emerge, driven by 

subcritical Turing bifurcations and Hopf bifurcations. Unlike Schnakenberg type 

models, predator-prey systems can undergo Hopf bifurcations in addition to Turing 

instabilities. In this studied predator-prey models, parameter regimes with 

subcritical Turing bifurcations can lead to localized patterns even without spatially 

heterogeneous causes. While the primary focus of the paper is not on practical 

applications in spatial ecology, the findings have broad implications for 

understanding spatially localized patterns in ecological systems. The observation 
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that localized patterns can arise without spatially heterogeneous causes 

challenges conventional assumptions and highlights the importance of considering 

the underlying mechanisms, such as subcritical Turing bifurcations, in ecological 

modeling. In chapter 5, I have shown multi-spot patterns which have different 

dynamics from this study.  

Another work [31] was presented by T. Ohta in 2001, where the study 

formulates a theory for pulse dynamics in an excitable reaction-diffusion system, 

extending the analysis from one dimension to higher dimensions. Specifically, it 

investigates the behavior of interacting pulses, which represent localized excitation 

fronts in the system. The derived equation of motion for interacting pulses (spots 

in higher dimensions) reveals a bifurcation phenomenon and the emergence of an 

inertia term, shedding light on the role of delayed interactions in shaping pulse 

propagation dynamics. The study emphasizes the justification and internal 

consistency of the theoretical framework for analyzing pulse dynamics in excitable 

reaction-diffusion systems. By aligning the assumptions with the conditions under 

which reflection phenomena occur, the theory maintains coherence and 

applicability within the defined parameter regime. 

In nonlinear dissipative systems, such as reaction-diffusion media, a 

translational bifurcation is a critical phenomenon that significantly influences the 

behavior of domain boundaries. In 1996, Otha and Kiyose’s investigation [32] 

confirms that translational bifurcation plays a critical role in the elastic-like collision 

of domain boundaries in nonlinear dissipative systems. By incorporating inertia, 

damping, and interaction terms in the interface equation, the framework provides 

a robust approach to understanding and predicting these phenomena across 

various reaction-diffusion systems. They have shown that the translational 
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bifurcation (at positive constant 𝜏) is crucial for enabling elastic-like collisions of 

domain boundaries in a Bonhoffer-van der Pol type reaction-diffusion system. Their 

theoretical analysis based on interface dynamics and simulations confirms that 

such behavior is only observed within a restricted parameter region due to the 

specific requirements for degeneracy in direction and small velocity near the 

bifurcation point. This comprehensive approach provides a deep understanding of 

the conditions under which elastic-like collisions can occur. The dynamics of their 

system is not oscillatory and they have observed phenomenon like breathing and 

disappearing spots, which has some similarity of my current work where I have 

found spots in oscillatory system, which I will be describing more in Chapter 5. 

In 2000, Muratov and Osipov published their study [33] on static spike 

autosolitons in the Gray–Scott model involves asymptotic analysis and matching 

of inner and outer solutions. These structures exist over a wide range of 

parameters in one dimension and a narrower range in higher dimensions. They did 

asymptotic analysis of the Gray-Scott model which reveals that static spike 

autosolitons exist in regions where the characteristic length scales of the activator 

and inhibitor are significantly different. These solutions are characterized by narrow 

spikes in the concentration of the activator substance. These static spike 

autosolitons exhibit varying stability and existence ranges depending on the spatial 

dimension. In one dimension, these structures exist over a wide range of 

parameters and are stable. This behaviour can be typical in reaction-diffusion 

systems where the balance between local reaction kinetics and diffusion leads to 

the formation of stable, localized structures. At a critical value of a bifurcation point 

the stable spike autosolitons disappear. The abrupt disappearance or splitting at 

bifurcation parameter point are indicative of underlying nonlinear dynamics and 
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bifurcation phenomena, which are key aspects in the study of spot pattern 

formation and nonlinear wave theory. In Chapter 5, I have showed one dimensional 

spot patterns in different dynamics. 
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Chapter 3 
 

 

The complex Ginzburg-Landau Equation 
 
 
 

In this chapter, I state some basic results for the complex Ginzburg-Landau 

equation without time-delay feedback. The CGLE is a complex equation for the 

complex variable 𝐴. It therefore can be formulated with real part 𝑎 and imaginary 

part 𝑏 or with amplitude 𝜌 and phase 𝜑. I give both formulations below. I give the 

criterion on spatiotemporal chaos and the solution of uniform oscillations and 

accompany this with numerical simulations. These results are not novel, but they 

are the foundations for the remainder of this thesis. 

 

3.1 Formulations of the CGLE 

 

Real and imaginary parts of the CGLE 

Let’s start with the standard formulation of the CGLE: 

𝜕𝐴

𝜕𝑡
= (1 − 𝑖𝜔)𝐴 − (1 + 𝑖𝛼)|𝐴|2𝐴 + (1 + 𝑖𝛽)∇2𝐴    (3.1) 

Now, use 𝐴 = 𝑎 + 𝑖𝑏 to express the left-hand side (LHS) and the terms on the 

right-hand side (RHS) as sum of real and imaginary terms: 

LHS  = 
𝜕𝐴

𝜕𝑡
=

𝜕(𝑎+𝑖𝑏)

𝜕𝑡
=

𝜕𝑎

𝜕𝑡
+ 𝑖

𝜕𝑏

𝜕𝑡
       

On the RHS, the non-spatial terms of the CGLE are considered first: 
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RHS 1   = (1 − 𝑖𝜔)(𝑎 + 𝑖𝑏) − (1 + 𝑖𝛼)|𝑎 + 𝑖𝑏|2(𝑎 + 𝑖𝑏) 

   = (𝑎 + 𝑖𝑏 − 𝑖𝜔𝑎 + 𝜔𝑏) − (𝑎 + 𝑖𝑏 + 𝑖𝛼𝑎 − 𝛼𝑏)|𝑎 + 𝑖𝑏|2 

              = (𝑎 + 𝑖𝑏 − 𝑖𝜔𝑎 + 𝜔𝑏) − (𝑎 + 𝑖𝑏 + 𝑖𝛼𝑎 − 𝛼𝑏)(𝑎2 + 𝑏2) 

= (𝑎 + 𝑖𝑏 − 𝑖𝜔𝑎 + 𝜔𝑏) − (𝑎3 + 𝑖𝑎2𝑏 + 𝑖𝛼𝑎3 − 𝛼𝑎2𝑏 + 𝑎𝑏2 + 𝑖𝑏3 + 𝑖𝛼𝑎𝑏2 − 𝛼𝑏3) 

= 𝑎 + 𝑖𝑏 − 𝑖𝜔𝑎 + 𝜔𝑏 − 𝑎3 − 𝑖𝑎2𝑏 − 𝑖𝛼𝑎3 + 𝛼𝑎2𝑏 − 𝑎𝑏2 − 𝑖𝑏3 − 𝑖𝛼𝑎𝑏2 + 𝛼𝑏3 

= {𝑎 − 𝑎3 − 𝑎𝑏2 + 𝜔𝑏 + 𝛼𝑎2𝑏 + 𝛼𝑏3} + 𝑖{𝑏 − 𝑎2𝑏 − 𝑏3 − 𝜔𝑎 − 𝛼𝑎3 − 𝛼𝑎𝑏2} 

= [𝑎{1 − (𝑎2 + 𝑏2)} + 𝑏(𝜔 + 𝛼(𝑎2 + 𝑏2))] + 𝑖{𝑏{1 − (𝑎2 + 𝑏2)} − 𝑎(𝜔 +

𝛼(𝑎2 + 𝑏2))} 

 

Now, the spatial terms have to be considered, assuming one-dimensional space: 

RHS 2  = (1 + 𝑖𝛽)∇2𝐴 

           = (1 + 𝑖𝛽)∇2(𝑎 + 𝑖𝑏) 

            = (1 + 𝑖𝛽) {
𝜕2𝑎

𝜕𝑥2 + 𝑖
𝜕2𝑏

𝜕𝑥2} 

           = 
𝜕2𝑎

𝜕𝑥2 + 𝑖
𝜕2𝑏

𝜕𝑥2 + 𝑖𝛽
𝜕2𝑎

𝜕𝑥2 − 𝛽
𝜕2𝑏

𝜕𝑥2 

= 
𝜕2𝑎

𝜕𝑥2 − 𝛽
𝜕2𝑏

𝜕𝑥2 + 𝑖 {𝛽
𝜕2𝑎

𝜕𝑥2 +
𝜕2𝑏

𝜕𝑥2} 

= 
𝜕2

𝜕𝑥2
(𝑎 − 𝛽𝑏) + 𝑖

𝜕2

𝜕𝑥2
(𝛽𝑎 + 𝑏) 

I collect all terms and then I separate real and imaginary parts for the RHS and 

LHS: 

Real Part:  

𝜕𝑎

𝜕𝑡
= 𝑎{1 − (𝑎2 + 𝑏2)} + 𝑏{𝜔 + 𝛼(𝑎2 + 𝑏2)} +

𝜕2

𝜕𝑥2
(𝑎 − 𝛽𝑏)          (3.2) 

Imaginary Part: 

𝜕𝑏

𝜕𝑡
= 𝑏{1 − (𝑎2 + 𝑏2)} − 𝑎{𝜔 + 𝛼(𝑎2 + 𝑏2)} +

𝜕2

𝜕𝑥2
(𝛽𝑎 + 𝑏)           (3.3) 
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By combining the spatial and no-spatial parts, two new equations (3.2 and 

3.3) have been obtained.  These two equations are equivalent to the CGLE in 

complex notation (3.1), having used 𝐴 = 𝑎 + 𝑖𝑏. It is this formulation in real and 

imaginary parts which is used to find the numerical solutions of the CGLE using 

the Euler method for the non-spatial part, and a 3-point representation of the 

Laplacian for the spatial part. 

For solving an ordinary differential equation (ODE) with any given initial 

value, the Euler method can be used. It is the simplest, first-order, explicit method 

(i.e., it directly calculates the state of a system at a later time from the state of the 

system at the current time) for numerical integration of ODEs.  

 

Amplitude and phase representation of the CGLE 

Now I use the amplitude-phase representation of complex numbers,  𝐴 = 𝜌𝑒−𝑖𝜑, 

to express the CGLE, separating again into left-hand side (LHS) and right-hand 

side (RHS): 

LHS  =
𝜕𝐴

𝜕𝑡
=

𝜕(𝜌𝑒−𝑖𝜑)

𝜕𝑡
 

 = 𝜌
𝜕

𝜕𝑡
𝑒−𝑖𝜑 + 𝑒−𝑖𝜑 𝜕

𝜕𝑡
𝜌 

 = 𝜌 ∙ (−𝑖𝑒−𝑖𝜑) ∙
𝜕𝜑

𝜕𝑡
+ 𝑒−𝑖𝜑 𝜕𝜌

𝜕𝑡
 

 = 𝑒−𝑖𝜑 ∙
𝜕𝜌

𝜕𝑡
− 𝑖𝑒−𝑖𝜑 ∙ 𝜌

𝜕𝜑

𝜕𝑡
 

 = 𝑒−𝑖𝜑 [
𝜕𝜌

𝜕𝑡
− 𝑖𝜌 ∙

𝜕𝜑

𝜕𝑡
] 
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On the RHS, the non-spatial terms of the CGLE are considered first: 

RHS 1 = (1 − 𝑖𝜔)(𝜌𝑒−𝑖𝜑) − (1 + 𝑖𝛼)|𝜌𝑒−𝑖𝜑|2(𝜌𝑒−𝑖𝜑) 

 = (1 − 𝑖𝜔)(𝜌𝑒−𝑖𝜑) − (1 + 𝑖𝛼) ∙ 𝜌2 ∙ 1 ∙ (𝜌𝑒−𝑖𝜑) 

 = 𝑒−𝑖𝜑[𝜌 − 𝑖𝜔𝜌 − 𝜌3 − 𝑖𝛼𝜌3] 

