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Abstract: Construction activities are often conducted in outdoor and harsh environments and in‑
volve longworking hours and physical andmental labor, which can lead to significantmental fatigue
among workers. This study introduces a novel and non‑invasive method for monitoring and assess‑
ing mental fatigue in construction workers. Based on cognitive neuroscience theory, we analyzed
the neurophysiological mapping of spontaneous mental fatigue and developed multimodal in‑ear
sensors specifically designed for construction workers. These sensors enable real‑time and contin‑
uous integration of neurophysiological signals. A cognitive experiment was conducted to validate
the proposed mental fatigue assessment method. Results demonstrated that all selected supervised
classification models can accurately identify mental fatigue by using the recorded neurophysiolog‑
ical data, with evaluation metrics exceeding 80%. The long short‑term memory model achieved an
average accuracy of 92.437%. This study offers a theoretical framework and a practical approach for
assessing the mental fatigue of on‑site workers and provides a basis for the proactive management
of occupational health and safety on construction sites.

Keywords: mental fatigue monitoring; construction safety; in‑ear sensors; cognitive neuroscience;
deep learning

1. Introduction
According to the “2023Construction IndustryDevelopment StatisticalAnalysis” (China

Construction Industry Association, 2024), the construction industry’s total output value in
2023 reached CNY 31.6 trillion, indicating a year‑on‑year increase of 5.77%. The completed
output value amounted to CNY 13.8 trillion, reflecting a year‑on‑year growth rate of 3.77%,
while the total contract value signed reached CNY 72.5 trillion, demonstrating an annual
increase of 2.78%. This statistic highlights the enduring importance of the construction in‑
dustry as a fundamental pillar of the national economy. Furthermore, 45.82 million rural
migrant workers were engaged in the construction industry in 2023, accounting for 15.4%
of the total number of migrant workers nationwide (National Bureau of Statistics of China,
2024). The industry faces challenges, such as high workforce mobility and an aging work‑
force. In this regard, the importance of construction safety management in China should
be emphasized to mitigate risks and enhance workers’ well‑being.

On construction sites, the worker is the most active and a core factor in the complex
system of “person–work–environment”. More than 80% of casualties in the construction
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industry were caused by unsafe human behavior [1]. Workers go through a complex cog‑
nitive information‑processing process when responding to external stimuli. From the per‑
spective of cognitive theories, cognitive failure is a major cause of unsafe behavior [2].
Therefore, construction workers should undergo a well‑defined and comprehensive cog‑
nitive process during specific construction tasks to help them stay continuously alert and
attentive and enable accurate risk perception and judgment in a dynamic construction en‑
vironment. The occurrence of unsafe behavior can be prevented by identifying potential
risks [3].

Mental fatigue is an important representation of an individual’s mental load and is de‑
fined as a complex and multi‑dimensional mental state of tiredness caused by long‑term
mental activities. Reducing workers’ cognitive abilities can cause cognitive failures, ul‑
timately leading to unsafe behavior [4]. The execution of construction activities involves
numerous specialized and technical tasks, which are characterized by their labor‑intensive,
high‑risk, and mentally demanding nature [5]. As such, construction workers are prone
to mental fatigue, with prolonged reaction time, distraction, and decreased alertness. The
risk perception and decision‑making ability of constructionworkers in a dynamic construc‑
tion environment can be reduced [6]. In this circumstance, construction workers may tend
to choose unsafe behavior, resulting in risky safety accidents.

The issue of mental fatigue should be addressed when managing the unsafe behavior
of construction workers to enhance occupational health and safety [3]. Further, it is an em‑
bodiment of the people‑oriented concept in construction safety management. Efficiently
monitoring and identifying the level of mental fatigue experienced by construction work‑
ers is essential for the effective implementation of targeted intervention and management.

However, the accurate and dynamic assessment of mental fatigue in construction
workers is still a debated topic because of the complex construction environment and ac‑
tivities. Current assessment methods relying on subjective self‑reports or intrusive equip‑
ment are impractical for continuous on‑site monitoring. This debate highlights the need
for innovative and non‑invasive approaches that can provide reliable and continuous data.

The implementation of brain–computer interface (BCI) technology and biologicalmet‑
rics has shown promising implications in safety and security fields. In contrast to research
that primarily focuses on general safety management, the present study specifically ad‑
dresses the dynamic monitoring and management of mental fatigue among construction
workers. A wearable in‑ear device with multimodal sensors was developed considering
the distinctive and dynamic nature of construction sites as well as the activities carried out
therein to enable the real‑time and continuous integration of neurophysiological signal
mapping of the development of spontaneous mental fatigue. The proposed multimodal
in‑ear device represents a pioneering application within the construction industry and is
the first of its kind in this context. Furthermore, a comprehensivemodel for assessingmen‑
tal fatigue was developed by leveraging the advanced capabilities of machine learning and
deep learning algorithms. This study contributes to the existing body of knowledge by pro‑
viding a novel and portable neurophysiological‑based mental fatigue monitoring method
customized for construction workers. The research findings have the potential to enhance
on‑site occupational health and safety management systems and a valuable contribution
to the construction industry.

This paper is organized as follows. Section 2 presents the research background, which
covers the theoretical foundations and literature review. Section 3 provides details on the
multimodal in‑ear sensors and describes the model for assessing mental fatigue. Section 4
presents the evaluation and results of the proposed method. Section 5 discusses the effec‑
tiveness of the proposed fatigue assessment method, its research implications, and limita‑
tions, and potential future work. Finally, Section 6 concludes the study.
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2. Research Background
2.1. Management of Construction Workers’ Mental Load

According to the accident causation sequence model and the accident causation
model [7], individuals typically experience different stages of cognitive failure as inter‑
nal manifestations before the occurrence of unsafe behavior. The process of construction
workers engaging in unsafe behavior can be categorized into five specific cognitive stages
considering the characteristics of the construction industry: information acquisition, in‑
formation comprehension, perception response, response selection, and action implemen‑
tation. Construction workers must undergo a clear and well‑defined cognitive process
during specific construction activities to ensure the effective completion of these cognitive
stages [8]. Mental load, also known as cognitive load, refers to the degree of cognitive
resources required when an individual performs tasks or handles situations that demand
focused attention, analysis, decision‑making, and problem‑solving [2]. It describes the psy‑
chological state and stress level experienced by an individual and encompasses a range of
factors that affect the mental and physiological state. In the field of construction engineer‑
ing, it reflects workers’ enduring cognitive stress due to task complexity knowledge level
and environmental pressure [4,5].

Cognitive neuroscience is an emerging interdisciplinary field that integrates cogni‑
tive psychology, computer science, and neuroscience. Its primary approach aims to eluci‑
date brain mechanisms underlying individual cognitive activities from the perspective of
“gene–brain–behavior–cognition” [9]. Based on cognitive neuroscience theory, advanced
neuroscience measurement tools and physiological parameter measurement devices are
used to record individual behavioral processes and outcomes, collect objective data on
accompanying neural and physiological external manifestations, and explore the psycho‑
logical and behavioral patterns reflected in the data. In this context, integrating individual
neural activities, cognitive activities, physiological states, emotional states, and behavioral
patterns into safety management goals will achieve scientific, rational, safe, and efficient
management in construction activities [9].

According to the methodology of cognitive neuroscience, computation‑based meth‑
ods utilizing vital signs have demonstrated significant potential for continuous and objec‑
tive monitoring and assessment of the mental load of construction workers [10]. These
methods involve the independent or combined application of vital sign parameters, such
as electroencephalography (EEG), skin conductance, body temperature, respiration, elec‑
trocardiogram (ECG), and facial features. By capturing these vital signals, researchers
have developed specific assessment models and algorithms for psychological load states,
such as emotional stress, mental fatigue, and mood changes. They use techniques, such
as EEG power spectral analysis, functional imaging, event‑related potentials, and photo‑
plethysmography. The application of machine learning techniques (such as transfer learn‑
ing, active learning, and deep learning) plays a crucial role in decoding and analyzing
complex physiological data and significantly improves analysis efficiency and prediction
accuracy [10,11]. Assessment models can reveal the effects of specific construction envi‑
ronments and activities on the mental load state of worker groups and support the design
and implementation of targeted intervention measures (e.g., [12,13]).

