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Abstract

Survivors of pediatric brain tumours are at a high risk of cognitive morbidity. Reliable individ-

ual-level predictions regarding the likelihood, degree, and affected domains of cognitive

impairment would be clinically beneficial. While established risk factors exist, quantitative

MRI analysis may enhance predictive value, above and beyond current clinical risk models.

This systematic review addresses the question: “Do MRI markers predict future cognitive

functioning in pediatric brain tumour survivors?” We conducted a comprehensive search for

studies published up to March 2024 that assessed MRI variables as predictors of later

neuropsychological outcomes in pediatric brain tumour patients. Only studies that acquired

MRI scans at an earlier timepoint to predict subsequent cognitive test performance were

included. Surprisingly, few studies met these criteria, with identified research focusing pri-

marily on MRI measures of cerebellar and white matter damage as features in predicting

cognitive outcomes. Ultimately, this review reveals a limited literature, characterized by

small sample sizes and poor-quality studies, placing findings at high risk of bias. Conse-

quently, the quality and conclusions drawn from the existing research are constrained, espe-

cially in the context of prediction studies. Given the significant implications for this clinical

population, this review highlights the urgent need for further investigation and a ‘call to

action’ for medical imaging researchers in pediatric neuro-oncology.

Introduction

Individual outcomes for childhood brain tumour patients

Survival from cancer in childhood has seen great improvement in recent decades [1]. Conse-

quently, there is an increasing population of adult survivors [1, 2], with approximately 1 in 530
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young adults between the ages of 20 and 39 being a survivor of childhood cancer [3]. This is

especially true in pediatric brain tumours, the most common solid tumours in children

(roughly 20%) [4], where survival is now estimated at around 95% for cerebellar pilocytic

astrocytoma, and 60–80% for medulloblastoma [5–8]. Thus, there is an ever increasing need to

focus on ensuring quality of life for the future of these children.

Many children with brain tumours experience neurocognitive effects at some point in their

disease course, resulting in dysfunction in domains of cognition, emotion, and behaviour. The

estimated risk for children with brain tumours of having emotional, psychosocial, and atten-

tion problems are 15%, 12% and 12% respectively, according to a recent meta-analysis [9].

Even at 10-year survival, these patients still demonstrate neuropsychological and psychosocial

impairment across multiple domains [10]. Recent, large-scale, longitudinal studies have sug-

gested an increased risk of continuing neurocognitive decline for these patients, irrespective of

treatment type [11]. Performance over time demonstrates an inability to acquire new skills

and cognitive abilities at the same rate as healthy peers, rather than a loss of previously

acquired abilities [12]. This may explain why these difficulties are likely to persist long-term

and are non-transient. The number of post-cancer life-years is greater for pediatric rather than

adult survivors, and these years include important milestones such as education and interper-

sonal relationship development [13]. Long-term difficulties could profoundly affect participa-

tion for these children, at home, school and later in the workplace, likely resulting in poorer

long-term educational and employment outcomes [14, 15]. This represents a persistent burden

for patients, families and healthcare systems [16]. Whilst survival must always be the utmost

priority, research aimed at limiting cognitive morbidity in this group is now needed to ensure

likelihood of reaching their potential, despite their illness [17].

Whilst disease and treatment will inevitably place all pediatric brain tumour patients at

some level of risk for poor cognitive outcomes, knowing individualised risk, an estimate of the

severity of difficulties and specific domains likely to be impacted, will influence clinical prac-

tice. There is significant variability in outcomes at the individual patient-level, but this is cur-

rently understudied [16]. Person-centred analytical approaches across a large longitudinal

sample of paediatric brain tumour patients, show distinct classes / phenotypes with unique

profiles in social, cognitive, and attentional difficulties over time [18], with similar subgroups

identified in cross-sectional data [19]. Percentages of individuals scoring in the ‘impaired

range’ was between 28–55% across domains in a recent longitudinal study, at around 6yrs post

diagnosis [11]–highlighting, within a ‘cutoff’ driven framework of cognitive impairment, the

presence of a classification task for identifying/labelling individual cases of impairment. Thus,

there is scope for developing individualised models of risk and resilience, which hold predic-

tive validity.

Clinical benefits from prediction of cognitive outcomes

Prediction of individual-level neurocognitive outcomes would enable timely and tailored

input from school and allied health services, promoting outcomes for these children, with lim-

ited healthcare resources being efficiently prioritised for those most at risk. It would also help

healthcare professionals counsel and educate patients for these difficulties and help reduce

uncertainty about the future for families. Individual models of risk would also impact treat-

ment planning. In children where treatment of their brain tumour is more difficult, adjuvant

therapy may include radiotherapy, which is known to have significant impact on a child’s neu-

rodevelopment. This is due to brain injury from the primary and secondary effects of radio-

therapy, especially in paediatrics where there is specific vulnerability (e.g., due to younger

children not yet having reached peak myelin maturity) [20, 21]. Whilst developments in
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treatment have mitigated some neurocognitive toxicity (e.g. proton beam radiotherapy [22]),

there is still need for clinicians to navigate treatment decisions in terms of risk to QoL based

upon known disease and age related risk factors [20, 21]. More accurate prediction of individ-

ual-level risk of cognitive morbidity (even across domain and severity), would enable clinicians

to further adapt and personalise treatment schedules with a greater focus on risk to quality-of-

life whilst maintaining treatment efficacy [23]. Overall, there is clinical benefit for a range of

patients in knowing individualised prediction of neurocognitive outcomes, and the develop-

ment of these methods for deployment to a clinical setting.

