
Annals of Operations Research
https://doi.org/10.1007/s10479-024-06291-z

ORIG INAL RESEARCH

A hybrid metaheuristic and simulation approach towards
green project scheduling

Rahmat Rabet1 · Seyed Mojtaba Sajadi2 ·Mahshid Tootoonchy3

Received: 5 May 2024 / Accepted: 11 September 2024
© Crown 2024

Abstract
This research tackles the environmental concern of greenhouse gas emissions in the execu-
tion of projects, with a focus on multi-site projects where the transportation of resources is a
major source of emissions. Despite growing consciousness among consumers and stake-
holders about sustainability, the domain of project scheduling has often overlooked the
environmental impact. This paper seeks to bridge this oversight by exploring how to reduce
greenhouse gas emissions during both project activities and resource transportation. A novel
approach is proposed, combining a simulationmodelwith an improved non-dominated sorted
genetic algorithm. The simulation model incorporates the stochastic nature of emission rates
and costs. This method is further refined with innovative techniques such as magnet-based
crossover and mode reassignment. The former is a genetic algorithm operation inspired by
magnetic attraction, which allows for a more diverse and effective exploration of solutions
by aligning similar ’genes’ from parent solutions. The latter is a strategy for reallocating
resources during project execution to optimize efficiency and reduce emissions. The effi-
cacy of the proposed method is validated through testing on 2810 scenarios from established
benchmark libraries, 100 additional scenarios adhering to the conventional multi-site prob-
lems, and a case study. The Best-Worst Method (BWM) is applied for identifying the best
solution. The findings indicate substantial enhancements compared to traditional methods
with a 12.7% decrease in project duration, 11.4% in costs, and a remarkable 13.6% reduction
in greenhouse gas emissions.

Keywords Simulation-based optimization · Green project scheduling · Multi-site ·
Multi-mode · Resource-constrained

1 Introduction

In project-oriented organizations, project scheduling is a central problem and managers face
pressure to deliver projects to meet performance criteria of the investors, such as project
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duration, costs, or quality (Tian et al., 2022; Wei et al., 2023). However, the complexity of
project scheduling is further compounded by the stochastic nature of key parameters, includ-
ing emission rates and costs, which can vary significantly due to uncertainties in resource
availability, environmental conditions, and market fluctuations. In the following paragraphs,
different variations of the project scheduling problems are briefly introduced, including
resource-constrained, multi-mode, andmulti-site problems. Subsequently, the environmental
aspects together with the stochastic nature of the project scheduling problems are discussed.
The primary concern in Project Scheduling Problem (PSP) is finding an optimal sequence of
activities to minimize project makespan. However, the scarcity of resources limits the project
managers’ options for finding the precedence-feasible optimal allocation of resources. For-
mer studies widely investigated Resource-Constrained Project Scheduling Problem (RCPSP)
(Delgoshaei et al., 2017, 2016, 2015). Organizations attempt to control and decrease
makespan by dedicating more resources to critical activities to execute them in faster modes.
TheMulti-Mode Resource-Constrained Project Scheduling Problem (MMRCPSP) considers
different activities’ durations depending on the availability of resources. Consideringmultiple
modes of activities increases the flexibility and complexity of the RCPSP, as they offer more
choices for resource allocation trade-offs and the opportunity to dedicate resources to themost
effective activities. However, concentrating on faster modes to reduce the project makespan
causes escalations in project expenditures. Thus, many scholars have proposed solutions in
the literature considering project costs (Sajadi et al., 2017).
Multi-site multi-mode resource-constrained project scheduling problem (MSMMRCPSP) is
a generalization of the classic RCPSP. MSMMRCPSP is a pertinent problem, as it can be
applied to various domains, such as construction, manufacturing, logistics, and disaster relief
(Cheraghi et al., 2023; Fink & Gerhards, 2021; Laurent et al., 2017). While project dura-
tion and costs are common objectives for the PSP, greenhouse gas emissions are a relatively
new objective in the literature, reflecting the environmental responsibility and sustainabil-
ity of project management (Makhova et al., 2023). These objectives are often conflicting
or interrelated, as reducing one may increase another. Therefore, it is necessary to consider
them simultaneously in solving the RCPSP and to find a balance or a trade-off among them
(Zhu et al., 2021). Furthermore, projects’ activities may be executed at different locations
and the transportation of resources and materials between sites may influence the project
duration, costs, and greenhouse gas emissions (Fernandes et al., 2021; Peng et al., 2023;
Zhao & Zhe, 2021). Greenhouse gases are mainly emitted during activity implementation
or resource transportation (Palander, 2016; Quiros et al., 2017; Sciara et al., 2017; Wu et
al., 2018). The United States Environment Protection Agency (EPA) reports that the trans-
portation industry, is responsible for 27% of annual greenhouse gas emissions, releasing 1.8
billion metric tons of equivalent CO2 per year (Desai & Harvey et al., 2017). Therefore, it
is essential to consider the effects of the transportation of resources in the PSP and to find
efficient and sustainable solutions. Ozcan-Deniz and Zhu (2017) examined the relationship
between projects’ time, cost, and environmental impacts and concluded that project time
and environmental impacts, positively correlate. Former research reveals that minimizing the
transportation time of renewable resources reduces the emission index (Aramesh et al., 2023;
Banihashemi & Khalilzadeh, 2023).
In a broader context, the objectives of the problem are inherently influenced by uncertain-
ties. These uncertainties encompass factors such as the fluctuation in emission rates both
during activity execution and transportation, as well as the associated costs tied to trans-
portation and the utilization of renewable resources (Song et al., 2021; Lotfi et al., 2022).
Despite the notable importance of these uncertainties, the current body of literature has yet to
comprehensively delve into their nuanced implications. Our research objective is to develop
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a simheuristic approach (a simulation model linked to a metaheuristic algorithm) to mini-
mize greenhouse gas emissions while optimizing makespan and cost in a multi-site project,
considering multiple modes and uncertainties in activities’ duration.
Although few research investigated the multi-site version of the problem, this paper may be
the first to propose a simheuristic approach to incorporate stochastic parameters of real-world
situations (Liu et al., 2023b, 2021;Wang et al., 2021; Zhu et al., 2021). TheMSMMRCPSP is
tackled from both a theoretical and a practical perspective. A novel mathematical model that
captures the main characteristics and challenges of MSMMRCPSP is proposed. Moreover,
TheMSMMRCPSP is a highly combinatorial and nonlinear problem that belongs to the class
of Non-deterministic Polynomial-time hard (NP-hard) problems. Kolisch and Drexl (1997)
demonstrated that finding a feasible solution for MSMMRCPSP with more than one non-
renewable resource is an NP-hard problem. Therefore, the Non-dominated Sorting Genetic
Algorithm (NSGA-II) enhanced by a simulation model that incorporates uncertainty that can
cope with complexity and diversity is applied as a simheuristic algorithm. Therefore, the
main contributions of this study are:

• Minimizing greenhouse gas emissions during transportation and project activities.
• Developing a hybrid approach by coordinating a simulation model, an improved version

of the NSGA-II incorporating uncertainties of several parameters, and the BWM to single
out the best fitting solution.

• Proposing a new multi-objective mixed-integer linear programming (MILP) model that
considers multiple sites for the MMRCPSPs.

The performance of the proposed model and algorithm is evaluated on two single site sets
of instances from the literature (PSPLIB by Kolisch and Drexl (1997) and MMLIB by Van
Peteghem and Vanhoucke (2014)) and compared with state-of-the-art approaches. Addi-
tionally, 100 randomly selected instances are extended to meet multi-site conditions with
deterministic parameters and solved by the proposed algorithm. Finally, a real-world case
study is solved with uncertain parameters. Multi-objective metaheuristic methods generate
a set of non-dominated solutions, not all of which are practical; however, project managers
require a specific solution that complies with multiple concerns and predetermined crite-
ria. To address this issue, a Multi-Criteria Decision-Making method namely the Best Worst
Method (BWM) developed by Rezaei et al. (2015), is applied to find the best solution from
the last Pareto front of the algorithm.

