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Abstract 

The UK’s ageing railway transportation network is increasingly at risk of substructure failure, 

often caused by malfunctioning buried drainage systems. These drainage issues lead to localised 

soil weaknesses in the substructure layers, which, if undetected, can result in costly maintenance 

interventions or, worse, catastrophic system failure. Regular non-destructive testing (NDT) 

assessments are essential for monitoring the condition of the substructure, yet current 

interpretation techniques for NDT data provide limited insight into the size, location, and even 

presence of weakened zones. This results in an incomplete understanding of the substructure's 

condition, impeding effective maintenance planning. This study proposes a novel hybrid back-

analysis technique to detect weakened zones in railway substructures caused by drainage 

malfunctions, addressing a critical gap in existing solutions. The method employs an artificial 

neural network (ANN) surrogate model, trained on virtual experimental data generated through 

finite element (FE) simulations, and couples it with a genetic algorithm (GA) to optimise the 

match between modelled and measured deflections. This novel method is computationally 

efficient, independent of seed modulus values, and thoroughly validated for accuracy. It delivers 

a precise understanding of soil weaknesses in railway substructures, transforming maintenance 

strategies by improving safety, reducing costs, and promoting infrastructure sustainability. 

Keywords: geotechnical engineering, railway substructure, soil, back-analysis technique, ground 
failure, drainage malfunction, condition assessment, UN SDG 9, UN SDG 11. 
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Introduction 

The railway track infrastructure in the UK was mainly built during the 19th century, making it 

one of the oldest railway systems worldwide (Gunn et al., 2018). The recent increase in rail 

network usage and axle loads have led to frequent and costly maintenance and renewal 

operations for railway stakeholders. The substructure of the railway tracks, which serves as the 

foundation of the railway system, is a crucial and costly component in supporting the railway 

infrastructure (Shaltout et al., 2015). Ballasted track is the traditional and widely used railway 

track system worldwide. The subsurface drainage system, one of the components of the ballasted 

railway substructure (which includes ballast, sub-ballast, subgrade layers, and drainage system), 

plays a critical role in ensuring the healthy performance of the railway track. The effectiveness 

and efficiency of a ballasted railway track substructure primarily depend on the drainage 

system's ability to drain, divert, and remove water from the track substructure. 

Malfunctioning, silting, and clogging of drainage systems can trap water in the substructure 

layers, resulting in frequent damage to the substructure by creation of weakened zones in the 

ground and around the drainage pipes. One important form of ground subsurface erosion caused 

by water leakage, is the weakening of soil zones around sewerage pipes, culverts, and drainage 

pipes. This erosion can lead to excess pore water pressure, localized settlement, instability, and 

eventual failure of the railway track substructure (Beckedahl, 1996; Sañudo et al., 2019). The 

aging of infrastructure, along with the formation of cracks and defects in buried pipes, increases 

the likelihood of water flow in the soil layer, washing away soil particles and necessitating 

emergency track maintenance (Kargah-Ostadi & Stoffels, 2015; Sharpe, 2000). Furthermore, the 

increasing axle loads, development of high-speed trains, climate change impact, year-on-year 

aging, and poor drainage conditions contribute to the gradual degradation of track substructures 

(Bačić & Juzbašić, 2020). Previous studies have observed that a significant portion of railway 

maintenance costs are associated with substructure layers and drainage issues (Tennakoon et al., 

2012).  

In the UK railway track system, inadequate drainage is a challenging risk factor that is likely to 

result in track failure and deformation. The UK railway network is classified as an aging-built 
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infrastructure, and its drainage systems were constructed without appropriate long-term design 

guidelines (Spink et al., 2014). Subsurface drainage networks are more complex than surface 

networks, and their design and condition assessment require detailed geotechnical and 

hydrological information (Hasnayn, 2016). However, current technologies for condition 

assessment of railway track drainage systems are limited, and they do not provide sufficient 

information for conclusive assessments of damage and deterioration (Wu et al., 2021). One of 

the significant challenges faced by Network Rail, the owner of most of the UK's railway 

infrastructure, is a lack of knowledge about the current condition of its drainage networks (Wu et 

al., 2021). Various studies have identified inadequate drainage as the primary cause of railway 

track instability and the root of most railway track malfunction-related issues (Li et al., 2015; 

Sañudo et al., 2019). Therefore, frequent monitoring and condition assessment of the railway 

track substructure and detection of progressive weakened zones are critically important. Early 

identification of anomalies or soil weakened zones caused by poor, ineffective, and aged 

drainage systems assist asset owners in developing planned maintenance programs (Bush III & 

Alexander, 1985). Conventional inspection methods for substructure condition assessment, and 

specifically for drainage pipe condition assessment, rely on visual inspection techniques (Koch et 

al., 2015). However, detecting local weakened zones in the ground and/or any defect in the 

drainage pipes using visual inspection is difficult because they are not visible. Additionally, 

these methods cannot determine the size of a local weakened zone or detect the possibility of 

weakened zone formation adjacent to drainage pipes (Wang et al., 2022). To address these 

limitations, non-destructive tests (NDTs) have been developed to assess the condition of buried 

infrastructure, including subsurface drainage pipes, and to investigate and detect local weakened 

zones in roads, pavements, shallow surfaces, and urban buried utilities (Costello et al., 2007; Liu 

& Kleiner, 2014; Xu et al., 2014).  

In recent years, various techniques for the condition assessment of railway track substructures 

have been proposed (Artagan et al., 2020). Ground penetrating radar (GPR) is a highly effective 

and widely used geophysical non-destructive testing technique for subsurface investigation. It 

has been successfully applied in pavement condition assessment since the 1980s and has proven 
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effective in locating buried infrastructure such as pipes and cables, as well as detecting local 

structural weak zones in pavement substructure (Chen & Wimsatt, 2010; Evans et al., 2008; Plati 

& Dérobert, 2015). GPR was first used to investigate railway track substructures in 1985, but its 

results should be supported by data from other NDTs, such as Falling Weight Deflectometer 

(FWD) and Interferometric Synthetic Aperture Radar (InSAR), or destructive techniques like 

coring, to improve defect detection and validate GPR results (Evans et al., 2008; Ferrante et al., 

2021; Tosti et al., 2020). Despite its wide range of applications, GPR has limitations. 