Construction workers often experience high levels of tension and pressure, irregular
work schedules, and significant responsibility for their performance and safety. Therefore,
their negative mental state is universal and affects individual cognitive abilities. This phe‑
nomenon is one of the important reasons for the reduction in production efficiency and
the occurrence of safety accidents on construction sites [2]. Researchers have increasingly
focused on managing construction workers from the perspective of their individual men‑
tal states. For example, Chen et al. (2016) [2] developed a novel technique for monitoring
the mental states of construction workers for hazard evaluation. Wang et al. (2017) [14]
investigated a quantitative and automated approach to evaluation of the attention levels
of construction workers. Xing et al. (2019) [15] introduced a targeted intervention method
to address the mental states of high‑altitude construction workers. Xing et al. (2020) [5] ex‑
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amined the interaction between physical and mental fatigue among construction workers
and provided strategies for managing fatigue. Ke et al. (2021) [12] investigated the rela‑
tionship between the intrinsic cognitive states of construction workers and their exposure
to noise, providing empirical support for enhanced noise management and safety mea‑
sures. Ke et al. (2021) [13] monitored the distraction and attention of construction workers
for safety management. Jeon and Cai (2023) [16] investigated the identification method
of construction hazards on sites by developing a multi‑class EEG signal classifier. Nino
et al. (2023) [17] concentrated on the physical risk management of workers based on its
interaction with perceived mental workload.

In summary, recent studies on occupational health and safety management on con‑
struction sites are increasingly incorporating mental and cognitive status as new variables.
In this process, the integrated application of cognitive neuroscience methodologies and
biometric methods provides a scientific basis for understanding and assessing the mental
load levels of construction workers in specific environments.

2.2. Mental Fatigue Identification and Assessment
Mental fatigue is a crucial and common phenomenon in all workplaces that deserves

public attention. It can generally be interpreted as a complex, multidimensional feeling of
tiredness resulting from intense physical or mental work [18]. In particular, the construc‑
tion industry is distinct from other sectors and presents significant challenges to the occu‑
pational health and safety ofworkers. In addition to physically demanding tasks, construc‑
tionwork often entails a variety ofmentally strenuous and high‑risk activities [5]. Workers
must maintain constant vigilance and awareness of their dynamic surroundings to iden‑
tify potential hazards [5]. Consequently, construction sites impose particular demands
on the physical and mental states of workers. Typically, construction workers experience
high mental workloads and often perform tasks while mentally fatigued. Further, mental
fatigue can impair cognitive functions, resulting in slower reaction times, diminished vigi‑
lance, reduced decision‑making capabilities, increased distractions, and loss of situational
awareness [19]. Such conditions can negatively impact work quality and productivity and
increase the likelihood of unsafe behavior on site [20]. Therefore, implementing effective
strategies to measure, alleviate, and manage mental fatigue is essential to enhance overall
safety management on construction sites.

Assessment of mental fatigue states (e.g., identification and quantification of fatigue
states) is one of the most important aspects to promote the development of mental fatigue
management. The status of mental fatigue can be observed through subjective self‑reports,
behavioral metrics, and neurophysiological data [21]. Studies on mental fatigue identifi‑
cation and assessment were usually carried out based on the above manifestations. Ques‑
tionnaires and interviews based on self‑reports are the most commonly used methods in
fatigue assessment, and they inevitably have subjective andmemory biases [22]. These sub‑
jective evaluation methods are cumbersome to implement in the construction industry be‑
cause the time and effort required to answer the questions are likely to impairworkers’ task
performance [23]. An increasing number of researchers have used biological data to eval‑
uate mental states considering the occurrence of local and overall physiological changes
(e.g., variations in local muscle tissue, metabolism, and body temperature) during physi‑
cally intensive activities [24]. According to cognitive neuroscience and basic psychology,
biological signals mainly applied in reflecting individual mental fatigue are summarized
as follows:
• EEG quantitatively reflects the brain’s electrical activity and offers an objective al‑

ternative to traditional survey‑based assessments of mental states [25,26]. This non‑
invasive method measures voltage fluctuations from cortical neurons and has been
widely used in research on mental load detection [27].

• ECG reflects the activity of the heart. Under the regulation of autonomic nerves, heart
rate variability (HRV) can reflect the status of sympathetic nerves [28]. Regarding
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physiological responses, the potential correlations of mental fatigue with HRV have
been verified [29].

• Respiration signals are used to estimate an individual’s mental status (e.g., mental fa‑
tigue, vigilance, and drowsiness) for mobile healthcare [30]. Along with other neuro‑
physiological responses (e.g., ECG, EEG, HR, and eye movement), the multiple linear
regressionmodel and the machine learningmodel can be developed to achieve a high
correlation to workers’ mental statuses [31].

• Galvanic skin response (GSR) is a generic term that indicates electrical activities orig‑
inating from sweat glands, epidermal tissues, and dermal tissues. As a non‑invasive
technical tool, GSR reflects the robustness and sensitivity of mental status [32].

• Blood lactate and sweat lactate have demonstrated strong correlationswith themental
fatigue status of construction workers [33]. In particular, as a non‑invasive indicator,
a sweat lactate‑based sensor holds the potential for further development in assessing
fatigue on construction sites.

• Eye movement data contains abundant information that can reflect the development
of human fatigue during extended cognitive tasks [34]. Eye‑tracking data can be con‑
tinuously and unobtrusively measured by interacting with the human interface. The
captured features can be used for real‑time human fatigue detection [35,36].

• Facial features (e.g., eye aspect ratio, eye distance, mouth aspect ratio, face area, and
head motion) have been explored as indicators of the mental fatigue of construction
workers [37]. Similar to the eye‑moving tracking technology, facial features can be
applied in other scenarios, such as watching videos, driving, and performing surgi‑
cal operations.

• In addition to the above physiologicalmeasures, contactless vitalmonitoringmethods
using cameras, wireless radar frequency, near‑infrared spectroscopy, and acoustic‑
based sensing techniques, have increasingly been utilized in research related to men‑
tal fatigue [29,38,39].
Various approaches have been employed to recognize and measure mental fatigue

based on captured signals. For example, Ishii et al. (2014) [40] introduced a conceptual
model that utilizes a dual regulation system to explore the neural mechanisms of mental
fatigue during cognitive tasks. EEG was used objectively to measure brain electrical activ‑
ity and avoid subjective biases commonly found in traditional survey‑based methods [25].
Li et al. (2012) [41] developed an EEG processing technique for evaluating the effects of
driver fatigue. Duc (2014) [42] combined functional magnetic resonance imaging and EEG
to study the neural regulation mechanisms of mental fatigue in specific brain regions. Yin
and Zhang (2018) [43] proposed a classification method for mental fatigue based on dif‑
ferent distributions of EEG features during various cognitive tasks. Importantly, machine
learning technologies have played a pivotal role in decoding and interpreting neurophys‑
iological data, across different work environments [44]. Techniques such as transfer learn‑
ing, active learning, and deep learning have been applied to handle the complexities of
data analysis [10]. Hajinoroozi et al. (2017) [45] introduced deep covariance learning mod‑
els for predicting the drowsy and alert states of drivers by using EEG signals; the models
demonstrated superior performance to shallow learningmethods, particularly when CNN
models are applied to spatial EEG covariance matrices. Tang et al. (2021) [46] proposed
a promising method for detecting fatigue driving by using EEG signals; the method in‑
cludes a Euclidean space data alignment approach to reduce individual differences and
an efficient long short‑term memory (LSTM) network structure to consider spatial correla‑
tions. Wang et al. (2023) [11] proposed a continuous wavelet transform and convolutional
neural network to identify the mental fatigue states of construction workers. Mehmood
et al. (2023) [47] investigated the deep learning‑based mental fatigue identification of con‑
struction equipment operators by using wearable EEG sensors.

Considering the unique and dynamic environment as well as workplace activities on
construction sites, limited biological‑based approaches have focused on the dynamicmoni‑
toring of the mental fatigue of construction workers [10]. The adopted approaches are usu‑
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ally invasive, susceptible to interferences, and not portable or limited in an application en‑
vironment [48]. For example, scalp EEG usually requires numerous electrodes to be firmly
in contact with the scalp of the workers. It is unsuitable for practical engineering scenarios
with frequent head movements or scalp sweating [49]. Applicable and novel assessment
approaches need to be developed to mitigate the shortcomings of existing methods.

