
Lasers in Surgery and Medicine

BASIC SCIENCE ARTICLE OPEN ACCESS

In Vivo Time‐Resolved Fluorescence Detection of Liver
Cancer Supported by Machine Learning
Elena V. Potapova1 | Valery V. Shupletsov1 | Viktor V. Dremin1,2 | Evgenii A. Zherebtsov3 |
Andrian V. Mamoshin1,4 | Andrey V. Dunaev1

1Research & Development Center of Biomedical Photonics, Orel State University, Orel, Russia | 2College of Engineering and Physical Sciences, Aston

University, Birmingham, UK | 3Optoelectronics and Measurement Techniques Unit, University of Oulu, Oulu, Finland | 4Orel Regional Clinical Hospital,

Orel, Russia

Correspondence: Viktor V. Dremin (v.dremin1@aston.ac.uk)

Received: 22 May 2024 | Revised: 23 October 2024 | Accepted: 4 November 2024

Funding: This research was supported by Russian Science Foundation (Grant Number 21‐15‐00325).

Keywords: liver cancer | machine learning | optical biopsy | percutaneous needle biopsy | time‐resolved fluorescence

ABSTRACT
Objectives: One of the widely used optical biopsy methods for monitoring cellular and tissue metabolism is time‐resolved
fluorescence. The use of this method in optical liver biopsy has a high potential for studying the shift in energy‐type production
from oxidative phosphorylation to glycolysis and changes in the antioxidant defense of malignant cells. On the other hand,

machine learning methods have proven to be an excellent solution to classification problems in medical practice, including

biomedical optics. We aim to combine time‐resolved fluorescence measurements and machine learning to automate the division

of liver parenchyma and tumors (primary malignant, metastases and benign tumors) into classes.

Materials and Methods: An optical biopsy was performed using a developed setup with a fine‐needle optical probe in clinical

conditions under ultrasound control. Fluorescence decays were recorded in a conditionally healthy liver and lesions during

percutaneous needle biopsy. The labeled data set was created on the basis of the recorded fluorescence results and the

histopathological classification of the biopsies obtained. Several machine learning methods were trained using different sep-

aration strategies of the training test set, and their respective accuracy was compared.

Results: Our results show that each of the tumor types had its own characteristic metabolic shifts recorded by the time‐resolved
fluorescence spectroscopy. The application of machine learning demonstrates a reliable separation of the liver and all tumor

types into cancer and noncancer classes with sensitivity, specificity and corresponding accuracy greater than 0.91, 0.79 and 0.90,

using the random forest method. We also show that our method is capable of giving a preliminary diagnosis of the type of liver

tumor (primary malignant, metastases and benign tumors) with a sensitivity, specificity and accuracy of at least 0.80, 0.95

and 0.90.

Conclusions: These promising results highlight its potential as a key tool in the future development of diagnostic and

therapeutic strategies for liver cancers. Lasers Surg. Med. 00:00–00, 2024. 2024 Wiley Periodicals LLC.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly

cited.
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1 | Introduction

Liver cancer is one of the most fatal cancers, and the liver is a
common site for metastasis of extrahepatic tumors [1]. Differ-
entiation of primary liver cancer from metastases is important
for the selection of treatment strategies such as hepatectomy,
liver transplantation, systemic treatment, as well as alternative
treatment methods, including cryoablation, radiofrequency
ablation, laser ablation, and so forth [2–4]. When examining
patients with chronic liver disease and suspicion of liver cancer,
preference is given to visualization methods including ultra-
sound (US), computed tomography (CT), magnetic resonance
imaging (MRI), positron emission tomography (PET) and
angiography [5, 6]. At the same time, the diagnostic effective-
ness of these methods depends on the size of the tumor, its
morphological characteristics, as well as on the diseases and
conditions of the liver [7]. Since the success of liver cancer
treatment depends on the early diagnosis of this disease, in
most cases, patients are referred for a biopsy [8]. Percutaneous
needle biopsy (PNB) of the liver is usually considered a mini-
mally invasive and safe procedure [9]. PNB provides diagnostic
information on oncology disorders (the presence of invasion,
histological type of tumor, etc.), which is of primary importance
in determining the treatment strategy in each clinical case and
plays a critical role in the transition to personalized medicine.
One of the problems in the PNB is the high probability of taking
samples with a nondiagnostic value for cytology or histo-
pathology. As the information content of the sample increases,
the benefits of PNB can change the current balance between the
risk and benefits of this procedure [10].

