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Abstract—We present a kernel adaptive filtering-based phase
compensation method for transmission links with multiple cas-
caded fibre-optical parametric amplifiers (FOPAs). Our proposed
algorithm predicts and cancels the phase distortions induced
by pump-phase modulation and laser line-width across all
amplification stages. Through numerical simulations, we show
effective correction of phase errors in 16-quadrature-amplitude
modulation signal transmission, substantially surpassing the per-
formance of conventional carrier phase recovery.

Index Terms—Fibre-optical parametric amplifier, digital signal
processing, phase recovery, kernel adaptive filter

I. INTRODUCTION

Fibre-optical parametric amplifiers (FOPAs) [1] utilising
four-wave mixing for signal amplification have recently at-
tracted significant research interest owing to the multiple
advantages that they can offer in optical communications,
including broad gain bandwidth [2] and ultra-fast response.
However, stimulated Brillouin scattering (SBS) poses a signifi-
cant challenge to integrating FOPAs into next-generation opti-
cal systems as it limits the pump power that can be delivered
to the highly nonlinear fibre (HNLF) [3] and, consequently,
the achievable signal gain. A commonly used approach to
counteract the SBS effect is to broaden the pump source’s
line-width, thereby reducing the power spectral density across
the Brillouin bandwidth. This technique typically relies on
external modulation of the pump phase [4] driven by an elec-
trical signal with multiple radio-frequency (RF) tones. While
effective in suppressing SBS and hence enabling high gain
[5], this approach introduces undesired temporal fluctuations
in the complex parametric gain through modulation of the
pump’s instantaneous frequency [6]. These fluctuations are
then transferred to the output signal phase, becoming a source
of distortion in coherent-detection optical systems.

Integrating machine learning with digital signal processing
is increasingly recognised for its potential to address perfor-
mance challenges in optical networks. Kernel-based regression
methods have proven to be a robust approach for a range
of signal processing applications [7], [8]. These methods
draw on the theory of reproducing kernel Hilbert spaces
to model nonlinear systems by implementing a nonlinear
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transformation of the input into a high-dimensional feature
space where inner products can be calculated using a positive-
definite kernel function satisfying Mercer’s condition. This
way, the solution obtained as a linear functional in the feature
space, corresponds to the solution of the nonlinear problem in
the input space. Kernel-based adaptive filtering (KAF) is an
online version of these methods where the learned parameters
are adapted as the dictionary of observation data evolves
over time, with the goal of minimising a least-squares (LS)
cost function [8]. As the functional representation in the
feature space grows with increasing amount of observations,
a naı̈ve implementation of an online kernel method would
require growing computational resources during operation.
This issue has been addressed in the literature by various
dictionary learning strategies to control the dictionary’s size
within manageable limits. In this paper, we deploy the sliding-
window kernel recursive least-squares (SWKRLS) algorithm
introduced in [9], which, in every iteration, accepts the new
datum and discards the oldest basis, thereby maintaining a
dictionary of fixed size.

Our previous work [10] has employed the SWKRLS algo-
rithm to mitigate the phase distortion caused by the pump-
phase modulation of an optical phase conjugation device
after a stage of conventional carrier phase recovery. In this
paper, we introduce a fully online, single-stage phase recovery
method based on the SWKRLS algorithm for cascaded FOPA
transmission links. The proposed algorithm is capable to
estimate and then cancel both the phase distortion caused
by pump-phase modulation within each FOPA in the link
and the random phase noise induced by non-zero spectral
width of the laser sources. The performance of the algorithm
is verified numerically in 28-Gbaud single-polarisation 16
quadrature-amplitude modulation (QAM) signal transmission
over a cascade of ten FOPAs, achieving substantial bit-error-
rate (BER) improvement over conventional phase recovery.

II. KERNEL-BASED PHASE RECOVERY ALGORITHM

Figure 2 shows the block diagram of our proposed phase
recovery scheme. The total phase distortion of the signal
at the input of the compensation unit can be written as
φn = δφn + ϕn, where n is the symbol index, δφn includes
the total Wiener random laser phase noise of the system and
the contribution to phase noise from the amplified spontaneous



emission of the FOPA, and ϕn is the phase distortion caused
by the pump-phase modulation. A SWKRLS-based phase
estimation block aimed to predict the total phase distortion φ̂n,
and the received symbol yn was then rotated by this amount,
i.e., zn = yne

−iφ̂n , and passed through a decision circuit
where a decision-directed symbol, [zn]D, was extracted. The
phase difference between the symbol before phase rotation
and the decision-directed symbol, φ̃n = ∠{yn} − ∠{[zn]D},
was used as a phase distortion teacher for the training of
the phase estimation algorithm in the decision-directed mode.
The algorithm used reference symbols as a training teacher
substitution before convergence.

Fig. 1. Block diagram of the proposed kernel-based carrier phase recovery
scheme.

