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Various successful applications of deep artificial neural networks are effectively facilitated by the
possibility to increase the number of layers and neurons in the network at the expense of the growing
computational complexity. Increasing computational complexity to improve performance makes
hardware implementation more difficult and directly affects both power consumption and the
accumulation of signal processing latency, which are critical issues in many applications. Power
consumption can be potentially reduced using analog neural networks, the performance of which,
however, is limited by noise aggregation. Following the idea of physics-inspiredmachine learning, we
propose here a type of neural network using stochastic resonances as a dynamic nonlinear node and
demonstrate the possibility of considerably reducing the number of neurons required for a given
prediction accuracy. We also observe that the performance of such neural networks is more robust
against the impact of noise in the training data compared to conventional networks.

Artificial neural networks (ANNs) are capable of solving certain problems
using only the accessible sets of training examples, without knowledge of the
underlying systemsresponsible for thegenerationof thisdata (see e.g., refs. 1–3
and references therein). In scientific and engineering applications, ANNs can
be employed as a nonlinear statistical tool that learns low-dimensional
representations from complex data and uses this to model nontrivial rela-
tionships between inputs and outputs. The ability of ANNs to predict and
approximate from given data is linked to the effective dimensionality—the
number of independent free parameters in the model. The approximation
capability of theANNs is quantified by the universal approximation theorems
(see for details, e.g., ref. 4). Note a recent proposal of the Kolmogorov-Arnold
Networks5 that exploits as the foundation for approximation theKolmogorov-
Arnold representation theorem6,7. While traditional deep learning ANNs
based on multi-layer perceptron with a fixed activation functions on nodes
(“neurons”), KANs have adjustable activation functions on edges (“weights”)
and no linear weight matrices at all. However, each weight parameter is
replacedbya learnableone-dimensional functionparametrizedas a spline that
canalsohavehighcomplexity.Thecomplexityof theANNsplaysacritical role
in the trade-off between their performance and accuracy of the predictions on
the one side and power consumption and speed of operation on the other.
Many modern applications of ANNs require over-parametrized models to
ensure optimal performance, resulting in high computational complexity and
corresponding increased power consumption. Power efficiency can be
improved using physically implemented (not necessarily digital) neural net-
works, for instance, designed from layers of controllable physical elements8.
Physics-inspired or physics-informed analog neural networks, capable of
combining data processing with the knowledge of the underlying physical

systems embedded into their architecture8–12, is a fascinating area of research
offering, in particular, a potential pathway to power-efficient ANNs. There is,
however, an essential trade-off between improvements in energy efficiency
and susceptibility to noise in analog networks. The fundamental challenge in
non-digital systems is the accumulation of noise originating from analog
components13–16. To overcome this challenge and unlock the full potential of
analog ANNs, systems must be developed capable of absorbing, converting,
and transforming noise. This paper proposes a new artificial neural network
design using a stochastic resonance (SR)17 as a network node—ANN-SR. The
robustness of the ANNs operation in the presence of noise depends on the
properties of the nonlinear activation function16. Instead of using a conven-
tional static nonlinear element, we employ a dynamical system with bi-stable
features (see Fig. 1) that can make a positive use of the noise—the stochastic
resonance (SR). Note that various experimental implementations of SRs pave
theway tonewattractive, physically implementable designs ofANNs18,19. SR is
a phenomenon that occurs when adding noise to a nonlinear system can
improve the system’s performance. It is often observed in physical systems, for
example, inelectronic18,20,21,mechanical22,23, or evenquantum24 systems. SRhas
also been observed in a wide range of biological systems, including neurons25,
cells26, and even hearing27. Note that the idea of using SR as a nonlinear
activation function in ANNs has been studied28–30. However, these works did
not address thekeypotential advantageof SR - its ability tomakeunder certain
condition a positive use of noise.

