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Abstract: The roofs of heritage buildings are subject to long-term degradation, resulting in poor heat
insulation, heat regulation, and water leakage prevention. Researchers have predominantly employed
feature-based traditional machine learning methods or individual deep learning techniques for the
detection of natural deterioration and human-made damage on the surfaces of heritage building roofs
for preservation. Despite their success, balancing accuracy, efficiency, timeliness, and cost remains a
challenge, hindering practical application. The paper proposes an integrated method that employs a
convolutional autoencoder, thresholding techniques, and a residual network to automatically detect
anomalies on heritage roof surfaces. Firstly, unmanned aerial vehicles (UAVs) were employed to
collect the image data of the heritage building roofs. Subsequently, an artificial intelligence (AI)-
based system was developed to detect, extract, and classify anomalies on heritage roof surfaces by
integrating a convolutional autoencoder, threshold techniques, and residual networks (ResNets). A
heritage building project was selected as a case study. The experiments demonstrate that the proposed
approach improved the detection accuracy and efficiency when compared with a single detection
method. The proposed method addresses certain limitations of existing approaches, especially the
reliance on extensive data labeling. It is anticipated that this approach will provide a basis for the
formulation of repair schemes and timely maintenance for preventive conservation, enhancing the

actual benefits of heritage building restoration.

Keywords: heritage buildings; roof damage; detection and evaluation; UAV; computer vision

1. Introduction

Heritage buildings serve not only as historical artifacts but also as cultural icons. Each
structure embodies the architectural techniques, artistic styles, and social characteristics
of its respective era, encapsulating a wealth of historical and cultural information [1].
Preserving these buildings is vital to safeguarding historical knowledge and cultural
heritage. As these structures increasingly attract global tourism [2], the urgency of effective
preservation and restoration has heightened. However, many heritage buildings face risks
from extreme weather events [3,4] such as hurricanes and blizzards, natural disasters
like earthquakes and hailstorms, as well as challenges such as inadequate maintenance
and deliberate damage. These factors present significant hurdles to the conservation of
heritage buildings.

Roof issues are particularly prominent in the field of heritage building preservation.
The roof serves not only as the primary protective layer of a structure but also plays a
crucial role in maintaining the historical and esthetic value of the building. Traditional
materials, often used in the roofs of heritage buildings, are durable but susceptible to
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wear and damage over time due to prolonged exposure to the elements. Maintaining and
repairing these roofs are essential for structural stability, but the diversity of materials and
damage types requires highly skilled personnel with extensive technical knowledge. The
unique spatial position of roofs within building structures complicates inspection, and the
inability to simultaneously detect and repair damage often leads to incomplete hazard
assessments and delayed repairs. Moreover, roof repairs in heritage buildings often rely
on costly manual labor. These characteristics make roof inspection and maintenance a
critical and challenging aspect of heritage building preservation. Efficient roof detection
measures, coupled with timely repairs, can prevent further structural damage and ensure
the long-term stability of these structures.

Tile roofing is widely adopted globally due to its benefits such as lightweight construc-
tion, excellent thermal insulation properties, and straightforward installation. For instance,
tile roofing is prevalent in medieval and Renaissance architecture across France, Italy, and
Germany, as well as in various historic complexes in China including palaces, temples, and
residential buildings. Similarly, mosques and palaces in Iran and Turkey also extensively
utilize tile roofing. However, tile roofs have drawbacks such as limited durability and
susceptibility to damage, which increases maintenance requirements compared to other
roofing materials. Additionally, the intricate structure of tile roofs, involving components
such as mortar backing, mud backing, tile mud, and individual tile pieces, complicates
manual inspection and reduces the efficiency and accuracy of damage detection.

Given the critical role of roofing issues in the preservation of heritage buildings and
the widespread use of tile roofs, developing more efficient damage detection methods
for these structures is crucial for advancing conservation technologies. In recent years,
the integration of artificial intelligence (AI) has brought about significant advancements
in this field. Al techniques, particularly machine vision combined with neural network
technologies, simulate human visual functions. Deep learning algorithms, leveraging the
capabilities of deep neural networks, excel at identifying patterns in data and performing
inference tasks, making them ideal for practical applications in detection, measurement,
and control.

Previous research has applied many innovative and effective methods to building
preservation, including aerial diagnostic technologies like satellite imaging, GIS, and certain
deep learning techniques [? ] for the protection of civil buildings. However, these studies
have not focused on roof types made of specific materials in historic buildings, and the
deep learning methods used have been relatively isolated, lacking effective integration. For
the first time, we have introduced deep learning techniques into the niche area of detecting
and identifying damage in tiled roofs of historic buildings. Our convenient and efficient
approach fills a significant research gap in this field and contributes to the advancement of
historic building preservation.

This study employed unmanned aerial vehicles (UAVs) to capture image data of
heritage building roofs and integrates deep learning-based visual algorithms with statistical
methods to propose a streamlined and effective strategy for diagnosing anomalies in these
structures. By leveraging convolutional autoencoders and thresholding methods, the
approach enables efficient anomaly detection and extraction of damaged areas from images.
Subsequently, convolutional neural networks were deployed to classify types of damage,
facilitating the comprehensive assessments of tile roof conditions and the formulation
of timely maintenance plans. By introducing Al-based machine vision algorithms to this
domain, the study aims not only to enhance the efficiency and precision of damage detection
but also to reduce the time and costs associated with manual inspection, thereby offering a
more intelligent and practical approach to restoration efforts in heritage architecture.

2. Literature Review

In heritage building preservation, manual visual inspections conducted by construc-
tion and maintenance teams have traditionally been a primary method for assessing
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structural health. However, these inspections are often time-consuming, subjective, and
their quality can vary due to environmental constraints and human error.

Computer vision, emerging in the 1960s with techniques like edge detection [6], corner
detection [7], and template matching [8], evolved significantly with advancements in image
processing and hardware in the 1980s. Methods such as Support Vector Machines (SVMs) [9]
and Histogram of Oriented Gradients (HOG) [10] improved visual system performance
around the year 2000. The breakthrough of deep learning, highlighted by AlexNet [11]’s
success in the 2012 ImageNet competition, revolutionized computer vision. convolutional
neural networks (CNNs) like Visual Geometry Group (VGG) [12], GoogLeNet [13], and
ResNet [14] excelled in image classification and feature extraction, while algorithms such
as Single Shot MultiBox Detector (SSD) [15], Region-based Convolutional Neural Network
(R-CNN) series [16-18], and You Only Look Once (YOLO) [19] advanced object detection
speed and accuracy. Instance and semantic segmentation further enhanced capabilities with
algorithms like Mask R-CNN [20] and U-Net [21], while Generative Adversarial Networks
(GANSs) [22] showed promise in image generation and enhancement. These advancements
have driven computer vision applications across various fields including autonomous
driving, medical imaging, and intelligent surveillance.