Interpretation of GPR test results requires substantial knowledge and experience, and the water 

content of substructure layers significantly impacts the quality of GPR data (Evans et al., 2008; 

Hunaidi, 1998). Seismic surface wave methods have been employed in geophysics, geotechnical 

site investigation, pavement and railway subsurface characterization, and anomaly detection 

(Barta, 2010; Foti et al., 2014; Sussmann Jr et al., 2017; Tamrakar et al., 2017). However, these 

methods are time-consuming and require complicated interpretation, relying on the engineer's 

judgment and experience (Anbazhagan et al., 2011). Infrared Thermography (IRT) is a new 

technique used for railway track substructure inspection, providing full-field data and real-time 

condition assessment (Kim, 2019). However, IRT is limited by weather conditions and requires a 

clear view between the infrared camera and the target surface (Clark et al., 2004; Janků et al., 

2019). The ultrasonic technique is based on the travel time of acoustic waves that penetrate the 

ground and reflect from the buried pipe wall to the ground surface, detecting cracks, corrosion, 

and voids around pipes (Sheth & Sinfield, 2018). However, this technique is sensitive to soil and 

mud that may be attached to the pipe and requires thorough cleaning before inspection (Yu et al., 

2021). 

Although several techniques are available for ground condition assessment and buried utilities 

detection, railway substructure layers have received less attention, either for general railway 

track condition assessment or the detection of potential weakened zones in the ground due to 

drainage malfunction. The track modulus, a key stiffness characteristic of a railway track, can be 

used to determine the structural condition of a railway track substructure (Ebersöhn & Selig, 

1994; Rezaei Tafti, 2018; Rogers et al., 2012; Wehbi, 2016). Falling weight deflectometer 
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(FWD) is a well-established NDT used to measure track modulus of railway substructures 

(Burrow et al., 2007). The FWD test was originally developed as a pavement condition 

assessment technique, FWD has been adapted for the railway industry to assess the condition of 

railway foundation and the presence of anomalies in the foundation layers (Burrow et al., 2007; 

Sharpe, 2000). The back-analysis technique is used to interpret FWD deflection basin data for 

estimating the moduli of substructure components in order to assess the condition of railways 

and pavements (Lee, 1988). Recently, Fathi et al. (2023) developed a back-analysis technique 

based on FWD testing data, which can estimate the stiffness moduli of the ballasted railway track 

substructure with high accuracy. However, to date, there is no method available to detect local 

anomalies, such as a ground weakened zone due to drainage malfunction, in the railway track 

substructure. 

This paper presents a novel hybrid back-analysis technique to detect weakened zones in railway 

track substructures caused by drainage malfunctions, based on FWD test data, filling a 

significant gap where no existing solutions are available. Additionally, recent advancement in 

optimisation strategies provide a robust framework that can be adapted to enhance the proposed 

technique (Meng et al., 2023; Yang et al., 2023; Yang et al., 2024). The method utilises an ANN 

surrogate model, trained on virtual experimental data from finite element simulations, and links 

it with a GA to optimise the fit between modelled and measured deflections. This combination of 

AI techniques represents a breakthrough in addressing complex geo-structural monitoring 

challenges.  

The proposed approach was thoroughly validated, demonstrating its time efficiency and 

independence from initial seed modulus values. By integrating advanced numerical simulations 

with data-driven optimisation, this technique overcomes the limitations of conventional methods, 

which often require more computational resources and lack flexibility. The proposed technique 

can significantly enhance the accuracy of railway substructure assessments while reducing the 

time required for analysis. This method has the potential to transform maintenance strategies for 

railway stakeholders, providing long-term benefits in operational safety and cost-efficiency. 
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1 Methodology 

1.1 Overview of the model development procedure 

The schematic of the methodology sequences used in this research is shown in Figure 1. Further 

details of the methodology will be presented in the following sections. 

1.2 Development of finite element (FE) model 

A finite element (FE) model of a railway track substructure was created using COMSOL 

Multiphysics to include a buried drainage pipe and a weakened zone adjacent to the pipe, under 

FWD test (COMSOL, 2015). The FE forward model developed by the authors was adapted and 

extended for this purpose (Fathi & Mehravar, 2022). In this study, the term weakened zone is 

used to refer to a zone of lower stiffness compared to the surrounding ground around the buried 

drainage pipe in the substructure. Further details of the FE model will be discussed in the 

subsequent sections. 

1.2.1 Model geometry, material properties and boundary conditions   

Figure 2 illustrates the cross-section of the railway track substructure, including a drainage pipe 

and a weakened zone adjacent to it. The thickness and material type of the substructure layers 

were determined based on the cone penetration test (CPT) results reported by Brough et al. 

(2006). The drainage pipe was modelled as a central subsurface drainage concrete pipe with an 

inner diameter of 600 mm and a thickness of 70 mm, buried at a depth of 1.65 m below the 

railway surface (Liedberg, 1991). This design aligns with the recommendations of the UK 

Network Rail Standards (NR/L2/CIV/003). The location of the drainage pipe was chosen to be 

under the FWD loading centre based on the results of preliminary simulations, which showed 

that the FE model is sensitive to the presence of a weakened zone in this location. 

Figure 3 shows a typical Falling Weight Deflectometer (FWD) test setup (Burrow et al., 2007). 

In this setup, four geophones are positioned at varying distances from the centre of the loading 

plate. Geophone 1, located at the centre of the loading plate (referred to as the loading point), 
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measures the maximum deflection directly below the loading point (D0). Geophone 2, located 

300 mm from the loading point, records the maximum deflection at this distance, referred to as 

D300. Geophones 3 and 4, positioned 1000 mm and 1500 mm from the loading point respectively, 

capture the maximum deflections at their respective distances, labelled as D1000 and D1500.  

