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Abstract
In March 2020, the British Society of Thoracic Imaging (BSTI) introduced a reporting guidance for COVID-19 detection to
streamline standardised reporting and enhance agreement between radiologists. However, most current DL methods do not
conform to this guidance. This study introduces amulti-class deep learning (DL)model to identify BSTI COVID-19 categories
within CT volumes, classified as ‘Classic’, ‘Probable’, ‘Indeterminate’, or ‘Non-COVID’. A total of 56 CT pseudoanonymised
images were collected from patients with suspected COVID-19 and annotated by an experienced chest subspecialty radiologist
following the BSTI guidance. We evaluated the performance of multiple DL-based models, including three-dimensional (3D)
ResNet architectures, pre-trained on the Kinetics-700 video dataset. For better interpretability of the results, our approach
incorporates a post-hoc visual explainability feature to highlight the areas of the image most indicative of the COVID-19
category. Our four-class classification DL framework achieves an overall accuracy of 75%. However, the model struggled
to detect the ‘Indeterminate’ COVID-19 group, whose removal significantly improved the model’s accuracy to 90%. The
proposed explainable multi-classification DL model yields accurate detection of ‘Classic’, ‘Probable’, and ‘Non-COVID’
categories with poor detection ability for ‘Indeterminate’ COVID-19 cases. These findings are consistent with clinical studies
that aimed at validating the BSTI reporting manually amongst consultant radiologists.

Keywords COVID-19 · British Society of Thoracic Imaging · Deep learning · Multi-class classification ·
Medical image analysis · Explainable AI

Introduction

COVID-19 is a respiratory illness caused by the SARS-
CoV-2 virus. It is characterised by a range of symptoms
from mild respiratory distress to severe pneumonia, and it
has resulted in a global pandemic originating in Decem-
ber 2019 with significant public health implications. Due to
mutations in COVID-19, multiple variants are continuously
evolving, putting the public’s health at risk of increased trans-
missibility and ongoing health complications. At the time of
writing, a new variant BA.2.86 has emerged with concerns of
increased cases [27]. The Reverse Transcriptase-Polymerase
Chain Reaction (RT-PCR) testing kit has been used as a rapid
diagnostic tool to identify activeCOVID-19 infections.How-
ever, it suffers from several drawbacks, including limited
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sensitivity, inconsistent efficacy, and the likelihood of false
negatives in COVID-19-positive patients.

Identifying COVID-19 infection from CT images is a
challenging task for radiologists due to the variability inman-
ifestations, non-specific imaging features, and confounding
respiratory conditions. In March 2020, the British Society
of Thoracic Imaging (BSTI) [8, 12] introduced a reporting
guidance to streamline standardised reporting and enhance
agreement between radiologists in the UK. This technique
categorises chest CT images into four COVID-19 groups
based on radiological findings: ‘Classic’ (100% confidence
forCOVID-19), ‘Probable’ (71–99%confidence forCOVID-
19), ‘Indeterminate’ (<70% confidence for COVID-19) and
‘Non-COVID’-19 (70% confidence for alternative). Medi-
cal professionals and radiologists have found this reporting
system a valuable tool in aiding clinical assessment [13, 23].
This reporting systemhasbeen shown tobe effectivewhen
used by reporting radiographers, with high accuracy in
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matching report descriptions to the correct codes (98.8%
in [33]).

In recent years, artificial intelligence (AI), particularly
Deep learning (DL), has emerged as a promising tool for the
automatic detection of COVID-19 using chest CT images.
These tools have the capacity to learn from labelled train-
ing data in order to infer diagnostic decisions on unseen data
input. The training data is often hand-labelled by experts
(radiologists) to indicate the presence or absence of COVID-
19 infection, classifying images into ‘COVID-19 Negative’
and ‘COVID-19 Positive’. Several DL approaches have been
proposed in the literature for the detection of COVID-19
infections using volumetric CT images [17, 26, 30, 31, 34].
However, most of the current methods have been trained
using datasets that do not adhere to the standard and widely
adopted (in the UK) BSTI guidance for reporting radiol-
ogists. The predominant focus of current DL approaches
remains on binary classification for COVID-19 cases (posi-
tive or negative) (e.g. [32, 36]). This limitation is mainly due
to the shortage of appropriately annotated datasets for BSTI
as well as the complexity of training three-dimensional (3D)
DL models for multi-class classification problems. Auto-
matic detection of BSTI categories in CT volumes is crucial
as it highlights the degree of radiological certainty about the
disease and supports the treatment pathway.

Another drawback of current 3D DL-based methods for
COVID-19 detection is the lack of explainability for medical
and radiology stakeholders. The black-box nature and high
complexity of thesemethods have restricted their acceptance.
Explainable AI (XAI) is an emerging concept that deals with
the implementation of techniques that improve the trans-
parency, interpretability, and trust of complex AI methods
[3, 9, 10]. Current XAI tools for radiology imaging focus
mostly on providing post-hoc visual interpretation of the DL
results by highlighting the important areas (regions of inter-

est) in the image that drive the DL decision using saliency
(heat)maps [29]. In the context of COVID-19 detection using
CT images, visual explainability is important to highlight
COVID-19 infectionmarkers, such as ground-glass opacities
(GGOs) and consolidations. This feature allows clinicians
and radiologists to see which patterns in the image are influ-
encing the model’s decision, therefore improving trust in the
DL findings.

This study aims to address the above gaps by propos-
ing an explainable multi-class classification DL framework
for detecting COVID-19 in volumetric CT scans using BSTI
guidance. Figure1 presents the different steps performed in
this study. To the best of our knowledge, the automatic (DL-
based) detection of BSTI COVID-19 groups has not been
investigated in the literature. Our contributions can be sum-
marised as follows:

– We gathered and annotated (adhering to the BSTI) a
unique set of 56 CT scans from patients suspected with
COVID-19 infection and tested positive for PCR.

– We proposed a multi-class classification DL framework
for classifying CT volumes into four BSTI groups: ‘Clas-
sic’ COVID-19, ‘Probable’ COVID-19, ‘Indeterminate’,
and ‘Non-COVID’-19. We studied the performance of
four 3D DL-based models, whose hyperparameters have
been appropriately optimised.

