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We consider how the absence of thermalisation affects the classical Coulomb blockade regime in quantum dots. By
solving the quantum kinetic equation in the experimentally accessible regime when the dot has two relevant occupation
states, we calculate the current-voltage characteristics for arbitrary coupling to the leads. If the couplings are strongly
asymmetric, the Coulomb staircase practically reduces to the first step which is independent of the charging energy
when the Fermi energy is comparatively smaller, while the standard thermalised results are recovered in the opposite
case. If the couplings are of the same order, the absence of thermalisation has a new, striking signature – a robust
additional peak in the differential conductance.

I. INTRODUCTION

Since their discovery, quantum dots have offered insight
into a multitude of fundamental transport phenomena in meso-
scopic systems1–5. The ability to fine-tune their optical and
electrical properties means they have also found use in a wide
variety of applications5,6. Electronically, the confinement of
electrons onto a central island leads to a number of interest-
ing properties, with one of the most well-studied being the
Coulomb blockade. Many facets of this regime are well un-
derstood and experimentally verified (see3–5 for reviews) and
it occurs due to electron-electron interactions generating a ca-
pacitance for the dot. This results in the presence of a charging
energy, given by Ec = e2/C for a dot of capacitance C, which
details the energy required to overcome the strong Coulomb
interaction on the dot. For large charging energies this leads
to the classical Coulomb blockade regime, defined by the sep-
aration of energy scales5

h̄Γ ≪ ∆ ≪ kBT ≪ Ec, (1)

where Γ is the coupling to the leads, and ∆ is the typical en-
ergy level spacing between states on the dot that are thermally
smeared into a continuum of states by temperature T . The
rest of this paper will set the Boltzmann and reduced Planck
constant to equal one, h̄,kB = 1.
The defining features of the Coulomb blockade reside in

the current-voltage characteristics upon varying both the gate
voltage, which controls the preferred number of electrons on
the dot, Ng, and the bias voltage across the system. The gate
voltage characterises the phenomenology of the equilibrium
Coulomb blockade and results in peaks in the conductance
that occur at voltages separated by Ec

7–9. The peaks occur
when the energies of having N and N+1 electrons on the
dot are tuned to degeneracy, resulting in current being able
to transfer across the system without an energetic cost. In-
creasing bias voltage when the couplings to the leads are im-
balanced creates an accumulation of electrons in the central
island. This is reflected in a distinctive staircase in the current-
voltage characteristics known as the Coulomb staircase7,10,11.
If the coupling to the leads are of the same order, then elec-

trons cannot as easily accumulate due to more frequent tun-
nelling off of the dot. This leads to the staircase becoming less
pronounced with a residual signature appearing in the differ-
ential conductance10,12.
Historically, the main approach to the analysis of this

regime was through utilising the classical master equation
which is justified under the assumption of full thermalisation
on the dot. Full thermalisation implies that the thermalisation
time, 1/γ , is much larger than the escape time, 1/Γ. The ther-
malisation rate γ(ε), for large quasiparticle energy ε , is given
by13–15

γ(ε)≈ ∆
(

ε
ETh

)2

, (2)

where ETh = g∆ is the Thouless energy and g ≫ 1 is the di-
mensionless conductance of the dot.

In this paper, we consider the opposite limit when thermal-
isation is weak, γ ≪ Γ, which is experimentally accessible
in the classical Coulomb blockade regime (Eq. (1)) and rele-
vant for the consideration of localisation in quantum dots13.
The latter phenomenon has had renewed interest due to the
prominence of many-body localisation16–19 and its potential
use in future quantum technologies. Previous work in this
non-thermal regime has produced analytical results in linear
response9 and numerical results20 for the case of asymmet-
ric coupling to the left and right leads, ΓL ̸= ΓR. Here we
give a complete overview of our recent results21,22, which
provide a greater insight into the non-thermal regime. We
show that when the couplings are of the same order, ΓL ∼ ΓR,
there is a clear signature of the absence of thermalisation
in the appearance of a robust extra peak in the differential
conductance22. Although previous works (for example9,20)
have explored non-thermal quantum dots, this additional peak
is a new way of identifying this regime.
In addition to the effect of thermalisation, we identify a new

regime for weakly populated dots where T ≪ εF ≪ Ec
21. This

requirement together with Eq. (1) describes the regime where
the Coulomb staircase (found when ΓL ≫ ΓR) becomes virtu-
ally unobservable, with the initial step being N times higher
than the subsequent ones which are practically smeared out.
Noticeably, this means that in this regime the first (and only)
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step is no longer proportional to Ec.
The Keldysh formalism is used to obtain a detailed balance

equation that describes the tunnelling processes at a given
energy. We present an exact solution when there are only
two relevant occupation states of the dot, N and N+1 (with
N ≫ 1), which is justified under condition Eq. (1).

