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A B S T R A C T

Global urbanization and the growing need for sustainable transportation solutions are increasing the demand for
electric vehicle (EV) infrastructure. This research aims to identify optimal locations for Residential On-Street
Electric Vehicle Charging Points (RO-EVCPs) that are essential for residents without access to off-street park-
ing and to support the transition to a sustainable urban environment in Birmingham. A GIS-based model,
incorporating key location criteria such as accessibility, environmental impact, and infrastructure compatibility,
can effectively identify suitable locations for RO-EVCP deployment, improving access and inclusivity for electric
mobility. The study develops a customized geographic information systems (GIS) model, utilizing the Analytic
Hierarchy Process (AHP) for weighting location criteria, with validation through geospatial tools like Google
Earth® and Street View. The model generates a spatial suitability map, categorizing areas into optimal, mod-
erate, and limited suitability for EV charging, with an emphasis on accessibility, environmental impact, and
inclusiveness. High-priority streets and recommended charging point numbers are identified. The findings
emphasize accessibility and inclusiveness, crucial for individuals without off-street parking, promoting an
equitable transition to electric mobility. This research contributes to sustainable urban mobility planning by
advocating data-driven decision-making in EV infrastructure development, aligning with climate change miti-
gation objectives.

1. Introduction

The rapid growth of the population and increasing urbanization
trend have led to detrimental environmental such as global warming and
climate change (Abid et al., 2022; Wang & Cheng, 2020). In response to
these challenges, Electric vehicles (EVs) are introduced as a solution to
clean energy and toward achieving sustainable cities, and nowadays,
this type of new mobility has been growing rapidly worldwide (Liang
et al., 2019). EVs have been growing rapidly worldwide due to their
ability to reduce greenhouse gas emissions, mitigate climate change, and
improve air quality and noise pollution (Hajiaghaei-Keshteli et al., 2023;
Karolemeas et al., 2021). One of the most significant urban challenges
for EVs is providing a charging infrastructure. Electric Vehicles Charging
Station (EVCS) should also be widespread and available for everyone to
ensure equity, also accessibility for all members of the community to
promote fairness and inclusivity (Charly et al., 2023; Iravani, 2022).
Poor location of charging stations can lead to waste of resources and

negatively impact decarbonisation efforts (Ademulegun et al., 2022).
This study focuses on the city of Birmingham, UK, selected as a

representative case to explore the optimal location of Residential On-
Street Electric Vehicle Charging Points (EVCPs) in urban areas where
off-street parking is limited. Projections indicate that by 2030, Bir-
mingham will have over 170,000 electric vehicles on its roads, neces-
sitating the installation of approximately 3630 public charging points,
including 1375 dedicated Residential On-Street Charging Points
(Hahmann et al., 2011). Recent data highlight that around 75 % of EV
charging occurs at home, predominantly overnight, underscoring the
urgency to address the charging needs of residents without private
parking (Department for Transport, 2022a). The lack of off-street
parking spaces mostly impacts urban and city regions, particularly so-
cial housing inhabitants, as many households lack access (Ministry of
Housing, Communities & Local Government, 2019). Most EV users use
home charging, however, the lack of private parking infrastructure
makes it difficult for these residents to do so. Accessibility and the
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unequal distribution of public charging facilities across the country
restrict EV adoption in this demographic (AA Populus Driver Poll
Summaries, 2020; Department for Transport, 2022c). On-street EV
charging’s significance lies in its convenience and alignment with
established driving and parking behaviors, with near-home charging
being the top choice for future EV charging. Charging device location
categories are determined by factors such as their physical location, the
type of facility they are situated in, accessibility, and the specific
charging services they provide. On-street charging refers to the instal-
lation of charge points along the roadside, often integrated into lamp-
posts or bollards, as well as in local residential parking areas. This
charging option primarily serves individuals without access to off-street
parking. These charge points offer slow or fast charging capabilities and
can be utilised overnight, mirroring the convenience of home charging
(Frade et al., 2011; CMA, 2021; Department for Transport, 2023a).

Previouse studies have employed various approaches to determine
optimal EVCS locations, including multi-criteria analysis and optimi-
zation models Grote et al. (2019); Mahdy et al. (2022); Charly et al.
(2023). These investigations have primarily centered on factors such as
road access, parking availability, population density, and existing
infrastructure (Campbell et al. (2012); Namdeo et al. (2014)). Never-
theless, there remains a notable gap in the literature regarding the ex-
amination of residential on-street charging locations that also consider
demographic factors and environmental indicators, which this research
aims to address.

This research introduces a novel approach, leveraging Geographic
Information Systems (GIS) and geospatial analysis, to identify optimal
locations for Residential On-Street EV Charging Points (EVCPs). It in-
corporates previously unaddressed factors such as ’Inclusive EVCP Dis-
tribution for Disabilities,’ ’Noise Pollution,’ ’EV-Prone Age Groups,’ and
’Air Quality Levels.’ The primary contribution of this study is the
introduction of criteria like ’Inclusive EVCP Distribution for Disabilities’
and ’Noise Pollution,’ which have not been considered in previous
research on charging infrastructure—whether for destination, en-route,
or on-street charging. Moreover, this study is the first to explore ’EV-
Prone Age Groups’ and ’Air Quality Levels’ specifically in the context of
Residential On-Street Charging Points.

By doing so, it aims to enhance the existing charging infrastructure,
ensuring it aligns with the demographic and environmental landscape of
Birmingham. The dual objectives of this study are to reduce carbon
emissions and promote social inclusivity, which resonate with Bir-
mingham’s sustainability goals for a cleaner, healthier urban environ-
ment. The development of a tailored GIS-based model facilitates precise
location identification for EVCPs, ensuring accessibility for all commu-
nity members, especially marginalized groups, while addressing envi-
ronmental concerns and enhancing air quality. This comprehensive
approach aims to contribute evidence-based recommendations for the
deployment of Residential On-Street EV charging points, forming a
strategic framework that guides Birmingham toward a more sustainable
and electrified future.

The paper is organized as follows: Section 2 reviews the relevant
literature on EVCS location methodologies and outlines the study’s ob-
jectives. Section 3 presents the data sources and study area. Section 4
details the methodology employed in site selection. Sections 5 and 6
discuss the analysis, results, and implications, culminating in conclu-
sions drawn from the research findings.

2. Literature review

2.1. Recent research in optimizing electric vehicle charging station
locations (EVCs)

The development of public electric vehicle (PEV) charging infra-
structure has attracted considerable research interest in recent times.
Numerous studies have endeavored to pinpoint appropriate locations for
both public and residential charging points (CPs) in diverse geographic

regions. In the pursuit of optimal locations for electric vehicle (EV)
charging stations, various research studies have contributed signifi-
cantly to this endeavor. Kadri et al. (2020) utilised a combination of
stochastic programming and Genetic Algorithms to tackle the challenge
of locating fast charging stations. Zhu et al. (2016) presented a mathe-
matical model paired with Genetic Algorithms to address the deploy-
ment of plug-in charging stations. Their research aimed to reduce
ownership costs for EV users and alleviate range anxiety. Through their
approach, they successfully optimized the placement of plug-in charging
stations, ensuring cost-effectiveness in their deployment. Xi et al. (2013)
approached the problem of public charging station placement, with a
focus on cost-effectiveness. They employed simulation-optimization
techniques to identify optimal locations for public charging stations
while considering factors such as private EV use and charger
cost-effectiveness. Huang and Kockelman (2020) utilised genetic algo-
rithms to optimize the placement of fast-charging stations. Their
approach factored in various considerations, including cost, equipment,
and network congestion feedback, resulting in an efficient placement
strategy.

In addition, Rane et al. (2023) evaluated the suitability of zones for
electric car vehicle charging stations by integrating the GIS, MIF, and
TOPSIS approaches. This research identified optimal locations through a
weighted overlay analysis integrating thirteen influencing factors. In
order to examine the spatial patterns of Charging Demand Indicators
(CDI) and their correlation with the distribution of Public Charging
Stations (PCS), Kang, Kong et al. (2022) used spatial regression
modeling and kernel density functions. The results demonstrated sig-
nificant variations in the demand for charging EVs over various urban
structures, weekdays versus weekends, and EV travel distances.

Bayram et al. (2022) conducted a spatial analysis to enhance the
placement of fast-charging stations in urban areas. By leveraging
Geographic Information System (GIS) and linear programming, they
optimized fast charger placement based on population and road traffic
data. This research demonstrated the potential to significantly improve
EV coverage in urban environments, particularly in cities where such
research is limited. In addition to these specific studies, a range of
methodologies has been employed for optimal charging station place-
ment. A variety of Multi-Criteria Decision Making (MCDM) techniques
have been utilised in this context, each offering unique approaches to
the challenge of optimal charging station placement. Some of these
techniques include the Analytical Hierarchy Process (AHP), the Tech-
nique for Order of Preference by Similarity to Ideal Solution (TOPSIS),
and the Preference Ranking Optimization Method for Enrichment
Evaluation (PROMETHEE), among several others.