 = 𝑒−𝑖𝜑[(𝜌 − 𝜌3) − 𝑖(𝜔𝜌 + 𝛼𝜌3)] 

= 𝑒−𝑖𝜑[𝜌(1 − 𝜌2) − 𝑖𝜌(𝜔 + 𝛼𝜌2)] 

Now, the spatial terms must be considered, assuming one-dimensional space: 

RHS 2  = (1 + 𝑖𝛽)∇2(𝜌𝑒−𝑖𝜑) 

 = (1 + 𝑖𝛽)
𝜕2

𝜕𝑥2 (𝜌𝑒−𝑖𝜑) 

 = (1 + 𝑖𝛽) [
𝜕

𝜕𝑥

𝜕

𝜕𝑥
(𝜌𝑒−𝑖𝜑)] 

 = (1 + 𝑖𝛽) [
𝜕

𝜕𝑥
{𝜌

𝜕

𝜕𝑥
𝑒−𝑖𝜑 + 𝑒−𝑖𝜑 𝜕𝜌

𝜕𝑥
}] 

 = (1 + 𝑖𝛽) [
𝜕

𝜕𝑥
{𝜌 ∙ (−𝑖𝑒−𝑖𝜑) ∙

𝜕𝜑

𝜕𝑥
+ 𝑒−𝑖𝜑 𝜕𝜌

𝜕𝑥
}] 

 = (1 + 𝑖𝛽) [{𝜌 ∙ (−𝑖𝑒−𝑖𝜑)} ∙
𝜕2𝜑

𝜕𝑥2 +
𝜕𝜑

𝜕𝑥
∙

𝜕

𝜕𝑥
{𝜌 ∙ (−𝑖𝑒−𝑖𝜑)} + 𝑒−𝑖𝜑 ∙

𝜕2𝜌

𝜕𝑥2 +
𝜕𝜌

𝜕𝑥
∙

𝜕

𝜕𝑥
(𝑒−𝑖𝜑)] 

 = (1 + 𝑖𝛽) [{𝜌 ∙ (−𝑖𝑒−𝑖𝜑)} ∙
𝜕2𝜑

𝜕𝑥2 +
𝜕𝜑

𝜕𝑥
∙ {𝜌

𝜕

𝜕𝑥
(−𝑖𝑒−𝑖𝜑) + (−𝑖𝑒−𝑖𝜑)

𝜕𝜌

𝜕𝑥
} + 𝑒−𝑖𝜑 ∙

𝜕2𝜌

𝜕𝑥2 +
𝜕𝜌

𝜕𝑥
∙ (−𝑖𝑒−𝑖𝜑) ∙

𝜕𝜑

𝜕𝑥
] 

 = (1 + 𝑖𝛽) [{𝜌 ∙ (−𝑖𝑒−𝑖𝜑)} ∙
𝜕2𝜑

𝜕𝑥2 +
𝜕𝜑

𝜕𝑥
∙ {𝜌 ∙ −𝑖

𝜕

𝜕𝑥
(𝑒−𝑖𝜑) + (−𝑖𝑒−𝑖𝜑)

𝜕𝜌

𝜕𝑥
} +

𝑒−𝑖𝜑 ∙
𝜕2𝜌

𝜕𝑥2 +
𝜕𝜌

𝜕𝑥
∙ (−𝑖𝑒−𝑖𝜑) ∙

𝜕𝜑

𝜕𝑥
] 

 = (1 + 𝑖𝛽) [−𝑖𝜌𝑒−𝑖𝜙 𝜕2𝜑

𝜕𝑥2 − 𝑖𝜌
𝜕𝜑

𝜕𝑥
∙ (−𝑖𝑒−𝑖𝜑 𝜕𝜑

𝜕𝑥
) − 𝑖𝑒−𝑖𝜙 𝜕𝜑

𝜕𝑥

𝜕𝜌

𝜕𝑥
+ 𝑒−𝑖𝜙 𝜕2𝜌

𝜕𝑥2 −

𝑖𝑒−𝑖𝜑 𝜕𝜌

𝜕𝑥

𝜕𝜑

𝜕𝑥
] 
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= (1 + 𝑖𝛽) [−𝑖𝜌𝑒−𝑖𝜙
𝜕2𝜑

𝜕𝑥2
− 𝜌

𝜕𝜑

𝜕𝑥
∙ (𝑒−𝑖𝜑

𝜕𝜑

𝜕𝑥
) − 2𝑖𝑒−𝑖𝜙

𝜕𝜑

𝜕𝑥

𝜕𝜌

𝜕𝑥
+ 𝑒−𝑖𝜙

𝜕2𝜌

𝜕𝑥2
] 

 = (1 + 𝑖𝛽)𝑒−𝑖𝜙 [−𝑖𝜌
𝜕2𝜑

𝜕𝑥2 − 𝜌
𝜕𝜑

𝜕𝑥
∙ (

𝜕𝜑

𝜕𝑥
) − 2𝑖

𝜕𝜑

𝜕𝑥

𝜕𝜌

𝜕𝑥
+

𝜕2𝜌

𝜕𝑥2] 

= 𝑒−𝑖𝜙 [−𝑖𝜌
𝜕2𝜑

𝜕𝑥2
− 𝜌 (

𝜕𝜑

𝜕𝑥
)

2

− 2𝑖
𝜕𝜑

𝜕𝑥

𝜕𝜌

𝜕𝑥
+

𝜕2𝜌

𝜕𝑥2
+ 𝛽𝜌

𝜕2𝜑

𝜕𝑥2
− 𝑖𝛽𝜌 (

𝜕𝜑

𝜕𝑥
)

2

+ 2𝛽
𝜕𝜑

𝜕𝑥

𝜕𝜌

𝜕𝑥

+ 𝑖𝛽
𝜕2𝜌

𝜕𝑥2
] 

= 𝑒−𝑖𝜙 [𝛽𝜌
𝜕2𝜑

𝜕𝑥2
+ 2𝛽

𝜕𝜑

𝜕𝑥

𝜕𝜌

𝜕𝑥
− 𝜌 (

𝜕𝜑

𝜕𝑥
)

2

+
𝜕2𝜌

𝜕𝑥2
− 𝑖𝜌

𝜕2𝜑

𝜕𝑥2
− 2𝑖

𝜕𝜑

𝜕𝑥

𝜕𝜌

𝜕𝑥
− 𝑖𝛽𝜌 (

𝜕𝜑

𝜕𝑥
)

2

+ 𝑖𝛽
𝜕2𝜌

𝜕𝑥2
] 

= 𝑒−𝑖𝜙 [𝛽𝜌
𝜕2𝜑

𝜕𝑥2
+ 2𝛽

𝜕𝜑

𝜕𝑥

𝜕𝜌

𝜕𝑥
− 𝜌 (

𝜕𝜑

𝜕𝑥
)

2

+
𝜕2𝜌

𝜕𝑥2
− 𝑖(𝜌

𝜕2𝜑

𝜕𝑥2
+ 2

𝜕𝜑

𝜕𝑥

𝜕𝜌

𝜕𝑥
+ 𝛽𝜌 (

𝜕𝜑

𝜕𝑥
)

2

− 𝛽
𝜕2𝜌

𝜕𝑥2
)] 

I collect all terms from the left- and right-hand sides and obtain 

𝑒−𝑖𝜑 [
𝜕𝜌

𝜕𝑡
− 𝑖𝜌 ∙

𝜕𝜑

𝜕𝑡
]

= 𝑒−𝑖𝜙 [𝛽𝜌
𝜕2𝜑

𝜕𝑥2
+ 2𝛽

𝜕𝜑

𝜕𝑥

𝜕𝜌

𝜕𝑥
− 𝜌 (

𝜕𝜑

𝜕𝑥
)

2

+
𝜕2𝜌

𝜕𝑥2
− 𝑖(𝜌

𝜕2𝜑

𝜕𝑥2
+ 2

𝜕𝜑

𝜕𝑥

𝜕𝜌

𝜕𝑥

+ 𝛽𝜌 (
𝜕𝜑

𝜕𝑥
)

2

− 𝛽
𝜕2𝜌

𝜕𝑥2
)] 

Then, I cancel the common factor 𝑒−𝑖𝜑, yielding 

𝜕𝜌

𝜕𝑡
− 𝑖𝜌

𝜕𝜑

𝜕𝑡
= 𝛽𝜌

𝜕2𝜑

𝜕𝑥2
+ 2𝛽

𝜕𝜑

𝜕𝑥

𝜕𝜌

𝜕𝑥
− 𝜌 (

𝜕𝜑

𝜕𝑥
)

2

+
𝜕2𝜌

𝜕𝑥2
− 𝑖(𝜌

𝜕2𝜑

𝜕𝑥2
+ 2

𝜕𝜑

𝜕𝑥

𝜕𝜌

𝜕𝑥
+ 𝛽𝜌 (

𝜕𝜑

𝜕𝑥
)

2

− 𝛽
𝜕2𝜌

𝜕𝑥2
) 

Now, I separate the real and imaginary parts and obtain differential equations for 

the amplitude and phase: 
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Amplitude:  

𝜕𝜌

𝜕𝑡
= 𝜌(1 − 𝜌2) +  𝛽𝜌

𝜕2𝜑

𝜕𝑥2 + 2𝛽
𝜕𝜑

𝜕𝑥

𝜕𝜌

𝜕𝑥
− 𝜌 (

𝜕𝜑

𝜕𝑥
)

2
+

𝜕2𝜌

𝜕𝑥2        (3.4) 

Phase:   

𝜌
𝜕𝜑

𝜕𝑡
= 𝜌(𝜔 + 𝛼𝜌2) + 𝜌

𝜕2𝜑

𝜕𝑥2
+ 2

𝜕𝜑

𝜕𝑥

𝜕𝜌

𝜕𝑥
+ 𝛽𝜌 (

𝜕𝜑

𝜕𝑥
)

2

− 𝛽
𝜕2𝜌

𝜕𝑥2
  

For 𝜌 ≠ 0, I get 

 
𝜕𝜑

𝜕𝑡
= 𝜔 + 𝛼𝜌2 +

𝜕2𝜑

𝜕𝑥2 − 2𝜌−1 𝜕𝜑

𝜕𝑥

𝜕𝜌

𝜕𝑥
+ 𝛽 (

𝜕𝜑

𝜕𝑥
)

2
− 𝛽 𝜌−1 𝜕2𝜌

𝜕𝑥2                   (3.5) 

After combining the spatial and the non-spatial parts, the amplitude-phase 

representation (3.4 and 3.5) of the CGLE has been derived. However, these 

equations are much more complicated than equations (3.2) and (3.3) and are not 

used for the numerical simulations. 

However, the amplitude-phase representation can be used to find easily 

the basic solution of the CGLE, uniform oscillations described by  

𝐴𝑢𝑜(𝑡) = 𝜌0𝑒−𝑖𝛺𝑡.          (3.6) 

For uniform oscillations, |𝐴| = 𝜌 = 𝜌0 is constant in space and time and the 

phase 𝜑 = Ω𝑡 is only time-dependent. Inserting this into (3.4) and (3.5), I find that 

all partial derivatives of 𝜌 are zero,  
𝜕𝜙

𝜕𝑡
= Ω, all spatial derivatives of 𝜙 are zero and 

I obtain 

0 = 𝜌(1 − 𝜌2), 

Ω = 𝜔 + 𝛼𝜌2. 
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The first equation has two solutions 𝜌 = 0 and 𝜌 = 1, but only a nonzero 

modulus of the amplitude corresponds to oscillations. The second equation shows 

how the frequency of oscillations has a constant term and a term that depends in 

a nonlinear way with the amplitude. Choosing 𝜌 = 1, therefore I find 

𝜌0 = 1, 

Ω = 𝜔 + 𝛼. 

Therefore, the solution of uniform oscillations can also be written as 

𝐴𝑢𝑜(𝑡) = 𝑒−𝑖(𝜔+𝛼)𝑡. The stability of this solution is discussed elsewhere (or 

example, in [9]) and yields the Benjamin-Feir-Newell criterion: uniform oscillations 

are stable for 1 + 𝛼𝛽 > 0 and unstable for 1 + 𝛼𝛽 < 0. 