Computer vision technology, which has proven successful in diverse fields, is increas-
ingly being applied to the preservation of heritage buildings. Unlike 3D point clouds and
hyperspectral data requiring specialized equipment, RGB images offer the advantage of
easy capture with portable devices. Consequently, current research predominantly focuses
on 2D visual data. Scholars have applied algorithms to key computer vision tasks—image
classification, object detection, and image segmentation—in various contexts within her-
itage building preservation.

In the realm of image classification, the primary aim is to identify and categorize
surface cracks and damage on these structures. For instance, Chaiyasarn et al. [23] intro-
duced a convolutional neural network-based algorithm for crack detection, pioneering
deep learning applications in this field. Although achieving higher accuracy than tradi-
tional methods, its applicability remains constrained to specific crack types. Dais et al. [24]
utilized convolutional neural networks and transfer learning to enhance efficiency in crack
classification and segmentation on masonry surfaces.

In object detection, the emphasis lies on identifying and locating damage or cracks
within buildings. Wang et al. [25] explored automatic damage detection in historic masonry
buildings using mobile deep learning; however, devising a user-friendly mobile application
that ensures consistency across various devices remains a challenge. Pathak et al. [26]
proposed a method that integrates a 3D point cloud and 2D visual data for heritage
damage detection, requiring substantial preprocessing and computational power due to the
complexity of their algorithms. Mansuri and Patel [27] employed Faster R-CNN to detect
defects in heritage buildings, such as cracks and exposed bricks, encountering difficulties
in complex environments. Some scholars have applied YOLO series algorithms to detect
and analyze surface damage in heritage buildings [28,29], either necessitating extensive
data collection or requiring further validation for the method’s applicability.

Image segmentation tasks involve the precise pixel-level delineation of damaged areas,
which is crucial for quantitative assessment. Elhariri et al. [30] utilized the U-Net model
for automatic pixel-level segmentation of historic surface cracks, showcasing efficiency
and accuracy, with ongoing validation needed across different crack types. Makhanova
etal. [31] introduced an enhanced deep residual network for crack detection in heritage
buildings, maintaining high accuracy while reducing computational costs. Liu et al. [32]
integrated semantic image segmentation and photogrammetry to monitor changes on
heritage building facades to ensure accurate measurement of plant areas from diverse
camera angles.

Additionally, some researchers have employed autoencoders in conjunction with
anomaly detection to eliminate outliers by reconstructing normal class data. Deep learning
applications in anomaly detection, based on autoencoders and Generative Adversarial
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Networks (GANSs), were reviewed by Pang et al. [33]. Advanced sensors have also been
utilized by scholars to enhance data dimensions for improved detection outcomes. For
example, Fais et al. [34] developed a non-destructive diagnostic approach for heritage
building elements using 3D laser scanning and infrared thermography, achieving high
accuracy and measurable results, despite challenges such as high equipment costs and
limited generalizability of the method.

The concepts of digital twins and Heritage Building Information Modeling (HBIM) [35]
are rapidly being implemented with the support of AL Casillo et al. [36] proposed a method
that uses IoT and deep learning for real-time monitoring and prevention of issues in cultural
heritage buildings, helping to predict and prevent problems such as internal humidity.
Pierdicca et al. [37] employed deep learning for the semantic segmentation of point cloud
data to accelerate the modeling process of historic buildings. Ni et al. [38] introduced
a framework utilizing digital twin technology and Al to optimize energy efficiency in
historic buildings while preserving their structural and cultural integrity. These studies
demonstrate the significant potential of Al technologies to enhance both the efficiency and
accuracy of historic building preservation.

While existing research significantly contributes to the advancement of heritage build-
ing preservation, several challenges persist. Primarily, most current models rely on su-
pervised learning paradigms. While neural networks excel in fitting large datasets and
iteratively extracting features via gradient descent, the efficiency of manual annotation
lags behind as data volumes and model complexities increase. Moreover, in the context
of applying computer vision technology to heritage building preservation, the identified
objects often exhibit shallow and anomalous features that are sporadic and highly diverse,
posing challenges in constructing comprehensive databases necessary for effective train-
ing. Additionally, while integrating various deep learning methods or increasing image
data dimensionality can enhance overall model performance, it also escalates training and
deployment costs, limiting practical applicability in preservation efforts. Lastly, previous
studies typically propose single-model solutions tailored to specific tasks, falling short of
developing a holistic and efficient detection and evaluation system for systematic heritage
building preservation.

To address these challenges, this study proposes a semi-supervised learning approach
combining convolutional autoencoders, threshold methods, and ResNet for the detection
and evaluation of tiled roofs. This method aims to offer a straightforward, efficient, and
scalable solution for detecting and assessing heritage building roofs.

3. Methods

Figure 1 illustrates the comprehensive process of the tile damage recognition and
evaluation system. As presented in Figure 1, UAV imagery data of tiled roofs from heritage
buildings are captured along specific flight paths. These images are then fed into the tile
damage recognition system. Based on quantifiable results provided by the recognition
system, automatic diagnostics generate repair plans, facilitating simultaneous detection
and restoration. This significantly enhances the convenience and timeliness of preservation
efforts on heritage buildings.

For contemporary object detection or image segmentation models, the diverse damage
types and sparse data of tiled roofs pose challenges for large-scale data annotation. Fur-
thermore, the natural periodic arrangement of roof tiles allows neural networks to extract
and reconstruct image features effectively, maintaining stable feature distribution before
and after reconstruction. This enables efficient threshold-based segmentation of anomalous
image blocks. Thus, we devised a multi-stage, integrated tile damage recognition sys-
tem that employs convolutional autoencoders to reconstruct anomaly classes and utilizes
threshold techniques based on statistical properties of reconstruction error distribution to
extract anomalous image blocks. These blocks are subsequently classified using transfer
learning to infer and diagnose damage types. By integrating various technologies, we have
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developed a straightforward and efficient diagnostic system, implementing in Python and
utilizing PyTorch as the deep learning framework.

( Image Acquisition Module

Data collecting Gridding Splitting

el
L~

UAV
\ J
( R tructi / )
econstruc 1njg/ S
S
S
3
@
=
S
)
(Convolutional Q
Auto-encoder) °
i S
o
—_—_——
- N |Reconstruction\| ]
Damges classification /Assessment Module | Bwor 3
=——"
V g
S
§
=
Q
E Classifier Abnormal image blocks (Percentile Threshold)
I__ N | 3 ¥ -
LRepalr plan) ‘/ ‘/ ~—_ 11t .
Assessing Classifying Extracting
\ J U J

Figure 1. Damage recognition and evaluation system.

3.1. Image Anomaly Detection-Based Reconstruction

Anomaly detection constitutes a pivotal stage in identifying damaged tiles on the roofs
of heritage buildings. Within computer vision, selecting an appropriate model tailored to
the task type and object characteristics is critical for efficient detection. In the context of
detecting surface damage on heritage building tiles, two primary considerations emerge.