The remainder of this paper unfolds as follows: Sect. 2 conducts a thorough review of rel-
evant literature, contextualizing the research. In Sect. 3, the problem is defined, and a novel
model is introduced for the MSMMRCPSP. Section4 outlines the proposed methodology,
including the simulation model, multi-objective meta-heuristic algorithm, and the applica-
tion of the Best Worst Method. Moving to Sect. 5, an empirical comparison of the solution
approach with state-of-the-art algorithms is presented, using instances from well-known
libraries, alongside a practical case study demonstrating the algorithm’s efficacy. Sections6
and 7 respectively discuss practical implications and conclude, while also pointing toward
potential future research directions. This structured framework guides readers through the
study’s various facets, fostering a comprehensive grasp of the proposed methodology and its
implications.
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2 Literature review

Project scheduling is a critical component of project management. Precedence constraints
between a project’s activities necessitate a predetermined sequence of activities (Chu et
al., 2023; Laurent et al., 2017; Nemati-Lafmejani et al., 2019; Shariatmadari et al., 2017).
Resource scarcity and sharing are other common issues in project scheduling. The RCPSP
aims to schedule a project’s activities based on precedence and resource sharing/scarcity to
minimize the project’s makespan (Hartmann & Briskorn, 2022; Pellerin et al., 2020). Pre-
vious research has applied optimization models to address RCPSP’s constraints in project
management (Chakrabortty et al., 2016; Golab et al., 2023). One of the primary concerns in
project scheduling for production systems and manufacturing is the allocation of renewable
resources (Wang et al., 2021). The availability of renewable and non-renewable resources
affects the time–cost trade-off in projects (Hafezalkotob et al., 2018; Hochbaum, 2016; Hus-
sain & Hussain, 2023; Nemati-Lafmejani et al., 2019). The RCPSP has garnered increasing
interest from decision-makers and scholars. Numerous studies have considered single/multi-
objective problems from various perspectives. Sánchez et al. (2023) have published a survey
regarding multi-project scheduling problems.
Our research endeavor aims to formulate a simheuristic methodology. This intricate approach
considers various project types, project modes, and solution approaches. In the forthcoming
sections, the array of objectives encompassed by this study have beenmeticulously examined.
Furthermore, this study offers a comprehensive exploration and valuable contribution to the
existing project scheduling body of knowledge.

2.1 Project type: multi-site versus multi-project

In a single butmulti-site project, mobile resources shall move from one site to the other.When
a mobile resource is required for several consecutive activities on various sites, the trans-
portation time of this resource and the precedence relation of activities shall be considered.
Modeling the transportation time can minimize the project execution time. In contrast, in a
multi-project case, mobile resources are transferred between the locations of several projects
(Villafáñez et al., 2019). In general, two components must be considered when applying
heuristics for feasible project scheduling: the priority rule and project scheduling.

• Priority rule: determines the order of activities based on processing time, cost, network
information, total slack, and activities’ earliest start time/latest finish time (Luo et al.,
2023).

• Project scheduling: This can be done in three ways: a) Serial scheduling, where the
algorithm determines the order of activities once at the beginning; b) Parallel schedul-
ing, where the algorithm dynamically re-determines the orders to reduce the number of
delayed activities; and c) Backward scheduling, where the algorithm dynamically re-
determines the order from the desired completion date (Lalas et al., 2006). Zhang et
al. (2023) combined the parallel and serial scheduling schemes. Tritschler et al. (2017)
proposed a parallel scheduling approach and variable neighborhood search to solve the
RCPSP with flexible resource profiles. Poppenborg and Knust (2016a) also proposed a
flow-based algorithm for RCPSP for resource flows in serial and parallel directions.

A single-project multi-site algorithm combines sub-projects into a mega-project with a sin-
gle critical path (Browning & Yassine, 2010). Some research addresses the multi-project
scheduling problem, where the transfer time between each project has been modeled (Issa et
al., 2021; Krüger & Scholl, 2010; Saif et al., 2022; Zhang et al., 2022). Considering different
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locations is common in a multi-project setting (Rostami & Bagherpour, 2020). Therefore, a
single project can be widely expanded to solve the multi-project case. Previous research has
been extended by modeling the RCPSP considering the transportation times of a multi-site
single project with serial, parallel, and backward scheduling. This model can be extended to
a multi-site multi-project (as a mega-project) by considering the critical paths of all included
projects (Browning & Yassine, 2010).

2.2 Project mode: single versus multi-mode

The various modes of the resource-constrained scheduling problem explain the differ-
ent modes in which a single activity can be executed (Elloumi et al., 2017). Krüger and
Scholl (2010) first proposed a framework for single/multi-project scheduling problems given
resource transfers and developed two linear and mixed-integer programming models. Hes-
sami et al. (2024) studied the MSMMRCPSP with the ability to transport resources among
the project sites, aiming to minimize the total project time and cost simultaneously. To this
end they developed a bi-objective optimization model. Then, they applied the ε-constraint
method to solve 24 different-sized instances and performed sensitivity analysis to find the
impact of changing parameters on objective values. Rostami et al. (2017) considered a decen-
tralized resource-constrainedmulti-project scheduling problemwith periodic services aiming
tominimize associated costs using amixed-integer linear programmingmodel for small-scale
instances and an ant colony bee optimization algorithm for large-scale instances. Stiti and
Driss (2019) investigated a multi-site resource-constrained project scheduling problem and
adapted a particle swarm optimization algorithm aiming to minimize the project duration.
Kadri and Boctor (2018) proposed a genetic algorithm for sequence-dependent transfer times
and the single-mode version of the problem using idle resources waiting to be transferred
within the schedule. Kadri et al. (2014) solved the project scheduling problem with transfer
times considering multiple modes by assigning each activity a mode and then solving it in the
single-mode version. They then used improvement techniques to shorten the project timeline.
In this research, the multi-site multi-mode resource-constrained project scheduling problem
is addressed considering resource transfer times between sites.

2.3 Solution approach

The realm of project scheduling problems has seen notable advancements through various
innovative approaches. Former studies contribute collectively to enriching this understanding
of project scheduling dynamics. Hessami et al. (2024) investigated MSMMRCPSP and
developed a bi-objective model to minimize the total cost and the total completion time of
the project. They applied ε-constrained method to solve 24 different-sized instances, ranging
from 5 to 120 activities. Bigler et al. (2024) delved into the multi-site resource constrained
projects and presented a continuous-time model using binary variables to arrange a sequence
for activities assigned to a set of resources and compared the performance of the model with a
devisedmatheuristic algorithm. Liu et al. (2023a) studied the project scheduling problemwith
unit-capacity resources and transfer times. They designedfive dominance rules to speed up the
exploration of applied branch-and-bound tree by After identifying identical and unpromising
nodes. Also, They suggested a heuristic using a series of priority rules to compute two lower
bounds and produce an upper bound.
Chen et al. (2022) developed a Genetic Algorithmwith a heuristic workforce assignment pro-
cedure considering material arrival times. They solved a multi-project case study using their
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model. Abdzadeh et al. (2022) integrated the PSP with supplier selection and transportation
problems and proposed a tabu search algorithm to solve the problem and reduce associated
costs. Liu et al. (2023b) have solved the PSP with resource transfer times using an improved
serial schedule generation scheme and a tree search heuristic method that prunes unpromis-
ing nodes in the search tree. Liu et al. (2021) proposed two methods for a unit-capacity
resource-constrained version of the PSP with transfer times based on neighborhood search
to minimize project duration. Zhao and Zhe (2021) developed a policy-based approximate
dynamic programming algorithm for solving decentralized multi-project scheduling prob-
lems with transfer times. They also built and examined the performance of 12 priority rule
heuristics. Patoghi and Mousavi (2021) developed a mathematical model for a combination
of ordering problems considering discount policy and the multi-site version of the RCPSP to
minimize project duration and total costs. Wei et al. (2023) considered a partial RCPSP for
the execution of parallel activities in single projects to achieve theminimummakespan.Wang
et al. (2021) compared the performance of two metaheuristics namely NSGA-II and Pareto
simulated annealing with the ε-constraint method and then solved a case study. Ren et al.
(2020) scheduled a case study of an aircraft moving assembly line using a branch-and-bound
embedded genetic algorithm, presuming that resource transfers and activities are coupled
with each other.
Rostami and Bagherpour (2020) investigated a decentralized multi-project scheduling prob-
lem and proposed a mixed integer linear programming model and an adapted GA aiming
to minimize the costs attributed to facility location and costs related to the project duration.
They applied a scenario-based TOPSIS approach (Technique for Order of Preference by Sim-
ilarity to Ideal Solution) to rank the final solutions. Ma et al. (2019) examined the tradeoff
between the number of activities splitting times and resource transfer times in an uncertain
environment. They solved the model with a commercial mathematical programming solver
and a tabu search algorithm and found out that robustness has a direct relationship with the
project due date and has a reversed relationship with transfer times. Poppenborg and Knust
(2016b) applied the project scheduling problem with transfer times to a hospital evacuation
case study and proposed a decomposition-based tabu search algorithm with priority rules.
Limited research has ventured into the utilization of simulation-based optimization method-
ologies for tackling this specific project type.Notably, the incorporation and thorough analysis
of uncertainties associated with activities’ durations and other relevant factors should be
underscored. It is imperative to acknowledge that conventional techniques have struggled to
offer optimal solutions in the face of these challenges.

