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A B S T R A C T

How to upgrade business processes to improve production efficiency is an ongoing concern in industrial research.
While previous studies have extensively examined various prioritization schemes at each stage of the business
process, there has been a lack of investigation into the financial resources required for their implementation. The
attainment of sufficient and stable financial support necessitates stability in stock prices, making the control of
significant volatility in stock markets a critical issue. This study examines the effectiveness of three design
schemes of price limit policy, a prevalent policy that intends to control significant volatility in financial markets
and stabilize the market. Utilizing a heterogeneous agent-based model that simulates trading agents’ processes of
updating strategies through genetic programming algorithms and incorporates specialized designs for price limit
policies, this study demonstrates that an asymmetric limit policy—consisting solely of a lower price limit
(without an upper price limit)—can significantly enhance market quality by achieving lower volatility, higher
market liquidity and better price effectiveness. Furthermore, we investigate the applicable conditions of asym-
metric price limits. The findings suggest that an extremely restrictive limit range could lead to volatility spillover,
while a 10% range is deemed appropriate for achieving better efficiency. Additionally, the asymmetric price
limit mechanism has the potential to significantly reduce market volatility by up to 12.5% in volatile, low
liquidity, and low price efficiency markets, which aligns with the declining range from bubble-crash periods to
stable periods in the Chinese stock market. These results are further supported by sensitivity analysis.

1. Introduction

The optimization of business processes is a perennial concern in in-
dustrial research. Numerous studies have investigated this issue across
various segments, such as design, manufacturing, production planning,
and supply chain management (e.g. Ta et al., 2023; Zhang et al., 2023;
Latoufis et al., 2024). These studies have proposed corresponding
countermeasures and suggestions that greatly facilitate theoretical and
practical development in this area. However, the enhancement of
business processes requires substantial financial support for hardware
and software upgrades as well as management promotion. Without
strong financial backing, there is a risk of capital chain rupture, insuf-
ficient investment in process optimization, and even corporate bank-
ruptcy (Wruck, 1990). In other words, without sufficient and stable
financial support, the optimization of business processes remains unat-
tainable even with specific solutions in place. Financial support serves as

an essential underpinning for implementing process improvement
schemes in the industry. The financial issue has been habitually over-
looked in previous related research outputs despite its importance.
Therefore, it is necessary to explore reliable ways to ensure sufficient
finance in industrial companies.

Prior research has established that the performance of corporate
stock, encompassing its return and volatility, can have a significant
impact on the level of financing difficulty (Ahmed and Hla, 2019).
Specifically, a decline in stock value and excessive volatility may un-
dermine investor confidence, thereby leading to an increase in com-
panies’ financing costs. Consequently, to ensure stable cash flow and
secure adequate financial backing for business process upgrades,
appropriate measures should be implemented to mitigate abnormal
fluctuations in the stock market.

Price limits are common policies that intend to control significant
volatility in stock markets (Danışoğlu and Güner, 2018; Wong et al.,
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2020). Daily price limits specify the upper and lower limits that stock
prices are allowed to trade within a single day. After the 2008 Global
Financial Crisis, 23 of the 43 largest stock exchanges in the world
adopted the price limit policy on individual stock prices to moderate the
stock market volatility (Kim and Park, 2010). Until now, markets with
no limiting mechanisms are becoming increasingly rare (Sifat and
Mohamad, 2020). Despite its gradual prevalence in the market, research
by financial economists has debated the role of price limit policies, with
evidence being inconclusive. One stream of research reports a deterio-
ration in stock market quality when price limit policies lead to volatility
spillover, delayed price discovery and trading interference (e.g. Chan
et al., 2005; Chang and Hsieh, 2008; Fama, 1989; Kim and Rhee, 1997;
Kim and Limpaphayom, 2000; Lehmann, 1989). In contrast, an alter-
native stream of research indicates that price limit mechanisms can
achieve their intended objectives (e.g. Huang, 1998; Huang et al., 2001;
Kim et al., 2013; Ma et al., 1989a, 1989b).

To call for a more comprehensive understanding of inconsistencies in
findings within and across different studies, some scholars investigate
the effectiveness of price limit mechanisms under different scenarios.
Among them, the difference between upper and lower limits has
attracted a great deal of attention (Kim et al., 2013; Li et al., 2014).
Existing empirical studies and experimental studies have shown that the
effectiveness of upper and lower limits may differ. The upper limit
would engender abnormal trading activities, higher volatility and
delayed price discovery, while the lower limit would mitigate abnormal
trading activity and constrain abnormal volatility without delaying
price discovery (Kim et al., 2013; Li et al., 2014; Zhang et al., 2016).

The different effectiveness of upper and lower limits might result
from the original intention of the price limit. The earliest adoption of a
price limit can be traced as far back as 1988 to the Report of the Presi-
dential Task Force on Market Mechanisms, following the Black Monday
crash in October 1987, while the Limit Up–Limit Down (LULD) plan
approved by the SEC in 2012 as a policy remedy to the ‘flash crash’ of
the NYSE on 6 May 2010.1 This price limit plan is also regarded as a
three-tier price limit system2 and it was adopted by the NASDAQ in
2013. These examples show that the evolution of price limits was often
induced by stock market tumbles, indicating the design of price limits is
more concerned with the lower limit rather than the upper limit.
However, the conventional design of price limits in current stock mar-
kets is the symmetric price limit, i.e. with the same design for both upper
and lower limits, which is designed without consideration of the dif-
ference between upper and lower limits. The effectiveness of systematic
price limits in practice is also questionable, as many stock markets still
experience volatility issues after implementing symmetric price limits.
The four circuit breaks in the US stock markets in March 2020 suggest
that the LULD was not as effective as predicted (Hong et al., 2021).
China, as the world’s second largest stock market, has had in place a
price limit policy since the 1990s; however, major stock market bubbles
and subsequent crashes continue to occur every 7–8 years (e.g., the bust
of stockmarket bubbles in 2001, 2007, and 2015) (Li, 2019). These cases
indicate that the symmetric price limit mechanism currently adopted in
major stock markets might be ineffective in stabilizing stock price
volatility.

In addition to the aforementioned empirical and experimental re-
sults, the asymmetric impact of the upper and lower price limits also has
theoretical support. The attention-grabbing theory, put forward by
Barber and Odean (2008), indicates that the attention that a stock has
caught is a crucial factor in determining whether investors would buy it

rather than sell it. With limited time and bounded rationality, investors
are generally unable to search across and compare thousands of stocks in
the stock market to decide which one to buy. In this case, they are more
likely to focus on the stocks that attract their attention. On the contrary,
investors are inclined to sell the stocks they already own, even in the
stock markets where short selling is allowed. Thus, investors only need
to limit the choices they set according to attention when buying, but not
when selling, a stock. Extreme returns, as an attention-grabbing event,
could be regarded as a major factor in influencing investors’ trading
decisions. In detail, investors are more likely to buy rather than sell the
stocks with extreme returns not previously owned by them. Seasholes
and Wu (2007) found that on the Shanghai Stock Exchange, individual
investors are attracted to buy stocks that hit upper limits, resulting in a
price increase. Hou et al. (2009) also suggested that high attention from
individual investors in the upmarket could lead to price overreaction.
Hence, we can speculate that when a stock reaches the upper limit, in-
vestors will be attracted to buy it, which will lead to price continuations,
abnormally high trade volume, and more extreme price deviation the
following day. In other words, instead of limiting further increases in
stock prices and stabilizing the market, the upper limit could result in
overreaction and volatility spillover.