The kernel function of the phase estimation algorithm was
designed based on the distinctive characteristics of the phase
distortion. Our prior understanding indicated that the total
phase distortion can be represented by the superposition of a
periodic and a long-trend time series, where the former results
from the impact of the pump-phase modulation and the latter
is contributed by the laser phase noise. The periodic pattern,
oscillating at the frequencies of the RF tones used within the
FOPA’s dithering scheme, can be captured by a summation of
exponential sine squared kernels,

kper(tm, tn) =

Nt∑
j=1

exp[−2 sin2[πd(tm, tn)/pj ]/l2per], (1)

where tn is the time corresponding to the nth symbol, d(a, b)
is the Euclidean distance between two points, pj (j = 1, Nt)
represent the kernel’s periods, Nt is the number of dithering
tones, and lper is the kernel’s length-scale. As the RF tone
locations fj can be extracted at the receiver, the associated
periods are given by pj = 1/fj . The long-term trend, induced
by the relatively slower variation of the laser phase noise, can
be modelled with a Gaussian kernel (also known as radial basis
function (RBF) kernel),

kRBF(tm, tn) = exp[−d(tm, tn)2/(2l2RBF)], (2)

where lRBF is the length-scale. The total kernel can be then
constructed as

ktot(tm, tn) = kper(tm, tn) + kRBF(tm, tn). (3)

to include both types of patterns into the phase distortion
prediction.

We employed the SWKRLS algorithm [9] and our cus-
tomised kernel design for the prediction of the total phase
distortion φ̂n. In the notation used below, the capitalised
bold letters denote vectorised versions of the corresponding
variables. The kernel method here attempts to minimise the
LS cost function: |Φ̃ − Φ̂|2, which measures the difference
between the phase distortion driven by the decision-directed
circuit and the predicted phase distortion. The method maps
the input data – the time vector T – into a feature space where
the predicted output can be linearly represented in terms of the
transformed data Ṫ, i.e., Φ̂ = ṪΘ̇. The transformed solution
Θ̇ can also be represented in terms of the transformed data
as Θ̇ = ṪTα, where the superscript T denotes the transpose
operation. Moreover, introducing the kernel matrix K = ṪṪT,
the LS function in feature space can be rewritten as |Φ̃−Kα|2.
The solution α of the LS problem can now be found by only
computing the kernel matrix, which in our implementation of
the method, was selected from the customised design of (3),
i.e., K(m,n) = ktot(tm, tn).

In an online prediction setup, the algorithm is given a
stream of time-phase distortion pairs {(t1, φ̃1), (t2, φ̃2), . . . },
but in the SW approach, only the last N input-output pairs
are taken into account. At the symbol index n, the training
input Tn = [tn, tn−1, . . . , tn−N+1]

T and the training output
Φ̃n = [φ̃n, φ̃n−1, . . . , φ̃n−N+1]

T are formed, and the corre-
sponding regularised kernel matrix Kn = ṪnṪT

n + λI can be
calculated (I is the identity matrix and λ is a regularisation
constant). The updated solution αn is then obtained as

αn = K−1
n Φ̃n. (4)

The calculation of the updated solution requires the calculation
of the inverse kernel matrix for each window, which is
costly both computationally and memory-wise. However, in
the update algorithm developed in [9], the computation of Kn

and K−1
n is not done explicitly, but these matrices are updated

recursively using the previous matrices Kn−1 and K−1
n−1.

Specifically, given the regularised kernel matrix Kn−1, the
new regularised kernel matrix Kn is constructed by removing
the first row and column of Kn−1, referred to as K̄n−1, and
adding kernels of the new data as the last row and column:

Kn =

[
K̄n−1 bn
bT
n cn

]
, (5)

where bn = [ktot(tn−N+1, tn), ..., ktot(tn−1, tn)]
T, and cn =

ktot(tn, tn)+λ. The inverse kernel matrix K−1
n is then updated

accordingly as

K−1
n =

[
K̄−1
n−1 − K̄−1

n−1bndT
n dn

dT
n en

]
, (6)

where en = (cn − bT
nK̄−1

n−1bn)
−1 and dn = −K̄−1

n−1bnen.
After calculating the updated solution αn using Eq. (4), our
phase estimation algorithm produced the predicted phase for
the (n+ 1)th symbol as

φ̂n+1 = κTn+1αn, (7)



where κn+1 contained the calculated kernel values between
the dictionary points and the new point, i.e., κn+1 =
[ktot(tn−N , tn+1), . . . , ktot(tn, tn+1)]

T.
The operation of our kernel-based phase estimation block

can be summarised as follows:
Initialise K0 = I(1 + λ) and K−1

0 = I/(1 + λ)
for n=1,2,... do

Given φ̃n, form Φ̃n

Calculate Kn from (5)
Calculate K−1

n from (6)
Obtain the solution αn given Φ̃n from (4)
Produce φ̂n+1 for the next symbol from (7)

end for

III. SYSTEM’S CONFIGURATION AND NUMERICAL
RESULTS

Fig. 2. Schematic diagram of the N -cascaded FOPA system.