Predicting cognitive outcomes

There are many established risk factors for poor long-term neuropsychological outcome that

need to be understood to provide a comprehensive risk profile at the individual child level

[24]. Recent neurodevelopmental models based on known risk factors have been proposed to

explain outcomes for brain tumour survivors, specifically in medulloblastoma [25–27], taking

into consideration the complex disease-, treatment- and host-related factors that may influ-

ence these outcomes. Many aspects can result in neurodevelopmental insults to the developing

brain which may explain and underpin these neurobehavioral morbidities [28, 29] and thus

are significant risk factors for these poor outcomes [24]. These range from physical factors

such as treatment effects (i.e. resection and/or adjuvant therapy [20, 30]) and individual differ-

ences (e.g. age at diagnosis [30], cognitive reserve), but also psychological factors (i.e. Early

Childhood Adversity, threat exposure) and environmental factors (i.e. Socioeconomic Status

(SES) and social support) [28]. See [24] for a model of cognitive risk in pediatric brain tumour

survivors. Essentially, neurocognitive outcomes are complex and are dependent on several

interacting factors [13].

Risk-based and exposure-related guidelines and models have been developed to manage

these neurocognitive late-effects of pediatric brain tumours [24, 31]. Neurobehavioral morbid-

ities are predicted by clinical variables such as radiotherapy, chemotherapy, neurosurgery, and

parental education but less-so age at diagnosis, gender, or time since diagnosis [13, 14, 20, 32–

35]. A number of these complex risk factors can be either difficult to measure or qualitative in

their assessment and therefore can inform decisions but do not make individual predictions.

The Neurological Predictor Scale (NPS) was designed as an ordinal scale to quantitatively cap-

ture the cumulative effect of several risk factors on outcomes, and somewhat predicts IQ, adap-

tive functioning and processing speed and working memory, at both short- and long-term

follow-up [34, 36–39]. This cumulative measure captures unique variance, above and beyond

the individual predictors.

MRI as a novel predictor of outcomes

This systematic review posits that magnetic resonance imaging (MRI) measures are likely to

be a good proxy of the burden of brain tumours and their treatment thus, are likely to be pre-

dictive of cognitive impairment at the individual patient-level. Qualitative reporting of MRI

does predict outcomes, with brainstem invasion, midline location of the tumour, and tumour

type predicting post-operative cerebellar mutism syndrome, a (typically) transient, neurologi-

cal morbidity seen in this population [40]. Quantitative alterations to the brain’s structure and

function, specifically microstructural changes to the white matter (WM) of the brain, during

the developmental period, could be the common neuroanatomical substrate of poor neurocog-

nitive outcomes [25, 27]. See [23, 41] for a review of MRI in pediatric brain tumours. Recent

successes and interest in using MRI to predict neurodevelopmental outcomes in premature

infants [42], or even decline in neurocognitive functioning in older adults [43] highlights the
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potential opportunities offered by MRI. There is also a relative abundance of MRI data in these

patients, acquired as part of standard of care and most research protocols. Therefore, MRI is

likely to provide highly relevant features which provide ‘added-value’ in predicting outcomes

beyond clinical risk factors alone.

There is extensive research establishing associations between MRI variables and neurocog-

nitive outcomes in pediatric brain tumour patients, distilled across multiple systematic reviews

[23, 41]. However, it is currently unclear whether these studies translate into the mode of pre-

dictive studies. No current systematic review has focussed solely on predictive studies in these

cohorts, with specific restrictions on the timing of MRI scanning and outcome assessment.

This systematic review specifically investigates existing literature using MRI scans, taken at

any point in the disease course, to predict non-contemporaneous, later neuropsychological

outcomes in survivors of pediatric brain tumours.

Whilst there is existing literature of existing established clinical predictors of cognitive late

effects in this population, this review aims to assess studies using MRI as a predictive modality,

with the goal of assessing whether quantitative analysis of MRI provides ‘added-value’ in these

risk models.

Materials and method

We conducted this systematic review in accordance with Preferred Reporting Items for Sys-

tematic Review and Meta-Analysis (PRISMA) guidelines [44], an overview of which is

reported in Fig 1. Initially, a limited search of the Web of Science database was undertaken in

June 2022 for the purpose of refining the search terms. Due to the wide-ranging classifications

of central nervous system (CNS) tumours, as well as generic tumour-focussed terms, we also

included terms pertaining to the most common paediatric histological diagnoses accounting

for 85% of total incidence rates (Central Brain Tumour Registry of United States, 2014–2018

[45]). Search terms can be found in supporting materials (S1 Table). Based on our initial

search, we pre-registered our review protocol through the International Prospective Register

of Systematic Reviews (PROSPERO) database (registration number CRD42022343161).

A comprehensive search of Embase, MEDLINE, PsycINFO, Scopus and Web of Science

was conducted in July 2022 using the designed search, resulting in 8,632 records (see support-

ing materials S1 Fig). Searches were rerun and results updated in March 2024, resulting in an

Fig 1. PRISMA flow diagram. Results of the search conducted in March 2024.

https://doi.org/10.1371/journal.pone.0314721.g001
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additional 899 records. Alterations were made to the search terms for each database to account

for differing Boolean operators (see Supporting Materials S1 Table). Additionally, we also

searched the Open Science Framework (OSF) preprints archive for relevant articles that had

not otherwise appeared as published texts in our main search. We included any longitudinal

study concerning patients diagnosed with a brain tumour before the age of 18, who had MRI

data that clearly preceded an age-appropriate, standardised test of cognitive ability (e.g., intel-

lectual ability assessed with Weschler Intelligence Scale for Children—WISC-V [46]). Central

to our main research aim, we included those studies that explicitly reported an association

between future cognitive outcomes based on prior MRI. Meta-analyses and literature reviews

that did not report new data were excluded, however, reference lists were searched for addi-

tional studies of interest. Search results were not restricted by publication date but were limited

to those written in English. In addition to our pre-registered exclusion criteria, we also

excluded patients with CNS tumours secondary to neurofibromatosis, tuberous sclerosis, or

acute lymphoblastic leukaemia as these were considered significant confounds for predicting

cognitive outcomes. We also excluded non-peer reviewed articles, such as conference abstracts

and theses. Inclusion/exclusion criteria are further detailed in Table 1.