Firstly, the tiles exhibit a distinct periodic pattern. Convolutional layers excel at extract-
ing local features such as edges and textures, effectively capturing spatial characteristics of
the input data. Convolution operations provide translation invariance, enabling shared
weights of convolutional kernels to detect identical features at different positions within
the input image. This architectural choice facilitates the learning of high-dimensional
representations of tile arrangements, significantly reducing network parameters, lowering
model complexity, conserving computational resources, and enhancing training efficiency.
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Secondly, the diversity of surface anomalies on tiles and the scarcity of data for each
anomaly type present significant challenges. Tile damage generally falls into two categories:
detachment and cracking. Additionally, anomalies such as surface contamination and veg-
etation coverage exhibit even greater variability. In the long term, supervised learning
paradigms necessitate extensive data collection and annotation across various anomalies,
which proves impractical for widespread application. Drawing insights from manufac-
turing anomaly detection, autoencoders offer a more deployable and scalable solution.
Autoencoders, a type of artificial neural network commonly employed for unsupervised
learning and data dimensionality reduction, aim to reconstruct input data by learning
low-dimensional representations. In this context, they effectively reconstruct normal tile
surface images with minimal reconstruction error by using readily available normal data.

Considering the characteristics of tile surface damage detection, this study employed
a convolutional autoencoder (CAE), which is designed and trained as an anomaly detector.
The CAE framework utilized in this study is depicted in Figure 2, which constitutes an
unsupervised learning framework built upon convolutional neural networks (CNNs), typi-
cally comprising an encoder and a decoder. The encoder compresses high-dimensional data
into low-dimensional representations through a sequence of convolution and pooling oper-
ations, thereby extracting features from the input. Conversely, the decoder, mirroring the
encoder, employs upsampling or transpose convolution operations to reconstruct the input
data from the low-dimensional representations. When an autoencoder trained on normal
data is given anomalous data as input, it typically yields a significant reconstruction error.
By assessing the disparities between the input data and their reconstruction, anomalies can
be promptly identified. In this study, Mean Squared Error (MSE) quantifies the reconstruc-
tion error, as expressed in Equation (1), where P; denotes actual pixel values of the image,
P, represents reconstructed pixel values by the decoder, and 7 signifies the total number
of pixels in the image. The Adam optimizer, renowned for its efficient handling of sparse
gradients and reduced sensitivity to raw data, is selected as the optimization algorithm.

MSE = % i (E - pi)z (1)

i=1
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Figure 2. Convolutional autoencoder architecture.
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3.2. Image Anomaly Extraction

Anomaly extraction constitutes a pivotal component of anomaly detection. Serving as
a crucial component in our proposed evaluation system, we employed a global thresholding
technique based on the percentile method to filter anomalies in the MSE of reconstructed
image blocks.

Various threshold selection methods possess distinct advantages and limitations con-
tingent upon the application context. The selection of the optimal method typically hinges
on the specific task requirements, data characteristics, and desired outcomes. Common
approaches encompass the mean and standard deviation method, Receiver Operating Char-
acteristic (ROC) curve method, Precision-Recall (PR) curve method, cross-validation using
a validation set, and adaptive methods. These methodologies may necessitate a known
distribution of reconstruction errors, a validated set comprising positive and negative
samples, or may involve substantial computational overhead.

The percentile method stood out for its efficiency in our evaluation system. Firstly,
it operates effectively without requiring prior assumptions about the MSE distribution,
making it adaptable to diverse data distributions. Secondly, in terms of computational
complexity, the percentile method is straightforward, requiring only sorting and selecting
a fixed percentile without iterative searches for an optimal threshold. Lastly, while the
percentile method may not unfailingly eliminate all anomalies, our system’s subsequent
classification model effectively discerns normal images, thereby minimizing uncertainty
associated with fixed percentile thresholds. The calculation formula for the percentile
method is shown in Equation (2).

_ P
P=Eox (N4, @

where P denotes the desired position (e.g., 25 for the 25th percentile and 95 for the 95th
percentile), and N is the total number of data points in the dataset.

The sequence of reconstructed values followed a defined procedure. Initially, images
of roof tiles captured by the UAV were resized using bilinear interpolation to ensure that
they were multiples of 224, aligning with the input size required by the convolutional
autoencoder (as illustrated in Figure 3). Subsequently, these images were partitioned into
multiple 224 x 224 image blocks using a grid, and each block was fed into the trained
convolutional autoencoder. The resulting reconstruction error for each image block within
the original image was then calculated and recorded. The pixel value sequence of the
original image block was denoted as {By(x,y,z)} and the sequence of the reconstructed

image block was denoted as {f%i(x, v,2) } The reconstruction error for a single image block
is defined as shown in Equation (3).

1 m n _ 2
MSEc= 0 y;o )y Be(x,y,2) — Bel(x,y,2)| (3)

where k represents the block number after the input image is segmented, and (x,y, z)
denotes the coordinates of a pixel within the image block, m = n = 224 are the dimensions
of the image block, and / = 3 is the number of channels in the image.
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Figure 3. Grid illustration of image segmentation (224 x 224 x 3 blocks).

3.3. Damage Classification
3.3.1. Selection of Backbone Network

Damage classification plays a crucial role in the overall recognition and evaluation
system. A high-performance classification model not only supports the anomaly detection
and extraction module, which is based on image reconstruction and thresholding tech-
niques, but also forms the basis for accurate evaluation within the system. Given potential
deployment in resource-constrained environments such as mobile devices and embedded
systems, lightweight networks serve as the backbone for damage classification.

According to research [39], there exists a positive correlation between the number
of parameters and the consumption of computational resources. This study employs
lightweight networks, including SqueezeNet, ShuffleNetV2, MobileNetV2, EfficientNet-B0,
and ResNet-18, as backbone networks for damage classification. Table 1 provides the
parameter counts and outlines the advantages of these networks. As shown in Table 1,
SqueezeNet reduces the number of parameters through its fire module design, while main-
taining high accuracy. ShuffleNetV2 enhances efficiency by using grouped convolutions
and channel shuffle techniques. MobileNetV2 reduces parameters and complexity through
an inverted residual structure and linear bottleneck, making it ideal for mobile and em-
bedded systems. EfficientNet-B0 achieves a balance between performance and efficiency
by simultaneously scaling depth, width, and resolution. ResNet-18, a lighter ResNet ver-
sion, mitigates the vanishing gradient problem in deep networks via residual connections,
effectively capturing deep features.
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Table 1. Comparison of neural network models by parameter count and advantages.

