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Application of a hybrid fuzzy-based algorithm to investigate the environmental impact 
of sewer overflow 

 

ABSTRACT 

Purpose: This study underscores the critical importance of well-functioning sewer systems in 

achieving smart and sustainable urban drainage within cities. It specifically targets the pressing 

issue of sewer overflows (SO), widely recognized for their detrimental impact on the 

environment and public health. The primary purpose of this research is to bridge significant 

research gaps by investigating the root causes of SO incidents and comprehending their broader 

ecological consequences. 

Design/Methodology/Approach: To fill research gaps, the study introduces the Multi-Phase 

Causal Inference Fuzzy-Based Framework (MCIF). MCIF integrates the fuzzy Delphi 

technique, fuzzy DEMATEL method, fuzzy TOPSIS technique, and expert interviews. 

Drawing on expertise from developed countries, MCIF systematically identifies and prioritizes 

SO causes, explores causal interrelationships, prioritizes environmental impacts, and compiles 

mitigation strategies. 

Findings: The study's findings are multifaceted and substantially contribute to addressing SO 

challenges. Utilizing the MCIF, the research effectively identifies and prioritizes causal factors 

behind SO incidents, highlighting their relative significance. Additionally, it unravels intricate 

causal relationships among key factors such as blockages, flow velocity, infiltration and inflow, 

under-designed pipe diameter, and pipe deformation, holes, or collapse, providing a profound 

insight into the intricate web of influences leading to SO. 

Originality: This study introduces originality by presenting the innovative MCIF tailored for 

SO mitigation. The combination of fuzzy techniques, expert input, and holistic analysis 

enriches the existing knowledge. These findings pave the way for informed decision-making 

and proactive measures to achieve sustainable urban drainage systems. 

Keywords: Sewer overflow; Sewer pipelines; Fuzzy sets theory; Artificial intelligence; 

Environmental concerns. 
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1. INTRODUCTION 
Sewer overflow (SO) is currently one of the most important environmental concerns, 

potentially threatening infrastructures, the environment, and people’s health (Montserrat et al., 

2015). In this regard, there are two types of SO: (1) Combined Sewer Overflow (CSO) and (2) 

Sanitary Sewer Overflow (SSO). CSO occurs when excessive rainfall flows through the sewer 

system. It occurs when the rainfall inflow surpasses the flow capacity of the network. This 

causes the pipes to get a surcharge and the combined medium (storm and wastewater) to 

overflow from manholes. On the other hand, SSO is regarded as untreated wastewater released 

directly into the environment from the network (Ogidan and Giacomoni, 2015a), which occurs 

due to sewer pipeline defects (such as pipe collapse, weak design, blockage, or excessive flow 

of pipe capacity) (Getuli et al., 2021; Ogidan and Giacomoni, 2017). According to the 

Environmental Protection Agency (EPA) in the United States, between 23,000 and 75,000 SSO 

cases are annually discovered across this country, and 11.4-37.9 million cubic meters of 

untreated wastewater are annually released into the environment (Itaquy et al., 2017a).   

It is highly important to regulate SO properly, and any failure in this process can lead to 

serious risks to society and the environment (Ryu et al., 2017). Once heavy rainfall overpowers 

the capacity of the stormwater/wastewater system, it may lead to SO, urban runoff pollution, 

and localized flooding (Tao et al., 2020). In this case, the target regions would be at high risk 

because of the rapid increase in pollution loads emitted from SO (Zhang et al., 2018). In old 

cities, SO becomes more critical due to the decrepitude of constructed facilities, leading to 

destructive impacts on people’s health, aquatic life, environment, infrastructures, etc. (Lund et 

al., 2020). What adds more complexity to realizing a smart and sustainable drainage system is 

that it has been linked to rapid population growth and urban development, urging the need for 

well-performed sewer systems within cities  (Al-Mhdawi et al., 2024; Quijano et al., 2017). 

Throughout the body of relevant knowledge, it can be observed that many researchers 

have focused on improving the functions of sewer networks and reducing the magnitude of SO 

(Mohandes et al., 2022). In these studies, many different models have been proposed, ranging 

from pure simulations to those designed based on artificial intelligence (AI) (Bonamente et al., 

2020; Casadio et al., 2013; Chen et al., 2003; Duchesne et al., 2001; Even et al., 2004; Habibi 

and Seo, 2018; Itaquy et al., 2017b; Sharior et al., 2019). With that in mind, various studies 

have been undertaken on the deterioration of sewer pipelines to reduce the SO rate using 

different techniques based on AI, statistical data, and probabilistic algorithms. For instance, 
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Najafi and Kulandaivel (2005) and Tran et al. (2006) used a neural network model to predict 

the deterioration of sewer pipelines. In another study, Harvey and McBean (2014) utilized 

random forests to predict the condition of constructed pipelines. 

Moreover, Yin et al. (2020) proposed a novel neural network model for predicting 

individual sewer pipe conditions. In this regard, some studies have developed advanced types 

of neural networks (Haurum et al., 2022; Wang et al., 2021). Syachrani et al. (2013) and 

Mashford et al. (2011) utilized decision trees and support vector machines, respectively, to 

anticipate the related failure of such pipelines. In the case of the utilization of statistical-based 

methods, Gedam et al. (2016) proposed linear regression for the prediction of sewer 

deterioration, while Kabir et al. (2018) and Chughtai and Zayed  (2007) employed logistic and 

multiple regression to model the related failure of sewer pipelines. Kineber et al. (2022) and 

Mohandes et al. (2022) quantified the importance of critical factors for selecting stormwater 

pipelines and uncovered the importance of causes of SO, respectively. This extensive literature 

review critically examines the challenges in predicting sewer pipeline conditions using CCTV 

inspection reports and proposes an innovative AI-based model, integrating unsupervised 

regression and Weibull analysis (Salihu et al., 2023a). The findings provide essential guidance 

for decision-makers in prioritizing maintenance actions, particularly in the context of 

sustainable urban drainage systems. The review also synthesizes four common evaluation 

standards for drainage pipes, establishing a comprehensive system of influencing factors and 

reviewing the progress of physical, statistical, and AI models in predicting deterioration and 

breakage (Zeng et al., 2023). Addressing concerns about sewer pipe degradation, the study 

underscores the need for structured inspection plans integrating various data sources. The 

proposed methodology evaluates statistical and machine learning models, with ensemble 

models offering high accuracy but limited long-term inference and Logistic Regression 

providing slightly lower accuracy but consistent degradation curves and high explainability (El 

Morer et al., 2023). 

Furthermore, the paper introduces an intelligent method for detecting and segmenting 

damages in aging sewer pipes, utilizing a fine-tuned fully convolutional network (FCN) 

algorithm with impressive evaluation metrics. The study also presents a data-driven approach 

for assessing the condition of reinforced concrete sanitary sewer pipelines (RCSSPs), 

leveraging LiDAR inspection data to probabilistically evaluate pipe wall erosion and estimate 

remaining service life (Ebrahimi et al., 2023; Goulding and Rahimian, 2012; Seyedzadeh et 

al., 2017). Comparative analysis validates the proposed algorithm using closed-circuit 
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television (CCTV) images and Monte Carlo Simulation (MCS), offering an automated 

framework for non-destructive inspections. 

 

Additionally, there have been loads of studies dealing with sewer deterioration through 

different probabilistic-based approaches, including Bayesian (Ana et al., 2009; Balekelayi and 

Tesfamariam, 2019; Salman, 2010), Markov chain (Dirksen and Clemens, 2008; Lubini and 

Fuamba, 2011; Micevski et al., 2002), cohort survival method (Baur and Herz, 2002), and cox 

model (El-Housni et al., 2018). In addition, numerous researchers have attempted to model SO 

through different techniques. For instance, Rosin et al. (2021) and Zhao et al. (2017) used ANN 

and advanced regression techniques to predict the sewer discharge of constructed pipelines. 

The literature also contains many studies that have applied the Genetic Algorithm (GA) to 

reduce the rate of sanitary overflows (Itaquy et al., 2017b; Ogidan and Giacomoni, 2015b; 

Rathnayake and Tanyimboh, 2015; Wu et al., 2022). Likewise, the Monte Carlo simulation has 

extensively been used to calculate the probability of overflow within the sewer systems (Kumar 

et al., 2018; Sriwastava et al., 2018; Szeląg et al., 2021; Tondera, 2019). In addition, many 

researchers have focused on using the Storm Water Management Model (SWMM) simulation 

platform to model the run-off from SO. For instance, an urban drainage model was developed 

to quantify adverse dissolved oxygen conditions associated with SO (Riechel et al., 2016). In 

another research, Riechel et al. (2020) used SWMM to curb the acute oxygen depressions of 

overflow discharged into the receiving river. In China, K. Chen et al. (2021) examined the 

pollution emitted from overflows of an interception sewer system using SWMM. This study 

introduces temporal fragility models for aging concrete sewer pipes, addressing corrosion and 

truck loads with Bayesian Additive Regression Trees (BART) (Zamanian and Shafieezadeh, 

2023). Findings highlight critical serviceability and collapse factors, aiding quantitative risk 

assessment for underground wastewater systems. The research evaluates the visual inspection 

method for sewer and stormwater pipelines, exposing uncertainties. Reclassifying condition 

classes based on identical video footage quantifies and assesses uncertainty's impact on 

deterioration model outcomes, significantly influencing decisions for pipeline rehabilitation 

and replacement strategies (Fugledalen et al., 2023). Utilizing a Markov chain model with 

historical CCTV data, the study estimates Hume pipe deterioration in the City. Sub-catchment 

EM experiences accelerated deterioration, with projected main defects and serious failures 

expected within 35 and 100 years, respectively. Larger pipes (600 mm) deteriorate 

approximately 12 years faster than smaller pipes (450 mm), and life expectancy estimates range 

from 34 to 60 years based on a 40% main defects generation assumption (Jun et al., 2023). 
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In addition to modeling-based approaches, different types of laboratory and field 

experiments have been undertaken to study the impact of such phenomenon on the environment 

(Ahmed et al., 2020; Al Aukidy and Verlicchi, 2017; Calderón et al., 2017; Cao et al., 2019). 

Likewise, intending to achieve more lucid and reliable findings, some researchers have used 

hybrid methods (based on the integration of modeling- and experimental-based approaches) to 

investigate how overflow affects the environment (Leirens et al., 2010; Masseroni et al., 2018; 

Su et al., 2020; Zhao et al., 2017).     

Innovatively addressing the challenge of sewer overflow, Bourahla and Bourahla (2023) 

integrate the Internet of Things (IoT) and eXplainable Artificial Intelligence (XAI) to create a 

real-time control system. By leveraging historical data for AI-based prediction models and real-

time data for monitoring, their approach diagnoses sewer systems to detect abnormalities. 

Ghazouli and Khatabi (2022) shed light on the detrimental effects of urbanization and climate 

change on combined sewer overflows (CSOs) and propose a Model Predictive Control (MPC) 

system powered by neural networks and genetic algorithms to mitigate CSO impacts. 

Meanwhile, Mounce et al. (2014) explore the potential of artificial neural networks (ANNs) to 

predict CSO depth, offering a promising alternative to traditional hydraulic models and crucial 

insights for future sewer system management. 