Identified records were first imported into MS Excel and duplicates removed. Following a

short pilot, two independent reviewers (CD + DGK) screened the titles and abstracts of all the

identified papers against the inclusion criteria. Full texts of suitable papers were subsequently

retrieved and screened by both reviewers for final inclusion in the review. For completeness,

the reference lists and citations of those papers marked for inclusion were reviewed for addi-

tional studies that may have been missed. At each stage of the process, disagreements were dis-

cussed until consensus was met. Per our pre-registration, data extraction was completed by

one reviewer (DGK), whilst a second reviewer evaluated data extraction of all papers for cor-

rectness (JN). The data extraction tool was initially developed for this research protocol and

was later refined based upon the findings of the search results. This was not based on an exist-

ing tool, and items were selected based on discussion within the research team. Data from

each study included: (1) year of publication, (2) study aims and/or hypotheses, (3) study loca-

tion (i.e., country, recruiting hospital), (4) number of patients, (5) patient characteristics (i.e.,

years recruited, diagnoses, treatments, cognitive outcomes, age at diagnosis/MRI/neuropsy-

chological evaluation), and (6) statistical analyses.

We had initially registered our intention to assess the validity of the included studies using

the Transparent Reporting of a multivariate prediction model for Individual Prognosis or

Diagnosis (TRIPOD) guidelines; however, this was deemed unsuitable given that none of the

studies reported using predictive modelling in their approach. Instead, studies were reviewed

Table 1. Inclusion and exclusion criteria for identifying publications for the systematic review.

Inclusion Criteria Exclusion Criteria

• Participants are patient group of primary central nervous

system (CNS) tumour

• Participants have any diagnosis of pediatric brain tumour,

between ages of 0–18

• Reported data include brain MRI (of any modality) and

age-appropriate, standardised neuropsychological

evaluation.

• Reported MRI must precede neuropsychological testing, by

any period of time.

• Report analyses of an association between or prediction of,

prospective cognition from MRI.

• Written in English

• Patient groups where CNS tumours may be

present but secondary to other disease (i.e. NF1)

• Case studies

• Meta-analyses and systematic reviews

• Pre-prints where subsequent publication is

already included

• Not written in English

• Conference Abstracts and Theses

https://doi.org/10.1371/journal.pone.0314721.t001
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(by DGK) using the Reporting Recommendations for Tumor Marker Prognostic Studies

(REMARK) checklist [47, 48], a checklist for assessing reporting quality specific to the domain

of oncology. Whilst designed for marker/assay testing, the domain relevance and prognostic

nature renders this a relevant tool. We considered the MRI measures as the ‘marker’ under

investigation and the neuropsychological assessment as ‘endpoints’ for the purposes of the

checklist.

Results

After reviewing titles and abstracts, 197 records were selected (see Fig 1), and 188 full-text arti-

cles were assessed for eligibility. Of those, five studies were included. Manual reference and

citation checking of these selected articles (and identified literature reviews deemed to be rele-

vant), identified no additional studies. Detailed information about the included studies can be

found in Table 2.

Study characteristics and reporting quality

Many studies were excluded because the MRI did not precede neuropsychological assessment

(for instance because of the matched timepoints of neuroimaging acquisition and test assess-

ment), thus not defining them as ‘predictive’ studies. In a small number of cases, the text was

ambiguous to the order of testing (i.e., [49–54]) but did not refer to prediction or other details

suggestive of the order, and thus were not included. For other studies, data including MRI

which preceded a later neurocognitive assessment existed, due to the inclusion of multiple

timepoints, however it was ambiguous in the analyses of interest as to the time points being

referred to and so these studies were not included [55, 56].

For the selected studies, sample sizes were small and ranged between n = 7 and n = 61; alto-

gether (notwithstanding dataset overlap) only n = 118 pediatric brain tumour patients and

n = 37 healthy controls were included across the reviewed studies. The most common tumour

type across studies was medulloblastoma (n = 96), then astrocytoma (n = 17) with relatively

few ependymoma and choroid plexus papilloma (n = 3 & 1 respectively). Age at diagnosis

across the studies ranged from 2.2 years to 15.6 (based on ranges and inter quartile range

(IQR)). All studies selected associative statistical approaches (i.e., correlational analyses), with

one also adopting a mediation approach.

Using the REMARK checklist, studies were assessed against each reporting item (Item
1–20), and here we report items where reporting was limited across the studies (i.e. one or less

studies reported the item). No studies gave a rationale for sample size (Item 9, 0/5 studies),

likely due to the limited samples in each study, however it was unclear as to whether these

were the entirety of eligible patients within the given timeframe (as only 1 study gave a full

accounting of the flow of patients in the study, Item 12, 2/5 studies) In terms of “Analysis and

presentation”, studies performed poorly for a number of items (Item 15, 16, 18, all 1/5 studies,

and Item 17 0/5 with no studies completing the item to be reported). Firstly, only one study

presented an effect size for the predictive analysis (Item 15, 1/5 studies). Further, included

studies did not conduct analysis of added value, including the MRI marker and ‘standard prog-

nostic variables’ which are established (Item 17, 0/5 studies) nor sensitivity analysis/validation

although one study confirmed statistical/theoretical assumptions (Item 18, 1/5 studies).

White matter (WM) predictors

Of the studies assessed, three utilised diffusion tensor imaging (DTI) to image white matter as

a predictor of outcomes. Liguoro et al. measured the fractional anisotropy (FA) and volumetry

of spinocerebellar (SC), dentorubrothalamocortical (DRTC) and corticopontocerebellar tracts
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Table 2. Details of included studies.

Reference Study Variables Medical Variables

Recruitment

Hospital

Years of

Recruitment

Number of

participants

Healthy

controls?