The aforementioned analyses and cases suggest that the symmetric
price limit mechanism, which includes an upper limit, does not effec-
tively achieve the goal of stabilizing stock markets. Therefore, exploring
a more efficient design scheme for price limit policy has become
imperative to stabilize the stock market and ensure sufficient financial
support for optimizing business processes. Considering the asymmetric
effects between upper and lower limits, we propose that implementing
an asymmetric price limit - retaining the lower limit while abolishing the
upper limit - could effectively control abnormal volatility in stock
markets. However, although the asymmetric price limit is rooted in
attention-grabbing theory, it is yet to be tested or implemented in stock
markets. The lack of quasi-natural experiments hinders empirical studies
exploring the effectiveness of asymmetric price limits. With advance-
ments in computational technology, agent-based models offer a new
approach to address this issue.

The agent-based model, known for its effective simulation of in-
teractions between diverse agents, has been widely utilized to replicate
complex environments and systems with highly interactive agents
(Laubenbacher et al., 2013). Given the multi-agent participation char-
acteristic of business processes in the industry, the agent-based
modeling approach has been extensively applied to industrial systems,
such as supply chain management and manufacturing execution (e.g.,
Rolón and Martínez, 2012; Dorigatti et al., 2016). Furthermore, testing
and implementing various schemes in business processes is costly and
carries potential risks, potentially leading to production disruption if the
design is inappropriate. In contrast, agent-based models can address the
limitations of empirical studies by providing an experimental platform
to explore and compare the performance of each scheme under different
conditions. The repeatability of experiments and the ability to modify
experimental parameters as needed have positioned agent-based models
as a cost-effective and efficient optimization method in related research
to investigate policy and trading agent behavior in financial markets.
For instance, Chiarella (1992) utilized them for the examination of
speculative behavior; Lux (1995) employed them to investigate herd
behavior, bubbles, and crashes in speculative markets; Farmer and Joshi
(2002) developed an agent-based model to explore the price dynamics
resulting from various commonly used financial trading strategies.
Chiarella et al. (2017) and Wei and Shi (2020) utilized them to inves-
tigate investor sentiment in limit order markets; Mizuta (2019) and Yang
et al. (2020) adopted agent-based models to study tick size systems.

Given the advantages of agent-based models, they have been
extensively utilized to examine policy and trading agent behavior in
financial markets, including the assessment of price limit effectiveness
and the optimization of price limit design. For example, Westerhoff
(2004) conducted a comparison of the efficacy of price limit ranges

1 The NYSE experienced a ’flash crash’ on 6 May 2010, which was reflected
in the most significant daily point decline in the Dow Jones Industrial Average
of 998.5 points, followed by a regaining of 600 points after 20minutes (Dalko,
2016).
2 There are three percentage parameters to determine price bands according

to the previous closing price of stocks. More details can be found in SEC (2019).
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spanning from 0 to 5 percent using a nonlinear stochastic asset pricing
model. The simulated findings suggest that as the price limit increases,
volatility steadily rises until it reaches its maximum value without any
price limits. Additionally, deviations from fundamental values decrease
as the price limit range expands from 0 to 0.4 percent, but then increases
thereafter. Yeh and Yang (2010) developed a heterogeneous agent-based
model, expanding the research scope from 0 to 5 percent to 0–10 percent
in comparison with Westerhoff (2004). Their findings suggest that the
introduction of price limits has both positive and negative implications.
However, the adoption of price limits may help to reduce volatility and
price distortion, as well as improve liquidity and welfare to some extent
when compared with a market without such limits. Yeh and Yang (2013)
further explored the impacts of price limits on market quality using the
same model, and found even though a price limit would not cause
volatility spillover, the inapposite level of price limits might lead to
delayed price discovery and trading interference. Mizuta et al. (2013a),
(2013b), (2016) developed an agent-based model to investigate the
appropriate parameters for a limited time span and limited price range.
Their findings indicate the effectiveness of price limit policies is
contingent upon the appropriate time span and limit range. Zhang et al.
(2016) also examined the impact of price limits using an agent-based
model. They discussed the effectiveness of upper and lower limits
separately, revealing that while the implementation of upper limits may
delay the price discovery process, lower limits do not exert any influence
on this process. Their findings, as a supplement to the empirical results,
also show the necessity to discuss upper and lower limits, respectively.
These studies not only emphasize the significance of price limit design in
stock markets, but also illustrate the effectiveness and appropriateness
of agent-based models in examining the performance of price limit
policies. However, the aforementioned studies mainly focused on the
price limit range, with few investigating the effectiveness of asymmetric
price limits. Thus, this study utilizes a heterogeneous agent-based model
to conduct experiments and simulate the performance under different
price limit designs, encompassing scenarios without price limits, with
symmetric price limits, and with asymmetric price limits.

This study diverges from previous research that has focused on the
detailed prioritization scheme at various stages of the business process,
instead directing attention to the financial support within this process.
The study emphasizes the paramount role of financial support in in-
dustrial business processes while discussing the relationship between
finance and industry, which has been neglected in previous studies.
Furthermore, by employing a heterogeneous agent-based model, we
integrate the study of finance, industry, and computer science within a

unified research framework, providing interdisciplinary insights into
industrial production. In detail, we explore the designs of price limit
policy in order to control abnormal volatility in the stock market and
ensure sustained and stable investment support for business process
upgrades. While agent-based models have been widely utilized to opti-
mize the design of price limit policy, previous studies have mainly
focused on the price limit range. Taking into account the asymmetric
impact of upper and lower price limits on market quality, this study
proposes an asymmetric price limit design. Our results provide evidence
that the proposed asymmetric price limit is more effective in promoting
market quality, including controlling volatility, improving liquidity and
helping price discovery, than the symmetric price limit and no price
limit. In addition, the heterogeneous agent-based model developed in
this study serves as a versatile platform for simulating and analyzing
stock market policies, applicable not only to price limit policies but also
to other types of stock market policies. Using the price limit policy as an
example, this study demonstrates how this platform can be utilized to
compare the effectiveness of different policy designs.

The remainder of this paper is organized as follows: Section 2 de-
scribes the design of the heterogeneous agent-based model and tests the
reliability and credibility of the model; Section 3 presents the experi-
mental results and conducts further analysis; Section 4 does the sensi-
tivity analysis; and Section 5 concludes this study.

2. The model

Due to the limited research on the efficacy of asymmetric price limit
design, it is imperative to initially investigate the fundamental impact of
asymmetric price limits on the quality of general stock markets. In other
words, the model established in this study should replicate a simplified
and generalized stock market environment that is representative of the
majority of global stock markets, rather than taking into account specific
market characteristics in a particular region. Failure to do so may result
in findings that are influenced by specific characteristics and cannot
provide universal recommendations for general stock markets. There-
fore, we adhere to the framework of models designed to mimic a
generalized stock market environment, as exemplified by Yeh and Yang
(2010), Yang et al. (2020), and Dai et al. (2023). To align with the
purpose of investing fundamental impacts and saving computation
costs, these models generally would be simplified extremely.

The basic heterogeneous agent-based model is a simulated order-
driven market that offers a trading platform for heterogeneous trading
agents to quote and match orders. This model employs a genetic

Fig. 1. The basic trading process in each trading period.
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programming (GP) to capture the updating strategies and behaviors of
trading agents.3 and constructs a constant absolute risk aversion (CARA)
utility function to determine trading agents’ demands, ensuring a more
precise simulation of trading agent activities. On this basis, we embed
designs of price limits into the basic model to satisfy the need to
investigate the effectiveness of different price limit designs in this study.
In contrast, the detailed designs of symmetric and asymmetric price
limits are described comprehensively in Section 2.2.

2.1. Heterogeneous agent-based model

The basic model involves two kinds of assets: one risk-free asset bond
pays interests at a constant rate rf and one risky asset stock pays divi-
dends Divt at period t. Following LeBaron (2006), Divt is simulated as:

Divt = Div + ρ(Divt−1 − Div) + μt , (1)

where Div is the average value of dividends. ρ is a coefficient to indicate
the influence of the previous dividend Divt−1 on Divt, while μt ∼ N(0,σ2μ).
Divt follows left-truncated distribution that Divt ≥ 0.

