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Abstract 
We introduce a phylogeny-aware framework for predicting linear B-cell epitope (LBCE)-containing regions within proteins. Our approach 
leverages evolutionary information by using a taxonomic scaffold to build models trained on hierarchically structured data. The 
resulting models present performance equivalent or superior to generalist methods, despite using simpler features and a fraction of the 
data volume required by current state-of-the-art predictors. This allows the utilization of available data for major pathogen lineages to 
facilitate the prediction of LBCEs for emerging infectious agents. We demonstrate the efficacy of our approach by predicting new LBCEs 
in the monkeypox (MPXV) and vaccinia viruses. Experimental validation of selected targets using sera from infected patients confirms 
the presence of LBCEs, including candidates for the differential serodiagnosis of recent MPXV infections. These results point to the use 
of phylogeny-aware predictors as a useful strategy to facilitate the targeted development of immunodiagnostic tools. 
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Introduction 
B cells constitute a major component of vertebrate adaptive 
immunity. These cells rely on B-cell receptors to interact with 
epitopes, defined as smaller regions within antigens recognized 
by the host immune system and, in the case of B cells, capable of 
stimulating antibody production. B-cell epitopes are commonly 
classified as either linear (continuous) or conformational (dis-
continuous) [1]. The computational prediction of linear B-cell 
epitopes (from now on referred to as LBCEs) has been under active 
development for 40 years [2] and has become a crucial step in the 
fast development of vaccines and diagnostic tests for infectious 
diseases [3]. 

A common premise in this field is the development of gen-
eralist predictors, defined as models trained with a taxonom-
ically heterogeneous set of entries and intended to generalize 
to any LBCE prediction task, irrespective of the pathogen being 

studied. However, biological characteristics are not independent 
across lineages due to common ancestry, as species sharing a 
more recent common ancestor are expected to be more similar 
in both their phenotypes and genotypes [4]. Recently, our group 
demonstrated how organism-specific training generates consis-
tent improvements over generalist methods for LBCE prediction 
[5]. This suggests that it is possible to deploy tailored models that 
incorporate phylogenetic information to optimize predictive per-
formance for specific groups of pathogens [6]. Importantly, these 
models can be trained using data from well-characterized groups 
of pathogens and generalized to related data-poor species, such 
as neglected infectious diseases and emerging and reemerging 
human pathogens. 

The 2022 and 2024 outbreaks of the monkeypox virus (MPXV) 
represent recent examples of an emerging data-poor pathogen 
of global concern. MPXV is a member of the vertebrate-infecting 
branch of the Poxviridae family (orthopoxviruses, from now on
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referred to as OPVs) [4]. In humans, OPVs include the variola 
virus (VARV), the infectious agent of smallpox, one of the most 
devastating epidemics in history. OPVs also include viruses 
causing zoonotic diseases, such as the cowpox virus (CPXV) and 
the vaccinia virus (VACV); the latter is also the source of the 
modern smallpox vaccine. Even though MPXV outbreaks had been 
previously reported in Africa, Asia, North America, and Europe; 
the recent ones have been the largest and most concerning ones, 
comprising 99 176 officially recorded cases in 116 countries and 
territories across the five World Health Organization (WHO) 
regions between 1 January 2022 and 30 June 2024, with 208 
recorded deaths according to the most recent WHO report on the 
multicountry outbreak of Mpox [5]. At the time of the outbreak 
and up to early 2024, only five MPXV LBCE-containing regions 
were available in the Immune Epitopes Database (IEDB) [6], with 
no validated counterexamples. 

In this study, we present a novel phylogeny-aware modeling 
framework that relies on a taxonomic scaffold to build bespoke 
models for detecting LBCE-containing regions. This strategy is 
deployed to develop a predictor optimised for orthopoxviruses, 
which we deploy to detect targets in MPXV and VACV proteins. 
By employing a data-filtering strategy based on evolutionary 
relationships between the source organisms of known epi-
topes/nonepitope peptides and the target pathogen, we achieve 
results that are comparable to, if not better than, the state-of-art 
tools, despite using a much smaller and computationally simpler 
feature space combined with a traditional data mining workflow. 
The resulting model has high predictive performance in detecting 
LBCE-containing regions, which is validated both in silico and 
experimentally. Nine selected targets were validated on sera from 
cohorts of patients known to have been infected with either MPXV 
or VACV, confirming that all nine contain LBCEs of one or both 
viruses and highlighting peptides of potential diagnostic value. 

Materials and methods 
Ethics statement 
The use of human serum in this study was approved by the 
Human Research Ethics Committees of Fundação Ezequiel Dias 
(Process number (CAAE): 62702222.6.0000.9507—MPXV samples 
and some VACV samples) and of the Federal University of Minas 
Gerais (CAAE: 42277020.5.0000.5149—additional VACV samples). 
All participants consented by signing an informed consent form 
before their involvement in the study. For participants under the 
age of 18, parents or legal guardians provided consent by signing 
the informed consent form. Full details on the samples and ethical 
approvals are available upon request. 