 

For further clarification of the FWD testing configuration designed for railway application 

(Burrow et al., 2007) which is used in this study, a plan view of the problem is shown in Figure 

4. In this research, we used numerical modelling to replicate a railway track, based on the cross-

section outlined in Figure 2 and the test setup shown in Figure 4, and recorded the deflection 

basins at four geophone locations. 

 

Three-dimensional (3D) model of the problem was simulated using COMSOL Multiphysics. Due 

to the symmetrical nature of the problem and to reduce computation time, only a quarter of the 

problem was modelled and shown in Figure 5(a). A close-up view of FWD geophone locations 

or datapoints is also presented in Figure 5(b). 

 

Figure 6(a-b) depicts a drainage pipe and a weakened zone around it (Xu et al., 2017). To 

introduce a weakened zone into the FE model, five geometric parameters were defined: (i) 

expansion angle of the zone ( ); (ii) location of the zone around the pipe cross-section with 

respect to the vertical axis ( ); (iii) depth of the zone (WD); (iv) length of the weakened zone 

aligned with the track direction (WL) and (v) longitude distance (along y axis) of the weakened 

zone from the centre of the loading point (YW).  Three different possible positions were 

considered for  (Figure 6(a)), with the centre of the weakened zone located at 0°, 90°, and 180° 

relative to the vertical axis, which represents the weakened zones at the crown, springline and 

invert, respectively (Figure 6(a)).  
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In the FE model, quadratic brick elements were used to model the ballast, sub-ballast, and 

subgrade layers. However, due to the irregular geometry of the slope side of the ballast layer, the 

drainage pipe, and the weakened zone, tetrahedral elements were employed to model these 

sections. To eliminate the effect of shear wave reflection from the outer boundaries, a 

sufficiently large model size was considered in the FE simulations. The dimensions of the model 

were calculated based on the subgrade shear wave velocity, estimated using Equation 1, and the 

analysis of the distance travelled by the subgrade shear wave during the FWD test (Davis & 

Selvadurai, 2005). In this Equation, E is the layer modulus, 𝜈 is Poisson’s ratio, and ρ is the 

material density.  

 

𝑉𝑠 = √
𝐸

2(1 + 𝜈)𝜌
 

(1) 

 
The analysis indicated that the horizontal dimension of the model perpendicular to the track (in 

the x direction) should be at least 9.25 m, while the dimensions in the y and z directions should 

be at least 8.7 m. Therefore, a 10 m x 10 m x 10 m geometry was chosen to prevent wave 

reflection from the outer boundaries and to avoid boundary effects on the surface deflection 

calculations. The bottom of the model was fixed in all three directions (x, y and z), and a 

symmetry boundary condition was applied to both the near-end perpendicular and left-sided 

planes parallel to the track direction- see Figure 5(a-b). Additionally, the roller boundary 

condition was assigned to both the right side and the far end of the model boundaries. A 31.25 

kN load, a quarter of the FWD load magnitude, was defined using an idealized haversine 

function with 40 milliseconds’ (ms) duration. This loading point was applied to the sleeper at the 

same location as the geophone 𝐷0 (Figure 5(b)). 

The material properties of the substructure layers, drainage pipe, and weakened zone included in 

the FE model were defined using a linear elastic material model and presented in Table 1.  

It should be noted that a range of more complex constitutive models but found that the material 

non-linearity had minimal to no impact on the results. This finding aligns with the majority of 

Downloaded by [ Aston University] on [16/12/24]. Copyright © ICE Publishing, all rights reserved.



 Accepted manuscript doi: 
10.1680/jtran.23.00066 

 

11 
 

reports in the literature, where a linear-elastic material model has been successfully used in back-

calculation algorithms for other linear infrastructure, such as roads and railways. Additionally, 

this assumption is justified due to the small deflections observed during the FWD test, which 

indicate that the material behaviour remains largely within the elastic zone (Sadrossadat et al., 

2020). Furthermore, employing a linear-elastic material model significantly reduces the 

computational cost of the FE simulations, which is a critical factor when dealing with large-scale 

or complex models. In this case, the elastic modulus is the dominant parameter governing the 

material's behaviour. 

It's important to mention that the layer modulus of the weakened zone was varied from 5% to 

50% (specifically 5%, 10%, and 15%) of the subgrade 1 layer modulus to accommodate the 

impact of drainage defects on ground weakness and different scenarios were defined (Kaynia et 

al., 2017). Furthermore, the variation in the modulus of the weakened zone provides an 

opportunity to study the effects of different degrees of soil degradation (weakness) on the 

railway track's response to the FWD loading. 

1.2.2 Sensitivity analysis of the FE model   

This section presents the results of a series of sensitivity analyses conducted on the developed FE 

model. The aim was to observe the effects of the size and location of the weakened zone on the 

track surface deflections under FWD load at the four geophone locations. To this end, various 

weakened zones, were simulated as semi-circular shapes as presented in Figure 6(b), with 

different values of  (weakened zone expansion angle) and α (location of the zone around the 

pipe cross-section with respect to the vertical axis). Different α values of 0°, 90°, and 180° were 

considered, representing the weakened zone positions at the crown, springline, and invert, 

respectively.  values of 90°, 120°, and 150° were used to define the extent of the weakened 

zones (Figure 7). These parameters for the weakened zone were informed by literature (Li et al., 

2021; Xu & Shen, 2020; Xu et al., 2017). Figure 7 presents a schematic of the drainage pipe and 

the weakened zone located at the pipe crown with various .  
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Table 2 shows the predicted deflections at four specific locations (D0, D300, D1000 and D1500) 

across various weakened zone scenarios examined in this sensitivity analysis. This table also 

shows the predicted deflection values under FWD testing condition for each scenario, alongside 

deflections from the reference scenario that does not include a weakened zone. The average 

percentage error presented in Table 2 highlights the variation in deflections relative to the 

reference scenario, illustrating the impact of the weakened zone on surface deflections. 