II. MODEL

The standard model for a zero-dimensional dot in the
Coulomb blockade regime is described by the Hamiltonian3–5,

Hd = ∑
n

εnd†ndn+ 1
2Ec

(
N̂−Ng

)2
, (3)

where d†n (dn) are the creation (annihilation) operators of the
quantum dot for the level n with energy εn and N̂ = ∑n d†ndn
is the number operator for the dot. It is useful to introduce
a variable, ΩN , that characterises the difference in interaction
energies between the N and N+1 states which is defined to be

ΩN = Ec

(
N+ 1

2 −Ng

)
. (4)

In order to study the I-V characteristics, the central island
is coupled to left (L) and right (R) leads. The Hamiltonians of
the individual leads, Hl, and the tunnelling between them and
the dot, Ht, are given by,

Hl = ∑
k,α

(εk−µα)c
†
k,αck,α , (5)

Ht = ∑
α,k,n

(
tαc

†
k,αdn+h.c.

)
. (6)

These terms constitute the Hamiltonian of the entire system,

H = Hd+Hl+Ht. (7)

In the above c†k,α
(
ck,α
)
are the creation (annihilation) opera-

tors for an electron in lead α = {L,R}. These electrons have
an energy (εk−µα), with the chemical potentials of the leads
given in this work by µL = µ +eV and µR = µ whereV is the
applied source-drain voltage across the dot. Different ways of
allocating the voltage to the two leads can be considered and
results suitably generalised. The tunnelling amplitude tα is
assumed to be independent of k and n and defines the broad-
ening of the energy levels of dot caused by the presence of
the leads, Γ. Taking the density of states in the leads να to
be a constant, the coupling of the dot to lead α is given by
Γα = 2πνα |tα |2, with the total coupling Γ = ΓL +ΓR. The
asymmetry ratio of ΓL/ΓR will be of particular importance in
this work.

III. METHOD

Previous analytical attempts to understand linear response
in the Coulomb blockade regime, albeit for ∆ ≫ T , given the
absence of inelastic processes have resulted in the derivation
of a detailed balance equation where at a given energy the tun-
nelling rates both on and off the dot are equal9. For the non-
equilibrium regime, we utilise the Keldysh formalism (see23

for a review) and the quantum kinetic equation (QKE) in a
way similar to that detailed in24. A similar approach has pre-
viously been used to calculate the tunnelling density of states
near to equilibrium25,26.
The QKE can be written in terms of the probability, pN , that

the dot has N electrons on it and the distribution function of
the N electron dot, FN(εn),

pN (1−FN(εn)) f̃ (εn+ΩN)

= pN+1FN+1(εn)
(
1− f̃ (εn+ΩN)

)
, (8)

where

f̃ (ε) = ΓL
Γ f (ε −µL)+

ΓR
Γ f (ε −µR). (9)

for a Fermi function f (ε). The normalisation conditions are
∑N pN = 1 and ∑nFN(εn) = (1/∆)

∫ ∞
0 F(ε)dε = N. The de-

tails of the derivation, as well as its exact solution in a two-
state limit, are presented in Appendix A. The QKE is analo-
gous to the detailed balance equations derived in9 for ∆ ≫ T .
Due to the nature of the Coulomb blockade, the dot will com-
monly be in a two-state limit where there are only two rele-
vant states, N and N+1, with all others being exponentially
suppressed. With this simplification, the solution to the QKE
when N ≫ 1 can be summarised as FN(εn) ≈ FN+1(εn) ≈
F(εn), where

F(εn) =
f̃ (εn+ΩN)

[1− f̃ (εn+ΩN)]
pN+1
pN

+ f̃ (εn+ΩN)
. (10)

The ratio of probabilities is determined by the normalisation
of the distribution function, which fixes the number of parti-
cles on the dot N = ∑nF(εn), and the individual probabilities
can be subsequently found from pN + pN+1 = 1.
Upon calculation of the probabilities and distribution func-

tion, it is necessary to see how they manifest in the experi-
mentally observable I-V characteristics. Through the calcu-
lation of the Green’s functions of the dot (see Appendix A),
the standard expression for the tunnelling current through the
lead α24,27 is written as,