2.3. In‑Ear EEG Development and Applications
Looney et al. (2012) [50] introduced the concept of in‑ear EEG to a device for the

recording of EEG signals. This portable and wearable device meets the criteria for effec‑
tive monitoring, resembling typical earphones, earbuds, and earplugs while being com‑
pact and fitting directly around the ear. In recent times, in‑ear EEG recording has gained
attention as a user‑centered andwearable brain monitoring method, showing potential for
various emerging interactive applications such as BCI and biometric authentication [50].
Recent studies have focused on the materials, design, practicality, and signal quality of
in‑ear EEG systems. For example, Goverdovsky et al. (2016) [51] developed an innovative
in‑ear sensor using a viscoelastic substrate and conductive cloth electrodes capable of cap‑
turing high‑quality brain activity from the ear canal. Similarly, Kappel et al. (2019) [52]
designed an in‑ear EEG with a soft custom‑molded earpiece that demonstrated excellent
signal quality and suitability for extended EEG monitoring. Table 1 illustrates some spe‑
cific applications of the in‑ear EEG in previous research, including selected features. It can
be concluded from Table 1 that medical and healthcare applications are the main themes
of in‑ear EEG research. Notably, sleep monitoring garners special attention [53]. Inspired
by the rapid development and successful applications of in‑ear EEG in these fields, its
application on mental fatigue monitoring and feedback in the construction industry was
investigated in this research. Enhanced implementation of occupational health and safety
measures can be achieved on construction sites based on this premise.

Table 1. Summary of applications in previous ear–EEG studies.

Ear‑EEG Type Application Selected Feature Reference

Around‑ear EEG Auditory attention Event‑related potential [54]
In‑ear EEG Sleep monitoring Multi‑scale fuzzy entropy [55]
Around‑ear EEG Cognitive tasks Common spatial pattern [56]
In‑ear EEG Sleep monitoring Power spectral density [57]
In‑ear EEG Attention classification Power spectral density and temporal features [58]
In‑ear EEG Sleep staging assessment Power spectral density and temporal features [59]
Around‑ear EEG Eye‑state identification Filtered time‑series [60]

3. Materials and Methods
3.1. Overview

This study developed amultimodal in‑ear device for detecting themental fatigue state
of construction workers. The workflow of the study is illustrated in Figure 1 and consists
of the following steps:

Step 1: Feasibility validation of the developed multimodal in‑ear device. The pro‑
posedmultimodal in‑ear device was validated by comparing the data collected from in‑ear
EEG sensors with that obtained from the scalp EEG device. This validation step ensures
the accurate capture of brainwave signals from subjects by the in‑ear device.

Step 2: Data collection. EEG and ECG data were collected from participants by using
the developed multimodal in‑ear device. These data reflect participants’ brainwaves and
heart activities and serve as the foundation for subsequent mental fatigue detection.

Step 3: Data preprocessing. Several preprocessing steps were performed to ensure
accurate analysis and processing of the collected data.

Step 4: Feature extraction and selection. Relevant features related to mental fatigue
were extracted from the data, and correlation‑based feature selection (CFS) method was
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employed to identify the most significant features, thereby reducing model complexity
and enhancing classification performance.

Step 5: Model establishment and training. Based onmachine learning and deep learn‑
ing techniques, we developed mental fatigue monitoring models, and the models utilized
the extracted features for training.

Step 6: Model evaluation. The well‑trainedmodels were evaluated using appropriate
evaluation metrics to assess accuracy in predicting mental fatigue. The best‑performing
model can be identified by comparing the performance of different models, and the results
provide a viable solution for mental fatigue monitoring in real‑world applications.
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3.2. Multimodal In‑Ear Sensors for Psychophysiological Signal Integration
In the pursuit of achieving non‑invasive detection of mental fatigue in construction

workers, the present study employed psychophysiological measures that adhere to the stan‑
dards of cognitive neuroscience, fundamental psychology, and prior research paradigms.
Section 2.1 delves into the comprehensive analysis of neurophysiological signals indicative
of individual mental fatigue, encompassing EEG, ECG, respiration, and GSR, etc. Of par‑
ticular significance is the exploration of in‑ear EEG, an unintrusivemethodology capturing
aggregated electrical brain activities through the utilization of custom‑designed earpiece
electrodes embedded within the ear canal. Considering the critical aspects of portability
and feasibility in data collection and analysis, this study adopts a psychophysiologicalmet‑
ric system that integrates in‑ear EEG and ECG measurements.

Expanding on the aforementioned metric framework, this research utilized a multi‑
modal in‑ear monitoring device (Figure 2) to assess workers’ mental fatigue. This device
was developed by our research team in collaboration with the Hong Kong startup Min‑
dAmp (https://www.mindampltd.com/) and designed as a neck‑mounted headset. The
main unit is worn around the neck to enhance its performance, while two ECG electrodes
extend from the device and are attached to the skin on the left side of the chest for precise
signal acquisition. The in‑ear EEG device is configured with a sampling rate of 500 Hz.
This high sampling rate is chosen to capture fine‑grained EEG signal variations, ensuring
the temporal resolution needed for accurate analysis. This configuration offers several ad‑
vantages. First, it provides stability during movement and minimizes any potential inter‑
ference or artifacts that may affect signal quality. Additionally, this design enhances user
convenience by allowing easy adjustment of electrode positions without compromising ac‑
curacy. Moreover, the lightweight design enhances comfort during extended monitoring
sessions and is particularly beneficial when conducting long‑term studies or assessments
where participant compliance plays a vital role in obtaining reliable results.

https://www.mindampltd.com/
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Figure 2 illustrates the proper positioning of EEG electrodes within the ears, consid‑
ering the bio‑signal capture of the outer ear and the positioning of ear pieces. The posi‑
tion ensures accurate and reliable measurements by placing the electrodes near the brain’s
electrical activity. Specifically, the earpiece pad substrate material is composed of elastic
rubber, which helps absorb artifacts caused by small and large mechanical deformations
of ear canal walls. An EEG recording electrode, which is used to detect brain activity, is
embedded in the left ear pad. On the right ear pad, a reference electrode and a ground
electrode are installed to ensure stable signal reception. The flexible in‑ear EEG device is
designed with a strategic distribution of electrodes on the earphone, allowing it to accom‑
modate various ear shapes and sizes. This ensures optimal signal detection for accurate
and reliable brainwave monitoring.

In addition to its ergonomic design, the in‑ear device operates wirelessly and elim‑
inates the need for cumbersome wires or cables that can restrict movement or cause dis‑
comfort. With just a simple press of a button located on its body, users can easily power
on/off the device and provide convenience and ease of use. To ensure seamless data trans‑
mission, this innovative device utilizes Bluetooth low‑energy technology. This wireless
communication protocol enables efficient and secure transfer of brainwave signals from
the device to a connected smartphone or computer. Users can conveniently access their
real‑time physiological activity data without any interruption or interference.

Prior to its application in mental fatigue assessment, the integration of neurophys‑
iological signals from the in‑ear sensor has been validated through initial experiments
with three participants. The scalp EEG cap (EMOTIV EPOC+ 14 Channel Mobile EEG)
(Figure 3a) was used for comparison. The feedback received from the participants was
crucial in evaluating the usability of the in‑ear device. Prior to the preliminary experi‑
ment, participants wore two devices separately in the powered‑off state while engaging
in routine learning activities, such as walking, sitting, and working, for a duration exceed‑
ing 30 min. After completing the wearing experience, they reported that it fit comfortably
and did not hinder their movements, indicating that it can be worn without causing any
discomfort or inconvenience during daily activities. During the preliminary experiments,
participants were equipped with two devices at the same time and instructed to alternate
between keeping their eyes open and closed for 30 s each. The correlation coefficients
between the in‑ear EEG channel and the scalp EEG channels were then calculated. The
measurement values of the scalp EEG recording electrodes are higher than those of the de‑
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signed in‑ear device because of the different reference electrode placements between the
utilized scalp EEG device and our designed multimodal in‑ear device. For the correlation
experiment, the utilized scalp EEG device used electrodes behind the ears as reference elec‑
trodes, while the designed in‑ear EEG device adopted the electrode placed in the right ear
as the reference electrode.
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Figure 3 illustrates the topological correlation coefficients, which reveal a positive cor‑
relation between the activity captured by the in‑ear EEG channel (left ear electrode) and the
corresponding scalp EEG channels located on the left hemisphere. In contrast, a negative
correlation was observed with the channels on the right hemisphere. This finding sug‑
gests that the in‑ear EEG activity can provide meaningful insights into brain activity, par‑
ticularly with respect to temporal dynamics. Furthermore, the heatmap representing the
correlation coefficients provides visual confirmation that in‑ear EEG signals can effectively
reflect brain activities. The notable correlations highlight the potential of in‑ear devices for
monitoring cognitive states, especially temporal activities related to mental fatigue. Given
the increasing demand for wearable technology in neurophysiological assessments, the
findings from the initial experiments support the feasibility of using in‑ear EEG sensors as
a practical tool for continuous monitoring of mental fatigue.