The applications of these techniques are diverse, spanning fuzzy AHP
in Ankara, Turkey (Erbaş et al., 2018), fuzzy TOPSIS in Beijing, China
(Guo & Zhao, 2015), and GIS-based MCDM methods in Istanbul (Kaya
et al., 2020), to name a few. These approaches have been instrumental in
optimizing the selection of suitable EV charging station locations,
ensuring a comprehensive assessment of various criteria and factors.
Furthermore, research studies have explored alternative methodologies
such as Bayesian networks (Hosseini & Sarder, 2019), k-means clus-
tering (Zhang et al., 2019), mixed-integer optimization models (Frade
et al., 2011), and machine learning techniques (Roy & Law, 2022) to
tackle the complexities of EV charging station placement. These studies
have expanded our understanding of how different methodologies can
be applied to address site selection challenges and promote the effective
deployment of charging infrastructure. In summary, the body of litera-
ture on EV charging station site selection encompasses a wide array of
methodologies, each offering unique insights and approaches to opti-
mize the placement of these crucial infrastructure elements. These
studies collectively contribute to the ongoing effort to establish a robust
and efficient EV charging network, essential for the widespread adop-
tion of electric vehicles.
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2.2. Recent research in optimising on-street electric vehicle charging point
locations (EVCPs)

Grote et al. (2019) introduced a practical approach tailored to the
needs of Local Government Authorities (LGAs) for the identification of
suitable streets in Southampton, UK, where on-street Plug-in Electric
Vehicle (PEV) charging infrastructure could be effectively deployed.
This approach hinged on the utilisation of Geographic Information
System (GIS) analysis, alongside readily available census and parking
data. As a result of their study, Grote et al. (2019) were able to provide
LGAs with a set of 128 recommended streets, offering a valuable blue-
print for the improvement of residential charging infrastructure. Addi-
tionally, the works of Campbell et al. (2012) and Namdeo et al. (2014)
emphasized the significance of comprehending the demographic profiles
and characteristics of potential early adopters of Plug-in Electric Vehi-
cles (PEVs). These studies stressed the importance of assessing the de-
mands for charging infrastructure by considering socio-economic data
and user-specific attributes. In a related vein, Lin and Greene (2011) put
forward a recommendation that advocated for a clear differentiation
between public and residential charging points. Their work highlighted
the necessity of tailoring charging infrastructure to cater to the distinct
needs and preferences of these diverse user groups.

In their study, Mahdy et al. (2022) utilised a multi-criteria deci-
sion-making approach, which involved the integration of the Analytical
Hierarchy Process (AHP) with Geographic Information System (GIS)
analysis. In their comprehensive analysis, researchers considered a va-
riety of factors to determine the ideal locations for on-road Electric
Vehicle (EV) charging points within the Winchester District, UK. These
factors encompassed road classifications, ease of road access, the pres-
ence of on-road parking spaces, road gradients, proximity to fuel sta-
tions, the availability of current/planned charging facilities, parking
provisions for cars, and the distribution of the local population. Their
research underscored the critical role played by both spatial and de-
mographic analyses in the process of optimizing charging infrastructure
within specific geographical regions.

Collet et al. (2022) addressed the challenge of providing EV charging
accessibility to residents without off-street parking in Oxford, utilising
geospatial analysis with the GECCO tool to identify suitable car parks.
This approach offers a practical strategy for local authorities and charge
point installation companies to meet increasing EV charging demand
and contribute to sustainability goals. Charly et al. (2023) explored the
strategic placement of EVCPs in urban areas, focusing on Dublin,
Ireland. Their GIS-based methodology categorised charging infrastruc-
ture into en-route, shared-residential and destination charging types.
Factors like population density, parking availability, proximity to
existing charging stations, and accessibility to key locations were
considered. The study identified 770 high-priority EVCP locations for
installation by 2025 and 3080 medium-priority sites for deployment by
2030 in alignment with Dublin’s EV charging goals. However, the study
does not consider judgment criteria or stakeholder preferences, focusing
instead on A hands-on spatial analysis using GIS techniques. It also has
limitations related to data sources and infrastructure considerations. Its
transferable approach, based on QGIS and open-source data, can serve as
a model for similar spatial problem-solving in other regions.

By the year 2050, it is anticipated that approximately 10 million
electric cars and vans will be regularly parked on residential streets in
the UK overnight, necessitating accessible and reliable charging solu-
tions (Department for Science, Innovation & Technology, 2023). Exist-
ing research indicates that most EV owners prefer home charging over
public or workplace options during the night, leading to a focus on
public charging station placement in the literature (Bjerkan et al., 2016;
Mohamed et al., 2016; Sierzchula et al., 2014; Silvia & Krause, 2016).
However, there remains a gap in strategically placing Residential
On-Street EV Charging Points, particularly in urban areas. Birmingham,
UK, is a typical example, which is taken as a test case.

This research addresses these gaps by introducing previously

unexplored criteria, such as ’Inclusive EVCPs Distribution for Disabil-
ities’ and ’Noise Pollution,’ alongside factors like ’EV-Prone Age Groups’
and ’Air Quality Levels.’ These innovative factors will guide the geo-
spatial analysis and classification of Residential On-Street EV Charging
Points in Birmingham, UK. The exclusion and inclusion criteria pre-
sented in this research offer a novel approach to optimizing EV charging
infrastructure placement, ensuring that it meets the needs of diverse user
groups while also minimizing environmental impact.

By integrating these additional criteria, this study provides new in-
sights into the strategic placement of EV charging points, emphasizing
accessibility, inclusivity, and environmental sustainability—areas that
have not been sufficiently considered in prior studies. This will help
shape the future of residential on-street EV charging infrastructure in a
more holistic and socially responsible manner.

• How can the inclusion of accessibility criteria, such as EV charging
points for users with disabilities, impact the strategic placement of
Residential On-Street EV Charging Points in urban areas?

• What role do environmental factors, such as noise pollution and air
quality levels, play in the optimal placement of residential on-street
charging infrastructure?

• How do demographic factors, particularly the distribution of EV-
prone age groups, influence the spatial planning of Residential On-
Street EV Charging Points in urban areas?

• Can a dual classification approach (involving both exclusion and
inclusion criteria) provide a more comprehensive framework for
selecting optimal locations for Residential On-Street EV Charging
Points, considering both accessibility and environmental
sustainability?

This research seeks to address these questions by offering a
comprehensive geospatial analysis of Residential On-Street EV Charging
Infrastructure in Birmingham, UK, incorporating a novel set of criteria
that expands upon traditional approaches. By introducing and inte-
grating inclusivity and environmental considerations into EV charging
infrastructure planning, this study aims to contribute to the develop-
ment of a more sustainable and equitable urban mobility network.

3. Materials and data

3.1. Study area

Birmingham, situated inland on the Birmingham Plateau in the
central part of Great Britain, and operates as a critical hub in the heart of
the country and is governed by the Birmingham City Council. With its
strategic geographic location, ongoing population growth, and regional
importance, Birmingham continues to play a vital role within the
broader landscape of the United Kingdom (Population of Birmingham,
2023). Birmingham currently has around 240 charge points, with over
140 chargers in the city. Most are in the city center, with some along
major roads. Many are fast chargers, and there are also some rapid and
ultra-rapid chargers available (Birmingham City Council, 2021a). Bir-
mingham’s city-wide EV charge point strategy, stretching until 2032,
differs significantly from its initial phase (Fig. 1).

3.2. Exploring key criteria for optimal residential on-street EV charging
point locations

This study focuses on strategically placing electric vehicle charging
points (EVCPs), particularly in on-street residential areas, considering
various influential factors. It adheres to UK Government and Birming-
ham City Council guidelines, including the Net Zero Strategy, Take
Charge: Electric Vehicle Infrastructure Strategy, and Birmingham’s
Electric Vehicle Charging Strategy. The study recognizes the impact of
household income on EV purchase decisions and emphasizes equitable
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access to charging infrastructure, aiming to avoid concentration in
affluent areas. Unlike previous research that considered factors like
lamp post proximity and income, this study deliberately excludes such
criteria to ensure fair access for all users.

This study employs a selection of criteria previously employed in
related research, aligning with the study’s subject and geographic scope.
Furthermore, it introduces novel criteria, thereby expanding the array of
factors and individuals being considered. This study adopts a dual
classification approach for its site-selection criteria. The initial category
comprises exclusion criteria designed to exclude unsuitable locations
outside the study’s scope. These criteria encompass road type, road
speed, road slope, feasibility of on-street parking, and potential locations
for non-residential On-Street charging. The second category encom-
passes suitability criteria for the selection of optimal charging point
sites. These criteria are further grouped into three distinct categories:
Accessibility and Infrastructure, Population Distribution, and Environ-
mental and Geographical Factors. Additionally, they are subdivided into
eight sub-criteria, including Residential Proximity, Distance to Available
EVCPs, Population Density, Inclusive EVCPs Distribution for Disabilities,
EV-Prone Age Groups, Air Quality Level, Noise Pollution, and Road
Slope Compatibility. Further details, reasons for inclusion, and relevant
literature references for these criteria are provided below and concisely
summarized in Table 1.

4. Methodology

The research methodology is a multifaceted and data-driven process
designed to achieve research objectives systematically. It encompasses
several key stages, each contributing to the comprehensive analysis of
optimal RO-EVCP locations (see Fig. 2).

4.1. Literature review

The research begins with an extensive literature review, adopting a

deductive approach. This review explores existing theories and knowl-
edge related to electric vehicle infrastructure planning and identifies
gaps in the literature. By building upon established research, the study
contextualizes its analysis within the broader field of sustainable urban
mobility.

4.2. Identification of influential factors

The next crucial step in the research process involves the identifi-
cation of influential factors. This phase is dedicated to pinpointing the
key elements that significantly impact the selection of optimal RO-EVCP
locations. Through an exhaustive review of existing literature and expert
consultations, these factors will be meticulously curated to serve as the
foundational criteria guiding the study’s decision-making process.

