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ABSTRACT Localisation of clinically relevant events within Electroencephalogram (EEG) recordings can
be useful for explaining the decisions made by automated EEG screening and decision support systems. The
majority of existing deep learning based approaches that have been proposed in recent literature only classify
EEG records as normal or pathological without providing any justification for their decisions and thus are
not very transparent. In clinical practice it is often observed that a significant proportion of EEG recordings
does not contain any abnormal (or pathological) events; even in cases classified as pathological. If deployed
in practice such a setup would not be very useful since it would require neurologists to invest additional time,
manually searching for events within an EEG recording before accepting or rejecting the decision proposed
by the automated system. This work presents open-source software that can automatically localise and
classify abnormalities both across time and EEG channels. Our work can thus be used to reveal the reasons
behind an EEG recording being classified as normal or pathological/abnormal. Training an automated event
localisation system requires a dataset containing fine-grained labels pointing out precise locations of events.
To facilitate further development we are also releasing the dataset and annotations used in this work for
use by the research community. This dataset contains 1,075 EEG recordings with precise temporal and
channel locations of two broad categories of abnormal events: (i) Epileptiform discharges and (ii) Non-
epileptiform abnormalities. Our localisation system is based on features derived from wavelet transforms.
For event classificationwe investigated the performance of both classicmachine learning algorithms (support
vector machines, decision trees, random forest classifier) and deep convolutional neural networks (VGG16,
GoogLeNet and EfficientNet). Our results indicate that deep convolutional neural networks outperform
classic machine learning algorithms in terms of average values of precision, recall, F1-score and accuracy.

INDEX TERMS Abnormality localisation, Automated EEG analysis, Computer aided diagnosis, Computa-
tional neurology, Convolutional neural networks, Deep learning, Open-source EEG dataset.

I. INTRODUCTION

AN electroencephalogram (EEG) is a painless test that
allows us to acquire electrical activity of the brain

using sensors mounted on the scalp. EEGs have been in
use since the 1930s [3] and are cheaper to maintain and
administer compared to other NeuroImaging tools such as
MRIs and CT scans. Lower costs and wide availability make
EEGs appealing tools for provision of neurological care in
the resource-constrained healthcare systems of developing
countries. However, low hardware cost is not the only factor

obstructing quality neurological care in under-served areas.
Another, perhaps more serious, challenge is the scarcity of
qualified neurologists who can interpret EEGs and devise
treatment plans based on them. According to the WHO, the
total neurological workforce (which includes neurologists,
neurosurgeons and child neurologists) in high-income coun-
tries stands at a median value of 7.3 per 100,000 population
[4]. In developing countries, by contrast, this drops to a mere
0.1 per 100,000 population.

Telehealth systems can ameliorate the situation in under-
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served areas by connecting neurologists with patients in
virtual clinics; however, given the acute shortage of doc-
tors, simple telehealth systems can reach full-capacity fairly
quickly. Smart solutions that leverage Artificial Intelligence
(AI) and Machine Learning (ML) to introduce efficiency and
intelligence into the telehealth pipeline are thus more likely
to be adopted in practice. In the domain of tele-neurology
an AI-enabled EEG system could be used for the following
purposes:

(1) Screen pathological/abnormal EEG records and forward
them to neurologists for further analysis.

(2) Highlight regions that may be of interest to the neurolo-
gists for diagnosis or analysis.

(3) Provide explanations and statistics that allow neurolo-
gists to promptly analyze EEG recordings.

(4) Automatically quantify and archive records that may be
useful for research later.

In the preceding list, theme-1 has been explored in prior
literature [5]–[8]. This paper is focused on theme-2, while
theme-3 and theme-4 are left for future work. Training learn-
ing algorithms to detect events of interest requires anno-
tations indicating event locations, consequently, we had to
invest considerable effort in generating fine-grained labels for
events within EEG recordings. This labelled dataset was used
to train learning algorithms to localise EEG events of interest
(EOIs). Event localisation has numerous benefits, the primary
being the ability to promptly interpret why an EEG record is
classified as normal or pathological/abnormal. Consequently,
this capability can be used to lay the foundation of a system
that can incorporate transparency and explainability within
EEG based decision support systems (theme-3). Furthermore,
event localisation can also be useful for quantification and
archiving systems that can promptly process large volumes
of EEG data (theme-4). In this work, we focus primarily on
localisation of two types of abnormal waveforms (1) Epilep-
tiform discharges ( i.e. spike, polyspike, and sharp waves)
(2) Non-epileptiform abnormalities ( i.e. slow waves ). These
EEG patterns are representative of abnormal electrocerebral
activity. Spike and sharp waves are considered diagnostic of
epilepsy in appropriate clinical settings; slow waves (either
focal or generalised) can also be indicative of underlying
cerebral dysfunction. These non-epileptiform abnormalities,
independently or sometimes intermixed with epileptiform
discharges, are seen in a multitude of neurological disorders
e.g. in cerebral hypoxia, encephalopathy, infections, and de-
generative brain disorders.