The quoted price and demand of each trading agent are determined
based on their own evolvable trading strategies and public information,
including stock price, dividend, and trading volume in the market. Each
trading agent has their own trading strategies and they update their
trading strategies based on GP in different time periods according to the
recent market information. Fig. 1 outlines the basic trading process in

each trading period.
Some details in the trading process should be further elaborated. The

first is how GP works in step 2. Each trading strategy in this model is
represented as a hierarchical tree structure. The end points of the tree
are terminal points (T), which are assigned by the public information,
while the rest of points are function points (F), which are assigned by
mathematical operators. The concrete content can be found in Table 1.
The trading strategy, i.e., hierarchical tree structure, is updated based on
three genetic operations in the GP method, including mutation, cross-
over, and clone. Then, defining fitness of trading strategy as the differ-
ence between predicted price based on the strategy and stock price in the
market,4 the updated strategy and original strategy with better fitness
are kept in the strategy pool of this trading agent and the other is dis-
carded. The optimal trading strategy of each trading agent in step 3 is
also determined based on fitness. In detail, the strategy with the smaller
absolute value of fitness is the optimal trading strategy that is used by
the trading agent to generate quoted price and demand in this period.
Fig. 2 illustrates the decision process of the trading strategy adopted in a
period. Original strategy 1 and original strategy 2, with their hierar-
chical tree structures shown on the left of Fig. 2, represent the initial
strategies in a trading agent’s strategy pool. During the evolving period,
these two strategies are updated using genetic operations. Updated
strategies 1 and 2 are generated from original strategies 1 and 2 through
crossover and mutation operations, respectively. The fitness of both
original and updated strategy 1 is then calculated and compared, with
the superior fitness determining which strategy will be retained in the
pool. Strategy 2 undergoes the same evaluation process as Strategy 1 to
determine its inclusion in the trading agent’s current period strategy
pool. If this period is not the evolving period for the trading agent, then
the previous period’s strategy pool of this trading agent remains un-
changed. Subsequently, all strategies within the strategy pool are
compared based on their fitness levels, with the optimal one being
selected as the trading agent’s trading strategy for that particular period.

Based on the optimal trading strategy of trading agent i in period t,
the expected stock price and dividend Ei,t(Pt+1 +Divt+1) is determined
according to the fitness fi,t:

Ei,t(Pt+1 +Divt+1) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(Pt +Divt)

⎡

⎣1+ θ0tanh

⎛

⎝
ln

(
1+ fi,t

)

ω

⎞

⎠

⎤

⎦if fi,t ≥ 0

(Pt +Divt)

⎡

⎣1+ θ0tanh

⎛

⎝
ln(

⃒
⃒
⃒ −1+ fi,t

⃒
⃒)

ω

⎞

⎠

⎤

⎦if fi,t <0

,

(2)

With the assumption that trading agents are rational, which means
they would avoid negative returns, the quote price PQ

i,t of trading agent i
at period t can be defined as:

PQ
i,t =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Pt + random
(
Ei,t(Pt+1 + Divt+1)

1+ rf
− Pt

)

ifEi,t(Pt+1 + Divt+1) ≥
(
1+ rf

)
Pt

Ei,t(Pt+1 + Divt+1)

1+ rf
+ random

(

Pt −
Ei,t(Pt+1 + Divt+1)

1+ rf

)

ifEi,t(Pt+1 + Divt+1) <
(
1+ rf

)
Pt

, (3)

The demand Di.t of trading agent i at period t is determined to
maximize the CARA utility function:

Table 1
Parameters for Experiments.

Agent-based model

Initial shares of stock for
each trading agent

1

Initial money supply for
each trading agent

200

Initial stock price 20
Interest rate (rf ) 0.01
Average dividend of stock
(Div)

0.2

Number of periods 5000
Trading agents 
Number of trading agents 100
ρ 0.95
σ2μ 0.01
θ0 0.7
λ random (0.2)+0.5
ω 15
GP Parameters 
Function set {ifelse; if; +; -; *; /; sqrt; sin; cos; abs; >; <; ≥; ≤; =;∕=;

and; or}
Terminal set {Pt−1, ⋯, Pt−5,Pt−1 +Divt−1, ⋯, Pt−5 +Divt−5,

trading volumet−1}
Number of strategies (n) 2
Probability of immigration 0.1
Probability of crossover 0.7
Probability of mutation 0.2

3 In addition to GP, various methods, such as genetic algorithms, online
learning algorithms, alternating decision trees, classifier systems, and neural
networks, have been employed to replicate trading strategies of market par-
ticipators and their updating mechanisms in agent-based models (Brenner,
2006; Duffy, 2006; Creamer and Freund, 2010; Murphy and Gebbie, 2021;
Arifovic et al., 2022). The selection of GP in this model is based on its close
resemblance to the mechanism utilized by market participants for updating
their trading strategies in real stock markets. Specifically, the process of
updating a hierarchical tree structure through genetic operations in GP mirrors
the strategy updating process involving random attempts made by market
participants. Furthermore, the fitness-based evaluation method within GP
simulates the assessment process used by market participants to determine
whether an updated strategy outperforms the current one.

4 Regarding the formation of trading strategy (called functions in GP), the
fitness function, and the implementation of GP, the readers should refer to
http://geneticprogramming.com/ and Esfahanipour and Mousavi (2011) as
examples.
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U
(
Wi,t

)
= −exp

(
− λWi,t

)
, (4)

where λ is the degree of absolute risk aversion. Wi,t, is the wealth of
trading agent i at period t.Wi,t can be calculated as the sum of the value
of stock and bond that the trading agent owned, which is:

Wi,t+1 =
(
1+ rf

)
Wi,t +

[
Pt+1 + Divt+1 −

(
1+ rf

)
Pt

]
hi,t , (5)

In Eq. (5), hi,t is the quantity of the risky asset (total number of stocks)
held by trading agent i at period t. From Eq. (5), trading agents can
determine their optimal holdings of the risky assets to maximize their
expected utility:

h∗

i,t =
Ei,t(Pt+1 + Divt+1) −

(
1+ rf

)
Pt

λVi,t
(
1+ rf ,t+1

) , (6)

The demand of the risky asset, the quantity that trading agent i quote
at period t in orders, is the difference between their optimal holdings and
the actual holdings:

Di,t = h∗

i,t − hi,t , (7)

After determining the quoted price and demand of trading agent i in
period t, the trading agents enter the market in a random order to mimic
the varying quotation times of each trading agent in the real stock

market. If the current entered trading agent can trade based on the order
matching rule, then he/she will engage in trading with other trading
agents. In cases where he/she is unable to trade or can only partially
fulfill their order, his/her unfilled order will remain in the market and be
queued according to the price-time priority rule. Subsequently, the next
trading agent enters and engages in trading activities. The detailed order
matching rule is shown in Fig. 3. Demand < 0 (> 0) represents a sell
(buy) order. If the best bid (ask) price exists in the market and is ≥ (≤)
price that the trading agent intends to sell (buy), then the trading agent
will place a market order, and this order will trade at the best bid (ask)
price. Otherwise, the trading agent will place a limit order in the market
with the quoted price PQ

i,t and the demand Di,t.
After the entry of 100 trading agent s into the market, the trading

system is subsequently shut down in this period, and all unfilled orders
are canceled, as shown in step 6. Moreover, the stock price of this period,
defined as the transaction price of the last trading in this period, divi-
dend, and total trading volume are published to all trading agents. Then,
trading agents will update their information base using the above public
information in step 1 in the next period.

Fig. 3. Order matching rule in the agent-based model.