Sequence data sets 
The process of retrieving and processing the relevant sequence 
data sets is illustrated in Fig. 1a. Data extraction, filtering, and 
consolidation were performed using functions available in the 
development version of R package ‘epitopes’ [7], based on the 
full XML export of IEDB [6] on 20 May 2022. Taxonomy infor-
mation was retrieved from the National Center for Biotechnol-
ogy Information (NCBI)’s taxonomy dataset. All entries identi-
fied as LBCEs from organisms under the superkingdom Viruses 
(NCBI:txid10239) were extracted from the IEDB export, with asso-
ciated proteins retrieved from the NCBI protein database [8] and  
UniprotKB [9]. Peptides were labeled as positive if half or more 
of the assays associated with that IEDB entry reported a pos-
itive result, and positive-labeled peptides of length >30 amino 
acid residues were removed, to prevent long “epitope-containing 

regions” from adding excessive noise to the training data. Over-
lapping peptides of the same class were merged into a single 
entry to prevent partial data duplication. The resulting sequence 
data set was tabularized using a sliding window strategy (window 
length = 15, step size = 1) [10], and a set of 385 statistical and 
physicochemical features (Supplementary File 1) based on the 
local window around each residue were calculated. 

The resulting data set containing information on all labeled 
peptides related to viral LBCEs was further divided as follows. 
All entries related to pathogens under the genus orthopoxvirus 
(OPXV) (NCBI:txid10242) were isolated in a separate data set, 
and a similarity-aware data-splitting strategy was used to split 
the data into three folds based on normalized local alignment 
scores, to prevent data leakage due to protein homology 
(Supplementary File 1). Four of the positive examples available 
under the OPXV data correspond to known MPXV epitopes (IEDB 
epitope IDs 10135, 7309, 39258, and 73976), with no recorded 
negative MPXV examples. 

The remaining entries (excluding all OPXV ones) were used to 
generate three data sets, with all entries related to pathogens 
under (i) class Pokkesviricetes (NCBI:txid2732525); (ii) kingdom 
Bamfordvirae (NCBI:txid2732005); and (iii) the Viruses superking-
dom (NCBI:txid10239). Supplementary Table ST1 summarizes the 
main characteristics of these data sets. 

The predicted proteome corresponding to annotation data 
related to the isolate MPXV_USA_2022_MA001 (Genbank— 
ON563414) was retrieved from NCBI. In total, 190 proteins were 
retrieved and processed similarly to the training data. We also 
gathered genomic data from MPXV isolates before the outbreak 
(all complete genomic sequences available as of June 2022, 
88 samples) and from VACV isolates (all complete genomic 
sequences available as of June 2022, 68 samples) to evaluate 
sequence conservation. 

Predictive modeling 
The training and assessment of models for LBCE prediction in 
pathogens under the genus Orthopoxvirus are detailed in Fig. 1. 
Pathogen-specific training improves the performance of LBCE 
predictors when compared to generalist models trained with 
larger but considerably more taxonomically heterogeneous data 
[10]. As the number of available MPXV-specific examples in IEDB 
is very low to train—or even properly assess—any predictive 
models, we used the same rationale presented by Ashford et al. 
[10] to investigate models that generalize well to our genus of 
interest, i.e. models displaying the good predictive ability to detect 
orthopoxvirus LBCE. 

Random Forest (RF) models were trained using the data sets 
described in subsection Sequence Data Sets. These datasets 
present increasing amounts of data, obtained by expanding 
the inclusion criterion to admit viral lineages with increasing 
taxonomic distance from OPXV. The model trained using only 
the OPXV data was assessed using 3-fold cross-validation with 
similarity-based folds as described in subsection Sequence Data 
Sets. The models trained with data from higher taxonomic 
levels were also assessed using 3-fold cross-validation, with 
each submodel trained on the combination of the full higher-
level data set plus two folds of the OPXV data and deployed 
to predict the examples in the third (holdout) OPXV fold. 
These predictions were then aggregated together for threshold 
optimization and performance comparison. After the predicted 
residue-wise probabilities for each hold-out fold were aggregated 
and recorded, a final model was then generated for each of the 
datasets consisting of the full OPXV data combined with one set
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Figure 1. Computational pipeline for the development and selection of OPXV-specific models and the prediction and prioritization of candidate 
monkeypox LBCE-containing regions. (a) Data sources and data set generation process. Queries to the IEDB, UniProt, and NCBI databases were automated 
using the development version of R package epitopes [7]. The MPXV proteins were retrieved from the Genbank file corresponding to the first complete 
genome sequence of the 2022 MPXV outbreak (isolate MPXV USA 2022 MA001, accession number ON563414). (b) Model development and assessment. 
The detailed view of the model training process (c) highlights the use of OPXV folds for model training (combined with data from higher taxonomic levels) 
and performance assessment. In this work, all model fitting was done using RFs, following the preliminary modeling explorations reported in our earlier 
work [10]. (d) Use of the selected model (retrained with all OPXV examples after the performance assessment, as shown in block c) to predict epitopes on 
MPXV proteins. The candidate peptides were ranked based on predicted probability, conservation in MPXV, low similarity to known epitope-containing 
regions from other pathogens, and low alignment scores to proteins from other viruses and from the human proteome. (e) Performance assessment 
and comparison. The performance of the selected model (“Bamfordvirae”) is compared against other models trained with data filtered at different 
taxonomic levels (left side of each panel) as well as against predictors from the literature (right side of each panel). Statistically significant differences 
are highlighted in red, whereas differences that are not significant at the 95% FDR-corrected confidence level are shown in dark green (this information 
is also provided in a color-neutral manner in Supplementary Table ST4). Vertical bars represent standard errors of estimation. Lighter-shaded estimates 
with square markers indicate the performance of models subject to data leakage (see the Results section and Supplementary Table ST4). All models 
used thresholds optimized to maximize balanced accuracy on the OPXV data, aiming at generating a good balance between sensitivity and specificity. 
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of higher-level observations (Pokkesviricetes, Bamfordvirae, and 
Viruses, respectively). This process is detailed in Fig. 1c. 