The current landscape of automated EEG analysis systems
reveals several critical gaps that this research aims to address.
One significant gap is the lack of transparency in existing
deep learning-based approaches, which in most cases provide
only a binary classification decision [31] [32]. Despite the
advancements in deep learning techniques for EEG screening
[33], there remains a pressing need for greater interpretability
and explainability in these models. This research aims to
bridge these gaps by developing more transparent and inter-

pretable models for EEG analysis. Given that the duration
of clinical EEG recordings can extend up to hours, a simple
screening system would require a neurologist to perform a
detailed scan of the recording before preparing a report or
diagnosis. After screening, our system can be used to localise
and highlight relevant events (across both time and EEG
channels) enabling prompt EEG quantification, and therefore,
can be a valuable analysis tool for neurologists.
One reason why there aren’t many existing EEG event lo-

calisation systems is the scarcity of detailed, labeled, datasets
necessary for training and validating them. Labeling EEG
data with precise annotations is a labor-intensive process
that requires expert knowledge, leading to a limited number
of available datasets. Our contribution includes the creation
and public release of a comprehensive dataset containing
1,075 EEG recordings with fine-grained labels indicating the
precise temporal and channel locations of two broad cate-
gories of abnormal events: epileptiform discharges and non-
epileptiform abnormalities. By making this dataset available
to the research community, we aim to facilitate further ad-
vancements in the field of automated EEG analysis.
Given the sparsity of existing literature on event localisa-

tion, a through performance evaluation of the different types
of learning algorithms is also required. When it comes to per-
formance, the default assumption made by most researchers
is that deep convolutional neural networks (DCNNs) will
outperform classical machine learning (CML) algorithms.
Given the novelty of our dataset, we have not made this
assumption and have opted for an evidence based approach
to examine the performance difference between DCCNs and
CML algorithms, such as support vector machines (SVMs),
decision trees, and random forest classifiers. Furthermore,
CML algorithms are easier to interpret and train compared
to DCCNs and should not be dismissed without compelling
evidence to demonstrate a substantial performance gap com-
pared to DCNNs. Another area requiring further investigation
is identifying suitable features for the event localisation appli-
cation. We examine the performance of a number of different
wavelet based features, in conjunction with different learning
algorithms, to examine which set of features works best. We
focus on features derived from the wavelet transform because
wavelets can easily capture subtle variations in EEG signals
[30].
The salient contributions of this work are listed below:

• Significant effort has been invested in creating a large,
labelled dataset of EEG records with event locations
across both time and channels. The detailed event an-
notations in this dataset should be very useful for re-
searchers interested in investigating interpretability and
explainability in the context of EEG. This dataset , called
NMT-Events, is being released publicly under the Cre-
ative Commons by Attribution licence (CC BY 1) and is

1Access creative commons by Attribution Licence: https:
//creativecommons.org/licenses/by/4.0/
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available for download 2.
• Our dataset is the only publicly available EEG dataset

containing detailed event level annotations that has been
collected from a South Asian demographic.

• Performance of DCNN and conventional machine learn-
ing algorithms is compared on the task of EEG event
localisation.

• Performance is evaluated for wavelet based feature ex-
traction on the event localisation problem using 6 differ-
ent learning algorithms.

• For the purpose of result replication and benchmark-
ing, all the code used for the experiments in this paper
is being released publicly: https://github.com/dll-ncai/
Localization-of-Abnormalities-in-EEG-Waveforms.git

By addressing these research gaps, our work not only
advances the field of automated EEG analysis but also pro-
vides valuable tools and datasets that can be used by other
researchers to further develop and refine AI-based diagnostic
systems.

II. RELATED WORK
The task of automatic event localization in EEG records is
challenging due to the extensive effort required for labeling
individual events, leading to a limited number of studies
addressing this issue. One notable attempt is [10], where
six different event types were detected using mel-frequency
cepstral coefficients (MFCC). While MFCCs are widely used
in speech recognition, their application in EEG analysis is
debatable. The authors of [10] utilized a variant called linear
frequency cepstral coefficients (LFCC) for EEG data. How-
ever, the generalizability of speech recognition features to
EEG remains questionable. In contrast, deep convolutional
neural networks (DCNNs), which are designed for imaging
applications, might be more suitable for extracting image-
based features from EEG data. Our approach involves con-
verting EEG signals into images using wavelet transforms to
capture the time-frequency variations effectively.

Traditional machine learning algorithms such as support
vector machines (SVMs), decision trees, and random forest
classifiers have also been used in EEG classification tasks.
SVMs, noted for their efficacy in high-dimensional spaces,
have been successfully applied to EEG data as demonstrated
in [25]. Decision trees provide simplicity and interpretability,
making them useful for initial EEG classification models, as
noted in [26]. Random forest classifiers, being ensembles of
decision trees, enhance accuracy and robustness bymitigating
overfitting, as shown in [27].

In the realm of deep learning, various architectures have
been explored for EEG analysis. For example, [28] reviews
the effectiveness of convolutional neural networks (CNNs)
such as VGG16, GoogLeNet, and EfficientNet in EEG-based
applications, including emotion recognition and sleep stage
scoring. These architectures have shown significant improve-

2Download creative commons by Attribution Licence: https://1drv.ms/f/s!
AlVxrt288kY0g8Uc5Aa36axB62Gv8w?e=k0PCvr

ments in processing and interpreting complex EEG data,
highlighting their potential in advancing automated EEG
analysis.
Deep learning has also been applied to the detection of

epileptic events, achieving a reported accuracy of 99% in
[11]. However, the dataset in this study was small, consisting
of only 500 EEG segments, each 23.6 seconds long. This
limited dataset likely means that performance will degrade
in real-world settings. In contrast, our dataset is collected
in a hospital environment, with significantly longer EEG
recordings averaging approximately 20 minutes.
Most existing literature on localization focuses on detect-

ing the onset of specific disorders or pathologies within an
EEG recording. For example, seizure onset has been exam-
ined in [12] and [13]. EEG is also crucial for sleep pattern
analysis and diagnosing sleep disorders, with sleep-related
micro-events localized using deep learning in [14]. Our ap-
proach differs by focusing on generic events of interest in
EEG pathology rather than specific disorders and therefore
has the potential to be applied in a broad range of problems.
In summary, while existing literature provides a foundation

for EEG event localization, our work advances these efforts
by targeting a broader range of abnormal events and leverag-
ing advanced deep learning techniques to improve accuracy
and interpretability.