 

The outcomes of this sensitivity analysis (Table 2) revealed that the presence of the weakened 

zone at the drainage pipe’s crown (α = 0) resulted in the largest track surface deflection at D0, 

D300, D1000 and D1500 compared to the weakened zone at the invert and springline. In addition, θ 

also influenced the track surface deflection at defined deflection measurement points. As θ 

increased, the surface deflection at the basin increased. This was expected because a larger θ 

means there is a greater weakened zone in the substructure. It can be observed that the weakened 

zone at the invert of the drainage pipe (α = 180°) with width values of 90°, 120°, and 150° 

resulted in the minimum average discrepancy, ranging from approximately 0.1% to 0.2%, when 

compared with the reference model. Conversely, the weakened zone at the crown (α = 0°) with a 

width of 150° caused an average discrepancy of about 0.9%. 

As shown in Figure 8, this sensitivity analysis demonstrates that the critical position of the 

weakened zone is at the crown of the drainage pipe. In other words, the probability of detecting a 

weakened zone is highest when it is positioned at the crown of the drainage pipe. Based on these 

finding, for the remainder of the study, including data generation for ANN training, this critical 

weakened zone position around the drainage pipe is considered, as presented in Figure 6b. 

Figure 8: Effect of the expansion angle and position of the weakened zone around the pipe on the 

track surface deflection 

 

Additionally, further sensitivity analysis on the FE model was conducted to investigate the effect 

of three geometric characteristics of the weakened zone— WD, WL, and YW  —on the predicted 
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deflection values under FWD testing conditions. For this investigation, different combinations of 

the values presented in Table 4 for the weakened zone's geometric characteristics (WD, WL, and 

YW) were considered. The results indicate that WD is the most influential parameter on the 

predicted deflections and Yw is the least influential. It was observed that weakened zones with 

WD and WL less than 15 cm and 20 cm, respectively, are less detectable by the developed back-

analysis technique. 

1.2.3 Synthetic database generation 

An artificial neural network (ANN) was developed and trained as a surrogate forward model to 

replace the FE model as FE simulation needs significantly computation time (Luo et al., 2024; 

Meng et al., 2024). The ANN was trained to identify correlations between the substructure 

properties, weakened zone specifications, and surface deflections of the FWD, effectively 

mimicking the FE model's behaviour. The trained ANN surrogate model served as the objective 

function in the back-analysis technique. To train the ANN surrogate forward model, a synthetic 

database comprising inputs and corresponding outputs was generated using the FE model 

developed in the previous section. The database contains a total of 1,002 deflection basins, 

including deflection values at four datapoints (D0, D300, D1000 and D1500) under various ground 

conditions. These conditions include different values for substructure layer moduli, weakened 

zone modulus, size and location of the weakened zone (WD, WL and YW) in the substructure. The 

database was generated using LiveLink COMSOL with MATLAB to achieve efficient 

computational time for data generation. It includes all combinations of WD, WL and YW, as well as 

the EW and E2 to E6 values, and the reference scenario of a five-layer railway substructure with a 

drainage pipe and no weakened zone. The critical case, which had a weakened zone with a 

geometry of θ = 150° positioned at α = 0° (the pipe crown), was included and kept constant in 

the database based on parametric analysis results for various weakened zone geometries. 

The input variables for the ANN included the substructure layer properties and weakened zone 

specifications, while the outputs were the peak surface deflections at four datapoints (D0, D300, 

D1000 and D1500). The input variable ranges for the substructure layers (clean ballast, 
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contaminated ballast, subgrade 1, subgrade 2, and subgrade 3) were 70-170 MPa, 20-50 MPa, 

50-100 MPa, 15-50 MPa, and 100-400 MPa, respectively. The range of weakened zone moduli 

(EW) was 5%-50% of E4 (5%, 10%, 15%, 20%, 30%, 40%, and 50%). The geometrical properties 

of the weakened zone were varied as follows: WD = [0, 7.5, 10, 15, 20 cm], WL = [0, 20, 40, 60 

cm], and YW = [0, 0.15, 0.65, 1.25, 1.6375 m]. The weakened zone properties were based on 

recommendations from the literature (Kaynia et al., 2017; Meguid & Kamel, 2014). 

1.2.4 ANN architecture and training 

The ANN architecture needs to be defined prior to the ANN training process. In order to decide 

on the type of neural network for this study an investigation study was conducted by testing a 

multilayer perceptron (MLP) feed-forward neural network to develop the back-analysis 

technique. Table 3 presents the of root mean squared error (RMSE) of the ANN estimates and 

target values of the surface deflections (i.e., D0, D300, D1000 and D1500) for some of the ANN 

architectures that were tested. The high value of RMSE shows that the MLP network was not 

able to predict surface deflections accurately, especially for D0. 

 

For this reason, in this study, the radial basis function (RBF), a type of feed-forward neural 

network commonly used for function approximation, classification, and regression, was 

employed (Leonard et al., 1992). In the RBF, each neuron in the hidden layer has an activation 

function known as a basis function, and the hidden layer serves both computational and training 

functions (56). Gaussian RBF was used as the basis function in the current analysis, as it is the 

most commonly employed type of RBF. The relatively straightforward architecture of this 

network facilitates quicker and more efficient training compared to other types of neural 

networks. Additionally, it possesses a superior ability to approximate functions for nonlinear data 

(Gajewski & Sadowski, 2014; Yu et al., 2011). The RBF comprises only one hidden layer, which 

consists of several hidden neurons. Each neuron in the hidden layer has an activation function, 

also known as a basis function. The Gaussian RBF is a radial function that depends on the 

distance between the input point and the centre point. It is calculated using Equation 2. 
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𝜑𝑗(𝑥, 𝑐𝑗) = 𝑒𝑥𝑝(
−‖𝑥 − 𝑐𝑗‖

2

2𝜎𝑗
2

)                                       (2) 

where, 

x is the n-dimensional input vector 

𝑐𝑗 is the centre of RBF for hidden neuron j 

‖𝑥 − 𝑐𝑗‖ is the Euclidean distance between the centre of the RBF and the input 

𝜎𝑗 is the width of Gaussian function.  

The number of neurons in the input layer corresponds with the number of inputs in the problem. 