The vectors of predicted probabilities for each residue of the 
OPXV data were used to optimize the classification threshold for 
each model. This process was done by a simple iterative search, 
varying the threshold from 0.01 to 0.99 in increments of 0.01 and 
calculating the balanced accuracy (the simple mean of model 
specificity and sensitivity) at each level. The threshold values that 
resulted in the highest balanced accuracy were selected for each 
model. 

All RF models were trained using the implementation from 
R package ranger [11] version 0.13.1 with hyperparameters as 
detailed in Supplementary File 1. Class imbalance was treated by 
stratified undersampling of the majority class, ensuring that all 
peptides remained represented in the rebalanced data. 

The resulting RF classifiers can be applied to predict the LBCE 
probability for each residue of a given protein and return a prob-
ability value for each protein position. In this work, contiguous 
sequences of at least eight residues above the optimized model 
threshold were considered as potential epitope-containing pep-
tides, with the probability score of the peptide attributed as the 
mean of the predicted epitope probabilities of its amino acid 
residues. 

Performance assessment and comparison 
The performance obtained by the models trained on each data 
set for the prediction of OPXV epitopes was quantified using 
commonly used performance indicators. Six of those represented 
aggregate performance indices: area under the ROC curve (AUC), 
F1 indicator (F1), Matthews correlation coefficient (MCC), accu-
racy, balanced accuracy, and geometric mean of sensitivity and 
specificity (G-mean); whereas another four quantified specific 
aspects of predictive performance: sensitivity, specificity, pre-
cision (positive predictive value, PPV) and negative predictive 
value (NPV) [12]. Standard errors for each value and P-values for 
individual comparisons of the selected model against the other 
tested models were estimated using bootstrap. We tested four 
generalist LBCE predictors as baselines for comparison: Bepipred 
2.0 [13] (the standard LBCE prediction tool provided by the IEDB 
[6]), Bepipred 3.0 [14], EpiDope [15], and EpitopeVec [16]. We also 
included a recent taxon-specific LBCE predictor, the Varidnaviria 
model provided by Epitope1D [17], to contrast the performance 
of our models with another taxon-specific approach. Details of 
the bootstrap methodology used to estimate confidence intervals 
and P-values, as well as of the correction for multiple hypothesis 
testing, are provided in Supplementary File 1. 

Study population and plasma samples 
Three sera panels were used to evaluate the antigenicity of the 
selected peptides. The first sera panel corresponds to 47 MPXV-
positive individuals aged 18–54 years old, obtained from the Cen-
tral Laboratory of Public Health of Minas Gerais (Laboratório Cen-
tral de Saúde Pública do Estado de Minas Gerais), where they were 
sent for the molecular diagnosis of MPXV. All the samples were 
collected in 2022. The second sera panel corresponds to 83 VACV-
positive patients. These samples were obtained by the UFMG Virus 
Laboratory from Secretaria de Saúde do Estado de Minas Gerais, the  
health department under the government of Brazilian state of 
Minas Gerais, as well as from previous seroprevalence studies 
performed by the laboratory [18, 19]. The samples were collected 
between 2015 and 2021 from different municipalities and regions 
with endemic VACV circulation in the state of Minas Gerais, Brazil. 
The age of the individuals ranged from 6 to 88 years at the time 

of collection, and 66% (55/83) of the individuals had received 
the antivariolic vaccine. Finally, the third sera panel corresponds 
to healthy human donors, obtained from adult volunteers from 
nonendemic area of Minas Gerais State, Brazil. 

Experimental validation of the predicted linear 
B-cell epitopes 
A total of 179 peptides of 15 amino acids, representing overlap-
ping portions that cover the full extent of the predicted targets, 
were synthesized in duplicate in a peptide-array using the auto-
mated peptide synthesizer ResPep SL (Intavis®) through SPOT-
Synthesis technique [20] on amino-PEG (polyethylene glycol) cel-
lulose membrane. The IgM and IgG reactivities to each peptide 
was assessed using pools of sera from patients infected with 
monkeypox virus (MPXV—12 patients), vaccinia virus (VACV—12 
patients), or healthy donors (negative control—10 individuals) by 
Immunoblotting (Supplementary File 9). The selection of sera to 
be used in the pools was by random sampling. The pools of sera 
were diluted 1:1000 in PBS Tween 0.1% and incubated for 2 h 
with the membrane and washed. Then, the secondary antibodies 
(IgM or IgG), diluted 1:20 000–1:25 000 in PBS Tween 0.1, were 
incubated with the membrane for 1 h and washed. The reactive 
spots were visualized with chemiluminescence (Supplementary 
File 9). 

Reactivity values for each peptide were determined by densit-
ometry, using the ImageJ software and the Protein Array Analyzer 
plugin [21], subtracting from each spot the mean value of four 
negative controls. The positivity cutoff was established as twice 
the reactivity from the immunoblotting assay using the pool of 
sera from healthy donors. Finally, the reactive intensities from 
each peptide and each pool of sera were compared, to identify 
potential MPXV peptides and controls. Details of the immunoblot-
ting method are provided in Supplementary File 9. 