Herewe demonstrate that SR being employed as a nonlinear activation
function can notably improve the performance of ANNs when trained on
noisy data.We also show that use of SR activation function can substantially
reduce the computational complexity and the required number of neurons
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for a given prediction accuracy. Our work uniquely demonstrates the
robustness of SR neurons when trained with noisy datasets, showing
improved prediction accuracy compared to traditional sigmoid functions.
This application is particularly relevant for real-world scenarios where data
is often imperfect. Additionally, we have performed a detailed computa-
tional complexity analysis, showing that while our SR-based approach is
marginally more computationally expensive than classical approaches, it
offers superior performance benefits. This trade-off is crucial for practical
implementations where both accuracy and computational resources are
considered. An error of 10−2.76 or 0.0017 was achieved for predicting 100
points of the Mackey-Glass series by using only 40800 multiplications per
point. For the classical sigmoid activation function, an error of 10−1.45 or
0.036 corresponds to a similar number of multiplications. This means that
we obtain 20 times more accurate results by using the same number of
multiplications. To achieve the same accuracy using the sigmoid function,
203850 multiplications are needed. Thus, to achieve the same accuracy as
using the classical approach, one needs to perform five times more multi-
plications and spend five times more energy. Moreover, ANN-SR perfor-
mance is more robust against noise in the case of training on noisy data.

Results
Asan illustrationofourgeneral idea,weconsider aparticular recurrentneural
network schematically shown in Fig. 1, known as echo state network (ESN)31.
However, the ideaof SRneurons canbe easily extended toother architectures,
such as e.g., deep neural networks. ESNs are fixed recurrent neural networks
that constitute a “reservoir” with multiple (fixed) internal interconnections
providing a complexnonlinearmultidimensional response to an input signal.
An output signal is obtained by training linear combinations only of these
readout ESN responses. The ESN has an internal dynamic memory. The
internal connections of the ESN are randomly set up. During the training
procedure, the training sequence is fed into the ESN.After an initial transient
period, the neurons start showing variations of the fed signal or “echoing” it.
The readout weights are calculated after feeding the training sequence to
the ESN.

To explain the mathematics behind our idea, we consider the classical
ESN model31:

xnþ1 ¼ f ðWinunþ1 þWxn þWback ynÞ ð1Þ

where u 2 R is the current state of the ESN’s input neuron, xn 2 RN × 1 is
the vector with dimension N corresponding to the network’s internal state,
matrixWin 2 RN × 1 is themap of the input u to the vector of dimensionN,
the matrix W 2 RN ×N is the map of the previous state of the recurrent
layer, and f(x) is the nonlinear activation function. The recurrent layer
consists ofN neurons and the input information u contains a single element
at each instance of time. The linear readout layer is defined as

yn ¼ Woutxn ð2Þ

where vector Wout 2 R1×N maps the internal state of the ESN to a single
output.

In the classical approach, the nonlinear activation function f(x) is
typically a sigmoid or hyperbolic tangent function31. In our model, we
replace the analytical nonlinear function f(x) with a stochastic ordinary
differential equation known as stochastic resonance (SR)32,33. The SR phe-
nomenon has been studied in various physical systems, including climate
modeling, electronic circuits, neural models, chemical reactions, and pho-
tonic systems17,32–35. This dynamic can be described using a bi-stable system
with two inputs: a coherent signal and noise34,36. A standard example of the
SR model is given by:

dξðtÞ
dt

¼ � dU0ðξÞ
dξ

þ sðtÞ þ σN ðtÞ ð3Þ

where s(t) represents the input signal, N ðtÞ is Gaussian noise with zero
mean and unit variance, and σ is the noise amplitude. The potentialU(ξ, t) is
defined as:

Uðξ; tÞ ¼ U0ðξÞ þ ξsðtÞ ð4Þ

Considering a symmetric bi-stable stationary potential well U0:

U0ðξÞ ¼ �α
ξ2

2
þ β

ξ4

4
ð5Þ

This model represents the limit of a heavily damped harmonic oscillator,
depicting themovement of a particle in a time-dependent bi-stable potential
U(x, t) =U0(x)− xs(t)36,37. For α > 0, the potential is bi-stable with two
stationary points xs ¼ ±

ffiffiffiffiffiffiffiffi
α=β

p
and a barrierΔU=α2/(4β). In thiswork, we

consider the SR function with the potential function with local minima of
−1 and 1. Therefore, we assume, without loss of generality, α = β The time-
dependent tilted potential U(ξ, t) is defined by the static potential function
U0 combined with the time-dependent input signal s(t), resulting in:

Uðξ; tÞ ¼ �α
ξ2

2
� ξ4

4

� �
þ ξsðtÞ ð6Þ

We demonstrate that the SR function, under certain conditions, outper-
forms the classical sigmoid as a nonlinear activation function in terms of
prediction accuracy and computational complexity. The proposed SR
neuron differs from a standard neuron by having its own internal state ξ(t),
which acts as memory. This state, along with incoming signals, forms the
neuron’s output through integration over a time interval Δt.

To evaluate the performance of ANNs with SR activation function, we
applied it to the prediction of two-time series for two classical cases: (i) the
Mackey-Glass (MG) equation, and (ii) the Rössler attractor.

For the Mackey-Glass series, governed by:

dqðtÞ
dt

¼ aqðt � τÞ
1þ q10ðt � τÞ � bqðtÞ ð7Þ

with parameters a = 0.2, b = 0.1, and τ = 17, we also considered a noisy
versionof theMGseries,qηðtÞ ¼ qðtÞ þ ηN ðtÞ, to assess the signal-to-noise

Fig. 1 | Scheme of the considered echo state network and the proposed use of
dynamic stochastic response functions instead of static ones.
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ratio (SNR):

SNRMG ¼ maxðqÞ �minðqÞ
2η

ð8Þ

For the Rössler attractor, governed by:

dx
dt

¼ �y � z ð9Þ

dy
dt

¼ x þ ay ð10Þ

dz
dt

¼ bþ zðx � cÞ ð11Þ

with parameters a = 0.2, b = 0.2, and c = 5.7, we similarly considered a noisy
version of the Rössler series to evaluate its SNR:

SNRR€ossler ¼
maxðxÞ �minðxÞ

2η
ð12Þ

We used the x-component of the Rössler attractor to test the proposed SR-
ANN performance.

Parts of both theMGseries and theRössler attractor serieswere used to
train the ESN, and the next several tens of points of each series were com-
pared to the output of the freely running ESN to estimate the prediction
accuracy.

During the training and testing, the nonlinear response of each SR
neuron is calculated as a result of the integration of Eq. (3) with a weighted
sumof inputneurons as the variable s inEq. (3) andprevious internal stateof
the neuron as an initial condition. As the training and test sequences are
parts of the time series (MGorRössler), theyare time-dependent.Therefore,
we integrate Eq. (3) over timewith s as a parameter. The integration interval
Δt is equal to the time stepof the time series, andwe set the initial value of the
SR function as ξðt ¼ 0Þ ¼ N ð0; 1Þ. On each time step, we take the current
value of the function ξn and calculate the next value by integrating Eq. (3)
with ξn as an initial value:

f ðsnÞ � ξnþ1 ¼ ξn þ α ξn � ξ3n
� �þ σN ðtÞ� � � Δt þ sn � Δt ð13Þ

This is done whenever we need to calculate the nonlinear response function
f(s) using a 2nd-order Runge-Kutta also known as the Euler method.

The output of the nonlinear response function is calculated as a tra-
jectory of a system described by the SR equation with input values as an
external force applied to the system. The internal state of the SR system is
described by a vector ξ that evolves with time. For a given initial state ξn and
input value sn, the output of the SR nonlinear function can be calculated as
the next internal state ξn+1 separated from the previous state by time Δt.