For this problem, the ANN was fed with 19 inputs. These inputs encompassed the mechanical 

properties of the railway track substructure, including the elastic modulus (E1-E6), Poisson’s ratio 

(1-6), and the thickness of the layers (t1-t6). Additionally, the mechanical and geometrical 

parameters of the weakened zone were included, namely the elastic modulus of the weakened 

zone (Ew), weakened zone expansion angle (θ) of 150°, WD, WL, YW, and the FWD loading 

magnitude (as shown in Tables 4 and 5). 

All combinations of WD, WL, Yw, employed in the training database are presented in Table 5. 

 

Additionally, the reference scenario, consisting of a five-layer railway substructure with a 

drainage pipe and no local weakened zone adjacent to the pipe, was included in the database. 

Based on the sensitivity analysis results (section 2.2.2), a weakened zone with θ = 150° 

positioned at α = 0° (the pipe crown) was selected, and various values of E2 to E6, layer 

thicknesses, drainage pipe diameters, EW, and weakened zone geometrical properties, including 

WD, WL and YW, were employed to generate a comprehensive set of scenarios. The outputs of the 

ANN were the surface deflections corresponding to the number of predefined geophones at 

different offsets from the FWD loading point (4 geophones- see Figure 3 and 4). 
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The training process of the RBF network consists of two main steps. The first step is to specify 

the centres (𝑐𝑗) and widths of the basis functions in the hidden layer (𝜎𝑗). Once these parameters 

have been calculated, the output of each hidden neuron in the hidden layer is linearly scaled by 

its corresponding connecting weight to the output neuron. The output of the network is then 

calculated by summing the outputs of the hidden neurons. Equation 3 shows the calculation of 

the network output, where 𝑤𝑗 is the weight of the connection between hidden neuron j and the 

output neuron, b is the bias, k is the basis centre and 𝜑𝑗 is the Gaussian RBF function 

(Govindaraju, 2000). 

𝐹𝑥 = ∑ 𝑤𝑗𝜑𝑗(𝑥, 𝑐𝑗)

𝑘

𝑗=1

+ 𝑏                                       (3) 

where, 

 𝑤𝑗 is weight  

b is the bias  

K is the basis centres  

 𝜑𝑗 is Gaussian RBF  

 

The main parameters of the RBF network include a matrix of input vectors, a matrix of output 

vectors, the mean square error (MSE) function, the spread of RBF, and the number of neurons to 

be added at each iteration. More details on the RBF network can be found in (Jinkun, 2013).  

 

The number of neurons in the hidden layer is a key parameter that affects the performance of the 

RBF network. In this paper, a trial-and-error method was employed to determine the optimal 

number of hidden neurons for the RBF network. A total of 1,000 hidden neurons, with a training 

performance value of 1.185e−06, was found to be optimal. Moreover, the spread of the RBF, 

which controls the smoothness of the RBF, is another significant factor that affects the 

performance of the RBF network (Chang & Chen, 2003; Hamim et al., 2020). Therefore, 

different values of the RBF spread were tested to evaluate the performance of the RBF network. 

The range of tested values was from 1 to 10, with an increment of 1. The RBF network with a 
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spread value of 1 produced the lowest MSE, and thus, the RBF network with 1,000 hidden 

neurons and a spread value of 1 was selected. The structure of the ANN surrogate forward model 

is illustrated in Figure 9. 

 

 

Once the training process of the RBF network was finished, the performance of the developed 

network was assessed using RMSE, and R. Figures 10(a-c) to 13(a-c) present the calculated 

deflections at four datapoints (D0, D300, D1000 and D1500) using the ANN surrogate forward 

model.  

 

The results obtained from the RBF network are presented in Figures 10(b), 11(b), 12(b), and 

13(b), which show the R values of the network output at D0, D200, D1000 and D1500, respectively. It 

can be observed that the R values were close to 1 for all calculated deflections, indicating a 

strong correlation between the predicted and actual deflections. The RMSE values and 

corresponding predicted deflections from the RBF network are presented in Figures 10(c), 11(c), 

12(c), and 13(c). The RMSE values for D0, D200, D1000 and D1500 were 2.08e−03, 6.23e−04, 

1.58e−04, and 1.03e−04, respectively. These results indicate that the RBF network was able to 

predict the deflections accurately for different measurement points. The high values of R and 

relatively small RMSE values demonstrate the satisfactory performance of the trained network in 

predicting the deflections accurately. Overall, these results suggest that the RBF network is a 

reliable and effective tool for predicting the deflection of railway substructure under FWD 

loading condition. 

1.3 Development of hybrid ANN-GA back-analysis technique for local anomaly detection  

In this stage, an optimization tool in the form of a single-objective GA was integrated with the 

ANN surrogate forward model. The integration of a GA as an optimization technique can 

eliminate the need to define layer seed moduli (the inputs to the ANN) at the start of each 

iteration, and in this study, it was used to find the optimum values for unknown parameters such 
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as substructures’ layer moduli (E2 to E6), local weakened zone modulus (EW), and its geometric 

properties (WD, WL and YW). The use of a GA and ANN integration has been shown to provide a 

robust solution to complex optimization problems (Javadi et al., 2005). To solve the current 

optimization problem, a deflection-based objective function (Equation 4) was chosen as 

(Ghorbani et al., 2020; Gopalakrishnan & Khaitan, 2010): 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = √
1

𝑛
∑ ((𝐷𝑖 − 𝑑𝑖) 𝑑𝑖⁄ )2𝑛

𝑖=1  × 100                                       (4) 

 

where 𝐷𝑖 and 𝑑𝑖 are the calculated and measured values of the deflections, respectively, and n is 

the number of measurement points.  

 

The developed back-analysis technique incorporates a detailed GA optimization process, as 

illustrated in Figure 14 (Fathi et al., 2023). The GA initially generates a set of random values for 

the unknown parameters, and the ANN calculates the surface deflections at the four geophone 

locations. Subsequently, the differences between the calculated and measured deflection values 

are evaluated using the defined fitness function (Equation 3). The roulette wheel selection 

function is employed to choose the best values, which are then used to produce the next 

generation through the mutation and crossover operators. This process is iterated until the RMSE 

for any of the estimations falls below a pre-established error tolerance, or until the maximum 

number of generations has been reached. The error tolerance threshold was determined based on 

the geophones' accuracy, which is equivalent to 0.001 mm.  