Later, I choose 𝜔 = 2𝜋 − 𝛼 and therefore 𝛺 =  𝜔 + 𝛼 = 2𝜋 − 𝛼 + 𝛼 = 2𝜋. 

Then, the period of uniform oscillations is 𝑇 =
2𝜋

Ω
= 1 in the time units of the 

equation. 

 

3.2 Numerical Results 

 

I want to illustrate the main solutions of the complex Ginzburg-Landau 

equation, obtained by solving Equations (3.2, 3.3) using the explicit Euler method 

for various initial conditions and for periodic boundary conditions (unless stated 

otherwise). A 3-point representation is used for the Laplacian. The implementation 

is made in MATLAB. 

Figures 3.1 and 3.2 display the variables (i.e., 𝑎 and 𝑏) against time and 

space respectively for parameters where uniform oscillations are stable (1 + 𝛼𝛽 >
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0). The figures were obtained from a simulation with system size 128, total 

simulation time 5,  𝛥𝑥 = 0.32,  𝛥𝑡 = 0.002, and parameters 𝛼 = 1.4, 𝛽 = 2 and  

𝜔 = 2𝜋 − 𝛼.  As initial condition, constant values (in space) for 𝑎 and 𝑏 have been 

chosen:  𝑎 = 0.5 and 𝑏 = −0.5 for all space points. The uniform oscillations in the 

CGLE are stable and harmonic and Figure 3.1 shows that this is indeed the case. 

For stable uniform oscillations, all points in space share the same dynamics and 

since they start from the same initial condition, the temporal curves for different 

space points are the same. For the same reason, the values of 𝑎 and 𝑏 are constant 

in space, see Figure 3.2. 

 

 

Figure 3.1: The real (𝑎) and imaginary (𝑏) parts of 𝐴 as 
a function of time at different space points (see legend).  
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Figure 3.2: The real (𝑎) and imaginary (𝑏) parts of 𝐴 as 
a function of space at different time points (see legend). 

 

Figures 3.3 – 3.8 show the results of equations (3.1) and (3.2) when using 

random initial conditions and a variation of parameters.  For each simulation, data 

at every 50th iteration has been saved to obtain a figure with manageable 

dimensions. For all these figures, the value of 𝜔 = 2𝜋 − 𝛼, whatever 𝛼. 

Figures 3.3 – 3.8 show uniform oscillations or spatiotemporal chaos 

(depending on the parameters), where the patterns are shown in greyscale for 𝑎 

and |𝐴|. The real part 𝑎 is well-suited to see waves and the modulus of the 

amplitude |𝐴| (recall that |𝐴| = √𝑎2 + 𝑏2) tells us if the oscillations have a constant 

amplitude (as for uniform oscillations) or not (and for chaotic states, the modulus 

can decrease to zero).  

Figures 3.3 – 3.8 are space-time plots, i.e., 𝑎 and |𝐴| are plotted against 

time and space where the horizontal axis is space, and the vertical axis is time. 
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Figures 3.3 and 3.4 are the result of random initial conditions for 𝑎 and 𝑏 

where positive values of 𝛼 and 𝛽 are considered, hence 1 +  𝛼𝛽 > 0, and stable 

uniform oscillations are expected to appear. The system size is 128, the simulation 

time 50 and the numerical parameters are 𝛥𝑥 = 0.32, 𝛥𝑡 = 0.002. Uniform 

oscillations are indeed found, being represented by periodic changes black-white 

in time for 𝑎 as time increases (being spatially uniform) and a constant value of |𝐴| 

in both space and time. The lighter areas are the higher values of the amplitude, 

and the darker areas are lower values (close to zero in case of |𝐴|). The stable 

value of |𝐴| is 1, as can be expected for uniform oscillations (see previous section, 

𝜌0 = 1). 

 

 

 
Figure 3.3: Space-time plot of 𝑎, showing stable 

uniform oscillations. Parameters: 𝛼 =  1.4, 𝛽 =
2. 

 

Ti
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Space 
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Figure 3.4: Space-time plot of |𝐴|, showing that 
the modulus of oscillations is spatially and 
temporally constant (and asymptotically 
approaching 1). Parameters: 𝛼 =  1.4, 𝛽 =  2. 

 

 

Figures 3.5 and 3.6 are the result of random initial conditions for 𝑎 and 𝑏 

where a sufficiently negative value of 𝛼 is considered while 𝛽 is still positive. Since 

then, the Benjamin-Feir-Newell criterion for instability 1 +  𝛼𝛽 < 0 is met, it is 

expected that spatiotemporal chaos appears. The system size is 128, the 

simulation time 50 and the numerical parameters are 𝛥𝑥 = 0.32, 𝛥𝑡 = 0.002. 

Indeed, the chaotic state is developing as the number of the time steps increases. 

Sometimes, the modulus of the amplitude, |𝐴|, has values very close to zero. If this 

is the case, I can talk about defect or amplitude turbulence [9], if only the phase is 

chaotic, but the amplitude does not decrease to zero, I can talk about phase 

turbulence. Most of the parameter values used in this thesis correspond to the 

regime of amplitude turbulence. 
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Figure 3.5: Space-time plot of 𝑎, showing 
irregular oscillations (uniform oscillations are 
unstable). Parameters: 𝛼 =  −1.4, 𝛽 =  2. 

 

 

 
Figure 3.6: Space-time plot of |𝐴|, showing that 
the modulus of oscillations is spatially and 
temporally irregular (and occasionally 
approaching zero). Such a pattern is called 
amplitude turbulence. Parameters: 𝛼 =  −1.4, 

𝛽 =  2. 
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 The following Figures 3.7 and 3.8 is for the same parameters as for Figures 

3.5 and 3.6, but the simulation time is not 50 but 100. This simply shows that the 

spatiotemporal dynamics remains chaotic (amplitude defects keep occurring). 

 

 
Figure 3.7: Space-time plot of 𝑎. Same as Fig. 3.5, but with 

longer simulation time 100. Parameters: 𝛼 =  −1.4, 𝛽 =  2. 
 
 

 

 
Figure 3.8: Space-time plot of |𝐴|. Same as Fig. 3.6, but with 
longer simulation time 100. Parameters: 𝛼 =  −1.4, 𝛽 =  2. 
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Chapter 4 
 

 

Travelling waves 
 
 
 

This chapter discusses the CGLE system with feedback and studies the 

travelling wave solution. 

 

4.1  The CGLE with feedback and uniform oscillations 
 

Here, I present the CGLE with time-delay feedback with local and global 

contributions, as introduced first in [13], and mentioned in Chapter 1:  

𝜕𝐴

𝜕𝑡
= (1 − 𝑖𝜔)𝐴 − (1 + 𝑖𝛼)|𝐴|2𝐴 + (1 + 𝑖𝛽)

𝜕2𝐴

𝜕𝑥2 + 𝐹        (4.1) 

where  𝐴 = complex oscillation amplitude 

   𝜔 = linear frequency parameter 

𝛼 = nonlinear frequency parameter 

 𝛽 = linear dispersion coefficient 

𝐹 = feedback term 

𝐹 = 𝜇 ∙ 𝑒𝑖𝜉 ∙ [𝑚𝑙{𝐴(𝑥, 𝑡 − 𝜏) − 𝐴(𝑥, 𝑡)} + 𝑚𝑔{�̅�(𝑡 − 𝜏) − �̅�(𝑡)}],   (4.2) 

  where  µ = feedback strength 

𝜉 = phase shift  

𝜏 = delay time 
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𝑚𝑔 = global feedback strength 

𝑚𝑙 = local feedback strength 

  and �̅�(𝑡) =
1

𝐿
∫ 𝐴(𝑥, 𝑡)

𝐿

0
𝑑𝑥 

   where, Ā = spatial average 

𝐿 = one-dimensional system length 

I now give the formulations in real and imaginary parts for the numerical 

implementation. 

Now replacing 𝐴 with (𝑎 +  𝑖𝑏) in both sides of the CGLE with feedback 

(4.1, 4.2), similar to the treatment in Chapter 3, the equations for real and imaginary 

parts have been obtained, (see Appendix):  

Real Part:  

𝜕𝑎

𝜕𝑡
= 𝑎{1 − (𝑎2 + 𝑏2)} + 𝑏{𝜔 + 𝛼(𝑎2 + 𝑏2)} +

𝜕2

𝜕𝑥2
(𝑎 − 𝛽𝑏) 

+  𝜇 ∙ cos 𝜉 ∙ [𝑚𝑙 ∙ {𝑎(𝑥, 𝑡 − 𝜏) −  𝑎(𝑥, 𝑡)} +  𝑚𝑔 ∙ {�̅�(𝑥, 𝑡 − 𝜏) − �̅�(𝑥, 𝑡)}] 

−  𝜇 ∙ sin 𝜉 ∙ [𝑚𝑙 ∙ {𝑏(𝑥, 𝑡 − 𝜏) −  𝑏(𝑥, 𝑡)} + 𝑚𝑔 ∙  {�̅�(𝑥, 𝑡 − 𝜏) −  �̅�(𝑥, 𝑡)}]          (4.3a) 

 

Imaginary Part: 

𝜕𝑏

𝜕𝑡
= 𝑏{1 − (𝑎2 + 𝑏2)} − 𝑎{𝜔 + 𝛼(𝑎2 + 𝑏2)} +

𝜕2

𝜕𝑥2
(𝛽𝑎 + 𝑏) 

+ 𝜇 ∙ cos 𝜉 ∙  [𝑚𝑙 ∙ {𝑏(𝑥, 𝑡 − 𝜏) −  𝑏(𝑥, 𝑡)} +  𝑚𝑔 ∙ {�̅�(𝑥, 𝑡 − 𝜏) −  �̅�(𝑥, 𝑡)}] 

+ 𝜇 ∙ sin 𝜉 ∙ [𝑚𝑙 ∙  {𝑎(𝑥, 𝑡 − 𝜏) −  𝑎(𝑥, 𝑡)} + 𝑚𝑔 ∙ {�̅�(𝑥, 𝑡 − 𝜏) −  �̅�(𝑥, 𝑡)}]    (4.3b) 
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These equations have been implemented in MATLAB to generate the numerical 

results, using again the Euler method and a 3-point representation of the 

Laplacian. 

 

4.2  From uniform oscillations to travelling waves 
 

Before studying travelling waves in more detail, it is useful to consider the 

simpler plane waves, which can be seen are a special type of travelling waves, 

namely those with a constant amplitude. At any given point of space 𝑥 and time 𝑡, 

plane waves can be described as:   

𝐴(𝑥, 𝑡) = 𝜌𝑒−𝑖(𝛺𝑡−𝑘𝑥), 

where 𝜌 = |𝐴| is the modulus of the amplitude 𝐴; 𝑘 is the wavenumber = 
2𝜋

𝜆
, and 

𝛺 is the angular velocity of the waves with wavenumber 𝑘. 

Another interesting solution are standing waves. They have been first 

reported for this model in [13], then interpreted as an instability of uniform 

oscillations in [18], and later investigated in detail in [19]. The main results can be 

described as follows: Standing waves can be found in parameter areas which are 

adjacent to regions where stable uniform oscillations have been. The amplitude 

profile of standing waves does not move in space, it is always constant with respect 

to time. At any given point of space (𝑥) and time (𝑡), standing waves can be 

described as: 

𝐴(𝑥, 𝑡) = 𝜌(𝑥)𝑒−𝑖(𝛺𝑡−𝑘𝑥), 

where 𝜌(𝑥) is now a space-dependent (real) amplitude (rest as above). 
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In numerical research published in 2007 [13], travelling waves have been 

reported, where now the real amplitude depends on both time and space: 

𝐴(𝑥, 𝑡) = 𝜌(𝑥, 𝑡)𝑒−𝑖(𝛺𝑡−𝑘𝑥). 

