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Abstract We propose a novel MIMO-WDM Volterra-based nonlinear-equalisation scheme with adaptive
time-domain nonlinear stages enhanced by filtering in both the power and optical signal waveforms. This
approach efficiently captures the interplay between dispersion and non-linearity in each step, leading to
46% complexity reduction for 9× 9-MIMO operation.
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Introduction

Digital compensation of nonlinear transmission
impairments offers a promising path to increase
the capacity of optical communication systems[1].
However, effective compensation of inter-channel
impairments, which dominate in wavelength divi-
sion multiplexing (WDM) transmission, requires
multi-channel operations within the equaliser, sig-
nificantly increasing its computational complexity.
Over the last few years, a number of research ef-
forts have aimed to reduce the associated cost and
make multi-channel nonlinear equalisation (NLE)
commercially viable[2],[3]. In particular, the develop-
ment of multiple-input multiple-output (MIMO) digi-
tal back-propagation (DBP) based models[2],[4], util-
ising enhanced split-step Fourier (SSF) methods,
has significantly reduced the number of required
computational steps per span and the algorithmic
complexity compared to full-field wide-band DBP-
based approaches[5]. The enhanced approach
consisted in the application of linear MIMO filtering
to the power waveform of co-propagating signal
channels at each nonlinear stage of the SSF algo-
rithm in the frequency or time domain[2],[4],[6]. The
recent integration of machine learning (ML) into
NLE has made a major impact. Utilising gradient
back-propagation tools has enabled more effective
optimisation of the algorithm’s parameters, sub-
stantially improving the equalisation capability and
further reducing the algorithmic complexity[7]. ML
has significantly improved the efficiency of both
DBP and Inverse Volterra Series Transfer Func-
tion (IVSTF)-based MIMO NLE schemes, enabling
their operation at a single computational step
per span for long-haul transmission[8]–[10], through
the joint optimisation of the algorithm’s parame-
ters in the linear and nonlinear stages. However,
these fully time-domain (TD) models require finite-
impulse-response (FIR) filters to compensate the
chromatic dispersion (CD) at each linear stage
with lengths that are not commercially available
yet, i.e., ∼ 40 taps for ∼ 50-km computational step
length at 32-Gbaud rate.

Fig. 1: Block diagram of the proposed MIMO learned IVSTF
NLE. (a) Interconnection of different channel’s units. (b)

Processing unit corresponding to the nth channel.
Bi-directional arrows between adjacent channel steps show

fields directed to and from XPM activation functions.

Handling CD in the frequency domain (FD) us-
ing static equalisers embedded in ASIC units is
computationally simpler and offers a more energy-
efficient implementation for long-haul transmission
scenarios. However, opting for static operation in
the linear stages of the NLE, while maintaining
adaptive nonlinear stages only, may compromise
the equalisation effectiveness. While initial stud-
ies have been conducted for single- and multi-
channel equalisation scenarios[4],[6], they could not
maximise the performance or complexity gain as
they used brute-force optimisation within a limited
parameter space that was the same across all
nonlinear stages. In our recent work[11], the joint
optimisation of the FIR parameters of filtered non-
linear stages afforded by ML optimisation methods
enabled effective operation of IVSTF-based multi-
channel equalisers for MIMO sizes of up to 7× 7
and 9 × 9. Yet, the model required four steps
per span to equal the performance of its fully TD
counterpart[9]. It is desirable to reduce further the
required number of computational steps.

In this paper, we propose a field-enhanced (FE)



filtering scheme for the nonlinear stages of an
IVSTF-based model, which restores the adap-
tive operation advantage of its purely TD coun-
terpart, without compromising its practical realisa-
tion potential. By incorporating short (3-tap) FIR
filters into both the input and output of each non-
linear stage to filter the signal’s field waveform,
we demonstrate a significant improvement of the
equalisation capability of the algorithm. Our re-
sults demonstrate successful operation of the FE
L-IVSTF NLE scheme at only two steps per span
for a 9×9 MIMO configuration, matching the perfor-
mance of L-IVSTF systems with a twice larger step
count while reducing the computational complexity
by 46%.