Fig. 2. The decision process of trading strategy (an example).
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2.2. Price limit design

Three price limit mechanisms—no price limit, symmetric and
asymmetric price limits—are designed and investigated in this study.
The no-price limit mechanism for stock markets represents the basic
design in this study to provide a benchmark for analysis of market
quality under markets adopting price limit policies. The traditional price
limit mechanism in current stock markets is the symmetric price limit,
with both upper and lower limits. The asymmetric price limit, with a
lower limit but no upper limit, is the price limit mechanism proposed
based on the results of previous studies but has not been applied in real
stock markets.

The simulations of symmetric price limit and asymmetric price limit
are achieved based on the embedment of the trading halt system into the
basic heterogeneous agent-based model. The trading halt system mainly
comprises four sections: (1) price band setting, (2) trading price moni-
toring, (3) trading pause triggering and (4) trading resuming. The

process of the trading halt system is depicted in Fig. 4.
To be specific, price limit setting is the basic design of price limit

policy, including limit design and price band setting. For limit design, it
refers to the position where the price limit is embedded in the model. In
detail, if the price limit is embedded in both sides of the price, it will be
defined as the design of a symmetric price limit, while if only on the
lower side of the price, it will be defined as the design of an asymmetric
price limit. The price band is defined as:

Price band = Reference Price ± (x% ∗ Reference Price), (8)

where the x% is the limit range in experiments. In the whole process of
the experiment, each trading price in each period is monitored by the
trading halt system based on the price limit setting. The market will
trigger a trading pause once the trading price touches the price band. For
example, if the closing price in the previous period is 10, the upper price
band in this period is 11, while the lower price band is 9. Therefore, a
trading pause will be triggered if the trading price is larger than or equal
to 11 or smaller than or equal to 9. Once the trading pause is triggered,
the market will resume trading in the next trading period. Otherwise, if
the trading pause is not triggered, the simulated market operates nor-
mally, as introduced in Section 3.1. Corresponding to the price limit
policy adopted in current stock markets, each trading period in agent-
based models is regarded as the same time notion with the length of
the trading pause in stock markets.

Fig. 4. The process of the trading halt system.

Table 2
Statistical Properties of Experiments.

Indicator Mean Skewness Kurtosis Max Return Min Return |Return| Jarque-Bera statistics

Policy

DJIA 4.11E−04 −1.0696 29.3877 0.1108 −0.2261 0.0072 257020.5
NASDAQ 4.40E−04 −0.0945 9.8140 0.1417 −0.1135 0.0081 23877.6
S&P500 3.74E−04 −0.1398 9.0312 0.1158 −0.0903 0.0073 12245.3
HSI 4.28E−04 −1.2165 34.7274 0.1882 −0.3333 0.0106 343548.8
Russell2000 4.02E−04 −0.2360 6.5478 0.0927 −0.1185 0.0086 4303.1
Seed1 3.98E−04 −2.7480 16.6243 0.0887 −0.1243 0.0066 44964.2
Seed2 2.29E−04 −1.0947 9.2399 0.1226 −0.1213 0.0081 9110.5
Seed3 3.18E−04 −1.6580 9.0547 0.1123 −0.1206 0.0089 9928.1
Seed4 4.42E−04 −1.5200 8.4333 0.1206 −0.1131 0.0092 8075.6
Seed5 4.11E−04 −1.3491 8.0525 0.1567 −0.1206 0.0091 6834.9
Mean 3.60E−04 −1.6740 10.2809 0.1202 −0.1200 0.0084 15782.7
Median 3.98E−04 −1.5200 9.0547 0.1206 −0.1206 0.0089 9110.5
Stock price (30) 2.95E−04 −0.8528 4.8282 0.1351 −0.1317 0.0121 1302.3
Wealth (400) 2.58E−04 −1.2281 6.1809 0.0937 −0.1073 0.0087 3364.8
Interest rate (0.005) 9.28E−05 −1.1793 5.9827 0.0923 −0.1167 0.0093 3012.4
Risk aversion (0.3) 1.10E−04 −1.3536 6.6179 0.1189 −0.1064 0.0094 4253.8
Yeh and Yang (2010) - −1.8300 13.1900 0.2135 −0.2326 0.0048 -
Yeh and Yang (2013) - - 44.7400 0.2049 −0.2348 0.0051 -
Zhang et al. (2016) 2.71E−06 2.8180 56.0748 - - - 2.37E+05
Dai et al. (2023) - −0.6300 30.1100 0.0649 −0.0406 0.0035 -

Fig. 5. The process of calibration.
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In this study, three basic experiments are designed to investigate the
effectiveness of the mechanisms of the price limits as follows:

1) No limit—a stock market without price limits;
2) Symmetric price limit policy—a stock market with both upper and

lower price limits;
3) Asymmetric price limit policy—a stock market with only a lower

price limit.

2.3. Model calibration

The reliability and credibility of the model are the insurance of the
accuracy of the simulated results. With the increasing adoption of agent-
based models in financial research, the calibration techniques for these
models, such as direct observation, analytical methods, and simulation-
based approaches, have undergone substantial expansion. Apart from
direct observation, the fundamental principle behind analytical and
simulation-based methods is to “select model parameters that result in
dynamics that are as close as possible to those observed in a particular
dataset” (Platt, 2020). In other words, there should be a true set of pa-
rameters serving as the target in these calibration methods. The
agent-based model developed in this study is designed to simulate a
generalized stock market environment rather than a specific one. Given
the diverse nature and developmental stages of various stock markets,
selecting one representative of general stock markets poses a challenge.
As a result, the aforementioned calibration methods are not directly
applicable to our model due to the absence of a target value. To over-
come this limitation, previous studies have proposed a specific calibra-
tion method tailored for agent-based models aiming to replicate
generalized stock market environments (Mizuta et al., 2016; Yeh and
Yang, 2010; Zhang et al., 2016).

The detailed processes of our calibration method can be categorized
into four main steps: (1) calculating and summarizing the stylized facts
in representative stock markets globally; (2) assigning initial parameter
values consistent with the referenced model; (3) conducting experi-
ments and calculating the stylized facts of simulated results; (4)
assessing whether the stylized facts of simulated results are able to
replicate those of real stock markets, and if not, adjusting specific pa-
rameters and repeating step 3 until the model is able to mimic. The
calibration process is illustrated in Figure 55.

We first calculate the stylized facts in real stock markets. Chen et al.
(2012) summarised 30 stylized facts replicated in previous agent-based
model studies, including return, trading volume, trading duration,
transaction size, and bid-ask spread. Among the basic stylized facts
pertaining to the return, skewness, kurtosis, and the range of returns
have received the most attention (e.g. Chen and Yeh, 2001; He and Li,
2015; Yeh and Yang, 2010, 2013; Zhang et al., 2016; Yang et al., 2020).
Following previous research, seven indicators generally used to calibrate
agent-based models are chosen to test their performance. The first five
rows of Table 2 present consistent stylized facts observed in five stock
indices, including fat tails of returns, i.e. Kurtosis>3, negative skewness,
large Jarque-Bera statistics and the relatively stable range of returns.
Thus, the selection of parameter values should ensure that the simulated
results of models are capable of replicating the aforementioned stylized
facts.

The experimental setup employed the following simulation envi-
ronment: 1.8 GHz Dual-Core Intel Core i5 Processor, 8 GB of 1600 MHz
DDR3Memory, and Intel HD Graphics 6000 with 1536MB. The software
environment utilized was MacOS Monterey, and the experiments were
conducted using Netlogo (version 5.3.1).

After conducting the calibration process outlined in Fig. 5, a set of
parameter values has been determined and is presented in Table 1.
Table 2 summarises five typical simulations based on basic models
without price limits. Consistent results for fat tails of returns, negative
skewness, large Jarque-Bera statistics and a reasonable range of return
are observed. Moreover, Fig. 6 compares the distribution of returns from
Nasdaq and simulations with different limit mechanisms. Both quantile-
quantile plots and density plots present our model with each limit
mechanism that could provide an acceptable fit to the empirical
features.