The soluble peptide (DVKVEEKNIIDIEDD) was synthesized on 
a 10  μmol scale using the ResPep SL automated synthesizer 
(Intavis®) and confirmed by mass spectrometry using Autoflex 
Speed MALDI/TOF equipment (Bruker). Details of the peptide 
synthesizing method, as well as of the enzyme-linked immunosor-
bent assay (ELISA) used to assess the reactivity of this peptide to 
individual patient sera, are provided in the Supplementary File 9. 

Results 
Phylogeny-aware modeling yields superior 
predictive performance for orthopoxvirus 
The data mining pipeline developed in this work (Fig. 1) consists of 
a set of R protocols built around the ‘epitopes’ package [7], which 
uses machine learning (ML) to predict LBCE-containing regions 
optimized for specific target pathogens. Notably, our strategy also 
incorporates phylogenetic information, allowing the production 
of hierarchical models by iterating through a phylogenetic tree 
to produce models for increasingly diverse groups of phyloge-
netically related pathogens. The development of this pipeline 
was motivated by earlier results showing that organism-specific 
training of epitope predictors resulted in substantial gains in 
predictive performance over generalist models [10], even when 
the total amount of training data was substantially reduced [22]. 
By iterating through different taxonomic levels, it is possible 
to gather more training examples from phylogenetically related 
organisms. Since these are also expected to be phenotypically and 
genetically more similar, these data entries may be used to both 
increase the taxonomic coverage of models and the number of 
training data points, as well as capturing common features of
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viral lineages due to common ancestry. One important exception 
is the model trained on the “Viruses” dataset: since the full set 
of viral lineages is not monophyletic [23], a model trained using 
this dataset is expected to have a performance equivalent to other 
generalist approaches trained on vast amounts of epitope data 
from diverse pathogens. 

The pipeline consists of a data extraction and preparation 
module (Fig. 1a), which includes extracting and consolidating 
LBCE data and calculating a feature space composed of 385 
statistical and physicochemical descriptors that have been 
widely adopted in earlier approaches to predict LBCEs [10] 
(Supplementary File 1), and a model exploration and assessment 
module (Fig. 1b), in which RF classifiers are trained on data from 
progressively higher taxonomic levels (Supplementary Table ST1) 
and assessed on data from OPXV using a bespoke cross-validation 
approach (described in section Predictive Modeling and detailed 
in Fig. 1c and Supplementary File 1, “Data Splitting for Cross 
Validation”). The classification threshold for each model was 
selected as the one that maximized balanced accuracy, to 
adequately balance the resulting pipeline’s sensitivity and 
specificity. 

The predictive performance of models trained on data from dif-
ferent taxonomic levels showed a clear increase across all aggre-
gated performance metrics as more data from phylogenetically 
related pathogens sharing a more ancient common ancestor was 
added to the training set (Fig. 1e and Supplementary Table ST4). 
The lower performance of the model trained exclusively with the 
OPXV data (or, more precisely, the average performance of models 
trained with two-thirds of the available OPXV data on IEDB; see 
Fig. 1c) is likely due to the extremely low sample size available at 
this level, which is likely insufficient to fit models with good gener-
alization ability, as indicated previously [22]. The performance of 
our models stabilized at the taxon Bamfordvirae, with a decrease 
of some performance metrics in the more general model trained 
with all viral sequences (Fig. 1e and Supplementary Table ST4). 
This result reinforces observations reported in our earlier study 
[10], which indicated that training models using data related to 
the target pathogen results in gains of predictive ability due to 
the fact that an increase in the amount of data from phyloge-
netically close species are available to train the models, while 
neutral or even negative effects on performance are expected 
when the training data are obtained from more distantly related 
pathogens or nonmonophyletic lineages, as is the case of the 
“Viruses” dataset in our analysis [23], even when the total data 
volume is substantially increased. 

We compared the performance of our models against four 
generalist predictors trained using phylogenetically diverse sets 
of positive and negative examples that are considerably greater 
than our training set, as well as against a taxon-specific tool 
(see Fig. 1e; Supplementary Table ST4). Three of the general-
ist tools are arguably the state-of-the-art software in terms of 
feature modeling and ML strategies for LBCE prediction: Epi-
Dope [15], EpitopeVec [16], and Bepipred 3.0 [14]. These state-
of-art generalist tools adopt protein language models to extract 
numerical representations of amino acid features as sequence 
embeddings, to capture both local and context-dependent prop-
erties. This representation schema has been demonstrated to 
provide good performance in many ML strategies for the analysis 
of protein sequences, such as prediction of protein structure, 
subcellular location, and biological function [24–26]. In particular, 
Bepipred 3.0 adopts the Evolutionary Scale Modelling 2 model, a 
cutting-edge protein language model initially applied to protein 
structure prediction [27]. Two of these tools (Bepipred 3.0 and 

EpiDope) employ deep learning to develop their classifiers, which 
has also been widely adopted for mining protein data due to its 
often-superior performance compared to traditional ML methods 
[28]. These methods therefore present more sophisticated feature 
spaces and ML strategies when compared to our approach. We 
also include the previous version of Bepipred (version 2.0) [13], 
as this is currently the main available tool for LBCE prediction 
provided by IEDB. This tool is also the most similar to our strategy 
in terms of feature space and learning method for classifier 
building, therefore providing a useful benchmark to compare how 
our phylogeny-aware modeling strategy performs against a con-
ceptually similar but generalist LBCE prediction tool. Finally, we 
compared the performance of our selected model against a taxon-
specific model developed specifically for Varidnaviria, a clade that 
includes the Bamfordvirae kingdom. This model, which is one of 
the taxon-specific predictors provided by Epitope1D [17], employs 
a graph-based feature extraction step based on statistical and 
physicochemical properties and Explainable Boosting Machine 
predictors and was reported as providing taxon-specific perfor-
mance comparable or superior to that of Bepipred 3.0, EpitopeVec, 
and EpiDope [17]. 