It should be noted that the GA parameters used in this study were specifically tailored to the 

problem being addressed. To ensure accurate and efficient computation, it was necessary to 

determine the optimal values for these parameters. A sensitivity analysis was conducted to 

determine the appropriate population and generation sizes for the GA. Figure 15 illustrates the 

results of this sensitivity analysis, which shows the variation of RMSE values with the 
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generation size for different population sizes ranging from 80 to 300. The results indicate that a 

population size of 200 and a generation size of 300 produced the minimum RMSE, thus 

indicating that these parameters were optimal. Therefore, the adopted GA parameters were a 

population size of 200, a generation size of 300, a crossover probability of 0.8, and a mutation 

probability of 0.1. 

 

1.4 Results and Discussions  

Firstly, a parametric analysis was conducted to assess the impact of variations in size of the 

weakened zone (WL) and its longitudinal distance from the loading point (YW) on the 

performance of the ANN-GA back-analysis. To investigate the impact of each WL and Yw 

individually, various scenarios were defined. Based on the assumed 0.001 mm measurement 

accuracy of the geophones, differences in deflections exceeding this value were considered 

meaningful and included in the analysis, while differences less than this value were excluded as 

noise. Additionally, a critical threshold was established to determine the point at which 

differences between the geophones' measurements and the reference deflection (in the absence of 

a weakened zone) reached 0.001 mm, equivalent to the geophones' accuracy. This threshold 

resulted in an RMSE of 0.1%. This threshold is visually represented by a dashed red line in 

Figures 16 and 17, which serves as the boundary for the applicability and reliability of the back-

analysis technique. 

To investigate the impact of the weakened zone size on the technique’s performance, we 

examined three distinct values for WD, maintaining Yw constant at zero and changed WL. For each 

WD value, we evaluated technique performance across various WL values: 20 cm, 40 cm, and 60 

cm. The results, presented in Figure 16, indicate that the size of the weakened zone significantly 

impacts the accuracy of the technique. Generally, as the size of the weakened zone (WL) 

increases, the technique's ability to predict the geometry of the weakened zone also improves. 

This figure indicates that if the length of the weakened zone (WL) is relatively small (e.g., 20 
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cm), then the minimum size of WD must be approximately 13 cm to be detectable by the 

developed technique. 

Figure 17 illustrates how the distance of the weakened zone (Yw) from the loading point affects 

prediction accuracy. The analysis includes four Yw values: 0 cm, 15 cm, 125 cm, and 163.75 cm 

based on the longitudinal geophone arrangement in Figures 5 and 6. As the distance increases, 

prediction accuracy decreases, but all RMSE values remain above the threshold. Additionally, 

the weakened zone size (WD) improves accuracy, especially when WD is 15 cm or more. Thus, 

the longitudinal geophone arrangement shown in Figures 4 and 5 is effective for detecting 

substructure anomalies. It was observed that detectability decreased as YW increased, except for 

YW = 15 cm. In addition to the deflection values, various weakened zone specifications, including 

YW, affect the shape of the deflection basin and the peak deflection. Because of the specific 

configuration of the geophones and their distancing, the peak of the deflection basin may not be 

captured by the geophone, which results in the exception mentioned above at YW = 15 cm.  

2.4.1 Validation of the developed ANN-GA back-analysis technique 

To validate the accuracy and performance of the developed ANN-GA back-analysis technique, 

we applied it to six distinct cases involving weakened zone mechanical properties and 

geometries, which we refer to as case studies. These cases vary in their geometrical 

characteristics (WD) and layer modulus (EW) of weakened zone (Table 6) while other parameters 

including WL, YW, α and θ were kept contact. Full details of the weakened zones’ characteristics 

in these case studies are presented in Table 6. In these case studies, the combination of 7.5 cm 

and 20 cm as maximum and minimum values of WD were considered, along with different values 

of EW (i.e., 25% E4, 35% E4, and 50% E4) and constant values of 60 cm and 15 cm for WL, and 

YW, respectively. As mentioned earlier in section 2.2.2, WD has the greatest impact on deflections 

compared to WL, and YW, so the two variation of this parameter was considered using the 

minimum and maximum values for WD. 
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The results of these scenarios are presented in Table 7. It can be seen that the developed back-

analysis technique can predict various weakened zone moduli accurately when a larger area 

around the drainage pipe is affected by a drainage defect - with higher values of WD. For 

example, when WD is 20 cm, the technique can accurately predict the weakened zone moduli for 

all three cases, with the error being less than 10 % in each instance (as shown by the discrepancy 

in Table 6). In other words, in these cases, represented by case studies 2, 4, and 6, the back-

analysed value for EW is more accurate compared to case studies 1, 3, and 5, which have smaller 

geometrical properties of the weakened zone. This can be attributed to the fact that weakened 

zones with WD and WL less than 15 cm and 20 cm, respectively, are less detectable by the 

developed back-analysis technique. 

Additionally, this table shows the estimated values for EW and the discrepancy (percentage error) 

for case studies 1 to 6. The estimated EW values for case studies 2, 4, and 6, with WD=20 cm, 

exhibited discrepancies of less than 10%, specifically 8.90%, 7.68%, and 5.49%, respectively. In 

contrast, the estimations for case studies with WD=7.5 cm showed discrepancies of up to 41.51%. 

This discrepancy can be attributed to the significant influence of WD as a critical parameter of the 

weakened zone, as discussed in section 2.2.2. Moreover, for weakened zones with WD = 20 cm 

and EW ranging between 25% and 50% of E4, the developed back-analysis technique accurately 

predicts WD, WL, YW, and EW. 

  Conclusions  

The following key conclusions are drawn from the research: 

 

- The proposed back-analysis technique is applicable to detecting soil weakened zone 

caused by subsurface drainage networks in railway substructure.  