III. MATERIALS AND METHODS
Figure 1 provides an overview of the approach used for event
localisation; the process begins by segmenting each input
record into 2-second windows, with a 50% overlap between
consecutive windows. Given that our EEG data is sampled at a
frequency of 200Hz, eachwindow contains 400 data samples.
We explore two distinct learning pipelines to evaluate the

performance of both traditional machine learning algorithms
and contemporary deep learning algorithms. The machine
learning pipeline investigates three CML classifiers: support
vector machines (SVMs), decision trees, and random for-
est classifiers. These classifiers are chosen for their robust-
ness and widespread use in various classification tasks. In
contrast, the deep learning pipeline examines three DCNN
models: VGG16 [19], EfficientNetB1 [21], and GoogLeNet
[20]. These models are selected for their proven effectiveness
in image classification tasks and their varying architectural
complexities.
To prepare the data for both pipelines, we generate image-

based feature vectors by applying the Continuous Wavelet
Transform (CWT) [9] to the segmented data windows. This
transformation converts the time-domain EEG data into a
time-frequency representation, which is more suitable for
analysis by both machine learning classifiers and DCNN
models. Finally, the performance of each model is evaluated
by comparing their predictions to the ground truth labels in
the dataset. This comparison allows us to assess the accuracy
and effectiveness of both the traditional machine learning
classifiers and the deep learning models in processing and
interpreting EEG data.
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FIGURE 1. High level overview of our approach. An input EEG record is first broken down into small sized windows. The wavelet transform is used to
extract features from each window. A classifier uses the wavelet features to assign an event label to each window. Window locations are then mapped
back to obtain predictions of events in the input record.

A. DATASET
Data collection for this research was done at the Pak-Military
hospital (MH) in Rawalpindi, Pakistan. Our study was ap-
proved by the hospital’s Institutional Review Board (IRB)3.
Data was collected after obtaining informed consent from all
participants involved in this study. The hardware used for data
acquisition was KT88-2400 developed by Contec Medical
Systems. All participants were advised to not take any kind
of sleep medication or sedative for at least one day before the
recording session. The recording sessions were conducted by
a qualified technician with over 6 years of experience in EEG
recording. Each participant’s data was subsequently labeled
by a team of neurologists at the hospital. The labeling process
involved reviewing the entire record andmarking the start and
stop times, as well as channel instances of events of interest.
The labels were stored in a Comma Separated Values (CSV)
file using an open-source tool developed specifically for the
NeuroAssist project. To ensure high inter-scorer reliability,
the labeled data was then verified by two expert neurologists
who either approved or corrected any misclassifications iden-
tified by the initial labeling team.

Participants were asked to lie comfortably and keep their
eyes open. They were instructed to minimize movement and
blinking to reduce artifacts. This condition helps capture EEG
patterns associated with active visual processing and alert-
ness. Participants were then asked to close their eyes and relax
while remaining awake. This condition is useful for capturing
resting-state EEG activity, characterized by prominent alpha
rhythms, particularly in the occipital region.

The EEG data was acquired at a sampling rate of 200
Hz using a standard 10/20 setup, encompassing 21 channels
with A1 and A2 as standard reference channels. All EEG
records were stored in the European Data Format (EDF). The

3IRB number: MH51214 (Dated March-15-2019)

FIGURE 2. Demographics of the NMT-Events dataset, segregated by
gender, age, and class label.

dataset comprises a total of 1,075 records, with 113 records
showing abnormalities and 962 records being normal. The
dataset demographics indicate that approximately 71.63% of
the recordings were collected from male participants, while
28.37% were from female participants, with participant ages
ranging from 6 to 93 years.We have removed EEG recordings
of participants younger than 6 years old from our dataset. This
decision was made to avoid the substantial developmental
changes in EEG patterns that occur during early childhood.
These differences can complicate the analysis and interpre-
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TABLE 1. Classification of EEG abnormalities into corresponding super
classes.

Class Super Class

Spike and Wave SSW

Spikes SSW

Polyspikes SSW

Polyspikes and Wave SSW

Sharp Wave SSW

Sharp and Slow Wave SW

Delta Slow Wave SW

Sharp and Delta Slow Wave SW

tation of EEG data when comparing across a broader age
range. By focusing on participants older than 6 years, the
study might aim to minimize variability introduced by de-
velopmental changes in brain activity, thereby ensuring more
consistent and reliable results.

Figure. 2 illustrates the demographics of the dataset, seg-
regated by gender, age, and class label. The mean age for
male participants was 25.58 years (±18.33), with 90.26% of
the male recordings being normal and 9.74% abnormal. For
female participants, the mean age was 21.15 years (±18.12),
with 88.03% of the recordings being normal and 11.97%
abnormal.

Overall, nine different categories of events have been la-
beled in the NMT-Events dataset. For the purpose of this
work, these nine events were merged into two broad super
classes: ‘Slow Waves’ (SW) and ‘Spike and Sharp Waves’
(SSW) according to the grouping shown in Table 1. For
instance, ‘Polyspikes’ were included in the ‘Spike and Sharp
Waves’ category due to their nature as repeated occurrences
of spike and wave abnormalities. Similarly, all slow waves,
including ‘Delta Slow’ and ‘Sharp and Slow Waves,’ were
categorized under ‘Slow Waves’. This classification was
based on their significance in clinical diagnosis, as confirmed
by certified neurologists. Furthermore, it is emphasized that
although the labels of these nine event categories are not used
in this work, they are available in the dataset for researchers
interested in using them. This dataset is one of the few pub-
licly available EEG datasets collected from a South Asian
demographic, providing valuable data for further research and
analysis.