Data leakage due to sequence similarity may be a major issue 
when evaluating the performance of classifiers of biological 
sequences [29]. To quantify the influence of data leakage due 
to sequence similarity, we extracted two sets of sequences to 
assess performance for each of the methods evaluated. The 
first set includes all OPXV entries, including sequences that are 
highly similar to entries used to train the four models from the 
literature (Fig. 1e, transparent colors with square markers). This 
data set allows data leakage due to sequence similarity, since 
some of the entries used to train these tools correspond to entries 
in the validation data set. It may therefore result in positively 
biased performance estimates for the methods affected by the 
leakage. We used BLASTp with the same configuration previously 
described to select small sequences followed by a stringent filter 
(query coverage >80% and identity of the aligned region >80%) 
to produce a second, “no-leakage,” validation data set for each 
method (Fig. 1e, solid colors). This set is expected to enable 
the estimation of the true generalization performance of these 
classifiers, as it only contains sequences that are not found in 
their training data sets. No-leakage performance estimation was 
not possible for EpitopeVec (since all OPXV entries used in this 
study have correspondence in its training set) and EpiDope (all 
but six entries, all positive). Therefore, we report only the results 
with data leakage for these two tools. 

From the models trained using our phylogeny-aware strategy, 
the one trained using data at the Bamfordvirae level was found 
to return the best overall combination of performance scores 
(Fig. 1e, Supplementary Table ST4). We selected this model and 
used it to compare the relative classifier performance of the other 
tools using all-versus-one comparisons. P-values were corrected 
for multiple hypotheses testing to maintain a predefined false 
discovery rate (FDR) of 5% (see Materials and Methods, subsection 
Performance Assessment and Comparison; and  Supplementary 
File 1). The performance of our selected model is either indistinct 
or significantly better than all models tested regardless of data 
leakage. This is despite the use of a considerably smaller training 
set and our adoption of straightforward features and a basic ML 
strategy when compared to the state-of-art models. Of note, 
our best model significantly outperforms EpitopeVec (leaky), 
Bepipred 2.0 (leaky and no-leakage), and Epitope1D (leaky and 
no-leakage) in terms of the F1-score and EpiDope∗, EpitopeVec 
(leaky), Bepipred 2.0 (leaky), and Epitope1D (leaky) for AUC and

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae527#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae527#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae527#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae527#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae527#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae527#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae527#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae527#supplementary-data
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is statistically indistinguishable from Bepipred 3.0 (leaky and no-
leakage) across all three metrics and from Epitope1D (leaky and 
no-leakage) for MCC. Similar patterns are observed across several 
other performance indicators (Supplementary Table ST4). Taken 
together, these results strongly suggest that the phylogeny-aware 
modeling strategy is the main factor behind the surprisingly high 
performance of our best model compared to the many instances 
of generalist models evaluated. This is further reinforced by 
the similar performance between our best model and the 
Epitope1D (Varidnaviria) model, which was trained using a similar 
phylogeny-aware data filtering approach. Based on these results, 
the model trained at the Bamfordvirae level was selected for 
downstream analyses. 

Orthopoxvirus-optimized model predicts new 
linear B-cell epitope candidates for monkeypox 
virus 
We used the genome of MPXV as a scaffold to anchor our 
prediction results. For that, we deployed the selected model 
(trained on all available examples under kingdom Bamfordvirae 
and optimized to maximize balanced accuracy on OPXV data) 
to generate predictions for the 190 proteins derived from the 
Genbank file corresponding to the first complete genome 
sequence of the 2022 MPXV outbreak (isolate MPXV USA 2022 
MA001, accession number ON563414). Supplementary Files 2 
and 3 provide the details of the 190 proteins and a summary of the 
number of peptides predicted as epitope-containing regions, as 
well as the maximum peptide probability found for each protein 
entry. 

Conservation and similarity analysis suggest 
potential linear B-cell epitopes for diagnostic 
tests 
To evaluate the prediction capabilities of our tool and identify 
potential diagnostic targets capable of differentiating between 
MPXV and other infections, the model predictions were filtered 
according to additional criteria. The selected model predicted 
1241 unique peptides with probabilities above the optimized 
model threshold (Fig. 2, top). Our model successfully identified 
all known MPXV epitopes from IEDB (triangle markers), including 
“new” IEDB epitopes, not available at the time of model training 
(red triangles). Our model also predicted peptides that match the 
epitope-containing regions described in [30] (square markers), 
including the targets selected by Yates et al. to compose their 
diagnosis test (cyan squares). 