Age at Diagnosis Tumour Type Treatment

Zilli et al.

[61]

Azienda

Sanitaria

Universitaria

Integrata di

Udine, Italy

2012–2019 7 (5 males, 2

females)

NA Med. 5.3y (IQR 2.2–8.1) PA n = 5, MB

n = 2

Surgery (7, 100%), Radical

surgery (7, 100%), CT (2,

29%), CRT (1, 14%), PT (1,

14%)

Partanen

et al. [58]

Hospital for Sick

Children, Alberta

Childrens

Hospital, British

Columbia

Childrens

Hospital, Canada

2007–2011 CSR Group 12

(7 males, 5

females), Local

therapy 10 (5

males, 5

females)

24 (12 males, 12

females), Mean

age at testing

10.51y (range

5.81–14.93)

CSR Group: Mean 9.32y (sd

2.69, range 5.96–15.26),

Local Group: Mean 9.59y (sd

3.62, range 5.77–15.63)

CSR group: MB

n = 12, Local

group:

Astrocytoma

n = 6, EP n = 3,

Choroid Plexus

papilloma (4th

Ventricle) n = 1

CSR group: surgery (12), CSR

(12) and focal radiation to

tumour bed (12),

chemotherapy (12), Local

therapy group: surgery only

(7), surgery and focal

radiation to the tumour bed

(3), chemotherapy (1).

Liguoro

et al. [57]

NR 2013–2017 7 (4 males, 3

females)

NA Med. 63 months (IQR 39–

80)

PA n = 5, MB

n = 2

Only surgery (5, 72%),

Surgery + RT + CT (2, 28%)

Riggs

et al. [59]

Hospital for Sick

Children, Alberta

Childrens

Hospital, British

Columbia

Childrens

Hospital, Canada

2007–2011 20 (13 males, 7

females)

13 (8 males, 5

females), Mean

age at test 12.5y

(range 8.1–17.2)

Mean 7.2y (range 4.3–12.8) Recurrent

Astrocytoma

n = 1, MB n = 19

surgery (20, 100%), CRT (20,

100%), CT (NR)

Wang

et al. [60]

NR NR AR Group 43

(29 males, 14

females); HR

Group 18 (10

males, 8

females)

NA AR Group: Mean 14.85yr (sd

4.54); HR Group: Mean

13.31 (sd 4.06)

MB n = 61 CRT plus CT (AR Group:

Lower CRT dosage (70%), HR

Group: Higher CRT dosage

(30%))

Reference MRI Variables Neuropsychology Variables Statistical Variables

Age at MRI MRI

Timepoint

Sequence MRI Measure Age at

Assessment

Measure Time between

MRI and

Assessment

Statistical

Approach

Statistic of

association/

prediction

Zilli et al.

[61]

NR Post-surgery 1.5T T1w,

T2w, FLAIR

sMRI—VOI of i)

lesion, ii) frontal

insertion of VPS

and iii)

ventricular

volume, achieved

extent of

resection.

Med. 7.3y

(IQR 6.0–

10.8)

NEPSY-II,

BVL_4–12

Med. 5.0 months

(IQR 0.0–11.0)

Lesion

symptom

mapping

NA

Partanen

et al. [58]

CSR Group:

Mean 9.59y (sd

2.66, range 6.27–

15.41), Local

Group: Mean

9.88y (sd 3.65,

range 6.01–

16.07)

During and

Post-

Treatment

(3m post

diagnosis)

1.5T T1w, DTI dMRI—FA, MD,

RD, AD

NR—Multiple

assessment

timepoints (3,

12, 24, and 36

months post

diagnosis),

WISC-IV

or

WAIS-IV

NR—Multiple

assessment

timepoints (3, 12,

24, and 36

months post

diagnosis),

Correlational

analyses

Pearson’s r

Liguoro

et al. [57]

NR NR (post-

resection)

1.5T T1w,

T2w, FLAIR,

DTI

Fibre tract

volume, FA, RA,

SI, PI, LI

(cerebellar

connections)

Med. 88m

(IQR 74.5–

129.5)

NEPSY-II

WISC-IV

Med. 5m (IQR

0–8.5)

Correlational

analyses

Spearmans

Rank

Riggs

et al. [59]

NR Chronic post

treatment

(5yr-post

diagnosis)

1.5T T1w, DTI Whole brain

volumes, Unicate

Fasciculus (FA),

hippocampal

volume.

NR CMS n = 10 assessed,

n = 7 <2 months

of MRI, n = 3

<19 months of

MRI

Correlational

analyses

NR

(Continued)
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(frontopontocerebellar (FPC), parieto-pontocerebellar (PPC), occipitopontocerebellar (OPC),

and temporo-pontocerebellar (TPC)) [57]. Significant relationships were found between tracts

relevant to cerebellar connectivity, and the Developmental Neuropsychology Assessment

(NEPSY) and full-scale IQ (FSIQ) measured approximately 5 months later [57]. Specifically,

FSIQ correlated significantly with spherical and planar indices of the right PPC (r = -1,

p = 0.017 and r = 0.886, p = 0.033), with increases to planar index and decreases in spherical

index associated with IQ [57]. Liguoro et al. also found significant correlations between spe-

cific fibre tract characteristics and tasks measuring attention, memory, sensorimotor, social

perception, and visuospatial processing domains. However, only visuospatial processing

showed convergent validity with significant correlations across two different tasks measuring

this same domain [57]. In this study, the bilateral PPC and SC tracts were most commonly cor-

related with the neuropsychology tasks [57].

Partanen et al., used MRI from the treatment period 3 months after diagnosis (including

during and after treatment) to predict change in intellectual functioning over a 36 month

period after diagnosis. A significant reduction in FSIQ over time was found but this was not

related to diffusion measures (FA, mean diffusivity (MD), radial diffusivity (RD) and axial dif-

fusivity (AD)) for the cortical spinal tract (CST), inferior fronto-occipital fasciculus (IFOF),

inferior longitudinal fasciculus (ILF), optic radiations (OR), and uncinate fasciculus (UF) [58].