Iα = eΓα ∑
N
pN ∑

n

(
FN(εn) [1− f (εn−µα+ΩN−1)]

− [1−FN(εn)] f (εn−µα+ΩN)
)
. (11)

Current conservation, I = IR = −IL, can be used to finally
express the current, where fα(εn) = f (εn−µα),
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I = e
ΓLΓR

Γ ∑
N
pN ∑

n

(
FN(εn) [ fL(εn+ΩN−1)− fR(εn+ΩN−1)]+(1−FN(εn)) [ fL(εn+ΩN)− fR(εn+ΩN)]

)
. (12)

IV. RESULTS AND DISCUSSION

Using the formalism outlined above, the I-V characteristics
can be calculated in the absence of thermalisation. The com-
pletely thermalised results can be obtained by replacing the
distribution function with its equilibrium value, f (εn − εF),
and then integrating the QKE, Eq. (8), over all energies to
obtain the probabilities. The current is then obtained using
Eq. (12). We explore both asymmetric and symmetric cou-
pling to the leads, identifying a new regime in each situation.
Prior to focusing on the current, the probability of having N
particles on the dot and its associated distribution function
must first be calculated. This will illuminate the origin of the
new results.

A. Probabilities

Our solution to the QKE is limited to the situation when
only two probabilities of occupation are relevant. In the low-
temperature equilibrium dynamics of the problem, this con-
dition is always satisfied due to the charging energy being the
largest scale in the system. In non-equilibrium however, when
the source-drain voltage becomes larger than the charging en-
ergy, only a restricted parameter space can be investigated.
The probabilities are found from the normalisation of the dis-
tribution function, Eq. (10),

εF ≡ N∆ =
∫ ∞

0

f̃ (εn+ΩN)

[1− f̃ (εn+ΩN)]
pN+1
pN

+ f̃ (εn+ΩN)
, (13)

in combination with the normalisation of the probabilities,
pN + pN+1 = 1. In the case where the coupling to the leads is
asymmetric, this integral can be performed exactly and gives
for ΓL ≫ ΓR

pN+1

pN
= e−β (εF−µL+ΩN). (14)

In the opposite limit of ΓL ≪ ΓR, we obtain the same result
except with the replacement µL → µR. In both instances of
strong asymmetry, the results are identical to those in the fully
thermalised case7,10,11 and mean that for any bias voltage, V ,
there can only be two relevant states and therefore the current
can be calculated for any V .

In order to consider the case of approximately symmetric
couplings, the low-temperature expansion of f̃ (εn) must be
considered,

f̃ (εn+ΩN)≈

 1− (ΓR/Γ)eβ ε̃n,N , ε̃n,N < 0
ΓL/Γ, 0< ε̃n,N < eV
(ΓL/Γ)e−β (ε̃n,N−eV )), eV < ε̃n,N


(15)

where ε̃n,N = εn − (µ − ΩN). Performing the integral in
Eq. (13) gives the following equation to be solved numerically
for the ratio of probabilities,

βεF =
βeV

pN+1
pN

ΓR
ΓL

+1
+ ln

(
Γ

ΓR

pN
pN+1

eβ (µ−ΩN)+1
)

+ ln

( ΓL
Γ +

pN+1
pN

Γ
ΓR

+
pN+1
pN

)
. (16)

The solutions for this are shown in Fig. 1. We highlight that
the probabilities in the non-thermalised regime are extremely
similar to the thermalised ones. This insensitivity to thermal-
isation is caused by the fact that the probabilities are deter-
mined almost solely by the energetics of the problem. For
voltages less than ΩN (assuming that µ = εF), the dot is firmly
in the blockade region withN electrons on the dot. As the volt-
age is increased above this threshold, it becomes energetically
possible for an electron to enter the dot and both N and N+1
particle states become relevant. This persists until eV ≈ ΩN+1
when another electron could enter the dot, violating the two-
state condition that predicates our solution. In the region of
validity, Eq. (16) can be used to estimate that pN = pN+1 oc-
curs at eV ≈ (1+ ΓR

ΓL
)(εF−µ +ΩN).
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FIG. 1. Demonstrating how the probabilities of having N and N+1
electrons occupying the dot change upon application of source-drain
voltage. This is calculated from both the master equation and QKE
corresponding to the thermalised (dashed lines) and non-thermalised
(solid lines) cases respectively for the case of equal coupling to the
leads. These two regimes produce virtually identical probabilities
with the small difference around eV ∼ ΩN = Ec/2 becoming smaller
as Ec/T increases, with Ec/T = 100.
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(ΓRPN+1
ΓLPN +1)−1

ε
0

1
V> Ec

(ΓRPN+1
ΓLPN +1)−1

F(ε)

FIG. 2. The distribution function of the electrons on the dot is shown
for three different source-drain voltages. For voltages less than ΩN ,
an incoming electron cannot overcome the charging energy and the
distribution remains as a Fermi function. At larger voltages the dou-
ble step appears and widens at higher bias. The height of the addi-
tional step decreases as voltage increases due to the dependence of
pN+1/pN on the source-drain voltage.