Currently, there is an active search for ways to improve the
diagnostic effectiveness of PNB. One technique to confirm the
location of the intraprocedural lesion is to use optical detection
of Indocyanine Green (ICG) fluorescence accumulated in
tumors [11]. To achieve robust results, a significant amount of
fluorescence contrast should be administered intravenously to
the patient, which is preferably avoided. However, living cells
have intrinsic endogenous fluorescence that alternates accord-
ing to the metabolic state of the tissue. Our team (Research &
Development Center of Biomedical Photonics, Orel State Uni-
versity, Orel, Russia) seeks to solve the problem of increasing
the sensitivity and specificity of the diagnosis of liver tumor
during PNB. Two systems have been proposed that employ
spectral and lifetime fluorescent characteristics of the tissue to
distinguish liver lesions from parenchyma [12, 13]. The deve-
loped optical PNB system [14], including fluorescence and dif-
fuse reflectance spectroscopy measurements, allowed
monitoring of metabolic and morphological changes in tissues
[15, 16]. The use of this system during PNB allowed us to obtain
high sensitivity and specificity of differentiation between nor-
mal and pathological liver tissues [12]. This approach allows
one to obtain information before the tissue sample is taken,
making it possible to significantly reduce the number of false‐
negative biopsies. Later, we proposed an optical PNB system
that includes the time‐resolved fluorescence (TRF) spectroscopy
technique. We presented novel results of TRF measurements in
hepatocellular carcinoma (HCC) and healthy liver tissues
obtained in a murine model and in the context of limited
clinical trials [13]. The proposed classification algorithm allows
us to reliably distinguish HCC, healthy liver tissue and the

metabolically changed liver tissues around the tumor with high
sensitivity and specificity, benefiting from the on‐the‐site
characterization of the tissue on the tip of the optical needle
probe before the sample is taken. This study is a continuation of
the introduction of needle optical biopsy into clinical practice.
Here, we consider an expanded sample of patients and explore
the possibilities of various advanced machine learning (ML)
methods for data classification.

The use of artificial intelligence in medicine contributes to a
more accurate diagnosis to satisfy the requirements for per-
sonalized treatment. ML and deep learning approaches provide
an advantage due to their potential to expand the use of massive
multiparametric data, including optical data [17–19] to extract
meaningful information about clinical diagnosis and patient
treatment decisions. A complete review of the use of artificial
intelligence in the clinical diagnosis of primary liver cancer and
metastases was recently published by Bakrania et al. [20]. The
diagnosis of liver tumors is based on the analysis of multi-
dimensional clinical and pathological data, as well as CT, MRI,
PET and a data set of ultrasound images. One of the promising
applications of ML is PNB. Lee et al. developed an ML approach
to the analysis of data obtained by thyroid fine‐needle aspiration
biopsy (FNAB) [21]. As initial data for the classification of
benign or malignant human thyroid nodules, clusters of thyroid
cells obtained by thyroid FNAB were used. Optical biopsy gives
great advantages in obtaining diagnostic information from
biological tissue directly during minimally invasive surgery.
Previously, we demonstrated that various ML algorithms,
together with in vivo fluorescence and diffuse reflectance
measurements, provide high diagnostic efficiency for binary
differentiation between cancerous and healthy tissues [12, 13,
22]. However, the use of TRF, which has a high sensitivity to
metabolic shifts in biological tissues [23–27], could possibly be
extended beyond binary classification. The shift in the energy‐
type production from oxidative phosphorylation to glycolysis in
malignant cells, as well as changes in their antioxidant defense
mechanisms, can be effectively detected by analyzing the fluo-
rescence lifetime profile of NADH and NADPH components
[26]. We suggest that the reprogrammed metabolism of various
types of liver tumors can be registered with a TRF and this may
become the basis for the in vivo differentiation of various types
of liver cancer.