Parameters
Model M) 1 Advantages
SqueezeNet [40] 1oM Extremely low parameter count, comparable performance
to AlexNet
ShuffleNetV2 [41] 23M Grouped convolutions and (fhanne% shuffle, highly efficient
for mobile devices.
MobileNetV2 [42] 34M Efficient depthwise sepaFable C(.)nvolutlons, suitable for
mobile devices.
EfficientNet-BO [43] 53M Achieves a balance of performance 'and efficiency through
compound scaling
ResNet-18 [14] 117M A lighter variant of ResNet, suitable for

resource-constrained scenarios

! The parameter count (M) refers to the number of parameters in millions (106).

3.3.2. Evaluation Metrics

Four commonly used classification metrics were employed to evaluate the performance
of model. Accuracy represents the proportion of correctly predicted samples to the total
number of samples, measuring overall model correctness, and is particularly effective for
balanced datasets. Precision denotes the proportion of correctly predicted positive samples
to the total number of samples predicted as positive. Recall signifies the proportion of
correctly predicted positive samples to all actual positive samples. The F1 score, calculated
as the harmonic mean of precision and recall, synthesizes these metrics into a single measure
of performance. Together, these metrics offer a comprehensive and adaptable evaluation
of the classification model’s effectiveness. The Equations (4)-(7) for these metrics are
as follows:

Accuracy = TP+ TN 4)
Y= TPYFP+ TN+ FN

.. TP
Precision = TP+ P (5)

TP

Recall = ———

= TPIEN (6)
Fl— 2Precision X Recall @)

Precision + Recall

where TP (True Positive) represents correctly identified positive instances, FP (False Posi-
tive) denotes incorrectly identified positive instances, FN (False Negative) signifies incor-
rectly identified negative instances, and TN (True Negative) indicates correctly identified
negative instances.

3.4. Damage Evaluation Strategy and Maintenance Plan Formulation

Tile damage on roofs can result from several factors. Thermal cracking occurs due
to temperature fluctuations, which cause tile expansion and contraction. Foot traffic can
damage tiles through direct pressure, while strong winds may lift or displace them. Hail
impacts can lead to tile breakage, and long-term UV exposure can cause aging, discoloration,
and brittleness, eventually resulting in cracking.

Based on the severity of damage impact on functionality and classification rationale,
tile conditions are categorized into three states: undamaged, cracked, and detached, as
illustrated in Figure 4. Detachment represents the final stage of cracking and has more
complex causes and different functional impacts on buildings compared to cracks. Cracked
tiles, even while remaining in place, significantly reduce waterproofing capabilities, poten-
tially leading to leaks and further damage. Detached tiles expose the waterproofing layer
directly, relying solely on tile protection. Prolonged exposure to elements can significantly
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degrade waterproofing performance or even cause structural damage. Moreover, detached
tiles can destabilize adjacent tiles and pose a risk of falling, creating significant hazards.

Damage Type

No Damage Cracked Fallen Off

Figure 4. Classification of roof tile damage types.

This study defines the Damage Index (DI) to comprehensively assess the degree of tile
damage. The DI values provide scientific guidance for repair prioritization. The formula is
as follows (8):

DI = %(wc + BDy) ®)

where N is the number of image blocks divided from a single input image, D. and Dy are
the numbers of image blocks classified as cracked and fallen, respectively. « and p are
dimensionless constants that serve as the importance coefficients for the respective damage
types. Considering the impact range of damage types and the consequences of delayed
handling, this study set « = 1 and B = 2 to reflect the severity of various damage types.

Once the classification task was completed by the classifier, the damage assessment
module overlaid the classification results on the original input image, allowing maintenance
personnel to swiftly pinpoint damaged areas. To enhance the visibility of these areas, long-
wavelength colors, such as red and yellow, were utilized to highlight fallen and cracked
regions, respectively, while undamaged areas remained unmarked. Based on the types of
damage identified in specific roof sections, targeted repair strategies were developed, as
detailed in Table 2.

Table 2. Repair schemes for different types of roof tile damage.

Damage Type

No Damage

Cracked

Fallen Off

Repair Schemes

Always prioritize safety
precautions

Seal cracks tightly with hemp
mortar, level them, and then
apply a layer of joint ridge
mortar along both sides of the
tile ridge. Finally, use a water
trowel and brush to smooth
the mortar.

Remove peeling and loose
tiles, clean the base
thoroughly, bind copper wires
to the steel mesh, securely tie
the tiles, and apply
high-grade mortar for paving.
Lastly, ensure proper cleanup
and disposal of debris.

4. Roof Tile Restoration Case Study in Hexia Ancient Town
4.1. Roof Tile Image Data Collection in Hexia Ancient Town

When planning the UAV flight path for roof tile image collection, balancing cost and
efficiency is essential. This balancing was achieved by carefully designing the flight route
to select representative roof tiles, ensuring data completeness while effectively controlling
costs. In this study, the roof tiles of five buildings in Hexia Ancient Town were chosen as
the primary targets for aerial photography.
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The flight path is illustrated in Figure 5. As shown in Figure 5, the UAV commenced
image capture from the east side of Building 1, starting with the third-floor tiles and
systematically covering those on the third and fourth floors in the east, southeast, west,
and north directions. After completing the imaging of Building 1, the UAV proceeded
to systematically capture images from Buildings 2 to 5, as illustrated by the arrows. Due
to the varying combinations of target objects and equipment, the flight parameters and
imaging details had to be adjusted based on the actual conditions and experience. These
adjustments are beyond the primary scope of this paper. However, to provide a reference,
some parameters based on the equipment used in this study are presented. The UAV
utilized in this study was equipped with a 12-megapixel visual sensor and a 14.66 mm focal
length, which enabled it to provide a wide field of view and sufficient image detail at lower
flight altitudes. The flight altitude was approximately 15 m, with a flight speed of about
1 m per second. This configuration ensured image clarity and detail capture, minimizing
image blurring and instability during flight.

Figure 5. Schematic diagram of UAV flight path.

4.2. Image Reconstruction Based on Convolutional Autoencoder
4.2.1. Data Collection and Augmentation

In this study, UAVs captured a total of 120 RGB images of roof tiles over a large
area. The images were collected at different times, under varying lighting conditions and
shooting angles, to enable the model to learn a broader range of features and achieve
better robustness. After manually removing images with damage or other anomalies,
the remaining images were segmented into 224 x 224 x 3 blocks using Python’s OpenCV
library, resulting in 9842 image blocks. These blocks were augmented through rotations
and flips, producing a total of 44,800 images (as shown in Figure 6). The normalized images
were subsequently fed into the convolutional autoencoder.
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Vertical Flip

90-Degree 180-Degree Rotation 270-Degree
Clockwise Rotation Clockwise Rotation

Figure 6. Overview of image augmentation.