B. Distribution Function

Following the calculation of the probabilities, the distribu-
tion function is easily obtained by substituting the result for
the ratio, pN+1/pN into Eq. (10). In the case of asymmet-
ric coupling to the leads (regardless of which lead is more
strongly coupled), the distribution function becomes a Fermi
function with chemical potential εF. Therefore, in the non-
thermalised case a strong asymmetry of the coupling repro-
duces the behaviour of the thermalised dot as the coupling
effectively causes an equilibration across all energies on the
dot.

On the other hand, when the couplings to both leads are
approximately equal, the non-equilibrium distribution of the
dot is profoundly different from the equilibrium result, as
there is a lack of equilibration between electrons from the left
and right leads. A distinctive double-step feature emerges as
higher energy states can be occupied by electrons from the left
lead,

F(εn)≈


1, εn<µR−ΩN(
1+ΓR

ΓL

pN+1
pN

)−1
, µR−ΩN<εn<µL−ΩN

0, µL−ΩN<εn


(17)

which is displayed for different voltages in Fig. 2. A sim-
ilar change also occurs for dots involving non-interacting
electrons28–30 or a one-dimensional wire31, where the distri-
bution function is a linear combination of those of the leads.
However, in this instance, the double-step form is not as sim-
ple and is significantly modified by the interaction.

This distribution function is the source of differences in be-
haviour between thermalising and non-thermalising quantum

dots. Its form is dependent on the scales of parameters in
the system. For small voltages, eV < ΩN , which are insuffi-
cient to compensate the charging energy, there are N electrons
on the dot and the distribution is a Fermi function. As the
voltage is increased, such that two states become relevant, the
double-step form becomes relevant. The height of the mid-

dle step is given by
(
1+ΓR

ΓL

pN+1
pN

)−1
, meaning that asymmetry

in the coupling will dampen the effect of the non-equilibrium
behaviour. Indeed, if one of the couplings is taken to zero
then the asymmetric results previously mentioned are impor-
tant and the thermalised results are recovered.

C. Current-Voltage Characteristics

Having obtained the distribution function of the dot and
probabilities of occupation, the current-voltage characteristics
can now be obtained using Eq. (12). Beginning with the asym-
metric coupling, we first analyse the case of a large Fermi
energy on the dot (εF ≫ Ec). As previously stated, in the
asymmetric case, there are never more than two relevant states
so the current can be obtained for all voltages. Using that
FN(εn) = f (εn−εF) and the result in Eq. (14) with the appro-
priate normalisation, ∑N pN = 1, the current when ΓL ≫ ΓR
is found from Eq. (12) to be,

I = 0, 0≤ eV <∼ ΩN0 (pN0 = 1),

I = eΓR
ΩN0

∆
, ΩN0

<∼ eV <∼ ΩN0+1 (pN0+1 = 1), (18)

I = eΓR
ΩN0+1

∆
, ΩN0+1 <∼ eV <∼ ΩN0+2 (pN0+2 = 1),

and so on. Here, N0 is the number of electrons in equilibrium.
These results are identical to those in the case of complete
thermalisation7,10,11, reflecting the fact that the strong asym-
metry in the coupling leads to the distribution function on the
dot taking its equilibrium form. The staircase present in the
current here exists as electrons can accumulate on the dot. In
the opposite limit of ΓR ≫ ΓL, this will no longer be true as
the bias is applied to the left lead only and therefore the cur-
rent is simply Ohmic for eV > ΩN0 .
Although for a large Fermi energy, the absence of thermali-

sation has no impact in the strongly asymmetric case, we iden-
tify a new parametric regime when the Fermi energy of the dot
is much less than the charging energy. In obtaining the above
results it is important to note that the sum over energy levels
is converted to an integral through ∑n → (1/∆)

∫ ∞
0 dε , where

we note the lower integration limit accounts for the bottom of
the dot. In the case when εF ≪ Ec this becomes crucial as now
εF < ΩN0 is possible (ΩN0 ≈ Ec/2 in the middle of the valley).
Taking care with the integration (as is also described in21), the
current is given by