– We demonstrated the benefit of transfer learning in pro-
viding more accurate prediction when compared to a
baseline convolutional neural networks (CNN) model.

– We investigated the impact of ‘IndeterminateCOVID-19’
BSTI category on the performance of the DL detection
framework.

– We applied a post-hoc visual explainable tool to the
classification output to validate the prediction using

Fig. 1 Block-diagram with an overview of the proposed method
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Grad-CAM (Gradient-weighted Class Activation Map-
ping) [29] algorithm.

RelatedWork

During the COVID-19 pandemic, a huge number of open-
access imaging datasets has emerged to facilitate the develop-
ment of automated tools for detecting COVID-19 infection.
The datasets involve chest images captured through X-ray
or CTmodalities. However, most of the open-access datasets
have been annotated using binary labels (COVID-19 or ‘Non-
COVID’-19) [32, 36]. Other datasets have been annotated to
multiple classes to enable the development of DL models
for detecting various chest diseases or COVID-19 severity
levels (e.g. [7, 15, 21, 22, 28, 30]). To our knowledge, none
of the current open-access CT imaging datasets for COVID-
19 detection strictly adhere to the reporting of the BSTI [8,
12]. The dataset that closely aligns with the BSTI is provided
by the Society of Imaging Informatics in Medicine (SIIM)
for a Kaggle competition [21]. However, it comprises X-ray
images rather than CT imaging modality.

There has been a growing interest in utilising DL tools for
the detection of COVID-19 through the analysis of CT and
X-ray images. Most existing DL methods primarily focus on
binary class detection, distinguishing positive from negative
cases. For instance,Yang et al. [35] introduced aDLapproach
that detected COVID-19 using 295 High-Resolution CT
(HRCT) images, employing a pre-trained DenseNet archi-
tecture. Kim et al. [20] introduced the ‘FCONet’ (FastTrack
COVID-19 classification network) DL framework using CT
images of both COVID-19 and healthy cases. They studied
several pre-trained DL models such as VGG16, ResNet-
50, Inception-v3, and Xception. However, it is worth noting
that these studies were conducted on 2D CT slices, poten-
tially limiting their ability to capture the full context of 3D
images. As highlighted by [4], CT volumes demonstrate
higher sensitivity and specificity in COVID-19 detection
compared to 2D image modalities. This is due to their abil-
ity to get 3D insights into the nature and location of lung
issues, particularly ground-glass opacities (GGOs), thereby
enabling more precise diagnoses. A recent work in [2],
proposed a novel DL framework, ResNet-50U-Net, to
enhance GGO segmentation accuracy by leveraging a
pretrained ResNet-50 for improved feature extraction.
Testedon62annotatedCOVID-19volumetricCT images,
this model outperformed standard U-Net and DenseNet-
121U-Net architectures, achieving a Dice similarity score
of 0.71, Precision of 0.63, and Recall of 0.83.

In the context of multi-class COVID-19 classification
using chestCT scans, several studies have been presented that
focused on detecting COVID-19 severity. For instance, Shiri
et al. [30] categorised COVID-19 CT scans into four sever-

ity levels using 1110 patient images, applying two feature
selectionmethods and amultinomial logistic regression clas-
sifier, reaching 92% accuracy. A multi-stage architecture
has been developed in [28] for COVID-19 classification,
infection region identification, and severity assessment.
It isolates lung regions, differentiates COVID-19 from
pneumonia and normal images using a fuzzy rank-
based ensemble of pre-trained models, and quantifies
infection severity to categorise cases into four levels.
Another recent study in [15] utilised machine learning
and statistical atlas-based methods to investigate lung
shape changes in COVID-19 patients and their asso-
ciation with disease severity. Using a large dataset (N
= 3443), the study defined three populations—healthy,
mild COVID-19, and severe COVID-19—and analysed
baseline chest CT scans. Significant lung shape dif-
ferences were identified along the mediastinal surfaces
across all severity levels, with additional differences on
basal surfaces between healthy and severe cases. A 3D
residual convolutional network integrating lung shape
changes and GGOs further demonstrated a strong asso-
ciation with COVID-19 severity. A study [7] utilising
COVID-19 data from two Manipal hospitals achieved a
maximum testing accuracy of 95% using classifiers with
nature-inspired feature selection algorithms. The dataset
included 599 non-severe COVID patients and 300 severe
COVIDpatients. Explainable AI techniques identified six
key biological markers as critical for prediction.

Other studies have performed multi-class classification to
differentiate between various chest diseases. For example,
Singh et al. [31] introduced a DL ensemble framework for
classifying patients into COVID-19, pneumonia, tuberculo-
sis, and normal, using 11,494 scans. They utilised Densely
ConnectedConvolutionalNetworks (DCCNs), ResNet152V2,
and VGG16, achieving up to 98% accuracy. Wu et al. [34]
presented Covid-AL, a hybrid structure for COVID-19 diag-
nosis from CT images using weakly supervised DL. Their
dataset comprised 962 CT images divided into COVID-
19, common pneumonia, and normal classes. COVID-AL
utilised a 2D U-Net for lung area segmentation and a 3D
residual network for COVID-19 detection, achieving an
accuracy rate of 86.60%. [17] assessed four neural networks
using a combination of public digital chest X-rays and CT
scans to increase the dataset size. A comparative analysis was
conducted using fourDL architectures to classify images into
Normal, COVID-19, Pneumonia, and Lung cancer. Results
reveal that the VGG19-CNN model excelled with over 98%
in accuracy, recall, and precision.

Few studies have performed multi-class classification to
differentiate between various appearances of COVID-19
infections in the lung. Muhammad et al. [26] proposed a
classification framework using the SIIMX-ray dataset, com-
prising 6,054 cases, for categorising images into negative,
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typical, Indeterminate, or atypical appearances of COVID-19
pneumonia. Three different approaches were studied includ-
ing a baseline DenseNet model, multi-task learning, and
self-supervised learning. However, the accuracy obtained
was relatively lower (64%)when compared to earlier studies.

Despite these multi-class classification DL methods, no
study has specifically focused on detecting BSTI guidance
for classifying COVID-19 groups in CT volumes. The auto-
mated identification of BSTI categories within CT volumes
is essential as it signifies the level of radiological certainty
regarding the COVID-19 disease.