Initially, 66 predicted LBCE-containing regions with model 
probability >0.75 and similarity scores (calculated as coverage 
× identity) to known viral LBCE-containing regions extracted 
from IEDB lower than 0.75 (to minimize the probability of 
cross-reactivity) were selected for further analysis. As a second 
filter, we assessed the sequence conservation of these peptides 
among 88 MPXV isolates as available in Genbank in June 2022 
and dissimilarity to proteins from the human host and other 
viruses. We estimated the conservation of the candidate peptides 
for the predicted proteome of MPXV isolates using BLASTp 
[32] (options -seg no e-value 10000 -word size 3, optimized 
for short sequences) (Supplementary File 5). The dissimilarity 
between each of the predicted peptides and the predicted 
proteomes of the following organisms was also calculated and 
used to remove candidate targets with high similarity scores, 
which could result in diagnostics with a higher rate of false 
positives: 

• Homo sapiens (GCF 000001405.40). 
• Sarcoptes scabiei (GCA 000828355.1), Measles morbillivirus 

(GCF 000854845.1), and Treponema pallidum (GCF 000246755.1), 
pathogens with potentially similar clinical presentations [4]. 

• All sequences available from NCBI under family Poxviridae 
and not identified as Monkeypox (a total of 576 isolates of 72 
species). 

All resulting BLASTp files and identifiers of all sequences are 
provided in Supplementary File 6. 

Figure 2 illustrates the results of this filtering step. Of the 
66 unique peptides preselected based on the probability score 
attributed by the model and their similarity score to known LBCE 
extracted from the IEDB, 9 displayed dissimilarities to human and 
poxvirus proteins above our cutoff thresholds (≥0.5 dissimilarity 
from human proteins; ≥0.05 dissimilarity from proteins from 
other Poxvirus), in addition to high conservation scores (≥0.75 
similarity for the 88 MPXV isolates). 

We selected these nine peptides predicted as containing LBCEs, 
highlighted as green triangles in Fig. 2, for further experimen-
tal evaluation. These peptides are found in proteins fulfilling a 
variety of roles in MPXV biology and encompassing both early 
and postreplicative expressed genes. These roles range from vir-
ulence factors secreted by infected cells that inhibit molecular 
hubs of the host immune response to structural components of 
viral particles and enzymes playing roles in viral DNA replication 
(Supplementary File 8). 

Predicted linear B-cell epitope–containing 
regions are recognized by IgG and IgM from 
naturally orthopoxvirus-infected individuals 
To validate the LBCE predictions, we synthesized 179 peptides 
of 15 amino acids covering the full extent of the nine LBCE-
containing regions in a immunoblot membrane and evaluated 
their reactivity to IgG and IgM. For that, we initially used pools 
of sera from patients infected with MPXV or VACV, as well as 
healthy donors, to perform an initial screening of the putative 
LBCE-containing regions for possible epitopes (Fig. 3a). We com-
puted sequence conservation information for the MPXV and VACV 
isolates available as of June 2022 (88 and 68 isolates, respectively). 
Overall, the sequences are more conserved in MPXV, with all but 
one peptide conserved in 100% of isolates. 

We defined all peptides where reactivity for either MPXV-
infected or VACV-infected were at least two times greater than 
the reactivity for the pool of healthy donors as positives. All nine 
LBCE-containing regions had at least one peptide reactive to IgG 
pools of sera from VACV patients (eight in the case of MPXV) when 
compared with healthy donors (Fig. 3a). At the individual peptide 
level, we observed that all 179 (100%) were reactive to the VACV-
IgG sera pool, while 79 (44%) were reactive to MPXV-IgG patient 
sera (Fig. 3a and b). This stronger peptide reaction profile in VACV-
infected individuals when compared to MPXV-infected individuals 
is likely due to the scenario of recurring infections of workers of 
the dairy industry, which comprises a considerable fraction of our 
VACV cohort [34]. 

Four of the peptides have the IgG intensity for the MPXV 
sera pool higher than the VACV samples. Interestingly, the one 
with the highest MPXV/VACV reactivity ratio (3.97, identified in 
Supplementary Table ST5 as 138:19-46; Fig. 3a, highlighted in red) 
coincides with a peptide previously reported as a highly specific 
MPXV epitope [33] (teFFSTKAAKNPETKREAIVKAYGDDNEETlkq; 
uppercase characters highlighting our prediction and bold high-
lighting the specific peptide that returned the highest MPXV/