2.4 Summary of literature review findings

Table 1 listed the relevant papers on the transportation of resources in the PSP Literature.
According to Table 1, distinctive contribution of this paper lies in the simultaneousminimiza-
tion of greenhouse gas emissions while optimizing for makespan, and cost within a multi-site
project by meticulous consideration of various activities’ modes and uncertainties inherent
in the duration of activities. While prior works have not addressed sequence-independent
transfer times, this paper makes a unique contribution by incorporating this factor into the
analysis. In addition, a unique mathematical model is presented to describe the model accu-
rately and then a simheuristic approach is developed to solve the problem. By doing so, this
paper provides amore comprehensive understanding of the impacts of resource transportation
in project scheduling taking environmental aspects into account.
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3 Problem description and formulation

3.1 Problem description

The MSMMRCPSP consists of J activities whose relationships are described by a graph
(G(U , E)). In this graph, nodes are sets of activities (U = {1, ..., J }), and edges (E) are
precedence relationships between each activity in a set. These activities have zero-lag and
finish-to-start relationships, indicating that an activity can only commence once its prede-
cessors (Pj ) are completed and its successors (Z j ) can only begin after its completion. The
problem entails allocating renewable and non-renewable resources to activities, which can
be executed in various modes with distinct durations, resource requirements, and costs. The
total available renewable resources of type k and the total available non-renewable resources
of typew for the projects are denoted by Rk and Nw respectively. Each activity can be imple-
mented in a mode (m j ∈ {1, ..., M}). The duration of activities in their modes is denoted by
d j,m and required renewable resources of type k ∈ K and required non-renewable resources
of typew ∈ W which is necessary to fulfill activity j in modem j are denoted by (R′

j,m,k) and
N ′

j,m,w) separately. Implementing each activity within a mode imposes its attributed costs
(CRk and CNw) on the total project costs. Also, the total amount of greenhouse gas emitted
(G) is driven by the amount of emitted greenhouse gases during activity implementation and
resource transportation.
In the MSMMRCPSP, each activity must be executed in its predefined location (l j ∈
{1, ..., L}) and resources are allocated to each location. After fulfilling each task renew-
able resources can be allocated to the activities in the same location or be scheduled for any
other locations. The transfer times for all renewable resources between the location of the
i th activity and the location j th activity is denoted by δi, j . Transfer times must fulfill the
triangular inequality (δi, j < δi,h + δh, j (∀i, j, h ∈ J )). This inequality constraint makes
sure that all routes are the fastest route, and no shortcut is available. Transportation costs,
resource consumption costs, emission rate of transportation, and emission rate during activ-
ity implementation are considered stochastic. Additionally, since non-renewable resources
are assumed to be directly transported to their determined locations at the beginning of the
project and will not be transported thereafter, the sum of the transfer times for non-renewable
resources is constant and negligible. Table 2 lists the indices, parameters, variables, and
objective functions of this study.

Figure 1 illustrates a simple numerical example of a single-mode version of the PSP at
three locations with two dummy activities (1 and 10). The first dummy activity distributes
renewable resources, while the latter collects them. Equation1 displays a sample for Delta
matrix, which shows the transfer times between activities i , j and h. Transfer times within a
location are not significant and are therefore excluded from the model and this study. Figure2
presents the optimal solution for the numerical example, which includes three locations (L1,
L2, and L3). When transfer times are considered, the makespan is 15 days. However, if
transfer times were ignored, the project makespan would be 11 days.
Although controlling and monitoring project makespan and costs are highly tied to the
availability of resources and logistics concerns, the environmental effects of activity imple-
mentation and resource transportation have received minor attention in conventional studies.
Hence, this research aims to reduce Greenhouse gas emissions (G) while reducing project
duration (D), and total project costs (C). This pursuit of optimizing renewable resource
scheduling serves to advance sustainability objectives, augmenting the significance of the
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Table 2 Notations of the MSMMRCPSP

Symbols Description

Indices

i, j, h ∈ U = {1, ..., J } Activity

k ∈ {1, ..., K } Renewable resource type

n ∈ {1, ..., N } Non-renewable resource type

m ∈ {1, ..., M} Mode of the activity

t ∈ {1, ..., T } Time

l ∈ {1, ..., L} Location

Parameters

Pj Predecessors of the j-th activity

π j Indirect predecessors of the j-th activity

Z j Successors of the j-th activity

Q j Indirect successors of the j-th activity

d j,m Duration of the j-th activity in mode m

Rk Total available renewable resource type k

Nw Total available non-renewable resource type w

R′
j,m,k Required k-th renewable resource for implementing j-th activity in modem

N ′
j,m,w

Required non-renewable resource from w-th type for j-th activity in mode
m

�i, j Transfer time between i-th and j-th activity locations

ESTj Earliest start time of the j-th activity

LSTj Latest start time of the j-th activity

τ j [ESTj , LSTj ]

L j Location of the j-th activity

CRk Costs of utilizing one unit of the k-th renewable resource

CNw Cost of consuming the w-th nonrenewable resource type

CTk Cost of transporting k-th renewable resource per unit of time

θ Conversion factor for calculating emitted greenhouse gases during activity
implementation

θ ′ Conversion factor for calculating emitted greenhouse gases during resource
transfer

Decision Variables

x j,m,t The binary variable takes 1 if j-th activity is scheduled for time t in mode
m, otherwise 0

yi, j,k Binary variable takes 1 if at least one unit of k-th renewable resource type
is transferred from i-th activity location to j-th one

f Ri, j,k The amount of k-th renewable resource type transferred from i-th activity
location to j-th one

Objectives

D Duration of the Project

C Total costs (modes and transportation costs)

G The amount of greenhouse gas emitted (Ton)
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Fig. 1 Activity on the node network of the example

Fig. 2 Resource transfers in the optimum solution of the example

research.

�i, j,h =
⎡
⎣
0 1 2
1 0 1
1 1 0

⎤
⎦ (1)

3.2 Problem formulation

A mathematical model of the problem, inspired by Kadri and Boctor (2018) is developed as
follows:

D =
M∑

m=1

τ∑
t=1

t x f ,m,t (2)

C =
J∑

i=1

J∑
j=1

K∑
k=1

CTk�i, j f
R
i, j,k +

J∑
i=1

M∑
m=1

τ∑
t=1

K∑
k=1

CRk Ri,m,k xi,m,t
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+
J∑

i=1

M∑
m=1

τ∑
t=1

W∑
w=1

CNwNi,m,wxi,m,t (3)

G =
J∑

i=1

M∑
m=1

τ∑
t=1

di,mθxi,m,t +
J∑

i=1

J∑
j=1

K∑
k=1

�i, jθ
′ f Ri, j,k (4)

Subject to:

M∑
m=1

τ∑
t=1

di,mθxi,m,t = 1 ∀i ∈ U (5)

M∑
m=1

τ∑
t=1

t x j,m,t −
M∑

m=1

τ∑
t=1

(t + di,m)xi,m,t ≥ 0 ∀i, j ∈ P (6)

M∑
m=1

τ∑
t=1

t x j,m,t −
M∑

m=1

τ∑
t=1

(t + di,m)xi,m,t − (T − �i, j )yi, j,k ≥ T

∀i ∈ U − {J }, ∀ j ∈ U − {πi }, ∀k ∈ K (7)

f Ri, j,k ≤ min(Ri,m,k, R j,m,k)yi, j,k ∀i ∈ U − {J }, ∀ j ∈ U − {πi }, ∀k ∈ K (8)

∑
i∈U−{Qi }

f Ri, j,k =
M∑

m=1

R j,m,k ∀ j ∈ U − {1}, ∀k ∈ K (9)

∑
j∈U−{πi }

f Ri, j,k =
M∑

m=1

Ri,m,k ∀ j ∈ U − {J }, ∀k ∈ K (10)

xi,m,t ∈ {0, 1} ∀i ∈ U , ∀m ∈ M, ∀t ∈ τi (11)

yi, j,k ∈ {0, 1} ∀i ∈ U − {J }, ∀ j ∈ U − {πi }, ∀k ∈ K (12)

f Ri, j,k ≥ 0 ∀i ∈ U − {J }, ∀ j ∈ U − {πi }, ∀k ∈ K (13)

Equation (2) calculates the total duration of the project (D) based on the finish time of
the last activity. The project cost (C) for implementing activities in their respective modes is
determined using Eq. (3), which comprises three components that calculate the cost of trans-
porting renewable resources and the costs of consuming both renewable and nonrenewable
resources. Equation (4) calculates the amount of CO2-equivalent greenhouse gas emitted
(G) during the implementation of activities in their relevant mode and renewable resource
transfers. Constraint (5) ensures that each activity is executed within its designated time
window (τi ) without being split or preempted. Constraint (6) ensures that all activities are
scheduled after their predecessors. Constraint (7) stipulates that when transferring some units
of resource k from activity i to activity j , the transfer time must be considered. Constraints
(8) ensure that the number of transferred resources ( f Ri, j,k) does not exceed the available
or required resources. Constraints (9) and (10) are resource-flow conservation constraints,
which ensure that the flow of resources into and out of each activity is conserved. Constraints
(11), (12), and (13) define the domain of the model’s decision variables.