To further validate the credibility of our model, we conducted an
examination of the statistical properties with varying values of key pa-
rameters. Four parameters - stock price, trading agent wealth, interest
rate, and degree of absolute risk aversion - were selected due to their
variability across diverse stock markets. The consistent statistical
properties observed across experiments with different parameter values
suggest that the simulated results may have general applicability to
diverse stock market scenarios. Additionally, a comparison was made
between the performance of our model and other agent-based models of
stock markets. The statistical properties of four representative models
are detailed in their original papers. Our findings indicate that our
model addresses certain shortcomings identified in previous models,
such as inaccuracies in simulating skewness (Zhang et al., 2016) and
relatively smaller absolute returns compared to real stock markets (Yeh
and Yang, 2010, 2013; Dai et al., 2023).

To further ensure the agent-based models with the embedment of
price limit designs are still reliable and credible, we compare the sta-
tistical properties of simulations based on models that embedded a 10 %
symmetric price limit with CSI 300; the stock market has adopted a 10 %
symmetric price limit since December 1996. Fig. 7 compares the dis-
tribution of returns from CSI300 and simulations with symmetric price
limit mechanisms. The quantile-quantile plots and density plots show
that both returns of CSI300 and the experiment with symmetric price
limit have similar distributions with left skewness and fat tails. More-
over, although there is no reference for an experiment with an asym-
metric price limit, as all stock markets around the world have yet to
adopt it, we still examine the time series properties of the experiment
without an asymmetric price limit. Its returns also obey the left-skewed
distribution with fat tails. All of these findings indicate that the het-
erogeneous agent-based models used in this study can simulate the
essential features of real stock markets.

5 Compared to the aforementioned calibration methods, the advantage of this
method and its suitability for our research lies in the following fact. Instead of
replicating specific stylized facts within a particular stock market, this method
has the capability to replicate stylized facts observed across general stock
markets. Our simulated results closely align with the stylized facts observed in
real stock markets. Specifically, despite huge variations in the absolute value of
these indicators, all experiments consistently demonstrate negative skewness,
kurtosis greater than 3, and rational ranges of returns (as illustrated in Table 2).
Therefore, the simulated results based on different seeds could provide insights
into the effects of price limit designs on stock markets with varying perfor-
mance. Their average results thus offer insights into the general impacts of price
limit designs across most stock markets. Moreover, the sensitivity analysis re-
sults presented in Section 4 demonstrate that our core findings remain robust
even when certain parameter values are altered. This indicates that our models
are not significantly sensitive to certain parameters and further validates the
credibility of both our models and results. However, it is also important to
acknowledge the limitations of this calibration method. Due to the absence of a
target value, there exist numerous sets of parameter values that could replicate
the stylized facts observed in real stock markets. Although our sensitivity an-
alyses demonstrate the effectiveness of asymmetric price limits under various
parameter values, the magnitude of volatility reduction is different with
different parameter values. In this case, predicting the practical magnitude of
volatility reduction following the implementation of asymmetric price limits in
a real stock market becomes challenging. Thus, before introducing asymmetric
price limits in an actual stock market, further targeted research may be
necessary.
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3. Results

3.1. Basic results

This study examines the effectiveness of price limit policies from
market liquidity, price deviation, and market volatility. We run 10

simulations for each experiment and each simulation takes 5000 trading
periods.6 Fig. 8 shows the stock price under three different price limit
designs of a typical seed. The results reported in Table 3 are the average
of the simulation results in no limit, symmetric price limit, and asym-
metric price limit experiments, respectively. In addition, Fig. 9 depicts
the range and average value of each indicator under three price limit

Fig. 6. Time series properties of Nasdaq and experiment without limit.

Fig. 7. Time series properties of CSI300 and experiment with a symmetric limit.

6 Results were collected from simulations after the first 1000 trading periods
to avoid data distortion.
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Fig. 8. Stock price under different price limit designs (results of atypical seed).

Table 3
Market quality in different price limit designs.

NL APL t-value

Rolling Volatility 0.0134
(0.133,0.134)

>> 0.0132
(0.132,0.133)

2.209

Trade Volume 5.165
(5.094,5.236)

 5.255
(5.177,5.333)

−1.678

Dollar Volume 43.271
(42.617,43.925)

<<< 45.219
(44.458,45.979)

−3.723

Quoted Spread 0.082
(0.077,0.087)

>>> 0.072
(0.068,0.076)

3.231

Effective Spread 0.089
(0.085,0.094)

>>> 0.081
(0.076,0.085)

2.645

% Quoted Spread 0.894
(0.854,0.933)

> 0.846
(0.808,0.883)

1.725

% Effective Spread 0.990
(0.950,1.031)

 0.958
(0.918,0.999)

1.100

Market Depth 3.622
(3.540,3.705)

<< 3.776
(3.683,3.868)

−2.247

Price Deviation 0.589
(0.588,0.590)

>>> 0.583
(0.581,0.584)

4.976

SPL  APL t-value
Rolling Volatility 0.0137

(0.0136,0.0138)
>>> 0.0132

(0.0132,0.0133)
8.480

Trade Volume 4.952
(4.882,5.023)

<<< 5.255
(5.177,5.333)

−6.135

Dollar Volume 40.968
(40.348,41.588)

<<< 45.219
(44.458,45.979)

−9.501

Quoted Spread 0.073
(0.069,0.077)

 0.072
(0.068,0.076)

0.393

Effective Spread 0.083
(0.079,0.087)

 0.081
(0.076,0.085)

0.695

% Quoted Spread 0.876
(0.838,0.914)

 0.846
(0.808,0.883)

1.120

% Effective Spread 1.002
(0.958,1.047)

 0.958
(0.918,0.999)

1.453

Market Depth 3.608
(3.520,3.697)

<<< 3.776
(3.683,3.868)

−3.702

Price Deviation 0.595
(0.594,0.596)

>>> 0.583
(0.581,0.584)

14.501

Note: <<< and >>> significant at 1 % level, << and >> significant at 5 % level, < and > significant at 10 % level; the numbers in parentheses are 95 % confidence
intervals.
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designs.
Controlling market volatility is the essential objective of setting price

limit policies in stock markets. In this study, the average rolling 20 pe-
riods of volatility of stock returns is employed to measure market
volatility. The results are provided in the last row of Table 3. On average,
the lowest volatility, 0.0132, occurs under the asymmetric price limit.
Taking market volatility under no limit as the benchmark, it is clear that
a symmetric price limit cannot control volatility in stock markets. This
result is in agreement with the findings of opponents that traditional
price limit policies would cause volatility spillover. Previous researchers
(e.g. Fama, 1989; Kim and Rhee, 1997; Lehmann, 1989; Li et al., 2014)
explained volatility spillover as the result of a delayed price discovery
process. According to the price limit policy mechanism, trading pauses
are triggered when there are large price changes. However, these trading
pauses prevent immediate corrections to the order imbalance and delay
the price discovery as transactions must be transferred to the subsequent
trading period. As a result, volatility would be distributed over a longer
period, leading to volatility spillover and larger volatility in stock
markets. Fig. 8 makes this point more visually. Even though asymmetric
price limit and symmetric price limit keep the stock price within a
narrower range compared with no limit as the compulsory intervention
of price limit, the curve of stock price under asymmetric price limit is
much smoother than under symmetric price limit, i.e., the daily fluctu-
ation of stock price under symmetric price limit is much bigger than
under asymmetric price limit. It demonstrates the existence of volatility
spillover under a symmetric price limit. Overall, the smallest volatility
under an asymmetric price limit shows the effectiveness of an asym-
metric price limit in controlling volatility.