4.2.2. Autoencoder Architecture and Training Strategy

The architecture of the convolutional autoencoder is depicted in Figure 2. Inspired
by the feature extraction prowess of the VGG architecture, which utilizes block designs,
our encoder incorporates similar blocks. Each block comprises a 3 x 3 convolutional layer,
followed by a ReLU activation layer, and a 2 x 2 non-overlapping max pooling layer. By
stacking four such blocks, the input is compressed from 224 x 224 to 7 x 7 feature maps,
which are then flattened and projected into the latent space via a fully connected layer.
The decoder mirrors the encoder’s architecture, employing transpose convolutions for
upsampling. Batch normalization is applied to ensure a consistent output distribution and
improve training stability. The model was trained with a learning rate of 0.001, a batch size
of 64, over 2000 epochs.

4.2.3. Training Results

The reconstruction results of the trained convolutional autoencoder for normal and
anomalous images are depicted in Figure 7. All reconstructed images exhibit the typical
features of the normal class, with red boxes highlighting the primary sources of reconstruc-
tion error, which are distinguishable through thresholding. Surface noise, such as cement
dust, is effectively eliminated, showcasing the autoencoder’s capability in image denoising.
Although the anomalous images also exhibit some normal features in their reconstruc-
tion, a noticeable distortion in feature distribution leads to increased reconstruction errors,
validating the effectiveness of the percentile-based thresholding technique.

No Damage Cracked Cracked+Fallen Off

Original

Reconstructed

Figure 7. Demonstration of autoencoder reconstruction performance.



Buildings 2024, 14, 2828

13 of 21

4.3. Anomalous Image Block Extraction Based on Thresholding Technique

A percentile-based thresholding technique was employed to extract anomalous blocks
by analyzing the distribution of reconstruction error data. To ensure the appropriateness
of the threshold setting, 10 randomly selected images of roof tiles captured by the UAV
were utilized. These images were segmented into 224 x 224 blocks and fed into the trained
convolutional autoencoder. The reconstruction errors obtained are depicted in Figure 8. It
is observed that the majority of reconstruction errors for the image blocks fall within the
range of 0.05 to 0.10, supporting the effectiveness of thresholding for anomaly detection.

Data points

0.30 -

0.25 -

0.20 -

0.15 -

Mean Squared Error (MSE)

0.10 -

0.05 -

0.00 -

200 400 600 800 1000 1200
Number of Image Blocks

=

Figure 8. Scatter plot MSE distribution across image blocks.

The Central Limit Theorem states that the sum of a sufficiently large number of inde-
pendent and identically distributed random variables tends to follow a normal distribution.
In the context of an autoencoder model, if the reconstruction error of each input sample is
considered as the aggregation of numerous independent small errors, the cumulative effect
of these errors may follow a normal distribution. Assuming that the autoencoder accurately
learns the underlying data distribution during training, and that its errors are unbiased and
consistent, these errors may closely approximate a normal distribution. This study observes
that a substantial portion of reconstruction errors in image block reconstructions exhibit
characteristics akin to a normal distribution, reinforcing the efficacy of the autoencoder
model’s training.

After sorting of reconstruction errors from smallest to largest, the corresponding
original images at selected percentiles (denoted as p) are displayed in Figure 9. Notably,
from the 84th percentile onwards, image blocks manifest signs of tile damage. Additionally,
some blocks devoid of abnormalities exhibit high reconstruction errors due to noise. To
ensure the stable extraction of abnormal image blocks using the threshold, this study set
the percentile at 80, thereby incorporating a heightened safety margin through judiciously
lowered thresholds.
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Figure 9. Original images selected at different percentiles based on reconstruction error.

4.4. Construction of Damage Classification Model
4.4.1. Dataset Partitioning

The images in the constructed dataset were categorized into three types: undamaged,
cracked, and detached. The dataset contained a total of 349 defective samples, evenly
distributed between cracked and detached tiles. To maintain balance, the number of
undamaged tile images was restricted to 175 samples. Given the modest size of the dataset,
k-fold cross-validation was employed to maximize data utilization.

Figure 10 illustrates the dataset’s division into k subsets. In each iteration, k-1 subsets
were utilized for training, while the remaining subset served as the validation set. This
process iterated k times, ensuring that each subset served as the validation set once. The
average accuracy across validation sets served as the evaluation metric, negating the
necessity for a separate test set. In this study, k was set to 5. Model convergence was
determined if validation loss did not decrease over 30 consecutive epochs. The model
exhibiting the minimum validation loss was identified as the optimal model for this study.

7
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Figure 10. K-fold cross-validation.
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4.4.2. Model Training Configuration

Given the task’s limited number of defect samples, this study employed transfer
learning to enhance model performance. Transfer learning, a machine learning technique,
boosts learning efficiency and effectiveness in new tasks by leveraging features learned
from extensive datasets like ImageNet. This approach enables the reuse of common
image features and structural hierarchies across smaller datasets. To tailor the model to
the specific task, we fine-tuned the final layers to match the image categories. Transfer
learning efficiently leverages prior knowledge, reduces computational demands compared
to training from scratch, accelerates model convergence, improve performance on new
tasks, and mitigates overfitting risks. Table 3 details the hyperparameter settings for each
model type.

Table 3. Model hyperparameter settings.

Model Learning Rate Batch Size Epochs
SqueezeNet 0.001 32 300
ShuffleNetV2 0.01 32 400
MobileNetV2 0.001 32 200
EfficientNet-BO 0.001 32 400
ResNet-18 0.001 32 200

In this study, the image damage classification model was trained using the Adam
optimization method. Adam is renowned for its rapid iteration speed and robustness,
facilitating efficient convergence of the training process. The loss function employed was
categorical cross-entropy (CCE), defined as follows (9):

2
CCE = —

yilog(pi) 9)
1=0

4.4.3. Training Process

Through hyperparameter selection and comparison, the performance of models under
optimal settings is illustrated in Figure 11. All five pre-trained models converge swiftly on
the dataset, achieving consistent accuracy. This study integrated standard model selection
criteria, evaluating performance across training and inference stages. During training, the
emphasis was placed on convergence speed and model stability.

ShuffleNet (b), leveraging grouped convolutions and channel shuffle strategies, offers
high computational efficiency but exhibits slower convergence with higher learning rates
across early, middle, and late training stages. EfficientNet-BO (d) and SqueezeNet (a)
demonstrate comparable performance during training, each balancing model stability
and convergence speed. Their lightweight architectures, however, compromise feature
extraction, resulting in variable loss curves.

In contrast, MobileNetV2’s (c) depthwise separable convolutions and ResNet18’s (e)
residual connections achieve rapid and stable iteration during early training stages. This
is evident from the swift decline in training loss within initial epochs, followed by stable
oscillations. MobileNetV2 and ResNet18 are selected as candidate models, and further
evaluated for classification performance.
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Figure 11. Training and validation performance of five classification models: loss and accuracy curves.