I = 0, 0≤ eV <∼ ΩN0 (pN0 = 1),
I = eΓR(N0+1), ΩN0

<∼ eV <∼ ΩN0+1 (pN0+1 = 1), (19)
I = eΓR(N0+2), ΩN0+1 <∼ eV <∼ ΩN0+2 (pN0+2 = 1),
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FIG. 3. The initial number of particles on the dot, N0, determines
the size of the first step in the current in the asymmetric regime for
εF ≪ Ec with subsequent steps being independent of N0. Here the
current is found exactly for a 7 state dot with thermally smeared en-
ergy levels.

and so on. We wish to highlight that the step heights are no
longer proportional to Ec/∆, unlike the large Fermi energy
results, as the lowest energy levels of the dot now dominate
the transport. Although at an initial glance it appears that a
staircase persists, we note that the first step is proportional to
N0 ≫ 1. Therefore this step is much larger than the subsequent
steps and therefore the staircase practically vanishes.

This regime also corresponds to a stepping stone between
the classical and quantum blockade regimes. The quantum
regime is defined by Eq. (1) but with ∆ ≫ T such that the
individual energy levels can be distinguished. To verify this
we solve the quantum master equation32 numerically for a dot
with 7 states, with the results shown in Fig. 3. We find the
same I-V curves, suggesting that our results in Eq. (19) per-
sist down to small values of N ∼ 10, therefore bridging the
gap between the classical Coulomb blockade and the quan-
tum regime where smaller numbers of electrons are on the dot
and the low-lying energy levels dominate the transport (see,
for example,1).

The absence of thermalisation has a more pronounced im-
pact for symmetric coupling with εF ≫ Ec despite there being
a smaller accessible voltage range, eV <∼ ΩN0+1, due to the
restriction to two relevant states. This is due to the chang-
ing of the distribution function from a Fermi function to the
double-step form in Eq. (17). The key change this leads to is
an additional jump in the differential conductance at eV = Ec
as shown in Fig. 4. The position of this jump is robust due to
ΩN0+1−ΩN0 = Ec. Importantly, this jump is experimentally
observable with it’s height given by (for ΩN0 = Ec/2),

δG=
e2

2∆
ΓLΓR

Γ
. (20)

In order to calculate this we note that around the jump, the
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FIG. 4. The differential conductance is plotted as a function of bias
voltage in the case of εF ≫ Ec for varying asymmetry of the coupling
to the leads. The secondary jump in conductance at eV = Ec is the
distinctive feature of non-thermalising quantum dots. This becomes
smaller, in comparison to the first peak, with increasing asymmetry.

ratio of probabilities is (also see22)

pN+1

pN
≈ ΓL

ΓR

(
eV −ΩN0

ΩN0

)
, (21)

and then the current (and therefore the differential conduc-
tance) can be obtained on either side of the jump, so that
Eq. (20) can be found.

V. CONCLUSION

To summarise, through the calculation of the I-V charac-
teristics, we have been able to identify new regimes that are
relevant to the classical Coulomb blockade, Eq. (1), in the ab-
sence of thermalisation. For strongly asymmetric coupling
to the leads, both the probabilities of occupation and the dis-
tribution function maintain their thermalised form, as a form
of equilibrium is established with the more strongly coupled
lead. In the limit of a large Fermi energy on the dot, this
reproduces the standard Coulomb staircase7,10,11. However,
when the Fermi energy is smaller than the charging energy of
the dot the staircase is no longer observable as the first step
washes out the subsequent smaller steps for a large number of
electrons on the dot.
In the case of symmetric coupling to the leads the distribu-

tion acquires a double-step form that is heavily influenced by
the interaction, whilst the probabilities remain close to their
thermalised counterparts. This change in distribution function
reflects the absence of equilibration between electrons com-
ing from the different leads to those already on the dot. It
leads to an additional peak in the differential conductance at
voltages equal to the charging energy and should, in princi-
ple allow for the detection of whether a quantum dot is in the
non-thermalising regime.
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Appendix A: Exact Solution in the Two-state Regime

The method used to obtain the discussed results can be gen-
eralised to similar tunnelling problems and here we derive the
QKE, Eq. (8), in the non-equilibrium regime and demonstrate
how to solve it in the case where there are only two relevant
occupations of the dot, N and N+1, with all other states being
exponentially suppressed due to the presence of the charging
energy.