In summary, aiming at the developed in‑ear sensors, the following objectives were
achieved through the preliminary experiments: (1) the verification of effectiveness in the
real‑time and continuous integration of neurophysiological signals, (2) the verification of
feasibility in reflecting EEG signals, and (3) the verification of its comfort as a wearable
device. Availability and effectiveness of the multimodal in‑ear sensors in mental fatigue
assessment were then explored through the following formal experiment.

3.3. Mental Fatigue Assessment Model Based on In‑Ear Sensors
3.3.1. Dataset Construction for Model Establishment
Experiment Protocol and Data Collection

In this research, a mental fatigue dataset needs to be developed for the assessment
model establishment to verify the suitability of the proposed in‑ear device. According to
the research objective, a cognitive experimentwas designed and conducted formultimodal
data collection (Figure 4).
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Figure 4. Comprehensive procedure of the experiment, encompassing the collection of multimodal
data (note: the timeline’s origin signifies the initiation of the cognitive task).

The experiment involved the recruitment of 16 healthy male individuals with a back‑
ground in construction engineering and prior experience working on construction sites.
These participants were selected from the pool of students at the Hong Kong Polytech‑
nic University to serve as experimental subjects, and their demographic information is
presented in Table 2. Referring to existing methodologies of cognitive psychological and
physiological experiments [33,61,62], the choice of participants was based on their accessi‑
bility and alignment with specific demographic characteristics. This strategy allowed us
to gather data from individuals who have the necessary technical knowledge and practi‑
cal insights relevant to our research objectives. According to the protocol developed for
the objective of this experiment, all the subjects were in optimal physical condition and
exhibited no signs of psychological disorders. They were required to keep a regular daily
routine the day before the experiment to ensure a good physical and mental state.

Table 2. Demographic information of the subjects included in the study.

No. Age Gender Total Number Features

1 28

Male 8

Graduate students who
possessed practical

experience in the fields of
construction engineering

and management

2 27
3 25
4 28
5 28
6 28
7 27
8 25

9 30

Male 8
Individuals involved in

work related to engineering
management.

10 33
11 29
12 32
13 30
14 29
15 31
16 35

The experimentswere conducted in a controlled indoor laboratory environment, where
conditions such as temperature and lighting were kept constant to minimize external in‑
fluences on signals. Prior to the experiment, the entire experimental procedures and the
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device used were introduced to all the subjects. All participants were given sufficient time
to practice and be familiarizedwith the trial procedure. In this process, they were required
to wear the in‑ear device while performing routine activities such as walking, sitting, and
standing. This step was conducted to evaluate the device’s stability under different move‑
ment conditions, preventing signal loss or electrode displacement.

During the experiment, all participants were required to wear the in‑ear device and
scalp EEG device simultaneously to ensure accurate and comprehensive neurophysiolog‑
ical data throughout the entire duration of the study. The cognitive task chosen for this
experiment was the computer n‑back task, which is a well‑established test for assessing
sustained attention and working memory abilities [30]. Mental fatigue is characterized by
a diminished state of alertness and impaired cognitive performance resulting from pro‑
longed periods of mentally demanding activities [63]. In the n‑back task, participants are
required to monitor a continuous sequence of stimuli and indicate when the current stimu‑
lusmatches the one from n steps earlier in the sequence. The difficulty of the task increases
with higher n values, which require participants to hold andmanipulate more information
in their working memory. In this study, subjects were asked to complete a computer 1‑
back task (Figure 4). More specifically, the experiment employed the triple stimuli, which
encompassed the integration of position, audio, and color elements. Each stimulus was
presented for 2 s, by which the participants responded to targeted elements the same as
the last stimulus by pressing 0–3 different keyboard buttons.

Before the cognitive task, participantswere asked to sit quietly for 5min to record base‑
line signals, serving as a reference point in subsequent data analysis. Then, different levels
ofmental fatigue can be induced by subjecting participants to an 80min long cognitive task.
In this study, we made the following assumptions to simplify the research. Participants’
self‑assessment of mental fatigue levels exhibits similarities and lacks significant differ‑
ences. This finding implies that regardless of whether the assessment is conducted before
or after task execution, individuals’ subjective perception of their own mental fatigue lev‑
els remains consistent and does not show significant changes. In addition, the fatigue level
evaluated by a modified Rating of Fatigue (ROF) scale [64] and the neurophysiological sig‑
nal reflected by the scalp EEG were used as the ground truth of the real‑time mental state
(Figure 4). First, to monitor the participants’ subjective perception of their own fatigue lev‑
els, we conducted self‑assessments every 20 min during the task by using a standardized
scale called ROF (Rating of Fatigue). This allowed us to gather valuable information about
how fatigued each participant felt at different time points throughout the experiment. In
addition to self‑assessment measures, we relied on objective indicators such as scalp EEG
recordings and performance decrements in the cognitive task itself. Scalp EEG provides
insights into brain activity patterns associated with different states of consciousness, in‑
cluding fatigue. By analyzing these neurophysiological signals in real‑time via Bluetooth
transmission, we were able to observe any changes or fluctuations indicative of increasing
or decreasing levels of fatigue. For each participant, the scalp EEG indicator was deter‑
mined by calculating the grand average of (theta + alpha)/beta for each 60‑s data segment.
To ensure the reliability of fatigue assessment, we evaluated the progression of mental fa‑
tigue by examining the correlation between this indicator and the results obtained from the
ROF scale. Please refer to existing studies for the specific methods of judging the develop‑
ment trend of mental fatigue by the scalp EEG [5,35]. Finally, three 60 s raw data segments
were chosen for each subject, reflecting distinct levels of mental fatigue: low, medium, and
high levels of mental fatigue.

Feature Selection and Dataset Construction
Signal preprocessing is a crucial and indispensable step in ensuring the accuracy and

reliability of subsequent data analysis. Considering numerous frequency noises due to
respiration, heartbeats, and other needless power frequencies, the raw EEG data were pre‑
processed mainly through the band‑pass filter, independent component analysis (ICA),
and invalid segment elimination, based on widely accepted standards in EEG signal pro‑
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cessing [35]. Specifically, the band‑pass filter was set with a cutoff frequency range of
0.5 Hz to 50 Hz, which is based on widely accepted standards in EEG signal processing.
This range effectively retains the essential components of the EEG signal while filtering
out most of the non‑brain‑related artifacts, such as low‑frequency movement artifacts and
high‑frequency environmental noise. ICA is a well‑established blind source separation
technique that can effectively disentangle different signal components without losing im‑
portant information from the original data. In this research, ICA was used to further sepa‑
rate and remove artifact signals, such as those caused by eye movements, muscle activity,
or sweating. In practice, we manually inspected the independent components identified
by ICA and used recognized artifact patterns described in the literature to filter out the
artifact components. The raw ECG data underwent an initial processing step with the
Butterworth filter [65] to eliminate high‑ and low‑frequency noise, enhancing the signal
quality. Baseline drift method [66] was employed to mitigate baseline fluctuations, simpli‑
fying signal analysis and interpretation. Finally, the processed ECG signals were passed
through the Pan–Tompkins algorithm [67] for R‑peak detection, which was then used to
calculate important indicators, such as heart rate (HR) and heart rate variability (HRV).