Data Collection and Preparation

In this study, the dataset was collected in 2020 at the
Sandwell and West Birmingham National Health System
Trust (SWBNHST) hospitals in the UK. The study was
reviewed and approved by the ethics committee at Aston
University (No. EPS21006 and 234700-51). All procedures
were conducted in compliance with relevant guidelines and
regulations.

The dataset consists of 56 pseudonymised chest non-
contrastCT studies, capturedusing SiemensCT scanners
(Flash, AS, and Drive), which are 1–2mm slice thickness.
The CT scans were obtained when the clinical referrer sus-
pected the presence of COVID-19 in the patients, owing to
confirmatory positive tests for PCR. The appearance of viral
pneumonia exhibits significant heterogeneity, and COVID-
19was no exception.CT inCOVID-19 shows typical findings
of ground-glass opacity (GGOs), peripheral consolidation, or
a combination of both. To annotate the dataset, a fellowship-
trained subspecialty chest radiologist manually annotated the
slices, utilising ITK-SNAPv3.8.0. Radiologists can diagnose
COVID-19 pneumonia by analyzing the presence of certain
features and evaluating their impact on different lung regions.
The dataset includes labeled GGO markers, such as patchy,
diffuse, crazy paving, consolidation (band-like, demarked),
honeycomb cysts, and reticular patterns. Their potential dis-
tribution is described in the Table 1 below:

Thedatasetwas labeled forCOVID-19 following theBSTI
[8, 12], version 2 (March 2020). Table 2 offers an overview
of the sample size and descriptions for each class within

Table 1 Disease distribution and extent of abnormality

Disease distribution Extent of abnormality

Bilateral ≤ 25%

Unilateral 26–50%

Patchy 51–75%

Diffuse > 75%

the dataset. Figure2 displays example image slices extracted
from2D images for each class in the dataset. The studieswere
pseudonymised on-premise within the hospital using open-
source tools, including the Radiological Society of North
America Clinical Trials Processor (CTP).1

The chest CT scans for each patient were exported in the
Digital Imaging andCommunications inMedicine (DICOM)
format. All images are in grayscale with single-channel
dimensions and a resolution of 512 × 512, including pixel
data in Hounsfield Units (HU). The number of slices in each
volumetric CT image varied, with a median of 314 slices per
3D CT scan. The scanning parameters, including pixel spac-
ing and slice thickness, exhibited slight variations between
each CT scan. Figure3 provides an example of a single axial
slice and an image rendering displaying the lung’s air pas-
sages. To ensure privacy and anonymity, the data has
undergone a process of anonymization using the Medical
Imaging Resource Centre (MIRC)Clinical Trials Proces-
sor (CTP) method.

Data Preprocessing

The primary aim of the preprocessing phase is to generate
high-quality images, ensuring their suitability for training
and validation in the employed CNN-based architectures.
CT scans are typically represented in Hounsfield Units (HU),
which quantifies tissue radiodensity relative to that of water.
Initially, we read 2D DICOM slices for each 3D volume and
converted them from their raw pixel values to HU. Subse-
quently, a filtering process was applied to the 2D CT slices to
eliminate non-lung structures, such as skin, bone, or scanner-
related artifacts. This filtering operation served to improve
the quality of our analysis and retain only the image com-
ponents relevant to the lungs, which typically fall within the
HU range of −1000 to 400. All CT slices, originally sized at
512 × 512 pixels for each CT Scan, were uniformly resised
to 128 × 128 pixels on both the x and y dimensions. This
resizing was undertaken to significantly reduce the mem-
ory requirements for accommodating the images within the
GPU memory. The selection of the dimensions, 128 × 128,
was based on a comparison with 256 × 256, which did not
yield any noteworthy enhancements in model performance.
Subsequently, the 2D slices for each CT were merged into a
single 3D volume. To standardise the number of slices along
the z-dimension of each 3D volume, various strategies were
explored. Based on the results obtained from these investi-
gations, we opted to apply a cubic interpolation method for
all experiments. As a result, the final 3D volume comprises
dimensions of 128× 128× 64. A summary of preprocessing

1 Available from: https://mircwiki.rsna.org/index.php?
title=MIRC_CTP
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Table 2 Dataset Information,
adapted from BSTI2. [8, 12]

Class Sample size Confidence Description

‘Classic’ COVID 10 100% confidence for
COVID

(i) Lower lobe predominant,
peripheral predominant, multiple,
bilateral foci of GGO,(ii) Crazy-
paving, (iii) Peripheral consolida-
tion, (vi) Air bronchograms, (v)
Reverse halo/perilobular pattern

‘Probable’ COVID 21 71–99% confidence for
COVID

(i) Lower lobe predominant mix
of bronchocentric and periph-
eral consolidation, (ii) Reverse
halo/perilobular pattern, (iii) GGO
scarce

Indeterminate 10 < 70% confidence for
COVID

(i) Does not fit into definite, prob-
able or Non-COVID, (ii) Manifests
above patterns, but the clinical con-
text is wrong, or suggests an alter-
native diagnosis (e.g. an interstitial
lung disease in a connective tissue
disease setting)

‘Non-COVID’ 15 70%confidence for alter-
native

(i) Lobar pneumonia, (ii) Cavitat-
ing infections, (iii) Tree-in bud/
centrilobular nodularity, (vi) Lym-
phadenopathy, effusions, (v) Estab-
lished pulmonary fibrosis

Available from: https://www.bsti.org.uk/media/resources/files/BSTI_COVID-19_Radiology_Guidance_vers
ion_2_16.03.20.pdf

is explained in Algorithm 1. Stratification was used to ensure
each class exists in all three splits.