Based on the study of Omrany et al. (2022) lists energy conservation, production, and 

storage as main themes, as well as emerging ones such as electric vehicles, zero-emission 

neighbourhoods, and smart buildings. Omrany et al. (2023) list seven research themes for using 

BIM in high-rise building early design: optimising energy efficiency, collaborative design, life-

cycle assessment, net-zero energy design, smart technology integration, cost analysis, and 

structural design. According to Omrany et al. (2021), the main factors affecting home life-cycle 

energy assessment (LCEA) outcomes are system boundary definition, calculation 

methodologies, geographical context, and interpretation. The study proposes a conceptual 

framework to standardise LCEA processes and decrease variability. Rodrigo et al. (2024) 

identified AI, IoT, and BIM as crucial technologies for circular construction waste management 

and resource efficiency. The report outlines the benefits and drawbacks of using these 

technologies in construction. Omrany et al. (2023) evaluate 195 City Information Modelling 

(CIM) articles and identify nine implementation domains, including natural disaster 

management and urban building energy modelling. They also identify eight difficulties, 

including data quality and integration, and give CIM development recommendations for urban 

planners, policymakers, and scientists. Al-Obaidi et al. (2022) reviewed IoT applications for 
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energy-efficient buildings and cities, finding built environment professionals' knowledge and 

application gaps. The study concluded that a lack of awareness of IoT technologies and 

procedures hinders their application and suggests ways to improve energy efficiency through 

IoT integration. In a hybrid systematic review of 843 IoT-enabled smart cities (IESC) articles, 

Omrany et al. (2024) identified four study areas: data analysis, network and communication 

management, security and privacy management, and data collection. The study identified seven 

challenges—energy consumption, privacy, interoperability, ethical problems, scalability, and 

adaptability—and suggested ways to improve IoT integration in urban design for future smart 

cities. 

Past studies on sewer overflow (SO) management show that there is an opportunity to 

enhance it by integrating recent advancements in digital tools and fuzzy-based algorithms, 

particularly in connection to machine learning (ML) and artificial intelligence (AI) 

applications. Recent research has shown promising results in leveraging digital tools, such as 

the Internet of Things (IoT), Internet of Drones (IoD), and Internet of Vehicles (IoV), along 

with fuzzy-based algorithms, to optimize SO design, development, and operation/management 

while minimizing environmental impacts (Heidari et al., 2022). By leveraging IoT, IoD, and 

IoV technologies, cities can collect real-time data on sewer system conditions and flow 

patterns, enabling proactive detection and mitigation of SO events (Gul et al., 2023). Moreover, 

integrating AI, ML, and deep learning (DL) approaches holds promise for managing automated 

activities in smart cities, including SO management (Sun et al., 2023). These technologies 

analyze vast amounts of data from IoT devices and drones to predict and prevent SO incidents, 

enhancing overall system resilience and efficiency. 

Furthermore, recent advancements in smart city technologies, such as smart traffic 

management, smart power and energy management, city surveillance, smart buildings, and 

patient healthcare monitoring, highlight the potential for integrating SO management into 

broader urban management frameworks (Montoya-Coronado et al., 2024). By leveraging cloud 

computing, edge computing, and fog computing platforms, cities can process and analyze data 

in real-time, enabling more effective decision-making and resource allocation for SO 

prevention and mitigation. Additionally, hybrid models that combine various technologies and 

approaches offer new opportunities for improving SO management strategies in urban 

environments. 

In view of the prevailing literature mentioned above, there is a dearth of studies 

investigating cause-and-effect relationships between these causes and their consequent impacts 
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on many environmental aspects. Thus, this study aims to tackle the following research 

questions: 

(1) Considering the inherent uncertainties within the complex environmental setting, 
how can we effectively prioritize the causes contributing to sewer overflow (SO) 
occurrences? Given the intricate and uncertain nature of urban drainage systems, 
this question addresses the challenge of determining the relative importance of 
various factors leading to SO incidents. The research aims to devise a 
methodology or framework capable of systematically evaluating and prioritizing 
these factors, clarifying their significance in the context of SO occurrence. 

(2) How can we unveil the complex cause-and-effect relationships among the critical 
factors contributing to SO incidents? This research question delves into the 
intricacy of understanding the interconnections and dependencies among key 
factors like blockages, flow dynamics, and structural issues in sewer systems. 
The goal is to develop a comprehensive approach, potentially utilizing advanced 
analytical techniques or frameworks, to unravel multifaceted causal relationships 
and provide insights into the dynamics leading to SO occurrences. 

(3) What are the specific environmental aspects that deteriorate due to sewer 
overflow incidents, and how can these aspects be systematically prioritized? This 
question seeks to identify and prioritize the environmental impacts associated 
with SOs, considering factors such as damage to infrastructure, groundwater 
contamination, and consequences on surface ecosystems. The research aims to 
develop a methodology for systematically assessing and ranking these 
environmental deteriorations, providing a clear understanding of their relative 
significance and guiding effective mitigation efforts. 

(4) What practical and feasible strategies can be implemented to prevent the 
occurrence of sewer overflow phenomena? This question focuses on developing 
practical and implementable strategies to mitigate and prevent SO incidents. The 
research explores a range of preventive measures, potentially incorporating 
engineering solutions, policy interventions, and community engagement 
approaches. By addressing the root causes identified in the study, the research 
aims to contribute to developing proactive strategies that can effectively reduce 
the occurrence of SOs and enhance the resilience of urban drainage systems. 

To prudently answer all the above-noted research questions, this study developed a multi-phase 

research framework called Multi-Phase Causal Inferences Fuzzy-based framework (MCIF), 

which is based on integrating several fuzzy-based algorithms. This distinctive framework 

contributes substantially to sewer overflow (SO) research, offering a systematic and 

comprehensive methodology for identifying, prioritizing, and understanding the root causes of 
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SO incidents. By employing the MCIF, the research provides a novel perspective on addressing 

the crucial issue of SOs within urban drainage systems. 

The MCIF employs advanced fuzzy-based techniques to effectively address the complexities 

and uncertainties inherent in analyzing environmental data related to SO incidents. This 

integration enhances the overall robustness and comprehensiveness of the framework, enabling 

a detailed examination of the factors contributing to SO occurrences and their environmental 

impacts. The key aspects of this integration are outlined as follows. Firstly, it effectively 

handles uncertainty and ambiguity. Environmental data, especially in urban drainage systems, 

often contains high levels of uncertainty and ambiguity. Traditional analytical methods may 

struggle to accommodate these uncertainties, leading to less reliable results. Fuzzy logic, 

however, is well-suited to manage such complexities. Secondly, the framework incorporates 

expert knowledge. Fuzzy systems can integrate expert opinions and qualitative data, which are 

often subjective and ambiguous. This enhances the framework's ability to include a wider range 

of information sources in the analysis. 

Thirdly, by accommodating uncertainty, the MCIF framework provides more reliable and 

nuanced insights, supporting better decision-making processes for prioritizing factors and 

implementing mitigation strategies. Fourthly, the fuzzy-based approach within the MCIF 

framework systematically evaluates and prioritizes various factors contributing to SO 

incidents. This systematic prioritization is achieved through the use of Multi-Criteria Decision 

Making (MCDM) techniques to evaluate and rank the importance of different factors based on 

multiple criteria. Weighted aggregation is also utilized, where the weights represent the relative 

importance of each criterion, ensuring that the prioritization process reflects the complex 

interplay of different factors and their impacts on SO occurrences. Furthermore, the framework 

offers dynamic causal analysis. Fuzzy logic allows for the dynamic analysis of causal 

relationships, accommodating changes in environmental conditions and system parameters 

over time. This provides a more accurate depiction of the evolving nature of SO incidents. 

Finally, based on the prioritized impacts, the framework proposes practical and feasible 

mitigation strategies. These strategies incorporate engineering solutions, policy interventions, 

and community engagement approaches. 

A notable strength of the study lies in its ability to efficiently pinpoint and prioritize the causal 

factors behind SO incidents. Through the application of MCIF, the research illuminates the 

relative importance of various factors, including blockages, flow velocity, infiltration and 
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inflow, and structural issues in sewer systems. This thorough identification process is crucial 

for comprehending the intricate dynamics leading to SOs and forming a robust foundation for 

developing targeted mitigation strategies. 

The study identifies causes and unveils complex causal relationships among key factors 

contributing to SO incidents. The research provides profound insights into the intricate web of 

influences leading to SO by examining the interplay between blockages, flow dynamics, and 

structural integrity. This deep understanding of causal interrelationships is a crucial 

contribution that addresses significant research gaps, advancing knowledge about the 

mechanisms behind SO incidents. 

Furthermore, the study goes beyond academic inquiry by compiling practical mitigation 

strategies. The emphasis on actionable insights for decision-makers and urban planners sets the 

research apart, offering a valuable resource for implementing measures to address identified 

root causes and prevent future SO incidents. The study's practical applicability and focus on 

mitigation contribute to its potential impact on improving the current conditions of SOs in 

cities. 

In enriching existing knowledge, the study introduces a novel framework and combines fuzzy 

techniques and expert input to provide a holistic analysis of SO incidents. This comprehensive 

approach contributes to a more nuanced understanding of SOs, effectively bridging significant 

gaps in the field. The study's findings pave the way for informed decision-making and proactive 

measures, aligning with the broader goal of achieving sustainable urban drainage systems and 

making a substantial contribution to advancing knowledge in the field. 

 

2. RESEARCH METHODOLOGY 
In this section, the detailed steps involved in the development of the Modified Cause and 

Impact Framework (MCIF) are elaborated, focusing on its application in minimizing the 

Environmental Impact (EI) of Sewer Overflow (SO) in cities and the built environment. Given 

the widespread utilization of Fuzzy Sets Theory (FST) within MCIF, a brief explanation of FST 

is provided before elaborating on the methods adopted. Fig 1 illustrates the developed MCIF, 

depicting several phases as follows: 
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Phase A. The utilization of FDT aims to identify all the underlying causes leading to SO and 

determine the critical ones. 

Phase B. The FDEMATEL method is utilized to uncover the causal relationships among the 

critical causes leading to SO. 

Phase C. The overall importance index is created based on combining the outputs from Phases 

A and B.  

Phase D. Using the FTOPSIS technique to identify and rank the aspects of the environment 

deteriorated by SO occurrence. 

Phase E. Conducting several interviews to provide a detailed list of measures to be taken to 

prevent the occurrence of SO or improve the conditions when SO occurs. 

Phase F. The validation of the results was elicited from the interviews and focus group 

discussions. 

Furthermore, this study paves the way for integration into AI applications, particularly for 

smart cities and environmental management. By leveraging advanced AI techniques such as 

machine ML algorithms, deep learning, and natural language processing (NLP), the MCIF 

framework can be automated and optimized for real-time decision-making. ML algorithms can 

analyze vast amounts of historical data on sewer systems, environmental conditions, and 

previous overflow events to identify patterns and correlations. By training predictive models 

on this data, the MCIF framework can forecast the likelihood of future overflow incidents based 

on various contributing factors such as rainfall intensity, sewage system capacity, and urban 

development. 

Deep learning techniques, particularly neural networks, can further enhance the accuracy of 

predictive models by extracting complex relationships and non-linear dependencies within the 

data. Deep learning algorithms can automatically learn and adapt to changing environmental 

conditions, improving the framework's ability to anticipate and prevent sewer overflow events. 