B. PRE-PROCESSING
During the pre-processing stage, several essential steps were
implemented to prepare the data for analysis. Initially, the
data was filtered using a Hamming window-based bandpass
filter with a lower passband edge at 1.00 Hz and an upper
passband edge at 45.00 Hz. This filter featured -6 dB cutoff
frequencies at 0.50 Hz and 50.62 Hz, to effectively eliminate
electrical noise, particularly the 60 Hz interference poten-
tially introduced by the hardware. Subsequently, Independent
Component Analysis (ICA) was employed to decompose the

TABLE 2. Dataset Partitions and Label Distribution: This table presents
the partitioning of the dataset into training, validation, and testing sets,
along with the distribution of window labels for each set. The labels
include Normal, Slow Waves (SW), and Spike and Sharp Waves (SSW)
conditions.

Dataset Partition Number of Recordings
Label Distribution

Normal SW SSW

Train 726 149,025 94,965 63,085

Valid 135 25,540 16,758 11,132

Test 214 41,882 22,806 22,371

multivariate EEG signals into independent components. This
process targeted the removal of muscle artifacts, such as those
originating from jaw clenching or facial muscle movements,
thereby preserving the underlying brain signals for further
analysis.
For event localization, each record was divided into 2-

second windows with a 50% overlap between successive win-
dows. Eachwindowwas assigned one of the three event labels
based on the label file provided by the neurologists. The use of
a small window size was intentional to achieve high tempo-
ral resolution. However, windowing results in discretization
since windows at the edges of events might not fully contain
an event. To address this, a discretization threshold of 25%
was employed; awindowwith an overlap of 25%ormorewith
an event (SW or SSW) was labeled as an event window and
was assumed to contain the event in its entire span. During the
output stage, each 2-second window was assigned a predicted
class label, and these labels were combined to obtain event
labels for the entire, uncropped EEG record.
Given the inherently unbalanced nature of the dataset,

where normal events significantly outnumber abnormal
events, balancing was introduced to avoid introducing bias
into the classifiers. More specifically, we selected a random
subset of normal windows to approximately match the total
number of abnormal windows (including both SW and SSW).
The process of selecting normal windows consisted of two
main steps: i) selecting random normal windows from com-
pletely normal records, and ii) choosing fully normal win-
dows from abnormal records. The dataset was partitioned into
three subsets: training, validation, and test, using a ‘subject-
based division’ rather than random selection. This means that
data windows from a single subject/participant were assigned
exclusively to only one of the three (training, validation, or
test) sets, this was done to prevent data leakage between the
sets. The size of the partition sets and event/label distribution
can be seen in Table 2.

C. FEATURE EXTRACTION
Although a large number of options are available for feature
extraction from EEG data, we decided to employ features
based on wavelet transforms which are extremely useful tools
for time-frequency analysis of natural signals. Additionally,
their multi-resolution characteristics enable effective localisa-
tion of events in non-stationary signals making them quite ap-
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pealing for our target application. There are twomain flavours
of the wavelet transform: the Discrete Wavelet Transform
(DWT) and the Continuous Wavelet Transform (CWT). The
DWT decomposes signals into approximation and detail co-
efficients via filtering and downsampling, whereas the CWT
operates on a continuous scale. Our study focuses on the CWT
due to its superior ability to capture the visual characteristics
of signal events. Furthermore, in our preliminary analysis the
DWT did not yield satisfactory performance for detecting
signal events leading us to abandon further investigation.

The CWT involves convolving a signal x(t)with scaled and
shifted versions of a mother wavelet ψ(t). We conducted an
extensive comparison of multiple mother wavelets to evaluate
their effectiveness in capturing various signal characteristics.
The wavelets assessed include the Morlet wavelet, Mexican
Hat wavelet, Gaussian 1st Derivative wavelet, and Gaussian
2nd Derivative wavelet, each offering unique properties for
signal analysis.

1) Morlet Wavelet
The Morlet wavelet combines sinusoidal oscillation with a
Gaussian envelope, effectively capturing both frequency and
temporal aspects [22]. It is defined as follows:

ψ(t) = Cσπ
−0.25e−0.5t2(ejσt − Kσ) (1)

where,
• t denotes the time variable.
• j represents the imaginary unit (i.e., j2 = −1).
• σ is a parameter that controls the oscillation of the

wavelet.
• Cσ and Kσ are scaling parameters derived from σ.

The Gaussian envelope term e−0.5t2 ensures that the wavelet
has good time localization, decaying rapidly as t moves away
from zero. The sinusoidal term ejσt represents a complex sinu-
soidal function, where the parameter σ controls the frequency
of oscillation. The correction factor Kσ ensures the wavelet
has zero mean, necessary for analysis. Specifically,

Cσ =
(
1 + e−σ2

− 2e−0.75σ2
)−0.5

(2)

Kσ = e−0.5σ2

(3)

2) Mexican Hat Wavelet (Ricker Wavelet)
TheMexican Hat wavelet, or Ricker wavelet, is characterized
by its zero mean and compact support, making it particularly
effective for detecting sharp signal changes [23]. It is defined
as follows:

ψ(t) = (1− t2)e−t2/2 (4)

3) Gaussian Derivative Wavelets
The Gaussian 1st and 2nd Derivative wavelets are useful for
capturing local variations and edges, detecting abrupt changes
and fine details in signals [24]. The 1st Derivative Gaussian
wavelet is defined as:

ψ′(t) = −te−t2/2 (5)

FIGURE 3. Scalograms of three randomly selected samples of all three
events. The top row contains scalograms of three normal event windows.
The middle and bottom rows contain three SSW and three SW event
windows respectively.