However, such patterns were just reported in simulations, but not discussed 

in more detail. Before considering more simulations on these, the different patterns 

mentioned can be compared in Table 4.1. 

Table 4.1 Different wave patterns 

Pattern 
𝝆 time 

dependent 
𝝆 space 

dependent 
General Equation 

Travelling 
wave 

Yes Yes 𝐴(𝑥, 𝑡) = 𝜌(𝑥, 𝑡)𝑒−𝑖(𝛺𝑡−𝑘𝑥) 

Standing 
wave 

No Yes 𝐴(𝑥, 𝑡) = 𝜌(𝑥)𝑒−𝑖(𝛺𝑡−𝑘𝑥) 

Plane wave No No 𝐴(𝑥, 𝑡) = 𝜌𝑒−𝑖(𝛺𝑡−𝑘𝑥) 

Uniform 
oscillation 

No No 𝐴(𝑡) = 𝜌𝑒−𝑖𝛺𝑡 

 

In Figure 4.1, a qualitative sketch distinguishes in space-time diagrams 

these four patterns: uniform oscillations, plane waves, standing waves and 

travelling waves. 
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Figure 4.1: Qualitative sketch of four different 
wave patterns as seen in space-time plots. 

 

Since Figure 4.1 is just a qualitative sketch, in Figure 4.2, I present actual 

space-time plots as reported in different publications.  
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Figure 4.2: Uniform oscillations, plane waves, 
standing waves and travelling waves as reported 
earlier. Parameters and numerical parameters are 
found in the original publications, i.e., in [13] for 
plane and travelling waves and [18] for uniform 
oscillations and standing waves. 

 

4.3  Simulations of transient travelling waves  
 

Since in none of the previous publications, travelling waves were 

discussed, here, I investigate travelling waves in this model. Motivated by the 

results published in [13], simulations were done for a constant feedback strength 
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|𝑨| 𝑹𝒆 𝑨 
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µ = 0.6 and time delay 𝜏 = 1.1 varying the initial wavenumber. The global and local 

parameter were set to 0.2 and 0.8, respectively. The value of 𝛼 set to -1.4 and 𝛽 is 

2; 𝛥𝑥 =  0.32 and 𝛥𝑡 =  0.002; system size 128.  

To set the initial condition, the number of initial waves filling the system was 

chosen, which is 𝑛 in this case, such that an integer number of waves 𝑛𝜆 is filling 

the system of length 𝐿. It has been chosen all integer values for 𝑛 from 1 to 20 and 

therefore preparing initial conditions with wavenumber 2𝜋 
𝑛

𝐿
 . 

Then, short (up to 1000 iterations, which corresponds to a time interval 𝑇 =

100) and long (up to 10000 iterations, which corresponds to a time interval 𝑇 =

1000) simulations have been performed on each initial wavenumber. 

In the simulations performed here, such travelling waves were 

asymptotically unstable, but their transient existence for up to tens of passages 

through the system (with periodic boundary conditions) for some of the initial 

conditions make them an interesting pattern to study. Some of these waves are 

relatively harmonic and others non-harmonic.  
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Figure 4.4 shows simulations where the initial condition led successfully 

into a travelling wave state, but which was later found to be a transient. 

Figure 4.3: Short simulations (time interval 𝑇 =  100) 

for transient travelling waves with initial 

wavenumbers corresponding to 8, 10, and 15 waves 

filling the system. The shown variable is |𝐴|. 

 

As initial condition, I have created a travelling wave train with 𝑛 =  8 waves, 

corresponding to a travelling wave with wavenumber 0.393 (Figure 4.4, left). 

During the transient, a wave train with 8 waves developed, however it decayed 

later. The travelling wave has a nonmonotonic tail as can be seen by the change 

of light to dark grey in the back of the main wave. 

In a different simulation, with an initial condition composed of 𝑛 =  10, 

corresponding to an initial wavenumber 0.491 (Figure 4.4, centre), also a transient 

travelling waves has been found, in this case developing quickly in an irregular 

state of merging wave fronts and then to uniform oscillations. 
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Finally, for an initial wavenumber 0.736, corresponding to a wave train of 

𝑛 =  15 waves (Figure 4.4, right) also a travelling wave has been found. However, 

it resembles more a solitary wave than a travelling wave since the wavelength is 

equal the system size, hence having 1 wave. This wave later decays to uniform 

oscillations, too. 

In longer simulations of the same initial wavenumbers, none of these kept 

the same pattern, and gave rise to uniform oscillations, as can be seen by the 

figures for |𝐴|, where a spatially and temporally constant value is obtained, see 

Figure 4.5. 

 

 

 

 

 

 

 

 

 

Figure 4.4: Long simulations (time interval 
𝑇 =  1000). For rest of parameters, see 
Figure 4.4. 
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Figure 4.5 shows the short simulation (𝑇 = 50) where the variables (i.e. Real 𝐴 and 

|𝐴|) data were taken for the time moment at 500. As it has been seen in Figure 4.4, 

at higher wave numbers the variables fluctuation gets more smother, which 

indicates waves are decaying to uniform oscillation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5: Short simulations (time interval 
𝑇 =  50). At time moment 500 for 𝑛 = 8 

waves (a), 𝑛 = 10 waves (b), 𝑛 = 15 waves 
(c). For rest of parameters, see Figure 4.4. 

  

(a) (b) 

(c) 
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Chapter 5 

 

Spot patterns 
 
 

In this chapter, I investigate spot patterns (defined on page 55). Since no 

spot patterns have been observed in the model studied in Chapter 4, I introduce a 

modification into the equation. After presenting this model, I discuss the numerical 

evidence for spot patterns, their stability, and multiple spot patterns.  

 

5.1  Model for local feedback 

 

Here, I introduce the CGLE for a one-dimensional medium with a local time-

delayed feedback 𝐹 defined by 

𝜕𝐴

𝜕𝑡
= (1 − 𝑖𝜔)𝐴 − (1 + 𝑖𝛼)|𝐴|2𝐴 + (1 + 𝑖𝛽)

𝜕2𝐴

𝜕𝑥2 + 𝐹        (5.1) 

where  𝐴 = complex oscillation amplitude 

   𝜔 = linear frequency parameter 

𝛼 = nonlinear frequency parameter 

 𝛽 = linear dispersion coefficient 

𝐹 = feedback term 

𝐹 = 𝜇 ∙ 𝑒𝑖𝜉 ∙ {𝐴(𝑥0, 𝑡 − 𝜏) − 𝐴(𝑥, 𝑡)},          (5.2) 

  where  µ = feedback strength 

𝜉 = phase shift  
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𝜏 = delay time 

𝑥0 = feedback point, a single gridpoint of the discretized 

medium of length L 

 

The feedback is a space-dependent function in two ways: first, due to the 

dependence on 𝐴 and second due to the dependence on 𝑥0 which assigns a 

special importance to the dynamics at this point. The strength of the feedback is 

proportional to the difference of the current state and a delayed state, as in Chapter 

4. This model is similar to the model used in Chapter 4 but has no global 

contribution and has this special feedback point 𝑥0. 

 

It can be noted that the solution of feedback-induced uniform oscillations is 

given by     𝐴(𝑡) = 𝜌𝑒−𝑖𝛺𝑡 , 

with    𝜌2  = 1 + 𝜇(cos(𝜉 + 𝛺𝜏) − cos 𝜉) 

and   𝛺 = 𝜔 + 𝛼 + 𝜇(𝛼(cos(𝜉 + 𝛺𝜏) − cos 𝜉) − (sin(𝜉 + 𝛺𝜏) − sin 𝜉)), 

where the solution for 𝛺 must be found numerically using root-finding methods 

since 𝛺 appears on both sides of the equation. This is essentially the same solution 

as for the model in Chapter 4, the only difference being that instead of 𝜇, there we 

have 𝜇(𝑚𝑙 + 𝑚𝑔). 
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5.2  Numerical study of spot patterns 

 

I have performed extensive spatiotemporal simulations of equations (5.1, 

5.2) for a one-dimensional system with size 𝐿 = 128 and spatial resolution 𝛥𝑥 =

0.32 (400 grid points). For time integration, I use an explicit Euler scheme with 𝛥𝑡 =

0.002. The Laplacian operator is discretized using a next-neighbour 

representation. I apply periodic boundary conditions and the initial conditions 

(unless stated otherwise) consist of developed spatiotemporal chaos. Due to the 

periodic boundary condition, the medium is uniform if 𝜇 = 0 (and hence 𝐹 = 0). 

However, if 𝜇 ≠ 0, the dependence of 𝐹 on 𝑥0 breaks this symmetry and without 

loss of generality (and unless stated otherwise) I set 𝑥0 = 0 for 𝜇 ≠ 0. The feedback 

refers to one grid point only. Throughout this chapter, the CGLE parameters are 

kept constant: the nonlinear frequency parameter 𝛼 = − 1.4, the linear dispersion 

coefficient 𝛽 = 2, and the linear frequency parameter 𝜔 = 2𝜋 –  𝛼. For all but a few 

simulations (and then stated), the phase shift between the feedback and the 

dynamics is chosen to be 𝜉 =  
𝜋

2
. 

The main patterns are the same as for the model discussed in Chapter 4, 

in particular uniform oscillations, standing waves and spatiotemporal chaos, for an 

overview see Figure 5.1. However, a novel pattern has been observed in the 

simulations and that is displayed in Figure 5.2 where it shows space-time plots and 

a spatial profile in its asymptotic (and therefore stable) regime. 

The wave pattern is characterized by uniform oscillations that are perturbed 

in a localized spatial region. The space-time plot for 𝑅𝑒𝐴 (Figure 5.2(a)) 

demonstrates that the oscillation frequency is the same throughout the medium 
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and the main difference between the oscillations inside the region and outside is 

their phase and amplitude. For the specific parameters of the simulation, the 

localized oscillation advances the background oscillation approximately one third 

of the period. The (modulus of the) amplitude changes strongly in a small area of 

the medium (Figure 5.2(b,c)) and decreases to approximately 40% of the amplitude 

of the background. Therefore, this pattern referred as spot pattern. However, it is 

important to note that the centre of the spot (around 𝑥 =9.4) does not coincide with 

the location of the feedback point (𝑥0 = 0). 

 

Figure 5.1: Space-time diagrams for |𝐴| in grey scale - (a) 
unstable standing wave, (b) spatiotemporal chaos, (c) 
cluster, (d) breathing and unstable standing wave, (e) 
stable standing wave, (f) uniform oscillation, and (g) 
spatiotemporal chaos. Space is horizontal, time is vertical 
axis moving upwards. 
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The pattern has an intrinsic localized character. As such, in a sufficiently 

large system more than one spots may be stabilized, as shown in Figure 5.3(a,b). 

There, after an initial transient (not shown here), the medium displays two spots, 

one centred around 𝑥 =9, the other one at 𝑥 =51. Both spots have the same 

amplitude profile. I come back to multiple spot solutions below. 

 

Figure 5.2: Spot solution. (a) Space-time plots of a spot 
solution in the asymptotic regime for 𝑅𝑒𝐴 (a) and |𝐴| 
(b). (c) Spatial profiles for 𝑅𝑒𝐴, 𝐼𝑚𝐴, and |A|. The 

feedback parameters are: 𝜇=0.9, 𝜏=0.8, 𝜉 =  
𝜋

2
, 𝑥0 =

0. The displayed time interval is 𝑡 = 50 (a,b). The 
center of the spot pattern is approximately located at 
𝑥 = 9.4. In the space-time plots, black (white) refers to 
the minimum (maximum) values in the interval. In (a), 
the values of 𝑅𝑒𝐴 are between -1.46 and +1.46 and in 

(b) the values of |𝐴| are between 0.60 and 1.46. 