4.3. Data collection

To support the analysis, the research collects diverse datasets rele-
vant to Birmingham, UK, from credible sources. These datasets include
demographic information, environmental data, road network details,
and geographic data. Table 2, provides a comprehensive summary of the
data sources and attributes used in the analysis.

4.4. Suitability models

The core of the methodological approach involves developing suit-
ability models. This process combines the Analytic Hierarchy Process
(AHP) with Geographic Information Systems (GIS) within a Geographic
Information Systems Multi-Criteria Decision Analysis (GIS-MCDA)
framework. In this step, AHP is employed, beginning with pairwise
comparisons through expert surveys that are normalized to ensure
consistency, ultimately assigning weightings to the identified criteria
based on their relative importance. The GIS-MCDA framework in-
tegrates these weighted criteria to create suitability models, categorising

Fig. 1. Map of Birmingham city council areas and wards in the study area.
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potential RO-EVCP locations into three classes: Limited Suitability,
Moderate Suitability, and Optimal Suitability, represented by ratings
from 1 to 3.

4.5. Criteria categorisation

The criteria used in the analysis are organized into three distinct
sections. Initially, these criteria function as exclusionary factors,
allowing for the removal of unsuitable data, subjects, or elements from
consideration. Subsequently, they transition into suitability criteria,
facilitating the assessment of location appropriateness for specific pur-
poses. Finally, the criterion of on-street parking feasibility becomes
essential, contributing to visual validation and the definitive selection of
optimal EV charging point locations.

4.6. Visual validation

To validate the suitability models and ensure real-world feasibility,
the research employs visual validation techniques. This step entails
physically inspecting and verifying the selected RO-EVCP locations
using tools such as Google Earth® and Google Street View.

4.7. Applying analytic hierarchy process (AHP) for optimal EV charging
point location analysis

The Analytic Hierarchy Process (AHP) is a widely used mathematical
method and decision-making tool renowned for its simplicity, flexibility,
and ability to assess criteria consistency . Its application in selecting
optimal locations, particularly within Geographic Information Systems
(GIS), is well-documented in the (Janjić et al., 2021; Bitencourt et al.,
2021; Erbaş et al., 2018; Karolemeas et al., 2021; Lee et al., 2021;
Skaloumpakas et al., 2022). Through pairwise comparisons, AHP facil-
itates the determination of factor weights, enabling decision-makers to

Table 1
Criteria description and studies that have used them for EVCSs and EVCPs.

Criteria Reason for
consideration

EVCP location studies
that have used this
criteration

Suitability Criteria
SCI.I Residential

Proximity
To enhance residential
charging, should be
placed chargers closer
to homes; distant
households use
overnight chargers less
due to inconvenience (
Gilbert et al., 2020).

(Charly et al., 2023;
Karolemeas et al.,
2021; Pagani et al.,
2019)

SCl.2 Distance to Available
EVCPs

To maximize coverage
and accessibility, new
charging stations
should be positioned at
a distance from existing
ones.

(Lee et al., 2021;
Carra et al., 2022;
Csiszár et al., 2019;
Kaya et al., 2020;
Raposo et al., 2015;
Mahdy et al., 2022;
Erbas et al., 2018)

SC2.l Population Density Research using census
data to explore the
distribution of
individuals capable of
adopting electric
vehicles verifies this
pattern (Campbell
et al., 2012). In densely
populated areas,
residents often lack
private driveways and
home charging options,
In de making them
reliant on public
charging infrastructure
(Gilbert et al., 2020 ;
Schmidt et al., 2020).

(Awasthi et al., 2017;
Campbell et al., 2012;
Carra et al., 2022;
Charly et al., 2023;
Csiszár et al., 2019;
Erbaş et al., 2018;
Frade et al., 2011;
Guler & Yomralioglu,
2020; Iravani, 2022;
Ju et al., 2019;
Karolemeas et al.,
2021; Kaya et al.,
2020; Mahdy et al.,
2022; Raposo et al.,
2015; Roy & Law,
2022; Wu et al., 2016;
Zhao & Li, 2016)

SC2.2 EV-Prone Age
Groups

EV-Prone Age Groups
typically encompass
younger demographics
with a greater interest
in electric vehicles and
electric mobility (
Department for
Transport, 2017).

(Costa et al., 2017;
Lee et al., 2021;
Pagani et al., 2019)

SC3.l Air Quality Level Areas with poor air
quality may prioritize
EVCPs to encourage
cleaner transportation
options.

(Guo & Zhao, 2015;
Hosseini & Sarder,
2019; Kaya et al.,
2020; Lee et al., 2021;
Zhao & Li, 2016)

SC3.2 Noise Pollution Placing EVCPs in noisy
urban areas can help
reduce traffic noise
pollution (Campbell
et al., 2012; Manzetti &
Mariasiu, 2015).

NIA

SC3.3 Road Slope
Compatibility (≤10
%)

To optimize the
placement of EVCPs, it
is essential to identify
flat areas with slopes
less than 10 %. The
evaluation process
focuses on roads
meeting this criterion
(Streets And Transport
In the Urban
Environment (CIHT,
2023)).

(Costa et al., 2017;
Erbaş et al., 2018;
Guler & Yomralioglu,
2020; Kaya et al.,
2020; Mahdy et al.,
2022; Zhang, Zhang,
Farnoosh, Chen & Li,
2019)

Exclusion Criteria
ExCl Road Speed To ensure safety and

compliance with the
Highway Code’s rule
249, roads with speed
limits exceeding 30
mph should be
excluded (The

(Karolemeas et al.,
2021; Mahdy et al.,
2022)

Table 1 (continued )

Criteria Reason for
consideration

EVCP location studies
that have used this
criteration

Highway Code –
Waiting and parking
(238 to 252), GOV.UK).

ExC2 Road Type Exclude non-residential
roads to optimise
EVCPs placement near
residential areas.

(Costa et al., 2017;
Karolemeas et al.,
2021; Mahdy et al.,
2022)

ExC3 Potential Public
Services Locations
for Non-Residential
On-Street Charging

To ensure a fair
distribution of
residential on-street
EVCPs, it is advisable to
exclude parking spaces
in areas with high
travel attraction rates
and extended parking
durations, which are
better suited for non-
residential on-street
charging.

(Charly et al., 2023;
Guler & Yomralioglu,
2020; He et al., 2018;
Iravani, 2022;
Karolemeas et al.,
2021; Kaya et al.,
2020; Mahdy et al.,
2022; Raposo et al.,
2015).

ExC4 Road Slope (>10 %) To enhance energy
efficiency and safety,
roads with slopes
exceeding 100/o
should be excluded
from consideration.

(Costa et al., 2017;
Erbaş et al., 2018;
Guler & Yomralioglu,
2020; Kaya et al.,
2020; Mahdy et al.,
2022; Zhang et al.,
2019).

ExC5 Feasibility of On-
Street Parking

Adequate on-street
parking is crucial for
choosing the best
residential EVCPs,
especially for overnight
charging convenience.

(Janjić et al., 2021;
Carra et al., 2022;
Charly et al., 2023;
Karolemeas et al.,
2021; Kaya et al.,
2020; Mahdy et al.,
2022)
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Fig. 2. Study Road Map.
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evaluate and rank multifaceted factors influencing complex decisions.
According to the Table 3, the process involves assessing factor pairs on a
defined 9-point scale based on expert judgments, with 1 representing
equal importance and 9 indicating extreme importance. AHP’s rigorous
methodology and reliance on expert opinions make it a valuable tool for
decision-making in GIS contexts.

The structured hierarchical framework created in three primary
levels: the overarching objective, criteria, and sub-criteria (Fig. 3). At
each level of this hierarchy, factors are meticulously paired and
compared, leading to the development of four matrices. These matrices
serve as pairwise comparison matrices, essential tools for quantifying
relative preferences or importance among elements or criteria. Experts
assign values, typically on a scale of 1 to 9, to express how one element
relates to another within these matrices (Saaty, 1977).

The questionnaire employed in our hierarchical analysis and multi-
criteria decision-making is referred to as an expert questionnaire. This
questionnaire involves pairwise comparisons of options and employs
Mr. Saati’s nine-grade scale for scoring, as outlined in the provided
table. The questionnaire was distributed to 20 experts from diverse
professional backgrounds via email and consist of standardized ques-
tions and content for uniformity. It included introductory greetings, a
participant consent form, inquiries about participants’ personal and
professional characteristics, explanations regarding the study’s purpose,
a concise introduction to criteria and sub-criteria, instructions for
questionnaire completion, and the crucial pairwise comparisons to be
conducted by participants. As depicted in Fig. 4, the largest segment
(39.13 %) specialized in the domain of Transportation and Mobility,
followed closely by those in Civil Engineering (30.43 %), and Academic
Researcher roles in related fields (26.09 %). This diverse array of

Table 2
Summary of GIS criteria, data types, sources, and processes.