- The use of the RBF network as a forward surrogate model to calculate railway track 

surface deflection using FWD testing data was successful. 
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- The developed ANN-GA back-analysis technique demonstrated reliable performance in 

estimating substructure layer moduli (E2 to E6) and the weakened zone modulus (EW), 

with error values consistently below 10%. This high level of accuracy was observed 

particularly when the weakened zone depth (WD) was 20 cm, underscoring the robustness 

and effectiveness of the model. 

- The ANN-GA back-analysis technique showed efficient computational time where the 

maximum computational time was recorded as 792 seconds observed for case study 1 

(Table 6).  

- Parametric studies indicated that the back-analysis technique is more effective with larger 

weakened zone depth (WD) and length (WL). 

- It was observed that if the length of the weakened zone (WL) is relatively small (e.g., 20 

cm), then the minimum size of WD must be approximately 13 cm to be detectable by the 

developed technique. 

- The technique’s prediction accuracy declines as the weakened zone is located farther 

from the loading point, though RMSE values remain above the threshold. When the size 

of the weakened zone is around 15 cm or more, accuracy improves for these farther 

distances.  

- The longitudinal geophone arrangement in Figures 4 and 5 is effective for detecting 

substructure anomalies. 
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Tables 

Table 1: Mechanical properties of the track and soil used to model the railway (Fathi et al., 2023) 
 Properties Value Reference 

Sleeper 

Layer modulus, E1 (GPa) 20.7 (Brough et al., 2006) 
Poisson’s ratio, ν 0.15 (Burrow et al., 2007) 

Density, ρ (kg/m3) 2,500 (Burrow et al., 2007) 

Damping ratio 0.05 (Haji Abdulrazagh et al., 
2019) 

Clean ballast  
(Ballast 1) 

Layer modulus, E2 (MPa) 110 (Brough et al., 2006) 
Poisson’s ratio, ν 0.2 (Burrow et al., 2007) 

Density, ρ (kg/m3) 1,700 (Burrow et al., 2007) 
Damping ratio 0.05 (Wehbi et al., 2020) 

Contaminated 
ballast 
(Ballast 2) 

Layer modulus, E3 (MPa) 32.25 (Brough et al., 2006) 
Poisson’s ratio, ν 0.49 (Burrow et al., 2007) 

Density, ρ (kg/m3) 1,800 (Burrow et al., 2007) 
Damping ratio 0.05 (Wehbi et al., 2020) 

Subgrade 1 

Layer modulus, E4 (MPa) 71.83 (Brough et al., 2006) 
Poisson’s ratio, ν 0.49 (Burrow et al., 2007) 

Density, ρ (kg/m3) 1,900 (Burrow et al., 2007) 
Damping ratio 0.05 (Wehbi et al., 2020) 

Subgrade 2 

Layer modulus, E5 (MPa) 33.96 (Brough et al., 2006) 
Poisson’s ratio, ν 0.49 (Burrow et al., 2007) 

Density, ρ (kg/m3) 1,900 (Burrow et al., 2007) 
Damping ratio 0.2 (Wehbi et al., 2020) 

Subgrade 3 

Layer modulus, E6 (MPa) 362.1 (Brough et al., 2006) 
Poisson’s ratio, ν 0.49 (Burrow et al., 2007) 

Density, ρ (kg/m3) 1,800 (Burrow et al., 2007) 
Damping ratio 0.2 (Wehbi et al., 2020) 

Weakness zone 

Layer modulus, Ew (MPa)    5%–50% E4 (Kaynia et al., 2017) 
Poisson’s ratio, ν 0.49 (Burrow et al., 2007) 

Density, ρ (kg/m3) 1,900 (Burrow et al., 2007) 
Damping ratio 0.2 (Wehbi et al., 2020) 

Concrete 
drainage pipe 

Layer modulus, EP (MPa) 34,000 (Meguid and Kamel, 2014) 
Poisson’s ratio, ν 0.2 (Meguid and Kamel, 2014) 

Density, ρ (kg/m3) 2,600 (Meguid and Kamel, 2014) 
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Table 2: Outcomes of the FE sensitivity analysis - Exploring the influence of weakened zone expansion 

angle and position on track surface deflections 

Expansion 
angle Location Surface deflection (mm) 

(Geophones) 
Average 

percentage 
difference (θ) (α) D0 D300 D1000 D1500 

90 

0 Crown −1.607 −0.944 −0.322 −0.243 0.631 

90 Springlin
e −1.604 −0.941 −0.321 −0.243 0.4097 

180 Invert −1.602 −0.938 −0.319 −0.242 0.102 

120 

0 Crown −1.608 −0.945 −0.323 −0.244 0.776 

90 Springlin
e −1.605 −0.942 −0.322 −0.244 0.634 

180 Invert −1.602 −0.939 −0.319 −0.243 0.183 

150 

0 Crown −1.608 −0.946 −0.323 −0.244 0.898 

90 Springlin
e −1.607 −0.944 −0.324 −0.243 0.793 

180 Invert −1.603 −0.939 −0.320 −0.243 0.227 
Reference scenario (no void) −1.602 −0.938 −0.318 −0.242  

 

 

Table 3: Trial-and-error process toward ANN architecture definition 

ANN architectures RMSE D0 RMSE D300 RMSE D1000 RMSE D1500  

19-7-6-5-4 1.3273e−02 5.922e−03 3.8038e−03 2.532e−03 

19-6-6-6-4 1.2918e−02  4.2687e−03 1.6709e−03 8.9329e−04  

19-7-7-6-4 1.1080e−02 3.3826e−03 1.2741e−03 7.4851e−04 
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19-8-6-6-4 1.2885e−02 4.2034e−03 1.6100e−03 8.3753e−04  

19-8-7-6-4 1.2151e−02 4.1813e−03 1.5587e−03 7.8088e−04 

 

Table 4: The input values and range (used to generate the ANN training database based on the 
railway section near Leominster station, UK) 

Railway track 
system Layers Thickness 

(mm) 
Poisson’s 
ratio 

Range of layer 
moduli (MPa) 

Five-layer 
system 

Clean ballast (E2) 300 0.2 70–170 
Contaminated ballast (E3) 600 0.49 20–50 
Subgrade 1 (E4) 2,100 0.49 50–100 
Subgrade 2 (E5) 700 0.49 15–50 
Subgrade 3 (E6) 6,100 0.49 100–400 

 

Table 5: Details of geometries and moduli of the weakened zone for the ANN training database 

 WD (cm) WL (cm) Yw (cm) Ew (MPa) 

Weakened zone 
0, 7.5, 10, 15, 
20 

0, 20, 40, 
60 0, 15, 65, 125, 163.75 5%–50% E4 

 

Table 6: Details of case studies used for validation of the developed ANN-GA back-analysis 
technique 

Case  study 
No. 