2 | Methods and Materials

2.1 | Time‐Resolved Fluorescence Optical Biopsy
System

In this work, we used the TRF channel of a multimodal setup
and an original needle optical probe described earlier [12, 13].
The structural scheme of the TRF system and the measurement
procedure are shown in Figure 1. The laser source BDS‐SM‐
375‐FBC‐101 (B&H, Germany) was used for the fluorescence
excitation at a wavelength of 375 nm. At this excitation, fluo-
rescence is dominated by NAD(P)H emission. Hybrid photo-
detector HPM‐100‐40 (B&H, Germany) with a spectral
sensitivity range of 250–720 nm and quantum efficiency of 45%
(for 500 nm) was used for the photon counting. Band‐pass filter
MF445‐45 (ThorLabs, USA) was used for the selection of the
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fluorescence emission for the recording channel. The optical
power of UV radiation after the optical fiber was 0.2 mW. The
exposure time for measuring one spectrum was 1 s. To vali-
date the data obtained using the TRF optical biopsy system
and the original needle optical probe, we recorded the fluo-
rescence decay curves from fresh solutions of NADH, diluted in
concentrations matching their possible concentrations in a liv-
ing cell [13].

The fluorescence decay curve recorded at all points was satis-
factorily described using a nonlinear least squares fitting algo-
rithm to a two‐exponential decay model: I(t)=Inoise+ I0 [α1 exp
(−t/τ1) + α2 exp (−t/τ2)], where I(t) is signal intensity at time
after the excitation light has ceased, counts; τ1 and τ2 are the
fluorophore lifetimes, ps (τ1 is the short lifetime component and
τ2 is the long lifetime component); α1 and α2 are the relative
contributions of the lifetime components, % (i.e. α1 + α2 =
100%), and Inoise accounts for constant background signal,
counts. A good fit is characterized by a χ2 value close to 1 and
residuals showing no noticeable systematic variations.

2.2 | Clinical Study

The clinical study was conducted at the Department of Inter-
ventional Radiology of Orel Regional Clinical Hospital (Orel,
Russia). The main stages of the protocol for optical PNB of the
liver were as described by Dremin et al. [28]. The study was
approved by the Ethics Committee of Orel State University and
was carried out in accordance with the 2013 Declaration of
Helsinki by the World Medical Association. The study included
patients who had been recommended for a liver biopsy and
agreed to participate. They signed an informed consent form
before taking part in the study. Patients with cognitive deficits,
psychiatric conditions, and various acute decompensated dis-
eases were excluded from the study. The average age of 25
patients was 65 years (range from 51 to 85 years). The study
included 9 men (36%) and 16 women (64%). The studies were
conducted between 09/2022 and 01/2024. The results of con-
ventional PNB and histopathological examination of the tar-
geted tissue revealed 25 malignancies, of which 6 were classified
as primary liver cancer – HCC, 6 as benign tumor (BT), and 13
as metastases (MTS). In this study of the informative material

from biopsy punctures, it was sufficient in all 25 cases, and we
accepted the results of the histopathological examination as
100% effective. The surgeon identified the liver lesion by
ultrasound examination. The optical probe was inserted into the
biopsy needle to reach the target point, and TRF measurements
were performed along the needle tract. In each patient, intact
liver tissue was first measured at 1–3 points (10 spectra were
recorded at each point). The biopsy needle then penetrates
deeper into the affected liver tissue, where 1–3 points are also
measured (10 spectra at each point). The number of points for
each patient is individually selected and depends on the nature
of the lesion. Then, using the same needle, a biopsy of the lesion
was performed at 2–4 points, taking a column of tissue.

Furthermore, after this stage of study and the development of
the classifier, 2 additional patients (a 56‐year‐old man and a
74‐year‐old woman) were examined, in whom a histopatho-
logical examination identified a liver tumor as metastases.