Criteria GIS Specific
Processes

Type of Data Data Source

Suitability Criteria
SC1.1 Residential

Proximity
Query -
Multiple
Ring Buffer -
Dissolve -
Union

polygon shape
file

OSM exports for
Birmingham by
BBBike.org

SC1.2 Distance to
Available EVCPs

Query -
Multiple
Ring Buffer -
Dissolve -
Union

Point shape
file

OSM exports for
Birmingham by
BBBike.org

SC2.1 Population
Density

Join - Query
- Count -
Dissolve

Text-extracted
data joined
with
Birmingham
ward shapefile

2021 Census
profile for wards
in Birmingham
Overview |
Population and
census |
Birmingham City
Council
Wards (May 2023)
Boundaries UK
BFC | Wards (May
2023) Boundaries
UK BFC | Open
Geography Portal
(statistics.gov.uk)

SC2.2 Inclusive EVCPs
Distribution for
Disabilities

Join - Query
- Count -
Dissolve

Text-extracted
data joined
with
Birmingham
ward shapefile

2021 Census
profile for wards
in Birmingham
Overview |
Population and
census |
Birmingham City
Council
Wards (May 2023)
Boundaries UK
BFC | Wards (May
2023) Boundaries
UK BFC | Open
Geography Portal
(statistics.gov.uk)

SC2.3 EV-Prone Age
Groups

Join - Query
- Count -
Dissolve

Text-extracted
data joined
with
Birmingham
ward shapefile

2021 Census
profile for wards
in Birmingham
Overview |
Population and
census |
Birmingham City
Council
Wards (May 2023)
Boundaries UK
BFC | Wards (May
2023) Boundaries
UK BFC | Open
Geography Portal
(statistics.gov.uk)

SC3.1 Air Quality
Level

Project -
IDW -
Reclassify -
Raster to
Polygon -
Dissolve

Text-extracted
data converted
to a point
shapefile.

2022 Air Quality
(ASR)
https://www.
birmingham.gov.
uk/info/20076/
pollution/1276/
air_pollution

SC3.2 Noise Pollution Clip - Query -
Dissolve -
Union

polygon shape
file

Defra Spatial Data
Download htt
ps://environment.
data.gov.
uk/DefraDat
aDownload

SC3.3 Road Slope
Compatibility
(≤10 %)

Mosaic - Clip
- Slope
-Reclassify -
Raster to

Raster (Pixel
Depth: 32 Bit)

EarthExplorer
(usgs.gov)

Table 2 (continued )

Criteria GIS Specific
Processes

Type of Data Data Source

Polygon
-Dissolve

Exclusion Criteria
ExC1 Road Speed Query -

Erase
Line shape file BBBike extracts

OpenStreetMap
(OSM, Garmin,
Shapefile etc.)

ExC2 Road Type Query -
Erase

Line shape file BBBike extracts
OpenStreetMap
(OSM, Garmin,
Shapefile etc.)

ExC3 Potential Public
Services
Locations for
Non-Residential
On-Street
Charging

Query -
Buffer - Clip

polygon shape
file

OSM exports for
Birmingham by
BBBike.org

ExC4 Road Slope
(>10 %)

Mosaic - Clip
- Slope
-Reclassify -
Raster to
Polygon
-Dissolve

Raster (Pixel
Depth: 32 Bit)

EarthExplorer
(usgs.gov)

Table 3
Saaty’s 1–9 scale of pairwise comparisons.

Intensity of Importance Definition

1 Equally Important Preferred
2 Equally to Moderately Important Preferred
3 Moderately Important Preferred
4 Moderately to Strongly Important Preferred
5 Strongly Important Preferred
6 Strongly to Very Strongly Important Preferred
7 Very Strongly Important Preferred
8 Very Strongly to Extremely Important Preferred
9 Extremely Important Preferred
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expertise significantly enriched the analytical approach undertaken in
this study.

In terms of their professional tenure, a substantial majority (65.22%)
possessed more than a decade of experience within their respective
domains, highlighting the wealth of seasoned knowledge among the
participants. Furthermore, 21.74 % had 6–10 years of experience, while
13.05 % had <5 years of professional involvement, collectively repre-
senting a panel of highly accomplished individuals (see Fig. 5). This
diverse and accomplished group of experts played a pivotal role in
shaping the study’s methodological foundation, contributing invaluable
insights and experiences.

The Analytical Hierarchy Process (AHP) Excel Template for MS Excel
2013 by Klaus D. Goepel was utilized for this study (Goepel, 2013). In
the AHP analysis, we utilized 8 distinct criteria (Residential Proximity,
Distance to Available EVCPs, Population Density, Inclusive EVCPs Dis-
tribution for Disabilities, EV-Prone Age Groups, Air Quality Level, Noise

Pollution, and Road Slope Compatibility) to identify the most suitable
sites for EV charging stations in the region. Subsequently, experts shared
their perspectives by completing a questionnaire. Once input from each
expert was collected, the responses underwent scrutiny for consistency.
Consistency assessment, crucial to the AHP methodology, employs the
Consistency Ratio (CR), computed as the ratio of Consistency Index (CI)
to Random Index (RI) using the Alonson and Lamata linear fit method
(2006). In this study, the CR calculation process involved computing
compatibility ratios for individual and collective expert judgments. The
equations employed for these calculations are provided below, where
Eq. (1) corresponds to the Consistency Index (CI), Eq. (2) represents the
Compatibility Ratio (CR), and Eq. (3) relates to the Random Index (RI).
In these mathematical expressions, "N" signifies the total number of el-
ements or factors taken into account in the comparison matrices.

CI = λmax − NN − 1 (1)

Fig. 3. Hierarchical structure of AHP model.

Fig. 4. Expertise distribution among study participants.
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CR = CIRI (2)

RI = λmax − N2.7699N − 4.3513 − N (3)

The principle eigenvalue λmax was derived either through the priority
eigenvector from RGMM for individual judgments or the EVM for
aggregated judgments. Subsequently, the CR consistency ratio was
determined using the Alonso/Lamata linear fit method (Alonso &
Lamata, 2006). A CR value at or below 0.1 signifies matrix consistency,
while higher ratios necessitate matrix reconstruction (Saaty, 1987). It’s
crucial to note that CR is the key parameter for validating AHP results,
ensuring the outcomes are balanced and coherent.

4.8. Utilising geographic information systems (GIS) for geospatial
analysis of EV charging point locations

This data is sourced from diverse databases, encompassing
geographic, demographic, environmental, and infrastructure-related
datasets. The systematic data collection step holds great importance
within GIS analysis, as it furnishes the essential information for assessing
potential EV charging point sites in Birmingham, UK. Table 2 provides a
concise overview of the criteria, data types, sources, and specific GIS
processes used in this study. The "Type of Data" column clarifies the
format of data for each criterion, aiding in understanding its nature. The
"Data Source" column references the data origins, ensuring transparency
and analysis credibility. Furthermore, the "Specific GIS Processes" col-
umn outlines the GIS methods linked to each criterion, explaining the
data processing and analysis techniques employed.

In the data acquisition process, multiple datasets were employed,
encompassing crucial demographic information sourced from the ONS
Geography website (Open Geography Portal) at the ward level. Popu-
lation density metrics (individuals per square kilometer) for each ward
were meticulously extracted from the respective tables. For the Inclusive
EVCPs Distribution for Disabilities criterion, where density unit infor-
mation was unavailable, we extracted the count of individuals falling
under the category of one or more disabilities as per the Equality Act in
households (LLTI in 2011) from ward-specific tables. These figures were
then divided by the area of the respective regions to calculate the density
of the disabled population. In the context of the EV-Prone Age Groups
factor, which focused on age groups ranging from 18 to 34 years within
each ward, we computed the count of individuals falling within this age
bracket and expressed it as a percentage relative to the total ward
population. All demographic data was meticulously stored in EXCEL file
format with a CSV extension (MS-DOS) to ensure seamless compatibility

with GIS software. Additionally, a segment of the data was obtained in
vector format using BBBike. BBBike is a service that extracts data from
OpenStreetMap (OSM), a publicly available database renowned for its
capability to precisely gather specific geographic areas in various data
formats. This method enhanced the flexibility of retrieving geographic
data and expanded its utility by granting access to OpenStreetMap
(OSM) shape files and raw data resources.

The vector data, obtained in the form of a shapefile, contained
crucial geospatial information within the study area, including precise
locations of charging points and data on various building types in
polygon and point formats, essential for evaluating the Residential
Proximity factor. Road data was also systematically extracted, allowing
for the identification of road types and their respective maximum
allowable speeds. Additionally, information concerning the location of
existing parking lots was acquired in polygon format, contributing to the
assessment of potential public service locations for the non-residential
on-street charging factor. The Air Quality Level factor draws on the
2022 Air Quality Annual Status Report (ASR), which covers 129 moni-
toring stations and provides key metrics, such as the Annual Mean NO2
Monitoring Results from both Automatic and Non-Automatic Moni-
toring (μg/m3) for 2021. For noise pollution, data was sourced from the
ArcGIS web application, detailing road noise levels in the UK in Lden
units, which account for 24-hour annual average noise levels with
distinct weighting for evening and nighttime periods. Noise data was
modeled on a 10-meter grid at a receiver height of 4 meters above the
ground, with polygons generated by merging neighboring grid cells that
cover a range of noise levels from +75.0 dB to below +54.9 dB Defra
Data Services Platform (online).

Fig. 6 serves as a visual summary, highlighting specific data layers
employed in the GIS analysis. These layers comprise demographic data,
location specifics, and geographical and environmental information.
The figure visually illustrates a subset of the datasets applied in the
assessment of suitability criteria for electric vehicle charging points
(EVCPs) in Birmingham, UK.