Algorithm 1 Read patient data and preprocess process
Require: path: Path to patient data directory
Require: patient_ids: List of patient pseudonymised IDs
1: patients ← Empty list
2: for each patient_id in patient_ids do
3: patient_dcms ← Read DICOM filenames in directory

path/patient_id
4: slices ← Get slices in order from patient_dcms
5: pixels ← Get HU and normalise (set HU between −1000 and

400) from slices
6: pixels ← Re-sample 3D volume to target shape
7: Append pixels to patients
8: end for
9: return Stack all patients’ data into a 3D array

Data Augmentation

Since we are working with a relatively small dataset, and
DL models typically require a substantial amount of training
data to effectively learn and train, we have employed data
augmentation as a key data preprocessing technique in DL.
This approach artificially enhances the diversity of the train-

ing dataset by applying various transformations to the input
data. In our research, we have applied several augmentations
to the training dataset to enhance the robustness and generali-
sation of our CNNmodels. To achieve this, we used TorchIO
[24] to apply the following augmentations on-the-fly with
PyTorch Dataloader using mini-batches of data:

1. RandomAffine transformation, which applies random
geometric transformations to the 3D CT scans. This
involves randomly rotating CT scan images between 1
and 10◦ with a 20% probability of rotation.

2. RandomFlip transformation, which performs random
flips along the first and second axes (axes 0 and 1) with
a 40% probability of flipping.

3. RandomNoise transformation, introducing random noise
to the CT scan data. The amount of added noise is
controlled by the mean and standard deviation (std)
parameters, with a mean of 0 and std of 0.05. This trans-
formation has a 10% probability of adding random noise.

4. Z-score normalisation (Standardisation) was applied,
where each 3D volume is scaled to have a mean of 0
and a standard deviation of 1. This normalisation aids in
model convergence during training and improves train-
ing process stability. It was also applied to the validation
and test sets.

123

https://www.bsti.org.uk/media/resources/files/BSTI_COVID-19_Radiology_Guidance_version_2_16.03.20.pdf
https://www.bsti.org.uk/media/resources/files/BSTI_COVID-19_Radiology_Guidance_version_2_16.03.20.pdf


Journal of Imaging Informatics in Medicine

Fig. 2 Example CT image
slices for each of the four BSTI
COVID-19 groups (highlighted
at the top of each row)

Weprovide an example of augmented slices from the train-
ing set in Fig. 4 below. As indicated in Table 2, the dataset
exhibits a slight class imbalance issue. To address this, we
employed a random data oversampling strategy to artificially
increase the number of instances in the minority class. This
oversampling was specifically applied to the training set,
ensuring that the samples of all classes are equal to the class
with the highest number of instances.

Deep LearningMethods for BSTI COVID-19
Classification using CT Volumes

This study proposes a DL-based multi-class classification
method that categorises CT volumetric images into four
classes: ‘Classic’, ‘Probable’, ‘Indeterminate’, or ‘Non-
COVID’ in alignment with BSTI. As far as we are aware,
this study represents the first attempt to classify 3D CT

Fig. 3 Axial slice and 3D rendered airway
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Fig. 4 Augmented image
examples

images based on the BSTI guideline labels. Our investiga-
tion involved several 3D CNN-based models, including a
baseline CNNmodel, 3D ResNet-18, 3D ResNet-34, and 3D
ResNet-50. In the following subsections, we add the details
of each of the developed models.

Baseline 3D CNN

The baseline 3D CNN model was our first choice for
classifying the 3D CT images of COVID-19, as it has
the ability to analyse volumetric data and capture spa-
tial dependencies across slices. Unlike 2D CNN models,
3D CNN models can analyse the entire scan in a sin-
gle pass, preserving contextual information essential for
accurate diagnosis. Additionally, using a 3D CNN as a
baselineprovides a straightforwardyet robust foundation
for benchmarking and comparison againstmore complex
deep learningmodels, ensuring a clear assessment of per-
formance improvements in subsequent research. For this,

a baseline 3DCNNmodel has beendesigned and trained from
scratch. The architecture diagram is illustrated in Fig. 5.

There are four convolutional blocks with each consisting
of 3D convolution layer, Rectified Linear Activation Func-
tion(ReLU), 3D max-pooling layer, 3D batch normalisation
layer. A kernel size of 3 and padding of 1 (to preserve spatial
resolution) have been used for convolutional layers. ReLU
was used as a non-linear activation function to activate all the
convolutional layers. ReLUwas chosen because it effectively
addresses andmitigates the issueof vanishinggradients.Neu-
ral network models utilising ReLU tend to be more trainable
and exhibit superior performance compared to models using
alternative activation functions.BatchNormalisation reduces
the internal covariate shifting which accelerates the model’s
training. A 3D global average pooling is used at the end
of the convolution blocks to convert each feature map into
a single value. The classification layer at the end consists
of two fully connected with dropout and ReLU in-between.
Dropout helps in preventing overfitting and improving the

Fig. 5 Architecture diagram for
baseline 3D CNN
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performance of the model. The first fully connected consists
of 512 layers and the second has layers equal to classifica-
tion output classes (4 formulti-class) followedby the softmax
function. The softmax layer converts the raw output or logits,
from the final fully connected layer into a probability distri-
bution over multiple classes. The overall number of training
parameters is 1,353,412.

3D ResNet Architecture

To improve the classification results obtained from the
basedline 3D CNN model, we experimented with multi-
ple 3DCNN-based architectures, including 3DDenseNet,
and 3D VGG models. Based on our initial experiments,
we found that 3DResidualNetwork (ResNet) consistently
outperformed other models in terms of accuracy and
robustness for classifyingCOVID-19 from3DCT images.
3D (ResNet) architecture has been adapted from the original
2D ResNet architecture [14] for processing 3D data. Unlike
in 2D ResNet model, which utilises 2D convolutional lay-
ers, 3D ResNets employ 3D convolutional layers, which take
into account spatial information across three dimensions. The

key idea behind ResNet architectures is that they use resid-
ual blocks, where the original input is combined with the
output of the residual block. This allows for the model to
focus on learning the residual (difference) between the input
and output. The residual blocks help to mitigate the van-
ishing gradient problem and facilitates training deeper
networks, making it particularly suitable for capturing
the complex spatial patterns present in 3D medical data.
Given its superior performance, we selected 3D ResNet
as the primary model for the remainder of our analysis
to ensure the most reliable results.

In comparison to the baseline CNN architecture, ResNet
models are known for their depth, which requires a large
number of training parameters and more resources to train.
The architecture of a 3D ResNet can vary in terms of the
number of layers, block configurations, and hyperparame-
ters [11]. In our study, we investigated three variations: 3D
ResNet-18, 3D ResNet-34, and 3D ResNet-50 which proved
to be successful in similar tasks.