123



Annals of Operations Research

Fig. 3 The proposed Simheuristic approach

4 The simheuristic approach

The paper presents a comprehensive solution methodology comprised of two key elements: a
scheduling simulationmodel and a tailored adaptation of theNSGA-II algorithm, specifically
designed to tackle the MSMMRCPSP. Illustrated in Fig. 3, the NSGA-II algorithm yields a
set of non-dominated solutions upon execution (Amelian et al., 2019). To identify the optimal
solution among these, the BWM technique is employed.
A simheuristic approach is relevant for metaheuristic and simulation problems due to its
ability to deal with uncertainty and stochastic elements. This approach enhances solution
quality by evaluating solutions under various scenarios, ensuring robustness (Juan et al.,
2010). Additionally, it is adaptable across logistics and manufacturing problems and effi-
ciently explore large solution spaces, leading to computational efficiency (Grasas et al.,
2016). Finally, the simheuristic approach provides practical, high-quality solutions for real-
world problems (Panadero et al., 2017). The choice of NSGA-II in this study is supported
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by its established success. NSGA-II is one of the most frequently used algorithms in the
literature for various aspects of the problem, known for its broad applicability and robustness
across different problem settings without requiring extensive parameter tuning (Servranckx
et al., 2024; Bredael & Vanhoucke, May 2024; Liu et al., 2024).

4.1 The simulationmodel

Due to the stochastic nature of real-world situations, estimates for costs and greenhouse gas
emissions during activity implementation and resource transportation are inherently uncer-
tain. The costs and the rate of greenhouse gas emissions are dependent on several factors such
as market fluctuations, vehicles, and activity machinery. This uncertainty directly affects the
total costs (C) and emitted greenhouse gases (G), and as a result, necessitates the design of
a simulation model that can effectively account for these stochastic variables. The proposed
simulation model, inspired by the work of Kadri and Boctor (2018), is designed to handle
both stochastic and deterministic input data types. To ensure the reliability of our results, the
model was run 30 times with stochastic input data, and the averages were reported. Addition-
ally, we conducted a sensitivity analysis to evaluate the impact of these parameters on the
model’s performance. The validation test results for the model outputs, presented in Sect.5,
confirm the robustness of our approach. This emphasis on the stochastic nature of real-world
situations is crucial for accurately modeling project scheduling problems. In this research,
both serial and parallel scheduling schemes are included in the model, along with forward
and backward schemes. Sections4.1.1 and 4.1.2 describe the serial and parallel adaptations
of scheduling schemes with transfer times.

4.1.1 Serial forward scheduling scheme

Forward Serial Scheduling Scheme (FSSS) begins and goes forward strictly based on the
sequence of the activity list. The FSSS selects the first unscheduled activity in the sequence
and each time searches thewhole timeline (∀t ∈ {0, . . . , T }) to find the first suitable time unit.
The optimal timeunit alignswith the fulfillment of both precedence relationships and resource
constraints. While precedence requirements are met by the FSSS through a straightforward
scan of the timeline from the conclusion of preceding activities, adept resource constraint
management necessitates the recurrent calculation of the subsequent variables each time an
activity is under scrutiny for a given time instance, denoted as t :

• Fk,t,l expresses the amount of free kth renewable resource type located at l that at time t .
The free resources are unscheduled from time t to the end of the scheduling horizon (T ).

• Rk,t,l represents the amount of reserved renewable resources of type k at time t and
location l. The reserved resources must be returned to their location at the reserved time.

• Ak, j,t is an L × 4 matrix of the available (Fk,t,l and Rk,t,l ) amount of kth resource type
from all locations for the j th activity starting at time t .

Equation14 illustrates an example of Ak, j,t matrix containing accessibility information of
kth renewable resource type (free and reserved) for the whole duration of the j th activity.
The first column corresponds to all locations, the second column represents the distances
from locations to l j . The third column shows the free resources (Fk,t,a) from all locations
at starting time of the activity considering the distances. The last column represents the
reserved resources of type k which are ready to arrive from all locations to the location of
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Fig. 4 Pseudo-code for serial forward scheduling scheme

the j th location (l j ) at start time and return to the reserved location on time.

Ak, j,t =

⎡
⎢⎢⎢⎢⎣

1 �1,l a13 a14 a15
2 �2,l a23 a24 a25
3 �1,l a33 a34 a35
... ... ... ... ...

L �L,l a43 a44 a45

⎤
⎥⎥⎥⎥⎦

(14)

Fk,t,l is set equal to Rk and Rk,t,l equal to 0 (∀k ∈ K ,∀t ∈ {0, . . . ,Upper −bound}, l =
0). Then the next activity-mode combination in the solution sequence will repeatedly be
selected until the final dummy activity. At the same time, the algorithm searches the timetable
from where all the predecessors of the activity are finished until the upper bound. Then
schedules the activity at the earliest opportunity under the condition that a bigger or equal
number of resourcesmust be available at its location. For every chosen activity in the sequence
list where precedence relationship constraints are met at time t, resource availability must
be checked. To this end, the available resources matrix, known as Ak, j,t , is calculated. It
contains the information on the locations, distances, and units of the free resources that can
be transferred until implementation time, as well as reserved resources that would arrive in
time and will return to their location before their previously assigned activity begins.

If the sum of all free and reserved available resources for set K , which includes all k
types, is bigger than or equal to the required resources of the activity-mode combination, the
activity can be scheduled at time t . After that, the locations in Ak, j,t are sorted based on two
priorities: first, the closest locations, and second, the locations containing the most units of
free and reserved resources available. Accordingly, providing the resources must begin from
the closest location containing the most resources until enough units are provided from the
furthest location with the least resources. Moreover, Fk,t,l and Rk,t,l should be updated to
incorporate the latest modifications. Figure4 presents a pseudo-code for the proposed serial
forward scheduling simulation, where T is the maximum scheduling time horizon.
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Fig. 5 Pseudo-code for parallel forward scheduling scheme

4.1.2 Parallel forward scheduling scheme

The parallel forward scheduling scheme (PFSS) begins and continues strictly on the project
timeline. It starts from the first time-unit of the project and lists all activities that its prede-
cessors have finished in the “Green list”. Then, the PFSS checks the resource availability of
activities in the green list at time t consecutively by calculating the Ak, j,t matrix for K types
of resources. The first activity that its required resources are available would be scheduled at
time t . The PFSS continues to schedule activities at time t until all activities in the green list
are scheduled or not enough resources are accessible for them at time t . Since the PFSS only
moves forward in time, considering the reserved resources are impossible. After scheduling
at time t , time moves forward by one unit. Then the same steps are repeated until timetable
all activities. Figure5 shows the pseudo-code of this process.

4.1.3 Backward scheduling schemes

In this paper, serial backward and parallel backward scheduling schemes are incorporated in
the simulation model. These schemes start from a predetermined end time for the project and
schedule the last activity to finish at that time. Then, they schedule the remaining activities
in reverse order, following the precedence relations. The difference between forward and
backward scheduling schemes is the direction of scheduling. Backward Scheduling is a
classic improvementmethod for project scheduling and is oftenmore successful than forward
scheduling scheme in reducing themakespan (Asadujjaman et al., 2021; Pellerin et al., 2020).
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Fig. 6 Pseudo-code of the NSGA-II

4.2 Adapted NSGA-II

The NSGA-II is a simple meta-heuristic that is easy to understand, apply, and modify for
project scheduling problems. In this study, it has been adapted to solve the MSMMRCPSP.
The NSGA-II is an extended version of the Genetic Algorithm (GA) that optimizes two or
more objectives (Ala et al., 2021). Inspired by the theory of evolution, the GA begins by
generating an initial set of solutions called the initial population. These solutions are then
evaluated using a fitness function to calculate the value of their objectives (in the case of
stochastic parameters the simulation technique is applied to evaluate the fitness values). The
GA ranks the solutions (known as chromosomes) and selects the best ones to reproduce
a better generation by mixing genes from the selected solutions. New chromosomes are
reproduced using single or multi-point crossover and mutation operators. The GA evaluates
the chromosomes again using the fitness function and reproduces new generations until it
reaches its termination limit.
The solution approach in this paper follows a similar structure, starting with generating |PG|
initial solutions and sending them to the simulation model to calculate the value of their
objectives. Then, the algorithm compares the solutions with each other and ranks them based
on the number of solutions that were dominated by other solutions. To search the solution
space the NSGA-II selects a portion of the best solutions and reproduces a new set using
these solutions.
In this step, the NSGA-II algorithm selects |PG × α| chromosomes to reproduce new
populations using several operators, including Two-Point Crossover (TPX), Magnet-Based
Crossover (MBX), Sequence Mutation, Mode Mutation, and Mode Reassignment using the
minimumNon-renewable Resource Consumption (NRC) priority rule. In genetic algorithms,
crossover operators are crucial as they create new generations of solutions from the existing
parental pool. The primary objective of these crossovers is to explore the potential solution
space effectively.