Trade and dollar volumes are measured to analyze the trading

activity under different price limit policies. Trade volume and dollar
volume are defined as the average trade volume, and the product of
trade volume and price, respectively, for each trading period. The first
two rows in Table 3 show that the stock market that adopts an asym-
metric price limit has the largest dollar and trade volumes, at 52.561 and
5.255, respectively. Focusing on trade activity under no limit, the results
show that asymmetric price limits generally promote trading activity in
stock markets. Unlike previous research that focused on the change in
trade volume after hitting price limits and regarded lower trade volume
as an effective indicator of price limits, we pay attention to the average
trade volume in the whole observed period. Surprisingly, our results
suggest that asymmetric price limits do not limit trading activity, but can
promote it. A possible explanation for this might be that even though the
price limit policy may occasionally suspend trading, a stable market can
provide a more reliable trading environment, attracting larger orders
from trading agents.

The bid-ask spread is used to evaluate the difference between the
traded and best-quoted prices. Quoted spread, effective spread, per-
centage quoted spread and percentage effective spread are chosen to
analyze bid-ask spread under different price limit policies, which are
calculated as follows:

Quoted Spread = BestAskPrice − BestBidPrice, (9)

Effective Spread = 2× |StockPrice − m|, (10)

Percentage Quoted Spread = 100×

[
BestAskPrice − BestBidPrice

m

]

,

(11)

Fig. 9. Market quality under APL, NL and SPL.
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Percentage Effective Spread = 200×

[
|StockPrice − m|

m

]

, (12)

where m is defined as (best ask price + best bid price)/2. Rows 3–6 in
Table 3 consistently show that the asymmetric price limit narrows the
bid–the ask spread relative to the other two price limit policies.

The market depth is defined as the average order size at the best bid
price and best ask price. The seventh row in Table 3 shows that the
greatest market depth, 3.776, is achieved under the asymmetric price
limit. A greater market depth indicates that the stock price would
experience a smaller fluctuation with the same trading activity. The
results also reveal that traditional price limit policies are of limited use
to control volatility effectively.

This study employs price deviation, i.e. differences between the stock
price and the fundamental value of the stock (dividend divided by in-
terest rate), to measure the pricing efficiency. The eighth row in Table 3
shows that the price deviation in asymmetric price limit is significantly
lower than no limit and symmetric price limit. Compared with tradi-
tional price limit policies, the symmetric price limit, adopted by stock
markets, asymmetric price limit can decrease price deviation by around
2.1 %. This result further validates the effectiveness of asymmetric price
limit on calming down the overactive market by providing sufficient
time to irrational investors for price discovery (Danışoğlu and Güner,
2018).

The results in Table 3 and Fig. 9 indicate that the asymmetric price
limit can control market volatility without negatively affecting market
liquidity. Moreover, it can promote price efficiency. This combination of
findings provides some support for the conceptual premise that an

asymmetric price limit policy could be a more effective policy for con-
trolling volatility in stock markets, compared with symmetric price
limits. It is important to note that while there is a noticeable decrease in
market volatility in the presence of asymmetric price limits, the reduc-
tion is limited to approximately 1.5 % compared to not having any price
limits and about 3.6 % compared to having symmetric price limits. In
this context, we further investigate the efficacy of asymmetric price
limits with varying design parameters, represented by limit ranges, and
across diverse market environments to ascertain the conditions under
which the asymmetric price limit mechanism is applicable.

3.2. The range of asymmetric price limit

Previous studies about symmetric price limits indicated the price
limit range is a significant factor that impacts the effectiveness of the
price limit policy (Zhang et al., 2022). Based on our basic results,
asymmetric price limits could stabilize the market and also achieve
better market quality in both market liquidity and price efficiency. We
further test the effectiveness of asymmetric price limit designs with
different price limit ranges. According to the magnitude of large price
variations and their frequencies in experiments without price limit, five
limit ranges, including the limit range of 10 % that was adopted in the
basic experiment, are chosen from 2 % to 10 % with a step of 2 %.

Fig. 10 displays the price dynamics under markets with asymmetric
price limits of range 2 %, 4 %, 6 %, 8 %, 10 %, and without price limits
for a typical run. It is evident that a smaller limit range can control stock
price in a narrower range, but the smoother curve under a larger limit
range indicates that a limit that is too restrictive may also result in
volatility spillover. Fig. 11 compares the market quality under

Fig. 10. Price dynamics under APL 2 %, 4 %, 6 %, 8 %, 10 % and NL.
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asymmetric price limit with ranges from 2 % to 10 %, and the long-dash
line and short-dash line are the market performance under symmetric
price limit and no limit respectively. The rolling volatility registers a
small rise from 2 % to 4 % and then declines from 4 % to 10 %. The
results indicate the effectiveness of price limits on market volatility is
the balance between controlling intraday price fluctuation and volatility
spillover in the following days. Even though a restrictive price limit
could control the intraday price fluctuation directly, it would also result
in severe volatility spillover, while the degree of spillover tends to be
weaker with the price limit increasing.

Fig. 11 shows that the asymmetric price limit with a 10 % range
achieves the smallest rolling volatility compared with the asymmetric
price limit with other ranges, symmetric price limit, and no limit. In
addition, asymmetric price limit with 10 % range can achieve optimal or
suboptimal performance in price deviation and market liquidity except
quoted spread. The narrow bid-ask spread under restrictive price limits
is due to the shrinking space of quotation, which is only a result of
compulsory intervention instead of the substantial improvement of
market liquidity. Moreover, the narrower bid-ask spread under restric-
tive price limits is at the expense of market stability and price efficiency.
Thus, the results reveal that 10 % is an appropriate range for asymmetric
price limits.

3.3. Heterogeneous effects of asymmetric price limit

The initial validation of the effectiveness of asymmetric price limits
is demonstrated through experiments utilizing heterogeneous agent-
based models. In this section, we further investigate whether the

efficacy of asymmetric price limits is contingent upon specific market
conditions. Consistent with market quality considerations, the market
conditions are categorized based on market volatility, market liquidity,
and price efficiency. The diverse performance under each condition
offers a more comprehensive understanding of which types of stock
markets are better suited for asymmetric designs.

3.3.1. Market volatility
We select the median rolling volatility of simulations without price

limits as the dividing line between stable and volatile markets. In detail,
the stable and volatile markets are defined as those simulations with
rolling volatility below and above average rolling volatility respectively.
Table 4 reports the market quality under no limit and asymmetric price
limit in stable markets and volatile markets. It is evident that the
asymmetric price limit is still effective in volatile markets by signifi-
cantly reducing the rolling volatility from 0.0144 to 0.0126, which is
consistent with the basic results. However, when the market is stable,
asymmetric price limits lead to heightened volatility, instead of calming
down the market. Moreover, asymmetric price limits also damage most
aspects of market quality, including trading volume, market depth, and
price deviation in a stable market. On the contrary, asymmetric price
limits achieve higher trading volume, deeper market depth and smaller
price deviation in volatile markets, and the degree of performance
improvement is much higher than in basic results. These results indi-
cated that the price limit policy is inapplicable to a stable market but is
an effective measure to stabilize the market and promote market
liquidity and price efficiency in a volatile market. This finding is
reasonable as basic volatility is the guarantee of market liquidity.

Fig. 11. Market quality under APL 2 %, 4 %, 6 %, 8 % and 10 %.
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Without excessive volatility, there is no need for stable markets to pre-
vent fluctuations. The adoption of a price limit policy thus would restrict
the basic volatility in a stable market and further result in volatility
spillover and a decline in market liquidity.