NLP techniques can analyze unstructured data sources such as maintenance reports, sensor 

readings, and public feedback regarding sewer systems. By extracting insights from textual 

data, the MCIF framework can incorporate qualitative information into its analysis, providing 

a more comprehensive understanding of the factors influencing sewer overflow incidents. By 

integrating these advanced AI techniques, the MCIF framework can be optimized for real-time 

decision-making in managing sewer systems. Automated algorithms can continuously monitor 

relevant data streams, detect anomalies or potential risk factors, and recommend adaptive 

interventions to prevent or mitigate sewer overflow incidents. This proactive approach enables 
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municipalities and utility operators to respond swiftly to emerging challenges, minimizing 

environmental impact and enhancing the resilience of urban infrastructure.  

This study holds significant promise for the industry, particularly in enhancing sewer condition 

assessment practices employing CCTV applications. Platforms such as Pipe Insights were 

developed by AECOM (Kaddoura, K., & Atherton, 2021), and Sewer AI developed Pioneer.  

Sullivan & Kumar (2021) showcase the fusion of advanced AI capabilities with sewer 

infrastructure management. These platforms leverage sophisticated AI algorithms to scrutinize 

CCTV-captured footage of sewer pipelines. These algorithms adeptly discern heightened water 

levels, blockages, and structural defects within the pipelines by harnessing cutting-edge 

computer vision and machine learning techniques. These discernible indicators serve as crucial 

harbingers in gauging the potential for sewer overflow scenarios. These platforms facilitate 

early identification of at-risk areas through automated detection processes, empowering 

proactive maintenance and intervention measures. 

Furthermore, identified indicators of potential overflow are seamlessly integrated into 

criticality assessment frameworks for prioritization modeling. AI algorithms meticulously 

assign risk scores to different pipeline segments based on the severity of identified issues, 

enabling asset managers to optimize maintenance activities with precision. This data-driven 

approach not only streamlines resource allocation but also mitigates the likelihood of sewer 

overflow incidents in high-risk areas, thus bolstering overall system resilience and operational 

efficiency. 

This integration of AI technologies enhances the MCIF framework's efficacy and enables 

adaptive and responsive solutions tailored to dynamic urban environments. By harnessing the 

power of AI, cities can achieve greater sustainability, resilience, and efficiency in managing 

environmental challenges such as sewer overflow. Furthermore, the insights gained from this 

study contribute to the ongoing discourse on the intersection of AI, environmental 

management, and sustainable urban development, facilitating interdisciplinary collaboration 

and innovation in addressing complex societal issues.  

This study is poised to bolster forthcoming R&D initiatives targeting the integration of AI/ML 

applications for the early detection of significant environmental challenges, such as sewer 

overflow. By pinpointing the primary causes of sewer overflow, researchers can hone their 

focus and data collection efforts on factors pertinent to these causes. This targeted approach 

enables the judicious construction of models, ensuring cost-effectiveness without 

compromising reliability. 
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2.1 Phase A: Fuzzy Delphi Technique (FDT) 

Delphi is an extensively-used method generally aimed at eliciting, refining, and drawing upon 

several experts' collective opinions regarding a certain topic (Mahdiyar et al., 2020a; 

Tabatabaee et al., 2019). This method is expected to decrease the negative effects of group 

interactions and provide equal opportunities for all participants to share when making the 

required decisions (Zhang and Mohandes, 2020). The major drawback of the conventional 

Delphi method was the low convergence of experts’ opinions and the inefficiency of the 

method's execution process. The reason was that iterative investigations were required to 

achieve consistency in the experts’ opinions. 

Additionally, this method is largely based on verbal expressions of the participants’ 

opinions (Mohandes et al., 2020). The challenge is that verbal expression has many limitations 

in reflecting completely the real thinking styles of human beings and showing their mental 

latencies. As a result, an FST was designed in such a way to effectively address the problems 

related to ambiguity, subjectivity, and imprecision of human beings’ judgments, which was 

capable of quantifying the linguistic facets of existing data and the preferences for individual 

or group decision-making sessions (Durdyev et al., 2022). FST is indeed an extended version 

of the conventional set theory, in which the elements of a set possess membership grades that 

range from 0 (indicating non-membership) to 1 (indicating a full membership) (Tabatabaee et 

al., 2021) (detailed explanation about fuzzy sets are straddled in appendix A).  

With the above background in mind, the combined Fuzzy Delphi Technique (FDT) is employed 

to identify the underlying causes of SO and determine the critical ones. To this end, the steps 

straddled were followed (Sadeghi et al., 2020). The developed surveys were sent to all the 

selected respondents twice a month, and 104 responses were received. The profiles of the 

respondents involved in completing the FDT-based survey are illustrated in Fig. 2.  

Step 1. Identification of the causes contributing to the occurrence of SO using a comprehensive 

literature review. Initially, the research team investigated relevant literature to identify the 

related causes. This resulted in several causes mentioned standalone and fragmented in some 

studies, including blockages (Wang et al., 2012), flow velocity (McCarthy et al., 2011), 

corrosion (Emmons and Emmons, 2017), infiltration and inflow (Akimana, 2016), and cracks 

(Strifling, 2003).  
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Step 2. Finalizing the list of causes through interviewing the participating experts. To compile 

a detailed list of causes leading to SO, several face-to-face and online interviews with four 

qualified experts were undertaken  (Ali and Kidd, 2015; Mohandes et al., 2024). More 

specifically, one of the experts was an academic with the title of professorship who had more 

than 20 years of experience in infrastructure asset management, while the other three were 

senior engineers with more than 15 years of relevant working experience. The list of causes 

obtained from the literature was provided to the selected experts, who were then requested to 

add any other factors that had been missed. Once all the interviews were completed, a detailed 

list of causes leading to SO was obtained, including twelve sub-causes under three main ones. 

Step 3. Designing and distributing the FDT-based questionnaire survey. Once a detailed list of 

relevant causes was provided, an FDT-based survey was designed to uncover the importance 

of the identified items. To this end, there was a need to achieve a reflective sample size that 

could reveal reliable results. To prudently tackle this issue, two selection criteria were 

considered as follows: (1) the respondents must have at least a degree relative to the area of 

civil and environmental engineering, and (2) the respondents must have relative working 

experiences in dealing with sewer networks in a developing country setting. This led to the 

selection of 138 qualified respondents for contributing to the study using the employed FDT 

from different developed nations, for instance, Canada (CAN), the United States (US), the 

United Kingdom (UK), Australia (AUS), and Hong Kong (HK). Once the sample size was 

selected, the designed FDT-based survey was built up in Google Docs and sent to the selected 

respondents. In doing so, they were asked to rate the importance of identified causes using the 

linguistic variables shown in Fig. A1 (see Appendix B).  

Step 4. Checking the consensus of the collected responses. After collecting the responses 

provided by the qualified respondents, there was a need to check whether the answers were of 

reliability or not. Two indices were considered to do this  (Singh and Kumar, 2024; Tabatabaee 

et al., 2022a; Tinarwo et al., 2023). First, the standard deviation to mean ratio for each cause 

provided by all the experts was calculated (denoted as 𝜛𝜛); if the calculated 𝜛𝜛 for each cause 

was less than 30%, then a good level of consensus among the pool of respondents had been 

reached. Otherwise, the corresponding cause(s) must be highlighted and sent to the respective 

experts for reevaluation. In addition, the Cronbach reliability test (𝛼𝛼) was considered in this 

study; the calculated 𝛼𝛼 for all the responses provided by all the respondents for each cause 

should be more than 0.7. Otherwise, the respective respondent must reevaluate the provided 

answer(s). The mentioned process is repeated until the specified consensus has been reached. 
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Notably, to check the reliability of the answers provided by the respondents, the corresponding 

linguistic variable given to a cause was replaced by a raw score, based on which the 𝜛𝜛 and 𝛼𝛼 

were calculated. For instance, for the case of 𝛼𝛼 calculation, “no influence”, “very low 

influence”, “low influence”, “high influence”, and “very high influence” were respectively 

replaced by 1, 2, 3, 4, and 5, based on which the 𝛼𝛼 for each expert was calculated. 

Step 5. Fuzzification of the collected responses. Once the consensus of the provided responses 

was reached, the variables given to each cause were transferred to the corresponding fuzzy sets 

that included three values. In doing so, the variables mentioned in Fig. 2 were used; for 

instance, if the importance of a factor is low, then its importance can be shown within the range 

of (0.00, 0.25, 0.5). 

Step 6. Defuzzification of the collected responses. The collected responses need to be 

aggregated to obtain a reflective crisp value that represents the importance of identified causes. 

To this end, the following procedures were followed. Considering that there were 𝑛𝑛 experts 

involved in the study, the importance of the cause 𝑗𝑗 from the perspectives of the respondent 𝑖𝑖 

was �̃�𝐴 = (𝑙𝑙,𝑚𝑚,𝑢𝑢), for 𝑖𝑖 = 1,2, … ,𝑛𝑛 and 𝑗𝑗 = 1,2, … ,𝑚𝑚. Based on the mentioned components, 

the following equations were obtained for the aggregation of all the responses:  

𝑙𝑙𝑗𝑗 = �𝑚𝑚𝑖𝑖𝑛𝑛(𝑙𝑙𝑖𝑖𝑗𝑗)� (2) 

𝑚𝑚𝑗𝑗 =
∑ 𝑚𝑚𝑖𝑖𝑗𝑗
𝑛𝑛
𝑖𝑖=1

𝑛𝑛
 

(3) 

𝑢𝑢𝑗𝑗 = �𝑚𝑚𝑚𝑚𝑚𝑚(𝑢𝑢𝑖𝑖𝑗𝑗)� (4) 

�̃�𝐴𝑗𝑗 = (𝑙𝑙𝑗𝑗 ,𝑚𝑚𝑗𝑗 ,𝑢𝑢𝑗𝑗) (5) 

where 𝑙𝑙𝑗𝑗, 𝑚𝑚𝑗𝑗, and 𝑢𝑢𝑗𝑗 are respectively the minimum, the mean, and the maximum of the values 

assigned by the experts. On the other hand, �̃�𝐴𝑗𝑗 Indicates the aggregated fuzzy-based value 

collected from all the respondents involved in the study. Afterward, the aggregated value for 

each cause was defuzzified using the following equation (Hafezalkotob and Hafezalkotob, 

2017a): 

𝜃𝜃𝑗𝑗 =
�̃�𝐴𝑗𝑗
6

=
𝑙𝑙𝑗𝑗 + 4 × 𝑚𝑚𝑗𝑗 + 𝑢𝑢𝑗𝑗

6
 

(6) 

where 𝜃𝜃𝑗𝑗 denotes the importance weight of the cause 𝑗𝑗 in the form of a crisp value. 
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Step 7. Setting a threshold value. To distinguish the critical causes from the less important 

ones, coming up with an appropriate threshold value is vital; thus, the following equation was 

used (Tabatabaee et al., 2022b):  

𝜌𝜌 =
∑ 𝜃𝜃𝑗𝑗𝐶𝐶
𝑗𝑗=1

𝐶𝐶
, 𝑓𝑓𝑓𝑓𝑓𝑓 𝐶𝐶 = 1,2, … ,𝑛𝑛 

(7) 

where 𝜌𝜌 indicates the required threshold value, 𝐶𝐶 denotes the number of causes identified in 

the study. 

Step 8. Retaining the critical causes. Based on the calculated threshold value, the following 

two rules were considered: 

• If 𝜃𝜃𝑗𝑗 ≥ 𝜌𝜌, then the respective cause was critical, and accordingly, it was retained for 

further consideration. 