4.4.4. Model Performance Evaluation

In this experiment, the performance of five mainstream models (SqueezeNet, Shuf-
fleNet, MobileNetV2, EfficientNet-B0, and ResNet18) was compared on image classification
tasks. These models were evaluated using four metrics: accuracy, precision, recall, and
F1 score. Table 4 presents each metric as “mean & standard deviation”, where the mean
represents the average across multiple experimental results, and the standard deviation
indicates result variability.
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Table 4. Comparative performance analysis of deep learning models for image classification.

Model Accuracy (%)  Precision (%) Recall (%) F1 Score (%)
SqueezeNet 97.7+1.8 97.6+19 97.6 £2.1 97.6 £2.0
ShuffleNet 96.5+3.0 96.6 £2.9 96.3£25 96.4+2.7
MobileNetV2 97.8+3.0 97.9+29 97.6+£3.3 97.7+3.1
EfficientNet-B0 96.8 +2.5 97.0+22 96.5+3.0 96.7 £2.7
ResNet18 98.0 £ 0.9 98.1+0.9 98.0+t11 98.0+1.0

* The bolded ResNet18 model in the table demonstrates optimal performance across all performance metrics.

The experimental results highlight ResNet18’s exceptional performance across all
evaluation metrics. Specifically, ResNet18 achieves an accuracy of 98.0 = 0.9 %, precision
of 98.1 £ 0.9%, recall of 98.0 + 1.1 %, and F1 score of 98.0 & 1.0 %. These findings not
only underscore ResNet18’s superior average performance and high stability, evidenced by
its smallest standard deviation among all models, but also its minimal result fluctuation
and robustness.

Although other models demonstrate comparable performance in certain metrics, they
generally exhibit lower overall performance and stability. For instance, MobileNetV2
achieves an accuracy of 97.8 £ 3.0 %, indicating significant result variability compared to
ResNet18 despite its higher average value.

Therefore, based on both average performance and result stability, ResNet18 is de-
fined as the optimal choice. Its deep network structure and effective residual learning
mechanism contribute to its enhanced representation and generalization capabilities for
handling complex image features. In conclusion, after detailed analysis of experimental
data, ResNet18 is unequivocally selected as the superior model.

4.5. Roof Damage Assessment Case

Different types of damage on the original image are delineated in various colors by the
damage assessment module. Integration with location ID data from the collection points of
original images enables swift localization of roof defects. By evaluating quantifiable damage
indices (DI values), maintenance personnel can efficiently prioritize repair sequences.
Furthermore, incorporating tailored repair strategies for each damage type allows for the
proactive preparation of necessary tools and materials. Figure 12 illustrates clearly marked
areas corresponding to different damage types, with DI values indicating higher urgency
for repairing areas 2-17 compared to areas 1-14. Adjustments in material ratios and repair
plans, informed by the number and types of damaged areas, along with construction
experience, ensure the expedient completion of repair tasks.
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Figure 12. Roof damage assessment case study in heritage structures.
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5. Discussion

Compared to traditional image segmentation or object detection methods, significant
advantages are offered by the proposed method in terms of data requirements, model
complexity, and scalability, especially within the specific application scenario of detecting
damage to heritage building roof tiles. Specifically, the semi-supervised architecture based
on convolutional autoencoders reduces reliance on extensive datasets, particularly excelling
in scenarios with limited anomalous data. Whereas traditional methods like U-Net and
YOLO typically demand substantial annotated datasets for training, autoencoders can
achieve training proficiency using unannotated normal data alone.

Additionally, the combination of autoencoders and thresholding yields a lightweight
model that circumvents the need for intricate segmentation or detection networks. This
allows for swift training and inference even in resource-constrained environments such
as UAVs or mobile devices, unlike traditional vision methods that often require more
computational resources and longer training periods [44]. Moreover, the simplicity of
the autoencoder and thresholding techniques facilitates straightforward deployment and
scalability, enabling rapid integration into existing systems. In contrast, traditional vision
methods pose greater challenges in deployment and maintenance. Finally, the intercon-
nected techniques employed in this detection and evaluation model bolster its robustness.

However, this study harbors certain limitations. Primarily, the data diversity is con-
strained as the image dataset primarily originates from Hexia Ancient Town, potentially
influencing the model’s generalization capabilities due to the limited variety of tile types.
Secondly, the study does not encompass a fully end-to-end application system and still
requires manual intervention for threshold configuration, limiting system automation.
Furthermore, the evaluation methods remain qualitative and lack precise quantitative
assessments. To address these limitations, future research could be enhanced and expanded
in several directions:

*  Broaden data collection scope: encompass a wider range of heritage building tile
types to enhance the model’s generalization.

*  Extend data dimensions: introduce multi-sensor data like 3D point clouds and in-
frared imaging, employing multi-source data fusion strategies to further refine the
evaluation system’s quantifiability.

*  Develop a comprehensive end-to-end application system: formulate a system inte-
grating data collection, processing, damage assessment, and maintenance recommen-
dations to enhance automation and practicality.

*  Promote methodology in other preservation applications: apply this approach to
additional facets of heritage building preservation and explore its viability in tasks
such as bridge and road inspections.

6. Conclusions

This paper proposed a comprehensive solution for identifying and assessing defects
in tiled roofs, specifically for heritage building preservation. The solution effectively
addresses the challenges associated with tiled roof inspections. By combining convolutional
autoencoders, thresholding techniques, and ResNet neural networks, we developed a semi-
automated, cost-effective, and efficient system for defect detection and assessment. This
system utilizes UAVs equipped with visual sensors for data collection and adopts a semi-
supervised learning paradigm to minimize the need for extensive data annotation. Our
approach fills a gap in the application of artificial intelligence technologies for the inspection
of tiled roofs in heritage building preservation.

However, several limitations still exist. Since the system is designed for a specific task,
it currently cannot integrate an automated process to recognize a broader range of defect
types. Unrecognized defects may impact the accuracy of assessment results from a different
perspective, despite the high performance of our classification model. Additionally, the
system cannot infer potential invisible defects, such as predicting future damage types
based on latent features or combining meteorological data to forecast damage occurrence.
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Expanding the detection model’s cognitive abilities to address these advanced issues in
artificial intelligence is a worthwhile avenue for future exploration.

Furthermore, to maintain the efficiency of the assessment system and keep computa-
tional resource consumption within reasonable limits, a trade-off was made by allowing a
certain degree of precision to be compromised. We only qualitatively analyzed the degree
of damage to different roofs, while some more expensive models can achieve pixel-level
segmentation of cracks and, when combined with photogrammetry, obtain real-world
crack dimensions for the quantitative analysis of damage severity and progression stages.
Achieving these objectives within controlled cost parameters will be a focus of future research.