We considered a system comprising N = 10 identical
cascaded stages, each of 20-dB linear loss (corresponding to
100-km standard single-mode fibre) followed by a FOPA, as
depicted in Fig. 2. We modelled the FOPA by its complex
signal gain calculated as in [11], where the phase mismatch
comprised an additional instantaneous term induced by the
phase modulation of the pump following [6]. The FOPA was
operated at its maximum power gain of 25 dB, accounting
for an additional 5-dB insertion loss of the device. We
used a four-tone pump-phase modulation (Nt = 4) with a
base frequency of 100 MHz and a multiple of three spac-
ing between successive tones, i.e., the set of RF tones was
[0.1, 0.3, 0.9, 2.7]GHz. The tone’s amplitudes and phases
were optimised to ensure a close-to-uniform power distribution
among the peaks generated across the broadened pump spec-
trum by implementing a stochastic gradient descent method
in TensorFlow [12]. The optimised pump-phase modulation
scheme enabled significant increase in the SBS power thresh-
old, thereby satisfying the requirement for a SBS-limited 25-
dB gain.

We performed numerical simulations of the transmission
of a single-polarisation 28-Gbaud 16-QAM Nyquist shaped
signal with a roll-off factor of 0.1. The laser line-widths were
50 kHz and 30 kHz for the transmitter and receiver units and
the FOPA pumps, respectively. To avoid the signal symbols
experiencing exactly the same phase distortion along the FOPA
link, we included a random time shift in the pump-phase
modulation sinusoidal waveform at each FOPA stage. The
amplifer’s noise figure was 4.5 dB. We employed the directly-
counted bit-error-rate (BER) as a system’s performance metric
measured over 50× 216 symbols.

In our kernel selection (Eqs. (1)–(3)), since the periods pj
corresponding to the dithering frequencies can be extracted

Fig. 3. Kernel’s hyper-parameter optimisation in the pre-setting phase. (a)
Map of normalised marginal likelihood in the plane of the kernel’s length-
scales lper and lRBF. The red cross indicates the choice of optimum hyper-
parameters. (b) Fitted phase distortion using the optimised hyper-parameters
(black) compared to the actual one (blue). The gray shaded regions represent
the values that lie within one, two, and three standard deviations of the mean
in the normal distribution.

at the receiver, we are left with two hyper-parameters to
optimise, i.e., the length-scales lper and lRBF. This can done by
maximising the marginal likelihood of a Gaussian process [13]
using the training data set within a pre-setting stage. Figure
3(a) shows the heat-map of the normalised marginal likelihood,
where larger values (represented by brighter colours) corre-
spond to higher fitting confidence. We used a pre-setting set
of 100 symbols and the regularisation parameter λ = 0.1 for
this optimisation. We can see that the optimum value for the
length-scale of the periodic kernel is 10, while the Gaussian
kernel’s length-scale needs to be relatively large, and hence
we selected the value 104. Figure 3(b) illustrates the accuracy
of our kernel-based regression using the optimised hyper-
parameters. We used these for the SWKRLS-based phase
estimation algorithm with a dictionary size of 100.

We compared the performance of our proposed kernel-based
phase recovery method as a function of the number of FOPA
stages with conventional phase recovery accomplished by the
one-tap least-mean-squares (LMS) algorithm [14], as shown
in Fig. 4. As expected, the performance of the conventional
method deteriorates quickly with increasing number of FOPA
stages. Being designed to operate on the slower laser phase
noise, the conventional scheme cannot in fact track and
sufficiently suppress the accumulation of the high-frequency



Fig. 4. BER after conventional phase recovery (blue) and the proposed kernel-
based phase recovery (green) versus number of cascaded FOPA stages. The
inset shows the constellation diagrams after ten stages.

dithering-induced phase distortion along the link. This makes
the algorithm prone to phase cycle slips, with consequent
increase of phase detection errors. Our proposed scheme,
which uses a dithering-induced distortion customised kernel,
largely outperforms the one-tap LMS method, bringing about
a BER improvement of at least an order of magnitude across
the cascaded FOPA system considered.

IV. CONCLUSION

We developed an online kernel-based approach for carrier
phase recovery in systems with multiple cascaded FOPAs. By
constructing a customised kernel that captures the physical
properties of the phase distortion, especially of the high-
frequency distortion caused by phase modulation of the pump
sources, our scheme can outperform conventional phase recov-
ery schemes, which typically react slowly to temporal phase
variations. The efficacy of our method has been demonstrated
in 16-QAM signal transmission, achieving a BER improve-
ment of at least an order of magnitude over the one-tap LMS
phase recovery algorithm across a cascade of ten FOPAs.
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