4.9. Criteria classification

To ensure measurement accuracy and consistency, a ranking system
was applied to classify and standardize the geographic data for each
measurement. This system, derived from an examination of research
literature and study area requirements, is elaborated in Section 3.2. It
employs a scale ranging from 1 to 3, each associated with a distinct color
code signifying the suitability of the data point. A rating of 1 designates
"optimal suitability" and is represented by the color green. A rating of 2

Fig. 5. Professional experience distribution among study participants.
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corresponds to "moderate suitability" denoted by yellow, while a rating
of 3 indicates "limited suitability" depicted in orange. This system en-
ables a visual representation of diverse suitability levels within
geographic data, facilitating the identification of areas with distinct
compatibility or suitability for specific objectives or criteria, as pre-
sented in Table 4.

5. . Result & finding

5.1. Analysis of analytic hierarchy process (AHP)

Recognizing the inherent variability in human judgment, Gudiyan-
gada Nachappa et al. (2020) this study collected responses from 20 ex-
perts, with five responses being incomplete. Consistency rates (CR) were
calculated for 15 judgments, leading to the exclusion of three inconsis-
tent responses. Consequently, the analysis considered the opinions of 12
experts. Impressively, the CR consistency ratio for the 15 completed
judgments revealed that 12 experts achieved a CR equal to or below 10
%, aligning with Saati’s criteria (Saaty, 1987) for valid results. Conse-
quently, 12 judgments were categorised as consistent, while three were
deemed inconsistent and subsequently excluded from the analytical
process. Incorporating input from 12 experts and employing pairwise
comparison matrices, the weight of each suitability criterion was

determined, subsequently serving as the weight for each criterion layer
in the GIS program. The weights of the criteria and sub-criteria deter-
mined through the AHP method are presented in Table 5 and Fig. 7.

After evaluating and calculating the total weights for each of the 8
sub criteria, as recorded in Table 5, Fig. 8 visually illustrates the relative
ranking of these sub-criteria. In this ranking, the sub criteria are ar-
ranged in descending order, with the most influential or heavily
weighted sub criterion placed at the top. This figure provides a quick and
clear reference for understanding the importance of each sub-criterion
in the decision-making process, aiding in the prioritization of factors
under consideration.

Among the sub-criteria, "Distance to available EV charging points"
(0.2987) emerges as the most heavily weighted factor, underscoring the
priority for new EVCPs to be situated at a considerable distance from
existing charging infrastructure. This underscores the imperative of
expanding the charging network strategically, while concurrently
ensuring an integrated dispersion of facilities, equitable accessibility,
and fair design principles. The sub-criterion Residential proximity
(0.1938) occupies a notable position in the second level of importance,
emphasizing the importance of placing EVCPs in close proximity to
residential areas. This alignment underscores the consistency of this
factor with the study’s goals, which center around positioning within
residential zones, and the practical necessity for accessibility. It places a

Fig. 6. Input data layers in GIS.
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premium on the convenience and reduction of walking distances for
residents. Air quality level (0.1626) also carries considerable impor-
tance, underscoring the significance of environmental factors in making
decisions regarding the placement of EVCPs. This necessitates a focus on
regions with potential air quality concerns, where the adoption of
electric vehicles can yield positive environmental benefits. Noise
pollution and the Inclusive EVCPs Distribution for Disabilities are rela-
tively new criteria introduced in the evaluation process. However, they
have demonstrated their significance by maintaining their weight
alongside established factors. Remarkably, they hold a higher level of
importance compared to criteria such as age groups and road slope,
which have been utilised in previous studies. However, as per the au-
thors’ perspective, to enhance convenience and improve accessibility,
there is a need for increased provisions catering to individuals with
disabilities, and greater emphasis should be placed on inclusive design
considerations for this demographic.

5.2. Analysis of geographic information systems (GIS)

5.2.1. Spatial exclusion criteria analysis
Road Speed: As previously stated, this study’s initial GIS processing

step entails the exclusion of streets and locations outside the study’s
scope. In accordance with regulations outlined in The Highway Code,
Road Safety and Vehicle Rules - (GOV.UK), the established maximum
speed limit within built-up areas is 30 miles per hour, equivalent to 48
km per hour. Furthermore, Rule 249 of the Highway Code (The Highway
Code - Waiting and parking (238 to 252) - Guidance - GOV.UK) that any
vehicle parked overnight on streets with speeds exceeding 30 miles per
hour must have its parking lights activated. Given these regulatory
provisions and safety considerations, the practice of overnight parking
on streets with speeds exceeding 30 miles per hour is deemed unviable
and unsafe, especially within the context of this study’s focus on resi-
dential areas. Consequently, such streets have been excluded from the
analysis (see Fig. 9). Road Type: In the subsequent phase, the elimina-
tion process is conducted based on road type, given that this investiga-
tion focuses on the placement of on-street EVCPs within residential
areas. Hence, the deployment of these charging points in non-residential
streets, which frequently serve different purposes, is regarded as un-
feasible, and they are therefore excluded from further deliberation
within the study’s scope (see Fig. 9).

The study area spans 267.816 square kilometers and includes 51,216
road segments, covering various road types, including highways, minor

Table 4
Siting suitability criteria, classification, and ratings.

Main Criteria Sub-Criteria Class Suitability Rating

C1 Accessibility and Infrastructural SC1.1 Residential Proximity ≤160 m Optimal 1
160–400 m Moderate 2
400–800 m Limited 3

SC1.2 Distance to Available EVCPs >800 m Optimal 1
400–800 m Moderate 2
<400 m Limited 3

C2 Population Distribution SC2.1 Population Density 7041 - 11,996 Optimal 1
3778 - 7040 Moderate 2
817 - 3778 Limited 3

SC2.2 Inclusive EVCPs Distribution for Disabilities 748–1244 Optimal 1
396–748 Moderate 2
102–396 Limited 3

SC2.3 EV-Prone Age Groups 34 %−100 % Optimal 1
24 %−34 % Moderate 2
17 %−24 % Limited 3

C3 Environmental and Geographical SC3.1 Air Quality Level >36 µg/m3 Optimal 1
30–36 µg/m3 Moderate 2
<30 µg/m3 Limited 3

SC3.2 Noise Pollution ≥70 dB Optimal 1
60–70 dB Moderate 2
<60 dB Limited 3

SC3.3 Road Slope Compatibility <5 % Optimal 1
5 %−8 % Moderate 2
8 %−10 % Limited 3

Table 5
AHP weighting of criteria and subcriteria.

Criteria (C) Criteria
weight

Rank Subcriteria (SC) Subcriteria
Weight

Rank Total Weight
(Twi)

Rank

Cwi Cwi SCwi Scwi Twi = Cwi ×

SCwi
Twi

C1 Accessibility and
Infrastructural

0.4925 1 SC1.1 Residential Proximity 0.3935 2 0.1938 2

​ ​ ​ ​ SC1.2 Distance to Available EVSc 0.6065 1 0.2987 1
​ ​ ​ ​ ​ Total 1 ​ 0.4925 ​
C2 Population Distribution 0.2082 3 SC2.1 Population Density 0.4039 1 0.0841 4
​ ​ ​ ​ SC2.2 Inclusive EVCPs Distribution for

Disabilities
0.3312 2 0.0690 6

​ ​ ​ ​ SC2.3 EV-Prone Age Groups 0.2649 3 0.0552 8
​ ​ ​ ​ ​ Total 1 ​ 0.2082 ​
C3 Environmental and

Geographical
0.2993 2 SC3.1 Air Quality Level 0.5434 1 0.1626 3

​ ​ ​ ​ SC3.2 Noise Pollution 0.2598 2 0.0778 5
​ ​ ​ ​ SC3.3 Road Slope Compatibility 0.1968 3 0.0589 7
​ ​ ​ ​ ​ Total 1 ​ 0.2993 ​
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roads, residential streets, as well as bicycle paths, and dedicated side-
walks. Following the implementation of speed and road type re-
strictions, approximately 74 % of the road sections were eliminated,
leaving only 13,025 road segments for further analysis. Areas identified
as potential public service locations for non-residential on-street
charging, characterized by adequate space for long-term car parking and

meeting the required standards for charging point installation, partic-
ularly for destination charging (i.e., capable of accommodating a mini-
mum of 25 cars or more, as per (Chen, Kockelman & Khan, 2013)), were
intentionally excluded from the study’s purview. To implement this
criterion, the study utilised a polygon file format map of parking spaces
in Birmingham. Specifically, parking spaces with sufficient area to

Fig. 7. Weighting of criteria and subcriteria using AHP.

Fig. 8. Total weight of subcriteria.

Fig. 9. Excluding road types and speed criteria in Birmingham area.
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accommodate a minimum of 25 cars were selected, resulting in the in-
clusion of 1276 parking spaces out of a total of 1754. Subsequently, an
optimal walking distance threshold of 2 min was applied, leading to the
exclusion of all streets within a 160-meter radius from the study area’s
boundaries. After implementing this criterion, a total of 10,415 road
segments, covering a length of 1299 km, were retained for further
analysis (see Fig. 10).

To eliminate roads with slopes exceeding 10 % due to safety, effi-
ciency, and accessibility concerns, several steps were taken. Initially, a
slope map was obtained from the USGS website and imported into the
GIS environment, including clipping to the specific study area, reclas-
sification to distinguish slope ranges (0–5 %, 5–8 %, 8–10 %, and above
10 %), and conversion from raster to polygon format. This trans-
formation allowed for the identification of areas with slopes exceeding
10 % (Observe the red regions depicted on the right-side map within
Fig. 11). Ultimately, these high-slope areas were excluded from the
study area, ensuring that only road segments with safer and more
accessible slopes were considered for further analysis. The remaining
road segments have a combined length of 1289.46 km.