The algorithm sends the new population of solutions to the simulation model again. This
loop continues until a certain number of generated solutions are scheduled and evaluated.
Figure6 illustrates the pseudo-code of the NSGA-II. The following subsections describe the
steps in detail.

4.2.1 Generation of the initial population

In this step, a population of initial precedence-feasible solutions is generated using the struc-
ture shown in Fig. 6 . There are several solution encodings used in the PSP, including random
key, priority value list, activity list, and extended activity list (Luo et al., 2023). In this research,
the extended activity list is used as the chromosome, with two binary integers appended to it.
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Fig. 7 Precedence feasible solution encoding for chromosomes

It contains the activity list without altering its size or structure and eliminates extra computa-
tion for translating it into a schedule. Also, it follows the presented model and algorithm by
Kadri and Boctor (2018), making it available to address some aspects not considered in their
study. If the first binary integer equals 1, it indicates the use of a serial scheduling scheme;
otherwise, a parallel scheduling scheme is used. The second binary integer is dedicated to
forward or backward scheduling. Another list contains information on modes according to
the related activity list. Each solution in the NSGA-II algorithm is called a chromosome.
Figure7 shows an example of an activity list as a chromosome.

To generate initial solutions, a list of activities that their predecessors are finished is created
and named “Green list”. The algorithm then selects an activity (gene) and appends it to the
activity list (chromosome). To do this, the algorithm calculates the Critical Path Duration
(CPD) and applies the following priority rules for each activity:

• Latest Start Time (LST)
• Latest Finish Time (LFT)
• Slack Time (SLK)

The Roulette Wheel Technique (RWT) is then used to select a gene, which is appended to
the end of the chromosome. This process is repeated until the chromosome is complete.
This approach iteratively selects the activities until the chromosome is completed. The same
technique is applied to selectmodes; however, the priority rules are theminimum shortest fea-
sible mode (SFM) and minimum total work content (TWC) (Peteghem &Vincent and Mario
Vanhoucke,, 2011). Finally, the serial/parallel (S/P) and forward/backward (F/B) binaries are
selected randomly. The related pseudo-code is displayed in Fig. 8.

4.2.2 The TPX operator

The TPX operator selects two chromosomes, called father and mother, to generate a new
chromosome called son. The TPX selects two positions n1, n2 (from 2 to J −1, and n1 < n2)
from the father’s activity list. The son then inherits the genes from positions 1 to n1 and from
n2 to J . The empty positions between n1 and n2 in the son’s chromosome are filled with
genes from the mother in their original order. To create a daughter chromosome, the same
procedure can be performed by swapping themother and father chromosomes in the explained
procedure. Operators modify the mode list using the same steps as for activity lists.

4.2.3 The MBX operator

The Magnet-Based Crossover (MBX) operator is as an innovative crossover in genetic algo-
rithms, particularly in the realm of project scheduling optimization. The MBX Operator is
distinguished by its unique selection mechanism, where a segment of one parent’s chro-
mosome is transplanted into the other’s, ensuring the inheritance of critical genetic blocks.
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Fig. 8 Pseudo-code for generation of initial solutions

It meticulously identifies and preserves the relational structure between activities, thereby
enhancing the search for optimal scheduling sequences. The MBX operator not only retains
essential characteristics from the parent chromosomes but also introduces “free activities” in
a strategic manner, augmenting the diversity of the solution pool.
To implement the MBX operator, the chromosomes of two parents (father and mother) are
required. The MBX randomly selects two integers, n1 and n2 (1 < n1 < n2 < J ). It then
stores the father’s genes in positions n1 to n2 as a block. The MBX scans inside the mother
chromosome to find the minimum and maximum position numbers (indices) of the activities
within the block and stores them as n0 and n3 respectively (Zamani, 2013).
Offspring in the MBX contain the following main sets of activities:

1. Activities in position 1 to n0 − 1 in the mother chromosome
2. The predecessors of all activities in the block
3. Activities in the block
4. All successors of activities in the block
5. Activities in the position n3 + 1 to J in the mother chromosome

Some activities may exist between positions n0 and n3 that are neither predecessors nor
successors to any of the activities in the block. These activities are called ’free activities’ and
q represents the total number of them. Free activities are inserted directly before or after the
block in their original order. To determine whether an activity should be inserted before or
after the block, a stochastic variable p (p = 0.5 | q = 1, p = 2/(q + 2) | q �= 1) and a
uniform random number between 0 and 1 is assigned to every free activity. Starting with the
first activity, if the assigned number is greater than p, then the free activity is placed before
the block. If it is smaller than or equal to p, the rest of the free activities are placed after the
block. Figure9 illustrates the different parts of the offspring’s chromosomes.
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Fig. 9 A representation of finished MBX offspring

4.2.4 Mode reassignment

Mode reassignment is a technique in resource-constrained project scheduling, aiming to
optimize the consumption of non-renewable resources. At its core, this method employs the
Non-Renewable Resource (NRC) priority rule, which intelligently assigns modes to jobs
based on the probability of minimizing resource usage. By calculating the likelihood of
each job-mode combination, Mode reassignment technique ensures that the most resource-
efficient modes are favored, thereby increasing the chances of achieving feasible solutions.
This technique is particularly beneficial in scenarios where resource availability is a limiting
factor, and its strategic application can lead to significant improvements in both project
efficiency and sustainability.
To reassign the mode lists using NRC priority rule, Pi,m which represents the probability of
selecting the i th job with mode m, is calculated according to Eq. (15) and (16) (Heilmann,
2001):

Xi = (N ′
i,1,w.N ′

i,2,w...N ′
i,M,w) ∀i ∈ J ,∀m ∈ M (15)

Pi,m = (Xi − N ′
i,m,w)/Xi (16)

This priority rule can be applied to all or some non-renewable resources and maximizes
the probability of generating mode lists with the least possible non-renewable resource con-
sumption. As a result, it maximizes the probability of finding non-renewable resource feasible
solutions.

4.2.5 Mutation

To generate new solutions using the mutation operator, three random values x1, x2, and x3
between 0 and 1 are generated for every incoming chromosome. If x1 is lower than μ =
0.95, mutation is applied on the activity list, if x2 is lower than μ, it is applied to the F/B
integer, and if x3 is smaller than μ, it is applied to the S/P integer. Mutation on the activity
list randomly selects position i in the (2, J − 2) range. If the i th activity has no precedence
relationship with the i + 1th activity their positions on the activity list are switched. This
switch is also executed on the mode list. Mutation in F/B or S/P integers changes them from
0 to 1 and vice versa.

4.2.6 Pareto-based ranking

In this study, solutions are ranked based on the Pareto front approach. This approach compares
all solutions with each other and ranks them by the number of times they were dominated in
all objectives. Solutions that are not dominated, form a set called the first Pareto front. Using
the gridding technique, some similar solutions were removed to maintain solution variety
and leave room for new solutions. The detailed procedure of the Pareto-based ranking is
described by Yue et al. (2021).
During the calculation of objectives, some near-optimum solutions may exceed the prear-
ranged number of non-renewable resources (Nw), but they may still help the algorithm to
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Table 3 Tuned Parameters for
NSGA-II

Symbol Parameter Optimal Value

I Maximum Iteration TC

PG Population of generations 100

α Rate of eminent parent selection 0.5

RX Rate of crossovers 0.5

RM Rate of mutations 0.15

PF Pareto fronts max population 20

become closer to the optimum solution. To keep such infeasible solutions in the basket,
Alcaraz et al. (2003) suggested imposing a penalty on project duration based on Excess of
Required Resources (ERR) according to Eq. (17) and (18). The total number of requested
non-renewable resources that exceed the predetermined capacity of Nw are stored as ERR
as formulated in Eq. (17):

Pi,m =
W∑

w=1

max

(
0,

(
J∑

i=1

(N ′
i,m,w) − Nw

))
(17)

If, after calculating the objectives, the ERR value is larger than zero, then the solution is
infeasible in terms of non-renewable resources. However, such solutions may still help the
algorithm find better solutions, especially if they are close to the optimum feasible search
area. Therefore, this approach is designed to keep them in the current population by applying
a penalty using Eq. (18), where MDU is the maximum duration of feasible solutions in the
current population.