The 3D ResNet-18 and ResNet-34 make use of the Basic
Blockwhereas 3DResNet-50 uses Bottleneck Block as illus-
trated in Fig. 6 below. The connection shown in Fig. 6 shows

Fig. 6 Basic block and
bottleneck block for 3D
ResNet-50 architecture. Kernel
Size has been mentioned for
each CONV3D and channels
represent the feature channels
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a bypass that connects the top block to the layer before ReLU
and helps in resolving the issue of vanishing gradient [14].
The basic and bottleneck blocks consist of 2 and 3 convolu-
tional layers respectivelywith batch normalisation andReLU
in-between. Downsampling has been performed in the last
convolutional layer of each basic or bottleneck block (except
the first one) with a stride of 2. Monai [5] has been utilised
to build the ResNet models.

The network architecture diagram for 3D ResNet-50 has
been illustrated in Fig. 7. The ResNet-50 used the bottle-
neck block (see Fig. 6. Initially, a 3D convolutional layer is
applied with single input channel, large kernel size of (7, 7,
7), and 64 output channels, followed by batch normalisation,
ReLU activation, and Max pooling which reduces the spatial
dimensions. This is followed by four layers, each containing
multiple residual blocks (Bottleneck Blocks). Towards the
end, AdaptiveAvgPool3d layer is used which further reduces
the dimensions to a (1, 1, 1) size before reaching the final
Linear layer (Classification Layer), which produces the out-
put. The architecture for 3D ResNet-18 and 3D ResNet-34
are similar with fewer layers in comparison.

Transfer Learning

Due to the limited amount of training data, transfer learning
has been adopted to train the ResNet architectures to help
improve the classification performance and lower the amount
of training time. The ResNet models have been pre-trained

on the Kinetics-700 dataset [6], which includes a collection
of 650,000 RGB video clips covering 700 different human
motion classes. Every clip has an action class annotation
and is roughly ten seconds long. The pre-trained weights are
used from the study in [18]. To pre-train the model, the orig-
inal 3D ResNet architectures [11] was modified to replace
the three channels (used for RGB video clips) in the first
convolution layer with a single input channel as we are deal-
ing with 16-bit grayscale images. The original weight for the
three-channel layer was summed and used for the new single-
channel convolution layer. The fully connected layer at the
end was replaced to match the number of output classes in
our dataset (4 or 3 in multi-class classification). In DL mod-
els for computer vision, initial layers are often used to learn
image features, while the subsequent layers are related to
instance categories. Deciding what layers to pre-trained in
the DL network varies, depending on the data and task. In
our case, the Kinetics-700 dataset is quite different to the 3D
CT scan images (out of domain data). For this, we opted to
train all layers in the ResNet models.

Model Training Hyper-Parameters

Our tests were performed using Google Colab, (NVIDIA
Tesla T4 GPU with 16 GB memory, Intel Xeon CPU with
2 vCPUs, and 13GB RAM Data). For each experiment, the
data was stratified into 60% for training, 20% for test, and
for 20% validation datasets respectively. For training and

Fig. 7 Architecture diagram for
3D ResNet-50
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validating our models, an optimizer and suitable fit func-
tions were used, where each model ran between 100 and 200
epochs with a batch size of 4 and 8. The optimizer used for
our proposed models was the (Stochastic Gradient Descent
(SGD)) as it proved to be effective for the given data and
task. The optimal number of epochs has been decided based
on monitoring each model’s performance on the validation
set during training. The batch size represents the number of
images used to train a single forward and backward pass. It
has been observed during experiments that smaller batches
have better generalizability optimization convergence. The
learning rate controls how the model adjusts in response to
low loss. Based on our empirical selection, a learning rate
value of 0.001 was used with the SGD optimizer, allowing
frequent reweighting of themodel and lowmemory usage. To
improve the training convergence and generalisation perfor-
mance, ReduceLROnPlateau [25] fromPyTorchwas utilised.
A value of 10 was used based on empirical selection. An
early stopping criterion with the patience of 30 epochs (if
no improvement in validation loss) was used to stop training
and prevent overfitting. Additionally, a checkpoint to recover
best-performing model weights is used. The criterion used is
cross-entropy, which is a popular loss function that can be
used for multi-class classification. An early stopping mecha-
nism to prevent overfitting has been used, with the additional
benefit of shorter training time required.

Post-Hoc Visual Explainability

Gradient-weighted Class Activation Mapping (Grad-CAM)
is an XAI algorithm used with CNN-based models to visu-
alise the regions of an input image that contributed the most
to the model’s decision [29]. This is done by calculating
the gradient of the target class score with respect to the
final convolutional layer of the neural network. This gradient
information is then used to generate a heatmap, emphasising
the regions that had themost influence on themodel’s output.

Experiments and Results

This section reports the evaluation of the 3D DL-based mod-
els (explained above) for the BSTI COVID-19 detection
using CT volumes. The first experiment aims at classifying

the images into four classes: ‘Classic’, ‘Probable’, ‘Indeter-
minate’, or ‘Non-COVID’, in line with BSTI. Based on the
results obtained from this experiment, the best-performing
model was retrained on three classes only: ‘Classic’, ‘Proba-
ble’, or ‘Non-COVID’. Finally, we apply visual explanations
using Grad-CAM [29] to aid in understanding the models’
decisions. All analyses were conducted at the case level,
utilising the entire volumetric CT scans for both training
and evaluation of the deep learning model.

Model EvaluationMetrics

The performance of our models has been evaluated using
several evaluationmetrics, including (a) Accuracy, which
is the ratio of correctly predicted observations to the total
observations, (b) Precision, which is the ratio of correctly
predictedpositive observations to the total predictedposi-
tive observations, (c) Recall, which is the ratio of correctly
predicted positive observations to all observations in the
actual positive class, and (d) F1 score, which is the har-
monic mean of Precision and Recall, providing a single
score that balances both metrics. In addition, we eval-
uated the confusion matrix, which is a cross-table that
records the number of occurrences between true/actual
vs. predicted classification. Finally, we conducted statisti-
cal tests to compare the performance metrics (Precision,
Recall, andF1 score) across the validation and test sets for
each class. The null hypothesis (H0) assumes no signifi-
cant difference between the two sets. A paired t-test [16]
was applied for each metric and class, with a significance
threshold of p < 0.05.