Partanen et al. did however show that declines over time in processing speed index, observed

only in a subgroup of patients experiencing local therapy (i.e., focal radiation) versus cranial

spinal radiation, was predicted by baseline anisotropy in left inferior fronto-occipital fascicle

(IFOF), with lower FA being related to greater decline [58]. Neither patient groups showed a

difference in the left IFOF for diffusions measures compared to controls.

Riggs et al. [59] utilised chronically acquired MRI (approximately 5 years post diagnosis)

investigated correlations between whole brain WM volume, FA of both the left and right UF

and the general memory index of the Childhood Memory Scale (CMS) (in a subset of n = 10

patients, outcomes measured between 2 and 19 months after MRI). Only FA of the left UF was

significantly associated to memory (R = .64, p = .045), not the right uncinate fasciculus or total

WM volume (as measured by structural MRI), with increased FA related to increases in mem-

ory performance. The volume of the PPC tract also positively correlated with memory perfor-

mance (R = .71, p = .045) in Parten’s study [58].

Wang et al. [60] used a high-dimensional mediation model to estimate microstructural

damage to brain WM that mediates the negative treatment effects craniospinal radiation has

on declining working memory outcomes over a 36month period. Post-treatment DTI was

Table 2. (Continued)

Wang

et al. [60]

NR Post-CRT DTI Voxel-wise,

Tract-Based

Spatial Statistics

measured with

FA

NR Working

Memory

score from

WJ-III

NR–Assessment

was change in

score between

baseline and 36m

Mediation/

Correlational

analyses

NR

N.B. NA = Not Applicable, PA = Pilocytic Astrocytoma, MB = Medulloblastoma, CT = Chemotherapy, CRT = Cranial Radiation Therapy, PT = Proton Therapy,

AR = Average Risk*, HR = High Risk*, NR = Not Reported, Med = Median, sd = standard deviation.

*Defined by the SJMB03 phase III risk-adapted trial (ClinicalTrials.gov identifier: NCT00085202)

N.B. PA = Pilocytic Astrocytoma, MB = Medulloblastoma, EP = Ependymoma, CT = Chemotherapy, CRT = Cranial Radiation Therapy, PT = Proton Therapy,

NR = Not Reported, sMRI = structural MRI, dMRI = Diffusion MRI, VOI = Volume of Interest, FA = Fractional Anisotropy, MD = Medial Diffusivity, RD = Radial

Diffusivity, AD = Axial Diffusivity, Med. = Median, BVL = Battery for the Assessment of Language in Children aged 4–12, WJ-III = Woodcock-Johnson III Tests of

Cognitive Abilities, CMS = Children’s Memory Scale, CSR = Cranial-Spinal Radiation, m = months, NA = Not applicable.

https://doi.org/10.1371/journal.pone.0314721.t002
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used to estimate FA tract-based spatial statistics (TBSS) across tracts within a white-matter

atlas. Larger FA was associated with better working memory outcome, across multiple WM

tracts including the cerebral peduncle, corpus callosum, splenium and corona radiata. Specifi-

cally, Wang et al [60] found that there was a significant negative mediation effect of the WM

microstructure between radiation treatment (average risk / lower dose vs high risk / higher

dose) and the change in working memory over 36 months. This study therefore demonstrated

the causal effect of radiation-related damage to white matter predicting long-term working

memory in these children, accounting for around 43% of the overall impact of treatment on

long-term working memory decline.

Strength of correlational relationship between indices of white matter integrity and neuro-

psychological outcome were large (according to Cohen’s criteria) ranging from |r| = .64 − |r| =

1. However, the very limited sample sizes (n = 10 & n = 7) from which these were drawn gives

reason for concern over the interpretation of these estimates.

Grey matter (GM) predictors

In Riggs et al., no correlation was found between total GM volume or left hippocampus with

the general memory index of the CMS, but the right hippocampal volume, measured at a

chronic timepoint, showed significant positive correlation with memory outcomes 2–19

months after MRI (R = .71, p = .02) [59]. It is important to note in this study, that the right hip-

pocampus, rather than the GM volume and left hippocampus, was significantly smaller in the

patient group compared to healthy controls.

Lesion predictors

Zilli et al. [61] used a lesion-symptom mapping approach, to investigate the overlap of lesions

in children with versus without psychological impairment. The lesions investigated where

tumour lesions, frontal insertion of ventriculoperitoneal drainages and ventricular volumes, as

drawn on the T1w MRI. They found the greatest tumour lesion overlap and therefore greatest

damage was found in median cerebellar, specifically paravermal and vermal regions. Regions

of interest for the lateral ventricles also overlapped in impaired children, suggesting hydro-

cephalus as additional cause of future impairment.

Meta-analysis

Despite registering our intention, reviewed studies were not of sufficient quality to conduct

any form of meta-analysis due to varying measurement strategies, gaps in reported descriptive

variables, and low statistical power (due to small sample sizes).

Discussion

Review of the state of research

The current systematic review aimed to investigate existing literature using MRI to predict

later, and non-contemporaneous neuropsychological outcomes in children with brain

tumours. No studies reviewed here set out the rationale for and/or aimed to predict future out-

comes using model development and validation approaches. The lack of scientific attention

given to this topic is surprising given the dearth of literature advocating for such research. The

papers identified and reviewed here, did in fact conduct analyses to this effect, but only due to

the fortuitous nature of the selected timepoints, and intervals between the activities of MRI

scanning and neuropsychological testing. Despite an extensive search strategy, evidence with

which to answer the current research question was extremely limited, with the major finding
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being a severe lack of studies in this area. The primary result of the review must therefore be

viewed as a need for further research in this very important research area, with study designs

that directly tackle the need for outcome prediction in these cohorts.