If 𝜃𝜃𝑗𝑗 < 𝜌𝜌, then the respective cause was a non-critical one; it was thus excluded for further 
analyses.  

2.2 Phase B: Fuzzy DEMATEL (FDEMATEL) Method 
Between 1972 and 1976, the Battelle Memorial Institute of Geneva developed DEMATEL for 

the Science and Human Affairs Program in a way that is well applicable to investigating more 

complicated and challenging problems such as hunger, racism, environmental hazards, energy 

issues, etc. (Rajabpour et al., 2022). This method has been recently applied to various domains, 

e.g., urban planning and design, corporate planning and decision-making, geographic, and 

environmental evaluations, and global problem cluster analyses (Yazdi et al., 2020).  

The DEMATEL method has the capacity to transform complicated systems into well-

organized cause-effect relationships (Mao et al., 2020). On the other hand, as language may be 

ambiguous and uncertain, the results may suffer from a low level of precision (Tabatabaee et 

al., 2019). Fuzzy numbers (due to their nature) can be applied to quantify the expert semantics, 

and FST and DEMATEL can be applied to obtain results of higher precision and correctness 

(Xu et al., 2020). Accordingly, this study employs the Fuzzy DEMATEL method to unravel the 

causal relationships among the factors contributing to SO (Acuña-Carvajal et al., 2019a). In 

this regard, the steps involved in the employed FDEMATEL method are straddled: 

Step 1. Distribution of the designed FDEMATEL-based survey. A reflective and prudent 

sample size was needed at the first stage to handle an MCDM-based technique. To tackle 

MCDM-based problems, the involved experts must be competent enough (Sadeghi, et al., 



16 
 

2020). To do this, among the respondents participating in the FDT step, those with more 

qualified profiles (regarding their relevant experience and education degrees) were shortlisted. 

Then, the selected respondents were contacted twice to fill out the designed FDEMATEL-based 

survey, leading to the collection of forty-four responses. Notably, all the shortlisted experts had 

more than 5 years of relevant experience and held at least a bachelor's degree at the moment of 

data collection in the relative area. In the designed survey, the experts were asked to determine 

the influence of the identified causes and critical sub-causes on each other using the linguistic 

variables stipulated in Table B1 (see Appendix B) (Acuña-Carvajal et al., 2019b). 

Step 2. Checking the reliability of the responses provided by qualified experts. To confirm the 

reliability of the filled-out surveys, the Cronbach reliability test 𝛼𝛼 was taken into account, as 

suggested by (Jang and Kim, 2021). To this end, the variables assigned by the experts were 

replaced with raw numbers; only if the calculated 𝛼𝛼 had crossed 0.7, the provided responses 

would have been considered reliable. 

Step 3. Obtaining the initial direct relation matrix. Once the reliability of the responses was 

assured, then the filled-out surveys were fuzzified; a particular linguistic scale assigned by a 

respondent (for a pairwise comparison carried out between two causes) was transformed to a 

triangular fuzzy number, as can be seen from the values mentioned in Table 1. This led to the 

obtainment of the following matrix, considering the evaluations made by 𝑘𝑘 experts: 

𝑌𝑌𝑘𝑘 = �
0 ⋯ 𝑌𝑌1𝑛𝑛𝑘𝑘
⋮ ⋱ ⋮
𝑌𝑌𝑛𝑛1𝑘𝑘 ⋯ 0

� , 𝑓𝑓𝑓𝑓𝑓𝑓 𝑘𝑘 = 1,2, … ,𝑝𝑝 
(8) 

𝑌𝑌𝑖𝑖𝑗𝑗𝑘𝑘 = (𝑙𝑙𝑖𝑖𝑗𝑗𝑘𝑘 ,𝑚𝑚𝑖𝑖𝑗𝑗
𝑘𝑘 ,𝑢𝑢𝑖𝑖𝑗𝑗𝑘𝑘 ) (9) 

where  𝑌𝑌𝑘𝑘 is the initial direct relation matrix (including the pairwise comparisons made by the 

𝑘𝑘𝑘𝑘ℎ expert, which are in the form of fuzzy numbers), and 𝑌𝑌𝑖𝑖𝑗𝑗𝑘𝑘 indicates the influence of cause 𝑖𝑖 

on cause 𝑗𝑗 through a pairwise comparison made by the 𝑘𝑘𝑘𝑘ℎ expert. It is notable that each 𝑌𝑌𝑘𝑘 

the matrix consists of three matrixes, each of which contains its values, namely 𝑙𝑙,𝑚𝑚,𝑢𝑢.  

Step 4. Obtaining the normalized direct-relation fuzzy matrix. Based on the initial direct 

relation matrix obtained at the previous step, the corresponding normalized matrix was attained 

as follows: 

𝑔𝑔𝑗𝑗𝑘𝑘 = � 𝑌𝑌𝑖𝑖𝑗𝑗𝑘𝑘 = �� 𝑙𝑙𝑖𝑖𝑗𝑗𝑘𝑘 ,� 𝑚𝑚𝑖𝑖𝑗𝑗
𝑘𝑘

𝑛𝑛

𝑗𝑗=1

𝑛𝑛

𝑗𝑗=1
,� 𝑢𝑢𝑖𝑖𝑗𝑗𝑘𝑘

𝑛𝑛

𝑗𝑗=1
�

𝑛𝑛

𝑗𝑗=1
 

(10) 



17 
 

𝜎𝜎𝑘𝑘 = 𝑚𝑚𝑚𝑚𝑚𝑚 𝑔𝑔𝑗𝑗𝑘𝑘 (11) 

𝜆𝜆𝐾𝐾 =
𝑌𝑌𝑘𝑘

𝜎𝜎𝑘𝑘
 

(12) 

where 𝑔𝑔𝑗𝑗𝑘𝑘, 𝜎𝜎𝑘𝑘, and 𝜆𝜆𝐾𝐾 are the summation of the initial direct relation matrix, the normalized 

factor for the 𝑘𝑘𝑘𝑘ℎ expert, and the normalized fuzzy matrix related to the 𝑘𝑘𝑘𝑘ℎ expert, 

respectively.  

Step 5. Attaining the aggregated direct relations matrix. Given the normalized fuzzy direct 

relation matrix 𝜆𝜆𝐾𝐾, the aggregation of the responses provided by all the experts involved in the 

study was achieved using the following equations: 

𝑋𝑋�𝑖𝑖𝑗𝑗 =
∑ �̃�𝜆𝑖𝑖𝑗𝑗𝑘𝑘
𝑝𝑝
𝑘𝑘=1

𝑝𝑝
 

(13) 

𝑋𝑋� = [𝜆𝜆𝑙𝑙 , 𝜆𝜆𝑚𝑚, 𝜆𝜆𝑢𝑢] (14) 

where 𝑋𝑋� is the aggregated matrix, in which the aggregated lower bounds, the aggregated most 

likely values, and the aggregated upper bounds are respectively denoted as 𝜆𝜆𝑙𝑙 , 𝜆𝜆𝑚𝑚, 𝜆𝜆𝑢𝑢. Notably, 

each 𝑋𝑋�𝑖𝑖𝑗𝑗 is comprised of three matrices; one for lower bounds, one for the most likely values , 

and one for the upper bounds. 

Step 6. Obtaining the fuzzy matrix of the total relations. Using Eqs. (15-17), the total relations 

matrix was attained. This matrix characterizes the total direct and indirect causal relationships 

between each pair of objectives:  

𝑇𝑇� = lim
𝑟𝑟→∞

(𝑋𝑋�1 + 𝑋𝑋�2 + ⋯+ 𝑋𝑋�𝑟𝑟) (15) 

𝑇𝑇� = 𝑋𝑋 × (𝐼𝐼 − 𝑋𝑋)−1 (16) 

𝑇𝑇� = �
𝑇𝑇�11 ⋯ 𝑇𝑇�1𝑛𝑛
⋮ ⋱ ⋮
𝑇𝑇�𝑛𝑛1 ⋯ 𝑇𝑇�𝑛𝑛𝑛𝑛

� 
(17) 

where 𝑇𝑇�  is the fuzzy matrix of total relations, while 𝐼𝐼 is the identity matrix. Notably, 𝑋𝑋�𝑟𝑟 is 

related to the normalized fuzzy matrix for 𝑓𝑓𝑘𝑘ℎ expert, while 𝑋𝑋� is the aggregated matrix for all 

the experts involved in the study. 

It is noteworthy that each value of the matrix 𝑇𝑇�  is corresponding to a fuzzy triangular number, 

as can be observed in Eqs. (18-21). In other words, three matrixes of the total relations were 

achieved: one for the minimum values, one for the most likely values, and the last one for the 

maximum values.  
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𝑇𝑇�𝑖𝑖𝑗𝑗 = (𝑙𝑙𝑖𝑖𝑗𝑗′′ ,𝑚𝑚𝑖𝑖𝑗𝑗
′′ ,𝑢𝑢𝑖𝑖𝑗𝑗′′) (18) 

�𝑙𝑙𝑖𝑖𝑗𝑗
′′ � = 𝜆𝜆𝑙𝑙𝑖𝑖𝑗𝑗 × (𝐼𝐼𝑙𝑙𝑖𝑖𝑗𝑗 − 𝜆𝜆𝑙𝑙𝑖𝑖𝑗𝑗) (19) 

�𝑚𝑚𝑖𝑖𝑗𝑗
′′ � = 𝜆𝜆𝑚𝑚𝑖𝑖𝑗𝑗 × (𝐼𝐼𝑚𝑚𝑖𝑖𝑗𝑗 − 𝜆𝜆𝑚𝑚𝑖𝑖𝑗𝑗) (20) 

�𝑢𝑢𝑖𝑖𝑗𝑗′′ � = 𝜆𝜆𝑢𝑢𝑖𝑖𝑗𝑗 × (𝐼𝐼𝑢𝑢𝑖𝑖𝑗𝑗 − 𝜆𝜆𝑢𝑢𝑖𝑖𝑗𝑗) (21) 

Step 7. Obtaining the defuzzified matrices. Through the following equations, the fuzzy matrices 

of the total relations were defuzzified:  

𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖𝑗𝑗 = (1/3) × (𝑇𝑇�𝑖𝑖𝑗𝑗) =
(𝑙𝑙𝑖𝑖𝑗𝑗′′ + 𝑚𝑚𝑖𝑖𝑗𝑗

′′ + 𝑢𝑢𝑖𝑖𝑗𝑗′′)
3

 
(22) 

𝐷𝐷𝐷𝐷𝐷𝐷 = �
𝐷𝐷𝐷𝐷𝐷𝐷�11 ⋯ 𝐷𝐷𝐷𝐷𝐷𝐷�1𝑛𝑛
⋮ ⋱ ⋮

𝐷𝐷𝐷𝐷𝐷𝐷�𝑛𝑛1 ⋯ 𝐷𝐷𝐷𝐷𝐷𝐷�𝑛𝑛𝑛𝑛

� 
(23) 

Step 8. Constructing causal diagrams. With the use of the resulting F matrix, summation was 

computed on columns "D" and rows "R", as expressed in Eqs. (24) and (25). The value (D + 

R) stands for the strength of both input and output ratios and shows the "central role level" of 

each target. On the other hand, the value (D - R) stands for the "type of influence".  