Rank =
{
D If ERR = 0

D + MDU − CPD + ERR Otherwise
(18)

4.2.7 Parameter setting

The parameters of an algorithm play a key role in its performance. Even a well-customized
algorithm may generate weak solutions if its parameters are not set appropriately. There are
severalmethods for parameter setting in the literature, and this study uses the Taguchimethod.
In the Taguchi method, the Signal-to-Noise (S/N) ratio is defined to minimize variations in
results in response to different input scenarios. Four performance metrics were examined
to calculate S/N ratios for different levels of input parameters. The considered performance
metrics are the Ratio of Non-Dominated Individuals (RNI), Mean Ideal Distance (MID),
Maximum Diversity (MD) and the Spacing Metric (SM). Description of these metrics are
provided by Ganji et al. (2021), Audet et al. (2021), and Sharifi et al. (2021). Termination
Condition (TC) is reaching a total of 1000 visited solutions for the first set of computations,
and 5000 for the second set of computations. Both limitation criteria are trending TCs in the
literature. The tuned parameters are shown in Table 3.

4.3 The best-worst method

Selecting a single solution from a set of alternatives while considering multiple criteria can
be complex and challenging, particularly when priorities conflict. To identify the most fitting
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solution, the Best-Worst Method (BWM) is applied to the solutions on the final Pareto front
obtained from the proposed simheuristic method. The BWMdetermines themost appropriate
weights for evaluating these solutions. The BWM is a renowned method in Multi-Criteria
Decision Making (MCDM) literature, with several extensions developed in conjunction with
other methods (Dong et al., Feb. 2021; Wu et al., 2024). Due to its unique procedure, the
BWM requires fewer pairwise comparisons compared to other MCDM methods such as the
Analytic Network Process (ANP) and the Technique for Order of Preference by Similarity to
Ideal Solution (TOPSIS). This advantage significantly enhances the efficiency of the BWM
(Mi et al., 2019).
The BWM consists of five steps. In the first step, a set of decision criteria is defined, which
are the same as the objectives for the simheuristic approach (O = {o = 1 (Duration), o = 2
(Costs), o = 3 (Greenhouse gases)}). In the second step, the project manager determines the
most and least valued criteria. In the third step, the project manager ranks the preference of
the best criterion over all other criteria by assigning a number between 1 and 9 and generating
the Best-To-Others vector (ABO = (aB1, aB2, aB3)). Likewise, in the fourth step, a Worst-
To-Others vector is created by an expert ranking all criteria over the worst criterion using
a number between 1 and 9 (AOW = (a1W , a2W , a3W )). Finally, in the fifth step, optimum
weights (W ∗

1 ,W ∗
2 ,W ∗

3 ) for the criteria are found using Eqs. (19) to (21). The WB and Ww

are weights of the best and worst criteria in the BWM.

maxo{|Wb

Wo
− aBO |, | Wo

Ww

− aOW |} (19)

Subject to:

O∑
o=1

Wo = 1 (20)

Wo ≥ 0 ∀o ∈ O (21)

5 Computational results

This section serves several purposes. Firstly, it provides a detailed comparison of the results
obtained by the proposed algorithm and state-of-the-art algorithms under deterministic and
single-objective conditions. Secondly, it describes the generated instances, the case study,
and provides simulation model validation. In other words, the NSGA-II is tested first, fol-
lowed by testing the model for deterministic MSMMRCPSP and finally testing the proposed
simheuristic using a case study. Subsections 5.5 and 5.6 are dedicated to the convergence of
NSGA-II and the optimization results of the algorithm for the studied case. Finally, the results
of the BWM for Pareto front solutions are presented. The proposed approach was developed
entirely using the Python programming language (CPU: Intel Core i5-9300H, 2.4GHz).

5.1 Assessment of the algorithm

To assess the performance of the proposed solution approach, instances from twowell-known
datasets were solved without considering resource transfer times. These datasets are PSPLIB
and MMLIB, which includes MMRCPSP with the single objective of minimizing makespan
while allowing a maximum number of schedules of 5000. PSPLIB consists of instances with
10, 20, and 30 activities (536, 554, and 640 instances respectively), while MMLIB50 and
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Table 4 The comparison of main algorithms in J10 and J20 data sets

ID Algorithm J10 J20
%Dev. BKS

1 Cooperative co-evolutionary WLZO 0.28 NR

2 Simulated annealing JSA 1.16 6.74

3 Artificial bee colony CLPE 1.06 5.78

4 Ant Colony CHA 0.32 2.05

5 GA AGA 0.24 1.91

6 PSO and DE ZLZH 0.00 1.82

7 Reinforcement learning TCGLS 0.33 1.69

8 Modified shuffled frog-leaping RSS 0.18 1.64

9 Ant colony EFEA 0.14 1.62

10 Estimation of distribution JRR 0.28 1.55

11 GA LCSFLA 0.10 1.40

12 Shuffled frog-leaping LZA 0.09 1.10

13 Discrete PSO SEEDA 0.09 1.09

14 Cooperative discrete PSO LCEDA 0.12 1.28

15 Hybrid-GA CYDP NR 0.97

16 Multi-agent based learning SLC 0.05 1.62

17 Controlling search LHGA 0.06 0.87

18 Artificial immune system MAN 0.05 0.80

19 GA CWC 0.01 0.71

20 Local Search VPVAIS 0.02 0.70

21 GA VPVGA 0.01 0.57

22 Cooperative co-evolutionary SAAGA 0.03 0.56

23 Hybrid GA HGFA 0.02 0.41

24 Path relinking Albert18 0.01 0.06

25 Modified variable neighbourhood MVNSH 0.15 0.27

26 Evolutionary hybrid algorithm HEA 0.00 0.06

27 Hybrid-GA LOVA09 0.06 0.87

28 Differential evolutions DAMA09 0.09 0.70

29 GA VANP10 0.01 0.57

30 Scatter search VANP11 0.00 0.32

31 This study GA 0.01 0.92

MMLIB100 fromMMLIB each contain 540 instances with 50 and 100 activities respectively.
Vanhoucke et al. (2016) published a comprehensive overview and detailed characteristics of
these commonly used datasets.
After solving all instances, the results are presented in Tables 4 and 5. The columns labeled
J10 and J20 represent the percent deviation of the results from the Best-Known Solutions
(BKS), expressed as %Dev. BKS. In Table 5, the columns labeled J30, MMLIB50, and
MMLIB100 compare the datasets using the percent deviation from the Lower Bound (LB),
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Table 5 The percent deviation from Lower Bound in J30, MMLIB50, and MMLIB100 datasets

ID Algorithm J30 MMLIB50 MMLIB100
%Dev. LB

1 GA COEL11 14.44 NF NF

2 GA OZDA99 27.38 NF NF

3 Ant colony optimization CHIA08 15.18 NF NF

4 GA MORE97 24.99 NF NF

5 GA ALCA03 21.83 NF NF

6 Multi-agent learning WAUT11 13.91 NF NF

7 Particle swarm optimization JARB08 18.14 49.98 NF

8 Particle swarm optimization ZHAN06 18.63 49.25 57.42

9 GA TSEN09 17.06 65.17 72.95

10 Estimation of distribution WANG12 15.55 43.17 52.94

11 Scatter search RANJ09 16.21 38.49 45.16

12 Simulated annealing JOZE01 18.64 49.06 53.97

13 GA ELLO10 16.16 43.84 56.21

14 GA HART01 15.96 35.40 39.96

15 Hybrid-GA LOVA09 14.58 34.16 36.29

16 Differential evolution DAMA09 15.43 46.19 52.31

17 GA VANP10 13.75 34.07 37.58

18 Scatter search VANP11 13.66 28.17 29.77

19 Path relinking PR 12.85 NF NF

20 Mirror-based GA MGA 19.55 45.00 52.00

21 Modified variable neighborhood MVNSH 13.63 42.50 73.20

22 Evolutionary hybrid algorithm HEA 12.55 26.53 27.78

23 This study GA 15.10 32.31 38.39

expressed as %Dev. LB. In Tables 4 and 5, NR indicates that the authors have not reported
the results, while NF means that not all obtained solutions were feasible.

The total number of evaluated solutions are constrained to 1000 and 5000, respectively.
As illustrated in Tables 4 and 5, the findings indicate that the proposed algorithm excels
in yielding outcomes that closely approach optimality. The abbreviations employed within
these tables are elucidated and detailed by Zaman et al. (2020).

Figure 10 depicts the average time required to solve the multimode subsets of the
PSPLIB andMMLIB using the proposed algorithm. The results demonstrate the high perfor-
mance of the algorithm in generating feasible and applicable solutions within a reasonable
computational time.