A moving window technique with a duration of 10 s and a 9.75 s overlap was em‑
ployed [68,69]. The window size ensures each ECG data segment has sufficient heart rate
information. Moreover, mental fatigue assessment based on every 10 s data segment can
meet the timely needs in future practical applications. By integrating the ECG preprocess‑
ing process, we eliminated some error samples in the data segments, resulting in a final
dataset of 10,512 samples. Data features potentially mapping to the mental fatigue assess‑
ment were extracted. For the single channel of the in‑ear EEG, the targeted frequency
bands (delta (δ) ranging from 0.5 Hz to 4 Hz, theta (θ) ranging from 4 Hz to 8 Hz, alpha (α)
ranging from 8 Hz to 13 Hz, beta (β) ranging from 13 Hz to 30 Hz, and gamma (γ) ranging
from 30 Hz to 40 Hz) were utilized to compute temporal features, as illustrated in Table 3.
Additionally, for the ECG data, features related to the heart rate variability were collected
and can be found in Table 4.

Table 3. EEG‑related features extracted from the developed multimodal in‑ear device.

Signal Type EEG Signals Frequency Extracted Features Number

In‑ear EEG

delta (δ) 0.5–4 Hz Mean amplitude, standard
deviation, peak‑to‑peak
amplitude, skewness and

kurtosis calculated from waves
of δ, θ, α, β and γ.

25
theta (θ) 4–8 Hz
alpha (α) 8–13 Hz
beta (β) 13–30 Hz

gamma (γ) 30–40 Hz

Table 4. ECG‑related features extracted from the developed multimodal in‑ear device.

Signal Type Extracted Features Description Number

ECG

mRR Mean duration between two consecutive R waves (R‑R
intervals) in the QRS signal on ECG.

6

SDRR Standard deviation of all of the R‑R intervals.

RMSSD Root mean of the squared differences between
consecutive RR intervals.

LF‑HRV Normalization of the low‑frequency band in heart rate
variability (HRV).

HF‑HRV Normalization of the high‑frequency band in heart rate
variability (HRV).

LF/HF Normalized ratio between the LF‑HRV and the
HF‑HRV.

Among the extracted multi‑features, each feature usually has different orders of mag‑
nitude as a result of its different nature. For example, the value of LF/HF reaches thou‑
sands or even tens of thousands, while the value of HF‑HRV is less than 1 ms2. If the
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features, LF/HF and HF‑HRV, are directly input into the fatigue classification model, the
role of LF/HF in the trained model will be highlighted, resulting in the inaccurate clas‑
sification performance of the trained model. Therefore, to improve the reliability of the
classification model and optimize convergence speed effectively, a normalization process
was performed on the input features prior to their utilization in the training and prediction
stages of the assessment models.

In addition, the feature selection operation was necessary to extract the optimal fea‑
ture subset from the original feature space for establishing the fatigue classification model.
Theoretically, more input features can provide richer information formental fatigue predic‑
tion model; however, too many features may cause feature redundancy and excessive cal‑
culation, especially noise can be introduced, which can have a detrimental effect on the ac‑
curacy of the model’s predictions. To address this, this study incorporated the correlation‑
based feature selection (CFS) method to select the optimal input features, which reduces
the dimensionality of the features considering feature–feature correlations and the con‑
tribution of the features themselves to the model prediction performance [70]. CFS is a
filtering feature selection method that aims to identify a subset of features with minimal
inter‑feature correlation and strong correlation with the target variable, thus effectively re‑
moving redundant and weakly correlated features to maintain or improve the predictive
power of the model. This method evaluates the quality of each established feature subset
according to the proposed Merit scoring function. A higher Merit score of the extracted
feature subset indicates strong correlationwith the classification results and independence
among the included features. The presentedMerit score function can be computed accord‑
ing to Equation (1).

MeritS =
krc f√

k + k(k − 1)r f f

(1)

where k denotes the number of features contained in the feature subset S, r f f represents the
average feature–feature correlation, and rc f denotes the average feature–class correlation.
Here, for the calculation of correlation, the Pearson correlation coefficient was used, which
can be expressed by Equation (2): x represents a feature in S, \y refers to a feature or a
classification result, and N is the number of samples.

rxy =
∑ xy − ∑ x∑ y

N√
[∑ x2 − (∑ x)2

N
][∑ y2 − (∑ y)2

N
]

(2)

CFS method is implemented using a best‑first search strategy to identify the optimal
feature subset, denoted as S. It begins by calculating the correlation matrices for feature–
class and feature–feature relationships based on the training data. Thismethod then selects
the features with the highest Merit value and adds it to the initial empty feature subset, S.
Subsequently, additional features are sequentially considered for inclusion in the feature
subset. If the overall Merit value of the feature subset S increases with the addition of a
feature, then it is incorporated into S; otherwise, this feature is discarded from the subset.
The aforementioned steps are repeated iteratively until the feature subset with the highest
Merit score is obtained, representing the optimal feature subset. The features included in
this optimal subset are subsequently utilized as inputs for training the fatigue classifica‑
tion model.

In this research, the number of features and their corresponding Merit values are in‑
creasing when implementing the CFS method and the best first search to find the features
that meet the requirements (Table 5). The final feature combination selected for this study
is {mRR, β‑kurtosis, γ‑kurtosis, β‑standard deviation, SDRR}, with the Merit value reach‑
ing 0.521. Among them, β‑kurtosis, γ‑kurtosis, and β‑standard deviation represent the
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kurtosis of the β wave, the kurtosis of the γ wave, and the standard deviation of the β

wave, respectively.

Table 5. The generated subsets of features based on the CFS method.

No. Features Combinations Merit Values

1 mRR 0.420
2 mRR, β‑kurtosis 0.488
3 mRR, β‑kurtosis, γ‑kurtosis 0.515
4 mRR, β‑kurtosis, γ‑kurtosis, β‑standard deviation 0.520
5 mRR, β‑kurtosis, γ‑kurtosis, β‑standard deviation, SDRR 0.521

The chosen combination of features is considered optimal, as it meets the criteria of
having low inter‑feature correlation andhigh correlationwith the target class, which can be
reflected from Figures 5 and 6. Figure 5 showcases the correlation among the five selected
features. The correlation between any two selected features is relatively low, with the
maximum not exceeding 0.3 (β‑kurtosis vs. β‑standard deviation). Figure 6 provides the
boxplots for the selected features. It is evident that the boxplots of these five features do not
completely overlap (no boxes of the same size), which suggests that the selected features
have individual contributions in distinguishing the mental fatigue levels.
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According to above feature selection, for application to the later assessment model
establishment, the dataset was denoted as D = {D p丨p ∈ {1, 2, 3, . . . , P}}, where P signi‑
fies the count of participants; Dp represents the data collected from participant p. In this
dataset, X = {x1, x2, . . . , xt, . . . , xn}T ∈ Rn×j, where n represents the sample size; j is the
number of features of in‑ear EEG and ECG. That is, xt = (IEEGt, ECGt) ∈ R2, where
IEEGt represents values of in‑ear EEG features, ECGt represents values of ECG features.
According to the ROF scale, the mental fatigue level Yi ∈ {0, 1, 2}, i = 0, 1, 2 . . . , n, was
taken as the output of the model.
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3.3.2. Model Establishment for Mental Fatigue Assessment
Following the preprocessing, feature selection, and dataset creation steps outlined in