3.3.2. Market liquidity
The trading volume in each experiment is utilized to classify the

samples into high and low liquidity markets. Table 5 presents a com-
parison of the heterogeneous effectiveness of asymmetric price limits
within both high and low liquidity markets. It is evident that asymmetric
price limits are more effective in relatively inactive markets than active
ones. Furthermore, the asymmetric design also has the potential to
enhance market performance in terms of both market liquidity and price
efficiency within low-liquidity markets, indicating its suitability for
relatively inactive markets. The observed outcome is justifiable given
that the price limit policy exerts a more pronounced impact, namely by
restricting a greater number of transactions on active markets than on
inactive ones. This consequently leads to a heightened spillover effect in
active markets following the limit hit. This perspective is reinforced by
the volatility observed in active markets that have adopted symmetric
price limits.7 The introduction of symmetric price limits further am-
plifies the volatility of high liquidity markets to 0.0141, attributable to

the heightened spillover effect.

3.3.3. Price efficiency
The samples are categorized into markets with high price efficiency

and those with low price efficiency based on the median of price effi-
ciency in simulations without a price limit. Table 6 demonstrates the
heterogeneous impact of asymmetric price limits in markets with vary-
ing levels of price efficiency. It is evident that asymmetric price limits
can effectively stabilize markets with low price efficiency, as evidenced
by reduced rolling volatility. Conversely, in high-price efficiency mar-
kets, asymmetric price limits lead to a slight increase in volatility and
also result in greater price deviation, indicating that this design may not
be suitable for markets demonstrating excellent performance in terms of
pricing efficiency. This finding aligns with the original purpose of price
limit design, which aims to mitigate abnormal volatility by allowing
irrational investors sufficient time for price discovery (Danışoğlu and
Güner, 2018). Therefore, it is essential to implement price limit policies
in markets with low price efficiency, characterized by high price devi-
ation, if aiming to modify irrational trading behavior.

The findings in this section suggest that there are specific conditions
under which the adoption of asymmetric price limits is effective,
particularly in volatile, low liquidity, and low price efficiency markets.
Fig. 12 visually presents a comparison of rolling volatility under APL and
NL in each market condition. These results align with the original pur-
pose of price limits, which is to mitigate abnormal volatility and modify

Table 4
Effectiveness of APL under stable markets and volatile markets.

Stable market

NL APL t-value

Rolling Volatility 0.0124
(0.0123,0.0125)

<<< 0.0139
(0.0138,0.0140)

−18.555

Trade Volume 5.106
(5.005,5.206)

 5.187
(5.084,5.290)

−1.143

Dollar Volume 49.874
(48.650,51.077)

>>> 47.411
(46.208,48.615)

2.991

Quoted Spread 0.092
(0.084,0.010)

>>> 0.075
(0.069,0.082)

3.165

Effective Spread 0.098
(0.090,0.106)

>> 0.085
(0.078,0.092)

2.540

% Quoted Spread 0.968
(0.900,1.036)

 0.900
(0.837,0.962)

1.450

% Effective Spread 1.050
(0.981,1.120)

 1.025
(0.958,1.092)

0.519

Market Depth 4.249
(4.125,4.373)

>>> 3.180
(3.074,3.287)

12.027

Price Deviation 0.572
(0.570,0.574)

<<< 0.600
(0.598,0.603)

−21.800

Volatile market
NL  APL t-value

Rolling Volatility 0.0144
(0.0142,0.0145)

>>> 0.0126
(0.0125,0.0127)

21.982

Trade Volume 5.224
(5.123,5.325)

 5.322
(5.209,5.436)

−1.28

Dollar Volume 49.386
(48.143,50.628)

<<< 57.704
(56.020,59.388)

−7.852

Quoted Spread 0.076
(0.068,0.083)

 0.069
(0.063,0.755)

1.221

Effective Spread 0.083
(0.075,0.091)

 0.077
(0.071,0.084)

1.076

% Quoted Spread 0.871
(0.806,0.936)

> 0.794
(0.736,0.851)

1.741

% Effective Spread 0.973
(0.906,1.041)

> 0.889
(0.829,0.949)

1.840

Market Depth 2.996
(2.908,3.083)

<<< 4.371
(4.249,4.494)

−17.458

Price Deviation 0.606
(0.604,0.608)

>>> 0.565
(0.562,0.567)

23.146

Note: <<< and >>> significant at 1 % level, << and >> significant at 5 %
level, < and > significant at 10 % level; the numbers in parentheses are 95 %
confidence intervals.

Table 5
Effectiveness of APL under high and low liquidity markets.

High liquidity market

NL APL t-value

Rolling Volatility 0.0134
(0.0133,0.0135)

<<< 0.0136
(0.0135,0.0137)

−3.267

Trade Volume 5.616
(5.512,5.719)

 5.513
(5.402,5.625)

1.344

Dollar Volume 57.927
(56.562,59.291)

 57.788
(56.212,59.364)

0.132

Quoted Spread 0.092
(0.085,0.099)

>>> 0.071
(0.066,0.076)

4.765

Effective Spread 0.010
(0.093,0.107)

>>> 0.080
(0.074,0.086)

4.286

% Quoted Spread 0.951
(0.895,1.006)

>>> 0.824
(0.774,0.873)

3.356

% Effective Spread 1.047
(0.990,1.105)

>>> 0.935
(0.883,0.988)

2.816

Market Depth 2.931
(2.849,3.012)

 2.935
(2.845,3.026)

−0.075

Price Deviation 0.563
(0.561,0.565)

<<< 0.578
(0.576,0.580)

−10.037

Low liquidity market
NL  APL t-value

Rolling Volatility 0.0134
(0.0133,0.0135)

>>> 0.0129
(0.0127,0.0130)

6.121

Trade Volume 4.714
(4.618,4.810)

<<< 4.997
(4.888,5.106)

−3.826

Dollar Volume 41.323
(40.304,42.341)

<<< 47.327
(45.997,48.658)

−7.069

Quoted Spread 0.069
(0.063,0.074)

 0.072
(0.067,0.077)

−0.869

Effective Spread 0.076
(0.070,0.081)

 0.081
(0.075,0.086)

−1.227

% Quoted Spread 0.813
(0.764,0.862)

 0.871
(0.820,0.922)

−1.615

% Effective Spread 0.908
(0.857,0.959)

<< 0.984
(0.928,1.039)

−1.977

Market Depth 4.314
(4.182,4.447)

<<< 4.617
(4.483,4.750)

−2.920

Price Deviation 0.615
(0.614,0.617)

>>> 0.587
(0.585,0.590)

16.402

Note: <<< and >>> significant at 1 % level, << and >> significant at 5 %
level, < and > significant at 10 % level; the numbers in parentheses are 95 %
confidence intervals.

7 The complete results are provided upon request.
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irrational trading behavior. The simulated results demonstrate that
asymmetric price limits can potentially reduce volatility by up to
12.5 %. In comparison to the real stock market, this reduction in
magnitude is akin to the decrease in volatility observed in the Chinese
stock market from the period of 2014.07–2017.10 (a period character-
ized by a bubble-crash) to the subsequent period of 2018.07–2021.10 (a
relatively stable period), highlighting the significant stabilizing impact
of asymmetric price limits on stock markets. Conversely, implementing
asymmetric price limits in stable and efficient markets may lead to
volatility spillover.

4. Sensitivity analysis

In order to understand how the simulation results are sensitive to the
parameters chosen in Table 1, we perform the sensitivity analysis with a
higher initial stock price, a higher initial trading agents’ wealth, a lower
interest rate and a lower degree of absolute risk aversion. The results
shown in Table 7 reveal that the asymmetric price limit remains themost
effective in three experiments with a higher stock price of 30, a higher
wealth of 400, a lower interest rate of 0.005 and a lower degree of ab-
solute risk aversion random (0.2)+0.3. This indicates that our basic
results are still valid with various parameter settings, where asymmetric
price limits present a better performance in improving market liquidity,
controlling market volatility, and enhancing price discovery. Further-
more, compared to the basic results, the simulated findings suggest that

an asymmetric price limit mechanism is more effective in stock markets
characterized by lower stock prices, higher initial trading agent wealth,
lower interest rates, and lower trading agents’ risk aversion.