Note that there are two sources of noise: (i) implementation noise coming
from the active nature of the nonlinear node and (ii) the noisy data, both
practically important and considered in this work.

In the current work, we use the proposed approach to design an ESN
and estimate its accuracy depending on the number of neurons and noise
amplitude in the training data. We compare the designed ESN-SR with the
classical ESN with sigmoid activation function in terms of accuracy and
computational complexity.

To investigate the computational complexity of the proposed
approach, we calculate the number of multiplications required for a single
step of ESN evolution. This number includes both the linear part of the ESN
evolution and the multiplications needed for calculating the nonlinear
response of the neurons.

According to equations (1) and (2), the linear part of ESN evolution
includes 4matrixmultiplications of sizeN×1,N×N,N×1, and1×N giving
a total of

Qlinear ¼ N2 þ 3N ð14Þ

multiplications per 1 step of the linear part of the ESN evolution. This is also
the total number of multiplications for the classical approach for the non-
linear activation function, such as sigmoid or tanh, obtained using a lookup
table with no computational complexity.

On the other hand, for the SR nonlinear function, the values of αðξ �
ξ3Þ þ σN ðtÞ or αðξn � ξ3nÞ þ σN ðtÞ� � � Δt can also be calculated using
look-up tables and bear no computational burden.However, sn ⋅Δtneeds to
be calculated and add up ξn, αðξn � ξ3nÞ þ σN ðtÞ� � � Δt, and sn ⋅ Δt. So an
additional

QSR
nonlinear ¼ N ð15Þ

multiplications are needed to calculate the SR nonlinear response function.
To sumup, the total numbers ofmultiplications for 1 stepof calculating

the evolution of the ESN are:

Qclassical
total ¼ N2 þ 3N

QSR
total ¼ N2 þ 4N

ð16Þ

Note that the number of additional multiplications grows linearly with the
size of the ESN, and the total number ofmultiplications grows quadratically
and N > > 1, so the quadratic term dominates in the complexity.

The prediction accuracy is measured by the mean squared error
between freely running ESN and the corresponding 100 samples of the time
series (MG or Rössler). The parameters of the ESN under test are as below:

• N = 50⋯ 1000
• Connectivity ofW is 0.01
• Hyperparameter of the SR function α = 0.01
• SR noise amplitude σ = 0, 10−10, 10−8, 10−6

The result of this test is shown in Fig. 2, where each point represents a
mean value averaged over 1000 samples.

The “classical” ESN with sigmoid activation function is trained under
similar conditions. The linear regression problem for determining the
readout weights was performed using singular valuematrix decomposition.

The transfer function of an SR neuron depends on the number of ESN
evolution steps. The initial values (step 1) are normally distributed with
mean 0 and variance 1. The transfer function for steps 1, 10, 1000, and 3100
are shown in Fig. 3. Each neuron automatically converges into its transfer
function during the training procedure, allowing self-adjusting activation
functions indifferentparts ofESNusing the samenodedesign. For the lower
number of neurons, the performance of ESN-SR is better than the classical
approach with a sigmoid activation function. In particular, the SR method
reaches itsmaximumaccuracy atN = 200neuronswith an averaged error of
10−2.76. The number of multiplications per 1 step is
QSR

totalðN ¼ 200Þ ¼ 40800. For the classical sigmoid an error of 10−1.45 or
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Fig. 2 |Mean squared error (MSE) for artificial neural networks (ANNs) employing
sigmoid (sigmoid-ANN) or stochastic resonance (SR-ANN) nonlinear activation
functions and depending on the number of neurons.
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0.036 is achieved for a similarnumberofnodesQclassical
total ðN ¼ 200Þ ¼ 40600.

So we obtain 20 times more accurate results by using the ESN of the same
computational complexity. To achieve the same accuracy using the sigmoid
activation function, one needs to take N = 450 neurons leading to
Qclassical

total ðN ¼ 450Þ ¼ 203850 multiplications per 1 step. So, to achieve the
same accuracy using the classical sigmoid function, one needs to perform 5
times more multiplications and 2.5 times more nodes.