Section 3.3.1, a range of machine learning and deep learning classifiers were utilized to
establish mental fatigue classification models, which were then used to investigate the fea‑
sibility of the proposed multimodal in‑ear device for monitoring mental fatigue. Note that
the classifiers selected in this study were chosen based on their established effectiveness
in similar studies on fatigue classification, including six widely recognized models from
the fields of machine learning and deep learning such as k‑nearest neighbor (KNN) [71],
support vector machine (SVM) [62], decision tree (DT) [61], random forest (RF) [71], convo‑
lutional neural network (CNN) [45] and LSTM network [46]. These models have demon‑
strated good classification performance in prior research [72,73]. The open‑source Python‑
basedmachine learning library (scikit‑learn), aswell as the deep learning library (i.e., Keras),
can easily implement efficient model training and assessment, enabling an evaluation of
the practical feasibility of the developedmultimodal in‑ear device for monitoring workers’
mental fatigue in real‑world applications. Note that for machine learning models, such
as DT and RF, that contain many hyperparameters, we summarize the hyperparameters
of the mentioned machine learning models in Table 6. Moreover, the hyperparameters of
each machine learning model were optimized using a combination of grid search and K‑
fold cross‑validation, as outlined in Table 7. A detailed description of themachine learning
models used in this study, including their theoretical foundations, algorithmic structures,
and typical applications, can be found in [74]. This reference encompasses pivotal mod‑
els utilized in this study such as KNN, SVM, DT, and RF. In addition, CNN and LSTM
networks are the deep learning models utilized in this study, with their network architec‑
tures illustrated in Figure 7a. These networks employ different approaches in processing
data. The CNN network processes data through convolutional layers, fully connected lay‑
ers, and maxpooling layers, whereas the LSTM network processes data through stacked
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LSTM cells. As shown in Figure 7b, a typical LSTM cell consists of a forget gate, an input
gate, an output gate, and the cell state. The input gate it controls the update of new in‑
formation to the current state ct, the forget gate ft determines which information from the
previous cell state ct−1 should be discarded, and the output gate ot regulates the output ht
of the LSTM cell. The update of the cell state in relation to the three gates can be described
as follows: 

ft = σ(W f ·[ht−1, xt] + b f )
it = σ(Wi·[ht−1, xt] + bi)
ot = σ(Wo·[ht−1, xt] + bo)
c̃t = tanh(Wc·[ht−1, xt] + bc)
ct = ft ⊙ ct−1 + it ⊙ c̃t
ht = ot ⊙ tanh(ct)

(3)

where t represents the time step, xt is the input vector. σ and tanh correspond to the sig‑
moid activation function and hyperbolic tangent activation function, respectively. Ct−1
represents the cell state from the previous time step, while ct is the new candidate value
vector used to update the current cell state. ht−1 refers to the hidden state from the previ‑
ous time step. Wα and bα (α = { f , i, o, c}) represent the weight matrices and bias terms for
the different gates. The symbol ⊙ indicates the Hadamard product.

Table 6. Hyperparameters of machine learning models.

Models Hyperparameters

KNN
1. metric: “chebyshev”, “euclidean”, “manhattan” or “minkowski”.
2. n_neighbors: count of nearest neighbors to consider during the classification process.
3. weights: weighting method: “uniform” or “distance”.

SVM 1. C: regularization parameter.
2. kernel: kernel function: “linear”, “poly”, “sigmoid”, or “rbf”.

DT

1. max_depth: the maximum number of levels that the tree can grow.
2. criterion: metric employed to assess the quality of a split.
3. max_features: the maximum number of features to consider when looking for the best split.
4. min_samples_leaf: the minimum number of data samples needed in a leaf node.

RF

1. n_estimators: the count of decision trees to be constructed in the ensemble of random forests.
2. min_samples_split: the minimum number of data samples needed at an internal node in order to
perform a split.
3. min_samples_leaf: the minimum number of data samples needed to form a leaf node.
4. max_features: the upper limit on the number of features considered during the splitting process of
a node.
5. max_depth: the maximum number of levels or depth that a decision tree can reach within the ensemble.
6. bootstrap: the specific sampling method used during the construction of decision trees.

Table 7. Steps for selecting the hyperparameters of machine learningmodels by using a combination
of grid search and K‑fold cross‑validation.

Steps Description

1 Randomly partition the entire dataset into a training set and a test set.
2 Define the grid search space and determine the hyperparameters for each model.

3
Divide the training set into k subsets, reserving one subset as the validation data for evaluating the
prediction performance of each model with different hyperparameter combinations. The remaining k − 1
subsets are used for training the model.

4 Repeat the process in Step 3 for k times, ensuring that each subset is used as the validation data exactly once.

5 Iterate through all hyperparameter combinations of the models, repeating Steps 3 and 4 for
each combination.

6
Identify the hyperparameter combination that achieves the highest score for each model from the k‑time
training and validation. Utilize this optimal hyperparameter combination to evaluate the mental fatigue
classification performance on the test set.
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For the deep learningmodels, the hyperparameters were selected based on the recom‑
mended settings from the relevant literature. A limited number of training sessions were
conducted because of slow training speed and challenges in achieving convergence with
the loss function. Finally, the hyperparameter values of the deep models can be obtained
based on the preliminary training results.

A series ofmulti‑categorical evaluationmetrics, includingmacro average precision (i.e.,
macroP), macro average recall (i.e., macroR), macro average F1 score (i.e., macroF1) [36,75],
and Average Accuracy [76], was used to assess the classification capability of each model
and obtain a holistic assessment of the classification performance for workers’ mental fa‑
tigue. macroP and macroR calculate the precision and recall for each class in a one against
all manner first and then derive the aggregate measures by averaging the precision and
recall values across all classes, which can be written as Equations (4) and (5), respectively.
macroF1 is the harmonic mean of macroP and macroR, as shown in Equation (6). Addi‑
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tionally, Average Accuracy presents the percentage of correct classifications for each model,
which can be expressed as Equation (7).

macroP =
1
c ∑c

i=1
TPi

TPi + FPi
(4)

macroR =
1
c ∑c

i=1
TPi

TPi + FNi
(5)

macroF1 = 2 × macroP × macroR
macroP + macroR

(6)

Average Accuracy =
1
c ∑c

i=1
TPi + TNi

TPi + FNi + FPi + TNi
(7)

where c is the number of workers’ mental fatigue levels (Yi). In this study, c is set to 3. TPi
denotes the count of samples from class Yi that the model accurately predicts, while FPi
represents the count of samples from classYi that themodelmisclassifies. FNi corresponds
to the count of samples from class Yi that are erroneously classified as other classes by
the model, while TNi represents the count of samples correctly classified by the model
as categories other than class Yi. In addition, the utilization of a confusion matrix allows
for a visual depiction of the disparities between the classification outputs of each model
and the actual ground‑truth values. The confusion matrix is a square matrix of size n × n,
where each row represents the true mental fatigue category of each sample, while each
column denotes the mental fatigue category predicted by the model. Therefore, the values
along the diagonal line of the confusion matrix, spanning from the top left to the bottom
right, indicate the overall count of samples that are accurately classified by the model, i.e.,
∑n

i=1 TPi.

4. Evaluation and Results
In this study, the dataset established in Section 3.3.1 was split into two sets: a training

set and a test set, with a ratio of 9:1. Prior to establishing the dataset, all samples were
randomly shuffled. The training set was subsequently divided into five equal segments to
facilitate the implementation of fivefold cross‑validation (K = 5) for grid searching optimal
hyperparameter combinations across themachine learning‑basedmodels employed in this
study. Moreover, the sensitivity of hyperparameters for eachmachine learningmodel was
assessed, andminimal performance differenceswere observed across various hyperparam‑
eter settings. The second column of Table 8 lists the optimal hyperparameter combinations
for each model.

In the case of the deep learning models, the CNN model employed a two‑layer con‑
figuration of 1D CNN units, while the LSTM model utilized two layers of LSTM units to
encode the input features. We adopted the deep learning framework of Keras and trained
on a server equipped with four NVIDIA GP104GL (Tesla P4) graphics cards. The Python
version employed was 3.8. In the CNNmodel, ReLU was employed as the activation func‑
tion for the convolutional layers, while Softmax was utilized for the fully connected layers.
Likewise, in the LSTM model, the initial learning rate was set to 0.001, tanh was desig‑
nated as the activation function for the LSTM layers, and Softmax was chosen for the fully
connected layers. Throughout the training process, both deep learningmodelswere config‑
ured with a batch size of 32, utilized the Adam optimizer, and were trained for 100 epochs.
Figure 8 illustrates variations in loss function and accuracy throughout the training process
for the CNN and LSTMmodels. As shown in Figure 8a, the CNN and LSTMmodels exhib‑
ited a rapid reduction in loss during the initial stages of training. With increasing training
epochs, the training loss gradually decreased and eventually stabilized. The CNN model
achieved stability at approximately 40 epochs with a loss value of around 0.47, while the
LSTM model stabilized at approximately 55 epochs with a loss value of about 0.25. Corre‑
spondingly, the CNN and LSTMmodels demonstrated an initial rapid increase in training
accuracy, which improved gradually with additional training epochs until it reached a sta‑
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ble level. The CNNmodel achieved a training accuracy of 83.368%, while the LSTMmodel
reached a higher training accuracy of 92.283%. Notably, the LSTM model took longer to
reach a stable performance level, but it converged to a smaller training loss value, which
suggests that the LSTM model effectively learned the provided feature data.