After applying all four exclusion criteria, which included "road type,"
"road speed," "potential public service locations for non-residential on-
street charging," and "Road Slope (>10 %)," approximately 28.55 %

(76.485 km2) of the total study area and 75.35 % (3942.033 km) of all
the roads within the study area were removed based on the exclusion
criteria.

5.2.2. Spatial suitability criteria analysis

To achieve the best RO-EVCP placements, suitability criteria are
employed alongside exclusion criteria. This process involves classifying
the 8 suitability criteria within the study area, aligning with the speci-
fications outlined in Table 4. Different thresholds are utilised to create a
normalisation process aimed at integrating the criteria based on their
values. The resulting normalisation maps, provided in Fig. 12, indicate
optimal suitable locations in green (class 1), moderately suitable areas in
yellow (class 2), and locations with limited suitability in orange (class
3). The execution of the "Residential Proximity" suitability criterion in
this study involved the utilisation of a geospatial layer containing
comprehensive information on all registered residential buildings within
the Birmingham area. This dataset encompassed a substantial number of
residential structures, totaling 189,494 individual houses, which
collectively covered an expansive area measuring 1,8017,313 m2s. The
average area of these residential units was found to be about 95 m2s per
dwelling. While many express a willingness to walk 2–5 minutes to

Fig. 10. Road segments after exclusion of potential charging service locations.

Fig. 11. Excluding roads with slopes exceeding 10 % from the study area.
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access charging facilities (Field Dynamics, 2021), most currently walk
less than 2 minutes to reach their vehicles (Department for Transport,
2021), highlighting a gap between preferences and behavior. This study
focuses on optimizing on-street charging accessibility, particularly for
demographics like parents, individuals with disabilities, and women, by
considering a walking distance of 2–5 minutes as suggested by research.

In the pursuit of determining the optimal distances that residents
should ideally cover on foot to access electric vehicle charging points
(EVCPs) from their respective residential abodes, a geospatial analysis
technique known as the "buffer" command was meticulously employed.
This analytical approach took into consideration the Euclidean distance
metric, which calculates distances in a straight-line fashion. Conse-
quently, the computed walking distances were systematically cat-
egorised into three distinct classes or ranges, namely: 0–160 m, 160–400
m, and distances exceeding 400 m. The graphical representation of these
categories is visually depicted in Fig. 12, offering a clear visualization of
the suitability zones for EVCP placement concerning residential areas.
Similarly, for the "Distance to Available EVCPs" suitability criterion, a
parallel process was undertaken, making use of the buffer command.
This operation was conducted on a point layer that contained
geographical data related to the current electric vehicle charging points
(EVCPs) within the study area. Specifically, the objective was to estab-
lish boundaries at two specific distance thresholds: 400 m and 800 m,
from these pre-existing charging stations Fig. 12.

The aim of this spatial analysis was to define regions that represent
varying levels of proximity to the existing charging infrastructure. Areas
situated beyond the 800-meter boundary were deemed highly favorable,
indicating a greater distance from the available charging points. Incor-
porating demographic suitability criteria, such as Population Density,
Inclusive EVCPs Distribution for Disabilities, EV-Prone Age Groups into
the GIS analysis involved a multi-step procedure. Initially, statistical
data from (Kaur, 2021) was collected and adjusted to align with the
specific criteria detailed in Section 3.4. This demographic information,
presented in text format, was then imported into the GIS program for
spatial analysis. Given the initial division of this data by ward, a join
operation was performed to link it with a ward-based layer. The natural
breaks classification method was employed to categorise demographic
attributes, with the aim of achieving meaningful and balanced statistical
populations. After careful analysis and refinement, the categories in
Table 4 were established and further reclassified into three distinct
classes (1, 2, and 3) Fig. 12.

The "Air Quality Level" data, sourced from the 2022 Air Quality
Annual Status Report (ASR) by the Birmingham City Council, was
initially provided in text format. To make this data usable for spatial
analysis within a Geographic Information System (GIS), several steps
were taken. First, interpolation, specifically Inverse Distance Weighting
(IDW), was employed to create a raster layer that represented air quality
levels across the study area. This interpolation process helped generate a

Fig. 12. Classified criteria layers in GIS.
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continuous surface of air quality measurements. Subsequently, this
raster layer underwent reclassification, a process where continuous data
is grouped into discrete classes or categories. Once reclassified, the
raster layer was converted into a vector layer, making it compatible with
GIS analysis. Finally, the data was categorised into three distinct classes,
as illustrated in Fig. 12. To incorporate the "Noise Pollution" suitability
criterion into the analysis, data representing noise levels in terms of
Lden (day-evening-night noise levels) was introduced into the GIS as a
vector file. Subsequently, this data was subjected to reclassification
based on predefined noise classes that aligned with the study’s classi-
fication criteria, as outlined in Table 4. Finally, a normalisation process
was applied, categorising the noise levels into three classes, denoted as
1, 2, and 3 (see Fig. 12). This standardization facilitated the alignment of
the noise pollution criterion with other spatial layers in the analysis,
ensuring its seamless integration into the overall evaluation process. In
this phase of the analysis, the slope layer, which was generated during
the exclusion criteria stage and depicted slope percentages, was utilised.
To integrate this layer into the overall evaluation, it was subjected to
normalisation based on predefined slope classifications (see Table 4).
Areas with a slope of up to 5 % were categorised as Class 1, those falling
between 5 % and 8 % were assigned Class 2, and regions with a slope
ranging from 8 % to 10 % were designated as Class 3 (see Fig. 12).

5.2.3. Spatial suitability map
A spatial suitability map is a visual tool utilised in geographic in-

formation systems (GIS) and spatial analysis to illustrate regions suitable
for specific purposes, such as the placement of on-street electric vehicle
charging points (RO-EVCPs). This map aids decision-makers and stake-
holders in identifying suitable locations for RO-EVCP installation,
facilitating informed urban planning and infrastructure development
decisions. In this study, we have designed a spatial suitability map to
depict the appropriateness of various geographical locations for RO-
EVCP placement. To create this map, we conducted proportion map-
ping by linearly integrating weighted geographical sub-models, with the
weights of each model determined through the Analytic Hierarchy
Process (AHP), as detailed in Section 5.1. The suitability map encom-
passes multiple criteria layers, including Residential Proximity, Distance
to Available EVCPs, Population Density, Inclusive EVCPs Distribution
for Disabilities, EV-Prone Age Groups, Air Quality Level, Noise Pollu-
tion, and Road Slope Compatibility. These criteria were employed to
categorise areas into distinct classes, visually represented by color-
coding and numerical indicators. "Optimal" areas are depicted in
green, "moderate" areas in yellow, and "limited" areas in orange.

In conclusion, this research led to the development of an Electric
Vehicle Charge Points Suitability Index (EVCP-SI) model, as expressed
by the following equation:

EVCP − SI = (RPR ×RPW) + (CDR ×CDW) + (PDR ×PDW)

+ (DDR ×DDW) + (AGR ×AGW) + (AQR ×AQW)

+ (NPR ×NPW) + (RSR ×RSW) (7)

In this equation, EVCP-SI represents the Electric Vehicle Charge
Points Suitability Index, while: RPR: Residential Proximity classification
rate, RPW: Residential Proximity AHPweight, CDR: Distance to Available
EVCPs classification rate, CDW: Distance to Available EVCPs AHP
weight, PDR: Population Density classification rate,PDW: Population
Density AHP weight, DDR: Inclusive EVCPs Distribution for Disabilities
classification rate, DDW: Inclusive EVCPs Distribution for Disabilities
AHP weight, AGR: EV-Prone Age Groups classification rate,AGW: EV-
Prone Age Groups AHP weight,AQR: Air Quality Level classification
rate,AQW: Air Quality Level AHP weight, NPR: Noise Pollution classifi-
cation rate, NPW: Noise Pollution AHP weight, RSR: Road Slope
Compatibility classification rate, RSW: Road Slope Compatibility AHP
weight.

In GIS, the overlay command was used to merge the sub-criterion
layers. These eight pre-classified layers were consolidated into a single

layer. In this newly created layer, Eq. (8) was applied to a newly added
column in the attribute table using the Field Calculator menu.

EVCP − SI = (RPR × 0.1938) + (CDR × 0.2987) + (PDR × 0.0841)

+ (DDR × 0.0690) + (AGR × 0.0552) + (AQR × 0.1626)

+ (NPR × 0.0778) + (RSR × 0.0589)

(8)

The result of this weighted overlap analysis was the generation of a
suitability map for Electric Vehicle Charge Points (EVCPs), as depicted
in Fig. 13.

Creating the suitability map was a meticulous and comprehensive
procedure that demanded in-depth analysis. It involved the careful
consideration of various factors, including of accessibility and infra-
structure, demographic characteristics, and environmental and
geographical impact. This rigorous assessment was conducted to guar-
antee that the chosen sites closely adhered to the predefined suitability
criteria. The green areas depicted on the suitability map signify locations
that are optimal suitable for the installation of charging stations. These
regions make up a section of the study area, constituting 17.830 square
kilometers within the total study area of 267.767 square kilometers. As
mentioned, these specific locations have been identified based on
stringent criteria, rendering them as top-priority choices for the place-
ment of electric vehicle charging points. Furthermore, it’s important to
highlight that the yellow areas, denoting moderate suitability and
covering 105.786 square kilometers, are categorised as regions with a
medium priority level, whereas the orange areas, spanning an area of
144.150 square kilometers and indicating limited suitability, are clas-
sified as having a lower priority for the installation of charging points.
These distinctions play a pivotal role in the development of a prioriti-
zation framework, ensuring that locations are evaluated and assigned
priority levels based on their suitability.