The 2nd Derivative Gaussian wavelet is defined as:

ψ′′(t) = (t2 − 1)e−t2/2 (6)

The output of the CWT, known as a scalogram, provides a
visual representation of a signal’s characteristics in the time-
frequency domain. The CWT for each EEG segment, was
resized to 224x224 pixels to maintain consistency with the
input requirements of our deep learning models. This resulted
in a three-dimensional input tensor of shape (224, 224, 3),
where the three channels correspond to different scales of the
wavelet transform. Using 3 scales strikes a balance between
capturing the necessary signal details and maintaining com-
putational efficiency. Our preliminary experiments indicated
that increasing the number of scales beyond 3 did not lead to
significant performance improvements. In Figure 3 some ex-
amples of scalograms illustrate the similarities among event
windows of the same category and the dissimilarities between
different events. This ability to capture visual characteristics
makes scalogram representations of EEGs suitable as input
features for our deep learning pipeline. The CWT of a signal
x(t) is expressed as:

Xcwt(a, b) =
∫ ∞

−∞
x(t)ψ∗

a,b(t) dt (7)

where ψ∗
a,b(t) denotes the complex conjugate of a scaled and

shifted version of the mother wavelet ψ(t), a is the scaling
parameter, and b is the shifting parameter. We utilized all
the aforementioned mother wavelets in our study to capture
a wide array of signal characteristics. Given the efficacy of
scalograms in capturing the visual characteristics of events of
interest, we utilized them as input features for both our deep
learning and machine learning pipelines.
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D. MACHINE LEARNING ALGORITHMS

To tackle the challenges inherent in EEG event localization,
our study’s machine learning pipeline, illustrated in Figure 1,
incorporates three prominent machine learning algorithms.
Each algorithm is specifically chosen for its robust capa-
bilities in processing complex data structures and patterns,
particularly those involving intricate temporal and spatial
dimensions. The selected algorithms are: Support Vector Ma-
chines (SVMs) [16], Decision Trees (DT) [18], and Random
Forest (RF) [17] classifiers. Our goal is to develop a compre-
hensive understanding of the temporal dynamics within these
brief intervals, which are critical for accurate localization of
neurological events.

1) Support Vector Machines (SVMs)

SVMs are known for their ability to analyze high-dimensional
data effectively. They achieve this by transforming the EEG
signals into a higher-dimensional space using a kernel func-
tion. This characteristic is crucial for the 2-second EEG
segments, which may contain intricate patterns related to
specific neurological states that are difficult to discern in
lower-dimensional spaces. In this study, SVMclassifiers were
employed with a linear kernel (kernel=’linear’) to
model the relationship between features and target labels
within the EEG data. The linear kernel was selected for its
simplicity and efficiency in high-dimensional spaces, where
it can often perform comparably to more complex kernels,
particularly when the data is well-separated [29]. To handle
the non-linearity of EEG data, feature scaling was applied
to the training and testing datasets. Initially, the features
were standardized using StandardScaler, followed by
normalization using MinMaxScaler. This two-step scal-
ing process was crucial for ensuring that the features were
on a comparable scale, thereby enhancing the performance
of the SVM. The SVM classifier was configured with a
regularization parameter C=2.0, which controls the trade-
off between achieving a low error on the training data and
maintaining a low model complexity. A higher C value was
chosen to emphasize correct classification of the training
data, even at the cost of allowing a smaller margin. The
decision_function_shape=’ovr’ setting was used
to enable a one-vs-rest strategy, where a binary classifier
is trained for each class, making the approach suitable for
multi-class EEG classification tasks. The gamma=’auto’
parameter allowed the model to automatically determine the
influence of each training example, ensuring that the classi-
fier could handle the variability in EEG data effectively. A
fixed random state (random_state=0) ensured the repro-
ducibility of the results. The classifier was trained separately
for each wavelet-transformed version of the EEG data, allow-
ing for the exploration of different frequency bands and their
impact on classification accuracy. The model’s performance
was assessed using the transformed and scaled test data,
providing insights into its ability to generalize across different
EEG segments.

2) Decision Trees
Decision Trees are utilized for their straightforward, rule-
based approach to classification and regression. They sim-
plify the decision-making process by breaking down the
dataset into smaller subsets and sequentially analyzing the
impact of individual features. This method is particularly
effective for short EEG segments, where rapid classification
of neural events is necessary. Decision Trees offer clear vi-
sualization and interpretability of the decision paths, which
is invaluable for debugging and refining the model based
on specific EEG features that influence the outcome. For
short segments like the 2-second slices of EEG data, Decision
Trees can effectively handle the temporal dynamics and offer
insights into which features most significantly impact the
classification or localization task [18]. In this implementa-
tion, the Decision Tree classifier was configured using the
entropy criterion for measuring the quality of splits. This
criterion, based on information gain, is particularly useful
for EEG data as it prioritizes features that reduce uncertainty
in the classification task. The model was further optimized
by setting max_features=sqrt, which limits the number
of features considered at each split to the square root of
the total number of features. This setting helps in reducing
overfitting, ensuring that the model remains robust even when
dealing with high-dimensional EEG data. The depth of the
tree was constrained to a maximum of 5 (max_depth=5),
balancing the need for model complexity with the risk of
overfitting. This depth was chosen to ensure that the model
could capture essential patterns in the EEG data without
becoming overly complex. Additionally, the minimum num-
ber of samples required to be at a leaf node was set to 1
(min_samples_leaf=1), allowing the model to capture
fine-grained distinctions in the data, which is important for
detecting subtle neural events. The splitter=’best’
parameter was used to ensure that themost discriminative fea-
ture was chosen at each node, maximizing the effectiveness of
each split. A fixed random state (random_state=0) was
applied to ensure reproducibility of the results. Each Deci-
sion Tree model was trained separately on different wavelet-
transformed versions of the EEG data, allowing the model to
adapt to different frequency components and their relevance
to the classification task.