 

The time-delayed feedback is also able to induce transient cascades of 

spot patterns, as displayed in Figure 5.3(c,d). Besides the dependence on system 

parameters, the asymptotic state of such cascades depends very sensitively on 

the initial condition and is either a persisting chaotic state, uniform oscillations, or 

a spot pattern (with one or multiple spots). 
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Figure 5.3: Spot solutions. (a,b) Space-time plots for 
two spot solutions in the asymptotic regime for 
𝑅𝑒𝐴 (a) and |𝐴| (b). The displayed time interval is 𝑇 =
20. Other parameters are as given in Figure 5.2. (c,d) 
Space-time plots for a transient cascade of spots for 
𝑅𝑒𝐴 (c) and |𝐴| (d). The parameters are the same as 
in (a), but the initial state has been perturbed in the 
upper spot, leading to a destabilization of the overall 
pattern. The displayed time interval is 𝑇 = 100. 

 

In this example, the cascades have been introduced by perturbing a stable 

two-spot state (of (a,b)) by changing Re𝐴 strongly in one spot. The fact that this 

perturbation leads to a destabilization of the other spot shows that the spot pattern 

is not robust with respect to large perturbations. Since at every different location 𝑥, 

the feedback contains a term corresponding to the value of 𝐴(𝑥0, 𝑡 − 𝜏), the local 

dynamics depends on both the local previous state and the time-delayed state at 

𝑥0. 

While cascade-like patterns have been observed in various simulations 

where large perturbations or parameter changes have been applied to a stable 

spot pattern, it is more interesting to see the generic behaviour of spot patterns 

when the perturbations are small or when parameters are changed in small steps. 

This is investigated in the next section. 
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5.3  Stability of spot patterns 

 

The application of small parameter changes to a stable spot pattern usually 

does not lead to its disappearance, but to a new spot pattern that has adjusted its 

oscillation frequency, amplitude, and extension to the new parameters. The spot 

pattern is therefore robust. 

However, spot solutions can eventually become unstable once a critical 

parameter value is reached. Now, three main types of destabilizations of the spot 

pattern have been found: first, the spot becomes smaller and eventually its size 

shrinks to zero: that named as a disappearing spot. Second, the spot becomes 

larger and merges into the background uniform oscillations: that named as an 

exploding spot. Third, the spot size starts to oscillate with a soft onset, i.e., with 

small oscillation amplitude, an instability denoted as breathing spots. Not only the 

spot size oscillates, but also the amplitude values within the spot. These three 

types are illustrated in Figure 5.4 via space-time plots for |A|. 

 

 

 

 

 

Figure 5.4: Destabilization of spot solutions. Displayed are 
space-time plots for |𝐴| (time interval 𝑇 = 50) in the 
transient (a,b) and asymptotic (c) regime. (a) Disappearing 
spot for 𝜇 = 0.972 and 𝜏 = 0.8. (b) Exploding spot for 𝜇 =
1.8 and 𝜏 = 1.044. (c) Breathing spot for 𝜇 = 0.824 and 𝜏 =
0.8. Other parameters are as given in Figure 5.2. 
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In order to understand where the spot patterns are observed in parameter 

space, I have performed systematic simulations: I started from a stable spot pattern 

and changed the 𝜇 or 𝜏 value in small steps and waited until the resulting pattern 

had stabilized, before changing the value again. At some critical value of 𝜇 or 𝜏, 

the spot pattern becomes unstable, marking the boundary of the stability region. 

 

Figure 5.5: Stability region for the spot solution in parameter 
space spanned by 𝜇 and 𝜏. Green dots show simulations with 
an asymptotic stable spot solution, red dots correspond to 
simulations where spot solutions started to oscillate in size 
(lower boundary for 𝜏 < 1), yellow dots to simulations where the 
spot size increased until the spot disappeared (lower boundary 
for 𝜏 > 1) and violet dots to simulations where the spot 

disappeared via shrinking (upper boundary). Step size in 𝜇 is 
0.005 and in 𝜏 is 0.002 and simulation time is up to 200 to 
determine stability. The parameter 𝜏 has only been changed in 

decreasing order, ensuring that always 𝜏/𝛥𝑡 meaningful data 
points were available in the initial condition of the subsequent 
simulation. Other parameters are as given in Figure 5.2. 
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The resulting stability region is shown in Figure 5.5. The area seems quite 

thin, however, the displayed ranges of both 𝜏 and 𝜇 are actually quite large. Also, 

the area extends to relatively high feedback strengths, especially in comparison to 

previously reported stability areas for a similar model [13, 18, 19]. 

In the interior of the stability area, single spots of varying size (see below) 

are found. The boundary of the area is limited by three different instabilities. The 

simplest one is if for a stable spot (at constant 𝜏), the feedback strength 𝜇 is 

increased. Then, the spot size decreases and, at the boundary of the stability area, 

eventually shrinks to zero (violet dots in Figure 5.5). If the delay time is larger than 

𝜏 ≈ 1 and if the feedback strength 𝜇 is decreased, the spot size increases but 

remains a stable spot with a stable asymptotic extension until, at the boundary of 

the stability area, the spot merges with the background oscillations (yellow dots in 

Figure 5.5). If the delay time is smaller than 𝜏 ≈ 1 and if the feedback strength 𝜇 is 

decreased, the spot size and amplitude values in the spot start to oscillate (red 

dots in Figure 5.5). The stability area has been defined as the value of 𝜇 at which 

the oscillations become self-sustained, i.e., are not damped. 

The spatial extension of the spot solution is determined by the system 

parameters. This is shown in Figure 5.6. I characterize the spatial extension 

through the half-maximum width 𝑆 as determined by |𝐴| (after subtraction of the 

background value of |𝐴|). To simplify the procedure and since it was mainly 

interested to show that the spot size indeed changes as a function of parameters, 

no interpolation has been performed between grid points to obtain a precise value 

of 𝑆 (nevertheless, the spot extension is always larger than the mesh size 𝛥𝑥).  
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In Figure 5.6(a), 𝑆 is shown as function of 𝜇 for 𝜏 = 0.8 for the range of 

stable spot patterns. As the feedback strength increases, the size becomes smaller 

and as a critical 𝜇 value is passed, the spot rapidly shrinks and disappears. For 

low feedback strengths, the spot becomes unstable with respect to oscillations of 

the size.  

In Figure 5.6(b), 𝑆 is shown as function of 𝜏 for 𝜇 = 0.9 for the range of 

stable spot patterns. In this case, the oscillations in size are observed as the delay 

time is increased, while the size quickly shrinks to zero for decreasing delay times. 

Finally, the figure 5.6(c) shows that the size 𝑆 can also be varied by changes of the 

parameter 𝜉. 

 

Figure 5.6: Spatial size 𝑆 of a single stable spot 
solution. (a) 𝑆(𝜇) for 𝜏 = 0.8 and 𝜉 = 𝜋/2. (b) 𝑆(𝜏) for 

𝜇 = 0.9 and 𝜉 = 𝜋/2. (c) 𝑆(𝜉) for 𝜏 = 0.8 and 𝜇 = 0.9. 
The dashed lines are linear regression curves only 
meant as an aid to the eye. Other parameters are as 
given in Figure 5.2. 
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5.4  Multiple spot patterns 

 

The system is uniform, with the only exception being the feedback term that 

depends on 𝑥0. Therefore, it is of interest to study how a stable spot pattern reacts 

to a change of 𝑥0. I recall that until now, 𝑥0 = 0, i.e., it has been seen that the 

feedback point is located near the boundary of the spot solution, which itself is 

centred at 𝑥 = 9.4 (see Figure 5.2). 

Obviously, in a system with periodic boundary conditions, there is nothing 

special about selecting 𝑥0 = 0. To remove that apparently special choice and 

confirm the self-organized nature of the pattern, it was chosen to select 𝑥0 = 12.8 

(grid point 40) and shift all data points (including the time-delayed values) of 𝑅𝑒𝐴 

and 𝐼𝑚𝐴 for a stable spot pattern by the same number of grid points. The result, 

not shown here, and completely consistent with the expectations, is a stable spot 

pattern whose centre is now located at 𝑥 = 12.8 + 9.4 = 22.2 (grid point 70). 

I was interested to find out what influence is exerted by the specific location 

𝑥0 on a stable spot pattern and how sensitive the pattern reacts to changes of the 

feedback point. To this end, I use the stable spot pattern at 𝑥0 = 12.8 (grid point 

40) as initial condition for a systematic change of 𝑥0 without shifting the data sets 

simultaneously. Of course, this is equivalent to shifting the pattern (including the 

time-delayed values) by the same amount in the opposite direction maintaining 𝑥0 

fixed. 

The results in Figure 5.7 show the asymptotic state (found after simulation 

times of up to 𝑡 = 800) once 𝑥0 has moved from grid point 40 to a new position (for 

convenience, where it specifies a spatial position, including 𝑥0, via its grid point). 
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The first observation is that small changes of 𝑥0 do not lead to a change of 

the pattern. For example, if 𝑥0 ∈ [39,42], and therefore not only at 𝑥0 = 40, the 

stable spot solution has been observed. The second observation is that the stable 

spot solution is maintained at the same position without any notable change if 𝑥0 ∈

[99,102]. This has a simple explanation: The centre of a stable spot pattern 

(approximately at grid point 70) does not coincide with the feedback point, but, as 

it has been seen above (Figure 5.2(c)), the feedback point is located near the 

boundary of the pattern. Since a spot pattern in one space dimension has two 

symmetrical boundaries (visible in the profile of |𝐴|), the feedback point can be 

located near either boundary. 

This symmetry generalizes to breathing patterns: If 𝑥0 ∈ [35,38], the 

observed pattern is a single spot, however, with breathing dynamics. Specifically, 

for 𝑥0 = 38, the breathing is relatively smooth, while its amplitude becomes larger 

for decreasing 𝑥0 and at 𝑥0 = 35 it displays a strong breathing dynamics. At 𝑥0 =

34, breathing has observed only as a transient before the spot disappears and the 

asymptotic state of uniform oscillations is reached. For 𝑥0 ∈ [103,105] breathing 

spots with increasing amplitude and for 𝑥0 = 106 the asymptotic state consists of 

uniform oscillations have been observed. 
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Figure 5.7: Two spots for 𝜏 = 0.8 and 𝜇 = 0.9 after switching 
from 𝑥0 = 40 to (a) 𝑥0 = 118, (b) 𝑥0 = 147 (positions given in 
grid points). The straight solid lines indicate the positions of 
𝑥0. Other parameters are as given in Figure 5.2. (c) Spatial 
profile of |A| for the solutions from (a) in red and (b) in blue. 
The 𝑥0 positions are indicated with a red circle and dashed 
drop line (grid point 118 corresponds to 𝑥 ≈ 37.8 for the 
simulation in (a)) and with a blue square and dashed drop line 
(grid point 147 corresponds to 𝑥 ≈ 47 for the simulation in (b)), 

respectively. |A(𝑥0) ≈1.45| in both cases. Other parameters 
are as given in Figure 5.2. (d) Main solutions found after 
switching from 𝑥0 = 40 to the gridpoint indicated on the 
abscissa. Note that not all grid points of the system have 
chosen to serve as new 𝑥0. There is a clear symmetry of the 
parameter regions with respect to grid point 70, which is the 
approximate centre of the stable 1-spot solution before the 
shift of 𝑥0. 
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Changing 𝑥0 systematically over a large range of grid points, it has been 

observed that there are three main asymptotic spatiotemporal states: (a) uniform 

oscillations, (b) a single spot, (c) two spots. As mentioned, for a small set of 𝑥0, the 

spots are found to be breathing. Let us discuss the two-spot patterns: This pattern 

has been observed, for example, for 𝑥0 ∈ [118,131]. This a comparatively large 

parameter region and shows the robustness of the pattern. Figure 5.7(a) shows a 

space-time plot of |𝐴| once 𝑥0 is changed from 𝑥0 = 40 to 𝑥0 = 118. The transient 

dynamics is governed by a cascade that leads to the formation of two spots. These 

spots are close to each other and there is a clear increase in values of |A| between 

the spots justifying the identification as a bound state of 2 spots, rather than a set 

of two independent spots. It also has been seen that the size of each spot is slightly 

smaller than the size of a single spot (Figure 5.2(b)). So, has been observed that 

a marked difference with respect to the simulation shown in Figure 5.3(b) where 

the two spots are well separated, each with a single-spot profile. Figure 5.7(b) 

shows a space-time plot of |𝐴| for a simulation with 𝑥0 = 147. Now again a 

cascade-like behaviour in |𝐴| leading to a 2-spot pattern has been observed, 

however, now the distance between the spots is larger than in Figure 5.7(a) and 

the size of each spot is practically undistinguishable of that of a single spot (Figure 

5.2(b)). When a cascade-like dynamics is observed (like routinely for a large 

change of 𝑥0 like in this set of simulations), the asymptotic state cannot be easily 

predicted. 