Moreover, the primary advantage of using UAVs with traditional 2D visual sensors
is their low cost. However, this approach may not be optimal for all detection tasks.
For instance, satellite imaging combined with a Geographic Information System (GIS)
could be employed for long-range tasks to assess roof damage across large areas, or a
versatile detection model capable of accommodating various task types could be developed.
Additionally, radar or LiDAR sensors offer superior capabilities for capturing detailed
damage features. Although higher-dimensional data increase computational burdens
at each stage, these sensors play a dominant role in integration with HBIM (Historic
Building Information Modeling) or digital twin technologies. Promisingly, recent advances
in machine vision methods, such as Neural Radiance Fields (NeRFs), 3D Gaussian Fields,
and their variants, are overcoming these barriers, advancing the integration of machine
vision technology within HBIM and digital twins.

Overall, our research has practical applications and has shown promising results in
detecting tiled roof damage in Hexia Ancient Town, although significant limitations remain.
Nevertheless, from another perspective, our model can integrate new technologies and
concepts, potentially achieving higher levels of automation and intelligence. This research
area holds substantial potential for development and further study, and we will continue
to advance our work in the field of heritage building preservation.

Author Contributions: Conceptualization, Y.Z. and Q.Z.; methodology, Y.Z.; software, Q.Z.; vali-
dation, M.FA.-A. and L.K; formal analysis, Q.Z.; investigation, L.K.; resources, Y.Z.; data curation,
Q.Z.; writing—original draft preparation, Y.Z.; writing—review and editing, L.K. and M.FA.-A;
visualization, Q.Z.; supervision, Q.Z.; project administration, L.K.; funding acquisition, Y.Z. All
authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the “National Natural Science Foundation of China (NNSFC)”
under Grant number 72301256.

Data Availability Statement: The data that support the findings of this study are available from the
corresponding author upon reasonable request.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Taher Tolou Del, M.S.; Saleh Sedghpour, B.; Kamali Tabrizi, S. The semantic conservation of architectural heritage: The missing
values. Herit. Sci. 2020, 8, 70. [CrossRef]

2. Kostopoulou, S. Architectural heritage and tourism development in urban neighborhoods: The case of upper city, Thessaloniki,
Greece. In Conservation of Architectural Heritage; Springer: Berlin/Heidelberg, Germany, 2022; pp. 139-152.

3. Li, Y; Du, Y,; Yang, M.; Liang, J.; Bai, H.; Li, R.; Law, A. A review of the tools and techniques used in the digital preservation of
architectural heritage within disaster cycles. Herit. Sci. 2023, 11, 199. [CrossRef]

4. Aboulnaga, M.; Abouaiana, A.; Puma, P; Elsharkawy, M.; Farid, M.; Gamal, S.; Lucchi, E. Climate Change and Cultural Heritage:
A Global Mapping of the UNESCO Thematic Indicators in Conjunction with Advanced Technologies for Cultural Sustainability.
Sustainability 2024, 16, 4650. [CrossRef]

5. Braik, A.M.; Koliou, M. Automated building damage assessment and large-scale mapping by integrating satellite imagery, GIS,
and deep learning. Comput.-Aided Civ. Infrastruct. Eng. 2024, 39, 2389-2404. [CrossRef]

6. Canny,]. A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 1986, 6, 679—698. [CrossRef]

7.  Harris, C.; Stephens, M. A combined corner and edge detector. In Alvey Vision Conference; The Plessey Company: London,

UK, 1988.


http://doi.org/10.1186/s40494-020-00416-w
http://dx.doi.org/10.1186/s40494-023-01035-x
http://dx.doi.org/10.3390/su16114650
http://dx.doi.org/10.1111/mice.13197
http://dx.doi.org/10.1109/TPAMI.1986.4767851

Buildings 2024, 14, 2828 20 of 21

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

Briechle, K.; Hanebeck, U.D. Template matching using fast normalized cross correlation. In Proceedings of the Optical Pattern
Recognition XII, Orlando, FL, USA, 16-17 April 2001; Volume 4387, pp. 95-102.

Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273-297. [CrossRef]

Dalal, N.; Triggs, B. Histograms of oriented gradients for human detection. In Proceedings of the 2005 IEEE Computer
Society Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA, 20-25 June 2005; Volume 1,
pp- 886-893.

Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf.
Process. Syst. 2012, 25, 1097-1105. [CrossRef]

Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556.

Szegedy, C.; Liu, W,; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with
convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7-12 June
2015; pp. 1-9.

He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27-30 June 2016; pp. 770-778.

Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. Ssd: Single shot multibox detector. In Proceedings of
the Computer Vision—-ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, 11-14 October 2016; Proceedings,
Part I 14. Springer: Berlin/Heidelberg, Germany, 2016; pp. 21-37.

Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23-28 June 2014;
pp. 580-587.

Girshick, R. Fast r-cnn. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7-13 December
2015; pp. 1440-1448.

Ren, S.; He, K,; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. IEEE Trans.
Pattern Anal. Mach. Intell. 2015, 39, 1137-1149. [CrossRef]

Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27-30 June 2016; pp. 779-788.

He, K.; Gkioxari, G.; Dollar, P.; Girshick, R. Mask r-cnn. In Proceedings of the IEEE International Conference on Computer Vision,
Venice, Italy, 22-29 October 2017; pp. 2961-2969.

Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of
the Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015: 18th International Conference, Munich,
Germany, 5-9 October 2015; Proceedings, Part III 18; Springer: Berlin/Heidelberg, Germany, 2015, pp. 234-241.

Creswell, A.; White, T.; Dumoulin, V.; Arulkumaran, K.; Sengupta, B.; Bharath, A.A. Generative adversarial networks: An
overview. IEEE Signal Process. Mag. 2018, 35, 53-65. [CrossRef]

Chaiyasarn, K.; Sharma, M.; Ali, L.; Khan, W.; Poovarodom, N. Crack detection in historical structures based on convolutional
neural network. GEOMATE . 2018, 15, 240-251. [CrossRef]

Dais, D.; Bal, L.E.; Smyrou, E.; Sarhosis, V. Automatic crack classification and segmentation on masonry surfaces using
convolutional neural networks and transfer learning. Autom. Constr. 2021, 125, 103606. [CrossRef]

Wang, N.; Zhao, X.; Zhao, P.; Zhang, Y.; Zou, Z.; Ou, J. Automatic damage detection of historic masonry buildings based on
mobile deep learning. Autom. Constr. 2019, 103, 53—66. [CrossRef]

Pathak, R.; Saini, A.; Wadhwa, A.; Sharma, H.; Sangwan, D. An object detection approach for detecting damages in heritage sites
using 3-D point clouds and 2-D visual data. J. Cult. Herit. 2021, 48, 74-82. [CrossRef]

Mansuri, L.E.; Patel, D. Artificial intelligence-based automatic visual inspection system for built heritage. Smart Sustain. Built
Environ. 2022, 11, 622-646. [CrossRef]