It should bementioned that themaximum accuracy achieved by using
the sigmoid function is slightly higher, but at the expense of much more
computational cost: the maximum accuracy of 10−3 is achieved at N = 700
neurons that require Qsigmoid

total ðN ¼ 700Þ ¼ 492100 multiplications per
1 step. So the best result is only 1.75 times better compared to the best SR
result, while it is achieved by using 12 times more multiplications.

We investigated how the noise amplitude σ affects the accuracy and
stability of the ESN, see Figs. 2 and 4. One can see that the low level of added
noise slightly improves the maximum accuracy and increases stability and
accuracy at a higher number of neurons by preventing overfitting. But even
slightly higher noise amplitude reduces the accuracy. We also investigated
the capability of predicting the continuation of the time series (MG or
Rössler) when training on noisy sequences. The training sequence was
corrupted by white Gaussian noise and fed into the ESN with the same
training procedure.

The dependence of theMSE (color-coded) on the number of neurons,
internal noise in the nonlinear activation function, and SNR of the training
sequence is shown in Fig. 4 showing the optimal internal SR noise level of
10−10 for SNRMG =∞, level of 10−9.5 for SNRMG = 40 dB, level of 10−9 for
SNRMG = 30 dB and level of 10−8 for SNRMG = 20dB.

Weused theSR functionwithσ= 10−10 andcompared itwith the classical
sigmoid function. Noise amplitudes in the training sequence σ corresponding
to SNR of 20, 30, and 40 dBwere chosen. Figure 5 shows how theMSE of the

first 100 predicted values depends on the number of neurons for different
nonlinearactivation functionsandvariousnoise levels in the trainingsequence.

The proposed method shows superior performance compared to the
classical approach in the case of the lower number of neurons and the same
performance for the higher number of neurons. In particular, in the case of
SNR= 20 dB, the prediction accuracy is as good as 0.01when the number of
neurons is as low as 100 in the case of SR. The use of the sigmoid function
provides 24 times less accurate results at this number of neurons. And this
accuracy is never achieved with the classical sigmoid function, even at a
higher number of neurons at this noise level in the training sequence.
Figure 6 shows how the best prediction accuracy across various numbers of
neurons depends on the SNR in the training sequencewhere shaded regions
depict one standard deviation interval calculated on 1000 runs.

As can be seen in Fig. 6a, while there is no statistically significant
difference between the performance of the ESN-SR and sigmoid systems on
MG for SNR> 25 dB, the latter outperforms the former in other regions,
especially when the number of nodes is the same (violet curve).

In the context of Rössler attractor series, as depicted in Fig. 6b, the
performance of the SR-ANN method remains consistently superior. Spe-
cifically, for SNR values below 25 dB, the SR-based approach exhibits
notably better accuracy compared to the sigmoid-based approaches, irre-
spective of the number of neurons used. These results highlight the
robustness of the SR-ANN method. This is particularly important for
training on experimental data, which is often subject to noise, suggesting
that SR-ANN might offer more reliable performance in practical scenarios
where noise is prevalent.

Discussion
On a general level, we would like to note that our approach is different from
the designing network through combining simple elements defined in the
corresponding mathematical theory. Instead, we build computing system
using the existing building block based on (relatively simple) physical sys-
tem. In this particular example, we used stochastic resonance, however, this
rather general approach can be applied to various physical systems and sub-
systems. We have shown that replacing the standard nonlinear function
with SR considerably increased the accuracy of the ESNwith fewer neurons
when trained on a Mackey-Glass series. The proposed approach requires
two times fewer neurons than the classical one to achieve an error of 0.0015:
the computational complexity, in this case, has decreased by a factor of 4.
Moreover, since noise is ubiquitous in any real implementation of an ESN, a
more realistic investigation requires considering the impact of noise intro-
duced to the system through the nonlinear activation node.Our simulations
show that ESN-SR outperforms the one with conventional nodes by a
margin that is dependent on the noise power. With a low noise level, the
accuracy of the ESN is slightly improved, and overfitting is notably reduced
for a larger number of neurons.When training on noisy data, the proposed
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Fig. 3 | Stochastic resonance transfer function for different moments of the echo
state network (ESN) evolution.