In Figure 5.7(c), the respective spatial profiles are shown together with the 

position of 𝑥0. It has been observed that |𝐴(𝑥0) ≈ 1.45| in both cases and that the 

position of the feedback point coincides with the boundary of the spot. The different 

profiles of the two solutions can be interpreted in the following way: the solution in 



Chapter 5 

F.M. Hasan, PhD Thesis, Aston University 2023  66 
 

(a) is a bound-state solution, due to the lateral interaction of the fronts limiting the 

spots and (b) consists of two individual spots. In spite of this difference and in order 

to keep the nomenclature simple, we call both patterns 2-spot solutions. 

The numerical evidence collected from Figs. 5.2(b) and 5.7(c) indicates that a spot 

solution (of 1 or 2 spots) is found if the feedback point is located at the boundary 

of the spot. In the observed cases, the front profile of the spot has an oscillatory 

tail towards the outside region, with the feedback point being close to the maximum 

position of |𝐴| in the tail. 

Finally, Figure 5.7(d) shows in a schematic form the asymptotic state of a 

simulation where 𝑥0 has been switched from 𝑥0 = 40 to another gridpoint. As 

mentioned above, the uniform oscillations (decay of the spot solution) have been 

found in, a single spot solution and a 2-spot solution, in almost perfect symmetry 

with respect to the centre of the 1-spot solution that represented the initial condition 

(grid point 70). It also shows that the asymptotic state can still be a single spot 

solution if the shift of the feedback point was large. In particular, there is one 

feedback point on either side of the spot that provides a single spot solution 

although in its neighbourhood the asymptotic states are uniform oscillations and 2-

spot solutions. The transients for these choices of 𝑥0 are nontrivial and small 

perturbations may provide large changes to the asymptotic pattern. To keep Figure 

5.7(d) simple, and in particular to emphasize the symmetry with respect to grid 

point 70, it was decided to show data for shifts of 𝑥0 to grid points 8 to 131. For 

other choices, the afore-mentioned solutions repeat, in smaller intervals. 
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Chapter 6 
 

 

Final Remarks 
 
 
 
Discussion 

The CGLE is one of the most-studied equations in Nonlinear Dynamics and 

is applied to a large range of systems in the natural sciences [9]. One of its 

properties is that it describes an oscillatory system near a supercritical Hopf 

bifurcation and therefore is also a model system for nonlinear oscillations. If a 

reaction-diffusion system is close to a Hopf bifurcation, then spatial coupling can 

lead to uniform oscillations becoming unstable further to spatiotemporal chaos. 

Feedback methods as those studied in this thesis are known to be able to control 

spatiotemporal chaos in such systems. In particular, a time-delay feedback 

scheme with local and global contributions can suppress spatiotemporal chaos and 

induce regular patterns such as uniform oscillations and standing waves [13, 18, 

19]. 

Based on these works, in this thesis, several other solutions appearing in 

this system have been studied. Firstly, travelling waves have been considered 

(Chapter 4) and secondly, spot solutions, for a slightly different model (Chapter 5).  

Travelling waves have shown to be numerically transient for the chosen 

parameters, i.e., are unstable. Since there is no analytical study that would suggest 

these waves to be stable, this in itself is not critical. However, it is still surprising 
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since other numerical simulations [13] indicated the existence of stable travelling 

waves and have been found to suppress chaos in a different kind of system [34]. 

It has been observed in the present simulations that the transient could be longer 

or shorter depending on the initial condition, which may suggest that the 

simulations reported in [13] were simply not long enough. Nevertheless, no definite 

claim can be made here based on numerical evidence only.  

Spot patterns are patterns that are known to exist in a variety of pattern-

forming systems [35] but have not been observed in the CGLE without feedback. 

This is not surprising since the underlying bifurcation of the CGLE is the Hopf 

bifurcation and spot patterns are not generally expected near Hopf bifurcations. It 

was an initial hypothesis to find out whether time-delay feedback with local 

contributions could lead to spot patterns. As a spot pattern has a distinctive local 

nature, it would be surprising to find it through global feedback. Nevertheless, 

despite considerable effort, in the system introduced in [13], no spot patterns were 

found numerically.  

However, by a small modification of the system, spot patterns could be 

created. This is the main contribution of this thesis. The modification consists of 

selecting a specific single point of the system to create the feedback term for the 

system. And the spot solution itself can be recognized by a local decrease of the 

modulus of the amplitude.  

The pattern observed here coexists with uniform oscillations. Therefore, it 

can only be observed with an appropriate initial condition. The pattern was first 

observed as asymptotic state of a simulation that started with spatiotemporal 

chaos. Subsequent simulations confirmed the stability of the pattern and led us to 
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prepare the initial conditions to investigate the patterns systematically, showing 

stable 1-spot and 2-spot patterns, which furthermore confirm the local nature of the 

pattern. While changes of parameters or of initial conditions occasionally lead to 

abrupt changes in the overall dynamics (namely, via spot cascades), the stability 

area of spots in parameter space is not small. The stability boundaries have been 

found numerically with finite parameter step sizes, finite system size and finite 

simulation time, the location of the stability boundary is only approximate. 

The pattern described in this work represents a self-organized pattern and 

as such its properties depend on the system parameters, as I have shown clearly 

through the curves that show the dependence of the spot size as function of the 

delay time, feedback strength and the phase shift. Its self-organized nature is also 

demonstrated by showing the instabilities that the pattern may undergo, namely 

explosion, disappearance and breathing. Small-amplitude breathing has been 

observed to be stable for long time intervals. 

The spot is always found to be in the vicinity of the feedback point. To be 

precise, the feedback point is located close to the first (and highest) maximum of 

the amplitude of the oscillatory tail of the front representing the boundary of the 

spot. For a stable spot, the window of feasible feedback points to keep the spot 

stable is quite small (4 grid points) which corresponds to a small area around that 

maximum in the tail. This can be interpreted as a pinning of the spot to the 

neighbourhood of the feedback point. 

It was decided to interpret the pattern as spot pattern, justified by the clear 

front-like boundary it shows in the modulus profile, in clear analogy to spot 

solutions in general reaction-diffusion systems [35,36]. This includes the oscillatory 
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(i.e., non-monotonic) tail of the front, that seems instrumental in the spot formation 

process, the breathing phenomenology, common for spots [35, 37, 38], and the 

cascading dynamics leading to transient Sierpinski-like patterns [39, 40]. The fact 

that a two-spot state solution can be stable, suggests that there may be 𝑛-spot 

patterns, if the system size is large enough. The fact that I have not observed 𝑛-

spot patterns (𝑛 > 2) in the simulations may be due to small system size and that 

initial conditions should be tuned more carefully. In particular, spot cascades are 

frequently observed and tend to favour single spots, chaotic states or uniform 

oscillations as final outcome. It would be feasible to create an array of 𝑛 feedback 

points, each with an associated area to impact on. A larger system size would be 

a necessary condition to observe a 𝑛-spot solution. 

Two alternative interpretations of the pattern may be suggested: First, if 

parts of a medium are oscillating with the same oscillation frequency but with a 

constant phase shift, this can be interpreted as a cluster pattern (as observed, e.g., 

in [41]). However, the fact that the medium admits for the same parameter set 1- 

or 2-spot solutions suggests that the pattern is not created by a long-wavelength 

instability. Furthermore, the phase shift seems to be a continuous function of the 

system parameters and no phase-locking phenomena has been seen in my 

simulations. 

Second, the oscillatory dynamics of the system allows for an interpretation 

of the pattern also as a wave sink (see [42] and references therein), i.e., an area 

with localized decreased oscillation frequency that asymptotically converges to a 

wave pattern similar to the one observed here. However, in contrast to these works, 

no fixed locally changed oscillation frequency was found and furthermore, the 
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feedback point is not located in the centre of the pattern as expected for a wave 

sink produced by the mechanism described in [42]. 

Since the feedback in this model is using the system dynamics at a single 

grid point, i.e., representing an area of small extension compared to the 

characteristic length scale, its implementation in an experimental system would be 

presented by a small-sized device, such as a point electrode in cardiac, 

neurophysiological or electrochemical systems, as long as a description of an 

oscillatory reaction-diffusion system is justified. 

 

Conclusions 

I can conclude that the traveling waves are numerically transient for the 

chosen parameters and therefore asymptotically unstable. In other work [13], the 

numerical simulations of the travelling waves for a different system were stable and 

have been found to suppress chaos. From this present work I can say that 

depending on the initial condition the transient of the travelling waves could be 

longer or shorter. This may suggest that previous numerical simulations were 

simply not long enough to show this kind of unstable travelling waves. 

The spot pattern described in this work represents a self-organized pattern 

and as such its properties depend on the system parameters, as I have shown 

clearly through the curves that show the dependence of the spot size 𝑺 as function 

of 𝝉, µ and 𝝃. Simulations confirmed the stability of the pattern and led us to prepare 

the initial conditions to investigate the patterns systematically, showing stable 1-

spot and 2-spot patterns, demonstrating the localized nature of the pattern. Along 

with cascade patterns, exploding and disappearing spots, I observe spots 

oscillating in size and amplitude, which show the spot’s instabilities. 
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Outlook 

Future work on this model could include a more thorough analytical 

description of the spot pattern including a stability analysis. This analysis should 

also clarify whether these spot patterns can also be expected, for example, for 

higher values of the delay time (in tongue-like fashion) or in spatially two-

dimensional systems. Since for one-dimensional systems the feedback point is 

located at the spot boundary, the immediate question arises whether the same 

holds for two-dimensional systems and if so, if any point of the, presumably 

concentric, spot boundary is appropriate to create the pattern. 

DC-DC power converters have been mentioned earlier in Chapter 1. 