2.3 | Ml Model Development

The classification algorithm can be divided into two main
components: data preparation and application of ML algorithms
(Figure 2). The data preparation for all the ML methods used
was the same. The first step reduces dimensionality and ex-
cludes features that have a negligible impact on further learn-
ing. Thus, the algorithm starts by examining the variance of
each feature in the data set. Features with low variance ( < 1)
are excluded from further analysis. The algorithm then evalu-
ates the Pearson correlations between all pairs of features.
Features with significant correlation ( > 0.7) are excluded, as
they can introduce redundancy and potentially distort the
learning process.

At this stage, one parameter was excluded–the relative contri-
butions of the short lifetime component (α1). With the equiva-
lent contribution of components α1 and α2 to the classification
efficiency, preference was given to the α2 parameter. This is
because the quantum yield of NADH increases by an order of
magnitude upon binding to enzymes, and this parameter can
provide more physiological information when building classi-
fiers [29, 30]. Also, in our previous work, we demonstrated the

FIGURE 1 | TRF optical biopsy system: (a) structural scheme of the system; (b) principle of TRF measurements during the standard PNB

procedure of the liver.
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highest diagnostic significance of this parameter for differenti-
ating murine liver from HCC tumors [13]. Next, principal
component analysis (PCA) was applied to the remaining 4
features to potentially reduce dimensionality while preserving
the maximum amount of information. This transforms the
original features into a new set of uncorrelated variables called
principal components. The principal components are ordered
by the amount of variance they explain, allowing the most
informative components to be selected. All 4 parameters explain
the total variance equally (∼25%). Therefore, after completion of
the data preparation part, 4 parameters were selected for ML:
fluorescence intensity (If), the relative contributions of the long
lifetime component (α2), short fluorescence lifetime (τ1), long
fluorescence lifetime (τ2). The selected parameters were the
final input to the ML model.

To train and evaluate our models, we used data partitioning,
with 80% data for training and 20% for testing. This separation
allowed us to train the models on a significant amount of data
and independently evaluate their performance. During the
training phase, the algorithm spent 10 epochs randomly mixing
the data into training and test sets. This iterative process
allowed the models to learn from the data and improve their
predictive capabilities. It should be noted here that spectra from
one patient can appear in both the test and training sets. But in
our case, it should not lead to data leakage because spectra
within one sample are different from each other. As we men-
tioned above, this is due to the measurement of parameters
along the biopsy needle tract.

The developed model utilizes random forest (RF), support
vector machine (SVM), and logistic regression (LR) methods,
which are the most commonly used to solve similar problems.

In our model, the RF ML method uses bootstrap aggregation,
also known as bagging, to build an ensemble of decision trees.
Using the bootstrap method, subsets of the original training
sample are randomly selected (100 estimators) with repetitions.
For each subset of training data, a decision tree is constructed,
which is trained independently and uses only some randomly

selected features from the total feature set. In an RF, a decision
is made by aggregating the average of the decisions of all trees.
Thus, the classification result is obtained by combining the
predictions of all trees.

The second ML method we used was the support vector clas-
sifier (SVC), which is a variation of SVM and allowed us to deal
with nonlinear data. It transforms the original data space into a
new, higher‐dimensional one where the data become linearly
separable. SVC then applies the SVM method to the new spatial
data. In the algorithm developed, the first step is data prepa-
ration, which includes feature scaling and splitting the data into
training and test samples. Then, an SVC model with a poly-
nomial kernel is created which is trained on the training sam-
ple. During training, SVC finds the optimal hyperplane to
maximize the class gap.

As the third ML method, we used the LR method, which is
based on a logistic function to predict the probability that an
object belongs to a certain class. This method is based on linear
regression, but uses a sigmoid function, also known as a logistic
function, to obtain class probabilities. In our approach, the
model was trained on a training sample where the coefficients
of the linear combination of features were adjusted using the
maximum likelihood method. Once trained, the model was
used to classify new data by predicting the probability of
belonging to each class.