Quaternary-Class Classification: Followingwing BSTI
Reporting

Table 3 shows the optimal hyperparameters used for running
the four-class classification experiments.

The results, presented in Table 4, indicate that ResNet-50
outperforms the other three examinedmodels across both the
test and validation sets. Specifically, it attains an accuracy and
F1 score of 73% and 64%, respectively, on the validation set,
and 75% and 75%, respectively, on the test set. In contrast,
the baseline 3DCNN falls behind, achieving an accuracy and

Table 3 Hyperparameter values used in the four-class classification problem, as per the BSTI

Early stopping Batch Optimizer LR Scheduler Factor Epochs

Patience 20 epochs 4 SGD 0.001 ReduceLR - OnPlateau 0.1 (Patience 10 epochs) 100

123



Journal of Imaging Informatics in Medicine

Table 4 Results obtained from
the studied DL approaches (on
the validation and test sets) for
classifying the CT volumes into
four BSTI COVID-19 groups

Number Model Accuracy (validation) F1 score (validation)

1 Baseline 3D CNN 0.55 0.54

2 ResNet-18 0.73 0.63

3 ResNet-34 0.73 0.64

4 ResNet-50 0.73 0.64

Number Model Accuracy (Test) F1 score (Test)

1 Baseline 3D CNN 0.50 0.42

2 ResNet-18 0.67 0.65

3 ResNet-34 0.67 0.62

4 ResNet-50 0.75 0.75

F1 score of 55% and 54%, respectively, on the validation set
and 50% and 42%, respectively, on the test set.

To gain a deeper understanding on the performance
of the best-performing model (ResNet-50), we conducted
an assessment of classification performance for individual
classes, and results are reported in Table 5. Results show
that the ResNet-50 model excels in identifying ‘Classic’
and ‘Probable’ COVID-19 groups. It exhibits moderate per-
formance in detecting ‘Non-COVID’ cases. However, it
encounters significant challenges in detecting the ‘Indeter-
minate’ COVID-19 cases.

Figure8 displays the confusion matrix for the ResNet-
50 model (best performing) on the test set, and it shows
that ResNet-50 performs quite well in detecting ‘Classic-
COVID’ and ‘Probable-COVID’. ‘Non-COVID’ cases
are also reasonably detected. However, the model strug-
gles with detecting the ‘Indeterminate’ class.

Table 6 summarises the performance metrics and statis-
tical significance of differences between the validation and
test sets.

Key observations from the above table are:

– The Non-COVID class shows significant improvements
in Precision, Recall, and F1 score from the validation to
the test set.

– The Classic-COVID class maintains consistent per-
formance across sets, with no significant differences
observed.

– The Probable-COVID class shows a significant decrease
in Recall and F1 score on the test set.

– The Indeterminate class shows significant improvements
in all metrics, albeit from low values in the validation set.

Ternary-Class Classification: Excluding the
‘Indeterminate’COVID-19 Cases

The above results reveal that the four-class classification DL
models struggled to detect the ‘Indeterminate’ class. In this
experiment, we trained the best-performing DL architecture
(ResNet-50) to classify each CT image into: ‘Classic’, ‘Prob-
able’, or ‘Non-COVID’. To achieve this, we excluded the
CT images associated with the ‘Indeterminate’ class from
the original dataset, transforming the classification problem
from a quaternary to a ternary class challenge.

The ResNet-50 model was trained using optimal hyperpa-
rameters outlined in Table 7. The classification performance
of the model, as well as its performance on individual
classes, are detailed in Table 8. When compared to the four-
class classification model, results of the ternary-class model
demonstrate significant improvement in performance after

Table 5 Individual class
classification performance of
ResNet-50 on validation and test
sets for categorising CT
volumes into four COVID-19
BSTI groups

Class Validation set Test set
Precision Recall F1 score Precision Recall F1 score

Non-COVID 0.50 0.67 0.57 0.75 1.00 0.86

Classic-COVID 1.00 1.00 1.00 1.00 1.00 1.00

Probable-COVID 1.00 1.00 1.00 1.00 0.60 0.75

Indeterminate 0.00 0.00 0.00 0.33 0.50 0.40

Accuracy 0.73 0.75
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Fig. 8 Confusion matrix results
for quaternary-class
classification obtained from the
ResNet-50 (best-performing
model)

excluding the ‘Indeterminate’ class from the dataset, achiev-
ing an accuracy of 90% on the test set.

Figure9 displays the confusion matrix for the ResNet-
50 model (best performing) on the test set, and it shows
that ResNet-50 performs quite well in detecting classic
COVID and Non-COVID classes. In addition, probable
cases (majority class) are reasonably detected.

Table 9 summarises the performance metrics and statis-
tical significance of differences between the validation and
test sets.

Table 6 Statistical comparison of metrics between validation and test
sets for the quaternary-class classification

Class Metric p-value Significant

Non-COVID Precision 0.041 Yes

Recall 0.032 Yes

F1 score 0.029 Yes

Classic-COVID Precision – No

Recall – No

F1 score – No

Probable-COVID Precision – No

Recall 0.018 Yes

F1 score 0.022 Yes

Indeterminate Precision 0.049 Yes

Recall 0.045 Yes

F1 score 0.047 Yes

Yes—indicates statistically significant differences (p < 0.05)

Key observations from the above table are:

– For the Non-COVID class, significant differences were
observed in Precision and F1 score.

– For the Classic-COVID class, significant differences
were noted in Recall and F1 score.

– For the Probable-COVID class, significant differences
were observed in Precision and Recall.

Post-Hoc Visual Explanation Results

After obtaining the classification results and to further
improve the interpretability of the models, we applied two
XAI methods, Grad-CAM (explained above), to the best-
performing model (ternary-class classification ResNet-50
model). The purpose of this step is to enhance the trans-
parency and trustworthiness of the 3D classification model,
which could help clinicians to verify and validate themodel’s
decisions, ultimately improving trust and deployment of DL-
based techniques in clinical settings [3, 9, 10].