It is important to emphasize that to precisely identify and present the
ultimate list of residential street locations and the corresponding num-
ber of charging points, the integration of this suitability map with the
map of suitable residential streets chosen in preceding sections of this
study is imperative. Additionally, the incorporation of new factors for
the selection of locations and the determination of optimal quantities
will be essential. This comprehensive process will be elucidated in the
subsequent section, providing a detailed insight into the final decision-
making framework for the installation of electric vehicle charging
infrastructure.

5.3. Identification of optimal charging point locations and visual
validation

In this study, focusing on the selection of optimal Residential On-
Street Electric Vehicle Charging Points in Birmingham, UK, the inte-
gration of the suitability map, generated through the Analytical Hier-
archy Process (AHP) by considering various weighted location criteria,
with a map of suitable residential roads resulted in a new map (Fig. 14).
This optimal suitability roads map designates a road network spanning
114.186 km as high-priority roads for charging point installation.

In the subsequent phase of the study, a robust methodology was
applied to validate road selection and determine the ideal positions for
on-street electric vehicle (EV) charging points. This validation process
relied on the utilisation of Google Earth® and Google Street view.
Google Earth®, developed by Google Inc., is a versatile geospatial tool
that enables users to interact with a 3D Earth model using satellite im-
agery and aerial photos. It serves various purposes like geographical
research, urban planning, and environmental monitoring. Users can
explore specific locations, access historical imagery, and even view
street-level scenes through Google Street View integration (Yu & Gong,
2012). This tool goes beyond basic mapping, allowing the visualization
of geospatial data and custom map creation, making it invaluable for
geospatial analysis and location-based research. Additionally, Google
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Earth® seamlessly integrates with GIS through KML files, enhancing its
capabilities (Bailey & Chen, 2011). The optimal GIS road map was
converted into KML format to facilitate its retrieval in Google Earth
Pro®. Initially, Google Earth Pro® was utilised for a comprehensive
assessment of residential properties on streets designated as potential
charging point sites. The primary aim was to ascertain whether these
properties relied on street parking or possessed off-street parking facil-
ities. Additionally, the feasibility of long-term car parking was evalu-
ated, considering factors such as proximity to intersections, squares, and
parking restrictions (e.g., zigzag lines, red routes, double yellow lines)
(The Highway Code - Waiting and parking (238 to 252) - Guidance -

GOV.UK). Streets where off-street parking predominated, aligning with
home charging suitability, and also roads with no long-term parking
potential, were excluded from further analysis. Subsequently, Google
Street View served as a complementary tool, enhancing detail and ac-
curacy, particularly in areas where Google Earth® imagery lacked
granularity.

Google Street View, a feature of Google Maps, provides immersive
360-degree street-level imagery globally. It allows users to virtually
navigate streets, neighborhoods, and landmarks, offering a realistic view
of places they wish to visit. Google Street View is a valuable tool for
navigation and location scouting (Ciepłuch et al., 2010). This

Fig. 13. Suitability map for Residential On-Street Electric Vehicle Charge Points (RO-EVCP).

Fig. 14. Optimal suitability roads map.
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supplementary validation step contributed to the refinement of findings,
facilitating more informed decisions regarding residential EV charging
point placement. The last step involves calculating the number of
charging points needed for each street. This calculation is based on the
visual inspection of parking spaces on the street, which calculates the
average number of parking spaces available on each street. Using rele-
vant literature, it is determined that each car needs 5.5 m of parking
space, and it is recommended to install one charging point for every five
cars (Birmingham City Council., 2021c; Karolemeas et al., 2021).

Appendix D offers a visual representation demonstrating the uti-
lisation of Google Earth and Google Street View to validate the selection
of streets for the placement of charging points. After conducting an
extensive evaluation based on specific criteria and calculations, the total
count of charging points for each street was established. A grand total of
1785 RO-EVCPs were earmarked for installation on high-priority streets.
These charging points are spread across 261 distinct segments of streets,
collectively covering a length of 52.32 km. Fig. 15 and Fig. 16 visually
display the locations of these streets and charging points in the city of
Birmingham.

This comprehensive data-driven methodology ensures a precise and
evidence-based approach to road selection and the positioning of resi-
dential EV charging points on the street. By combining Google Earth®
and Google Street View, this approach ensures that selected roads and
charging locations align with real-world observations and practical
considerations. This forms a strong foundation for making informed
decisions in strategically deploying residential EV charging infrastruc-
ture. It’s worth noting that certain variables, such as the location of lamp
posts, income, and car ownership factors, and off-street parking avail-
ability, were initially left out of the GIS model. However, upon a thor-
ough evaluation of streets for charger installation suitability, it became
clear that a significant portion of streets identified as suitable by the GIS
model in this study, which considered exclusion and suitability criteria,
had substantial potential for hosting charging points. This highlights the
model’s effectiveness, comprehensiveness, and high accuracy. It also
suggests that the model could be adapted for use in various urban

settings beyond the scope of this research.

6. Discussion

The research aimed to determine the optimal locations for residential
electric vehicle (EV) charging points in Birmingham, England using GIS-
based geographic analysis. A thorough literature review was conducted
to identify key factors, categorized into exclusion and suitability criteria.
The Analytical Hierarchy Process (AHP) systematically assessed these
criteria, with the distance to existing charging points, residential prox-
imity, and air quality levels emerging as the most influential factors.
This step highlighted the necessity of a strategic and environmentally
conscious expansion of the EV charging network.

A tailored Geographic Information System (GIS) model was devel-
oped for Birmingham, incorporating factors such as accessibility,
infrastructure, demographics, and environmental impact. The AHP
method assigned appropriate weights to these factors, culminating in the
creation of the "Electric Vehicle Charge Points Suitability Index (EVCP-
SI) model." This model integrated weighted criteria to identify optimal
locations for Residential On-Street Electric Vehicle Charging Points (RO-
EVCPs), utilizing real-world data to ensure accuracy and relevance. The
GIS-based model provided valuable insights into Birmingham’s
geographical and infrastructural complexities, aligning with existing
literature that supports data-driven methodologies and multi-criteria
selection processes in urban planning.

The study identified 261 street segments and 1785 specific locations
in Birmingham as optimal for new residential on-street EV charging
points. Factors considered included the potential for on-street parking
and residents’ reliance on such facilities. Proximity criteria, with
walking distances of 2, 5, and 10 min from residential areas, projected
coverage of 7.86 %, 14.71 %, and 23.72 % of the total residential area
(18,017,313m2s). These findings represent a significant enhancement in
the accessibility and availability of charging infrastructure, promoting
EV adoption and sustainable urban mobility in Birmingham. (see
Fig. 17).

Fig. 15. Street-wise optimal RO-EVCP distribution in Birmingham, UK.
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Strategically locating charging points within these walking distances
greatly enhances the feasibility of electric vehicle usage for a significant
portion of the residential population. This approach ensures that resi-
dents have convenient access to charging facilities without the need for
extensive travel, thereby encouraging the adoption of electric vehicles as
a viable and convenient mode of transportation. Additionally, the
study’s findings underscore the importance of strategically placing RO-

EVCPs as valuable assets for electric vehicle charging services. By
maximizing accessibility and coverage within residential areas, these
charging points play a critical role in the city’s electric vehicle infra-
structure. Furthermore, Table 6 provides a detailed estimate of the area
covered by residential buildings within walking distance, offering
valuable insights for policymakers and urban planners dedicated to
promoting sustainable transportation in Birmingham.

Fig. 16. Zoomed-in view of street-wise optimal RO-EVCP distribution.

Fig. 17. Residential properties located near the proposed RO-EVCPs ((27.a): Within a 2-minute walk, (27.b): Within a 5-Minute Walk, (27.c): Within a 10-Min-
ute Walk).
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The findings of this study align closely with the existing body of
literature on EV charging infrastructure, validating the methodologies
and factors considered. Emphasis on proximity to existing charging
infrastructure, residential access, and environmental factors resonates
with prior research (Charly et al., 2023; Erbaş et al., 2018; Kaya et al.,
2020; Mahdy et al., 2022). However, the study introduces a novel
approach by assigning specific weights and priorities to these criteria,
tailored to the unique context of Birmingham. New criteria such as
"noise pollution" and "universal distribution of EVCPs for the disabled"
highlight the study’s commitment to inclusive design and environmental
considerations.

Overall, the study’s thorough review of previous research, meticu-
lous factor selection, and use of efficient tools and methodologies
contributed to generating practical and reliable results. The model’s
outcomes highlight high-priority locations primarily reliant on-street
parking, reinforcing the importance of strategic and inclusive planning
for EV infrastructure.