1. Deriving the QKE

For an isolated dot the Hamiltonian for the system is simply
given by Hd. The Green’s function for a single level can be
expressed in terms of the time-independent operator, dn(t) =
eiHdtdne−iHdt ,

g>n (t) =−iTr
(
ρ̂0dn(t)d†n

)
, g<n (t) = iTr

(
ρ̂0d†ndn(t)

)
, (A1)

where ρ̂0 is the density matrix for the isolated system. The
full Green’s function for an isolated dot is then given by a
sum over all levels, n. Additionally, since the number of elec-
trons on the dot is conserved in the absence of tunnelling, we
write Eq. (A1) as a sum over subspaces where the number of
electrons, N is fixed,

g>n (ε) =−2πi∑N δ (ε − εn−ΩN)g>N (εn), (A2)
g<n (ε) =−2πi∑N δ (ε − εn−ΩN−1)g<N (εn), (A3)

g>N (εn) = TrN
(
ρ̂0dnd†n

)
, g<N (εn) =−TrN

(
ρ̂0d†ndn

)
.

We express g>N (εn), g
<
N (εn) using more natural parameters to

describe the system, that is the probability of having N elec-
trons on the dot, pN , and the distribution function of the dot
given that it has N electrons, FN(εn) via the ansatz

g>N (εn) = pN (1−FN(εn)) and g<N (εn) =−pNFN(εn).
(A4)

This leads to the normalisation of Eqs. (A2, A3) becoming
∑N
(
g>N (εn)−g<N (εn)

)
= ∑N pN = 1.

Given our separation of scales in Eq. (1), we incorporate
the effect of the tunnelling to and from non-interacting leads
in the weak-coupling limit, Γ → 0. The associated quantum
kinetic equation (QKE) is therefore,

g>,<
n (ε) = gRn (ε)Σ>,< (ε)gAn (ε) , (A5)

with the self-energies given by their standard expressions24,27

Σ>(ε) = =−i [Γ− (ΓL fL(ε)+ΓR fR(ε))] , (A6)
Σ<(ε) = = i(ΓL fL(ε)+ΓR fR(ε)) . (A7)

The self-energies here are assumed to be independent of the
level n and are given in terms of the Fermi functions of the
leads, fα(ε) = f (ε − µα). After inserting the self-energies
into Eq. (A5) and rewriting the QKE as g>n (ε)Σ<(ε) =
g<n (ε)Σ>(ε), we find the result presented in Eq. (8).

2. Exact Solution to the Quantum Kinetic Equation

In order to see how the solution in Eq. (10) arises, we
present an exact solution to the QKE, Eq. (8), when there are
only two relevant states,

pN = ZN
ZN+ZN+1

, pN+1 =
ZN+1

ZN +ZN+1
,

(A8)
FN(εn) = ZN(εn)

ZN
, FN+1(εn)=

ZN+1(εn)
ZN+1

,

where

ZN = ∑{n j=0,1} ∏∞
j=1

[
f̃ (ε j+ΩN)

1− f̃ (ε j+ΩN)

]n j
δ(∑ j n j),N ,

(A9)

ZN+1 = ∑{n j=0,1} ∏∞
j=1

[
f̃ (ε j+ΩN)

1− f̃ (ε j+ΩN)

]n j
δ(∑ j n j),N+1,

while ZN(εn) in Eq. (A8) is defined by restricting the sums in
Eq. (A9) to configurations where εn is occupied. By express-
ing the Krönecker delta as an integral over θ , we express ZN
as

ZN =
∫ dθ

2π e
N f (θ),

(A10)

f (θ) = 1
N ∑ j ln

(
1+ f̃ (ε j+ΩN)

1− f̃ (ε j+ΩN)
eiθ
)
− iθ ,

and as we consider N≫ 1, then this is evaluated using the sad-
dle point method to give ZN = g(θ0)e−iNθ0 . The saddle point
equation for the optimal θ = θ0 is simply the normalisation
of the distribution function given in Eq. (10). The N depen-
dence of θ0 is only via N∆ as both ZN and ZN+1 depend on
ΩN (rather than ΩN+1) and therefore θ0 is the same for both
(as N ≫ 1) and so the solutions presented in Eq. (A8) are

pN+1
pN

= e−iθ0 ,

(A11)

FN(εn)≈ FN+1(εn)≈
(
1− f̃ (εn+ΩN)

f̃ (εn+ΩN)
e−iθ0 +1

)−1
,

which is equivalent to Eq. (10).
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