Figure10 shows Post-hoc visual explanation results for
three example CT test slice predicted as (a) ‘Classic-
COVID’, (b) ‘Probable-COVID’, and (c) ‘Non-COVID’. To
generate the Grad-CAM results, we obtained the activation
maps generated by the last layer of the ResNet-50 model
using the Grad-CAM algorithm and the Captum’s library.
Unlike in Fig.10c ‘Non-COVID’, in Fig.10a and b, the
Grad-CAMheatmap generated from the CT image high-
lights key regions associated with COVID-19, such as
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Table 7 Hyperparameter values used in the ternary-class classification problem (using ResNet-50 model) after excluding the ‘Indeterminate’ class

Early stopping Batch Optimizer LR Scheduler Factor Epochs

Patience 30 epochs 4 SGD 0.001 ReduceLR - OnPlateau 0.1 (Patience 10 epochs) 100

ground-glass opacities or other areas of lung consolida-
tion commonly recognised. All these biologically relevant
areas relate to the inflammation and fluid buildups in
lung tissues caused by the viral infection itself in line with
clinical observation. However, it misses certain affected
areas in Fig.10a, which might be due to inherent lim-
itations of model sensitivity and the spatial resolution
of activation maps. This partial detection then shows
that model-generated output should be complemented
and reviewed by clinical expertise if a diagnosis is to
be made and also indicates that further refinement of
interpretability methods is needed to capture all relevant
pathological features from imaging data [9, 10].

Discussion

In this study, we collected a unique dataset of experts labelled
56 CT volumes from patients suspected to have COVID-
19 infections. Images were annotated by expert radiologists
into four classes, following the BSTI. Numerous studies have
been proposed in the literature for detectingCOVID-19 using
binary classification (positive or negative) [32, 36] or multi-
class classification solutions [7, 15, 17, 22, 26, 28, 30, 31,
34]. However, to the best of our knowledge, classifying CT
volumes using the BSTI COVID-19 reporting system has not
been presented in the literature. Our target was to develop a
DL-enabled diagnostic system that can automatically detect
the BSTI group from CT volumes. To this end, we stud-
ied the performance of four 3D DL architectures, including
ResNetmodels pre-trained on theKinetics-700 video dataset.
In advance of the machine learning analysis, we applied
best practices in data pre-processing, data augmentation, and
model optimisation to avoid overfitting issues, enhance accu-
racy, and improve model generalisation.

The 3D DL models were compared in terms of accuracy,
recall, precision, and F1 score. In the context of four-class
classification, our results show that the ResNet-50 model
gave the best overall classification performance, achieving
an accuracy of 75% on the test data set. While the baseline
3D CNN was the least performing, achieving an accuracy
of 50% on the test data set. This is because, unlike the deep
architecture used in ResNet-based models, the CNN model
included a smaller number of layers, restricting the ability to
capture feature details in the image that deeper models can
do.

Inspecting the classification performance of individual
classes revealed that ResNet-50 (best-performing model)
was able to accurately detect the ‘Classic’ and “Probable”
COVID-19 groups, with a recall of 100% on the validation
set. This maybe due to the presence of COVID-19 mark-
ers, such as GGOs, in the CT images of those two BSTI
COVID-19 categories. The ability to automatically detect
‘Classic’ and ‘Probable’ COVID-19 cases correctly is cru-
cial, as it allows instant interventions, especially for critical
cases. On the other hand, the ResNet-50 model completely
failed to detect the ‘Indeterminate’ COVID-19 group, which
was often misclassified as ‘Non-COVID’. To investigate the
impact of the underperforming class (in this case, ‘Indetermi-
nate’) on themodel performance, we removed the CT images
associated with the ‘Indeterminate’ group and retrained the
ResNet-50 model to classify the data into three classes. The
ternary classification model yielded an average accuracy of
90%, which was significantly higher than the average accu-
racy obtained from the quaternary classification model of
75%. In the context ofmachine learning, removing the under-
performing class from the dataset can lead to better decision
boundaries and improved classification accuracy.

This study employs a novel dataset based on BSTI, there-
fore, direct comparison with current methods was infeasible.
Table 10 provides a comparison with other multi-class clas-

Table 8 Individual class
classification performance of
ResNet-50 on validation and test
sets for categorising CT
volumes into three COVID-19
groups, excluding the
‘Indeterminate’ class

Class Validation set Test set
Precision Recall F1 score Precision Recall F1 score

Non-COVID 1.00 1.00 1.00 0.75 1.00 0.86

Classic-COVID 1.00 0.50 0.67 1.00 1.00 1.00

Probable-COVID 0.80 1.00 0.89 1.00 0.80 0.89

Accuracy 0.89 0.90
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Fig. 9 Confusion matrix results
for ternary-class classification
obtained from the ResNet-50
(best-performing model)

sification methodologies for COVID-19 detection, which
reveals that our results are comparable to other studies for
COVID-19 severity classification. However, as indicated
previously, our study proposes a unique contribution by con-
sidering the labelling of the BSTI system.

To improve the explainability of our framework, we have
applied Grad-CAM, which provided visual explainability
outcomes for positive COVID-19 cases. Our results reveal
that Grad-CAM was able to visualise regions of the infected
areas (inline with the ‘Classic-COVID’ markers (see Table
2).

While several studies aim to automate severity scale
detection for COVID-19, a key contribution of this paper
is the identification of different COVID-19 types using

Table 9 Statistical comparison of metrics between validation and test
sets for the ternary-class classification

Class Metric p-value Significant

Non-COVID Precision 0.032 Yes

Recall 1.000 No

F1 score 0.045 Yes

Classic-COVID Precision 1.000 No

Recall 0.023 Yes

F1 score 0.018 Yes

Probable-COVID Precision 0.041 Yes

Recall 0.039 Yes

F1 score 1.000 No

Yes—indicates statistically significant differences (p < 0.05)

the BSTI COVID-19 reporting system — a standardised
framework widely adopted in the UK for categorising
imaging findings. This system classifies chest X-ray and
CT findings into four main categories, ensuring consis-
tency and comparability across healthcare institutions.
By leveraging this approach, our work enhances the stan-
dardisation of COVID-19 imaging reports, improving
diagnostic efficiency and offering a robust foundation for
future responses to respiratory pandemics.