7. Conclusion

This study presents a comprehensive geospatial analysis aimed at
identifying optimal locations for the installation of Residential On-Street
Electric Vehicle Charging Points (RO-EVCPs) in Birmingham, UK. By
utilizing a GIS-based model integrated with the Analytic Hierarchy
Process (AHP), the research provides a data-driven framework to sup-
port urban planning decisions. Key findings from this study emphasize
several critical factors influencing the placement of EV charging points,
including Residential Proximity, Distance to Existing EVCPs, Population
Density, Inclusive EVCP Distribution for Disabilities, EV-Prone Age
Groups, Air Quality Levels, Noise Pollution, and Road Slope Compati-
bility. Notably, novel criteria such as ’Inclusive EVCP Distribution for
Disabilities’ and ’Noise Pollution’ have not been previously explored in
charging infrastructure research, whether focused on destination, en-
route, or on-street charging. Additionally, this study is the first to
examine ’EV-Prone Age Groups’ and ’Air Quality Levels’ in the context
of Residential On-Street Charging Points. Among these, proximity to
existing charging infrastructure, residential density, air quality levels,
and noise pollution have emerged as the most influential factors. These
factors were systematically weighted using the AHP method to develop
the Electric Vehicle Charge Points Suitability Index (EVCP-SI). This
index guided the identification of 261 optimal street segments and 1785
specific locations for RO-EVCPs across the city.

This study focuses on finding the best locations for Residential On-
Street Electric Vehicle Charging Points in Birmingham, UK. A suit-
ability map, created using the Analytical Hierarchy Process (AHP) with
various weighted criteria, was combined with a map of suitable resi-
dential roads. This process resulted in a newmap (Fig. 14) that identifies
114.186 km of road network as high-priority areas for installing
charging points.

The analysis further revealed that 7.86 %, 14.71 %, and 23.72 % of
Birmingham’s residential areas are within 2-, 5-, and 10-minute walking
distances from the proposed charging points, respectively, ensuring a
high level of accessibility to residents and supporting widespread EV
adoption. The model also incorporated environmental factors,

underscoring the significance of placing EV charging points in areas
where they can positively impact air quality and reduce noise pollution.
A strong focus on inclusivity was maintained throughout the study,
particularly by considering residential areas with limited access to off-
street parking and ensuring that the infrastructure accommodates the
needs of disabled users.

The GIS-based suitability map was validated using Google Earth®
and Google Street View, enhancing its practical utility for urban plan-
ners and policymakers. Despite these valuable insights, the research
acknowledges several limitations. The accuracy of the suitability map is
dependent on the quality and availability of demographic, environ-
mental, and infrastructure data, and any inaccuracies could affect the
precision of the analysis. Additionally, subjectivity introduced by the
AHP method in assigning weights to criteria may result in variations
based on different expert judgments. Furthermore, the study did not
incorporate dynamic modeling or real-time data to account for changes
in urban dynamics, limiting its ability to adapt to evolving scenarios.
Economic feasibility and regulatory aspects were also not comprehen-
sively addressed, posing potential challenges for the deployment of the
proposed infrastructure.

The study suggests promising directions for future research in elec-
tric vehicle (EV) infrastructure planning and deployment. Dynamic
modeling techniques could be incorporated to consider evolving urban
dynamics and population shifts, enabling a more adaptable strategy for
EV infrastructure planning. Leveraging real-time data sources, such as
traffic flow and air quality measurements, could enhance the accuracy of
infrastructure placement models. Further research could explore
methods to effectively integrate live data into decision-making pro-
cesses. Additionally, alternative Multi-Criteria Decision Analysis
(MCDA) methods could be explored to optimize EV infrastructure
planning. Assessing the scalability and transferability of infrastructure
planning models to other cities and regions, through comparative
studies in diverse urban settings, can identify best practices and strate-
gies for broader application.

CRediT authorship contribution statement

Milad Kazempour: Writing – original draft, Visualization, Valida-
tion, Resources, Methodology, Investigation, Formal analysis, Data
curation, Conceptualization. Heba Sabboubeh: Writing – review &
editing, Supervision. Kamyar Pirouz Moftakhari: Writing – original
draft, Conceptualization. Reza Najafi: Writing – original draft, Meth-
odology, Formal analysis. Gaetano Fusco: Writing – review & editing,
Supervision.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Supplementary materials

Supplementary material associated with this article can be found, in
the online version, at doi:10.1016/j.scs.2024.105988.

Data availability

Data will be made available on request.

References

AA Populus Driver Poll Summaries. (2020). AA Populus Driver Poll Summaries.
Retrieved May 20, 2024, from https://www.theaa.com/about-us/public-affairs/aa-p
opulus-driver-poll-summaries-2020.

Table 6
Residential properties located near the proposed RO-EVCPs.

Figure Number Walking
Distance
(Min)

Walking
Distance
(Meter)

Property
Area(m2)

Percent of
Total

26.a Within a 2-
Minute

160 1417,668 7.86 %

26.b Within a 5-
Minute

400 2651,820 14.71 %

26.c Within a 10-
Minute

800 4274,389 23.72 %

M. Kazempour et al. Sustainable Cities and Society 120 (2025) 105988 

19 

https://doi.org/10.1016/j.scs.2024.105988
https://www.theaa.com/about-us/public-affairs/aa-populus-driver-poll-summaries-2020
https://www.theaa.com/about-us/public-affairs/aa-populus-driver-poll-summaries-2020


Abid, M., Tabaa, M., Chakir, A., & Hachimi, H. (2022). Routing and charging of electric
vehicles: Literature review. Energy Reports, 8, 556–578. https://doi.org/10.1016/J.
EGYR.2022.07.089

Ademulegun, O. O., MacArtain, P., Oni, B., & Hewitt, N. J. (2022). Multi-Stage Multi-
Criteria Decision Analysis for Siting Electric Vehicle Charging Stations within and
across Border Regions. Energies, (24), 15. https://doi.org/10.3390/en15249396
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Csiszár, C., Csonka, B., Földes, D., Wirth, E., & Lovas, T. (2019). Urban public charging
station locating method for electric vehicles based on land use approach. Journal of
Transport Geography, 74, 173–180. https://doi.org/10.1016/J.
JTRANGEO.2018.11.016

Defra Data Services Platform (online). Available from: https://environment.data.gov.uk/
dataset/fd1c6327-ad77-42ae-a761-7c6a0866523d.

Department for Science, I. & T. (2023). Charging Ahead: Using location data to boost local
EV chargepoint rollout.

Department for Transport. (2017). Disabled people: attitudes towards travel.
Department for Transport (2022a). Taking charge: the electric vehicle infrastructure strategy.

Retrieved from https://www.gov.uk/government/publications/uk-electric-vehicle
-infrastructure-strategy.

Department for Transport. (2022c). Public Electric Vehicle Charging Infrastructure.
Deliberative and quantitative research with drivers without access to off-street
parking. Research report.

Department for Transport (2023a). Electric vehicle charging device statistics: July 2023.
Department for Transport, Office for Zero Emission Vehicles, and Rachel Maclean MP

(2021, June 30). UK government partners with disability charity to set standards for
electric vehicle chargepoints [Press release]. Available from: https://www.gov.uk/g
overnment/news/uk-government-partners-with-disability-charity-to-set-standards-
for-electric-vehicle-chargepoints.
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Klemeš, J. J., Zahmatkesh, S., … Colombaroni, C. (2023). Designing a multi-period
dynamic electric vehicle production-routing problem in a supply chain considering
energy consumption. Journal of Cleaner Production, 421. https://doi.org/10.1016/j.
jclepro.2023.138471

He, Yaqin, Zhou, X., Z, L., M, R., & K.. (2018). Layout Optimization Design of Electric
Vehicle Charging Station Based on Urban Parking Lot. In J. X. Wang Wuhong, &
Bengler (Eds.), Green intelligent transportation systems (pp. 399–407). Singapore:
Springer Singapore.

Hosseini, S., & Sarder, M. D. (2019). Development of a Bayesian network model for
optimal site selection of electric vehicle charging station. International Journal of
Electrical Power & Energy Systems, 105, 110–122. https://doi.org/10.1016/J.
IJEPES.2018.08.011

Huang, Y., & Kockelman, K. M. (2020). Electric vehicle charging station locations: Elastic
demand, station congestion, and network equilibrium. Transportation Research Part
D: Transport and Environment, 78, Article 102179. https://doi.org/10.1016/J.
TRD.2019.11.008

Iravani, H. (2022). A multicriteria GIS-based decision-making approach for locating
electric vehicle charging stations. Transportation Engineering, 9, Article 100135.
https://doi.org/10.1016/J.TRENG.2022.100135

Ju, Y., Ju, D., Santibanez Gonzalez, E. D. R., Giannakis, M., & Wang, A. (2019). Study of
site selection of electric vehicle charging station based on extended GRP method
under picture fuzzy environment. Computers & Industrial Engineering, 135,
1271–1285. https://doi.org/10.1016/J.CIE.2018.07.048

Kadri, A. A., Perrouault, R., Boujelben, M. K., & Gicquel, C. (2020). A multi-stage
stochastic integer programming approach for locating electric vehicle charging
stations. Computers & Operations Research, 117, Article 104888. https://doi.org/
10.1016/J.COR.2020.104888

Kang, J., Kong, H., Lin, Z., & Dang, A. (2022). Mapping the dynamics of electric vehicle
charging demand within Beijing’s spatial structure. Sustainable Cities and Society, 76,
Article 103507. https://doi.org/10.1016/J.SCS.2021.103507

Karolemeas, C., Tsigdinos, S., Tzouras, P. G., Nikitas, A., & Bakogiannis, E. (2021).
Determining electric vehicle charging station location suitability: A qualitative study
of greek stakeholders employing thematic analysis and analytical hierarchy process.
Sustainability (Switzerland), 13(4), 1–21. https://doi.org/10.3390/su13042298

Kaur, D. (2021). Census | population and census. Birmingham City Council. |.
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