Proposed Equalisation Scheme
The equaliser’s structure, based on the parallel
IVSTF scheme proposed in[12], is shown in Fig. 1.
An FD filter addresses the CD accumulated over
the entire transmission link, while the nonlinear
distortions are simultaneously estimated in the
parallel branches. In the kth branch, the first
linear stage manages the CD up to the point
z = kLsp/NStpS (Lsp is the fibre span’s effective
length, NStpS is the number of steps per span),
localising there the kth step’s nonlinear phase
shift. A subsequent linear stage compensates the
CD up to the link’s end. Each FD filter used in
the linear stages includes an appropriate term to
address the walk-off effect. Between the linear
stages, nonlinear transformations account for
the effects of self-phase modulation (SPM) and
cross-phase modulation (XPM) to mitigate the
nonlinearity within each step. Our proposed FE
filtering approach outfits the input/output ports of
each nonlinear branch with a pair of short CD FIR
filters, identical in length. These filters operate
on the complex field waveform of each optical
channel n, addressing a predefined amount of
dispersion not covered by the FD filters. Notably,
these filters complement the FIR filters within en-
hanced MIMO nonlinear stages[11], which manage
the signal power waveform as a part of the SPM:
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coefficients, Ts is the sampling interval, and Nch

is the dimension of the MIMO algorithm. The
scheme features an optimised placement of the
required fast Fourier transforms (FFTs)[12].

Simulation Setup, Results and Discussion
In this study, we simulated the transmission of
11 single-polarisation wavelength channels over

a 6× 100-km standard single-mode fibre link (dis-
persion parameter D = 17ps/(nm · km), γ =

1.3 (W · km)
−1, loss coefficient α = 0.2 dB/km).

Erbium-doped fibre amplifiers of 4.5 dB noise fig-
ure compensated for the span losses. Each chan-
nel was modulated with 64 quadrature-amplitude
modulation symbols at a rate of 32Gbaud. The
channel spacing was 40GHz. At the receiver, the
channels of interest were demultiplexed and down-
sampled to 2 samples per symbol before being
processed by the MIMO NLE. Following the NLE
stage, each channel was matched filtered and fur-
ther down-sampled to 1 sample per symbol. The
DSP utilised the overlap-and-save method[13] for
the processing of the incoming data streams, with
overlap length and FFT size of 1024 and 2048 sam-
ples, respectively. These values were optimised
to ensure performance and avoid penalties across
all MIMO dimensions. The receiver’s DSP blocks
were implemented as a differentiable computation
graph in TensorFlow. During the training phase,
the outputs of the MIMO NLE were linked to a
single mean-squared-error function for computing
the gradients of the model’s trainable parameters,
LMSE = 1
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symbols, respectively, and K is the total number of
symbols within a batch. During the testing phase,
the recovered symbols from each channel were
used to compute the bit error rate, which was then
mapped to an effective signal-to-noise ratio (SNR).
For a given launch power, datasets included 219

symbols for training and 218 symbols each for vali-
dation and testing. T,he model was trained using
the Adam optimiser, with a learning rate of 0.001
and a batch size of 40. MIMO models of vary-
ing sizes were trained separately for each launch
power. Training was done over 750 epochs, after
which no further improvements were observed.

Our model’s trainable parameters included the
coefficients α

(k)
c , β(k)

c,r of the SPM and XPM FIR
filters, respectively, and the coefficients of the h
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i,n

and h
(k)
o,n CD FIR filters. The SPM and XPM filters

were initialised with zero-valued taps, and the CD
filters were initialised following the method in[14].
The hyper-parameters of the model, including the
lengths of all FIR filters and the amount of disper-
sion to be compensated by the CD FIR filters, were
optimised to maximise performance and reduce
complexity. Figure 2(a) shows the average effec-
tive SNR of the channels as a function of the length
SCD of the CD FIR filters for varying amounts of
dispersion for the 9× 9 MIMO model operated at
two steps per span. The optimum launch channel
power was used, with the lengths of all SPM and
XPM filters across the structure set at SSPM = 7
and SXPM = 31 taps, respectively. We can see