Limitations and FutureWork

The main limitation of this study is the poor automatic
detection of the ‘Indeterminate’ COVID-19 cases in vol-
umetric CT images. This is mainly due to the inherent
challenges associated with the ‘Indeterminate’ COVID-
19 cases as they represent a gray area where definitive
diagnosis is difficult, even for experienced radiologists.
Indeterminate cases often share characteristics with
the three other classes of ‘Classic-COVID’, ‘Probable-
COVID’, and ‘NON-COVID’, making automatic detec-
tion challenging. The other contributing factor would be
the limitation in training data size which may hinder
the algorithm’s ability to learn and accurately identify
these cases. Additionally, the complexity of volumetric
CT images adds another layer of complexity compared
to 2D chest X-rays, potentially making it more difficult
for automated systems to capture the nuanced features
of ‘Indeterminate’ cases. To address this limitation, our
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Fig. 10 Post-hoc visual
explanation results of the
Grad-CAM explanation
technique (using ResNet-50
model) for four examples CT
test slices correctly predicted as
a ‘Classic-COVID’, b
‘Probable-COVID’, and c
‘Non-COVID’. Image pairs
show original preprocessed
images on the right and
Grad-CAM explanation
(heatmap highlighting the
important areas in the image) on
the left

future research could focus on developingmore advanced
deep learningmodels, incorporating larger training data,
and refining the definition and characteristics of indeter-
minate cases to improve automatic detection accuracy.

Interestingly, the poor detection accuracy of ‘Indetermi-
nate’ COVID-19 cases is consistent with recent research in
[23], which aimed to assess readers agreements on the BSTI
diagnostic classification for COVID-19 based on chest radio-
graphs (CXR). Twenty readers, including consultant chest
radiologists, general consultants, specialist registrar radi-
ologists, and infectious diseases clinicians, evaluated 305
CXRs from 176COVID-19 patients. The agreement for cate-
gorising indeterminate CXRs requiring CT imaging was low
(28–37%), and the highest agreement was observed for clas-
sic/probable categories (66–76%). These findings were also
consistent with the research in [13], which aimed at vali-
dating the BSTI reporting for categorising chest radiographs
in COVID-19 reporting, assessing reproducibility amongst

radiologists, and diagnostic performance. Seven consultant
radiologists evaluated chest radiographs from 50 COVID-
19 patients and 50 control patients with COVID-19-like
symptoms. The results demonstrated excellent specificity
(100%) andmoderate sensitivity (44%) forClassic/Probable-
COVID.Yet, fair agreement was observed for ‘Indeterminate
for COVID-19’ (k = 0.23) and ‘Non-COVID-19’ (k = 0.37)
categories.

This study employed data augmentation techniques,
including flipping, rotation, and intensity adjustments,
to address the limited size of the training set. While
these methods are standard in medical image analy-
sis, they inherently produce augmented images that are
correlated with the original data. As a result, there is
a potential risk of the model learning features specific
to the augmented variations rather than generalising
to independent cases. This limitation may contribute to
an overestimation of model performance. Future work

Table 10 Comparison with other methodologies for multi-class classification

Modality Model Category Results Paper

X-ray DenseNet-121 & Multi-task
learning

Negative, Typical, Indeterminate, or
Atypical appearance of COVID-19
[21]

Accuracy: 64% F1 score: 46% Muhammad et al. [26]

X-ray Lightweight ResGRU Negative, Typical, Indeterminate, or
Atypical appearance of COVID-19
[21]

Accuracy: 80.7% F1 score: 80.5% Ahmad et al. [1]

X-ray EfficientNetv2-L Negative, Typical, Indeterminate, or
Atypical appearance of COVID-19
[21]

Accuracy: 70% F1 score: 80.5% Khan et al. [19]

CT Multinomial Logistic
Regression (MLR)

Severe, Moderate, Mild, and Nor-
mal [22]

Accuracy: 92% Shiri et al. [30]

CT Pretrained 3D ResNet-34 Classic, Probable, Indeterminate,
and Non-COVID [8]

Accuracy: 75% F1 score: 75% Proposed Study

CT Pretrained 3D ResNet-50 Classic, Probable, and Non-COVID Accuracy: 90% F1 score: 92% Proposed Study
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should focus on expanding the dataset to include more
diverse, independent samples and exploring advanced
augmentation techniques, such as generative adversarial
networks (GANs), to create synthetic but uncorrelated
training data,

Our study encountered another limitation, which is the
exclusive reliance on single-centre data. However, it is note-
worthy that the training dataset was thoughtfully curated
to encompass a diverse representation of ethnicities in the
West Midlands region. Future research endeavours will
address these issues by incorporating large-scale, multi-
centric datasets and images from diverse observers to
enhance model training and broaden generalizability. Addi-
tionally, we aim to assess alternative deep learning architec-
tures, especially in the context of multi-classification tasks
involving 3D images.

Conclusion

In this study, a novel multi-classification DL model was
designed and evaluated for detecting COVID-19 categories
using BSTI reporting guidance for radiologists for CT stud-
ies. While numerous studies propose COVID-19 detection
through binary or multi-class classification, there is a lack of
literature on classifying CT volumes using this BSTI report-
ing guidance.

Four DL architectures were presented and evaluated,
including DL ResNet pre-trained models. Our experiments
and results performed revealed that ResNet-50model outper-
formed the other three experimented models and it achieved
75% accuracy in four-class classification task. To assess
the impact of the ‘Indeterminate’ class on model perfor-
mance, we excluded CT images associated with this class
and retrained the ResNet-50 model for three-class classifi-
cation, resulting in a significantly higher accuracy of 90%
compared to the four-class model. Our models show excel-
lent automatic detection for ‘Classic’ and ‘Probable’ BSTI
COVID-19 categories (with 100%) with poor detection abil-
ity for ‘Indeterminate’ COVID-19 cases. These findings are
consistent with other clinical researchers which aimed at
validating the BSTI reporting manually amongst consultant
radiologists.

Finally, we investigated the use of the Grad-CAMmethod
to improve the interpretation of the proposed DLmodel. This
is done by highlighting (via heatmap) the critical parts of
the image that make the DL decision, and therefore provid-
ing useful insights to the medical staff. Visual aids can help
clinicians identify and evaluate key symptoms of COVID-19
(such as GGOs) on CT images.
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