𝐷𝐷𝑖𝑖 = �𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖𝑗𝑗
𝑛𝑛

𝑗𝑗=1

 
(24) 

𝑅𝑅𝑗𝑗 = �𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖𝑗𝑗
𝑛𝑛

𝑖𝑖=1

 
(25) 

Step 9. Determination of the criticality of analyzed causes. To determine the cause-and-effect 

relationships among the identified critical causes, the following two rules were followed (see 

Fig. A2): 

• If the cause is placed in ZONE 1, then it is a cause dispatching the influence on the 

whole system, and accordingly, it needs to be controlled by the concerned decision-

makers towards minimizing the magnitude of SO.  

• If the cause is placed in ZONE 2, then it is an effect cause being influenced by the other 

causes, and accordingly, it needs less attention compared to those placed in ZONE 1.  
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2.3 Phase C: Overall Score Index 
To think about a reflective value for the identified critical sub-causes, there is a need to combine 

the outputs produced from FDT and FDEMATEL, which will act as inputs to the employed 

FTOPSIS technique at the next stage. To do this, the following equations (1-4) were considered 

in order (Durdyev, Mohandes, Tokbolat, et al., 2022; Hafezalkotob and Hafezalkotob, 2017): 

𝜙𝜙𝑖𝑖 = �(𝐷𝐷𝑖𝑖 + 𝑅𝑅𝑗𝑗)2 + (𝐷𝐷𝑖𝑖 − 𝑅𝑅𝑗𝑗)2 
(1) 

𝜙𝜙 =
𝜙𝜙𝑖𝑖

∑ 𝜙𝜙𝑖𝑖𝑛𝑛
𝑖𝑖=1

 
(2) 

𝜅𝜅𝑆𝑆𝐶𝐶 = 𝜙𝜙𝐶𝐶 × 𝜙𝜙𝑆𝑆𝐶𝐶 (3) 

Ω = 𝜃𝜃𝑗𝑗 × 𝜅𝜅𝑆𝑆𝐶𝐶 (4) 

where 𝜙𝜙𝑖𝑖 ,  𝜙𝜙, 𝜅𝜅𝑆𝑆𝐶𝐶, and Ω denote the relative weights of causes and sub-causes, the normalized 

weights of causes and sub-causes, the global weights of sub-causes, and the overall score of 

sub-causes, respectively. 

2.4 Phase D: Fuzzy TOPSIS (FTOPSIS) Method 
In 1981, the TOPSIS method was pioneered by Tzeng and Huang (Tzeng and Huang, 2011) to 

rank different alternatives that exist in a Multi-Criteria Decision-Making (MCDM) problem 

(Mohsin et al., 2019). TOPSIS is used extensively since it ranks the alternatives rapidly, 

handles conflicting conditions within a complicated context through compromise, and is 

capable of placing the judgment data without any lengthy computation (Taylan et al., 2014). 

For that reason, the current paper makes use of FTOPSIS proposed by Nilashi et al. (2019), to 

obtain a precise ranking system for the aspects of the environment impacted by SO. To this 

end, there is a need for sequentially taking the steps straddled:  

Step 1. Providing a list of environmental aspects that SO can impact. These aspects were 

extracted from the literature (Owolabi et al., 2022a) and also from the senior experts’ opinions. 

It was concluded that SO deteriorates the environment in five ways: air (damages to the air 

caused by evaporation of pathogens and viruses), soil (damages to the soil slope around the 

sewer pipeline), business (financial losses that result from the blocked crossings and closure of 

malls/groceries), structure (damages to the adjacent infrastructure and the sewer pipelines), and 

water (damages to the quality of ground water).  
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Step 2. Building an FTOPSIS-based questionnaire. The critical sub-causes identified at the 

first step were embedded in the questionnaire against the determined five aspects of the 

designed survey. After that, each expert was required to assess the impact of the determined 

critical causes on each of the five defined aspects. To do this, the linguistic variables presented 

in Table B2 (see Appendix B) were used (Kutlu and Ekmekçioğlu, 2012). The respondents 

were asked to answer the following question: “To what extent a particular sub-cause of SO can 

negatively impact (deteriorate) the conditions of the environment that is under investigation?” 

Step 3. Distributing the FTOPSIS-based survey to predefined experts. When the questionnaires 

were provided, they were distributed to qualified experts to have them filled out. Notably, the 

44 respondents participating in filing out the FDEMATEL-based survey were also involved at 

this stage. 

Step 4. Building the following Environmental Matrix (EM) after the collection of the 

FTOPSIS-based questionnaire: 

EM = �
𝑎𝑎11...
𝑎𝑎𝑚𝑚1

....

.

....

.

....

.

𝑎𝑎1𝑛𝑛...
𝑎𝑎𝑛𝑛𝑛𝑛

� , 𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 = 1,2, … ,𝑚𝑚,𝑚𝑚𝑛𝑛𝑎𝑎 𝑗𝑗 = 1,2, … ,𝑛𝑛. 
(26)                                                       

where 𝑚𝑚𝑖𝑖𝑗𝑗 stands for the evaluation of the causes with regards to each environmental aspect 

determined in this research with the use of the linguistic scales presented in Table 2, and 𝑚𝑚 and 

𝑛𝑛 signify the number of the relevant causes and aspects, respectively.  

Step 5. Checking the consistency of the collected responses after obtaining EM. As 

recommended by Kozarević and Puška (2018), Cronbach 𝛼𝛼 should be considered in assessing 

the reliability of the collected responses (the related threshold for 𝛼𝛼 should be at least 0.7).  

Step 6. Aggregating the obtained matrix with the use of the following equation: 

𝑚𝑚�𝑎𝑎𝑎𝑎𝑎𝑎(𝑖𝑖𝑖𝑖)= 1
ℎ

× [𝑚𝑚�𝑖𝑖𝑗𝑗1 + 𝑚𝑚�𝑖𝑖𝑗𝑗2 + ⋯+ 𝑚𝑚�𝑖𝑖𝑗𝑗ℎ]                                                       (27) 

where 𝑚𝑚�𝑖𝑖𝑗𝑗1 stands for the evaluation attained from the previous step (where the fuzzy scales 

assigned to the cause 𝑖𝑖 with respect to the environmental aspect 𝑗𝑗 accomplished by the number 

ℎ expert, for 𝑖𝑖 = 1,2, … ,5, 𝑗𝑗 = 1,2, … ,5, and 𝑘𝑘 = 1,2, … ,46, in this study). 

Step 7. Normalizing the matrix consisting of the evaluations, as follows (which is demonstrated 

as 𝑇𝑇� = [𝑇𝑇�𝑖𝑖𝑗𝑗]𝑚𝑚∗𝑛𝑛): 
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𝑇𝑇�𝑖𝑖𝑗𝑗 = ��
𝑙𝑙𝑖𝑖𝑗𝑗
𝑢𝑢𝑗𝑗+
� ;  

𝑚𝑚𝑖𝑖𝑗𝑗

𝑢𝑢𝑗𝑗+
;  �
𝑢𝑢𝑖𝑖𝑗𝑗
𝑢𝑢𝑗𝑗+
�� ,   𝑖𝑖 = 1,2, … ,5, (28) 

where, 

 𝑢𝑢𝑗𝑗+ = Max
𝑖𝑖

 𝑢𝑢𝑖𝑖𝑗𝑗+ . 

Step 8. Determining the weighted normalized decision matrix after achieving the normalized 

fuzzy decision matrix, as follows (shown as 𝑌𝑌� = [𝑦𝑦�𝑖𝑖𝑗𝑗]𝑚𝑚∗𝑛𝑛): 

𝑦𝑦�𝑖𝑖𝑗𝑗 = 𝑇𝑇�𝑖𝑖𝑗𝑗 × 𝑊𝑊𝑗𝑗 (29) 

Step 9. Calculating the Fuzzy Negative Ideal (FNIS, 𝐴𝐴− ) together with the Fuzzy Positive 

Ideal Solution (FPIS, 𝐴𝐴+), as follow: 

𝐴𝐴+ = {𝑦𝑦�1+, y2+, … , 𝑦𝑦�𝑚𝑚+}, 𝑓𝑓𝑓𝑓𝑓𝑓 𝑗𝑗 = 1, … ,5 (30) 

𝐴𝐴− = {𝑦𝑦�1−,𝑦𝑦�2−, … ,𝑦𝑦�𝑚𝑚−}, 𝑓𝑓𝑓𝑓𝑓𝑓 𝑗𝑗 = 1, … ,5 (31) 

where, 

 𝑦𝑦�𝑗𝑗+ = (1,1,1) and 𝑦𝑦�𝑗𝑗− = (0,0,0). 

Step 10. Calculating the distances of the aspects from 𝑦𝑦�𝑗𝑗+ and 𝑦𝑦�𝑗𝑗− with the help of the 

equations presented below: 

𝐷𝐷𝑖𝑖+ = �𝑎𝑎(𝑦𝑦�𝑖𝑖𝑗𝑗 ,𝑦𝑦�𝑗𝑗+)
5

𝑗𝑗=1

 
(32) 

𝐷𝐷𝑖𝑖− = �𝑎𝑎(𝑦𝑦�𝑖𝑖𝑗𝑗 ,𝑦𝑦�𝑗𝑗−)
5

𝑗𝑗=1

 
(33) 

𝐷𝐷(𝑚𝑚�, �̃�𝑧) = �1
3

[(𝑙𝑙𝑥𝑥 − 𝑙𝑙𝑧𝑧)2 + (𝑚𝑚𝑥𝑥 −𝑚𝑚𝑧𝑧)2 + (𝑢𝑢𝑥𝑥 − 𝑢𝑢𝑧𝑧)2] 
(34) 

Step 11. Obtaining the closeness coefficient for all the identified aspects using the following 

equation: 

Δ =  
𝐷𝐷𝑖𝑖−

𝐷𝐷𝑖𝑖+ + 𝐷𝐷𝑖𝑖−
 (35) 

 

Step 12. Ranking all the identified environmental aspects based on the calculated Δ. Remember 

that higher weights of the relative aspects indicate that it deteriorated more by the SO 

occurrence. 
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2.5 Phase E: Interviewing the senior experts  

• Once the critical causal factors and the environmental aspects deteriorated by SO had 

been obtained and analyzed, then the relative experts involved in the study for 

determining feasible strategies for controlling SO were interviewed. In doing so, the 

interviews were undertaken either face-to-face or online using a structured-based 

approach; the selected experts were asked to propose any strategies or solutions to 

mitigate the magnitude of SO, either from the perspectives of management or 

engineering. It is noteworthy that the following questions were asked form the experts:  

a. Can you propose management strategies to control and mitigate sewer 

overflows effectively? 

b. From an engineering standpoint, what solutions do you suggest for minimizing 

the magnitude of sewer overflow incidents? 

c. Are there innovative technologies or approaches that you believe could be 

implemented to address sewer overflow challenges? 

d. What are the policy- and regulations-related solutions that could be taken into 

account? 

Once all the interviews had been undertaken, a detailed list of fruitful strategies and control 

measures for minimizing the impact of SO on the environment was garnered. 

2.6 Phase F: Validation 
To check the extent to which the results produced from the proposed model in this study are 

reflective, several interviews with qualified experts were carried out, as suggested by (Dolphin 

et al., 2021). To this purpose, seven qualified experts (whose profiles were in line with the 

predefined criteria) were shortlisted. Notably, the selected experts were experienced specialists 

having rich experience in managing and maintaining different tasks in relation to sewer 

networks in Hong Kong for more than ten years. To this end, they were first asked to rate the 

importance of the twelve identified sub-causes towards the SO through the Likert scale, 

followed by determining the most influential sub-causes among the identified ones. 