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae527#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae527#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae527#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae527#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae527#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae527#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae527#supplementary-data
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Figure 2. (Top) Predicted epitopes in the space of predicted probability × max. similarity to known LBCE. Peptides with low similarity and high predicted 
probability were highlighted and selected for further analysis. These points were projected onto the space of minimum dissimilarity to proteins from 
other poxvirus × H. sapiens (bottom). Several peptides with perfect or near-perfect similarity with other poxvirus (shown on the left of the bottom plot) 
would be unsuitable for the development of diagnostic tools to differentiate MPXV infections from other poxviruses. Predicted LBCE with a conservation 
score ≥0.75, dissimilarity to human proteins ≥0.5 and dissimilarity to other poxvirus proteins ≥0.05 are labeled in the bottom panel and were selected 
for experimental assessment as potential candidates for diagnostic test development. Predicted peptides that match MPXV epitopes available from IEDB 
are shown as triangles (filled in the case of “new” IEDB epitopes, not available at the time of model training); those that match the epitope-containing 
regions described by Yates et al. [30] are highlighted as squares (filled for targets selected in Yates et al.’s work to compose their assay); and those that 
match the ones used by Taha et al. for the development of an MPXV serological assay [31] are shown as circles (a brighter shade indicates peptides 
chosen to compose the diagnostic test in that work). 
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Figure 3. Experimental validation of predicted targets. (a) Immunoblotting results as IgG and IgM reactivity ratios (MPXV/Control and VACV/Control) 
of the sera pools against the 179 peptides extracted from the nine epitope-containing regions predicted by the phylogeny-aware pipeline. Peptide/sera 
pairs for which the observed intensity ratio was lower than 2 are shaded to highlight the more reactive ones. The color bars represent the within-
clade conservation profile of each peptide for MPXV and VACC. Six peptides are highlighted as potential targets that could be used to indicate recent 
MPXV infections (MPXV/control >2 and VACV/control <2). Five of these are new discoveries, while the peptide FFSTKAAKNPETKRE is an independent 
rediscovery of the one reported in [33] as a potential target for differential serodiagnosis of MPXV. (b) Correlation between the seroreactivity of the 
peptides to the sera of patients infected with VACC versus MPXV. IgG (top panel, Pearson r = 0.035, P-value = .63); IgM (bottom panel, Pearson r = 0.527, 
P-value = 3 × 10−14). Each point corresponds to a different peptide. Seroreactivity values above the cutoff for only MPXV, only VACC, both, or none are 
indicated in the figure. The peptide DVKVEEKNIIDIEDD is highlighted in both panels with a black box. (c) ELISA results for peptide DVKVEEKNIIDIEDD 
using individual patient sera. Each dot corresponds to a different patient. Points shown as triangles represent sera from patients that composed the 
pools in the immunoblotting screening. Notice that the ELISA results support the immunoblotting results for the peptide (higher VACC IgG and higher 
MPXV IgM reactivity). Results marked as “NI” correspond to controls (“not infected”). 
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VACV reactivity ratio). In agreement with our results, this epitope 
is recognized by a monoclonal antibody of the IgG1 subclass [35]. 
The detection of this epitope, which was at no point part of the 
training set (as it is not present in the IEDB export used to train 
our models), corroborates both the ability of the selected model 
to accurately detect LBCE and the usefulness of the predictive 
pipeline developed in this work for identifying valuable targets of 
diagnostic potential (Supplementary Table ST2). 

A total of eight and four, respectively, out of the nine LBCE-
containing regions evaluated had at least one peptide reactive to 
IgM from patients with VACV or MPXV (Fig. 3a). At the individ-
ual peptide level, 44 (25%) and 10 (6%) were reactive to VACV-
IgM or MPXV-IgM sera, respectively, with 5 of those (3%) being 
reactive to both pools of sera. The IgM reactivity of MPXV- and 
VACV-infected individuals had a stronger correlation (Pearson 
r = 0.527, P-value = 3 × 10−14) than the IgG one (Pearson r = 0.035, P-
value = .63; see Fig. 3b). Even though we did not further investigate 
this issue, we argue that it is likely caused by the distinctive nature 
of the cohorts (early MPXV infection versus ancient and recurring 
VACV infection), which is likely to increase both the IgG and IgM 
responses in the VACV cohort and only the IgM response in the 
MPXV samples. 

Five peptides were only reactive to MPXV-IgM (two in target 
035:4-71, two in 154:41-74, and one in 135:12-75; highlighted in 
blue in Fig. 3a). Four of these were 100% conserved across the 
88 MPXV isolates, with the fifth presenting a conservation score 
of 83.5%. Four of these present conservation scores above 99% 
(between 94.2% and 99.8%) across the 68 VACV isolates, with the 
remaining one having a conservation score for VACV estimated 
as 33.1%. Of these five peptides, the proportional difference in 
IgM reactivity for VACV and MPXV sera pools of one of the pep-
tides extracted from target 154:41-74 (peptide DVKVEEKNIIDIEDD, 
MPXV/VACV reactivity ratio = 3.60) is substantially greater than 
that of the other four. Furthermore, when considering the IgG 
profile, the opposite profile is observed, as it is only reactive for 
the VACV sera pool. 

We synthesized this peptide and evaluated its reactivity of 
our cohort through ELISA, using individual sera from MPXV- and 
VACV-infected patients (Fig. 3c). Our results supported the previ-
ous immunoblotting results, showing that the average IgM reac-
tivity of sera from MPXV-infected individuals was significantly 
higher than either sera from VACV-infected individuals or healthy 
donors (Fig. 3c, “IGM”); Wilcoxon rank-sum P-values of 7.2 × 10−5 

and 4.0 × 10−3, respectively), while sera from VACV-infected indi-
viduals do not significantly differ from healthy donors (Wilcoxon 
rank-sum P-value = 7.7 × 10−2). 

In agreement with the immunoblotting results, the average IgG 
reactivity of sera from VACV-infected individuals was significantly 
higher than either MPXV-infected patient sera samples or healthy 
donors (Fig. 3c, “IGG”; Wilcoxon rank-sum P-value = 1.6 × 10−3 

for both tests). We found no significant difference in average 
IgG reactivity between MPXV-infected sera and healthy donors 
(Wilcoxon rank-sum P-value = .64). 

Discussion 
In data science and applied machine learning, a major conceptual 
step is domain understanding. In general terms, this means 
understanding specific properties and caveats of data emerging 
from a specific data-generating process to account for eventual 
biases that may interfere in downstream analyses. In biology, data 
related to different species are nonindependent due to common 
ancestry [36]. This fact alone generates two major consequences: 

the first one is that any strategy that uses species-centric data 
to draw conclusions, such as genotype–phenotype associations 
studies of species data, must consider this nonindependence 
to prevent overestimation of model performance [37,38]. On 
the other hand, the fact that phylogenetically closer species 
are expected to be more similar in both their phenotypes and 
genotypes can be leveraged to produce tailored, phylogeny-aware 
statistical models for specific groups of species with superior 
performance compared against generalist approaches. By training 
ML models using data-rich species, these can also be successfully 
applied to make predictions for data-poor, phylogenetically close 
organisms. 