Fig. 4 | Prediction accuracy MSE100, dB (color-
coded) depending on stochastic resonance noise
level, number of neurons, and noise in the training
sequence.
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approach is considerably superior to the classical one in both accuracy and
computational complexity. When SNR = 40 dBm and with the same com-
putational complexity, ESN-SR achieves a 25x accuracy improvement
compared to the ESN-sigmoid. The classical approach requires more than
four times more calculations to deliver the same accuracy. This difference
becomes more prominent for noisier data: for SNR= 20 dB with the same
computational complexity, the best accuracy of the proposed method
achieved is 9.5 times better than the one with sigmoid nodes.

This indicates the capability of SR nodes to capture the underlying
relations between samples of the input andmanifesting memory properties
in various ANNs.

SR-basedneuronsperformbetter in certain scenarios due to theunique
properties of stochastic resonance that are leveraged in our network design.
SR is a phenomenonwhere adding noise to a nonlinear system enhances its
performance. This counterintuitive effect allows SR-based neurons tomake
positive use of noise, thus improving overall network performance. In tra-
ditional neural networks, performance of static nonlinear activation func-
tions is often negatively affected by noise in the data. In contrast, SR-based
neurons employ a dynamical system with bi-stable features that make
positive use of noise, converting it into a beneficial element rather than a
detrimental one. This is particularly advantageous in real-world applica-
tions where data is often imperfect and noisy.

We believe that the proposed idea of using a model (or, indeed, physical
systems) governed by stochastic ordinary differential equations can be applied
to a range of ANNs and can be generalized to different tasks. In particular, the
proposed concept is compatible with high-bandwidth optical analog ANNs
and reservoirs, offering potential solutions for high-speed parallel signal
processing and reduction inpower consumption inphysical implementations.

Methods
We used the classical training procedure to train the designed ESN as
described in ref. 31. This procedure is as follows:

1. Feed the first 3000 elements of the time series (MG or Rössler) into the
output neuron of the ESN. The feeding is the following procedure:

ynþ1 ¼ qnþ1

xnþ1 ¼ f ðWxn þWbackynÞ
ð17Þ

During this, the ESN must start “echoing” the fed signal: after some tran-
sitional period, the values of internal weights x start to show some variations
of the fed signal.
2. Use the last 2000 internal states to train the output weights so at each

step, the product of the output weights matrix and the internal state
vector gives the corresponding output value:

Wout ¼ argmin
Wout

X
jXWout � yj2 ð18Þ

Here X is a matrix composed of the last 2000 internal states x.Wout can be
determined by finding the minimum norm least-squares solution to the
linear equation.

Then the training sequence is disconnected from theESN, and theESN
runs freely. The next several output values the freely running ESN produces
are compared to the true values produced by the MG equation.
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Data availability
The data that supports the findings of this study is available from the
corresponding author upon reasonable request.

Code availability
Code for implementing the SRneurons, ESN, and its training and validation
algorithms are available from the corresponding author upon reasonable
request.

Received: 22 May 2024; Accepted: 30 October 2024;

References
1. Goodfellow, I., Bengio, Y. & Courville, A. Deep learning (MIT Press,

2016).
2. LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521,

436–444 (2015).
3. Brownlee, J. Better deep learning: train faster, reduce overfitting, and

make better predictions (Machine Learning Mastery, 2018).
4. Hornik, K., Stinchcombe, M. & White, H. Multilayer feedforward

networks are universal approximators. Neural Netw. 2, 359–366
(1989).