Subsequently, they were required to determine if SO occurs and to what extent the considered 

environmental aspects would be deteriorated (using the Likert scale within the range of 1 to 5). 
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3. RESULTS, VALIDATION, and DISCUSSION  

3.1 Results 
In this sub-section, for the sake of brevity, only the gist of the results is reported. Table B3 

tabulates the main causes and the corresponding sub-causes of the sewer networks’ 

characteristics and offers a comprehensive categorization of the primary causes (C1, C2, C3) 

of sewer system challenges, each accompanied by specific sub-causes (SC1 to SC12). For a 

detailed understanding of these causes and sub-causes, readers are directed to Appendix B, 

where comprehensive explanations and definitions are provided. These insights are crucial for 

unraveling the intricacies of issues plaguing sewer systems, encompassing issues like 

inadequate pipeline design, diverse blockage factors, hydraulic conditions affecting flow rates, 

defective lining and connections, pipe corrosion and abrasion, physical damage including 

deformations, and topographical influences, ground movement, infiltration, inflow concerns, 

as well as damage inflicted by third parties. This knowledge forms the basis for a more 

profound analysis of sewer system vulnerabilities, guiding the formulation of effective 

strategies for maintenance and mitigation and ultimately ensuring the sustainability and 

optimal functionality of urban drainage systems Which contribute to SO occurrence. These 

results of FDT are reflected in Table 1. In addition, the results produced from the employment 

of the FDEMATEL technique are shown in Fig. 3, whereas the rankings obtained from the 

employment of the FTOPSIS technique are reflected in Fig. A3. Table B4 outlines a diverse 

array of strategies, coded as STG1 to STG25, aimed at effectively tackling sewer overflows 

(SO). The strategies for minimizing EI and optimizing SO design and operation encompass a 

multifaceted approach. This includes infrastructure enhancements, public education campaigns 

targeting littering and improper disposal, routine maintenance practices, the adoption of 

advanced monitoring technologies, and the implementation of risk management programs. 

These measures are crucial for improving overall system efficiency, reducing the risk of SO 

incidents, and promoting sustainable urban development. 

A comprehensive framework, illustrated in the provided Table B4, serves as a valuable tool for 

decision-makers and practitioners involved in SO management. It outlines the interconnected 

nature of these strategies, emphasizing their implications for SO design and operation. By 

prioritizing environmental impact mitigation and resilience enhancement, this framework aids 

in the implementation of holistic solutions to mitigate SO incidents and foster resilient urban 

infrastructure systems. For a detailed understanding of the implementation and rationale behind 
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each strategy, readers are encouraged to refer to Appendix B, where in-depth explanations are 

provided. 

 

3.2 Reliability and Validation 
 Reliability and validation are essential elements of good research since they allow for the 

verification of study outcomes (Mahdiyar et al., 2020b). Considering this, an investigation into 

the aforementioned matters was undertaken in this study, and several statistical-based indices 

were taken into account. Four main types of validation that apply to the area of construction 

engineering and management were considered, namely face, construct, internal, and external 

validation (Mohandes, 2020).  

Given the methods used within the body of the framework proposed, three main indices 

were checked to confirm the reliability of the results produced in this research. First, as 

mentioned earlier, 𝛼𝛼 and 𝑆𝑆𝐷𝐷𝑆𝑆𝑅𝑅 were calculated to check the consensus of the results produced 

using FDT; the values of the aforesaid indices were 0.8633 and <30% for all the causes, 

respectively. To check the consistency of the responses provided by experts using the 

FDEMATEL technique, the Cronbach reliability test 𝛼𝛼 was considered. It was observed that 

the corresponding results were of sound consistency since the related index for each group was 

way above the specified threshold value (the aggregated 𝛼𝛼 obtained from all the experts equals 

0.7865). Similarly, the aggregated 𝛼𝛼 for checking the reliability of the results obtained from 

the FTOPSIS method was 0.8638, illustrating the fact that the corresponding results are 

reliable.  

For validation purposes, this study considers all four validation types existing in the 

concerned area. Regarding the face and construct validities, due to respectively the 

involvement of the experts through the whole stages of the research and conducting a pilot test 

on the designed survey (to check whether the objectives specified for the study were attainable 

through the proposed framework), the outcomes were found valid enough. In addition, because 

of the senior experts involved in the identification of the causes and sub-causes contributing to 

SO (in addition to the literature review), this study is of good internal validation. On top of all 

that, as mentioned in the methodology section, this study held interviews with several experts 

(who were not involved in the main round of the study) so as to check the external validation 

of the study. Accordingly, Fig. A4 shows that the results produced from the validation part of 

the study are congruent with those of the main round. To take the critical sub-causes as 
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examples, SC1, SC6, SC7, and SC11 were found to play the most important roles in SO 

occurrence in both cases (see Fig. A4(a)). These findings are in line with the main results.  

The only difference between the results obtained from the main findings (which are based 

on the developed framework) and those of validation is the ranking of SC12; it was ranked in 

the 8th spot based on the aggregation of the experts’ responses involved at the validation stage. 

This is partly linked to the fact that the streets are congested in Hong Kong, and there are 

numerous utilities buried underground, including water supplies, sewer networks, electricity 

cables, gas pipes, and telecommunication lines. Therefore, it is very likely that the entitled 

contractors damage a utility unintentionally during the repair/replacement of the others. 

Nonetheless, as can be seen in Figs. A4 (b) and (c), based on the viewpoints of the experts 

taking part in the validation stage, SC1 and structure were respectively, the most influencing 

sub-causes and the most impacted aspect of the environment by SO. These findings were in 

line with the corresponding outcomes derived from the employment of the proposed MCIF in 

this research. 

3.3 DISCUSSION 
Regarding the importance of the sub-causes contributing to the magnitude of SO, it can be seen 

that blockages, flow velocity, infiltration and inflow, under design pipe diameter, deformation, 

holes, or collapse of pipe are the most critical ones (see Table 1). In this regard, the blockage 

is ranked at the top of the list, with an importance weight of 0.7500. The importance of blockage 

to SO occurrence lies in the fact that it is one of the most probable types of operational defects 

occurring in sewer pipelines in either the combined or separate systems (Ossola et al., 2023). 

In the separate sewer systems, blockage leads to the occurrence of SO in two ways: (1) the 

wastewater flowing through the sewer pipelines cannot pass through the clogged pipelines and, 

consequently, it backs up through the ‘overflow relief gully’, and overflow occurs near 

residential complexes or even in residential houses (known as flood basement); and (2) if the 

blockage exists in the pipelines near a manhole, then the wastewater discharges into the street, 

posing threats to more groups of people. Notably, in the case of combined sewer systems, the 

surcharge and backups caused by blocked pipelines increase storm drains, which have the 

potential to flood the nearby streets.  

Another critical factor contributing to SO is flow velocity, which was ranked second. 

Based on the manning equation, the velocity is positively related to the hydraulic radius and 

slope (Cheng and Nguyen, 2011). If the slope increases with a constant hydraulic radius and 
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also if the hydraulic radius increases for the same slope, in both conditions, the velocity will 

increase. In this regard, as the flow depth increases, the hydraulic radius increases, too, 

especially for irregular sewer pipeline shapes. Therefore, and based on the manning equation, 

the velocity will increase given the same slope. The increased flow velocity leads to SO in the 

following ways. First, the increased abrasion between the flow medium and the pipe increases 

surface damage defects (including missing walls), mainly at the invert level. Over time and due 

to the continued abrasion impact, the invert level of the pipe is washed out, increasing the 

hydraulic radius (wetted area and perimeter will partially increase), which will increase the 

flow velocity further. Thus, wastewater flow inside the pipelines is discharged from the 

manholes into the streets (Kaddoura and Zayed, 2018). Second, the abrasion caused by an 

increase in the flow medium causes the pipelines to have cracks, fractures, and holes. In this 

way, the ingress of soil (the embankment soil encapsulating the sewer pipelines), together with 

the root intrusion, penetrates the sewer system, causing sewer blockages to end up in backs and 

overflow.  

Additionally, the increased flow and its velocity in the system result in irregularities and 

increased roughness along with the interior of the pipe, increasing the potential for deposits to 

be attached to the pipe interior, including encrustation, ragging, and grease. In the long run, the 

amount of these deposits is increased, decreasing the cross-section of the pipe (Bahnsen et al., 

2023). As the hydraulics is impacted, backups and sewer overflow are caused. More 

importantly, fast-flowing sewage hampers an appropriate and safe maintenance practice (either 

for checking the system or the use of inspection technologies for repairing the defected sewer 

pipelines) (Ebrahimi et al., 2023). As a result of flawed maintenance practices, the pipelines 

are exposed to different types of defects, thereby causing the occurrence of SO in the sewer 

system. 

In separate sewer systems, the major driver in the increased flow depth is infiltration and 

inflow. While inflow is defined as the medium other than sanitary that enters the system from 

sources (including drains and storm, maintenance hole/covers, or defective manhole 

structures), infiltration is the medium other than sanitary that enters the system from the ground 

through defective pipelines and sanitary services. Note that the defects include cracks, joint 

defects, fractures, roots, holes, and breaks. In light of this, inflow causes an increase in the 

velocity and volume of the flow, leading to abrasion of the pipelines, which, in turn, culminates 

in overflow and backflows in the system caused by blockages. In the same way, the deposits, 

sediments, and roots infiltrated into the system induce the clogged pipelines gradually.  
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The under-design pipe diameter is another critical contributor to the occurrence of SO 

due to several reasons. To begin with, in the case of steeped topography, when pipelines are 

constructed with an inappropriate diameter (i.e., small-sized pipelines), the velocity of flow 

inside the pipes increases drastically. This sudden increase in the flow velocity results in sewer 

overflow in the system, as mentioned earlier (due to abrasion and cavities, which lead to the 

blockage of pipelines). In addition, inappropriate change in pipe diameter between the inlet 

pipes (i.e., the pipes reaching a manhole) and outlet ones (i.e., the pipes coming out of a 

manhole) leads to a sudden increase in the flow velocity of an outlet pipeline.  

Flexible pipelines (which include ductile, plastic, or corrugated steel) are prone to 

deformation, which causes the blockage of the pipelines. Another reason for SO is the 

deformation, holes, or collapse of the pipe. This factor ends up in SO in the following ways. 

First, due to the excessive external dead and live loads imposed on the sewer systems, 

constructed pipelines are prone to buckling (Kuliczkowska, 2016). As a result, they deform 

gradually, which leads to the blockages that cause the occurrence of SO. Notably, the aforesaid 

phenomenon is clearer in the case of flexible pipelines as compared to those of other types of 

materials. Additionally, the abrasion caused by increased flow medium raises the severity of 

existing defects; thus, the deterioration mode of rigid pipelines begins with slight deformation 

due to excessive external loadings.  

Regarding the influence of critical causes and sub-causes on one another, it is observed 

that physical- and environmental-related factors play the most important role in SO occurrence 

within the sewer systems (see Fig. 3 (a)). On the one hand, the substandard structure of 

constructed sewer pipelines affects the appropriate functioning of the sewer system, causing 

different operational defects (e.g., cracks, fractures, and deformation) in the sewer system, 

which lead to the occurrence of SO. One interesting observation was that although the physical 

factor does not directly impact the environmental factor toward SO occurrence within the 

system, it dispatches a high level of influence to the operational factor through which the 

environmental factor is affected.  