This rationale has been widely adopted in several fields of 
computational biology, even though it is not always explicitly 
stated. Algorithms for gene prediction in eukaryotic genomes, 
for instance, are usually trained using data from many phyloge-
netically distant species that represent major eukaryotic groups 
[39]. This approach produces multiple models sharing an overall 
statistics scaffold but with individual models tailored for a major 
group of organisms. The motivation of this strategy is that phy-
logenetically closer species will have shared genomic properties 
that are useful to predict gene model structures, such as genome 
nucleotide composition, dinucleotide and codon usage, and intron 
and exon lengths. 

In the context of LBCE prediction, as we demonstrated in this 
study, a similar strategy can leverage the nonindependence of 
pathogen data to train models for specific groups of pathogens 
using data from related species that can be informative for pre-
dicting epitopes in data-poor organisms, such as neglected dis-
eases or emerging pathogens. By combining a predictor built 
under a phylogeny-aware framework with sequence conservation 
and similarity analyses, we developed an optimized pipeline for 
the prediction and prioritization of LBCE targets in OPVs. Using 
this pipeline, we selected nine potential LBCE-containing regions. 
One of those was an independent rediscovery of a previously 
described peptide from protein A29L [33] (which appears in the 
present study under the ID MPXV-USA 2022 MA001-138.t01) as a 
promising target for the specific diagnostic of MPXV. We highlight 
that this peptide was not present in the training set of our models, 
as it is not contained in the IEDB export used at the time of model 
development. 

The differential serodiagnosis of OPV infection, as well as the 
distinction between infection and vaccinated individuals, is chal-
lenging due to the lifelong production of antibodies against these 
pathogens and their considerable antigenic and serologic cross-
reactivity [40, 41]. We have also identified a novel epitope with 
the potential to detect recent MPXV infections based on IgM sera 
reactivity. A recent study outlined the development of a highly 
sensitive and specific diagnostic test capable of distinguishing 
previous MPXV infection from vaccination status through the 
analysis of IgG profiles [30]. While our research did not specifi-
cally aim to fully develop an immunodiagnostic test, this recent 
advancement toward that end provides valuable context for our 
findings. The reported high performance was achieved through 
the utilization of a combination of MPXV-specific peptides and 
cross-reactive OPV proteins, underscoring the challenging nature 
of distinguishing between different OPVs. Moreover, their method 
primarily focuses on evaluating IgG profiles, which would be 
limited to the detection of subclinical MPXV infections and to 
providing an epidemiological overview of MPXV spread within 
communities. Our findings suggest the feasibility of developing 
a diagnostic kit akin to the ensemble of proteins and peptides 
described by Yates et al. [30] to differentiate between recent and

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae527#supplementary-data
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past infections of MPXV and VACV, as well as vaccinated individ-
uals, based on IgM reactivity for this peptide. 

Beyond the detection of potential Monkeypox LBCEs, the 
phylogeny-aware approach used here has been shown to provide 
equivalent or superior results than current standard tools for 
LBCE prediction, reinforcing earlier results [10]. More importantly, 
the successful development of a model tailored specifically for 
an emerging global pathogen with almost no LBCE data available 
shows that this approach is useful even beyond the lower bounds 
investigated in earlier work [22]. The incorporation of information 
from phylogenetically related pathogens can be a successful 
strategy for the development of predictive models tailored for 
specific groups of pathogens that share a common ancestor. With 
the current wide availability of considerable computing power, 
there is scope for a wider use of pathogen-specific models, trained 
and tuned specifically for the prediction task of interest. 

In agreement with our modelling strategy, recent develop-
ments in LBCE prediction include the integration of taxonomic 
data into predictive models, highlighting the potential to cap-
italize on distinct epitope signatures among pathogen groups 
[16, 17, 42–45]. It should be clear, however, that the innovative 
aspect of our work is not in the feature space used or in the 
deployment of complex predictive models. On the contrary, our 
results indicate that it is possible to achieve results that are 
comparable to, if not better than, the state-of-art tools, despite 
using a much smaller and computationally simpler feature space 
combined with a traditional data mining workflow. The most 
innovative aspect of our work relates instead to the curation of 
training data based on evolutionary relationships between the 
source organisms of known epitopes/nonepitope peptides and 
the target pathogen. Indeed, using more sophisticated modeling 
approaches and feature spaces, such as the ones used by current 
state-of-the-art generalist predictors, in combination with the 
phylogeny-aware selection of training data presented in this work, 
would potentially yield even better results. Challenges persist, 
however, in determining the ideal taxonomic levels for model 
training and ensuring methodologically rigorous performance 
evaluations. Addressing these issues is essential for realizing the 
full potential of phylogeny-aware epitope prediction in practical 
applications within biomedical research and development. 

Key Points 
• Description of a phylogeny-aware framework for train-

ing pathogen-specific linear B-cell epitope predictors. 
• Development of a predictor tailored for orthopoxviruses, 

including monkeypox and vaccinia. 
• Experimental validation reveals new epitopes in individ-

uals exposed to monkeypox and vaccinia viruses. 
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