5. Conclusion

The study presented in this paper was designed to determine the
impact of different price limit policies on market quality based on a
heterogeneous agent-based model. From a point of stock performance,
this study investigates the ways to guarantee financial support for pri-
oritization schemes in industrial business processes. Our findings
contribute to a deeper understanding of the effectiveness of price limits
and offer practical implications for their design. The results indicate that
asymmetric price limits indeed significantly control market volatility, as
well as improve market liquidity and price efficiency. In particular, our
simulated results suggest that an asymmetric price limit design could
lead to a significant reduction in market volatility compared to both no
price limit and symmetric price limit scenarios, with the potential for a
12.5 % decrease under certain conditions. In terms of economic signif-
icance, this reduction is consistent with the difference in volatility be-
tween bubble-crash periods and stable periods observed in the Chinese
stock market. Compared with the previous studies that mainly focus on
the size of price limits, we pay attention to its design. This study reflects
pioneering research analysis to make the public aware that proposing
the asymmetric price limit policy provides a deep understanding of the
asymmetric effects of the upper and lower limits and supports the idea of
the existence of volatility spillover.

In order to gain a more comprehensive understanding of the efficacy
of asymmetric price limits and offer more nuanced and practical guid-
ance on their implementation in real-world stock markets, this study
also investigates their application conditions, including the selection of
limit ranges and the appropriate market environment. Specifically, in
line with previous research on symmetric price limits, this study em-
phasizes the importance of limit ranges in determining the effectiveness
of asymmetric price limits. Overly restrictive limits are found to lead to
volatility spillover, with 10 % identified as a relatively optimal range for
asymmetric price limits. With regard to the market environment, our
findings suggest that the mechanism of asymmetric price limits is
effective in markets characterized by high volatility, low liquidity, and
low price efficiency. This study offers a novel price limit design vali-
dated through simulated experiments, which provides policymakers
with an effective tool for further controlling volatility and enhancing
market quality in stock markets. Specially, policymakers and market
regulators in stock markets, particularly those in emerging markets
characterized by high volatility, low liquidity, and low price efficiency,
could consider reforming their current price limit design to an asym-
metric price limit design. Taking into account the diverse backgrounds
and specific characteristics of individual markets, policymakers could
adapt the models based on the unique features of each market and
conduct re-simulation to determine a more customized price range for
the asymmetric price limit design. Investigating the specific impacts of
asymmetric price limits on different stock markets and providing more
tailored advice for each market is also the direction of our future studies,
which will be further discussed in the limitation of this study.

On the other hand, this study offers a general platform for re-
searchers and policymakers to investigate the efficacy of various stock
market policies beyond price limits. The basic heterogeneous agent-
based model developed in this study is capable of replicating the
trading mechanism and stylized facts observed in real stock markets,
serving as an experimental platform to simulate the effects of different
market policies on market quality, which can help identify potential
issues and refine policy prior to implementation. Currently, there re-
mains a lack of consensus regarding the effectiveness of certain stock
market policies, such as settlement cycles and transaction taxes. These
policies can all be examined and analyzed within this simulation
platform.

Table 6
Effectiveness of APL under markets with high and low price efficiency.

High price efficiency market

NL APL t-value

Rolling Volatility 0.0127
(0.0126,0.0128)

< 0.0129
(0.0127,0.0130)

−1.873

Trade Volume 5.431
(5.325,5.536)

< 5.585
(5.472,5.536)

−1.948

Dollar Volume 56.899
(55.429,58.368)

<<< 59.863
(58.263,61.463)

−2.714

Quoted Spread 0.091
(0.084,0.098)

>> 0.079
(0.073,0.085)

2.435

Effective Spread 0.099
(0.091,0.106)

>> 0.088
(0.081,0.094)

2.276

% Quoted Spread 0.907
(0.852,0.963)

 0.868
(0.815,0.921)

1.007

% Effective Spread 1.007
(0.950,1.065)

 0.970
(0.915,1.025)

0.920

Market Depth 3.889
(3.773,4.005)

>>> 3.594
(3.464,3.724)

3.205

Price Deviation 0.558
(0.555,0.561)

<<< 0.564
(0.562,0.566)

−3.269

Low price efficiency market
NL  APL t-value

Rolling Volatility 0.0140
(0.0139,0.0141)

>>> 0.0136
(0.0135,0.0137)

5.386

Trade Volume 4.899
(4.802,4.996)

 4.925
(4.818,5.033)

−0.363

Dollar Volume 42.351
(41.305,43.396)

<<< 45.253
(43.905,46.600)

−3.321

Quoted Spread 0.075
(0.069,0.080)

>>> 0.064
(0.060,0.068)

2.976

Effective Spread 0.081
(0.076,0.087)

>> 0.073
(0.068,0.078)

2.074

% Quoted Spread 0.898
(0.845,0.950)

> 0.830
(0.782,0.877)

1.894

% Effective Spread 0.991
(0.937,1.045)

 0.951
(0.898,1.004)

1.040

Market Depth 3.356
(3.258,3.454)

<<< 3.958
(3.851,4.065)

−7.980

Price Deviation 0.620
(0.619,0.622)

>>> 0.601
(0.599,0.604)

10.463

Note: <<< and >>> significant at 1 % level, << and >> significant at 5 %
level, < and > significant at 10 % level; the numbers in parentheses are 95 %
confidence intervals.
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The stability of stock prices is a crucial factor in ensuring the suffi-
cient financial resources of corporations, while stock market policies
play a vital role in stabilizing stock markets. The proposed asymmetric
price limit design in this study has the potential to effectively control
market volatility and provide financial support for industrial companies,
thereby facilitating the smooth implementation of prioritization
schemes for business processes. Furthermore, this study provides a
testbed for various designs of stock market policies, which can be
applied to other contentious policies to enhancemarket quality and offer
more robust financial guarantees for industrial companies.

The findings from this study have significant implications for in-
dustrial firms seeking to optimize their business processes. By ensuring a
stable financial market environment, companies can more confidently
invest in upgrading their manufacturing and supply chain technologies.
This stability, fostered by well-designed market mechanisms like the
asymmetric price limit, can provide the necessary foundation for long-
term strategic investments in Industry 4.0 initiatives.

Some limitations of this study may encourage several directions for
future research. First, the objective of this study is to investigate the
fundamental effects of asymmetric price limit policy on stock markets.
To achieve this, we constructed models to simulate a simplified and
generalized stock market environment. As a result, our results could
only provide general recommendations for stock markets. However, it is
crucial to acknowledge that each stock market possesses its own distinct
characteristics, which may pose potential challenges when implement-
ing asymmetric price limits based on these general conclusions. To

address this issue, before implementing the asymmetric price limit in a
specific market, it is necessary to adapt the models according to the
unique trading mechanism in the market and select parameters based on
its specific characteristics. In comparison with the calibration method
utilized in this research, the approaches summarized by Platt (2020)
would be more effective when there is a target market to emulate.
Subsequently, re-simulation should be carried out in the updated model
to facilitate the development of a more targeted design scheme for the
asymmetric price limit. Second, as a special phenomenon induced by
price limits, the magnet effect has a negative effect on market quality.
Although asymmetric price limits could promote market quality, they
are unable to weaken the magnet effect. Thus, to further improve the
effectiveness of asymmetric price limits, it is necessary to explore the
generative mechanism of the magnet effect and develop coping strate-
gies. Third, in this model, we have simplified the stock market partici-
pants to a single type of trading agent based on the CARA utility
function. However, real stock markets consist of various types of market
participants with different utility functions and trading strategies.
Therefore, in order to enhance the accuracy of our model, it is essential
to further differentiate between types of trading agents and incorporate
other types of market participants into the simulation.
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