3) Random Forest (RF) Classifiers
Building on the foundation of Decision Trees, RF classifiers
employ an ensemble of trees to enhance predictive accuracy
and robustness. This approach is crucial for dealing with the
inherent variability and potential noise in EEG data[17]. By
aggregating predictions from multiple decision trees, each
constructed with a random subset of the data and features,
Random Forests mitigate the over-fitting risk associated with
single Decision Trees and improve generalization over di-
verse neurological conditions captured in short EEG seg-
ments. In this study, the Random Forest classifier was con-
figured with specific hyperparameters to optimize its perfor-
mance on EEG data. Specifically, the classifier was trained
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FIGURE 4. Cumulative Explained Variance by Number of Principal Components. Each graph shows the cumulative explained variance for different wavelet
transforms used in EEG signal analysis. The red vertical lines indicate the number of principal components needed to capture 99% of the variance, with
Morlet requiring 16, Mexican Hat 12, Gaussian 1st Derivative 9, and Gaussian 2nd Derivative 11 components.

using 100 decision trees (n_estimators=100), with the
entropy criterion employed formeasuring the quality of splits.
The maximum number of features considered for each split
was set to the square root of the total number of features
(max_features=sqrt), which helps in maintaining di-
versity among the trees and enhances the robustness of the
model. Furthermore, the depth of each tree was limited to
7 (max_depth=7), preventing the model from becoming
overly complex and reducing the risk of overfitting. The
minimum number of samples required to be at a leaf node was
set to 2 (min_samples_leaf=2), ensuring that each split
is based on a sufficient amount of data. A fixed random state
(random_state=0) was used to ensure reproducibility of
the results. The classifier was trained on multiple wavelet-
transformed versions of the EEG data, allowing for the ex-
ploration of different frequency bands and their contributions
to the classification task. The performance of each trained
Random Forest model was evaluated on a test dataset, and the
results were analyzed to determine the classifier’s ability to
generalize across different EEG segments. This careful tuning
of hyperparameters was essential in achieving reliable and
interpretable classification outcomes in the context of auto-
matic event detection in scalp EEG data. The performance
of each trained Random Forest model was evaluated on a
test dataset, and the results were analyzed to determine the
classifier’s ability to generalize across different EEG seg-
ments. This careful tuning of hyperparameters was essential
in achieving reliable and interpretable classification outcomes

in the context of automatic event detection in scalp EEG data.
CML algorithms typically struggle when it comes to dis-

covering useful patterns in very high-dimensional feature
spaces. This is why dimensionality reduction techniques need
to be applied to scalogram images/features before inputting
them to CML algorithms for training. Principal Component
Analysis (PCA) is employed for dimensionality reduction. By
examining the cumulative explained variance, we determine
the number of principal components needed to retain a spec-
ified amount of the original data’s variance (e.g., 99%). This
step reduces the number of features while preserving the most
significant information, making the data more manageable
and improving the efficiency and performance of the subse-
quent machine learning algorithms. Thus, using cumulative
explained PCA, we reduce the data to the nth component,
where n is chosen based on the desired explained variance
threshold (99%) as illustrated in Figure 4.

The use of SVMs, Decision Trees, and Random Forest classi-
fiers ensures a balanced approach between precision in high-
dimensional data handling, interpretability, and robustness
against over-fitting, all of which are essential for effectively
analyzing and understanding the nuanced patterns within
EEG segments.

E. DEEP LEARNING ALGORITHMS

Deep convolutional neural networks (DCNNs) have emerged
as the predominant algorithms for image and video recog-
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nition tasks over the past decade, outperforming traditional
machine learning methods such as support vector machines
(SVMs) and random forest (RF) classifiers. Unlike conven-
tional machine learning algorithms, which rely heavily on
manual feature engineering and domain-specific knowledge,
DCNNs are data-driven and adept at autonomously learning
discriminative features from the input data. This inherent
capability renders them more adaptable and less dependent
on domain expertise, making them a versatile choice across
various applications. In our research, we utilized the VGG16
[19], EfficientNetB1 [21], and GoogLeNet [20] architectures
to explore their effectiveness in event localization tasks.

1) VGG16
The VGG16 architecture, renowned for its deep structure
utilizing small 3×3 convolutional filters, has been effectively
adapted for EEG classification tasks [19]. In this study, the
pre-trained VGG16 model was fine-tuned by removing its fi-
nal classification layer and adding a dense layer with softmax
activation to classify EEG data into three classes. The model
processes input images resized to 224×224 pixels through a
series of convolutional layers, starting with 64 filters and pro-
gressively increasing to 512 filters in the deeper layers, with
max-pooling applied to downsample the feature maps. Fully
connected layers with 4096 units follow the convolutional
layers, incorporating ReLU activation for non-linearity. Class
weights were computed to address class imbalance, ensuring
the model’s performance across all classes. The model was
trained using the Adam optimizer with a learning rate of
0.0001 and categorical cross-entropy as the loss function,
using batch sizes of 32 for training and 16 for validation
and testing. This fine-tuning approach harnesses VGG16’s
robust feature extraction capabilities while adapting it for
efficient and accurate EEG data classification. EEG signals
often contain intricate temporal patterns crucial for accurate
classification. VGG16’s depth allows it to capture both low-
level and high-level temporal features, making it suitable for
capturing the complex dynamics of EEG data. Additionally,
the use of small convolutional filters aids in extracting fine-
grained features from the EEG signals, further enhancing
classification performance.