Table 8. Mental fatigue classification performance of the six implemented models.

Models Hyperparameter Value macroP macroR macroF1
Average
Accuracy

KNN
metric “manhattan”

85.594% 85.549% 85.572% 89.880%neighbors 6
weights “distance”

SVM
C 1000

81.935% 81.336% 81.634% 86.757%kernel “rbf”

DT

max_depth “None”

84.060% 84.029% 84.044% 88.826%
criterion “entropy”

max_features 8
min_samples_leaf 1

RF

n_estimators 2240

86.888% 86.871% 86.879% 90.647%

min_samples_split 60
min_samples_leaf 8
max_features “auto”
max_depth 20
bootstrap “False”

CNN
1st convolutional layer: filters;

kernel_size 64; 2
82.127% 82.118% 82.122% 87.332%

2nd convolutional layer: filters;
kernel_size 64; 3

LSTM
number of LSTM unit 256

89.067% 89.068% 89.068% 92.437%number of LSTM layers 2
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After obtaining the optimal hyperparameters, the performance of eachmodel formen‑
tal fatigue classification was evaluated based on the test set by using four metrics, namely,
macroP,macroR,macroF1, andAverage Accuracy. Table 8 also reports the calculated values of
the evaluationmetrics for the implemented sixmachine learning anddeep learningmodels.
In the task of mental fatigue classification, the six implemented models had performance
differences. The LSTM model exhibits excellent performance, attaining the highest Aver‑
age Accuracy (92.437%) and macroP (89.067%) and also achieving the best results in terms
of macroR (89.068%) and macroF1 (89.068%). These outcomes highlight the outstanding ca‑
pabilities of the LSTMmodel in mental fatigue classification, making it highly suitable for
research and practical applications. Additionally, the RF model also demonstrates high
performance, with an Average Accuracy of 90.647%, macroP of 86.888%, macroR of 86.871%,
and macroF1 of 86.879%. These results underscore the accuracy and reliability of the RF
model in the classification of mental fatigue. Comparatively, the KNN and DT models
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exhibit relatively balanced performance across all metrics, with the Average Accuracy of
89.880% and 88.826%, and the macroF1 of 85.572% and 84.044%, respectively. However,
the SVM and CNNmodels exhibit slightly lower performance. The SVMmodel achieves a
macroR of 81.336%, while the CNNmodel achieves amacroR of only 82.118%. Despite these
relatively lower scores, the SVM and CNNmodels exceed the threshold of 80% for all eval‑
uationmetrics. Hence, machine learning and deep learningmodels can accurately identify
mental fatigue levels by using the data captured by the proposedmultimodal in‑ear device,
which further validates the feasibility and effectiveness of the designed multimodal in‑ear
device for monitoring mental fatigue. In practical applications, the EEG and ECG signals
obtained from the multimodal in‑ear device undergo preprocessing and are directly in‑
put into trained models for prediction; the prediction results serve as an indication of the
mental fatigue states of construction workers.

The confusion matrix provides a specialized visualization of the classification perfor‑
mance for each model and enables a clear representation of the disparities between the
predicted classifications and the ground‑truth labels. Figure 9 illustrates the confusion
matrices for the six classifiers using the test set, where the true mental fatigue levels are
displayed along the x‑axis, while the predicted mental fatigue levels are displayed along
the y‑axis. The values along the diagonal line, spanning from the top left to the bottom
right, in the confusion matrices indicate the counts of correct classifications for mental fa‑
tigue levels achieved by the various models. It is evident from the confusion matrices that
eachmodel can accurately predict the correct mental fatigue level. The number of correctly
classified samples significantly exceeds the number of misclassified samples. For example,
as shown in Figure 9, the KNNmodel can accurately identify 900 samples from the test set
of 1052 samples, with only 152 samples misclassified. Notably, the LSTM model exhibits
the best predictive performance formental fatigue, accurately classifying 937 samples from
the test set. In summary, Figure 9 indicates that all models display exceptional capabilities
in accurately classifying levels of mental fatigue.
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5. Discussion and Limitations
Given the unique nature of construction work, construction workers commonly expe‑

rience elevated mental workloads, which could lead to unsafety behavior and numerous
other undesirable outcomes. From the human‑centered and proactive control perspective,
this study aimed to examine the early detection of adverse mental load among construc‑
tion workers, prioritizing their well‑being and safety. Based on the cognitive perspective,
the mental fatigue of construction workers was chosen for the study of unsafety behavior
management. Specifically, this research proposes a novel and portablemonitoringmethod
utilizing multimodal in‑ear sensors.

5.1. Effectiveness of the Proposed Monitoring Method of Spontaneous Mental Fatigue
Mental fatigue can manifest through multiple aspects, including subjective evalua‑

tion, changes in cognitive performance, physiological responses, etc. In this research, neu‑
rophysiological measures were used for the portable assessment of mental fatigue among
construction workers on construction sites. Referring to cognitive neuroscience and basic
psychology, relationships between individual cognitive processes and external neurophys‑
iological performance were analyzed. In particular, the neurophysiological metric system
was established utilizing the in‑ear EEG and ECG data considering the portability and fea‑
sibility of the above neurophysiological measures in data acquisition and analysis. The
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optimal and key data features selected for mental fatigue assessment were determined by
considering the feature–feature correlations and evaluating their contributions in the clas‑
sification models by using the correlation‑based feature selection (CFS) method.

On this basis, this research empirically evaluated six supervised classificationmodels,
encompassing traditional machine learning approaches and advanced deep learning tech‑
niques. The proposed multimodal in‑ear device exhibited promising performance in rec‑
ognizingmental fatigue across various well‑established classificationmodels, with greater
than 80% evaluation metrics (i.e., macroP, macroR, macroF1, and Average Accuracy). The RF
and LSTM models had an Average Accuracy above 90%. The LSTM model showcased ex‑
ceptional prediction performance in classifying workers’ mental fatigue, with an Average
Accuracy of 92.437%. In the confusion matrix, 115 misclassified instances occurred out of
1052 test samples. One potential explanation for this finding arises from the inherent char‑
acteristics of the model itself. The LSTM model is specifically designed to handle time se‑
ries data, making it highly suitable for data that evolves over time, such as EEG and ECG
data. The manifestation and progression of mental fatigue unfold over time, presenting
long‑term temporal dependencies that the LSTMmodel can effectively capture and retain
through its built‑in memory cells and gating mechanisms (input gate, forget gate, output
gate). This capability allows the LSTM model to store past information and leverage it in
its predictions, thereby enhancing the accuracy of its assessments regardingmental fatigue.
This research finding coincides with conclusions from other scholars. For example, Sarkar
et al. (2022) [77] reported that the LSTM model obtained leading classification accuracy
compared to the CNNmodel and the multilayer perceptron (MLP) model by keeping 20%,
30%, and 40% data. Similarly, experimental results fromWang et al. (2021) [78] illustrated
that the accuracy of the LSTM model for mental fatigue classification was 11.87% higher
than that of the CNN model. Moreover, Rastgoo et. al. (2019) [79], Hu et. al. (2021) [80],
and Nishtha et. al. (2022) [81] concluded that the LSTM model can be a promising option
for the classification of stress and fatigue. This research substantiated the feasibility of the
developed multimodal in‑ear device as a means to monitor the occurrence of spontaneous
mental fatigue among construction workers. The device would be adopted and deployed
massively on construction sites due to its portability for automatic monitoring of mental
fatigue among construction workers.