On the other hand, the most influential sub-cause among the determined critical ones is 

under-design pipe diameter (see Fig. 3 (b)). It can be seen that if the diameter of sewer pipelines 

is not appropriately and prudently designed, then the resultant impact on all the other factors is 

unavoidable, thereby causing the occurrence of overflow. In other words, all the other sub-

causes are induced by the inappropriate design of sewer pipelines; thus, the concerned parties 
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need to pay special attention to such matters, reducing the rate/volume of blockages, 

deformations, flow velocity, infiltration, and inflow. Contrary to this, it is witnessed that all of 

the other sub-causes impact flow velocity.  

On the other hand, as flow and its velocity in sewer pipelines increase, the internal 

material will be subject to expedited structural and operational degradation. Velocity causes 

irregularities and increased roughness in sewer pipelines due to abrasion caused by the 

wastewater medium, resulting in severe surface damage, defects, and weakening of the overall 

material strength. Untreated sewer pipelines experiencing structural defects will further 

experience damage, and consequences will include fractures, breaks, holes, and collapses (Ma 

et al., 2023). Broken pieces and collapsed pipes increase the host pipeline’s fallen pieces, 

reducing the internal area and capacity of pipelines. Holes and fractures can also provide room 

for roots to intrude inside the pipelines, decreasing their operational performance. The 

amalgamated impacts of these operational and structural defects, resulting from the increased 

flow velocity, will result in wastewater exfiltration, discharge of wastewater into streets, and 

sewer backups into people’s houses (mainly basements) (Pitiriciu and Tansel, 2021). 

The impact of SOs on the environment transcends immediate structural damage, influencing 

both urban and natural ecosystems in diverse ways (see Fig. A3). SOs compromise the 

structural integrity of sewer pipelines, causing simultaneous hydraulic and structural failures. 

This dual impact not only poses a substantial threat to public health and safety but also places 

significant financial strains on municipalities, requiring urgent repairs or replacements of 

damaged infrastructure. The collateral damage on streets is particularly evident, especially in 

poorly paved areas where the accumulation of overflow disrupts the ground, necessitating 

substantial resources for remediation and reconstruction efforts, as highlighted by (Mutzner et 

al., 2019). Moreover, the repercussions extend to groundwater quality. The exfiltrated flow, 

carrying toxicants and bacteria, permeates the ground, gradually contaminating groundwater. 

This becomes critical in agricultural regions where reliance on soil is high. The polluted 

groundwater not only alters soil composition but also introduces pollutants into the food chain 

supporting local populations, as emphasized by (Schertzinger et al., 2019). The intricate 

relationship between SOs and environmental degradation underscores the pressing need for 

comprehensive mitigation strategies. Sustainable urban drainage systems are indispensable not 

only for safeguarding infrastructure and public health but also for preserving ecosystem 

integrity and ensuring the quality of essential resources like groundwater. As urbanization 
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continues to expand, addressing these environmental consequences becomes paramount for 

cultivating resilient and ecologically sustainable communities. 

Feasible strategies for effective sewer system management, derived from the analysis of 

factors contributing to SO, encompass a range of practical measures. These include the 

implementation of advanced monitoring and early warning systems (Fong et al., 2023), regular 

inspection and maintenance protocols, and sustainable urban design practices, integrating input 

from urban planners, engineers, and environmental experts. Targeted programs to reduce 

inflow and infiltration (Ma et al., 2024), public awareness initiatives, and optimized sewer 

system designs contribute to SO prevention. These strategies align with the need for a holistic 

and proactive approach to sewer system resilience. Moreover, the integration of green 

infrastructure (Owolabi et al., 2022b) and ongoing investment in research and technology, 

including innovative solutions such as smart sewer technologies (Guo et al., 2009), further 

enhance the overall efficiency and resilience of sewer systems. The combined adoption of these 

strategies is essential for addressing the multifaceted challenges associated with SO. 

(1) The developed MCIF offers a systematic and unique method for identifying and 

prioritizing root causes of sewer overflows (SOs). Beyond simple identification, 

the research employs MCIF to unveil intricate causal relationships among key 

factors, providing profound insights into the complex interactions influencing 

SO incidents. Additionally, the study extends beyond identification by crafting 

practical mitigation strategies and delivering actionable insights for decision-

makers and urban planners to tackle SO incidents effectively. With its emphasis 

on practical applicability, sustainability, and advancing existing knowledge, this 

research significantly contributes to the field by fostering a comprehensive 

understanding of factors and mechanisms involved in sewer overflows. 

Ultimately, the study informs decision-making and advocates for proactive 

measures toward achieving sustainable urban drainage systems. In a nutshell, 

this study offers the following contributions to the body of relevant literature: 

Through the employed Fuzzy Delphi Technique (FDT), all the underlying causes 

leading to sewer overflow were identified, and accordingly, the critical ones were 

highlighted. 
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(2) Using the employed Fuzzy Decision-making trial and evaluation laboratory 

(FDEMATEL) algorithm, the causal relationships existing among the critical 

causes were uncovered. 

(3) The employed Fuzzy Technique for Order of Preference by Similarity to the Ideal 

Solution (FTOPSIS) algorithm determined and prioritized the environmentally 

deteriorated aspects resulting from the sewer overflow.  

(4) Several feasible measures were suggested to reduce and control the deleterious 

impacts of sewer overflow. 

Using current ICT, Ullah et al. (2020) explore AI, machine learning, and DRL for controlling 

urbanization, energy use, and living standards in smart cities. They discuss applications in 

intelligent transportation, cybersecurity, smart grids, UAVs, and smart healthcare, while 

highlighting research issues and future directions. Li et al. (2024) prioritize sewage sediment 

cleaning using knowledge-based and data-driven approaches. Kumar et al. (2024) use hybrid 

machine learning methods to project the particle Froude number in sewer pipes, finding these 

methods outperform single approaches. Jyothi et al. (2024) introduce an AI-based Data 

Management System (AI-DMS) for smart cities, utilizing PCA to categorize data and enhance 

privacy while optimizing data quality, processing efficiency, and sensitivity model accuracy. 

Ha et al. (2024) use deep learning to detect sewer network flaws, reducing the need for manual 

inspections with EfficientDet-D0 and addressing annotation issues. Veselov et al. (2021) 

discuss how AI and machine learning improve smart city applications across various domains, 

aiming to boost resident quality of life and city efficiency. El Morer et al. (2024) analyze sewer 

pipe inspection using statistical and machine learning techniques, noting that while ensemble 

models are accurate, logistic regression better balances accuracy, predictability, and 

explainability. Salihu et al. (2023) advocate for advanced AI techniques, including Weibull 

analysis and unsupervised multilinear regression, to improve sewer system degradation 

predictions. Yao (2024), examines AI’s role in smart city traffic control, safety, and energy 

optimization, addressing challenges like data privacy and infrastructure needs. Goodarzi & 

Vazirian (2024). demonstrate that Support Vector Machines (SVM) can predict and localize 

sewer pipe failures with 84% accuracy, highlighting the effect of manhole proximity. 

Jagatheesaperumal et al. (2024). present a comprehensive vehicle safety framework using 

AIoT, incorporating various sensors and Li-Fi technology to enhance urban transportation 

safety. Seng (2024) applies deep CNNs and machine learning to identify and predict sewer 

defects, with two-stage CNN models and LightGBM-based techniques showing notable 

performance.  
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The outcomes of SO in cities are profound, affecting urban infrastructure, public health, 

and environmental quality. Cities experiencing frequent SO events face significant financial 

burdens due to the need for urgent repairs and infrastructure replacements. These events cause 

substantial damage to streets and public spaces, particularly in areas with inadequate paving, 

leading to costly and disruptive remediation efforts (Cheshmehzangi et al., 2021). Additionally, 

SO compromises urban water quality by contaminating groundwater with toxicants and 

bacteria, posing severe public health risks and potentially affecting local food supplies through 

polluted irrigation water (Mora et al., 2022). These challenges underscore the necessity for 

cities to implement comprehensive strategies, including advanced monitoring systems, regular 

maintenance, and sustainable urban planning, to mitigate the impacts of SO and enhance the 

resilience of urban sewer systems (Shamsuddin, 2020).  

3.4 Implication  

The study on SO has significant implications for the real world, particularly for urban areas 

and their inhabitants. It provides actionable insights for cities implementing proactive 

maintenance strategies to mitigate SO risks. By identifying blockages as a primary cause, the 

research emphasizes the need for regular sewer system inspections and cleanings, which are 

practical steps lead to substantial benefits for city residents. These measures prevent system 

failures and ensure uninterrupted service, reducing inconveniences and health hazards. 

Moreover, the study’s recommendations on sewer system design, such as optimal pipeline 

sizing, play a vital role in improving the reliability and efficiency of these systems. Such 

improvements directly affect the daily lives of city dwellers by minimizing potential 

disruptions and guaranteeing consistent access to essential services. 

Theoretically, the research enhances our understanding of the mechanisms behind SO, aiding 

in developing more precise predictive models and simulations. This theoretical advancement 

informs better decision-making regarding infrastructure investments and management 

strategies for cities. By incorporating physical and environmental factors into theoretical 

frameworks, researchers can create more effective risk assessment and management strategies, 

thereby increasing the resilience of urban infrastructure against SO incidents. 

Furthermore, the study advances the societal-practical implications and contributions of the 

proposed study-development by showcasing how improved sewer system management can 

lead to enhanced urban resilience and quality of life. The research’s impact is far-reaching, 

extending beyond academic contributions to effecting positive change in urban living 
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conditions. It informs maintenance strategies and advances theoretical models for managing 

sewer systems, ultimately leading to safer, more reliable, healthier environments for city 

residents. The study stands as a testament to the importance of scientific research in addressing 

and resolving practical challenges faced by cities and their inhabitants.  

4. CONCLUSIONS 
In this study, a novel ensemble fuzzy-based framework was developed to investigate the causal 

factors contributing to SO and the environment's deteriorated aspects caused by such 

occurrences. To this end, several fuzzy-based algorithms were used within the body of the 

proposed framework, including FDT, FDEMATEL, and FTOPSIS. Based on the responses of 

the qualified experts with rich experience in dealing with sewer networks through a step-by-

step application of the proposed framework, the following contributions and the corresponding 

conclusions were drawn: 

(1) The potential causal factors and their sub-causes were identified, and also the critical 

ones contributing to SO were uncovered; twelve sub-causes under the umbrella of three 

main causes were identified, of which five items were seen to be the most important 

causal factors, which were blockages, flow velocity, infiltration and inflow, under 

design pipe diameter, and the deformation, holes, or collapse of the pipe. 

(2) The most influential causal factors and their related sub-factors were unraveled, while 

the physical factor was found the most impactful one among the others. Under design, 

pipe diameter, blockages, deformations, holes, or collapse of pipes exerted the highest 

level of influence on the whole system. 

(3) The impact of SO on different aspects of the environment was unraveled; it was 

observed that the structures of the constructed facility as well as groundwater quality, 

are the most deteriorated aspects of the environment caused by SO. 

(4) Twenty-five effective strategies were compiled, ranging from engineering 

improvements to the system and managerial/regulatory enhancements. 