2) GoogLeNet
GoogLeNet, also known as Inception-v1, is recognized for
its computational efficiency and innovative use of inception
modules [20], making it well-suited for EEG classification
tasks. This architecture, composed of 22 layers and approxi-
mately 6.7 million parameters, begins with an input layer of
size 224x224x3, followed by several convolutional layers
with ReLU activation, including an initial 64-filter layer with
a 7x7 kernel and a subsequent 192-filter layer with a 3x3
kernel. The model incorporates max-pooling layers for di-
mensionality reduction and further complexity management.
The core of GoogLeNet is its series of inception modules,
which combine 1x1, 3x3, and 5x5 convolutions along with
max-pooling, enabling the model to efficiently process and

capture features at multiple scales from the EEG data. Ad-
ditionally, two auxiliary networks are integrated after certain
inception modules to assist in gradient flow during training,
each consisting of an average pooling layer, a convolutional
layer, dense layers, and dropout with a 0.7 rate, culminat-
ing in softmax output layers for classification. The model
concludes with a global average pooling layer and a dropout
layer at a 0.4 rate before the final softmax output. This
design allowsGoogLeNet to handle the high-dimensional and
temporally dynamic nature of EEG data effectively, striking
a balance between computational efficiency and the ability to
capture relevant neural features, making it highly effective for
classifying complex EEG signals.

3) EfficientNetB1
EfficientNetB1, part of a family of models known for their
balanced scaling of network width, depth, and resolution, has
been effectively adapted for EEG abnormality classification
tasks. In this study, EfficientNetB1 was employed, consisting
of 7 blocks and approximately 5.3 million parameters, to clas-
sify EEG data into three classes. The model was fine-tuned
with an input layer of 224×224×3, followed by an initial
convolutional layer with 32 filters, a 3×33×3 kernel, and
ReLU activation. The architecture includes MBConv blocks,
which are Mobile Inverted Bottleneck Convolution blocks
with varying filter sizes and expansion factors, combinedwith
reduction and pooling layers for dimensionality reduction.
A global average pooling layer and a dropout rate of 20%
precede the final dense layer with softmax activation for
classification. The model was trained using a batch size of 32
for the training data and 16 for the validation and test data.
Class weights were computed to address class imbalance,
ensuring balanced performance across all classes. The model
was compiled with the Adam optimizer at a learning rate
of 0.0001, using categorical cross-entropy as the loss func-
tion. This configuration strikes an optimal balance between
model complexity and efficiency, enabling EfficientNetB1
to achieve high classification accuracy with fewer compu-
tational resources compared to larger architectures, making
it particularly suitable for EEG abnormality detection and
diagnosis in clinical settings.

By contextualizing VGG16, GoogLeNet and Efficient-
NetB1 within EEG classification, researchers gain insights
into the unique advantages and considerations associated with
each architecture. This nuanced understanding aids in select-
ing the most suitable model for specific EEG datasets and ap-
plications, ultimately advancing the field of EEG-based anal-
ysis and diagnosis. Our training regimen for all three mod-
els included early stopping to prevent over-fitting, utilizing
the categorical cross-entropy loss function for optimization.
Training spanned 30 epochs, with early stopping enforced at
the 12th epoch. The Adam optimizer, coupled with a learning
rate of 0.0001 determined heuristically, facilitated efficient
model parameter tuning. Performance evaluation involved
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FIGURE 5. Training and validation loss curves for the VGG16 model using
Morlet Wavelet on the EEG dataset.

FIGURE 6. Training and validation accuracy curves for the VGG16 model
using Morlet Wavelet on the EEG dataset.

monitoring loss function and accuracy metrics across epochs,
as illustrated in Figure 5 and Figure 6. These comprehensive
analyses provided insights into the comparative strengths and
weaknesses of the architectures, guiding informed decision-
making regarding their suitability for specific image and
video recognition tasks.

IV. RESULTS AND DISCUSSION
Table 3 presents the performance evaluation metrics for six
different classifiers—Decision Tree, Random Forest, Sup-
port Vector Machine (SVM), EfficientNet, GoogleNet, and
VGG16—across four wavelet transform types: Mexh/Ricker,
Morlet, Gaussian-1, and Gaussian-2. These metrics, namely
Precision (Pre), Recall (Rec), F1-score (F1), and Accuracy
(Acc), are crucial for assessing the classifiers’ ability to ac-
curately localize abnormal events within EEG signals, specif-
ically in identifying the two main classes: Slow Waves (SW)

and Spike and Sharp Waves (SSW).
In the context of EEG event localization, the ability to

accurately pinpoint the temporal and spatial locations of
abnormal events is critical. This is especially important in
clinical settings where the precise localization of events such
as Slow Waves and Spike and Sharp Waves can directly
impact diagnosis and treatment planning. The results indicate
that DCNN models, particularly VGG16 and GoogleNet,
tend to outperform traditional CMLmodels. Overall, VGG16
(with Morlet) achieves the highest accuracy of 0.792; how-
ever, GoogleNet achieves better accuracy (than VGG16)
when used in conjunction with Mexh/Ricker, Gaussian-1
or Gaussian-2 wavelets. DCNN models achieve accuracy
greater than 0.70 in all cases except one (EfficientNet with
Morlet), demonstrating consistent performance that is some-
what unaffected by the choice of wavelet. CML models,
in comparison, deliver lower accuracy values and their per-
formance seems to be dependent on the wavelet choice.
The random forest model (with Mexh/Ricker) delivers the
highest accuracy (0.732) among the CML models. For the
Mexh/Ricker and Gaussian-1 wavelets, all three CMLmodels
obtain accuracy values greater than 0.70, whereas for Morlet
and Gaussian-2 the accuracy values for the majority of CML
models are less than 0.70.
The confusionmatrix for VGG16 using theMorlet wavelet,