5.2 Generated instances

To further validate the model, a total of 100 instances from the J10, J20, J30, MMLIB50,
and MMLIB100 subsets are extended to fit the MSMMRCPSP. This extension, inspired by
Laurent et al. (2017), has three main features:
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Fig. 10 Average computational time The Real-World Case

Table 6 Pareto front metrics

Subsets Average of SM Average of RNI Average of MID Average of MD

J10 45354 0.0029 360866 1099948

J20 52292 0.0030 399917 1229396

J30 93177 0.0030 565115 1820606

J50 99865 0.0031 972460 2719752

J100 62209 0.0031 708743 1712142

Grand Total 70579 0.0030 601420 1716369

1. The subsets were randomly grouped into two groups: one with two sites and one with
three sites.

2. Direct routes are the fastest routes, while detours are slower than direct ones.
3. All renewable resources are mobile and can be transferred upon managers’ decision.

The algorithm’s performance is evaluated using four metrics introduced in Sect. 4.2.7 and
the results are listed in Table 6. The SM measures the average distance of adjacent solutions
in Pareto front and shows the uniformity of the distribution of the solutions. Smaller values
of SM indicate a more evenly distributed Pareto front. The RNI measures the proportion of
non-dominated solutions in the Pareto front to total number of generated solutions. The MID
shows the average distance between each solution and the point with the best objective value
for each objective. Larger values of RNI and smaller values of MID indicate better Pareto
front approximation. The MD measures the maximum distance between any two solutions
along each objective dimension. Larger values of MD indicate more diverse Pareto front
approximation. Additionally, Fig. 11 displays the last Pareto front for “J10016−4” instance
in contour shape.

5.3 Case study

The primary objective of this paper is to propose a solution methodology for a company
active in engineering, procurement and construction projects in the petrochemical industry.
The project under study involves 235 activities across three sites of a petrochemical plant.
These activities must be carried out non-preemptively in three operational modes and require
key renewable resources such as heavy machinery and skilled workforce. Non-renewable
resources required for most activities include materials such as cement, concrete, bricks,
different types of steels and pipes.
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Fig. 11 Contour chart of the last Pareto front for J10016 − 4 instance

Due to the limited availability of resources, it is critically important to coordinate activities
within a single timetablewhile considering resource transportation. This presents a significant
challenge for the project’s decision-makers. To address this challenge, this paper proposes a
solution approach based on case data gathered from the company’s records.

Three steps were implemented to fit the data to distribution functions using the maxi-
mum likelihood estimation method. Activities were first sorted based on expert consultations
and resource consumption. Then, the minimum, maximum, and average values of activity
duration, resource costs, and transfer cost for each mode were extracted. Finally, the maxi-
mum likelihood estimation method was applied to find the best-fitting distribution. The main
parameters of the case study are reported in Table 7 and are in line with results provided
by López et al. (2009) regarding greenhouse gas emission. The case study is available on
Mendeley Data.

5.4 Simulationmodel validation

To validate the simulation model, 20 scenarios were extracted from the records of the studied
company and solved using the simulation model. The input data for the model included the
sequence of activities and related modes, as in Sect. 4.2.1. The average results of 30 times
running the model were compared with actual case study values for 20 selected scenarios, as
shown in Fig. 12.

The mean and median differences between the actual and calculated durations using
the simulation model are −0.25 and −2 days respectively. The same values for costs and
emitted greenhouse gases are −0.44, −1.35, 1.28, and 0.42. Based on the closeness of the
actual values with simulation results, it can be concluded that the simulation model generates
reliable results.
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Fig. 12 Comparison of the simulation outputs with sample projects of the company

5.5 Convergence

Convergence in algorithms refers to a stable trend of solutions in several loops of iterative
algorithms toward a certain point. To assess the ability of the proposed NSGA-II in producing
converging results the value of the objectives through optimization loops was monitored and
recorded. Figure13 illustrates that project duration, cost, and greenhouse gas emitted narrow
down toward the minimum objective values found within 25 loops of the NSGA-II.

5.6 Case study optimization

This subsection provides information on optimization results of the case study using the
proposed simheuristic with presented parameters in Sect. 4.2.7. The NSGA-II solved the
problem in 280 and 1380s respectively with 1000 and 5000 termination condition. The final
objective values of the results are listed in Table 8. Each row represents the value of the objec-
tives for each solution in the front. The first column represents the project makespan in days
and the other columns report total project cost regarding mode selection and transportation
in million United States Dollar (USD) and emitted greenhouse gases in tons.

Based on classic methods of project scheduling, managers plan to transfer resources based
on their knowledge and experience. However, these conventional methods are not efficient.
The proposed simheuristic approach achieved significant improvements, as follows:
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Fig. 13 Converging values of the objectives in NSGA-II iterations

• Project Duration (D): Reduced from 599 days to 523 days, a 12.7% decrease.
• Costs (C): Reduced from 32.2 million USD to 28.5 million USD, an 11.4% decrease.
• GreenhouseGasEmissions (G): Reduced from207.9 tons to 179.7 tonsCO2-equivalent,

a 13.6% decrease.

These comparisons highlight the effectiveness of the proposedmodel in optimizing project
scheduling, reducing costs, and minimizing environmental impact compared to conventional
methods based on the knowledge and experience of project managers.

The last Pareto front for solutions in Table 8 is illustrated in Figs. 14 and 15, which show
the surface and contour charts, respectively. Figure 15 represents project duration as depth,
with Bold italic indicating shorter durations and yellow indicating longer durations. The chart
shows that as total project costs (X-axis) and greenhouse gas emissions (Y-axis) decrease,
project duration increases, and vice versa. In other words, scheduling the project with shorter
modes results in higher greenhouse gas emissions and expenditures.
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Table 8 The objective values of the last Pareto front

Solution Project Duration (Day) Project Costs (Million USD) Greenhouse Gas Emission (Ton)

1 536 36.8 182.0

2 529 37.1 max 191.2

3 529 34.1 192.3

4 536 33.4 183.3

5 529 31.7 194.1

6 526 34.2 198.4

7 523 32 276.3 max

8 549 max 32.8 179.7 min

9 526 32.6 199.4

10 523 min 32.5 271.2

11 537 32 186.4

12 529 35.3 191.7

13 549 30.3 180.7

14 529 30.4 195.6

15 526 29.9 209.7

16 526 29.6 215.7

17 526 29.1 238.5

18 537 29.1 203.0

19 534 28.8 265.6

20 530 28.5 min 265.8

Fig. 14 The surface of the last Pareto front of the NSGA-II
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Fig. 15 Contour chart of the last Pareto front of the NSGA-II

Table 9 Input variables and output values of the BWM

Project duration Project costs Greenhouse gas Emission

Project duration aB1 = 1 aB2 = 2 aB3 = a1W = 3

Project costs 1/2 1 a2W = 2

Greenhouse gas emission 1/3 1/2 a3W = 1

Weights 0.54 0.29 0.17

5.7 Selecting the best solution

The BWM is applied to select the best solution among 20 solutions of the Pareto front
where opposing selection objectives make the decision-making process complicated. The
project owner may rather pay for more expensive modes to finish the project earlier than
assigning fewer resources and spendingmore time on the project. This also applies to emitted
greenhouse gases. The first part of Table 9 lists the results of a survey conducted to extract
the relative preference of the project owner for each objective. Based on the information, the
owner has assigned more priority to the project makespan. The final row in Table 9 lists the
resulting weights of the problem by solving Eqs. (19) to (21).

After calculating the weights for each criterion using the BWM, solutions of the Pareto
front are normalized between the minimum and maximum values of each objective. Then,
the sum-product values are computed and listed in Table 10. According to this Table, the
15th solution is ranked as the best solution. Although the BWM is a recognized approach in
the literature, the outputs of the simheuristic model were tested using the Analytic Hierarchy
Process to verify the results of the BWM. In this experiment, solutions 15 and 16 were ranked
as the best-fitting solutions.
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Table 10 Comparing Pareto
front solutions by BWM

Solution Project Project Greenhouse Sum Rank
Duration Costs Gas Emission product

1 0.50 0.03 0.98 0.4437 18

2 0.77 0.00 0.88 0.5635 16

3 0.77 0.35 0.87 0.6633 11

4 0.50 0.43 0.96 0.5568 17

5 0.77 0.63 0.85 0.7416 6

6 0.88 0.34 0.81 0.7119 8

7 1.00 0.59 0.00 0.7146 7

8 0.00 0.50 1.00 0.3125 20

9 0.88 0.52 0.80 0.7645 5

10 1.00 0.53 0.05 0.7065 9

11 0.46 0.59 0.93 0.5781 15

12 0.77 0.21 0.88 0.6237 13

13 0.00 0.79 0.99 0.3956 19

14 0.77 0.78 0.84 0.7831 4

15 0.88 0.84 0.69 0.8383 1

16 0.88 0.87 0.63 0.8381 2

17 0.88 0.93 0.39 0.8157 3

18 0.46 0.93 0.76 0.6478 12

19 0.58 0.97 0.11 0.6125 14

20 0.73 1.00 0.11 0.7056 10

Table 11 Parameter levels for sensitivity analysis

Parameter Low Level Medium Level High Level

CT1 TRI(880, 2800, 5600) TRI(1100, 3500, 7000) TRI(1320, 4200, 8400)

θ TRI(0.04, 0.072, 0.08) TRI(0.05, 0.09, 0.1) TRI(0.06, 0.108, 0.12)

θ ′ TRI(1.28, 1.44, 1.6) TRI(1.6, 1.8, 2) TRI(1.92, 2.16, 2.4)

5.8 Sensitivity analysis

Sensitivity analysis is a crucial step in validating the robustness and reliability of the model.
This section aims to evaluate how the variations in stochastic input parameters influence the
model’s output. In this experiment, CT1, θ , and θ ′ were systematically altered by ±20%,
across 21 scenarios of the case study. The different values considered for these variables are
shown in Table 11.