Fig. 2: (a) Average SNR performance versus length of the CD FIR filters for the 9× 9 MIMO FE L-IVSTF scheme operating at
NStpS = 2. (b) Per-channel performance of different-sized MIMO FE L-IVSTF schemes using 3-tap CD FIR filters, operating at
NStpS = 1 (3× 3, 5× 5) and NStpS = 2 (7× 7, 9× 9), and of the corresponding L-IVSTF schemes operating at NStpS = 4. (c)

Computational cost of the FE L-IVSTF and L-IVSTF models in (b).

that a FIR-compensated dispersion of 4.25 ps/nm
is sufficient to achieve the desired adaptability for
CD compensation, hence sufficient inter-channel
equalisation. For this low dispersion value, the
optimum FIR filter’s length beyond which perfor-
mance saturates is 7 taps. Choosing shorter filters
results in performance penalties of up to 0.2 dB.

Figure 2(b) shows the SNR performance for
each processed channel in different-sized MIMO
FE L-IVSTF implementations using 3-tap CD FIR
filters. For comparison, the performance of L-
IVSTF models without FE filtering is shown. The
results demonstrate that the 3 × 3 and 5 × 5 FE
L-IVSTF configurations match the performance of
their L-IVSTF counterparts at just one step per
span, while the 7 × 7 and 9 × 9 configurations
require two steps per span to produce a similar
outcome. It is noteworthy that selecting slightly
larger CD FIR filter’s lengths (5 or 7 taps) can
bring some performance gain without sacrificing
the computational complexity.

To contextualise these findings, we conducted
a complexity analysis focusing on signal-path real
multiplications (RMs) of constant resolution per
transmitted symbol. Starting with FD operations,
the FE L-IVSTF model includes Ns + 1 pairs of
forward and inverse FFT operations, where Ns =
NStpSNsp represents the total number of steps.
Each FFT pair, with a radix-2 implementation, in-
curs a cost of CFFT = 4NFFT log2(NFFT) RMs for
a sample block of length NFFT. Additionally, the
element-wise complex multiplications between the
transformed signal and the FD CD filters require
4NFFT RMs per linear step. Therefore, the total
cost of the FD operations is CMIMO,FD = [q(1 +
Ns)CFFT + (4qNFFT)(2Ns + 1)]/(NFFT −M + 1)
RMs per symbol (RM/sym), where q is the digital
sampling rate, and M is the overlap length. For
TD operations, the SPM and XPM filtering of sig-
nal powers requires 0.5q(SSPM + 1) and qSXPM

RM/sym, respectively, where (Nch − 1) XPM fil-

tering operations are needed for each nonlinear
activation. The nonlinear activation functions add
another 4q RM/sym due to squared signal modules
and multiplications by complex constants. The CD
FIR filters add 8qSCD RM/sym for each nonlin-
ear branch of the FE L-IVSTF model, leading to
the total cost for TD operations of: CMIMO,TD =
qNchNs[0.5(SSPM+1)+(Nch−1)SXPM+8SCD+4]
RM/sym. The results are summarised in Fig. 2(c),
which illustrates the total computational complexity
(CMIMO,FD + CMIMO,TD) imposed on the L-IVSTF
and FE L-IVSTF models to achieve the same per-
formance (as depicted in Fig. 2(b)). Although the
per-step complexity of the FE L-IVSTF model is
marginally higher than that of its L-IVSTF counter-
part, its ability to operate with fewer steps results
in a significant overall reduction in complexity. The
most substantial reduction is observed in the 3× 3
MIMO configuration, with a total cost of approxi-
mately 4935.24 RM/sym, representing 31.51% of
the L-IVSTF model’s complexity. Conversely, the
9× 9 configuration requires 63374.59 RM/sym, rep-
resenting 54.55% of the multiplications needed by
the corresponding L-IVSTF model.

Conclusions
We have proposed a novel learned MIMO Volterra-
based scheme, demonstrating its effective opera-
tion with a minimal number of computational steps
without sacrificing performance. This structure,
featuring adaptive nonlinear stages enhanced by
filtering both the power and optical signal wave-
forms, achieves significant complexity reduction
with a 46% decrease for a 9 × 9 implementation
compared to its counterpart with only power wave-
form filtering.
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