In this paper, we used binary (liver/tumor) and multi‐class (BT/
MTS/HCC) classification models. For binary classification, the
two classes were compared with each other, namely BT
(n= 120)/liver (n= 110), HCC (n= 129)/liver (n= 97) and MTS
(n= 310)/liver (n= 225), calculating the evaluation metrics for
each pair. For multi‐class classification, 3 tumor types were
compared with each other, namely BT (n= 120)/HCC
(n= 129)/MTS (n= 310), calculating evaluation metrics for
each class.

To assess the performance of each model, we employed several
evaluation metrics (see Figure 2). The ROC‐curve illustrates the

FIGURE 2 | Schematic description of the training and testing process, including feature selection, different classifiers, and performance

assessment.
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trade‐off between the true positive rate and the false positive
rate at various classification thresholds. This provides infor-
mation on the discriminatory power and performance of the
model. The AUC metric quantifies the overall performance of
the model by measuring the area under the ROC‐curve. A
higher AUC value indicates better discriminative ability and
model performance. The F‐score combines precision and recall
to measure the accuracy of the model in binary classification
tasks. This provides a balanced assessment of the model's per-
formance. Accuracy represents the ratio of correctly classified
instances to the total number of instances. It provides a general
overview of the model's predictive accuracy. Sensitivity, also
known as the recall or true positive rate, measures the model's
ability to classify positive instances correctly. Specificity quan-
tifies the model's ability to classify negative instances correctly.

3 | Results and Discussion

Figure 3a shows representative traces of fluorescence decay
curves registered in the liver parenchyma, as well as the applied
two‐exponential fitting decay model adequately describing the
process. χ2 values obtained from the fitting of the decay curves
are shown in Figure 3b. Here, and further, the graphs and text

provide information on the average and standard error (SE) of
the values analyzed. The results of TRF obtained in this clinical
study (see Figure 4) are largely consistent with the preclinical
research on liver tumors using the TRF method we previously
described [13].

The fluorescence intensity If measured in the malignant tumor
was higher than in the liver tissues (Figure 4a): liver/HCC
(0.91·106 ± 0.09·106 counts and 1.80·106 ± 0.01·106 counts cor-
respondingly, p< 0.001); liver/MTS (1.01·106 ± 0.04·106 counts
and 1.42·106 ± 0.63·106 counts correspondingly, p< 0.001). This
can be explained by a significant shift in tumor metabolism,
that is, the general accumulation of NAD(P)H. If we talk about
primary liver cancer (HCC), the hypothesis of a shift in cellular
metabolism toward glycolysis and/or lower mitochondrial res-
piration is confirmed by the decrease in protein‐bound NAD(P)
H lifetime τ2 in HCC, compared to the liver parenchyma
(2585 ± 6 ps and 2632 ± 10 ps, respectively, p< 0.01, Figure 4d)
and the decrease the relative contributions of the long lifetime
component α2 (HCC [34.59% ± 0.29%], liver parenchyma
[36.65% ± 0.55%], p< 0.05, Figure 4b). In a typical case, if other
metabolic pathways do not have a significant effect, a change in
the ratio of the relative contributions of free and bound forms is
observed due to a change in the balance between glycolysis and

FIGURE 3 | Relevant traces of fluorescence decay recorded by the TRF setup through the needle optical probe in the liver: (a) a biexponential

decay model adequately describing the fluorescence decay with instrumental responding function (IRF); (b) χ2‐values obtained in the fitting.

FIGURE 4 | Parameters evaluated by the fluorescence lifetime measurements through the needle optical probe: (a) total fluorescence intensity If;

(b) the amplitude of the long decay component, α2; (c) short fluorescence lifetime, τ1; (d) long fluorescence lifetime, τ2. * – p< 0.05; ** – p< 0.01;

*** – p< 0.001. A Mann–Whitney U‐test was used to identify differences between the groups.
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oxidative phosphorylation [31]. These data confirm previously
obtained results about metabolic remodeling in HCC involving
a significant increase in glycolysis over mitochondrial oxidative
phosphorylation [26, 32, 33].