The results of running the model for each scenario are listed in Table 12 (L, M, and H
symbolize Low, Medium, and High levels from Table 11). From this table, it is evident that
altering the three variables did not affect the project duration (D). However, changes in the
transportation cost of the resources (CT1) had a direct effect on the total project cost (C), with
costs ranging from 23.9 to 38.8 Million USD. Similarly, when the greenhouse gas emission
conversion factors (θ and θ ′) are at low levels, the emitted greenhouse gases (G) decrease,
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Table 12 Sensitivity analysis Run CT1 θ θ ′ D C G

1 L L L 518 23.9 147.7

2 L L M 519 24.2 146.1

3 L M M 517 20.9 243.1

4 L L H 517 26.3 174.3

5 L H H 522 25.4 309.4

6 L M H 517 31.0 296.3

7 L H M 517 29.1 308.4

8 M M M 526 29.9 209.7

9 M M L 522 30.8 201.4

10 M L L 533 29.9 144.7

11 M M H 533 25.7 206.8

12 M H H 512 28.7 253.1

13 M L H 524 29.7 158.8

14 M H L 509 26.4 174.3

15 H H H 510 38.8 304.1

16 H H L 529 25.0 271.2

17 H L L 539 31.3 140.9

18 H H M 519 25.3 230.2

19 H M M 517 34.7 293.6

20 H L M 544 27.0 143.2

21 H M L 507 34.3 196.3

and they increase when the conversion factors are higher, with emissions ranging from 140.9
to 309.4 tons.

6 Discussion

Project scheduling is the backbone of management in project-oriented organizations and
plays a fundamental role in the success of such organizations by optimizing the costs and
duration of projects. Project-oriented companies repeatedly face the need for transferring
scarce resources such as huge machinery between activity locations. Also, companies are
under social pressure to cut their harmful impacts on the environment and since logistic
operations take a big share of damaging effects through greenhouse gas emissions, it is
necessary to implement a reliable and efficient approach to find an optimum or near-optimum
solution to minimize project makespan, costs, and greenhouse gas emissions simultaneously.

6.1 Theoretical contribution

A simulation model was developed to incorporate the stochastic nature of greenhouse gas
emission rates, costs of resource transportation and costs of using renewable resources. To
validate the model outputs, the results of 20 project instances from the studied company were
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compared with the results of the simulation model. Also, a metaheuristic algorithm (NSGA-
II) was adapted with magnet-based crossover, two-point crossover, mode reassignment, and
mutation operators for this problem. To assess the algorithm, it was run to optimize the project
instances from the PSPLIB and the MMLIB. The proposed approach proved compatibility
with the datasets and generated feasible solutions in a reasonable computational time. Then,
the suggested algorithm was applied to the studied project. The results indicate that the
algorithm successfully reduced three objectives of project duration (D), project costs (C),
and Greenhouse gas emission (G). As advised by Wang et al. (2021), transfer times in the
proposed model is considered to enable simultaneous scheduling and resource transfers in
an uncertain environment.

6.2 Managerial/practical implication

Interesting managerial insights can be received from the results. Resource transfers are
ignored mostly while they profoundly affect timetables. Project duration is extremely depen-
dent on the sequence of activities as well as transfer times. Therefore, it is necessary to
regard resource transfers accordingly, especially in infrastructure projects such as railways
or pipeline establishment. Project managers are responsible for several stakeholders with dif-
ferent priorities and must control numerous parameters and variables while scheduling and
implementing projects. The proposed procedure in this study was able to include a diverse
range of parameters and variables and can assist managers to schedule projects considering
resource transfers and to optimize conflicting objectives in large-sized problems in reason-
able computational time. This paper provides managerial and practical implications not only
for project managers but also government authorities to help them legislate more sustainable
and environmentally friendly policies.

6.3 Limitations

One major limitation of this study refers to the assumption that precedence relations are
zero-lag and finish-to-start. Further research shall consider possible lags due to the projects’
uncertainties. Second, the main assumptions are a) the sum of the transfer times for non-
renewable resources is constant and negligible, b) the transfer times within a location are
not significant, and c) the renewable resources require no set-up time in every location.
Including these parameters in the algorithm increases the precision level of scheduling.
Another limitation applied is considering a single project problem. This limitation can be
easily expanded to multi-project problems by considering the transfer times between projects
and the critical paths of a set of projects simultaneously.
A comprehensive cost analysis of the proposed approach is not included in this study. Since,
the cost of implementationmay depend on various factors, such as the quality and availability
of the data, the complexity and size of the problem, the maintenance and updating of the
models and algorithms, the computational resources, etc. The calculations and in this study
had a limited scope to perform an analysis since they were applied a personal computer.

6.4 Future research

The authors would like to point out that future research should focus mainly on more features
and aspects from real-world projects. These features may include the effects of routing on the
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problem, uncertainty, risk management, and robustness maximization. For instance, papers
from Rabet et al. (2024), and Ganji et al. (2021) focusing on the applications of scheduling
are valuable sources of inspiration.
Future research could expand on this study by creating new algorithms or refining existing
ones, like Multi-Objective Evolutionary Algorithms based on Decomposition, or heuristic
methods (like NSGA-II and the Q-learning algorithm), to address similar issues. This would
allow for comparisons between the proposed methods in this study and newly developed
algorithms (Rodríguez-Ballesteros et al., Mar. 2024; Yang et al., 2024). Additionally, the
published paper by Torba et al. (2024) inspires evaluating the performance of priority rules
for selecting activities in an uncertain environment and investigating the multi-skill multi-
project resource-constrained scheduling problem. The proposed models in these papers and
current study canbe expanded formulti-project contexts considering global and local resource
transfers. Furthermore, considering schedule risk analysis during project control while opti-
mizing the RSCPC problem will improve the project outcome (Song et al., 2021). Future
research shall include risk parameters in resource allocation to better manage scheduling.
Furthermore, logistics managers shall identify competitive performance scores and analyze
the performance of their decision-making system based on competitive priorities (Pathak et
al., 2021). Finally, the project activities are assumed non-preemptive. Future research shall
allow activity splitting or interruption of activities at any time of project execution by con-
sidering the relevant costs. The development of an optimal algorithm to solve complex cases
and the assessment of the algorithm’s performance shall be investigated.
Moreover, addressing the limitations identified in this study could enhance the applicability
of the proposed method. This includes performing a comprehensive cost analysis of the
proposed approach, conducting a sensitivity analyses on modes and activity durations, and
expanding the applicability of the simulationmodel. These advancements could providemore
accurate and holistic view on the MSMMRCPSP.

7 Conclusion

In summary, our research endeavors to pioneer a novel pathway in addressing the intricacies
of multi-site multi-mode resource-constrained project scheduling algorithm. By ingeniously
amalgamating simheuristic modeling, our approach emerges as a beacon of innovation, steer-
ing the optimization process towards the triad of minimizing greenhouse gas emissions,
optimizing makespan, and costs during resource transportation. Significantly, the essence
of this research lies in its unprecedented integration of environmental considerations and
sequence-independent transfer times, effectively breaking new ground in the domain of the
MSMMRCPSP. Remarkably versatile, the proposed algorithm holds promise for broader
application across a spectrum of resource-constrained scheduling challenges encountered
within multi-project setting. In addition, the inclusion of transfer times within our model
empowers simultaneous scheduling and resource transfers, evenwithin the unpredictability of
the environment. By orchestrating this intricate symphony, our research not only contributes
to efficient problem-solving but also showcases its potential to drive sustainable and environ-
mentally conscious project management practices. In the landscape of project scheduling,
our study stands as a testament to the capacity of innovation to reshape conventions and align
objectives, fostering a future where optimal project outcomes and environmental stewardship
go hand in hand.
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