The reason for this limited number of research studies is unclear. Whilst our systematic

search strategy was extensive, there were also difficulties in identifying papers due to poor

reporting practices. For instance, in some studies, the timing of MRI in relation to assessment

was ambiguous or unclear [49–52, 56]. Another potential cause of limited research could be

previous focus on survival, where increasing survival rates are now placing a greater need for

research on late effects. It is important to also consider that neurocognitive effects are also only

one of many potential late effects experienced by this population [62, 63].

Quantity of research in this area may also be impacted by the availability of clinical data

with which to carry out this research. For children with pediatric brain tumours, there is an

abundance of clinical MRI, with medical imaging required for vital for tumour detection and

diagnosis, surgical and radiotherapy planning, and monitoring of treatment response and

recurrence of disease. But this is not necessarily echoed in access to neurocognitive assessment;

testing is performed based upon clinical need or clinical trial protocol. This potentially limits

available retrospective datasets. This data also comes from a heterogeneous cohort, with these

children facing heterogenous brain injuries as a result of their disease and treatment. Identify-

ing homogenous patient groups inevitably results in the smaller sample sizes seen in the current

studies. Overall, these factors are liable to impact the quantity of research studies in this field.

Whilst number of studies was limited, the quality of existing studies was also a significant

limiting factor for the usefulness of research studies in this area. In the reporting quality assess-

ment (using the REMARK checklist [47, 48]) identified studies did not meet important criteria

for development of prognostic markers. Specifically, studies failed to conduct additional analy-

ses necessary for this development, such as sensitivity or ‘added-value’ analyses–although this

was likely due to limited sample sizes, therefore lacking statistical power necessary for these

additional analyses. To note, the checklist also comments on several items pertaining to model

building and multivariate analyses, which were not conducted in the current studies.

Studies are typically involving “retrospective, monocentric study investigating a pediatric dis-

ease with low annual incidence” [61] however future work will require larger sample sizes than

those of the studies presented here. This is especially true as the field of medical imaging further

utilises machine learning approaches that require greater sample sizes to learn high dimensional

patterns in the data that can predict an outcome variable. In the context of predictive studies,

larger sample sizes will also be needed to suitably split data to conduct model validation using

approaches such as cross-fold validation)–prediction requires the ability to generalise to new

data scenarios [64, 65]. Not only will continued small sample sizes limit the statistical power

with which to discover relevant associations between neuroimaging variables and long-terms

outcomes, but they will prevent the field from providing best-practice evidence for prediction.

Overall, the findings from the reviewed research are limited–they have limited sample sizes

and are rated as low quality in terms of prediction studies. Without proper validation and rep-

lication, the quality and impact of any conclusions must be viewed as limited and/or poten-

tially spurious. However, the findings are briefly discussed here in terms of wider literature.

This should be seen in the context of guiding hypothesis-driven future research and/or pro-

moting future validation and/or replication of these findings.

Summary of findings of reviewed studies

Cerebellar damage. Given common posterior fossa presentation in pediatric brain

tumours, it is unsurprising that multiple studies in this review a-priori selected regions of
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interest within cerebellar structures and related fibre projections from this anatomical struc-

ture. Damage to these circuits predicted outcomes [57], with lesions to the median cerebellar

regions common in cognitively impaired patients [61]. Studies of contemporaneous MRI and

neuropsychology measures have found similar. Horská and colleagues [66] found a decrease

in vermis volumes over a 6-month period were significantly related to radiation dose, and final

volume after this period related to neuropsychological measures of motor speed. Significant

recent evidence suggests that the posterior cerebellar lobes are key in maintain cognitive per-

formance [67], and animal models suggest that intact cerebellar activity is required to enable

typical developmental trajectories of cognitive abilities (in mice) [68]. Essentially, the cerebel-

lum plays as an integral node in many distributed neural circuits that underpin multiple cogni-

tive functions [69, 70]. Radical cerebellar resection has also been associated with extensive

WM microstructure changes across the brain [71]. Overall, it is unsurprising that damage to

cerebellar regions (through injury and treatment effects) may lead to and/or predict multiple

cognitive morbidities.

WM damage. Riggs et al [59] argued that global measures of WM may be indicative of

general injury and thus correlate well with general ability, however, integrity of discrete tracts

(such as the UF) may be a better predictor of specific cognitive abilities–in this case memory.

Previous reviews of cross-sectional research suggests a model where disorganised WM micro-

structure is related to poorer cognitive abilities, especially processing speed and memory defi-

cits [23], by indicting that this ‘damage-related impairment’ is established early, and therefore

WM microstructure is a potential biomarker to predict later impairment. Both preclinical and

patient studies suggest a loss of both GM and WM volume, and failure of normal WM gain in

pediatric brain tumour survivors [16]. There are multiple mechanisms of WM damage; hydro-

cephalous having direct neurotoxic effects on periventricular WM due to decreased perfusion

and oedema [72] or intragenic effect of adjunct therapy (chemo and radiotherapy) as measur-

able by reduced volume and alterations to microstructural properties and failure of expected

WM development [51, 73]. WM damage is likely non-transient; for instance, in non-irradiated

patients 15 years after diagnosis, FA measures are reduced and are associated with impaired

cognitive flexibility [74]. What is apparent is that, across treatment and disease effects, the sub-

sequent WM injury is relevant to poor outcomes, across emotion, cognition, and behaviour

[14, 51, 75].

Specific issues with current research

Limited longitudinal studies. The biggest limitation of the current research field is the

lack of longitudinal research answering this research question. Whilst there have been multiple

studies understanding the contemporaneous neuroanatomical substrates of poor neuropsy-

chological outcomes in pediatric brain tumours, from acutely post treatment to very long-

term survivors, these have not translated into similarly large body of work understanding

long-term risk (as highlighted by our findings) of cognitive morbidity. Further longitudinal

research is needed to assess whether the contemporaneous neuroanatomical substrates of

long-term impairment are in fact predictive in the context of longitudinal studies.