The findings obtained from this study, which are also validated by the involvement of qualified 

experts, provide a solid foundation for both the researchers and the concerned practitioners to 

design a smart and sustainable urban drainage system for future generations, which could result 

in the improvement of the environment resulting from a reduction in the magnitude of SO.  
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This study has certain limitations, such as the reliance on expert opinions, which, though 

enriched with practical experience, introduces subjectivity into the analysis. Additionally, the 

specificity of sewer systems may vary across regions, potentially impacting the generalizability 

of the identified strategies. Future research endeavors could address these limitations by 

expanding the dataset to encompass a broader range of geographical locations and integrating 

real-time data to enhance the model's predictive capabilities. Furthermore, the integration of 

socio-economic factors and community perspectives could offer a more comprehensive 

understanding of SO dynamics. Despite these constraints, the findings from this study establish 

a robust foundation for advancing research in urban drainage systems, guiding the development 

of sustainable strategies to mitigate SO and improve environmental outcomes in cities and the 

built environment. 
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Fig. 1. The framework of the developed MCIF 
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Fig. 2. Breakdown of respondents’ profiles in terms of: (a) country, (b) education, (c) years of 

experience, (d) qualification, and (e) major. 
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Fig. 3. Results of FDEMATEL: (a) causal diagram for the main causes, and (b) causal 

diagram for sub-causes 

 

 

Table 1. Results of FDT 

Main Causes Sub-Causes 𝑨𝑨�𝒋𝒋 𝜽𝜽𝒋𝒋 
Critical/Non-
critical 

SDMR 
(%) 

Rank 

Min Average Max 
   

 

Physical Pipe Diameter 0.25 0.6322 1 0.6298 Critical 13 4 
Pipe Gradient 0 0.5817 1 0.5545 Non-critical 11 6 

Operational 
 
  

Blockages 0.25 0.8125 1 0.7500 Critical 7 1 
Flow Velocity 0.25 0.7476 1 0.7067 Critical 8 2 
Defective Lining 0 0.4495 1 0.4663 Non-critical 23 9 
Defective 
Connection 

0 0.5601 1 0.5401 Non-critical 15 8 

Corrosion & 
Abrasion 

0 0.4255 1 0.4503 Non-critical 18 10 

Deformation, holes 
or collapse of pipe 

0.25 0.6082 1 0.6138 Critical 16 5 

Environmental Land Topography 0 0.5721 1 0.5481 Non-critical 14 7 
Ground Movement 0 0.3389 0.75 0.3510 Non-critical 16 12 
Infiltration and 
Inflow 

0 0.7284 1 0.6522 Critical 9 3 

Third party 
damage 

0 0.3702 1 0.4135 Non-critical 28 11 

𝝆𝝆 
 0.5564 

𝜶𝜶 0.8633 
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Appendix: A 

Fuzzy Sets Theory 
The fuzzy sets theory (FST) was proposed by Zadeh to model the vagueness of cognitive 

processes in human beings (Mohandes and Zhang, 2021; Zadeh, 1988). Principally, FST was 

established on the idea that elements possess a degree of membership in a definite interval, i.e., 

[0,1] (Mohandes, Sadeghi, et al., 2020). The FST comes in a variety of forms, including 

Triangular Fuzzy Number (TFN), trapezoidal fuzzy number, Pythagorean sets, and so forth 

(Mohandes and Zhang, 2019). Each TFN has linear representations on its right and left sides, 

and its membership function could be expressed as a relation presented in Eq. (1) as follows 

(Durdyev et al., 2022): 

𝜇𝜇(𝑚𝑚|�̃�𝐴) =

⎩
⎪
⎨

⎪
⎧

0,          𝑚𝑚 < 𝑙𝑙 𝑓𝑓𝑓𝑓 𝑚𝑚 > 𝑢𝑢,
𝑚𝑚 − 𝑙𝑙
𝑚𝑚 − 𝑙𝑙

 ,       𝑙𝑙 ≤ 𝑚𝑚 ≤ 𝑚𝑚,
𝑢𝑢 − 𝑚𝑚
𝑢𝑢 −𝑚𝑚

 ,       𝑚𝑚 ≤ 𝑚𝑚 ≤ 𝑢𝑢

 

 

(1) 

where 𝑚𝑚, 𝑙𝑙,𝑚𝑚𝑛𝑛𝑎𝑎 𝑢𝑢 stand for the most likely value, the lower bounds, and the upper bounds of 

the fuzzy number �̃�𝐴, respectively. For the sake of brevity, the readers can refer to (Seresht and 

Fayek, 2019) for grasping an in-depth understanding of the basic operations of two fuzzy sets. 

Notably, with a view to enhancing the reproducibility of this research, TFN has widely been 

used within the body of the proposed framework. 

 

Appendix: B 

 

Fig. A1. Linguistic variables and their corresponding values 
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Fig. A2. Zones of causal diagrams 

 

 

Fig. A3. Weights and rankings of the environmental aspects impacted by SO 
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Fig. A4. Results of validation: (a) rankings of sub-causes, (b) most influential sub-causes, and 

(c) rankings of deteriorated environmental aspects 

 

Table B1. Linguistic variables and the corresponding values used for the FDEMATEL 

technique 

Linguistic variables Numbers 
𝒍𝒍 𝒎𝒎 𝒖𝒖 

There is NO relationship between the two factors 0 

 

0  0 
One factor has a Very Low Influence on the other one 0 

 

0  0.25 
One factor has a Low Influence on the other one 0 

 

0.25 

 

 0.5 
One factor has a High Influence on the other one 0.25 

 

0.5  0.75 
One factor has a Very High Influence on the other one 0.5 0.75  1.00 

 

Table B2. Linguistic variables used for the FTOPSIS method 

Linguistic variables Numbers 
𝒍𝒍 𝒎𝒎 𝒖𝒖 

A particular factor is Very Low Important to deteriorate a specific aspect 

of the environment that is under investigation 
0 0 1 

A particular factor is Low Important to deteriorate a specific aspect of 

the environment that is under investigation 
0 1 3 
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A particular factor is Medium Low Important to deteriorate a specific 

aspect of the environment that is under investigation 
1 3 5 

A particular factor is Medium Important to deteriorate a specific 

aspect of the environment that is under investigation 
3 5 7 

A particular factor is Medium High Important to deteriorate a specific 

aspect of the environment that is under investigation 
5 7 9 

A particular factor is Highly Important to deteriorate a specific aspect 

of the environment that is under investigation 
7 9 10 

A particular factor is Very Highly Important to deteriorate a specific 

aspect of the environment that is under investigation 
9 10 10 

 

Table B3. The list of identified causes and sub-causes together with their definitions 

Main causes Sub-causes Definitions 

Physical (C1) Pipe Diameter (SC1)  Under design diameter/substandard design of the pipelines to be installed. 

Pipe Gradient (SC2) Substandard/inadequate distance between sections of pipe (in terms of the ratio of 

pipe length and the amount of fall). 

Operational 

(C2) 

 

 

 

Blockages (SC3) Blockages occur due to the following reasons: sediment, grease, deposits, and other 

materials that are built up or intruded in the pipes; broken manhole covers or 

damaged manhole walls; vandalism; improper maintenance strategies; soil intrusion; 

movable/slid deposit; and root intrusion. 

Flow Velocity/Hydraulic 

Condition (SC4) 

Under continuous rain and during heavy storm events, the flow slows down sharply 

to an estimated 0.03 m/s and backs up from the treatment plant, leading to an increase 

in the volume of stormwater discharged into the sewer exceeding the sewer capacity. 

Defective Lining (SC5) The installed lining is defective such as having a missing section or distance with the 

pipe wall or any other sort of lining failure 

Defective Connection (SC6) The connection is intruding into the pipe length blocking the flow, or the connection 

is damaged or blocked 

Corrosion & Abrasion of pipes 

(SC7) 

Pipeline corrosion is the oxidization and electrochemical breakdown of the structure 

of a pipe used to convey any substance. (e.g., the attack of Hydrogen Sulfide on the 

concrete structure of a pipeline), while abrasion is the result of the inner surface of 

the pipe wall being eroded or degraded by the flow in the pipe 

Deformation, holes, or collapse 

of pipe (SC8) 

It occurs due to the following reasons: a noticeable change in the original cross-

section of the pipe (whether horizontally or vertically); when there is a noticeable 

hole in the pipe wall; and when 50% of more of the cross-section is broken in which 

the pipe completely damaged and cannot be used 

Environmental 

(C3) 

Land Topography (SC9) Undulating topography may lead to easy flooding due to marginal changes in storm 

water flows 

Ground Movement (SC10) Ground movement due to the removal of mine dumps destroyed the continuity of 

sewers, leading to the longitudinal and circumferential displacement of pipes 

Infiltration and inflow (SC11) Inflow occurs when storm medium flows into manholes or so, while infiltration 

occurs when the groundwater flows into defective sewers 
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Third-party damage (SC12) Damages caused by the third party (e.g., contractor use heavy machinery or 

directional drilling) to the pipelines 

 

Table B4. List of the measures to tackle SO 

Code Strategy 

STG1 Increasing the capacity of the pumping stations 

STG2 Promoting social culture so that people reduce littering (e.g., providing public education to reduce flushing 
of non-flushable items in toilets and promote techniques to properly dispose of fat, oil, and grease (FOG), 
for instance, through TV commercials, news articles, and cartoons (for kids)) 

STG3 Regular cleaning of the streets to be ensured that unwanted objects do not penetrate the manhole during 
raining 

STG4 Designing pipes with a large factor of hydraulic and structural safety 

STG5 Constant monitoring of the sewer pipelines conditions 

STG6 Optimizing the operational schedule of the system 

STG7 The correct and pragmatic design of the sewage system (e.g., with considering climate change)  

STG8 Design year range 

STG9 Proper cleaning of the system and regular inspection 

STG10 Proper hydraulic modeling and mitigation actions based on results 

STG11 Adhering strictly to recommendations of different environmental agencies (e.g., EPA, Natural England, and 
European Environment Agency) 

STG12 Install separate sewer systems 

STG13 Designing new technologies for self-cleansing of sewer pipelines 

STG14 Regular maintenance of defective sewer pipes 

STG15 Introducing the respective parties with regulations/laws to avoid sewer overflow and its negative impact 
(such as the introduction of incentives, if its occurrence is reduced) 

STG16 Finding the critical points or nodes where the sewer is more likely to overflow to promote infrastructural 
strategies (such as tanks or natural buffers) 

STG17 Quick response to report the overflow incidents 

STG18 Providing/developing an online system to report sewer overflow incidents 

STG19 Management of storm network including all stakeholders within the region to provide inputs, including O&M 
team 

STG20 Early detection of overflow using real-time and flow monitoring sensors (e.g., Installing an electronic alarm 
sensor (with 4G data transmission function) below cover of the manhole to monitor the water level of sewage 
water and send an alarm signal to the control room).  

STG21 Applying sewer bypass pumping and urgent repairs 

STG22 The use of cloud-based systems where O&M team can access sewer pipeline information from mobile 
applications 

STG23 Maintaining records of historical overflow incidents to study causes and eliminate them during design stages 

STG24 Initiating basement flooding protection programs to prevent the public from backup incidents (this way, the 
sewer system’s levels of service would increase as complaints decrease) 

STG25 Developing risk management programs that prioritize segments for inspection/repairs and providing 
emergency repairs as an activity for those pipes that are in critical structural and hydraulic conditions. 
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