The TRF results obtained for the group of patients with MTS
showed an increase in the relative contributions of the long lifetime
component α2 in MTS (33.63%±0.19%) relative to the liver
parenchyma (32.91± 0.34%), p<0.05, Figure 4b. At the same time,
we observed an increased lifetime in MTS of the long lifetime τ2
(MTS vs. liver: 2552± 4 ps vs. 2533± 7 ps, p<0.001, Figure 4d).
This allows us to assume that metabolism in MTS does not have a
predominant glycolytic pathway and may be due to other ways of
metabolic rearrangement. Metabolic stress inevitably causes ROS‐
mediated oxidative stress, even under hypoxic conditions, which
makes NAD(P)H homeostasis critical for cell survival [34]. Protein‐
bound NAD(P)H has a longer lifetime and may explain the results
observed. This hypothesis requires additional verification. Fur-
thermore, the studied group of patients with MTS had different
primary tumors, as well as different differentiation of the tumors
themselves in histological samples. This also requires an additional
data set and may form the basis for the development of MTS
differentiation technology in the future.

In the group of patients with benign liver tumor (BT), the differ-
ence in fluorescence intensity and short lifetime τ1 did not reach
statistical significance (Figure 4a,c). According to 18‐Fluoro‐
2‐deoxyglucose‐positron emission tomography/computed tomog-
raphy, in most benign tumors and nontumorous lesions, there are
no changes in the cellular metabolism of glucose [35]. A decrease
in long lifetime τ2 in BT 2569± 10 ps compared to 2659± 10 ps in
the liver (p<0.001, Figure 4d) and the relative contributions of the
long lifetime component α2 in BT (33.64%± 0.29%) regarding liver
tissue (35.26%± 0.39%) (p<0.001, Figure 4b) may indirectly indi-
cate that these types of tumor also have metabolic rearrangements,
but this requires additional research.

We tested the classification efficiency under the linear combi-
nation of features using linear discriminant analysis (LDA). The
results are presented in Table 1. The parameters α2 and τ2 were
chosen as having the highest classification ability according to
(Figure 4b and Figure 4d). The table summarizes the results for
sensitivity, specificity, accuracy, and F‐score. The results are
presented as a mean value ± standard deviation. The calculated
accuracies were small for reliable clinical use, which confirms
the need for more complex ML methods.

In the first stage of the ML application, we developed a classifier to
differentiate the liver parenchyma from various types of tumors. For
this binary classification, we compared a set of spectra of patients

with one histologically confirmed diagnosis and a set of liver spectra
of the same patients. Here, it is worth noting that the accuracy
values for the training sample for all classification pairs were high
values, at least 0.98. Table 2 summarizes the results that we
achieved from 10 statistical experiments where the data used for
training and testing were randomly shuffled each time.

From all considered values of accuracy, the RF algorithm for
the TRF data provides the best performance for the differenti-
ation of the liver parenchyma and all types of tumors
(0.90–0.92). At the same time, the best values of sensitivity and
specificity of the developed classifier are observed to separate
the classes of liver parenchyma and benign tumor–BT
(0.97 ± 0.04 and 0.87 ± 0.05), as well as liver parenchyma and
primary liver tumor–HCC (0.97 ± 0.03 and 0.81 ± 0.06). This is
also confirmed by the high values of the F‐score metric
(0.91 ± 0.03). The lower values of the diagnostic efficiency
metrics of the developed classifier for groups of liver paren-
chyma and MTS can be explained by a large number of different
types of MTS in this group of patients. The ROC‐curves to assess
the effectiveness of the classifier are shown in Figure 5.

We also performed experiments with an RF algorithm to clas-
sify tumor types in vivo on the basis of TRF measurement. The
parameters of the obtained model are summarized in Table 3.
In this classification algorithm, each tumor type is compared
with two other types. Accordingly, the presented accuracy val-
ues show the algorithm's ability to distinguish a specific type of
tumor from two other types. The task of classifying tumors into
different groups was more difficult, but diagnostic accuracy
metrics reached high values for all types of cancer: 0.90–0.95.
The detection of HCC with the most pronounced and
unequivocal shifts in tissue metabolism registered by the TRF
method has the highest sensitivity (0.91 ± 0.08) and specificity
(0.96 ± 0.02) in the classification of tumor types.