Karimi, N.; Mishra, M.; Lourengo, P.B. Deep learning-based automated tile defect detection system for Portuguese cultural
heritage buildings. J. Cult. Herit. 2024, 68, 86-98. [CrossRef]

Yan, L.; Chen, Y,; Zheng, L.; Zhang, Y. Application of computer vision technology in surface damage detection and analysis of
shedthin tiles in China: A case study of the classical gardens of Suzhou. Herit. Sci. 2024, 12, 72. [CrossRef]

Elhariri, E.; El-Bendary, N.; Taie, S.A. Automated pixel-level deep crack segmentation on historical surfaces using U-Net models.
Algorithms 2022, 15, 281. [CrossRef]

Makhanova, Z.; Beissenova, G.; Madiyarova, A.; Chazhabayeva, M.; Mambetaliyeva, G.; Suimenova, M.; Shaimerdenova, G.;
Mussirepova, E.; Baiburin, A. A Deep Residual Network Designed for Detecting Cracks in Buildings of Historical Significance.
Int. J. Adv. Comput. Sci. Appl. 2024, 15. [CrossRef]

Liu, Z.; Brigham, R; Long, E.R.; Wilson, L.; Frost, A.; Orr, S.A.; Grau-Bové, J. Semantic segmentation and photogrammetry of
crowdsourced images to monitor historic facades. Herit. Sci. 2022, 10, 1-17. [CrossRef]

Pang, G.; Shen, C.; Cao, L.; Hengel, A.V.D. Deep learning for anomaly detection: A review. ACM Comput. Surv. (CSUR) 2021,
54,1-38. [CrossRef]

Fais, S.; Casula, G.; Cuccuruy, E; Ligas, P; Bianchi, M.G. An innovative methodology for the non-destructive diagnosis of
architectural elements of ancient historical buildings. Sci. Rep. 2018, 8, 4334. [CrossRef] [PubMed]


http://dx.doi.org/10.1007/BF00994018
http://dx.doi.org/10.1145/3065386
http://dx.doi.org/10.1109/TPAMI.2016.2577031
http://dx.doi.org/10.1109/MSP.2017.2765202
http://dx.doi.org/10.21660/2018.51.35376
http://dx.doi.org/10.1016/j.autcon.2021.103606
http://dx.doi.org/10.1016/j.autcon.2019.03.003
http://dx.doi.org/10.1016/j.culher.2021.01.002
http://dx.doi.org/10.1108/SASBE-09-2020-0139
http://dx.doi.org/10.1016/j.culher.2024.05.009
http://dx.doi.org/10.1186/s40494-024-01185-6
http://dx.doi.org/10.3390/a15080281
http://dx.doi.org/10.14569/IJACSA.2024.0150558
http://dx.doi.org/10.1186/s40494-022-00664-y
http://dx.doi.org/10.1145/3439950
http://dx.doi.org/10.1038/s41598-018-22601-5
http://www.ncbi.nlm.nih.gov/pubmed/29531272

Buildings 2024, 14, 2828 21 of 21

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

Dore, C.; Murphy, M. Integration of Historic Building Information Modeling (HBIM) and 3D GIS for recording and managing
cultural heritage sites. In Proceedings of the 2012 18th International Conference on Virtual Systems and Multimedia, Milan, Italy,
2-5 September 2012; pp. 369-376.

Casillo, M.; Colace, F.; Gupta, B.B.; Lorusso, A.; Marongiu, F.; Santaniello, D. A deep learning approach to protecting cultural
heritage buildings through IoT-based systems. In Proceedings of the 2022 IEEE International Conference on Smart Computing
(SMARTCOMP), Helsinki, Finland, 20-24 June 2022, pp. 252-256.

Pierdicca, R.; Paolanti, M.; Matrone, F.; Martini, M.; Morbidoni, C.; Malinverni, E.S.; Frontoni, E.; Lingua, A.M. Point cloud
semantic segmentation using a deep learning framework for cultural heritage. Remote Sens. 2020, 12, 1005. [CrossRef]

Ni, Z.; Eriksson, P; Liu, Y.; Karlsson, M.; Gong, S. Improving energy efficiency while preserving historic buildings with digital
twins and artificial intelligence. Proc. Iop Conf. Ser. Earth Environ. Sci. 2021, 863, 012041. [CrossRef]

Kaplan, J.; McCandlish, S.; Henighan, T.; Brown, T.B.; Chess, B.; Child, R.; Gray, S.; Radford, A.; Wu, J.; Amodei, D. Scaling laws
for neural language models. arXiv 2020, arXiv:2001.08361.

Iandola, EN.; Han, S.; Moskewicz, M.W.; Ashraf, K.; Dally, W.J.; Keutzer, K. SqueezeNet: AlexNet-level accuracy with 50x fewer
parameters and< 0.5 MB model size. arXiv 2016, arXiv:1602.07360.

Ma, N.; Zhang, X.; Zheng, H.T.; Sun, J. Shufflenet v2: Practical guidelines for efficient cnn architecture design. In Proceedings of
the European Conference on Computer Vision (ECCV), Munich, Germany, 8-14 September 2018; Springer: Berlin/Heidelberg,
Germany, 2018; pp. 116-131.

Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. Mobilenetv2: Inverted residuals and linear bottlenecks. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18-23 June 2018;
pp. 4510-4520.

Tan, M,; Le, Q. Efficientnet: Rethinking model scaling for convolutional neural networks. In Proceedings of the International
Conference on Machine Learning, PMLR, Long Beach, CA, USA, 9-15 June 2019; pp. 6105-6114.

O’Mahony, N.; Campbell, S.; Carvalho, A.; Harapanahalli, S.; Hernandez, G.V.; Krpalkova, L.; Riordan, D.; Walsh, J. Deep
Learning vs. Traditional Computer Vision. In Advances in Computer Vision; Arai, K., Kapoor, S., Eds.; Springer: Cham, Switzerland,
2020; pp. 128-144.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


http://dx.doi.org/10.3390/rs12061005
http://dx.doi.org/10.1088/1755-1315/863/1/012041

	Introduction
	Literature Review
	Methods
	Image Anomaly Detection-Based Reconstruction
	Image Anomaly Extraction
	Damage Classification
	Selection of Backbone Network
	Evaluation Metrics

	Damage Evaluation Strategy and Maintenance Plan Formulation

	Roof Tile Restoration Case Study in Hexia Ancient Town
	Roof Tile Image Data Collection in Hexia Ancient Town
	Image Reconstruction Based on Convolutional Autoencoder
	Data Collection and Augmentation
	Autoencoder Architecture and Training Strategy
	Training Results

	Anomalous Image Block Extraction Based on Thresholding Technique
	Construction of Damage Classification Model
	Dataset Partitioning
	Model Training Configuration
	Training Process
	Model Performance Evaluation

	Roof Damage Assessment Case

	Discussion
	Conclusions
	References