shown in Figure 7, illustrates the model’s ability to cor-
rectly classify EEG events into the correct categories. VGG16
shows a strong performance in distinguishing between Nor-
mal, SlowWaves, and Spike and SharpWaves, with relatively
few misclassifications. This capability is crucial in reducing
false positives and negatives in a clinical setting, ensuring
more reliable diagnosis. The loss and accuracy curves for the
VGG16 model, presented in Figures 5 and 6, demonstrate
the model’s training procedure. The training and validation
loss decrease steadily over epochs, indicating that the model
is learning effectively without overfitting. The slight plateau
observed in later epochs suggests that the model has reached
a point of optimization, maintaining a balance between gen-
eralization and performance.
Additionally, the standard deviation of classification accu-

racy for different classifiers across multiple EEG segments
depicted in Figure 8 was computed by executing the classifi-
cation process multiple times for each classifier. Specifically,
each classifier was trained and tested across 7 random data
splits or training runs, and the accuracy was recorded for each
run. The standard deviation was then calculated from these
accuracy values to capture the variability in performance.
VGG16, along with EfficientNet and GoogleNet, exhibits not
only decent accuracy but also lower variability in predictions,
as shown by their tight standard deviation intervals. This low
standard deviation underscores the stability and reliability of
these models across different EEG segments, making them
particularly well-suited for clinical applications where con-
sistency is paramount. Some sample results on real EEG data
are shown in Figure 9.
Overall, the results, including metrics, confusion matri-
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TABLE 3. Comparison of performance evaluation metrics (Precision, Recall, F1-score, and Accuracy) for various classifiers applied to EEG event
localization. For each type of wavelet, the accuracy of the best performing CML and DCNN model is higlighted using boldface text.

Mexh/Ricker Morlet Gaussian-1 Gaussian-2

Classifier Type Pre Rec F1 Acc Pre Rec F1 Acc Pre Rec F1 Acc Pre Rec F1 Acc

Decision Tree 0.668 0.670 0.663 0.720 0.584 0.583 0.583 0.654 0.666 0.666 0.653 0.726 0.586 0.593 0.587 0.668

Random Forest 0.675 0.678 0.667 0.732 0.547 0.550 0.547 0.632 0.651 0.656 0.646 0.714 0.653 0.656 0.646 0.716

SVM 0.605 0.564 0.573 0.708 0.483 0.424 0.423 0.653 0.590 0.553 0.563 0.704 0.552 0.499 0.495 0.675

EfficientNet 0.719 0.707 0.699 0.745 0.635 0.631 0.631 0.684 0.725 0.729 0.724 0.754 0.720 0.712 0.711 0.750

GoogleNet 0.751 0.744 0.745 0.778 0.689 0.683 0.685 0.737 0.756 0.745 0.742 0.780 0.741 0.729 0.733 0.767

VGG16 0.722 0.712 0.714 0.751 0.754 0.751 0.746 0.792 0.719 0.713 0.713 0.750 0.701 0.683 0.686 0.730

FIGURE 7. Confusion matrix for the VGG16 model using Morlet Wavelet,
showing classification performance across three classes: Normal, Slowing
Waves (SW), and Spike and Sharp Waves (SSW).

ces, loss curves, and standard deviation analyses, provide a
comprehensive evaluation of the models’ performance. The
findings highlight the strong potential of deep learning mod-
els, particularly VGG16, in EEG event localization. VGG16
demonstrates superior accuracy, low variability, and effective
training, making it well-suited for clinical applications and
further research. As EEG analysis becomes increasingly im-
portant, these models are poised to advance the field, particu-
larly in developing explainable AI systems that can accurately
and reliably identify abnormal events.

V. CONCLUSION
We have presented results for detection of events within
EEG recordings in a comprehensive dataset. In this dataset,
two events of interest within EEG, ‘Slow waves’ and ‘Spike
and Sharp waves’, are labelled with meticulous detail across
time and across channels. We believe that these detailed
event labels should be highly valuable to researchers who
are interested in examining EEG data from an explainable
(XAI) perspective. The quality of this dataset was validated

FIGURE 8. Standard deviation of classification accuracy for different
classifiers across multiple EEG segments. The classification process was
executed multiple times for each classifier, with accuracy values
computed for each run. The standard deviation of these accuracy values
was then calculated to assess the variability in performance. The plot
demonstrates the variability in performance for each classifier, VGG16
and EfficientNetB1 showing lower standard deviation, indicating more
consistent and reliable predictions.

by evaluating the performance of well-established CML and
DCNN models. Overall, DCNN models outperform CML
models and deliver a more consistent performance that does
not degrade substantially when the classifier or wavelet mod-
els are changed. CML models in comparison are less con-
sistent and their performance seems to be dependent on the
wavelet choice; this is not unexpected given that CML model
performance is know to be heavily reliant on the feature
extraction front-end. Therefore, we can conclude that DCNNs
deliver better performance compared to CML models on the
NMT-Events dataset. However, this only applies to wavelet
based features and we do not recommend generalising this
conclusion to all feature categories. A decent performance
was observed indicating that the learning algorithms were
able to map relevant patterns to the events of interest. We
believe that there is room for further improvement and de-
velopment of purpose-built learning algorithms will lead to
further improvement in performance. Our dataset is being
made available to the public in the interest of research and our
hope is that this will have a positive impact on this interesting
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FIGURE 9. Some sample results demonstrating performance of the GoogLeNet based classifier on actual records. Ground-truth labels are indicated by
blue bounding boxes for SW and red bounding boxes for SSW. Predictions are shown by cyan rectangles for SW and yellow rectangles for SSW. Colored
rectangles not falling within any bounding box are considered false positives.

area of research. We also believe that future work on our
dataset will eventually lead to development of explainability
features that can augment that capability of automated EEG
analysis and screening systems.
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