Weakened 
zone angle 

(α) 

Weakened 
zone 

expansion 
angle (θ) 

weakened 
zone 

modulus 
(EW) 

weakened 
zone depth 

(WD) 

weakened 
zone length 

(WL) 

distance of the 
zone from the 
centre of the 
loading point 

(YW) 
1 Pipe crown 

(0°) 
150° 25% E4 7.5 cm 60 cm 15 cm 

2 Pipe crown 
(0°) 

150° 25% E4 20 cm 60 cm 15 cm 

3 Pipe crown 150° 35% E4 7.5 cm 60 cm 15 cm 

Downloaded by [ Aston University] on [16/12/24]. Copyright © ICE Publishing, all rights reserved.



Accepted manuscript doi: 
10.1680/jtran.23.00066 

 

31 
 

(0°) 
4 Pipe crown 

(0°) 
150° 35% E4 20 cm 60 cm 15 cm 

5 Pipe crown 
(0°) 

150° 50% E4 7.5 cm 60 cm 15 cm 

6 Pipe crown 
(0°) 

150° 50% E4 20 cm 60 cm 15 cm 

 

Table 7: Target and estimated values of the weakened zones in case studies 1 to 6 

Parameter Target value Estimated value 

Case study 1 

WD  7.5 (cm) 10 (cm) 

WL  60 (cm) 60 (cm) 

YW  15 (cm) 15 (cm) 

EW 25.00% E4 (17.96 MPa) 
10.52 MPa (discrepancy= 

41.51%) 

Case study 2 

WD  20 (cm) 20 (cm) 

WL  60 (cm) 60 (cm) 

YW  15 (cm)  15 (cm) 

EW 25.00% E4 (17.96 MPa) 
19.55 MPa (discrepancy= 

8.90%) 

Case study 3 

WD  7.5 (cm) 10 (cm) 

WL  60 (cm) 60 (cm) 

YW  15 (cm) 163.75(cm) 
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EW 35.00% E4 (25.14 MPa) 21.38 MPa (discrepancy= 
14.95%) 

Case study 4 

WD  20 (cm) 20 (cm) 

WL  60 (cm) 60 (cm) 

YW  15 (cm) 125 (cm) 

EW 35.00% E4 (25.14 MPa) 27.07 MPa (discrepancy= 
7.68%) 

Case study 5 

WD  7.5 (cm) 10 (cm) 

WL  60 (cm) 20 (cm) 

YW  15 (cm) 15 (cm) 

EW 50.00% E4 (35.92 MPa) 30.69 MPa (discrepancy= 
14.54%) 

Case study 6 

WD  20 (cm) 20 (cm) 

WL  60 (cm) 60 (cm) 

YW  15 (cm) 65 (cm) 

EW 50.00% E4 (35.92 MPa) 37.8851 MPa (discrepancy= 
5.49%) 
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Figure captions 

Figure 1: Schematic of the methodology sequences 

Figure 2: Schematic cross-section of the railway track substructure with a buried drainage pipe 
and soil weakened zone 

Figure 3: The arrangement of geophones in a FWD test 

Figure 4:  Plan view of FWD test including loading points and geophone configuration for 
railway track application 

Figure 5 (a-b): (a) A 3D FE model of the problem, (b) A close view of the loading point and 

locations of the geophones/data points 

Figure 6 (a-b): (a) 2D and (b) 3D schematics geometry of the weakened zone in the FE model  

Figure 7: Schematic illustration of the weakened zone at the pipe crown, showcasing variable   

Figure 8: Effect of the expansion angle and position of the weakened zone around the pipe on the 

track surface deflection 

Figure 9: RBF network (ANN surrogate forward model) structure 

Figure 10(a-c): Accuracy of the ANN for estimating surface deflections at D0 

Figure 11(a-c)– Accuracy of the ANN for estimating surface deflections at D300 

Figure 12(a-c)– Accuracy of the ANN for estimating surface deflections at D1000 

Figure 13(a-c)– Accuracy of the ANN for estimating surface deflections at D1500 

Figure 14: Flowchart of the hybrid ANN–GA back-analysis technique  

Figure 15: Results of the parametric analysis of the GA population and generation sizes 

Figure 16: Effect of weakened size on weakened zone detectability using the back-analysis 

technique 

Figure 17: Effect of YW on the RMSE and weakened zone detectability 
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Fig. 1 
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Fig. 2 
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Fig. 3 

Downloaded by [ Aston University] on [16/12/24]. Copyright © ICE Publishing, all rights reserved.



Accepted manuscript doi: 
10.1680/jtran.23.00066 

 

37 
 

 

Fig. 4 
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Fig. 5 

 

Fig. 6a 

Downloaded by [ Aston University] on [16/12/24]. Copyright © ICE Publishing, all rights reserved.



Accepted manuscript doi: 
10.1680/jtran.23.00066 

 

39 
 

 

Fig. 6b 
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Fig. 7 
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Fig. 8 
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Fig. 9 

 

Fig. 10a 
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Fig. 10b 

 

Fig. 10c 
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Fig. 11a 

 

Fig. 11b 
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Fig. 11c 
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Fig. 12a 

 

 

Fig. 12b 
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Fig. 12c 

 

Fig. 13a 
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Fig. 13b 
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Fig. 13c 
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Fig. 14 
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Fig. 15 

 

Fig. 16 
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Fig. 17 
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