Therefore, it could be interesting to compare the model presented here to the one 

in Ref. [44]. In principle, the model discussed here, requires to be close to a Hopf 

bifurcation, so a comparison with models from power converters (and possible 

other electronic devices) would need to take this into account. Furthermore, in the 

present terminology, the scheme from [44] is a global feedback as there is no 

spatially dependent variable, so it is quite different from the model studied in 

Chapter 5. Nevertheless, if there was a power electronic system with a variable 

that is spatially dependent (or locally coupled elements) and the possibility of 

addressing a single element as in this work, a comparison could be made. A 

possible application could be to set up a mathematical model for such a system 

and, in the next step, to introduce time delay feedback. One of the aims is to find 

out if – by optimizing delay time or feedback magnitude – the feedback can provide 

a way to have a steady output for a larger parameter region or being less 

susceptible to fluctuations, e.g., in the power input.  
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In power electronics – and industrial control systems in general – there 

already exist various types of controllers, for example PID (proportional integral 

derivative) controllers, that are widely used. PIDs continuously calculate the error 

value by differencing between the output and input voltage and applies based on 

proportional integral derivative terms. Thus, it could be another challenge to 

compare PID controllers to one based on the work presented in this thesis. 
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Appendix 
 

 
 

Real and imaginary parts of the CGLE with local and global 

feedback 

The CGLE with local and global feedback is written as  

𝜕𝐴

𝜕𝑡
= (1 − 𝑖𝜔)𝐴 − (1 + 𝑖𝛼)|𝐴|2𝐴 + (1 + 𝑖𝛽)

𝜕2𝐴

𝜕𝑥2 + 𝐹                      

where, 𝐴 = complex oscillation amplitude 

   𝜔 = linear frequency parameter 

𝛼 = nonlinear frequency parameter 

 𝛽 = linear dispersion coefficient 

𝐹 = feedback term 

𝐹 = 𝜇 ∙ 𝑒𝑖𝜉 ∙ [𝑚𝑙{𝐴(𝑥, 𝑡 − 𝜏) − 𝐴(𝑥, 𝑡)} + 𝑚𝑔{�̅�(𝑡 − 𝜏) − �̅�(𝑡)}]                          

  where,  µ = feedback strength 

𝜉 = phase shift  

𝜏 = time delay 

𝑚𝑔 = global feedback 

𝑚𝑙 = local feedback 

  and  �̅�(𝑡) =
1

𝐿
∫ 𝐴(𝑥, 𝑡)

𝐿

0
𝑑𝑥               

  where,  Ā = spatial average 

𝐿 = one-dimensional system length  
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Replace, 𝐴 = 𝑎 + 𝑖𝑏 

L.H.S.  = 
𝜕𝐴

𝜕𝑡
=

𝜕(𝑎+𝑖𝑏)

𝜕𝑡
=

𝜕𝑎

𝜕𝑡
+ 𝑖

𝜕𝑏

𝜕𝑡
 

 
(non-spatial part) 

R.H.S.  = (1 − 𝑖𝜔)(𝑎 + 𝑖𝑏) − (1 + 𝑖𝛼)|𝑎 + 𝑖𝑏|2(𝑎 + 𝑖𝑏) 

 = (𝑎 + 𝑖𝑏 − 𝑖𝑎𝜔 + 𝜔𝑏) − (𝑎 + 𝑖𝑏 + 𝑖𝑎𝛼 − 𝛼𝑏)|𝑎 + 𝑖𝑏|2 

              = (𝑎 + 𝑖𝑏 − 𝑖𝑎𝜔 + 𝜔𝑏) − (𝑎 + 𝑖𝑏 + 𝑖𝑎𝛼 − 𝛼𝑏)(𝑎2 + 𝑖𝑏2)(𝑎2 − 𝑖𝑏2) 

              = (𝑎 + 𝑖𝑏 − 𝑖𝑎𝜔 + 𝜔𝑏) − (𝑎 + 𝑖𝑏 + 𝑖𝑎𝛼 − 𝛼𝑏)(𝑎2 + 𝑏2) 

              = (𝑎 + 𝑖𝑏 − 𝑖𝑎𝜔 + 𝜔𝑏) − (𝑎3 + 𝑎2𝑖𝑏 + 𝑖𝑎3𝛼 − 𝑎2𝑏𝛼 + 𝑎𝑏2 + 𝑖𝑏3 +

𝑖𝑎𝑏2𝛼 − 𝛼𝑏3) 

              = 𝑎 + 𝑖𝑏 − 𝑖𝑎𝜔 + 𝜔𝑏 − 𝑎3 − 𝑎2𝑖𝑏 − 𝑖𝑎3𝛼 + 𝑎2𝑏𝛼 − 𝑎𝑏2 − 𝑖𝑏3 −

𝑖𝑎𝑏2𝛼 + 𝛼𝑏3 

              = {𝑎 − 𝑎3 − 𝑎𝑏2 + 𝜔𝑏 + 𝑎2𝑏𝛼 + 𝛼𝑏3} + 𝑖{𝑏 − 𝑎2𝑏 − 𝑏3 + 𝜔𝑎 +

𝑎3𝛼 − 𝑎𝑏2𝛼} 

              = [𝑎{1 − (𝑎2 + 𝑏2)} + 𝜔𝑏 + 𝑏𝛼(𝑎2 + 𝑏2)] + 𝑖{𝑏{1 − (𝑎2 + 𝑏2)} −

𝜔𝑎 − 𝑎𝛼(𝑎2 + 𝑏2)} 

 

(Laplacian) 

R.H.S.  = (1 + 𝑖𝛽)∇2𝐴 

              = (1 + 𝑖𝛽)∇2(𝑎 + 𝑖𝑏) 

              = (1 + 𝑖𝛽) {
𝜕2𝑎

𝜕𝑥2 + 𝑖
𝜕2𝑏

𝜕𝑥2
} 

              = 
𝜕2𝑎

𝜕𝑥2 + 𝑖
𝜕2𝑏

𝜕𝑥2 + 𝑖𝛽
𝜕2𝑎

𝜕𝑥2 − 𝛽
𝜕2𝑏

𝜕𝑥2 

= 
𝜕2𝑎

𝜕𝑥2 − 𝛽
𝜕2𝑏

𝜕𝑥2 + 𝑖 {𝛽
𝜕2𝑎

𝜕𝑥2 +
𝜕2𝑏

𝜕𝑥2
} 

= 
𝜕2

𝜕𝑥2
(𝑎 − 𝛽𝑏) + 𝑖

𝜕2

𝜕𝑥2
(𝛽𝑎 + 𝑏) 

 

(Feedback) 

R.H.S.  = 𝜇 ∙ 𝑒𝑖𝜉 ∙ [𝑚𝑙{𝐴(𝑥, 𝑡 − 𝜏) − 𝐴(𝑥, 𝑡)} + 𝑚𝑔{�̅�(𝑡 − 𝜏) − �̅�(𝑡)}] 

 = 𝜇 ∙ 𝑒𝑖𝜉 ∙ [𝑚𝑙{𝑎(𝑥, 𝑡 − 𝜏) + 𝑖 ∙ 𝑏(𝑥, 𝑡 − 𝜏) − 𝑎(𝑥, 𝑡) − 𝑖 ∙ 𝑏(𝑥, 𝑡)} +

𝑚𝑔{�̅�(𝑡 − 𝜏) − �̅�(𝑡)}] 
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�̅�(𝑡) =
1

𝐿
∫ 𝐴(𝑥, 𝑡)

𝐿

0

𝑑𝑥 

=
1

𝐿
∫ 𝑎(𝑥, 𝑡)

𝐿

0

𝑑𝑥 + 𝑖 ∙
1

𝐿
∫ 𝑏(𝑥, 𝑡)

𝐿

0

𝑑𝑥 

= �̅�(𝑥, 𝑡) + 𝑖 ∙ �̅�(𝑥, 𝑡) 

 

�̅�(𝑡 − 𝜏) =
1

𝐿
∫ 𝐴(𝑥, 𝑡 − 𝜏)

𝐿

0

𝑑𝑥 

=
1

𝐿
∫ 𝑎(𝑥, 𝑡 − 𝜏)

𝐿

0

𝑑𝑥 + 𝑖 ∙
1

𝐿
∫ 𝑏(𝑥, 𝑡 − 𝜏)

𝐿

0

𝑑𝑥 

= �̅�(𝑥, 𝑡 − 𝜏) + 𝑖 ∙ �̅�(𝑥, 𝑡 − 𝜏) 

 

∴ 𝐹 =  𝜇 ∙ 𝑒𝑖𝜉 ∙ [𝑚𝑙{𝑎(𝑥, 𝑡 − 𝜏) + 𝑖 ∙ 𝑏(𝑥, 𝑡 − 𝜏) − 𝑎(𝑥, 𝑡) − 𝑖 ∙ 𝑏(𝑥, 𝑡)}

+ 𝑚𝑔{�̅�(𝑥, 𝑡 − 𝜏) + 𝑖 ∙ �̅�(𝑥, 𝑡 − 𝜏) − �̅�(𝑥, 𝑡) − 𝑖 ∙ �̅�(𝑥, 𝑡)}] 

 

From Euler’s formula,  

𝑒𝑖𝜉 = cos 𝜉 + 𝑖 ∙ sin 𝜉 

∴ 𝐹 =  𝜇 ∙ (cos 𝜉 + 𝑖 ∙ sin 𝜉)

∙ [𝑚𝑙{𝑎(𝑥, 𝑡 − 𝜏) + 𝑖 ∙ 𝑏(𝑥, 𝑡 − 𝜏) − 𝑎(𝑥, 𝑡) − 𝑖 ∙ 𝑏(𝑥, 𝑡)}

+ 𝑚𝑔{�̅�(𝑥, 𝑡 − 𝜏) + 𝑖 ∙ �̅�(𝑥, 𝑡 − 𝜏) − �̅�(𝑥, 𝑡) − 𝑖 ∙ �̅�(𝑥, 𝑡)}] 

=  𝜇 ∙ [𝑚𝑙 ∙ (cos 𝜉 + 𝑖 ∙ sin 𝜉)

∙ {𝑎(𝑥, 𝑡 − 𝜏) + 𝑖 ∙ 𝑏(𝑥, 𝑡 − 𝜏) − 𝑎(𝑥, 𝑡) − 𝑖 ∙ 𝑏(𝑥, 𝑡)} + 𝑚𝑔

∙ (cos 𝜉 + 𝑖 ∙ sin 𝜉)

∙ {�̅�(𝑥, 𝑡 − 𝜏) + 𝑖 ∙ �̅�(𝑥, 𝑡 − 𝜏) − �̅�(𝑥, 𝑡) − 𝑖 ∙ �̅�(𝑥, 𝑡)}] 

=  𝜇 ∙ [(𝑚𝑙 ∙ cos 𝜉 + 𝑖 ∙ 𝑚𝑙 ∙ sin 𝜉)

∙ {𝑎(𝑥, 𝑡 − 𝜏) + 𝑖 ∙ 𝑏(𝑥, 𝑡 − 𝜏) − 𝑎(𝑥, 𝑡) − 𝑖 ∙ 𝑏(𝑥, 𝑡)}

+ (𝑚𝑔 ∙ cos 𝜉 + 𝑖 ∙ 𝑚𝑔 ∙ sin 𝜉)

∙ {�̅�(𝑥, 𝑡 − 𝜏) + 𝑖 ∙ �̅�(𝑥, 𝑡 − 𝜏) − �̅�(𝑥, 𝑡) − 𝑖 ∙ �̅�(𝑥, 𝑡)}] 
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=  𝜇 ∙ [𝑎(𝑥, 𝑡 − 𝜏) ∙ 𝑚𝑙 ∙ cos 𝜉 + 𝑖 ∙ 𝑏(𝑥, 𝑡 − 𝜏) ∙ 𝑚𝑙 ∙ cos 𝜉 − 𝑎(𝑥, 𝑡) ∙ 𝑚𝑙 ∙ cos 𝜉

− 𝑖 ∙ 𝑏(𝑥, 𝑡) ∙ 𝑚𝑙 ∙ cos 𝜉 + 𝑎(𝑥, 𝑡 − 𝜏) ∙ 𝑖 ∙ 𝑚𝑙 ∙ sin 𝜉 + 𝑖2

∙ 𝑏(𝑥, 𝑡 − 𝜏) ∙ 𝑚𝑙 ∙ sin 𝜉 − 𝑎(𝑥, 𝑡) ∙ 𝑖 ∙ 𝑚𝑙 ∙ sin 𝜉 − 𝑖2 ∙ 𝑏(𝑥, 𝑡)

∙ 𝑚𝑙 ∙ sin 𝜉 + �̅�(𝑥, 𝑡 − 𝜏) ∙ 𝑚𝑔 ∙ cos 𝜉 + 𝑖 ∙ �̅�(𝑥, 𝑡 − 𝜏) ∙ 𝑚𝑔 ∙ cos 𝜉

− �̅�(𝑥, 𝑡) ∙ 𝑚𝑔 ∙ cos 𝜉 − 𝑖 ∙ �̅�(𝑥, 𝑡) ∙ 𝑚𝑔

∙ cos 𝜉 + �̅�(𝑥, 𝑡 − 𝜏) ∙ 𝑖 ∙ 𝑚𝑔 ∙ sin 𝜉 + 𝑖2 ∙ �̅�(𝑥, 𝑡 − 𝜏) ∙ 𝑚𝑔 ∙ sin 𝜉

− �̅�(𝑥, 𝑡) ∙ 𝑖 ∙ 𝑚𝑔 ∙ sin 𝜉 − 𝑖2 ∙ �̅�(𝑥, 𝑡) ∙ 𝑚𝑔 ∙ sin 𝜉] 