After the algorithm was developed, two patients with suspected
liver tumors were admitted to the clinic. They also underwent an
optical biopsy procedure with registration and analysis of TRF sig-
nals. The classifier we developed showed that for the patients, the
probability of an MTS diagnosis was 80%. This diagnosis was later
confirmed by the results of the histopathological examination,
which showed that the diagnoses were indeed accurate.

Despite the achievements in improving multiphase CT or MRI
methods, the diagnosis of liver cancer cannot be confirmed by
imaging methods in some patients (e.g., without cirrhosis of the
liver), despite the enhanced brightness in radiology tests and
liver biopsy is required in these cases. Over the past decade,
breakthroughs in artificial intelligence have inspired

TABLE 1 | The results of the LDA classification.

BT/Liver HCC/Liver MTS/Liver

Se: 0.84 ± 0.10 Se: 0.76 ± 0.08 Se: 0.76 ± 0.04

Sp: 0.76 ± 0.14 Sp: 0.71 ± 0.12 Sp: 0.61 ± 0.05

Acc: 0.79 ± 0.06 Acc: 0.74 ± 0.05 Acc: 0.70 ± 0.03

F‐score: 0.80 ± 0.06 F‐score: 0.76 ± 0.04 F‐score: 0.74 ± 0.03

AUC: 0.82 ± 0.07 AUC: 0.73 ± 0.08 AUC: 0.72 ± 0.03

Abbreviations: Acc, accuracy; F‐score, measure of predictive performance; AUC, area under the curve; Se, sensitivity; Sp, specificity.
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researchers to develop algorithms for the diagnosis of liver
cancer. The technology of optical biopsy data processing
with ML, developed by us, is as accurate in diagnostics as the
proposed algorithms for processing PET, MRI, CT, US imaging,
and histology data [20]. In this paper, we have shown that our
proposed TRF‐based classification of liver cancer supported
by ML technology not only allows a solution to the important
problem of choosing the biopsy sampling site when performing
PNB but also can immediately give a preliminary diagnosis of
the benign or malignant nature of the tumor, as well as its
origin (primary tumor or metastases). It is also worth noting
that there are other optical biopsy methods that have a high

diagnostic potential. To date, experience has accumulated in
creating devices for fine needle biopsy based on Raman spec-
troscopy [36], OCT [37–39], fluorescence spectroscopy [40, 41],
diffuse reflectance spectroscopy [42, 43]. But at the moment,
these methods have not been used to solve the problem of
classifying different types of tumors.

4 | Conclusion

This study provided a comprehensive analysis of fluorescence
decay curves in liver tumors and liver parenchyma, with

TABLE 2 | The results of the differentiation of liver parenchyma and different types of tumor.