5. Liu, Z. et al. Kan: Kolmogorov-arnold networks (2024). 2404.19756.
6. Kolmogorov, A. On the representation of continuous functions of

several variables by superpositions of continuous functions of a
smaller number of variables. Dokl. SSSR 108, 179–182 (1956).

7. Arnold, V. On the representation of functions of several variables as a
superposition of functions of a smaller numberof variables, In thebook
“CollectedWorks: Representations of Functions, Celestial Mechanics
and KAM Theory, 1957–1965”, 25–46 (Springer Berlin Heidelberg,
2009).

8. Karniadakis, G. E. et al. Physics-informedmachine learning.Nat. Rev.
Phys. 3, 422–440 (2021).

9. Wright, L. G. et al. Deep physical neural networks trained with
backpropagation. Nature 601, 549–555 (2022).

10. Li, M., İrsoy, O., Cardie, C. & Xing, H. G. Physics-inspired neural
networks for efficient device compact modeling. IEEE J. Exploratory
Solid-State Comput. Devices Circ. 2, 44–49 (2016).

11. Kutz, J. N. & Brunton, S. L. Parsimony as the ultimate regularizer for
physics-informed machine learning. Nonlinear Dyn. 107, 1801–1817
(2022).

12. Pagnier, L. &Chertkov,M. Physics-informedgraphical neural network
for parameter & state estimations in power systems. arXiv preprint
arXiv:2102.06349 (2021).

13. Draghici, S. Neural networks in analog hardware—design and
implementation issues. Int. J. Neural Syst. 10, 19–42 (2000).

14. Semenova,N. et al. Fundamental aspectsof noise in analog-hardware
neural networks. Chaos: An Interdiscip. J. Nonlinear Sci. 29 (2019).

15. Zhou, C., Kadambi, P., Mattina, M. & Whatmough, P. N. Noisy
machines: Understanding noisy neural networks and enhancing
robustness to analog hardware errors using distillation. arXiv preprint
arXiv:2001.04974 (2020).

16. Semenova, N., Larger, L. & Brunner, D. Understanding andmitigating
noise in trained deep neural networks. Neural Netw. 146, 151–160
(2022).

17. Gammaitoni, L., Hänggi, P., Jung, P. & Marchesoni, F. Stochastic
resonance. Rev. Mod. Phys. 70, 223 (1998).

18. Dodda, A. et al. Stochastic resonance in MoS2 photodetector. Nat.
Commun. 11, 4406 (2020).

19. Singh, K. P., Ropars, G., Brunel, M., Bretenaker, F. & Le Floch, A.
Stochastic resonances in an optical two-order parameter vectorial
system. Phys. Rev. Lett. 87, 213901 (2001).

20. He, D., Chen, X., Pei, L., Jiang, L. & Yu, W. Improvement of noise
uncertainty and signal-to-noise ratio wall in spectrum sensing based
on optimal stochastic resonance. Sensors 19, 841 (2019).

21. Abbaspour, H., Trebaol, S., Morier-Genoud, F., Portella-Oberli, M. &
Deveaud, B. Stochastic resonance in collective exciton-polariton
excitations inside a GaAs microcavity. Phys. Rev. Lett. 113, 057401
(2014).

22. Monifi, F. et al. Optomechanically induced stochastic resonance and
chaos transfer between optical fields. Nat. Photonics 10, 399–405
(2016).

23. Venstra,W. J.,Westra,H. J. &VanDerZant,H. S.Stochastic switching
of cantilever motion. Nat. Commun. 4, 2624 (2013).

24. Wagner, T. et al. Quantum stochastic resonance in an AC-driven
single-electron quantum dot. Nat. Phys. 15, 330–334 (2019).