=  𝜇 ∙ [𝑎(𝑥, 𝑡 − 𝜏) ∙ 𝑚𝑙 ∙ cos 𝜉 + 𝑖 ∙ 𝑏(𝑥, 𝑡 − 𝜏) ∙ 𝑚𝑙 ∙ cos 𝜉 − 𝑎(𝑥, 𝑡) ∙ 𝑚𝑙 ∙ cos 𝜉

− 𝑖 ∙ 𝑏(𝑥, 𝑡) ∙ 𝑚𝑙 ∙ cos 𝜉 + 𝑎(𝑥, 𝑡 − 𝜏) ∙ 𝑖 ∙ 𝑚𝑙 ∙ sin 𝜉 − 𝑏(𝑥, 𝑡 − 𝜏)

∙ 𝑚𝑙 ∙ sin 𝜉 − 𝑎(𝑥, 𝑡) ∙ 𝑖 ∙ 𝑚𝑙 ∙ sin 𝜉 + 𝑏(𝑥, 𝑡) ∙ 𝑚𝑙 ∙ sin 𝜉

+ �̅�(𝑥, 𝑡 − 𝜏) ∙ 𝑚𝑔 ∙ cos 𝜉 + 𝑖 ∙ �̅�(𝑥, 𝑡 − 𝜏) ∙ 𝑚𝑔 ∙ cos 𝜉 − �̅�(𝑥, 𝑡)

∙ 𝑚𝑔 ∙ cos 𝜉 − 𝑖 ∙ �̅�(𝑥, 𝑡) ∙ 𝑚𝑔

∙ cos 𝜉 + �̅�(𝑥, 𝑡 − 𝜏) ∙ 𝑖 ∙ 𝑚𝑔 ∙ sin 𝜉 − �̅�(𝑥, 𝑡 − 𝜏) ∙ 𝑚𝑔 ∙ sin 𝜉

− �̅�(𝑥, 𝑡) ∙ 𝑖 ∙ 𝑚𝑔 ∙ sin 𝜉 + �̅�(𝑥, 𝑡) ∙ 𝑚𝑔 ∙ sin 𝜉] 

 

=  𝜇 ∙ [𝑎(𝑥, 𝑡 − 𝜏) ∙ 𝑚𝑙 ∙ cos 𝜉 − 𝑎(𝑥, 𝑡) ∙ 𝑚𝑙 ∙ cos 𝜉 − 𝑏(𝑥, 𝑡 − 𝜏) ∙ 𝑚𝑙 ∙ sin 𝜉

+ 𝑏(𝑥, 𝑡) ∙ 𝑚𝑙 ∙ sin 𝜉 − �̅�(𝑥, 𝑡) ∙ 𝑚𝑔 ∙ cos 𝜉 − �̅�(𝑥, 𝑡 − 𝜏)

∙ 𝑚𝑔 ∙ sin 𝜉 + �̅�(𝑥, 𝑡 − 𝜏) ∙ 𝑚𝑔 ∙ cos 𝜉 + �̅�(𝑥, 𝑡) ∙ 𝑚𝑔 ∙ sin 𝜉

+ 𝑖{𝑏(𝑥, 𝑡 − 𝜏) ∙ 𝑚𝑙 ∙ cos 𝜉 − 𝑏(𝑥, 𝑡) ∙ 𝑚𝑙 ∙ cos 𝜉 + 𝑎(𝑥, 𝑡 − 𝜏)

∙ 𝑚𝑙 ∙ sin 𝜉 − 𝑎(𝑥, 𝑡) ∙ 𝑚𝑙 ∙ sin 𝜉 + �̅�(𝑥, 𝑡 − 𝜏) ∙ 𝑚𝑔 ∙ cos 𝜉 − �̅�(𝑥, 𝑡)

∙ 𝑚𝑔 ∙ cos 𝜉 + �̅�(𝑥, 𝑡 − 𝜏) ∙ 𝑚𝑔 ∙ sin 𝜉 − �̅�(𝑥, 𝑡) ∙ 𝑚𝑔 ∙ sin 𝜉}] 

  

=   𝜇 ∙ 𝑎(𝑥, 𝑡 − 𝜏) ∙ 𝑚𝑙 ∙ cos 𝜉 −  𝜇 ∙ 𝑎(𝑥, 𝑡) ∙ 𝑚𝑙 ∙ cos 𝜉 −  𝜇 ∙ 𝑏(𝑥, 𝑡 − 𝜏)

∙ 𝑚𝑙 ∙ sin 𝜉 +  𝜇 ∙ 𝑏(𝑥, 𝑡) ∙ 𝑚𝑙 ∙ sin 𝜉 −  𝜇 ∙ �̅�(𝑥, 𝑡) ∙ 𝑚𝑔 ∙ cos 𝜉 −  𝜇

∙ �̅�(𝑥, 𝑡 − 𝜏) ∙ 𝑚𝑔 ∙ sin 𝜉 +  𝜇 ∙ �̅�(𝑥, 𝑡 − 𝜏) ∙ 𝑚𝑔 ∙ cos 𝜉 +  𝜇 ∙ �̅�(𝑥, 𝑡)

∙ 𝑚𝑔 ∙ sin 𝜉

+ 𝑖{ 𝜇 ∙ 𝑏(𝑥, 𝑡 − 𝜏) ∙ 𝑚𝑙 ∙ cos 𝜉 −  𝜇 ∙ 𝑏(𝑥, 𝑡) ∙ 𝑚𝑙 ∙ cos 𝜉 +  𝜇

∙ 𝑎(𝑥, 𝑡 − 𝜏) ∙ 𝑚𝑙 ∙ sin 𝜉 −  𝜇 ∙ 𝑎(𝑥, 𝑡) ∙ 𝑚𝑙 ∙ sin 𝜉 +  𝜇 ∙ �̅�(𝑥, 𝑡 − 𝜏)

∙ 𝑚𝑔 ∙ cos 𝜉 −  𝜇 ∙ �̅�(𝑥, 𝑡) ∙ 𝑚𝑔

∙ cos 𝜉 +  𝜇 ∙ �̅�(𝑥, 𝑡 − 𝜏) ∙ 𝑚𝑔 ∙ sin 𝜉 −  𝜇 ∙ �̅�(𝑥, 𝑡) ∙ 𝑚𝑔 ∙ sin 𝜉} 
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=   𝜇 ∙ 𝑎(𝑥, 𝑡 − 𝜏) ∙ 𝑚𝑙 ∙ cos 𝜉 −  𝜇 ∙ 𝑎(𝑥, 𝑡) ∙ 𝑚𝑙 ∙ cos 𝜉 −  𝜇 ∙ �̅�(𝑥, 𝑡) ∙ 𝑚𝑔 ∙ cos 𝜉

+  𝜇 ∙ �̅�(𝑥, 𝑡 − 𝜏) ∙ 𝑚𝑔 ∙ cos 𝜉 −  𝜇 ∙ 𝑏(𝑥, 𝑡 − 𝜏) ∙ 𝑚𝑙 ∙ sin 𝜉 +  𝜇

∙ 𝑏(𝑥, 𝑡) ∙ 𝑚𝑙 ∙ sin 𝜉 −  𝜇 ∙ �̅�(𝑥, 𝑡 − 𝜏) ∙ 𝑚𝑔 ∙ sin 𝜉 +  𝜇 ∙ �̅�(𝑥, 𝑡)

∙ 𝑚𝑔 ∙ sin 𝜉

+ 𝑖{ 𝜇 ∙ 𝑏(𝑥, 𝑡 − 𝜏) ∙ 𝑚𝑙 ∙ cos 𝜉 −  𝜇 ∙ 𝑏(𝑥, 𝑡) ∙ 𝑚𝑙 ∙ cos 𝜉 +  𝜇

∙ �̅�(𝑥, 𝑡 − 𝜏) ∙ 𝑚𝑔 ∙ cos 𝜉 −  𝜇 ∙ �̅�(𝑥, 𝑡) ∙ 𝑚𝑔 ∙ cos 𝜉 +  𝜇 ∙ 𝑎(𝑥, 𝑡 − 𝜏)

∙ 𝑚𝑙 ∙ sin 𝜉 −  𝜇 ∙ 𝑎(𝑥, 𝑡) ∙ 𝑚𝑙 ∙ sin 𝜉 +  𝜇 ∙ �̅�(𝑥, 𝑡 − 𝜏) ∙ 𝑚𝑔 ∙ sin 𝜉

−  𝜇 ∙ �̅�(𝑥, 𝑡) ∙ 𝑚𝑔 ∙ sin 𝜉} 

    

=   𝜇 ∙ cos 𝜉 ∙ [𝑚𝑙 ∙ {𝑎(𝑥, 𝑡 − 𝜏) −  𝑎(𝑥, 𝑡)} +  𝑚𝑔 ∙ {�̅�(𝑥, 𝑡 − 𝜏) − �̅�(𝑥, 𝑡)}] −   𝜇

∙ sin 𝜉

∙ [𝑚𝑙 ∙ {𝑏(𝑥, 𝑡 − 𝜏) −  𝑏(𝑥, 𝑡)} + 𝑚𝑔 ∙  {�̅�(𝑥, 𝑡 − 𝜏) −  �̅�(𝑥, 𝑡)}]

+ 𝑖{𝜇 ∙ cos 𝜉

∙  [𝑚𝑙 ∙ {𝑏(𝑥, 𝑡 − 𝜏) −  𝑏(𝑥, 𝑡)} + 𝑚𝑔 ∙ {�̅�(𝑥, 𝑡 − 𝜏) −  �̅�(𝑥, 𝑡)}]

+ 𝜇 ∙ sin 𝜉

∙ [𝑚𝑙 ∙  {𝑎(𝑥, 𝑡 − 𝜏) −  𝑎(𝑥, 𝑡)} + 𝑚𝑔 ∙ {�̅�(𝑥, 𝑡 − 𝜏) −  �̅�(𝑥, 𝑡)}]} 

 

Summarizing: 

 

Real Part:  
𝜕𝑎

𝜕𝑡
= 𝑎{1 − (𝑎2 + 𝑏2)} + 𝑏{𝜔 + 𝛼(𝑎2 + 𝑏2)} +

𝜕2

𝜕𝑥2
(𝑎 − 𝛽𝑏) +   𝜇 ∙ cos 𝜉 ∙ [𝑚𝑙 ∙ {𝑎(𝑥, 𝑡 − 𝜏) −  𝑎(𝑥, 𝑡)} +  𝑚𝑔 ∙ {�̅�(𝑥, 𝑡 − 𝜏) −

�̅�(𝑥, 𝑡)}] −   𝜇 ∙ sin 𝜉 ∙ [𝑚𝑙 ∙ {𝑏(𝑥, 𝑡 − 𝜏) −  𝑏(𝑥, 𝑡)} + 𝑚𝑔 ∙  {�̅�(𝑥, 𝑡 − 𝜏) −

 �̅�(𝑥, 𝑡)}]               

 

Imaginary Part: 
𝜕𝑏

𝜕𝑡
= 𝑏{1 − (𝑎2 + 𝑏2)} + 𝑎{𝜔 + 𝛼(𝑎2 + 𝑏2)} +

𝜕2

𝜕𝑥2
(𝛽𝑎 + 𝑏) + 𝜇 ∙ cos 𝜉 ∙  [𝑚𝑙 ∙ {𝑏(𝑥, 𝑡 − 𝜏) −  𝑏(𝑥, 𝑡)} +  𝑚𝑔 ∙ {�̅�(𝑥, 𝑡 − 𝜏) −

 �̅�(𝑥, 𝑡)}] + 𝜇 ∙ sin 𝜉 ∙ [𝑚𝑙 ∙  {𝑎(𝑥, 𝑡 − 𝜏) −  𝑎(𝑥, 𝑡)} + 𝑚𝑔 ∙ {�̅�(𝑥, 𝑡 − 𝜏) −

 �̅�(𝑥, 𝑡)}]    



  

 
 

 