These longitudinal studies would also provide an opportunity to disentangle the develop-

mental and age-related effects on this prediction-task. For several of the measures highlighted

in this review (FA/MD etc.) there are known developmental trajectories [76] which will neces-

sarily interact with disease-related changes. There is also likely to be unique effects of brain

insult, across tumour growth, and treatment related injury at different ages, resulting in vary-

ing levels of long-term impairments [77]. The field will need to rely upon longitudinal studies
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(with sufficient sample size/statistical power) that can sufficiently disentangle these

interactions.

Study variables: Timing. The current systematic review includes studies that use MRI

from any point in the disease course. The timepoint of the MRI used for the purposes of pre-

diction in the reviewed studies were most commonly post some form of treatment (surgical or

post radiation therapy, e.g. [59, 60] respectiverly) other than 57 which included MRI during

treatment. Given the limited research available, this was done to assess the entire literature, but

results from different timepoints in the disease to conduct prediction will undoubtedly have

varying interpretations. For instance, post-treatment MRI may identify insult-related factors

which are related to later decline–as demonstrated by the study by Wang and colleagues [60].

Pre-treatment MRI may allow us to identify specific vulnerabilities to the longer-term neuro-

cognitive effects–for instance Zheng and colleagues [78] propose that functional network plas-

ticity pre-treatment may mediate the impact of surgery on later cognitive ability. However,

any MRI timepoint is likely to capture a mixture of these two influences, vulnerability, and

insult factors, which may contribute towards prediction.

Overall, there is no consensus on the optimal timing of MR imaging to use for predictive

purposes. Selection of which MRI is likely to be most predictive (in terms of reliability, accu-

racy etc.) will not be trivial for future research. We propose that for future research, selection

of MRI timepoints with which to test predictive validity should be guided by two principals–a)

clinical need, and b) evidence-based theoretical grounds. For instance, in terms of clinical

need, if the most useful purpose of these models is to aid/supplement treatment management

decisions, then an early, pre-treatment MRI will be necessary. In terms of guiding MRI timing

based upon existing evidence a strong example of this is the study by Wang and colleagues

[60] which suggests there is a treatment related ‘injury’ which mediates radiotherapy—related

working memory impairment, suggesting post treatment MRI would have benefit. Timing is

an even greater consideration in this patient group compared to adult brain tumour patients

due to the likely interaction also with ongoing brain development over time for these patients.

These children undergo MRI scanning at a number of timepoints in their disease course

(e.g. diagnostic imaging, pre- and post-surgical evaluation, progression monitoring etc), and

so there is significant data for potential retrospective studies to investigate effect of MRI timing

on prediction. Direct comparisons between models using MRI from different timepoints will

be meaningful to understand variation on predictive validity over time, and further inform

designs for prospective predictive studies.

Timing of neuropsychological assessment is also not to be overlooked. To develop predic-

tive models, a given endpoint will need to be set (for instance a given number of years post

diagnosis). Overall neurocognitive trajectory is “idiosyncratic” over time, with longitudinal

studies suggesting an injury-related early impact, followed by a decline or failure to meet the

normal developmental trajectory and potential long-term plateauing [11, 18]. Therefore, the

endpoint of interest, may also inform the timing of MRI which may be more predictive of lon-

ger-term outcomes.

Added value of MRI. A major limitation of the current state of the research literature in

this field is that the added value of MRI in prediction has not been established, above and

beyond existing approaches. No reviewed studies assessed existing risk factors in a multivariate

analysis to test the relative contributions, and therefore added value, of early MRI in predicting

future neurobehavioral morbidities. However, Partanen et al. reported that none of the medi-

cal or treatment variables that they tested predicted change in IQ scores over time [58]. This is

despite these medical variables (Neurological Predictor Scale and presence of cerebellar mut-

ism syndrome) predicting acute/contemporaneous neuropsychology outcomes, and MRI-

derived measures of baseline WM injury being significantly related with outcomes [58]. This is

PLOS ONE Value of MRI in predicting future cognitive morbidity in survivors of paediatric brain tumours

PLOS ONE | https://doi.org/10.1371/journal.pone.0314721 January 30, 2025 12 / 21

https://doi.org/10.1371/journal.pone.0314721


limited evidence to support the incremental validity of MRI as a predictor of long-term

outcomes.

The current systematic review selected MRI as the proposed predictor of long-term out-

comes, over other potential predictive tools. The reason for this is two-fold. Firstly, quantita-

tive analysis of MRI imaging provides a more detailed, less reductionist approach to assessing

medical imaging compared to typical radiological reporting of these. Alternatively, MRI also

provides a quantitative proxy for the ’burden’ of many of the complex risk factors that have

been proposed in models of neurocognitive outcomes including those which are either hard to

measure reliably or non-subjectively (for instance early childhood adversity [28]).

Therefore, future research should assess both added value, but also concurrent validity,

against current clinical prediction approaches, such as the Neurological Predictor Scale. Given

the additional computational and resource burden in conducting these types of quantitative

image analysis for the purposes of prediction, it is important for future studies to test for

unique and additional predictive power offered by quantitative MRI variables.