25. Faisal, A. A., Selen, L. P. &Wolpert, D.M.Noise in the nervous system.
Nat. Rev. Neurosci. 9, 292–303 (2008).

26. Bene, L., Bagdány,M. &Damjanovich, L. T-cell receptor is a threshold
detector: sub-and supra-threshold stochastic resonance in TCR-
MHC clusters on the cell surface. Entropy 24, 389 (2022).

27. Allen, K. M., Salles, A., Park, S., Elhilali, M. & Moss, C. F. Effect of
background clutter on neural discrimination in the bat auditory
midbrain. J. Neurophysiol. 126, 1772–1782 (2021).

28. Liao, Z., Wang, Z., Yamahara, H. & Tabata, H. Echo state network
activation function based on bistable stochastic resonance. Chaos
Solitons Fractals 153, 111503 (2021).

29. Liao, Z., Wang, Z., Yamahara, H. & Tabata, H. Low-power-
consumption physical reservoir computing model based on
overdampedbistable stochastic resonancesystem.Neurocomputing
468, 137–147 (2022).

30. Shi, Z., Liao, Z. & Tabata, H. Enhancing performance of convolutional
neural network-based epileptic electroencephalogram diagnosis by
asymmetric stochastic resonance. IEEE J. Biomed. Health Inform. 27,
4228–4239 (2023).

31. Jaeger, H. & Haas, H. Harnessing nonlinearity: predicting chaotic
systems and saving energy in wireless communication. Science 304,
78–80 (2004).

32. Harikrishnan, N. B. &Nagaraj, N.Whennoisemeets chaos: stochastic
resonance in neurochaos learning. Neural Netw. 143, 425–435
(2021).

33. Anishchenko, V. S., Neiman, A. B., Moss, F. & Shimansky-Geier, L.
Stochastic resonance: noise-enhanced order. Phys. Uspekhi 42, 7
(1999).

34. Harmer, G. P., Davis, B. R. & Abbott, D. A review of stochastic
resonance: circuits andmeasurement. IEEE Trans. Instrum.Meas. 51,
299–309 (2002).

35. Soriano,M. C., García-Ojalvo, J., Mirasso, C. R. & Fischer, I. Complex
photonics: dynamics and applications of delay-coupled
semiconductors lasers. Rev. Mod. Phys. 85, 421 (2013).

36. Balakrishnan, H. N., Kathpalia, A., Saha, S. & Nagaraj, N. Chaosnet: a
chaos based artificial neural network architecture for classification.
Chaos: An Interdiscip. J. Nonlinear Sci. 29 (2019).

37. Mingesz, R., Gingl, Z. & Makra, P. Marked signal improvement by
stochastic resonance for aperiodic signals in the double-well system.
Eur. Phys. J. B-Condens. Matter Complex Syst. 50, 339–344
(2006).

Acknowledgements
This work was supported by the EU ITN project POST-DIGITAL and the
EPSRC project TRANSNET.

Author contributions
Aston Institute of Photonic Technologies, Aston University, Birmingham B4
7ET,UKEM(correspondingauthor)wrote thecodeandanalyzed thedata,E.
M., D. A. R., M. K. K., and S. K. T., wrote the article, S. K. T., conceived the
research.

Competing interests
The authors declare no competing interests.

https://doi.org/10.1038/s44172-024-00314-0 Article

Communications Engineering | (2024)3:169 6

www.nature.com/commseng


Additional information
Correspondence and requests for materials should be addressed to
Egor Manuylovich.

Peer review information Communications Engineering thanks Natalia
Berloff and the other, anonymous, reviewer for their contribution to the peer
review of this work. Primary Handling Editors: [Rosamund Daw and Saleem
Denholme].

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’snoteSpringerNature remainsneutralwith regard to jurisdictional
claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in anymedium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the
article’sCreativeCommons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2024

https://doi.org/10.1038/s44172-024-00314-0 Article

Communications Engineering | (2024)3:169 7

http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
www.nature.com/commseng

	Robust neural networks using stochastic resonance neurons
	Results
	Discussion
	Methods
	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