BT/Liver HCC/Liver MTS/Liver

SVM Se: 0.40 ± 0.22 Se: 0.75 ± 0.08 Se: 0.80 ± 0.07

Sp: 0.72 ± 0.28 Sp: 0.61 ± 0.14 Sp: 0.31 ± 0.07

Acc: 0.53 ± 0.07 Acc: 0.68 ± 0.09 Acc: 0.60 ± 0.03

F‐score: 0.45 ± 0.11 F‐score: 0.72 ± 0.08 F‐score: 0.71 ± 0.03

AUC:0.47 ± 0.13 AUC: 0.73 ± 0.09 AUC: 0.67 ± 0.05

LR Se: 0.60 ± 0.23 Se: 0.65 ± 0.09 Se: 0.69 ± 0.10

Sp: 0.58 ± 0.18 Sp: 0.56 ± 0.14 Sp: 0.47 ± 0.07

Acc: 0.57 ± 0.07 Acc: 0.60 ± 0.08 Acc: 0.60 ± 0.04

F‐score: 0.57 ± 0.14 F‐score: 0.64 ± 0.08 F‐score: 0.67 ± 0.04

AUC: 0.64 ± 0.11 AUC: 0.68 ± 0.12 AUC: 0.64 ± 0.05

RF Se: 0.97 ± 0.04 Se: 0.97 ± 0.03 Se: 0.94 ± 0.04

Sp: 0.87 ± 0.05 Sp: 0.81 ± 0.06 Sp: 0.84 ± 0.05

Acc: 0.92 ± 0.03 Acc: 0.90 ± 0.03 Acc: 0.90 ± 0.03

F‐score: 0.93 ± 0.03 F‐score: 0.91 ± 0.03 F‐score: 0.92 ± 0.02

AUC: 0.99 ± 0.02 AUC: 0.98 ± 0.01 AUC: 0.98 ± 0.01

FIGURE 5 | ROC‐curves for assessing the effectiveness of RF‐based classifiers: (a) BT/liver; (b) HCC/liver; (c) MTS/liver.

TABLE 3 | The results of the classification of different types of tumor.

BT HCC MTS

RF Se: 0.84 ± 0.07 Se: 0.91 ± 0.08 Se: 0.92 ± 0.03

Sp: 0.97 ± 0.01 Sp: 0.96 ± 0.02 Sp: 0.88 ± 0.05

Acc: 0.95 ± 0.01 Acc: 0.95 ± 0.03 Acc: 0.90 ± 0.03

F: 0.88 ± 0.03 F: 0.89 ± 0.04 F: 0.91 ± 0.04

AUC: 0.89 ± 0.06 AUC: 0.94 ± 0.08 AUC: 0.90 ± 0.03
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particular emphasis on the results derived from the ML classi-
fication. The two‐exponential fitting decay model was found to
be a robust descriptor of the fluorescence decay process in these
tissues. A significant observation was the elevated fluorescence
intensity, denoted by If, in malignant tumors compared to liver
tissues, pointing to a pronounced shift in tumor metabolism,
especially the accumulation of NADH and NADPH.

The ML classifiers further enriched our findings. SVM, LR,
and RF models, among others, showcased varying degrees of
sensitivity and specificity in distinguishing between different
tumor types and liver tissues. These classifiers highlighted
the potential of ML to enhance the diagnostic precision of
fluorescence‐based techniques. For example, the RF model
exhibited high sensitivity and specificity among different
tumor types, underscoring its potential as a reliable diag-
nostic tool.

Although primary liver tumors (HCC) indicated a metabolic
shift toward glycolysis, the TRF results for MTS patients pre-
sented a more complex picture, suggesting various metabolic
pathways in MTS compared to primary tumors. In patients with
benign liver neoplasms (BT), the ML classifiers revealed subtle
differences in fluorescence lifetime parameters, reinforcing the
notion that benign tumors and nontumorous lesions exhibit
minimal changes in glucose cellular metabolism.

Of course, our approach to data analysis has limitations
similar to those of any artificial intelligence application for
medical diagnosis and treatment. The main reasons for poor
model accuracy and inaccurate predictions of results are ei-
ther insufficient or excessive training of the data. The small
sample size in this study may have affected the accuracy
parameters obtained, although we attempted to address this
issue. The group of patients is not a large enough sample, but
the data obtained during the optical biopsy are unique, and
the method of expanding the sample by registering signals
during the moving of the biopsy needle at several points of
the liver parenchyma and tumor is acceptable for such
studies. We plan to continue our research in several clinics to
conduct a multicenter clinical trial and minimize possible
systematic errors in the data set.

The promising results of the ML classification highlight its
potential as a key tool in the future development of diagnostic
and therapeutic strategies for liver tumors. Our current
results show that the integration of TRF into biopsy needles
may be useful for characterizing liver tumors in vivo and real‐
time during PNB. This approach has several potential bene-
fits including real‐time feedback: (1) to reduce the frequency
of taking uninformative samples of neoplasms during punc-
ture biopsy, leading to more accurate diagnoses and better
treatment decisions for patients; (2) previously, already at the
stage of biopsy, to establish a diagnosis for an earlier decision
by the doctor on further treatment of patients (especially if
these are metastases that were not detected earlier by other
types of imaging techniques and a search for a primary tumor
is necessary); (3) with further development of the method, it
is possible to assess targeted areas for the presence of tumor
tissue and metabolic activity after chemotherapy or the use of
methods of local destruction of liver tumors.
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