Study variables: Approach to ROIs. Across the studies reviewed here two conducted

analyses in regions-of-interest (ROIs) directly related to sites of brain insult in these patients

[57, 58], one in ROIs related to the cognitive comorbidity under investigation [59], and only

one investigating characteristics of the lesion itself [61]. This does not consider how the

wider brain network may be influenced by the brain tumour, and this information may

explain/predict additional variance in outcomes. For instance, in paediatric neurological dis-

orders/syndromes, differences in brain morphometry or connectivity have been found

beyond the site of pathology (i.e. paediatric epilepsy [79]) or in the absence of frank pathol-

ogy (i.e. mild paediatric TBI [80], MRI-negative epilepsy [81]). Disconnectome symptom

mapping, shows that non-homologous lesions to the same brain network can generate the

same cognitive sequalae in terms of deficits [82]. Many compensatory and ‘rerouting’ models

of functional brain activity post injury suggest that regions beyond the focal lesion may

explain some sparing of cognitive abilities (another important factor in predicting endpoint

neurobehavioral morbidities). These findings all show that disparate, diffuse, and non-

lesioned changes to the brain, including tissue which may be typically thought of as ‘spared’,

could also explain variance in neurobehavioral morbidities. Connectivity approaches to MRI

have shown utility in contemporaneous measurements of MRI and neuropsychology [83,

84]. These neurobiological effects of injury beyond the focal lesion may provide further prog-

nostic information towards the aim of a predictive model, however, to test a greater number

of regions larger sample sizes will be necessary to accurately estimate statistical models across

many more ROIs. This highlights one of the key challenges for future studies in this field

being data collection.

Recommendations for future research

Beyond the apparent requirement for more research studies in this field, there are specific rec-

ommendations that should guide future endeavours. In many cases, due to the rarity of dis-

ease, multinational and multicentre analyses will be needed to achieve the sample sizes

necessary to definitively address some of the issues in this review. To do so, a level of harmoni-

sation amongst research groups in terms of data collection is necessary to facilitate combining

of cohorts. For instance, adhering to similar imaging protocols (following guidelines for

advanced MRI in pediatric CNS such as those proposed by the European Society of Pediatric

Oncology (SIOPE) [85]). Harmonisation will not only allow integration of multiple datasets,

but potentially reduce biases in measurements caused by differences in MRI acquisition

protocols.
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Additionally, harmonisation of neurocognitive assessment will also facilitate data aggrega-

tion. In the absence of a common outcome measure for these children (for instance a common

data elements set as proposed by the National Institute of Neurological Disorders and Stroke

(NINDS) for other neurological disease [86]) broad composite measures should be used that

can capture multiple aspects of the neurocognitive morbidity experienced by these patients

(for example the Wechsler Intelligence Scale for Children [46] or the NIH Toolbox Cognition

Battery [87]. Neurocognitive assessment protocols are being developed for specific tumour

groups (for instance in childhood ependymomas [88]) which will provide practical approaches

to “strongly support the routine incorporation of neuropsychology assessments as key out-

comes” to “facilitate successful global collaborations” [89]. These should be adopted wherever

possible.

To facilitate future reviews such as this, and more importantly meta-analyses of said future

research, greater reporting expectations should be placed on researchers–given the current

review highlighted this to be a key weakness in existing research. Emphasis should be on using

reporting guidelines, and quality assessment checklists (such as the REMARK checklist used in

the current review [47], or the tools provided by the EQUATOR (Enhancing the QUAlity and

Transparency Of health Research) Network [90] such as the TRIPOD tool [91]). Transparent

and full reporting will allow better assessment of the literature across the field. These recom-

mendations will help facilitate the important goals of this research, hopefully leading to greater

clinical impact.

Limitations of review

It should be noted that, despite an extensive search, no study explicitly investigated the

research question of whether MRI could be used for long term prediction of neurocognitive

outcomes in pediatric brain tumour patients. Described studies were reviewed here due to

non-primary analyses which fulfilled inclusion criteria, and therefore it may be the case that

other studies with such analyses may have been missed in the review process (for instance if

these secondary analyses were not mentioned in the abstract). To address this, we erred on the

side of caution in reviewing abstracts, using full-text review as a method to identify these rele-

vant secondary analyses. This may have resulted in a greater proportion of reportedly ‘low

quality’ studies, not because they are low quality in terms of achieving their stated aims, but

low quality in relation to the question of the current review–which they did not aim to answer

necessarily.

A significant limitation of the current review is that, given small sample sizes and limited

quality of the studies reviewed, the synthesis of findings in the current study must be viewed

with scepticism and caution, despite framing these findings within the wider literature. It is

proposed that these may inspire future hypotheses or replications, but the nature of these find-

ings must be emphasised to prevent amplification of potentially spurious findings.

Conclusion

As early as 2008, it was proposed that to truly balance the aggressiveness of treatment for

childhood CNS tumours, against the relative quality of life due to cognitive impairment, an

important factor is knowing the likelihood of any one individual experiencing neurocogni-

tive impairment [13]. This individualised risk is key in purported models of monitoring

and managing of neurocognitive functioning in children with brain tumours [92]. There

has also been significant work in the field of pediatric brain tumours proposing develop-

mental cognitive neuroscience models of late effects in survivors [13, 23, 93, 94]. These

models, built on contemporaneous measures of cognition and brain development,
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alongside cross-sectional data, are inherently limited. Knowing individualised risk of long-

term cognitive morbidity ahead of time would have significant clinical impact; to inform

clinical management, prioritise resources/support, and reduce uncertainty for families.

Overall, there exists plenty clinical reasoning to prompt scientific enthusiasm and attention

for this topic.

However, despite these early calls for prediction, and models with which to guide these pre-

dictive studies, this systematic review highlights that the number of truly predictive studies

(requiring a period between predictive features and long-term outcomes) is still limited. In

conclusion, given the increased number of adult survivors of childhood brain tumours, the

poorer long-term cognitive, educational and employment outcomes [10, 14, 15] and the signif-

icant burden this represents to patients, families and healthcare, work now needs to be com-

pleted to integrate predictive data into these models, which will expand their explanatory value

and utility to clinical practice. This will be an important next step in delivering further clinical

impact for this patient group.

Given the great potential that MRI provides in investigating neurobiological effects of dis-

ease and treatment at the individual-level, the plethora of multimodal imaging available in

these clinical populations and finally the positive clinical benefit this could offer, there is excit-

ing opportunities for this type of research.
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