5.2. Research Implications
The utilization of BCI technology and biological measures has demonstrated promis‑

ing applications in safety and security management fields [82]. In practice, effective safety
management based on the BCI and biological measures requires a closed‑loop system con‑
figured for three specific processes: sensing, processing, and actuation [82]. This research
focused on mental fatigue monitoring for behavior safety management of construction
sites based on the idea of the above closed‑loop system. This study applied a control sys‑
tem framework tomonitormental fatigue, similar to the real‑time data processingmethods
used in healthcare, such as the control strategies employed in managing insulin titration
in Type 2 diabetes patients [83]. This demonstrates the applicability of such approaches
across different fields.

Specifically, a method of multimodal neurophysiological signal integration and vi‑
sualization was first proposed considering the characteristics of the construction environ‑
ment and construction activities (i.e., the multimodal in‑ear sensors). The efficiency and
stability of the multimodal signal integration were analyzed. A monitoring method of
spontaneous mental fatigue was proposed based on its correlation and reliability in re‑
flecting endogenous brain activity. In this way, the research outcomes can provide new
theoretical supports and practical tools for the effective management of mental fatigue
among construction workers. In the future, the beneficiaries of the research will first be
workers and companies. For project managers, the proposed mental fatigue monitoring
method can visualize and quantify the mental statuses of workers. Individuals in special
construction operations at inappropriate mental fatigue levels can be found.
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In this context, the “actuation” process refers to the interventions or responses trig‑
gered by the analysis results of mental fatigue. Proactive and precise mental fatigue inter‑
vention can be provided in time. Moreover, subsequent safety training could be conducted
to enhance mental fatigue management. For instance, by incorporating immersive virtual
environments [84], workers can better copewith demanding construction tasks by simulat‑
ing real‑world scenarios, thereby improving their mental resilience and overall safety on
construction sites. In this way, potential damages can be avoided. The long‑term mental
status data of workers on sites can be collected based on the portability of the proposed
method; the data are meaningful for mental fatigue research and risk safety management
in the future. By revealing the generation and development rules of construction worker’s
mental load, targeted industry‑wide guidance can be developed and promoted [3]. Fur‑
thermore, advancements can be made in enhancing the security and reliability of the men‑
tal fatigue monitoring system. For example, integrating blockchain technology ensures
data integrity and accessibility [85], thereby establishing amore robust foundation for real‑
time decision‑making in construction safety management. By preventing the occurrence
of construction safety accidents and avoiding economic and personnel losses, sufficient
and healthy human resources can be provided for the long‑term stability and growth of
the construction industry.

5.3. Applicability in Construction Environments
While the proposedmethod shows promise formonitoringmental fatigue in construc‑

tion workers, scaling the proposed method to larger and more diverse populations in con‑
struction environments presents several key issues.

• Although this study was conducted in a controlled laboratory environment, the de‑
sign and preliminary testing of the in‑ear device has demonstrated that it maintains
stability and data integrity during typical physical movements. The snug fit and elas‑
tic rubber earpieces of the device ensure that the electrodes remain securely in place,
preventing displacement and minimizing artifacts caused by movements. Further‑
more, the use of Bluetooth low‑energy technology ensures seamless data transmis‑
sion even in dynamic environments. This wireless communication protocol is specif‑
ically designed for the efficient and secure transfer of brainwave signals to connected
smartphones or computers, which is crucial in real‑world construction settings where
physical movement and environmental conditions may vary. The robustness of the
Bluetooth connection further enhances the reliability of data collection, ensuring ac‑
curate and consistent information gathering. Given these design considerations and
successful results from the preliminary tests, the device is capable of accurately col‑
lecting and transmitting data in real‑world construction environments.

• In this study, we employed band‑pass filtering and ICA to address extrinsic artifacts
such as environmental noise, and intrinsic artifacts like eye movements. It should be
noted that this study was conducted in a controlled laboratory environment without
motion artifacts, which were not considered in the current preprocessing framework.
This controlled setting enabled us to focus on developing and evaluating the subse‑
quent classification model. Motion artifacts are a significant factor affecting EEG sig‑
nal quality in real‑world construction scenarios. Futurework should involve develop‑
ing advanced preprocessing techniques, potentially leveraging deep learning models,
and addressing motion artifacts when transitioning to more dynamic environments.
This approach will enhance the robustness and applicability of EEG‑based mental fa‑
tigue monitoring under practical on‑site conditions.

• Moreover, the successful application of this method at a larger scale brings additional
considerations. The cost of widespread adoption could be substantial, potentially lim‑
iting its feasibility. Additionally, although themonitoringmethod is designed for ease
of use, ensuring that all workers can comfortably and effectively utilize the technol‑
ogy, particularly over extended periods, may require additional training and support.
Integrating the proposedmonitoringmethodwith existing safety protocols could also
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necessitate adjustments to current practices and the development of new guidelines.
Addressing these issueswith cost‑effective solutions, user training programs, and pro‑
tocol integration strategies will be essential for maximizing the utility of the proposed
monitoring method in construction environments.

5.4. Limitations and Future Work
Certain limitations were identified in this research, underscoring the need for further

exploration and improvement in future endeavors. First, the machine learning and deep
learning models utilized in this research were batch‑learning models, which were trained
and learned offline. In other words, these models must be trained on all available data at
regular intervals, such as weekly, bi‑weekly, monthly, quarterly, etc. For the neurophysio‑
logical data of workers arriving continually and accumulating for a long time on real con‑
struction sites, the process of repeatedly training the models from scratch can become ex‑
pensive and time‑consuming, posing challenges to achieving real‑time monitoring of con‑
struction workers’ mental fatigue. In future research, an online learning model should be
explored to meet the need for monitoring workers’ mental fatigue in real time. Second, the
effectiveness and applicability of the developed multimodal in‑ear sensors and the mental
fatigue assessment model were studied and evaluated in a controlled laboratory environ‑
ment. However, this setting does not fully replicate the complex and dynamic conditions
of actual construction sites. Factors on sites such as noise, temperature, and physical ex‑
ertion can play a significant role in influencing mental fatigue. Additionally, gender and
experience differences can impact mental fatigue, especially in high‑stress environments.
This study exclusively included male participants with a background in construction en‑
gineering, which may introduce bias and limit the generalizability of the findings. Future
research should focus on expanding the participant pool to include females and individ‑
uals from diverse educational and professional backgrounds, as well as conducting field
experiments in real‑world construction environments. It will allow for a more accurate
assessment of mental fatigue across diverse conditions and enhance the external validity
of the research findings.

6. Conclusions
Workers on construction sites are often in a state of high tension andhigh pressure and

have irregular work and rest time. In these situations, mental fatigue, as a typical mental
load state, is pervasive and affects an individual’s cognitive ability. Mental fatigue is one
of the occupational concerns that reduces production, efficiency, and occurrence of safety
accidents. In practical terms, the management of fatigue among construction workers re‑
mains a relatively underexplored domain within the realm of health and safety manage‑
ment on construction sites. Improving the unsafe behavior management of construction
workers in the dimension of mental fatigue serves as the starting point of this study. By
considering the unique characteristics of the construction environment and construction
activities, a novel and non‑invasive monitoring method of construction workers’ mental
fatigue based on multimodal in‑ear EEG sensors was proposed in this research. From a
theoretical perspective, the mental fatigue neurophysiological metric system of construc‑
tion workers was analyzed and optimized. From the perspective of application, the mul‑
timodal in‑ear sensors were designed to realize the multimodal neurophysiological signal
integration and visualization, based on the BCI technology. Accordingly, adaptable assess‑
ment models of the mental fatigue of construction workers, leveraging machine learning
and deep learning techniques, were proposed and verified. All the models exhibited out‑
standing performance in detecting mental fatigue, with all evaluation metrics, including
macroP, macroR, macroF1, and Average Accuracy, surpassing 80% or higher. Notably, the
LSTM model achieved exceptional results, with all computed metric values exceeding an
impressive 89%. Combined with the multimodal in‑ear device, the proposed model was
proven to be effective in detecting mental fatigue. To make the research findings action‑
able for industry practitioners, it is recommended to integrate these technologies into their
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existing safety management systems. This integration would involve training personnel,
establishing continuous monitoring protocols, and utilizing real‑time data for proactive
intervention. These applications will help bridge the gap between research findings and
practical applications. In summary, the research outcomes are valuable in occupational
health and construction site safety management, from a pre‑control point of view.
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